aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xconfigure18
-rw-r--r--configure.ac2
-rw-r--r--configure.ac.pamphlet2
-rw-r--r--src/ChangeLog5
-rw-r--r--src/algebra/Makefile.in14
-rw-r--r--src/algebra/Makefile.pamphlet14
-rw-r--r--src/algebra/boolean.spad.pamphlet81
-rw-r--r--src/share/algebra/browse.daase1992
-rw-r--r--src/share/algebra/category.daase2656
-rw-r--r--src/share/algebra/compress.daase1325
-rw-r--r--src/share/algebra/interp.daase9954
-rw-r--r--src/share/algebra/operation.daase29987
12 files changed, 23079 insertions, 22971 deletions
diff --git a/configure b/configure
index 7b5e00e3..397052d0 100755
--- a/configure
+++ b/configure
@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
-# Generated by GNU Autoconf 2.63 for OpenAxiom 1.4.0-2010-04-03.
+# Generated by GNU Autoconf 2.63 for OpenAxiom 1.4.0-2010-04-04.
#
# Report bugs to <open-axiom-bugs@lists.sf.net>.
#
@@ -745,8 +745,8 @@ SHELL=${CONFIG_SHELL-/bin/sh}
# Identity of this package.
PACKAGE_NAME='OpenAxiom'
PACKAGE_TARNAME='openaxiom'
-PACKAGE_VERSION='1.4.0-2010-04-03'
-PACKAGE_STRING='OpenAxiom 1.4.0-2010-04-03'
+PACKAGE_VERSION='1.4.0-2010-04-04'
+PACKAGE_STRING='OpenAxiom 1.4.0-2010-04-04'
PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net'
ac_unique_file="src/Makefile.pamphlet"
@@ -1511,7 +1511,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
-\`configure' configures OpenAxiom 1.4.0-2010-04-03 to adapt to many kinds of systems.
+\`configure' configures OpenAxiom 1.4.0-2010-04-04 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1581,7 +1581,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
- short | recursive ) echo "Configuration of OpenAxiom 1.4.0-2010-04-03:";;
+ short | recursive ) echo "Configuration of OpenAxiom 1.4.0-2010-04-04:";;
esac
cat <<\_ACEOF
@@ -1688,7 +1688,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
-OpenAxiom configure 1.4.0-2010-04-03
+OpenAxiom configure 1.4.0-2010-04-04
generated by GNU Autoconf 2.63
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
@@ -1702,7 +1702,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
-It was created by OpenAxiom $as_me 1.4.0-2010-04-03, which was
+It was created by OpenAxiom $as_me 1.4.0-2010-04-04, which was
generated by GNU Autoconf 2.63. Invocation command line was
$ $0 $@
@@ -21165,7 +21165,7 @@ exec 6>&1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
-This file was extended by OpenAxiom $as_me 1.4.0-2010-04-03, which was
+This file was extended by OpenAxiom $as_me 1.4.0-2010-04-04, which was
generated by GNU Autoconf 2.63. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -21228,7 +21228,7 @@ Report bugs to <bug-autoconf@gnu.org>."
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
-OpenAxiom config.status 1.4.0-2010-04-03
+OpenAxiom config.status 1.4.0-2010-04-04
configured by $0, generated by GNU Autoconf 2.63,
with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"
diff --git a/configure.ac b/configure.ac
index 8e8f721d..e43c585f 100644
--- a/configure.ac
+++ b/configure.ac
@@ -1,6 +1,6 @@
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.4.0-2010-04-03],
+AC_INIT([OpenAxiom], [1.4.0-2010-04-04],
[open-axiom-bugs@lists.sf.net])
AC_CONFIG_AUX_DIR(config)
diff --git a/configure.ac.pamphlet b/configure.ac.pamphlet
index 294d62c4..b506d533 100644
--- a/configure.ac.pamphlet
+++ b/configure.ac.pamphlet
@@ -1200,7 +1200,7 @@ information:
<<Autoconf init>>=
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.4.0-2010-04-03],
+AC_INIT([OpenAxiom], [1.4.0-2010-04-04],
[open-axiom-bugs@lists.sf.net])
@
diff --git a/src/ChangeLog b/src/ChangeLog
index 1c04a53f..534d0b45 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,8 @@
+2010-04-04 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/boolean.spad.pamphlet (PropositionalFormulaFunctions1): New.
+ (PropositionalFormulaFunctions2): Likewise.
+
2010-04-03 Gabriel Dos Reis <gdr@cs.tamu.edu>
* interp/sys-utility.boot ($ClosedIOMode): New.
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index 75bac0b7..8c99bd1e 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -497,15 +497,17 @@ axiom_algebra_layer_5_objects = \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_5)))
$(OUT)/CHARPOL.$(FASLEXT): $(OUT)/SETCAT-.$(FASLEXT)
-$(OUT)PROPFRML.$(FASLEXT): $(OUT)/KERNEL.$(FASLEXT)
+$(OUT)/PROPFRML.$(FASLEXT): $(OUT)/KERNEL.$(FASLEXT)
$(OUT)/KTVLOGIC.$(FASLEXT): $(OUT)/PROPLOG.$(FASLEXT) $(OUT)/BYTE.$(FASLEXT)
+$(OUT)/PROPFUN1.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT)
+$(OUT)/PROPFUN2.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT)
axiom_algebra_layer_6 = \
- PROPFRML AUTOMOR CARTEN2 CHARPOL COMPLEX2 \
- DIFEXT DIFEXT- ES1 ES2 GRMOD GRMOD- \
- HYPCAT HYPCAT- MODRING NASRING NASRING- \
- SORTPAK ZMOD \
- KTVLOGIC OAMONS BYTE SYSINT SYSNNI
+ PROPFRML PROPFUN1 AUTOMOR CARTEN2 CHARPOL COMPLEX2 \
+ DIFEXT DIFEXT- ES1 ES2 GRMOD GRMOD- \
+ HYPCAT HYPCAT- MODRING NASRING NASRING- \
+ SORTPAK ZMOD PROPFUN2 \
+ KTVLOGIC OAMONS BYTE SYSINT SYSNNI
axiom_algebra_layer_6_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_6))
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index ddbb379c..11c6399e 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -481,15 +481,17 @@ axiom_algebra_layer_5_objects = \
<<layer6>>=
$(OUT)/CHARPOL.$(FASLEXT): $(OUT)/SETCAT-.$(FASLEXT)
-$(OUT)PROPFRML.$(FASLEXT): $(OUT)/KERNEL.$(FASLEXT)
+$(OUT)/PROPFRML.$(FASLEXT): $(OUT)/KERNEL.$(FASLEXT)
$(OUT)/KTVLOGIC.$(FASLEXT): $(OUT)/PROPLOG.$(FASLEXT) $(OUT)/BYTE.$(FASLEXT)
+$(OUT)/PROPFUN1.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT)
+$(OUT)/PROPFUN2.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT)
axiom_algebra_layer_6 = \
- PROPFRML AUTOMOR CARTEN2 CHARPOL COMPLEX2 \
- DIFEXT DIFEXT- ES1 ES2 GRMOD GRMOD- \
- HYPCAT HYPCAT- MODRING NASRING NASRING- \
- SORTPAK ZMOD \
- KTVLOGIC OAMONS BYTE SYSINT SYSNNI
+ PROPFRML PROPFUN1 AUTOMOR CARTEN2 CHARPOL COMPLEX2 \
+ DIFEXT DIFEXT- ES1 ES2 GRMOD GRMOD- \
+ HYPCAT HYPCAT- MODRING NASRING NASRING- \
+ SORTPAK ZMOD PROPFUN2 \
+ KTVLOGIC OAMONS BYTE SYSINT SYSNNI
axiom_algebra_layer_6_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_6))
diff --git a/src/algebra/boolean.spad.pamphlet b/src/algebra/boolean.spad.pamphlet
index 15071693..9be8f2a3 100644
--- a/src/algebra/boolean.spad.pamphlet
+++ b/src/algebra/boolean.spad.pamphlet
@@ -246,6 +246,81 @@ PropositionalFormula(T: SetCategory): Public == Private where
@
+<<package PROPFUN1 PropositionalFormulaFunctions1>>=
+)abbrev package PROPFUN1 PropositionalFormulaFunctions1
+++ Author: Gabriel Dos Reis
+++ Date Created: April 03, 2010
+++ Date Last Modified: April 03, 2010
+++ Description:
+++ This package collects unary functions operating on propositional
+++ formulae.
+PropositionalFormulaFunctions1(T): Public == Private where
+ T: SetCategory
+ Public == Type with
+ dual: PropositionalFormula T -> PropositionalFormula T
+ ++ \spad{dual f} returns the dual of the proposition \spad{f}.
+ terms: PropositionalFormula T -> Set T
+ ++ \spad{terms f} ++ returns the set of terms appearing in
+ ++ the formula \spad{f}.
+ Private == add
+ macro F == PropositionalFormula T
+ inline Pair(F,F)
+ dual f ==
+ f = true$F => false$F
+ f = false$F => true$F
+ isTerm f case T => f
+ (f1 := isNot f) case F => not dual f1
+ (f2 := isAnd f) case Pair(F,F) =>
+ disjunction(dual first f2, dual second f2)
+ (f2 := isOr f) case Pair(F,F) =>
+ conjunction(dual first f2, dual second f2)
+ error "formula contains `equiv' or `implies'"
+ terms f ==
+ (t := isTerm f) case T => { t }
+ (f1 := isNot f) case F => terms f1
+ (f2 := isAnd f) case Pair(F,F) =>
+ union(terms first f2, terms second f2)
+ (f2 := isOr f) case Pair(F,F) =>
+ union(terms first f2, terms second f2)
+ empty()$Set(T)
+@
+
+<<package PROPFUN2 PropositionalFormulaFunctions2>>=
+)abbrev package PROPFUN2 PropositionalFormulaFunctions2
+++ Author: Gabriel Dos Reis
+++ Date Created: April 03, 2010
+++ Date Last Modified: April 03, 2010
+++ Description:
+++ This package collects binary functions operating on propositional
+++ formulae.
+PropositionalFormulaFunctions2(S,T): Public == Private where
+ S: SetCategory
+ T: SetCategory
+ Public == Type with
+ map: (S -> T, PropositionalFormula S) -> PropositionalFormula T
+ ++ \spad{map(f,x)} returns a propositional formula where
+ ++ all terms in \spad{x} have been replaced by the result
+ ++ of applying the function \spad{f} to them.
+ Private == add
+ macro FS == PropositionalFormula S
+ macro FT == PropositionalFormula T
+ map(f,x) ==
+ x = true$FS => true$FT
+ x = false$FS => false$FT
+ (t := isTerm x) case S => f(t)::FT
+ (f1 := isNot x) case FS => not map(f,f1)
+ (f2 := isAnd x) case Pair(FS,FS) =>
+ conjunction(map(f,first f2), map(f,second f2))
+ (f2 := isOr x) case Pair(FS,FS) =>
+ disjunction(map(f,first f2), map(f,second f2))
+ (f2 := isImplies x) case Pair(FS,FS) =>
+ implies(map(f,first f2), map(f,second f2))
+ (f2 := isEquiv x) case Pair(FS,FS) =>
+ equiv(map(f,first f2), map(f,second f2))
+ error "invalid propositional formula"
+
+@
+
\section{domain REF Reference}
<<domain REF Reference>>=
)abbrev domain REF Reference
@@ -532,7 +607,7 @@ KleeneTrivalentLogic(): Public == Private where
<<license>>=
--Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
--All rights reserved.
---Copyright (C) 2007-2009, Gabriel Dos Reis.
+--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
@@ -571,8 +646,12 @@ KleeneTrivalentLogic(): Public == Private where
<<domain BOOLEAN Boolean>>
<<domain IBITS IndexedBits>>
<<domain BITS Bits>>
+
<<category PROPLOG PropositionalLogic>>
<<domain PROPFRML PropositionalFormula>>
+<<package PROPFUN1 PropositionalFormulaFunctions1>>
+<<package PROPFUN2 PropositionalFormulaFunctions2>>
+
<<domain KTVLOGIC KleeneTrivalentLogic>>
@
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 8c11e2ea..c23e3ecf 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2267652 . 3479296388)
+(2268440 . 3479376211)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4441 . T) (-4439 . T) (-4438 . T) ((-4446 "*") . T) (-4437 . T) (-4442 . T) (-4436 . T))
+((-4444 . T) (-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4440 . T) (-4445 . T) (-4439 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1666)
+(-32 R -1668)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))
+((|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4444)))
+((|HasAttribute| |#1| (QUOTE -4447)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1666 UP UPUP -3283)
+(-40 -1668 UP UPUP -2520)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4437 |has| (-412 |#2|) (-367)) (-4442 |has| (-412 |#2|) (-367)) (-4436 |has| (-412 |#2|) (-367)) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2774 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2774 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2774 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2774 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
-(-41 R -1666)
+((-4440 |has| (-412 |#2|) (-367)) (-4445 |has| (-412 |#2|) (-367)) (-4439 |has| (-412 |#2|) (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2776 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2776 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2776 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
+(-41 R -1668)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -435) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -435) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-310))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4441 |has| |#1| (-561)) (-4439 . T) (-4438 . T))
+((-4444 |has| |#1| (-561)) (-4442 . T) (-4441 . T))
((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4444 . T) (-4445 . T))
-((-2774 (-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|))))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))))
+((-4447 . T) (-4448 . T))
+((-2776 (-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|))))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1666)
+(-54 |Base| R -1668)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-61 -3570)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-61 -3573)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3570)
+(-62 -3573)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3570)
+(-63 -3573)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3570)
+(-64 -3573)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3570)
+(-65 -3573)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3570)
+(-66 -3573)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3570)
+(-67 -3573)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3570)
+(-68 -3573)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3570)
+(-69 -3573)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3570)
+(-70 -3573)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3570)
+(-71 -3573)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3570)
+(-72 -3573)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3570)
+(-73 -3573)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3570)
+(-74 -3573)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3570)
+(-77 -3573)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -3570)
+(-78 -3573)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3570)
+(-79 -3573)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3570)
+(-80 -3573)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3570)
+(-81 -3573)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3570)
+(-82 -3573)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3570)
+(-83 -3573)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3570)
+(-84 -3573)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3570)
+(-85 -3573)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3570)
+(-86 -3573)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3570)
+(-87 -3573)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3570)
+(-88 -3573)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -3570)
+(-89 -3573)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-367))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4444 . T))
+((-4447 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4444 . T) ((-4446 "*") . T) (-4445 . T) (-4441 . T) (-4439 . T) (-4438 . T) (-4437 . T) (-4442 . T) (-4436 . T) (-4435 . T) (-4434 . T) (-4433 . T) (-4432 . T) (-4440 . T) (-4443 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4431 . T))
+((-4447 . T) ((-4449 "*") . T) (-4448 . T) (-4444 . T) (-4442 . T) (-4441 . T) (-4440 . T) (-4445 . T) (-4439 . T) (-4438 . T) (-4437 . T) (-4436 . T) (-4435 . T) (-4443 . T) (-4446 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4434 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4446 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4449 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4444 . T))
+((-4447 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4445 . T))
+((-4448 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2774 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -388,22 +388,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-115 -1666 UP)
+(-115 -1668 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-915))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-116 |#1|) (QUOTE (-1028))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-2774 (|HasCategory| (-116 |#1|) (QUOTE (-825))) (|HasCategory| (-116 |#1|) (QUOTE (-855)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-1158))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-310))) (|HasCategory| (-116 |#1|) (QUOTE (-550))) (|HasCategory| (-116 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-915))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-116 |#1|) (QUOTE (-1030))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-2776 (|HasCategory| (-116 |#1|) (QUOTE (-825))) (|HasCategory| (-116 |#1|) (QUOTE (-855)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-1160))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-310))) (|HasCategory| (-116 |#1|) (QUOTE (-550))) (|HasCategory| (-116 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4445)))
+((|HasAttribute| |#1| (QUOTE -4448)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129)))))) (-2774 (-12 (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-129) (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1106)))) (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-129) (QUOTE (-1106))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129)))))) (-2776 (-12 (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-129) (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1108)))) (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -466,13 +466,13 @@ NIL
NIL
(-134)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4446 "*") . T))
+(((-4449 "*") . T))
NIL
-(-135 |minix| -2406 S T$)
+(-135 |minix| -2409 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -2406 R)
+(-136 |minix| -2409 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -494,8 +494,8 @@ NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4444 . T) (-4434 . T) (-4445 . T))
-((-2774 (-12 (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-4447 . T) (-4437 . T) (-4448 . T))
+((-2776 (-12 (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -510,7 +510,7 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-146 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -518,9 +518,9 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4441 . T))
+((-4444 . T))
NIL
-(-148 -1666 UP UPUP)
+(-148 -1668 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -531,14 +531,14 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasAttribute| |#1| (QUOTE -4444)))
+((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasAttribute| |#1| (QUOTE -4447)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-152 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4439 . T) (-4438 . T) (-4441 . T))
+((-4442 . T) (-4441 . T) (-4444 . T))
NIL
(-153)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -1666)
+(-158 R -1668)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1008))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4440)) (|HasAttribute| |#2| (QUOTE -4443)) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561))))
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1010))) (|HasCategory| |#2| (QUOTE (-1210))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4443)) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4437 -2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4440 |has| |#1| (-6 -4440)) (-4443 |has| |#1| (-6 -4443)) (-3098 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 -2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4443 |has| |#1| (-6 -4443)) (-4446 |has| |#1| (-6 -4446)) (-3101 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -610,8 +610,8 @@ NIL
NIL
(-170 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4437 -2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4440 |has| |#1| (-6 -4440)) (-4443 |has| |#1| (-6 -4443)) (-3098 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1208)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasAttribute| |#1| (QUOTE -4440)) (|HasAttribute| |#1| (QUOTE -4443)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-353)))))
+((-4440 -2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4443 |has| |#1| (-6 -4443)) (-4446 |has| |#1| (-6 -4446)) (-3101 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1210)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1210)))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1210)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#1| (QUOTE -4446)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-353)))))
(-171 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -622,7 +622,7 @@ NIL
NIL
(-173)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-174)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -630,7 +630,7 @@ NIL
NIL
(-175 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4446 "*") . T) (-4437 . T) (-4442 . T) (-4436 . T) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") . T) (-4440 . T) (-4445 . T) (-4439 . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-176)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -684,7 +684,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-189 R -1666)
+(-189 R -1668)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -792,23 +792,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-216 -1666 UP UPUP R)
+(-216 -1668 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-217 -1666 FP)
+(-217 -1668 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-218)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2774 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
(-219)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-220 R -1666)
+(-220 R -1668)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -822,19 +822,19 @@ NIL
NIL
(-223 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-224 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4441 . T))
+((-4444 . T))
NIL
-(-225 R -1666)
+(-225 R -1668)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-226)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3088 . T) (-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-227)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -842,23 +842,23 @@ NIL
NIL
(-228 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4446 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4449 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-229 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-230 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4445 . T))
+((-4448 . T))
NIL
(-231 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))))
(-232 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-233 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -866,36 +866,36 @@ NIL
NIL
(-234)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-235 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4444)))
+((|HasAttribute| |#1| (QUOTE -4447)))
(-236 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4445 . T))
+((-4448 . T))
NIL
(-237)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-238 S -2406 R)
+(-238 S -2409 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasAttribute| |#3| (QUOTE -4441)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1106))))
-(-239 -2406 R)
+((|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasAttribute| |#3| (QUOTE -4444)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-1108))))
+(-239 -2409 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4438 |has| |#2| (-1055)) (-4439 |has| |#2| (-1055)) (-4441 |has| |#2| (-6 -4441)) ((-4446 "*") |has| |#2| (-173)) (-4444 . T))
+((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T))
NIL
-(-240 -2406 A B)
+(-240 -2409 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-241 -2406 R)
+(-241 -2409 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4438 |has| |#2| (-1055)) (-4439 |has| |#2| (-1055)) (-4441 |has| |#2| (-6 -4441)) ((-4446 "*") |has| |#2| (-173)) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2774 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-234))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2774 (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2776 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-234))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasAttribute| |#2| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-242)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -906,7 +906,7 @@ NIL
NIL
(-244)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4437 . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-245 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -914,16 +914,16 @@ NIL
NIL
(-246 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-247 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-248 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4446 "*") |has| |#2| (-173)) (-4437 |has| |#2| (-561)) (-4442 |has| |#2| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-915))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-249)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -938,23 +938,23 @@ NIL
NIL
(-252 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4441 -2774 (-1756 (|has| |#4| (-1055)) (|has| |#4| (-234))) (-1756 (|has| |#4| (-1055)) (|has| |#4| (-906 (-1183)))) (|has| |#4| (-6 -4441)) (-1756 (|has| |#4| (-1055)) (|has| |#4| (-644 (-569))))) (-4438 |has| |#4| (-1055)) (-4439 |has| |#4| (-1055)) ((-4446 "*") |has| |#4| (-173)) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#4| (QUOTE (-367))) (-2774 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-1055)))) (-2774 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367)))) (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-798))) (-2774 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (QUOTE (-853)))) (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (QUOTE (-731))) (-2774 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-173)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-234)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-731)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-798)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-853)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1055)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1106))))) (-2774 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1055))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (-2774 (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (|HasCategory| |#4| (QUOTE (-731))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569))))) (-2774 (|HasCategory| |#4| (QUOTE (-1055))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1106)))) (-2774 (|HasAttribute| |#4| (QUOTE -4441)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1055)))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1055))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))))
+((-4444 -2776 (-1759 (|has| |#4| (-1057)) (|has| |#4| (-234))) (-1759 (|has| |#4| (-1057)) (|has| |#4| (-906 (-1185)))) (|has| |#4| (-6 -4444)) (-1759 (|has| |#4| (-1057)) (|has| |#4| (-644 (-569))))) (-4441 |has| |#4| (-1057)) (-4442 |has| |#4| (-1057)) ((-4449 "*") |has| |#4| (-173)) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#4| (QUOTE (-367))) (-2776 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-1057)))) (-2776 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367)))) (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-798))) (-2776 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (QUOTE (-853)))) (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (QUOTE (-731))) (-2776 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1057)))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-173)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-234)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-731)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-798)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-853)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1057)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1057))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (-2776 (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (|HasCategory| |#4| (QUOTE (-731))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-2776 (|HasCategory| |#4| (QUOTE (-1057))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1108)))) (-2776 (|HasAttribute| |#4| (QUOTE -4444)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))))
(-253 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4441 -2774 (-1756 (|has| |#3| (-1055)) (|has| |#3| (-234))) (-1756 (|has| |#3| (-1055)) (|has| |#3| (-906 (-1183)))) (|has| |#3| (-6 -4441)) (-1756 (|has| |#3| (-1055)) (|has| |#3| (-644 (-569))))) (-4438 |has| |#3| (-1055)) (-4439 |has| |#3| (-1055)) ((-4446 "*") |has| |#3| (-173)) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#3| (QUOTE (-367))) (-2774 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2774 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2774 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2774 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106))))) (-2774 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2774 (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-731))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-2774 (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106)))) (-2774 (|HasAttribute| |#3| (QUOTE -4441)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
+((-4444 -2776 (-1759 (|has| |#3| (-1057)) (|has| |#3| (-234))) (-1759 (|has| |#3| (-1057)) (|has| |#3| (-906 (-1185)))) (|has| |#3| (-6 -4444)) (-1759 (|has| |#3| (-1057)) (|has| |#3| (-644 (-569))))) (-4441 |has| |#3| (-1057)) (-4442 |has| |#3| (-1057)) ((-4449 "*") |has| |#3| (-173)) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#3| (QUOTE (-367))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2776 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-731))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-2776 (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108)))) (-2776 (|HasAttribute| |#3| (QUOTE -4444)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
(-254 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-234))))
(-255 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
NIL
(-256 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
(-257)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -994,8 +994,8 @@ NIL
NIL
(-266 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-267 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1040,11 +1040,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-278 R -1666)
+(-278 R -1668)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-279 R -1666)
+(-279 R -1668)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1067,10 +1067,10 @@ NIL
(-284 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))))
+((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))))
(-285 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4445 . T))
+((-4448 . T))
NIL
(-286 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1091,18 +1091,18 @@ NIL
(-290 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4445)))
+((|HasAttribute| |#1| (QUOTE -4448)))
(-291 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-292 S R |Mod| -3440 -2126 |exactQuo|)
+(-292 S R |Mod| -1538 -4198 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-293)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4437 . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-294)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1118,21 +1118,21 @@ NIL
NIL
(-297 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4441 -2774 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4438 |has| |#1| (-1055)) (-4439 |has| |#1| (-1055)))
-((|HasCategory| |#1| (QUOTE (-367))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731)))) (|HasCategory| |#1| (QUOTE (-478))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2774 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-305))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478)))) (-2774 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731)))) (-2774 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-731))))
+((-4444 -2776 (|has| |#1| (-1057)) (|has| |#1| (-478))) (-4441 |has| |#1| (-1057)) (-4442 |has| |#1| (-1057)))
+((|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731)))) (|HasCategory| |#1| (QUOTE (-478))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-1108)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-305))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478)))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-731))))
(-298 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-299)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-300 -1666 S)
+(-300 -1668 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-301 E -1666)
+(-301 E -1668)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1147,7 +1147,7 @@ NIL
(-304 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1055))))
+((|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1057))))
(-305)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1170,7 +1170,7 @@ NIL
NIL
(-310)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-311 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1180,7 +1180,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-313 -1666)
+(-313 -1668)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1194,8 +1194,8 @@ NIL
NIL
(-316 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1028))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-2774 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-1158))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -312) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (LIST (QUOTE -289) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-310))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-855))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145)))) (-2774 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1259 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145))))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-1030))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-2776 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-855)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-1160))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -312) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -289) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-310))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-855))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145)))) (-2776 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145))))))
(-317 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1206,9 +1206,9 @@ NIL
NIL
(-319 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4441 -2774 (-1756 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (-12 (|has| |#1| (-561)) (-2774 (-1756 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (|has| |#1| (-1055)) (|has| |#1| (-478)))) (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4439 |has| |#1| (-173)) (-4438 |has| |#1| (-173)) ((-4446 "*") |has| |#1| (-561)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-561)) (-4436 |has| |#1| (-561)))
-((-2774 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (-2774 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (QUOTE (-21))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1118)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1118)))) (-2774 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2774 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1118)))) (-2774 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2774 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1055)))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1118))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
-(-320 R -1666)
+((-4444 -2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (-12 (|has| |#1| (-561)) (-2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (|has| |#1| (-1057)) (|has| |#1| (-478)))) (|has| |#1| (-1057)) (|has| |#1| (-478))) (-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) ((-4449 "*") |has| |#1| (-561)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-561)) (-4439 |has| |#1| (-561)))
+((-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (QUOTE (-21))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1120)))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2776 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1120)))) (-2776 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569)))))
+(-320 R -1668)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1218,8 +1218,8 @@ NIL
NIL
(-322 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))))
(-323 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1230,7 +1230,7 @@ NIL
NIL
(-325 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
((|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-797))))
(-326 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1246,19 +1246,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))))
(-329 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-330 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-331 S -1666)
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+(-331 S -1668)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))))
-(-332 -1666)
+(-332 -1668)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-333)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1280,54 +1280,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-338 S -1666 UP UPUP R)
+(-338 S -1668 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-339 -1666 UP UPUP R)
+(-339 -1668 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-340 -1666 UP UPUP R)
+(-340 -1668 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-341 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))))
(-342 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-343 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-383)))) (|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
+((-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-383)))) (|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569)))))
(-344 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-345 S -1666 UP UPUP)
+(-345 S -1668 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-367))))
-(-346 -1666 UP UPUP)
+(-346 -1668 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4437 |has| (-412 |#2|) (-367)) (-4442 |has| (-412 |#2|) (-367)) (-4436 |has| (-412 |#2|) (-367)) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 |has| (-412 |#2|) (-367)) (-4445 |has| (-412 |#2|) (-367)) (-4439 |has| (-412 |#2|) (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-347 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
(-348 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-349 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-350 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1342,33 +1342,33 @@ NIL
NIL
(-353)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-354 R UP -1666)
+(-354 R UP -1668)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-355 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
(-356 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-357 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-358 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145))))
(-359 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
-(-360 -1666 GF)
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+(-360 -1668 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1376,21 +1376,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-362 -1666 FP FPP)
+(-362 -1668 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-363 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145))))
(-364 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-365 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-366 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1398,7 +1398,7 @@ NIL
NIL
(-367)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-368 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1414,7 +1414,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-561))))
(-371 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4441 |has| |#1| (-561)) (-4439 . T) (-4438 . T))
+((-4444 |has| |#1| (-561)) (-4442 . T) (-4441 . T))
NIL
(-372)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1426,7 +1426,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-367))))
(-374 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-375 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1435,14 +1435,14 @@ NIL
(-376 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))))
+((|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))))
(-377 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4444 . T))
+((-4447 . T))
NIL
(-378 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4439 . T) (-4438 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4442 . T) (-4441 . T))
NIL
(-379 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1454,7 +1454,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))))
(-381 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4441 . T))
+((-4444 . T))
NIL
(-382 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1462,7 +1462,7 @@ NIL
NIL
(-383)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4427 . T) (-4435 . T) (-3088 . T) (-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4430 . T) (-4438 . T) (-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-384 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1470,11 +1470,11 @@ NIL
NIL
(-385 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
((|HasCategory| |#1| (QUOTE (-173))))
(-386 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
NIL
(-387)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1486,7 +1486,7 @@ NIL
NIL
(-389 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
((|HasCategory| |#1| (QUOTE (-173))))
(-390 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1498,7 +1498,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-855))))
(-392)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-393)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1510,13 +1510,13 @@ NIL
NIL
(-395 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
NIL
(-396)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-397 -1666 UP UPUP R)
+(-397 -1668 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1540,11 +1540,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-403 -3570 |returnType| -3936 |symbols|)
+(-403 -3573 |returnType| -3939 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-404 -1666 UP)
+(-404 -1668 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1558,15 +1558,15 @@ NIL
NIL
(-407)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-408 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4427)) (|HasAttribute| |#1| (QUOTE -4435)))
+((|HasAttribute| |#1| (QUOTE -4430)) (|HasAttribute| |#1| (QUOTE -4438)))
(-409)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3088 . T) (-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-410 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1578,20 +1578,20 @@ NIL
NIL
(-412 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4431 -12 (|has| |#1| (-6 -4442)) (|has| |#1| (-457)) (|has| |#1| (-6 -4431))) (-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-825))) (-2774 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-855)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasAttribute| |#1| (QUOTE -4442)) (|HasAttribute| |#1| (QUOTE -4431)) (|HasCategory| |#1| (QUOTE (-457)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-4434 -12 (|has| |#1| (-6 -4445)) (|has| |#1| (-457)) (|has| |#1| (-6 -4434))) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-825))) (-2776 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-855)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#1| (QUOTE -4434)) (|HasCategory| |#1| (QUOTE (-457)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-413 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-414 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-415 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))
+((|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))
(-416 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1600,14 +1600,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-418 R -1666 UP A)
+(-418 R -1668 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4441 . T))
+((-4444 . T))
NIL
-(-419 R -1666 UP A |ibasis|)
+(-419 R -1668 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1044) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -1046) (|devaluate| |#2|))))
(-420 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1618,12 +1618,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-367))))
(-422 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4441 |has| |#1| (-561)) (-4439 . T) (-4438 . T))
+((-4444 |has| |#1| (-561)) (-4442 . T) (-4441 . T))
NIL
(-423 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -312) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -289) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1227))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-457))))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -312) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -289) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1229))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1229)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-457))))
(-424 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
@@ -1650,37 +1650,37 @@ NIL
((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
(-430 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4444 . T) (-4434 . T) (-4445 . T))
+((-4447 . T) (-4437 . T) (-4448 . T))
NIL
-(-431 R -1666)
+(-431 R -1668)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-432 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4431 -12 (|has| |#1| (-6 -4431)) (|has| |#2| (-6 -4431))) (-4438 . T) (-4439 . T) (-4441 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4431)) (|HasAttribute| |#2| (QUOTE -4431))))
-(-433 R -1666)
+((-4434 -12 (|has| |#1| (-6 -4434)) (|has| |#2| (-6 -4434))) (-4441 . T) (-4442 . T) (-4444 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4434)) (|HasAttribute| |#2| (QUOTE -4434))))
+(-433 R -1668)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-434 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1118))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))))
+((|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))))
(-435 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4441 -2774 (|has| |#1| (-1055)) (|has| |#1| (-478))) (-4439 |has| |#1| (-173)) (-4438 |has| |#1| (-173)) ((-4446 "*") |has| |#1| (-561)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-561)) (-4436 |has| |#1| (-561)))
+((-4444 -2776 (|has| |#1| (-1057)) (|has| |#1| (-478))) (-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) ((-4449 "*") |has| |#1| (-561)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-561)) (-4439 |has| |#1| (-561)))
NIL
-(-436 R -1666)
+(-436 R -1668)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-437 R -1666)
+(-437 R -1668)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-438 R -1666)
+(-438 R -1668)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1688,10 +1688,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-440 R -1666 UP)
+(-440 R -1668 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-48)))))
+((|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-48)))))
(-441)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1720,7 +1720,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-448 R UP -1666)
+(-448 R UP -1668)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1758,16 +1758,16 @@ NIL
NIL
(-457)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-458 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4441 |has| (-412 (-958 |#1|)) (-561)) (-4439 . T) (-4438 . T))
+((-4444 |has| (-412 (-958 |#1|)) (-561)) (-4442 . T) (-4441 . T))
((|HasCategory| (-412 (-958 |#1|)) (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-412 (-958 |#1|)) (QUOTE (-561))))
(-459 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4446 "*") |has| |#2| (-173)) (-4437 |has| |#2| (-561)) (-4442 |has| |#2| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-915))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-460 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1794,7 +1794,7 @@ NIL
NIL
(-466 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
NIL
(-467 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1802,8 +1802,8 @@ NIL
NIL
(-468 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
(-469 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1832,7 +1832,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-476 |lv| -1666 R)
+(-476 |lv| -1668 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1842,23 +1842,23 @@ NIL
NIL
(-478)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-479 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))))
(-480 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))))
+((-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))))
(-481 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
(-482)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-483)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1866,29 +1866,29 @@ NIL
NIL
(-484 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-485)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-486 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4446 "*") |has| |#2| (-173)) (-4437 |has| |#2| (-561)) (-4442 |has| |#2| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-915))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-487 -2406 S)
+(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-487 -2409 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4438 |has| |#2| (-1055)) (-4439 |has| |#2| (-1055)) (-4441 |has| |#2| (-6 -4441)) ((-4446 "*") |has| |#2| (-173)) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2774 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-234))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2774 (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2776 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-234))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasAttribute| |#2| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-488)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-489 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-490 -1666 UP UPUP R)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-490 -1668 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1898,12 +1898,12 @@ NIL
NIL
(-492)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2774 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
(-493 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4444)) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))
+((|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))
(-494 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1924,34 +1924,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-499 -1666 UP |AlExt| |AlPol|)
+(-499 -1668 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-500)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| $ (QUOTE (-1055))) (|HasCategory| $ (LIST (QUOTE -1044) (QUOTE (-569)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569)))))
(-501 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-502 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-503 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-504 R UP -1666)
+(-504 R UP -1668)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-505 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1106))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867)))))
(-506 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1964,10 +1964,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-509 -1666 |Expon| |VarSet| |DPoly|)
+(-509 -1668 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-1183)))))
+((|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-1185)))))
(-510 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -2014,36 +2014,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-797))))
(-521 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-522)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-523 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| (-586 |#1|) (QUOTE (-145))) (|HasCategory| (-586 |#1|) (QUOTE (-372)))) (|HasCategory| (-586 |#1|) (QUOTE (-147))) (|HasCategory| (-586 |#1|) (QUOTE (-372))) (|HasCategory| (-586 |#1|) (QUOTE (-145))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| (-586 |#1|) (QUOTE (-145))) (|HasCategory| (-586 |#1|) (QUOTE (-372)))) (|HasCategory| (-586 |#1|) (QUOTE (-147))) (|HasCategory| (-586 |#1|) (QUOTE (-372))) (|HasCategory| (-586 |#1|) (QUOTE (-145))))
(-524 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-525 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-526 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4445)))
+((|HasAttribute| |#3| (QUOTE -4448)))
(-527 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4445)))
+((|HasAttribute| |#7| (QUOTE -4448)))
(-528 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4446 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4449 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-529)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2076,7 +2076,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-537 K -1666 |Par|)
+(-537 K -1668 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2100,7 +2100,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-543 K -1666 |Par|)
+(-543 K -1668 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2130,7 +2130,7 @@ NIL
NIL
(-550)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4442 . T) (-4443 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-551)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2150,13 +2150,13 @@ NIL
NIL
(-555 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
-(-556 R -1666)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-556 R -1668)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-557 R0 -1666 UP UPUP R)
+(-557 R0 -1668 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2166,7 +2166,7 @@ NIL
NIL
(-559 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3088 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-3091 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-560 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2174,9 +2174,9 @@ NIL
NIL
(-561)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-562 R -1666)
+(-562 R -1668)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2188,7 +2188,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-565 R -1666 L)
+(-565 R -1668 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|))))
@@ -2196,31 +2196,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-567 -1666 UP UPUP R)
+(-567 -1668 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-568 -1666 UP)
+(-568 -1668 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-569)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4426 . T) (-4432 . T) (-4436 . T) (-4431 . T) (-4442 . T) (-4443 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4429 . T) (-4435 . T) (-4439 . T) (-4434 . T) (-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-570)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-571 R -1666 L)
+(-571 R -1668 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|))))
-(-572 R -1666)
+(-572 R -1668)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-634)))))
-(-573 -1666 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1147)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-634)))))
+(-573 -1668 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2228,27 +2228,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-575 -1666)
+(-575 -1668)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-576 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3088 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-3091 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-577)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-578 R -1666)
+(-578 R -1668)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-287))) (|HasCategory| |#2| (QUOTE (-634))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-287)))) (|HasCategory| |#1| (QUOTE (-561))))
-(-579 -1666 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-287))) (|HasCategory| |#2| (QUOTE (-634))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-287)))) (|HasCategory| |#1| (QUOTE (-561))))
+(-579 -1668 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-580 R -1666)
+(-580 R -1668)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2270,21 +2270,21 @@ NIL
NIL
(-585 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-586 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372))))
(-587)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-588 R -1666)
+(-588 R -1668)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-589 E -1666)
+(-589 E -1668)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
@@ -2292,10 +2292,10 @@ NIL
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-591 -1666)
+(-591 -1668)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4439 . T) (-4438 . T))
-((|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-1183)))))
+((-4442 . T) (-4441 . T))
+((|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-1185)))))
(-592 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2322,19 +2322,19 @@ NIL
NIL
(-598 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (-2774 (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (-2776 (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
(-599 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-600 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))) (|HasCategory| (-569) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))) (|HasCategory| (-569) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))))
(-601 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4446 "*") |has| |#1| (-561)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-561)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
((|HasCategory| |#1| (QUOTE (-561))))
(-602)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
@@ -2348,7 +2348,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-605 R -1666 FG)
+(-605 R -1668 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2358,12 +2358,12 @@ NIL
NIL
(-607 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-608 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-855))) (|HasAttribute| |#1| (QUOTE -4444)) (|HasCategory| |#3| (QUOTE (-1106))))
+((|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (QUOTE (-855))) (|HasAttribute| |#1| (QUOTE -4447)) (|HasCategory| |#3| (QUOTE (-1108))))
(-609 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2378,19 +2378,19 @@ NIL
NIL
(-612 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4441 -2774 (-1756 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4439 . T) (-4438 . T))
-((-2774 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
+((-4444 -2776 (-1759 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4442 . T) (-4441 . T))
+((-2776 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
(-613 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1167))) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| (-1167) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))))
(-614 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-615 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4445 . T))
+((-4448 . T))
NIL
(-616 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2408,7 +2408,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-620 -1666 UP)
+(-620 -1668 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2430,20 +2430,20 @@ NIL
NIL
(-625 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-626 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
((|HasCategory| |#1| (QUOTE (-853))))
-(-627 R -1666)
+(-627 R -1668)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
(-628 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4439 . T) (-4438 . T) ((-4446 "*") . T) (-4437 . T) (-4441 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))
+((-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4440 . T) (-4444 . T))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))
(-629 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2458,7 +2458,7 @@ NIL
NIL
(-632 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-633 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2468,30 +2468,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-635 R -1666)
+(-635 R -1668)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-636 |lv| -1666)
+(-636 |lv| -1668)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-637)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2214) (QUOTE (-52))))))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-52) (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-1165) (QUOTE (-855))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (QUOTE (-1106))))
+((-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1167))) (LIST (QUOTE |:|) (QUOTE -2216) (QUOTE (-52))))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-52) (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-1167) (QUOTE (-855))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108))))
(-638 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
(-639 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4439 . T) (-4438 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4442 . T) (-4441 . T))
NIL
(-640 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4441 -2774 (-1756 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4439 . T) (-4438 . T))
-((-2774 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
+((-4444 -2776 (-1759 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4442 . T) (-4441 . T))
+((-2776 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))))
(-641 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
@@ -2503,10 +2503,10 @@ NIL
(-643 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-1745 (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-367))))
+((-1749 (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-367))))
(-644 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-645 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
@@ -2526,8 +2526,8 @@ NIL
NIL
(-649 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-650 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2538,8 +2538,8 @@ NIL
NIL
(-652 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-653 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2551,39 +2551,39 @@ NIL
(-655 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4445)))
+((|HasAttribute| |#1| (QUOTE -4448)))
(-656 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-657 R -1666 L)
+(-657 R -1668 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-658 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+((-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
(-659 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+((-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
(-660 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
(-661 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-662 -1666 UP)
+(-662 -1668 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-663 A -2222)
+(-663 A -2673)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+((-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
(-664 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
@@ -2598,7 +2598,7 @@ NIL
NIL
(-667 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
((|HasCategory| |#1| (QUOTE (-796))))
(-668 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2606,7 +2606,7 @@ NIL
NIL
(-669 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4439 . T) (-4438 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4442 . T) (-4441 . T))
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-173))))
(-670 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2614,13 +2614,13 @@ NIL
NIL
(-671 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-672 -1666)
+(-672 -1668)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-673 -1666 |Row| |Col| M)
+(-673 -1668 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2630,8 +2630,8 @@ NIL
NIL
(-675 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4441 . T) (-4444 . T) (-4438 . T) (-4439 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4446 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561))) (-2774 (|HasAttribute| |#2| (QUOTE (-4446 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
+((-4444 . T) (-4447 . T) (-4441 . T) (-4442 . T))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561))) (-2776 (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
(-676)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2651,7 +2651,7 @@ NIL
(-680 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-681)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2695,10 +2695,10 @@ NIL
(-691 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4446 "*"))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561))))
+((|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561))))
(-692 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
(-693 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2706,8 +2706,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))))
(-694 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4444 . T) (-4445 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4446 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4447 . T) (-4448 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4449 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-695 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2716,7 +2716,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-697 S -1666 FLAF FLAS)
+(-697 S -1668 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2726,11 +2726,11 @@ NIL
NIL
(-699)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4437 . T) (-4442 |has| (-704) (-367)) (-4436 |has| (-704) (-367)) (-3098 . T) (-4443 |has| (-704) (-6 -4443)) (-4440 |has| (-704) (-6 -4440)) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-704) (QUOTE (-147))) (|HasCategory| (-704) (QUOTE (-145))) (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-372))) (|HasCategory| (-704) (QUOTE (-367))) (-2774 (|HasCategory| (-704) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-704) (QUOTE (-234))) (-2774 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (LIST (QUOTE -289) (QUOTE (-704)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -312) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2774 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-704) (QUOTE (-1028))) (|HasCategory| (-704) (QUOTE (-1208))) (-12 (|HasCategory| (-704) (QUOTE (-1008))) (|HasCategory| (-704) (QUOTE (-1208)))) (-2774 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (-2774 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (|HasCategory| (-704) (QUOTE (-550))) (-12 (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-1208)))) (|HasCategory| (-704) (QUOTE (-1066))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915))) (-2774 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367)))) (-2774 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-561)))) (-12 (|HasCategory| (-704) (QUOTE (-234))) (|HasCategory| (-704) (QUOTE (-367)))) (-12 (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-561))) (|HasAttribute| (-704) (QUOTE -4443)) (|HasAttribute| (-704) (QUOTE -4440)) (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-145)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-353)))))
+((-4440 . T) (-4445 |has| (-704) (-367)) (-4439 |has| (-704) (-367)) (-3101 . T) (-4446 |has| (-704) (-6 -4446)) (-4443 |has| (-704) (-6 -4443)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-704) (QUOTE (-147))) (|HasCategory| (-704) (QUOTE (-145))) (|HasCategory| (-704) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-372))) (|HasCategory| (-704) (QUOTE (-367))) (-2776 (|HasCategory| (-704) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-704) (QUOTE (-234))) (-2776 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (LIST (QUOTE -289) (QUOTE (-704)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -312) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2776 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-704) (QUOTE (-1030))) (|HasCategory| (-704) (QUOTE (-1210))) (-12 (|HasCategory| (-704) (QUOTE (-1010))) (|HasCategory| (-704) (QUOTE (-1210)))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (|HasCategory| (-704) (QUOTE (-550))) (-12 (|HasCategory| (-704) (QUOTE (-1068))) (|HasCategory| (-704) (QUOTE (-1210)))) (|HasCategory| (-704) (QUOTE (-1068))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367)))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-561)))) (-12 (|HasCategory| (-704) (QUOTE (-234))) (|HasCategory| (-704) (QUOTE (-367)))) (-12 (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-561))) (|HasAttribute| (-704) (QUOTE -4446)) (|HasAttribute| (-704) (QUOTE -4443)) (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-145)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-353)))))
(-700 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4445 . T))
+((-4448 . T))
NIL
(-701 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2740,13 +2740,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-703 OV E -1666 PG)
+(-703 OV E -1668 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-704)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3088 . T) (-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-705 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2754,7 +2754,7 @@ NIL
NIL
(-706)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4443 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4446 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-707 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2772,7 +2772,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-711 S -2830 I)
+(-711 S -2832 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2782,7 +2782,7 @@ NIL
NIL
(-713 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-714 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2792,25 +2792,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-716 R |Mod| -3440 -2126 |exactQuo|)
+(-716 R |Mod| -1538 -4198 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-717 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4440 |has| |#1| (-367)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-718 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-719 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4439 |has| |#1| (-173)) (-4438 |has| |#1| (-173)) (-4441 . T))
+((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-720 R |Mod| -3440 -2126 |exactQuo|)
+(-720 R |Mod| -1538 -4198 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4441 . T))
+((-4444 . T))
NIL
(-721 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2818,11 +2818,11 @@ NIL
NIL
(-722 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
NIL
-(-723 -1666)
+(-723 -1668)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-724 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2846,7 +2846,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))))
(-729 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4437 |has| |#1| (-367)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 |has| |#1| (-367)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-730 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2856,7 +2856,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-732 -1666 UP)
+(-732 -1668 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2874,8 +2874,8 @@ NIL
NIL
(-736 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4446 "*") |has| |#2| (-173)) (-4437 |has| |#2| (-561)) (-4442 |has| |#2| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-915))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-737 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2890,16 +2890,16 @@ NIL
NIL
(-740 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4439 |has| |#1| (-173)) (-4438 |has| |#1| (-173)) (-4441 . T))
+((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T))
((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-855))))
(-741 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4434 . T) (-4445 . T))
+((-4437 . T) (-4448 . T))
NIL
(-742 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4444 . T) (-4434 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-4447 . T) (-4437 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-743)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2910,7 +2910,7 @@ NIL
NIL
(-745 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4439 . T) (-4438 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4442 . T) (-4441 . T) (-4444 . T))
NIL
(-746 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2926,7 +2926,7 @@ NIL
NIL
(-749 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
NIL
(-750)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -3008,11 +3008,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-770 -1666)
+(-770 -1668)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-771 P -1666)
+(-771 P -1668)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3020,7 +3020,7 @@ NIL
NIL
NIL
NIL
-(-773 UP -1666)
+(-773 UP -1668)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3034,9 +3034,9 @@ NIL
NIL
(-776)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4446 "*") . T))
+(((-4449 "*") . T))
NIL
-(-777 R -1666)
+(-777 R -1668)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3056,7 +3056,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-782 -1666 |ExtF| |SUEx| |ExtP| |n|)
+(-782 -1668 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3070,28 +3070,28 @@ NIL
NIL
(-785 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1745 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1745 (|HasCategory| |#1| (QUOTE (-550)))) (-1745 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1745 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569))))) (-1745 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1183)))) (-1745 (|HasCategory| |#1| (LIST (QUOTE -998) (QUOTE (-569))))))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (QUOTE (-550)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569))))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -1000) (QUOTE (-569))))))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-786 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-787 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4440 |has| |#1| (-367)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-788 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
(-789 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
(-790 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-173))))
+((-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-173))))
(-791)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3135,28 +3135,28 @@ NIL
(-801 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
+((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372))))
(-802 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-803 -2774 R OS S)
+(-803 -2776 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-804 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-2774 (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1005 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))))
+((-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-2776 (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))
(-805)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-806 R -1666 L)
+(-806 R -1668 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-807 R -1666)
+(-807 R -1668)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3164,7 +3164,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-809 R -1666)
+(-809 R -1668)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3172,11 +3172,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-811 -1666 UP UPUP R)
+(-811 -1668 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-812 -1666 UP L LQ)
+(-812 -1668 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3184,41 +3184,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-814 -1666 UP L LQ)
+(-814 -1668 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-815 -1666 UP)
+(-815 -1668 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-816 -1666 L UP A LO)
+(-816 -1668 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-817 -1666 UP)
+(-817 -1668 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-818 -1666 LO)
+(-818 -1668 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-819 -1666 LODO)
+(-819 -1668 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-820 -2406 S |f|)
+(-820 -2409 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4438 |has| |#2| (-1055)) (-4439 |has| |#2| (-1055)) (-4441 |has| |#2| (-6 -4441)) ((-4446 "*") |has| |#2| (-173)) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2774 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1055)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (|HasCategory| |#2| (QUOTE (-234))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasCategory| |#2| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2774 (|HasCategory| |#2| (QUOTE (-1055))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1106)))) (|HasAttribute| |#2| (QUOTE -4441)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
+((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2776 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-234))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasAttribute| |#2| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))))
(-821 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-823 (-1183)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-822 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4446 "*") |has| |#2| (-367)) (-4437 |has| |#2| (-367)) (-4442 |has| |#2| (-367)) (-4436 |has| |#2| (-367)) (-4441 . T) (-4439 . T) (-4438 . T))
+(((-4449 "*") |has| |#2| (-367)) (-4440 |has| |#2| (-367)) (-4445 |has| |#2| (-367)) (-4439 |has| |#2| (-367)) (-4444 . T) (-4442 . T) (-4441 . T))
((|HasCategory| |#2| (QUOTE (-367))))
(-823 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3230,7 +3230,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-855))))
(-825)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-826)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3258,7 +3258,7 @@ NIL
NIL
(-832 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-234))))
(-833)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3270,7 +3270,7 @@ NIL
NIL
(-835 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4444 . T) (-4434 . T) (-4445 . T))
+((-4447 . T) (-4437 . T) (-4448 . T))
NIL
(-836)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3282,8 +3282,8 @@ NIL
NIL
(-838 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4441 |has| |#1| (-853)))
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2774 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2774 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550))))
+((-4444 |has| |#1| (-853)))
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550))))
(-839 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
@@ -3294,7 +3294,7 @@ NIL
NIL
(-841 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4439 |has| |#1| (-173)) (-4438 |has| |#1| (-173)) (-4441 . T))
+((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
(-842)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3322,13 +3322,13 @@ NIL
NIL
(-848 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4441 |has| |#1| (-853)))
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2774 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2774 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550))))
+((-4444 |has| |#1| (-853)))
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550))))
(-849)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-850 -2406 S)
+(-850 -2409 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3342,7 +3342,7 @@ NIL
NIL
(-853)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-854 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3358,20 +3358,20 @@ NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))))
(-857 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-858 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561))))
-(-859 R |sigma| -3111)
+(-859 R |sigma| -3117)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
-(-860 |x| R |sigma| -3111)
+((-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367))))
+(-860 |x| R |sigma| -3117)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-367))))
+((-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-367))))
(-861 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
@@ -3414,7 +3414,7 @@ NIL
NIL
(-871 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4439 |has| |#1| (-173)) (-4438 |has| |#1| (-173)) (-4441 . T))
+((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))))
(-872 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3426,24 +3426,24 @@ NIL
NIL
(-874 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-875 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-876 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-875 |#1|) (QUOTE (-915))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-875 |#1|) (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-147))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-875 |#1|) (QUOTE (-1028))) (|HasCategory| (-875 |#1|) (QUOTE (-825))) (-2774 (|HasCategory| (-875 |#1|) (QUOTE (-825))) (|HasCategory| (-875 |#1|) (QUOTE (-855)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-1158))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-234))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -875) (|devaluate| |#1|)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (QUOTE (-310))) (|HasCategory| (-875 |#1|) (QUOTE (-550))) (|HasCategory| (-875 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (|HasCategory| (-875 |#1|) (QUOTE (-145)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-875 |#1|) (QUOTE (-915))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-875 |#1|) (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-147))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-875 |#1|) (QUOTE (-1030))) (|HasCategory| (-875 |#1|) (QUOTE (-825))) (-2776 (|HasCategory| (-875 |#1|) (QUOTE (-825))) (|HasCategory| (-875 |#1|) (QUOTE (-855)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-1160))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-234))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -875) (|devaluate| |#1|)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (QUOTE (-310))) (|HasCategory| (-875 |#1|) (QUOTE (-550))) (|HasCategory| (-875 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (|HasCategory| (-875 |#1|) (QUOTE (-145)))))
(-877 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-825))) (-2774 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1158))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-825))) (-2776 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1160))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-878 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))))
(-879)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3503,7 +3503,7 @@ NIL
(-893 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-1745 (|HasCategory| |#2| (QUOTE (-1055)))) (-1745 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (-12 (|HasCategory| |#2| (QUOTE (-1055))) (-1745 (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))
+((-12 (-1749 (|HasCategory| |#2| (QUOTE (-1057)))) (-1749 (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (-1749 (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))
(-894 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3512,7 +3512,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-896 R -2830)
+(-896 R -2832)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3536,7 +3536,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-902 UP -1666)
+(-902 UP -1668)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3554,19 +3554,19 @@ NIL
NIL
(-906 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-907 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
(-908 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-909 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4441 . T))
+((-4444 . T))
NIL
(-910 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3574,8 +3574,8 @@ NIL
NIL
(-911 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4441 . T))
-((-2774 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855))))
+((-4444 . T))
+((-2776 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855))))
(-912 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3590,13 +3590,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-145))))
(-915)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-916 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372))))
-(-917 R0 -1666 UP UPUP R)
+(-917 R0 -1668 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3610,7 +3610,7 @@ NIL
NIL
(-920 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-921 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3624,7 +3624,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-924 -1666)
+(-924 -1668)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3634,17 +3634,17 @@ NIL
NIL
(-926)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
(-927)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4446 "*") . T))
+(((-4449 "*") . T))
NIL
-(-928 -1666 P)
+(-928 -1668 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-929 |xx| -1666)
+(-929 |xx| -1668)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
@@ -3668,7 +3668,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-935 R -1666)
+(-935 R -1668)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3680,7 +3680,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-938 S R -1666)
+(-938 S R -1668)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3700,11 +3700,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -892) (|devaluate| |#1|))))
-(-943 R -1666 -2830)
+(-943 R -1668 -2832)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-944 -2830)
+(-944 -2832)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3726,8 +3726,8 @@ NIL
NIL
(-949 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-950 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3747,12 +3747,12 @@ NIL
(-954 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-915))) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))))
+((|HasCategory| |#2| (QUOTE (-915))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))))
(-955 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
NIL
-(-956 E V R P -1666)
+(-956 E V R P -1668)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3762,9 +3762,9 @@ NIL
NIL
(-958 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1183) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-959 E V R P -1666)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-959 E V R P -1668)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-457))))
@@ -3786,13 +3786,13 @@ NIL
NIL
(-964 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
(-965)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-966 -1666)
+(-966 -1668)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3806,12 +3806,12 @@ NIL
NIL
(-969 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4442)))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4445)))
(-970 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4441 -12 (|has| |#2| (-478)) (|has| |#1| (-478))))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855)))))
+((-4444 -12 (|has| |#2| (-478)) (|has| |#1| (-478))))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855)))))
(-971)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3820,1321 +3820,1329 @@ NIL
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-973)
+(-973 T$)
+((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|terms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{terms f} \\spad{++} returns the set of terms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
+NIL
+NIL
+(-974 S T$)
+((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all terms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
+NIL
+NIL
+(-975)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-974 S)
+(-976 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
-(-975 R |polR|)
+(-977 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-457))))
-(-976)
+(-978)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-977)
+(-979)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-978 S |Coef| |Expon| |Var|)
+(-980 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-979 |Coef| |Expon| |Var|)
+(-981 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-980)
+(-982)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-981 S R E |VarSet| P)
+(-983 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-561))))
-(-982 R E |VarSet| P)
+(-984 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4444 . T))
+((-4447 . T))
NIL
-(-983 R E V P)
+(-985 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-457))))
-(-984 K)
+(-986 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-985 |VarSet| E RC P)
+(-987 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-986 R)
+(-988 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-987 R1 R2)
+(-989 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-988 R)
+(-990 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-989 K)
+(-991 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-990 R E OV PPR)
+(-992 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-991 K R UP -1666)
+(-993 K R UP -1668)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-992 |vl| |nv|)
+(-994 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-993 R |Var| |Expon| |Dpoly|)
+(-995 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-310)))))
-(-994 R E V P TS)
+(-996 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-995)
+(-997)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-996 A B R S)
+(-998 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-997 A S)
+(-999 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1158))))
-(-998 S)
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1160))))
+(-1000 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-999 |n| K)
+(-1001 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-1000)
+(-1002)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-1001 S)
+(-1003 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
-(-1002 S R)
+(-1004 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-293))))
-(-1003 R)
+((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-293))))
+(-1005 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4437 |has| |#1| (-293)) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 |has| |#1| (-293)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1004 QR R QS S)
+(-1006 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-1005 R)
+(-1007 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4437 |has| |#1| (-293)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-550))))
-(-1006 S)
+((-4440 |has| |#1| (-293)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-550))))
+(-1008 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1007 S)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1009 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1008)
+(-1010)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1009 -1666 UP UPUP |radicnd| |n|)
+(-1011 -1668 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4437 |has| (-412 |#2|) (-367)) (-4442 |has| (-412 |#2|) (-367)) (-4436 |has| (-412 |#2|) (-367)) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2774 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2774 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2774 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2774 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
-(-1010 |bb|)
+((-4440 |has| (-412 |#2|) (-367)) (-4445 |has| (-412 |#2|) (-367)) (-4439 |has| (-412 |#2|) (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2776 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2776 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2776 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))))
+(-1012 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1028))) (|HasCategory| (-569) (QUOTE (-825))) (-2774 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1158))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1183)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
-(-1011)
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145)))))
+(-1013)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1012)
+(-1014)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1013 RP)
+(-1015 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1014 S)
+(-1016 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1015 A S)
+(-1017 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-1106))))
-(-1016 S)
+((|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (QUOTE (-1108))))
+(-1018 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1017 S)
+(-1019 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1018)
+(-1020)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4437 . T) (-4442 . T) (-4436 . T) (-4439 . T) (-4438 . T) ((-4446 "*") . T) (-4441 . T))
+((-4440 . T) (-4445 . T) (-4439 . T) (-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4444 . T))
NIL
-(-1019 R -1666)
+(-1021 R -1668)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1020 R -1666)
+(-1022 R -1668)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1021 -1666 UP)
+(-1023 -1668 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1022 -1666 UP)
+(-1024 -1668 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1023 S)
+(-1025 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1024 F1 UP UPUP R F2)
+(-1026 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1025)
+(-1027)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1026 |Pol|)
+(-1028 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1027 |Pol|)
+(-1029 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1028)
+(-1030)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1029)
+(-1031)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1030 |TheField|)
+(-1032 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4437 . T) (-4442 . T) (-4436 . T) (-4439 . T) (-4438 . T) ((-4446 "*") . T) (-4441 . T))
-((-2774 (|HasCategory| (-412 (-569)) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1044) (QUOTE (-569)))))
-(-1031 -1666 L)
+((-4440 . T) (-4445 . T) (-4439 . T) (-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4444 . T))
+((-2776 (|HasCategory| (-412 (-569)) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1046) (QUOTE (-569)))))
+(-1033 -1668 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1032 S)
+(-1034 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1106))))
-(-1033 R E V P)
+((|HasCategory| |#1| (QUOTE (-1108))))
+(-1035 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1034 R)
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1036 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4446 "*"))))
-(-1035 R)
+((|HasAttribute| |#1| (QUOTE (-4449 "*"))))
+(-1037 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310))))
-(-1036 S)
+(-1038 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1037)
+(-1039)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1038 S)
+(-1040 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1039 S)
+(-1041 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1040 -1666 |Expon| |VarSet| |FPol| |LFPol|)
+(-1042 -1668 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1041)
+(-1043)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2214) (QUOTE (-52))))))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-52) (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1042)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1185))) (LIST (QUOTE |:|) (QUOTE -2216) (QUOTE (-52))))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-52) (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-1185) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1044)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1043 A S)
+(-1045 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1044 S)
+(-1046 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1045 Q R)
+(-1047 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1046)
+(-1048)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1047 UP)
+(-1049 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1048 R)
+(-1050 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1049 R)
+(-1051 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1050 T$)
+(-1052 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1051 T$)
+(-1053 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1052 R |ls|)
+(-1054 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1106))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -785) (|devaluate| |#1|) (LIST (QUOTE -869) (|devaluate| |#2|)))))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-869 |#2|) (QUOTE (-372))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1053)
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1108))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -785) (|devaluate| |#1|) (LIST (QUOTE -869) (|devaluate| |#2|)))))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-869 |#2|) (QUOTE (-372))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1055)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1054 S)
+(-1056 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1055)
+(-1057)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4441 . T))
+((-4444 . T))
NIL
-(-1056 |xx| -1666)
+(-1058 |xx| -1668)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1057 R)
+(-1059 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-1058 S |m| |n| R |Row| |Col|)
+(-1060 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
((|HasCategory| |#4| (QUOTE (-310))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-561))) (|HasCategory| |#4| (QUOTE (-173))))
-(-1059 |m| |n| R |Row| |Col|)
+(-1061 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4444 . T) (-4439 . T) (-4438 . T))
+((-4447 . T) (-4442 . T) (-4441 . T))
NIL
-(-1060 |m| |n| R)
+(-1062 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4444 . T) (-4439 . T) (-4438 . T))
-((|HasCategory| |#3| (QUOTE (-173))) (-2774 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (QUOTE (-310))) (|HasCategory| |#3| (QUOTE (-561))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1061 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4447 . T) (-4442 . T) (-4441 . T))
+((|HasCategory| |#3| (QUOTE (-173))) (-2776 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (QUOTE (-310))) (|HasCategory| |#3| (QUOTE (-561))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1063 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1062 R)
+(-1064 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1063 S T$)
+(-1065 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1106))))
-(-1064)
+((|HasCategory| |#1| (QUOTE (-1108))))
+(-1066)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1065 S)
+(-1067 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1066)
+(-1068)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1067 |TheField| |ThePolDom|)
+(-1069 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1068)
+(-1070)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4432 . T) (-4436 . T) (-4431 . T) (-4442 . T) (-4443 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4435 . T) (-4439 . T) (-4434 . T) (-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1069)
+(-1071)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2214) (QUOTE (-52))))))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-52) (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1106))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (QUOTE (-1106))) (|HasCategory| (-1183) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1070 S R E V)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1185))) (LIST (QUOTE |:|) (QUOTE -2216) (QUOTE (-52))))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-52) (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-1185) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1072 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -998) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-1183)))))
-(-1071 R E V)
+((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1000) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-1185)))))
+(-1073 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
NIL
-(-1072)
+(-1074)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1073 S |TheField| |ThePols|)
+(-1075 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1074 |TheField| |ThePols|)
+(-1076 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1075 R E V P TS)
+(-1077 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1076 S R E V P)
+(-1078 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1077 R E V P)
+(-1079 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-1078 R E V P TS)
+(-1080 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1079)
+(-1081)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1080)
+(-1082)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1081 |f|)
+(-1083 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1082 |Base| R -1666)
+(-1084 |Base| R -1668)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1083 |Base| R -1666)
+(-1085 |Base| R -1668)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1084 R |ls|)
+(-1086 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1085 UP SAE UPA)
+(-1087 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1086 R UP M)
+(-1088 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4437 |has| |#1| (-367)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-353)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))))
-(-1087 UP SAE UPA)
+((-4440 |has| |#1| (-367)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-353)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))))
+(-1089 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1088)
+(-1090)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1089)
+(-1091)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1090 S)
+(-1092 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1091)
+(-1093)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1092 R)
+(-1094 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1093 R)
+(-1095 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1094 (-1183)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1094 S)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1096 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1095 R S)
+(-1097 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-853))))
-(-1096)
+(-1098)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1097 R S)
+(-1099 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1098 S)
+(-1100 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1100 |#1|) (QUOTE (-1106))))
-(-1099 S)
+((|HasCategory| (-1102 |#1|) (QUOTE (-1108))))
+(-1101 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1100 S)
+(-1102 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1106))))
-(-1101 S L)
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1108))))
+(-1103 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1102)
+(-1104)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1103 A S)
+(-1105 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1104 S)
+(-1106 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4434 . T))
+((-4437 . T))
NIL
-(-1105 S)
+(-1107 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1106)
+(-1108)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1107 |m| |n|)
+(-1109 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1108 S)
+(-1110 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4444 . T) (-4434 . T) (-4445 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-1109 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4447 . T) (-4437 . T) (-4448 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+(-1111 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1110)
+(-1112)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1111 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1113 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1112 R FS)
+(-1114 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1113 R E V P TS)
+(-1115 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1114 R E V P TS)
+(-1116 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1115 R E V P)
+(-1117 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-1116)
+(-1118)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1117 S)
+(-1119 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1118)
+(-1120)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1119 |dimtot| |dim1| S)
+(-1121 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4438 |has| |#3| (-1055)) (-4439 |has| |#3| (-1055)) (-4441 |has| |#3| (-6 -4441)) ((-4446 "*") |has| |#3| (-173)) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2774 (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#3| (QUOTE (-367))) (-2774 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2774 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2774 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2774 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (-2774 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2774 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2774 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1055)))) (-2774 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (|HasCategory| |#3| (QUOTE (-234))) (-2774 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (QUOTE (-1106)))) (|HasCategory| |#3| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106))))) (-2774 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1055)))) (-12 (|HasCategory| |#3| (QUOTE (-1055))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1183))))) (-2774 (|HasCategory| |#3| (QUOTE (-1055))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1106)))) (|HasAttribute| |#3| (QUOTE -4441)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1106))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
-(-1120 R |x|)
+((-4441 |has| |#3| (-1057)) (-4442 |has| |#3| (-1057)) (-4444 |has| |#3| (-6 -4444)) ((-4449 "*") |has| |#3| (-173)) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#3| (QUOTE (-367))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2776 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-234))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-1108)))) (|HasCategory| |#3| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108)))) (|HasAttribute| |#3| (QUOTE -4444)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))))
+(-1122 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-457))))
-(-1121)
+(-1123)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1122 R -1666)
+(-1124 R -1668)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1123 R)
+(-1125 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1124)
+(-1126)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1125)
+(-1127)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1126)
+(-1128)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4432 . T) (-4436 . T) (-4431 . T) (-4442 . T) (-4443 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4435 . T) (-4439 . T) (-4434 . T) (-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1127 S)
+(-1129 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4444 . T) (-4445 . T))
+((-4447 . T) (-4448 . T))
NIL
-(-1128 S |ndim| R |Row| |Col|)
+(-1130 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-367))) (|HasAttribute| |#3| (QUOTE (-4446 "*"))) (|HasCategory| |#3| (QUOTE (-173))))
-(-1129 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-367))) (|HasAttribute| |#3| (QUOTE (-4449 "*"))) (|HasCategory| |#3| (QUOTE (-173))))
+(-1131 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4444 . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4447 . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1130 R |Row| |Col| M)
+(-1132 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1131 R |VarSet|)
+(-1133 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1132 |Coef| |Var| SMP)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1134 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))))
-(-1133 R E V P)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))))
+(-1135 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-1134 UP -1666)
+(-1136 UP -1668)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1135 R)
+(-1137 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1136 R)
+(-1138 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1137 R)
+(-1139 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1138 S A)
+(-1140 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
((|HasCategory| |#1| (QUOTE (-855))))
-(-1139 R)
+(-1141 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1140 R)
+(-1142 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1141)
+(-1143)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1142)
+(-1144)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1143)
+(-1145)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1144)
+(-1146)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1145)
+(-1147)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1146 V C)
+(-1148 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1147 V C)
+(-1149 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1106)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1106))) (-2774 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1146 |#1| |#2|) (QUOTE (-1106))))) (|HasCategory| (-1146 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1148 |ndim| R)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1148 |#1| |#2|) (QUOTE (-1108)))) (|HasCategory| (-1148 |#1| |#2|) (QUOTE (-1108))) (-2776 (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1148 |#1| |#2|) (QUOTE (-1108))))) (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1150 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4441 . T) (-4433 |has| |#2| (-6 (-4446 "*"))) (-4444 . T) (-4438 . T) (-4439 . T))
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4446 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-367))) (-2774 (|HasAttribute| |#2| (QUOTE (-4446 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
-(-1149 S)
+((-4444 . T) (-4436 |has| |#2| (-6 (-4449 "*"))) (-4447 . T) (-4441 . T) (-4442 . T))
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173))))
+(-1151 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1150)
+(-1152)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-1151 R E V P TS)
+(-1153 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1152 R E V P)
+(-1154 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1153 S)
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1155 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1154 A S)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1156 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1155 S)
+(-1157 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1156 |Key| |Ent| |dent|)
+(-1158 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))))
-(-1157)
+((-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))))
+(-1159)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1158)
+(-1160)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1159 |Coef|)
+(-1161 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1160 S)
+(-1162 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1161 A B)
+(-1163 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1162 A B C)
+(-1164 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1163 S)
+(-1165 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4445 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1164)
+((-4448 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1166)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-1165)
+(-1167)
NIL
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1106))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
-(-1166 |Entry|)
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))))
+(-1168 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (QUOTE (-1165))) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#1|)))))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (QUOTE (-1106))) (|HasCategory| (-1165) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1167 A)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1167))) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#1|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-1167) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1169 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
-(-1168 |Coef|)
+(-1170 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1169 |Coef|)
+(-1171 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1170 R UP)
+(-1172 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-310))))
-(-1171 |n| R)
+(-1173 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1172 S1 S2)
+(-1174 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1173)
+(-1175)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1174 |Coef| |var| |cen|)
+(-1176 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4446 "*") -2774 (-1756 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1756 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-915)))) (-4437 -2774 (-1756 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1756 (|has| |#1| (-367)) (|has| (-1181 |#1| |#2| |#3|) (-915)))) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1118))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1181) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1181 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1175 R -1666)
+(((-4449 "*") -2776 (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-915)))) (-4440 -2776 (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1120))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1177 R -1668)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1176 R)
+(-1178 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1177 R S)
+(-1179 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1178 E OV R P)
+(-1180 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1179 R)
+(-1181 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4440 |has| |#1| (-367)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1158))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4442)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1180 |Coef| |var| |cen|)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1182 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
-(-1181 |Coef| |var| |cen|)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))))
+(-1183 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
-(-1182)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1120))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))))
+(-1184)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1183)
+(-1185)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1184 R)
+(-1186 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1185 R)
+(-1187 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-6 -4442)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| (-977) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasAttribute| |#1| (QUOTE -4442)))
-(-1186)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| (-979) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasAttribute| |#1| (QUOTE -4445)))
+(-1188)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1187)
+(-1189)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1188)
+(-1190)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1189 N)
+(-1191 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1190 N)
+(-1192 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1191)
+(-1193)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1192 R)
+(-1194 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1193)
+(-1195)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1194 S)
+(-1196 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1195 S)
+(-1197 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1196 |Key| |Entry|)
+(-1198 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4444 . T) (-4445 . T))
-((-12 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2003) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2214) (|devaluate| |#2|)))))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-1106)))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1106))) (-2774 (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1197 R)
+((-4447 . T) (-4448 . T))
+((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1199 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1198 S |Key| |Entry|)
+(-1200 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1199 |Key| |Entry|)
+(-1201 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4445 . T))
+((-4448 . T))
NIL
-(-1200 |Key| |Entry|)
+(-1202 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1201)
+(-1203)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1202 S)
+(-1204 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1203)
+(-1205)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1204)
+(-1206)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1205 R)
+(-1207 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1206)
+(-1208)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1207 S)
+(-1209 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1208)
+(-1210)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1209 S)
+(-1211 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1106))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1210 S)
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1212 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1211)
+(-1213)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1212 R -1666)
+(-1214 R -1668)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1213 R |Row| |Col| M)
+(-1215 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1214 R -1666)
+(-1216 R -1668)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -892) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -892) (|devaluate| |#1|)))))
-(-1215 S R E V P)
+(-1217 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-372))))
-(-1216 R E V P)
+(-1218 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-1217 |Coef|)
+(-1219 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))))
-(-1218 |Curve|)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))))
+(-1220 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1219)
+(-1221)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1220 S)
+(-1222 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1221 -1666)
+((|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1223 -1668)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1222)
+(-1224)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1223)
+(-1225)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1224 S)
+(-1226 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
((|HasCategory| |#1| (QUOTE (-855))))
-(-1225)
+(-1227)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1226 S)
+(-1228 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1227)
+(-1229)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1228)
+(-1230)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1229)
+(-1231)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1230)
+(-1232)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1231)
+(-1233)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1232 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1234 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1233 |Coef|)
+(-1235 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1234 S |Coef| UTS)
+(-1236 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-1235 |Coef| UTS)
+(-1237 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1236 |Coef| UTS)
+(-1238 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))) (-2774 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-147))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1118))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1028)))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))))) (-2774 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-1183)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1183)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (QUOTE (-915))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))))
-(-1237 |Coef| |var| |cen|)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))) (-2776 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-147))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1120))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1030)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (QUOTE (-915))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))))
+(-1239 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4446 "*") -2774 (-1756 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1756 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-915)))) (-4437 -2774 (-1756 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1756 (|has| |#1| (-367)) (|has| (-1265 |#1| |#2| |#3|) (-915)))) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1118))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-1183)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-367)))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-1158))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1183)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1238 ZP)
+(((-4449 "*") -2776 (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-915)))) (-4440 -2776 (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1120))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1240 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1239 R S)
+(-1241 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-853))))
-(-1240 S)
+(-1242 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1106))))
-(-1241 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1108))))
+(-1243 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1242 R Q UP)
+(-1244 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1243 R UP)
+(-1245 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1244 R UP)
+(-1246 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1245 R U)
+(-1247 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1246 |x| R)
+(-1248 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4446 "*") |has| |#2| (-173)) (-4437 |has| |#2| (-561)) (-4440 |has| |#2| (-367)) (-4442 |has| |#2| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1088) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (QUOTE (-569)))) (-2774 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (-2774 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1158))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4442)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2774 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-1247 R PR S PS)
+(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4443 |has| |#2| (-367)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-1249 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1248 S R)
+(-1250 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1158))))
-(-1249 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1160))))
+(-1251 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4440 |has| |#1| (-367)) (-4442 |has| |#1| (-6 -4442)) (-4439 . T) (-4438 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T))
NIL
-(-1250 S |Coef| |Expon|)
+(-1252 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1118))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3793) (LIST (|devaluate| |#2|) (QUOTE (-1183))))))
-(-1251 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1120))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3796) (LIST (|devaluate| |#2|) (QUOTE (-1185))))))
+(-1253 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1252 RC P)
+(-1254 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1253 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1255 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1254 |Coef|)
+(-1256 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1255 S |Coef| ULS)
+(-1257 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1256 |Coef| ULS)
+(-1258 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1257 |Coef| ULS)
+(-1259 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
-(-1258 |Coef| |var| |cen|)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))
+(-1260 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4442 |has| |#1| (-367)) (-4436 |has| |#1| (-367)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1118))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2774 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
-(-1259 R FE |var| |cen|)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))))
+(-1261 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4446 "*") |has| (-1258 |#2| |#3| |#4|) (-173)) (-4437 |has| (-1258 |#2| |#3| |#4|) (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-173))) (-2774 (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -1044) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1258 |#2| |#3| |#4|) (LIST (QUOTE -1044) (QUOTE (-569)))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-367))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-457))) (|HasCategory| (-1258 |#2| |#3| |#4|) (QUOTE (-561))))
-(-1260 A S)
+(((-4449 "*") |has| (-1260 |#2| |#3| |#4|) (-173)) (-4440 |has| (-1260 |#2| |#3| |#4|) (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-173))) (-2776 (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-367))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-457))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-561))))
+(-1262 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4445)))
-(-1261 S)
+((|HasAttribute| |#1| (QUOTE -4448)))
+(-1263 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1262 |Coef1| |Coef2| UTS1 UTS2)
+(-1264 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1263 S |Coef|)
+(-1265 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1208))) (|HasSignature| |#2| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2488) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1183))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))))
-(-1264 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1210))) (|HasSignature| |#2| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3579) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1185))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))))
+(-1266 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1265 |Coef| |var| |cen|)
+(-1267 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4446 "*") |has| |#1| (-173)) (-4437 |has| |#1| (-561)) (-4438 . T) (-4439 . T) (-4441 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2774 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1183)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1118))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -3793) (LIST (|devaluate| |#1|) (QUOTE (-1183)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2774 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1208))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -2488) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1183))))) (|HasSignature| |#1| (LIST (QUOTE -1710) (LIST (LIST (QUOTE -649) (QUOTE (-1183))) (|devaluate| |#1|)))))))
-(-1266 |Coef| UTS)
+(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1120))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))))
+(-1268 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1267 -1666 UP L UTS)
+(-1269 -1668 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-561))))
-(-1268)
+(-1270)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1269 |sym|)
+(-1271 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1270 S R)
+(-1272 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1008))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1271 R)
+((|HasCategory| |#2| (QUOTE (-1010))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1273 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4445 . T) (-4444 . T))
+((-4448 . T) (-4447 . T))
NIL
-(-1272 A B)
+(-1274 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1273 R)
+(-1275 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4445 . T) (-4444 . T))
-((-2774 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2774 (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2774 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1008))) (|HasCategory| |#1| (QUOTE (-1055)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
-(-1274)
+((-4448 . T) (-4447 . T))
+((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))))
+(-1276)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1275)
+(-1277)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1276)
+(-1278)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1277)
+(-1279)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1278)
+(-1280)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1279 A S)
+(-1281 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1280 S)
+(-1282 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4439 . T) (-4438 . T))
+((-4442 . T) (-4441 . T))
NIL
-(-1281 R)
+(-1283 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1282 K R UP -1666)
+(-1284 K R UP -1668)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1283)
+(-1285)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1284)
+(-1286)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1285 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1287 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4439 |has| |#1| (-173)) (-4438 |has| |#1| (-173)) (-4441 . T))
+((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T))
((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))))
-(-1286 R E V P)
+(-1288 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4445 . T) (-4444 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
-(-1287 R)
+((-4448 . T) (-4447 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))))
+(-1289 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4438 . T) (-4439 . T) (-4441 . T))
+((-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1288 |vl| R)
+(-1290 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4441 . T) (-4437 |has| |#2| (-6 -4437)) (-4439 . T) (-4438 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4437)))
-(-1289 R |VarSet| XPOLY)
+((-4444 . T) (-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4440)))
+(-1291 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1290 |vl| R)
+(-1292 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4437 |has| |#2| (-6 -4437)) (-4439 . T) (-4438 . T) (-4441 . T))
+((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T))
NIL
-(-1291 S -1666)
+(-1293 S -1668)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1292 -1666)
+(-1294 -1668)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4436 . T) (-4442 . T) (-4437 . T) ((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
-(-1293 |VarSet| R)
+(-1295 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4437 |has| |#2| (-6 -4437)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -722) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasAttribute| |#2| (QUOTE -4437)))
-(-1294 |vl| R)
+((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -722) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasAttribute| |#2| (QUOTE -4440)))
+(-1296 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4437 |has| |#2| (-6 -4437)) (-4439 . T) (-4438 . T) (-4441 . T))
+((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T))
NIL
-(-1295 R)
+(-1297 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4437 |has| |#1| (-6 -4437)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4437)))
-(-1296 R E)
+((-4440 |has| |#1| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4440)))
+(-1298 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4441 . T) (-4442 |has| |#1| (-6 -4442)) (-4437 |has| |#1| (-6 -4437)) (-4439 . T) (-4438 . T))
-((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#1| (QUOTE -4442)) (|HasAttribute| |#1| (QUOTE -4437)))
-(-1297 |VarSet| R)
+((-4444 . T) (-4445 |has| |#1| (-6 -4445)) (-4440 |has| |#1| (-6 -4440)) (-4442 . T) (-4441 . T))
+((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4444)) (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#1| (QUOTE -4440)))
+(-1299 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4437 |has| |#2| (-6 -4437)) (-4439 . T) (-4438 . T) (-4441 . T))
-((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4437)))
-(-1298 A)
+((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T))
+((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4440)))
+(-1300 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1299 R |ls| |ls2|)
+(-1301 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1300 R)
+(-1302 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1301 |p|)
+(-1303 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4446 "*") . T) (-4438 . T) (-4439 . T) (-4441 . T))
+(((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T))
NIL
NIL
NIL
@@ -5152,4 +5160,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2267632 2267637 2267642 2267647) (-2 NIL 2267612 2267617 2267622 2267627) (-1 NIL 2267592 2267597 2267602 2267607) (0 NIL 2267572 2267577 2267582 2267587) (-1301 "ZMOD.spad" 2267381 2267394 2267510 2267567) (-1300 "ZLINDEP.spad" 2266447 2266458 2267371 2267376) (-1299 "ZDSOLVE.spad" 2256392 2256414 2266437 2266442) (-1298 "YSTREAM.spad" 2255887 2255898 2256382 2256387) (-1297 "XRPOLY.spad" 2255107 2255127 2255743 2255812) (-1296 "XPR.spad" 2252902 2252915 2254825 2254924) (-1295 "XPOLY.spad" 2252457 2252468 2252758 2252827) (-1294 "XPOLYC.spad" 2251776 2251792 2252383 2252452) (-1293 "XPBWPOLY.spad" 2250213 2250233 2251556 2251625) (-1292 "XF.spad" 2248676 2248691 2250115 2250208) (-1291 "XF.spad" 2247119 2247136 2248560 2248565) (-1290 "XFALG.spad" 2244167 2244183 2247045 2247114) (-1289 "XEXPPKG.spad" 2243418 2243444 2244157 2244162) (-1288 "XDPOLY.spad" 2243032 2243048 2243274 2243343) (-1287 "XALG.spad" 2242692 2242703 2242988 2243027) (-1286 "WUTSET.spad" 2238531 2238548 2242338 2242365) (-1285 "WP.spad" 2237730 2237774 2238389 2238456) (-1284 "WHILEAST.spad" 2237528 2237537 2237720 2237725) (-1283 "WHEREAST.spad" 2237199 2237208 2237518 2237523) (-1282 "WFFINTBS.spad" 2234862 2234884 2237189 2237194) (-1281 "WEIER.spad" 2233084 2233095 2234852 2234857) (-1280 "VSPACE.spad" 2232757 2232768 2233052 2233079) (-1279 "VSPACE.spad" 2232450 2232463 2232747 2232752) (-1278 "VOID.spad" 2232127 2232136 2232440 2232445) (-1277 "VIEW.spad" 2229807 2229816 2232117 2232122) (-1276 "VIEWDEF.spad" 2225008 2225017 2229797 2229802) (-1275 "VIEW3D.spad" 2208969 2208978 2224998 2225003) (-1274 "VIEW2D.spad" 2196860 2196869 2208959 2208964) (-1273 "VECTOR.spad" 2195534 2195545 2195785 2195812) (-1272 "VECTOR2.spad" 2194173 2194186 2195524 2195529) (-1271 "VECTCAT.spad" 2192077 2192088 2194141 2194168) (-1270 "VECTCAT.spad" 2189788 2189801 2191854 2191859) (-1269 "VARIABLE.spad" 2189568 2189583 2189778 2189783) (-1268 "UTYPE.spad" 2189212 2189221 2189558 2189563) (-1267 "UTSODETL.spad" 2188507 2188531 2189168 2189173) (-1266 "UTSODE.spad" 2186723 2186743 2188497 2188502) (-1265 "UTS.spad" 2181527 2181555 2185190 2185287) (-1264 "UTSCAT.spad" 2179006 2179022 2181425 2181522) (-1263 "UTSCAT.spad" 2176129 2176147 2178550 2178555) (-1262 "UTS2.spad" 2175724 2175759 2176119 2176124) (-1261 "URAGG.spad" 2170397 2170408 2175714 2175719) (-1260 "URAGG.spad" 2165034 2165047 2170353 2170358) (-1259 "UPXSSING.spad" 2162679 2162705 2164115 2164248) (-1258 "UPXS.spad" 2159833 2159861 2160811 2160960) (-1257 "UPXSCONS.spad" 2157592 2157612 2157965 2158114) (-1256 "UPXSCCA.spad" 2156163 2156183 2157438 2157587) (-1255 "UPXSCCA.spad" 2154876 2154898 2156153 2156158) (-1254 "UPXSCAT.spad" 2153465 2153481 2154722 2154871) (-1253 "UPXS2.spad" 2153008 2153061 2153455 2153460) (-1252 "UPSQFREE.spad" 2151422 2151436 2152998 2153003) (-1251 "UPSCAT.spad" 2149033 2149057 2151320 2151417) (-1250 "UPSCAT.spad" 2146350 2146376 2148639 2148644) (-1249 "UPOLYC.spad" 2141390 2141401 2146192 2146345) (-1248 "UPOLYC.spad" 2136322 2136335 2141126 2141131) (-1247 "UPOLYC2.spad" 2135793 2135812 2136312 2136317) (-1246 "UP.spad" 2132992 2133007 2133379 2133532) (-1245 "UPMP.spad" 2131892 2131905 2132982 2132987) (-1244 "UPDIVP.spad" 2131457 2131471 2131882 2131887) (-1243 "UPDECOMP.spad" 2129702 2129716 2131447 2131452) (-1242 "UPCDEN.spad" 2128911 2128927 2129692 2129697) (-1241 "UP2.spad" 2128275 2128296 2128901 2128906) (-1240 "UNISEG.spad" 2127628 2127639 2128194 2128199) (-1239 "UNISEG2.spad" 2127125 2127138 2127584 2127589) (-1238 "UNIFACT.spad" 2126228 2126240 2127115 2127120) (-1237 "ULS.spad" 2116786 2116814 2117873 2118302) (-1236 "ULSCONS.spad" 2109182 2109202 2109552 2109701) (-1235 "ULSCCAT.spad" 2106919 2106939 2109028 2109177) (-1234 "ULSCCAT.spad" 2104764 2104786 2106875 2106880) (-1233 "ULSCAT.spad" 2102996 2103012 2104610 2104759) (-1232 "ULS2.spad" 2102510 2102563 2102986 2102991) (-1231 "UINT8.spad" 2102387 2102396 2102500 2102505) (-1230 "UINT64.spad" 2102263 2102272 2102377 2102382) (-1229 "UINT32.spad" 2102139 2102148 2102253 2102258) (-1228 "UINT16.spad" 2102015 2102024 2102129 2102134) (-1227 "UFD.spad" 2101080 2101089 2101941 2102010) (-1226 "UFD.spad" 2100207 2100218 2101070 2101075) (-1225 "UDVO.spad" 2099088 2099097 2100197 2100202) (-1224 "UDPO.spad" 2096581 2096592 2099044 2099049) (-1223 "TYPE.spad" 2096513 2096522 2096571 2096576) (-1222 "TYPEAST.spad" 2096432 2096441 2096503 2096508) (-1221 "TWOFACT.spad" 2095084 2095099 2096422 2096427) (-1220 "TUPLE.spad" 2094570 2094581 2094983 2094988) (-1219 "TUBETOOL.spad" 2091437 2091446 2094560 2094565) (-1218 "TUBE.spad" 2090084 2090101 2091427 2091432) (-1217 "TS.spad" 2088683 2088699 2089649 2089746) (-1216 "TSETCAT.spad" 2075810 2075827 2088651 2088678) (-1215 "TSETCAT.spad" 2062923 2062942 2075766 2075771) (-1214 "TRMANIP.spad" 2057289 2057306 2062629 2062634) (-1213 "TRIMAT.spad" 2056252 2056277 2057279 2057284) (-1212 "TRIGMNIP.spad" 2054779 2054796 2056242 2056247) (-1211 "TRIGCAT.spad" 2054291 2054300 2054769 2054774) (-1210 "TRIGCAT.spad" 2053801 2053812 2054281 2054286) (-1209 "TREE.spad" 2052376 2052387 2053408 2053435) (-1208 "TRANFUN.spad" 2052215 2052224 2052366 2052371) (-1207 "TRANFUN.spad" 2052052 2052063 2052205 2052210) (-1206 "TOPSP.spad" 2051726 2051735 2052042 2052047) (-1205 "TOOLSIGN.spad" 2051389 2051400 2051716 2051721) (-1204 "TEXTFILE.spad" 2049950 2049959 2051379 2051384) (-1203 "TEX.spad" 2047096 2047105 2049940 2049945) (-1202 "TEX1.spad" 2046652 2046663 2047086 2047091) (-1201 "TEMUTL.spad" 2046207 2046216 2046642 2046647) (-1200 "TBCMPPK.spad" 2044300 2044323 2046197 2046202) (-1199 "TBAGG.spad" 2043350 2043373 2044280 2044295) (-1198 "TBAGG.spad" 2042408 2042433 2043340 2043345) (-1197 "TANEXP.spad" 2041816 2041827 2042398 2042403) (-1196 "TABLE.spad" 2040227 2040250 2040497 2040524) (-1195 "TABLEAU.spad" 2039708 2039719 2040217 2040222) (-1194 "TABLBUMP.spad" 2036511 2036522 2039698 2039703) (-1193 "SYSTEM.spad" 2035739 2035748 2036501 2036506) (-1192 "SYSSOLP.spad" 2033222 2033233 2035729 2035734) (-1191 "SYSPTR.spad" 2033121 2033130 2033212 2033217) (-1190 "SYSNNI.spad" 2032303 2032314 2033111 2033116) (-1189 "SYSINT.spad" 2031707 2031718 2032293 2032298) (-1188 "SYNTAX.spad" 2027913 2027922 2031697 2031702) (-1187 "SYMTAB.spad" 2025981 2025990 2027903 2027908) (-1186 "SYMS.spad" 2022004 2022013 2025971 2025976) (-1185 "SYMPOLY.spad" 2021011 2021022 2021093 2021220) (-1184 "SYMFUNC.spad" 2020512 2020523 2021001 2021006) (-1183 "SYMBOL.spad" 2018015 2018024 2020502 2020507) (-1182 "SWITCH.spad" 2014786 2014795 2018005 2018010) (-1181 "SUTS.spad" 2011691 2011719 2013253 2013350) (-1180 "SUPXS.spad" 2008832 2008860 2009823 2009972) (-1179 "SUP.spad" 2005645 2005656 2006418 2006571) (-1178 "SUPFRACF.spad" 2004750 2004768 2005635 2005640) (-1177 "SUP2.spad" 2004142 2004155 2004740 2004745) (-1176 "SUMRF.spad" 2003116 2003127 2004132 2004137) (-1175 "SUMFS.spad" 2002753 2002770 2003106 2003111) (-1174 "SULS.spad" 1993298 1993326 1994398 1994827) (-1173 "SUCHTAST.spad" 1993067 1993076 1993288 1993293) (-1172 "SUCH.spad" 1992749 1992764 1993057 1993062) (-1171 "SUBSPACE.spad" 1984864 1984879 1992739 1992744) (-1170 "SUBRESP.spad" 1984034 1984048 1984820 1984825) (-1169 "STTF.spad" 1980133 1980149 1984024 1984029) (-1168 "STTFNC.spad" 1976601 1976617 1980123 1980128) (-1167 "STTAYLOR.spad" 1969236 1969247 1976482 1976487) (-1166 "STRTBL.spad" 1967741 1967758 1967890 1967917) (-1165 "STRING.spad" 1967150 1967159 1967164 1967191) (-1164 "STRICAT.spad" 1966938 1966947 1967118 1967145) (-1163 "STREAM.spad" 1963856 1963867 1966463 1966478) (-1162 "STREAM3.spad" 1963429 1963444 1963846 1963851) (-1161 "STREAM2.spad" 1962557 1962570 1963419 1963424) (-1160 "STREAM1.spad" 1962263 1962274 1962547 1962552) (-1159 "STINPROD.spad" 1961199 1961215 1962253 1962258) (-1158 "STEP.spad" 1960400 1960409 1961189 1961194) (-1157 "STEPAST.spad" 1959634 1959643 1960390 1960395) (-1156 "STBL.spad" 1958160 1958188 1958327 1958342) (-1155 "STAGG.spad" 1957235 1957246 1958150 1958155) (-1154 "STAGG.spad" 1956308 1956321 1957225 1957230) (-1153 "STACK.spad" 1955665 1955676 1955915 1955942) (-1152 "SREGSET.spad" 1953369 1953386 1955311 1955338) (-1151 "SRDCMPK.spad" 1951930 1951950 1953359 1953364) (-1150 "SRAGG.spad" 1947073 1947082 1951898 1951925) (-1149 "SRAGG.spad" 1942236 1942247 1947063 1947068) (-1148 "SQMATRIX.spad" 1939852 1939870 1940768 1940855) (-1147 "SPLTREE.spad" 1934404 1934417 1939288 1939315) (-1146 "SPLNODE.spad" 1930992 1931005 1934394 1934399) (-1145 "SPFCAT.spad" 1929801 1929810 1930982 1930987) (-1144 "SPECOUT.spad" 1928353 1928362 1929791 1929796) (-1143 "SPADXPT.spad" 1919948 1919957 1928343 1928348) (-1142 "spad-parser.spad" 1919413 1919422 1919938 1919943) (-1141 "SPADAST.spad" 1919114 1919123 1919403 1919408) (-1140 "SPACEC.spad" 1903313 1903324 1919104 1919109) (-1139 "SPACE3.spad" 1903089 1903100 1903303 1903308) (-1138 "SORTPAK.spad" 1902638 1902651 1903045 1903050) (-1137 "SOLVETRA.spad" 1900401 1900412 1902628 1902633) (-1136 "SOLVESER.spad" 1898929 1898940 1900391 1900396) (-1135 "SOLVERAD.spad" 1894955 1894966 1898919 1898924) (-1134 "SOLVEFOR.spad" 1893417 1893435 1894945 1894950) (-1133 "SNTSCAT.spad" 1893017 1893034 1893385 1893412) (-1132 "SMTS.spad" 1891289 1891315 1892582 1892679) (-1131 "SMP.spad" 1888764 1888784 1889154 1889281) (-1130 "SMITH.spad" 1887609 1887634 1888754 1888759) (-1129 "SMATCAT.spad" 1885719 1885749 1887553 1887604) (-1128 "SMATCAT.spad" 1883761 1883793 1885597 1885602) (-1127 "SKAGG.spad" 1882724 1882735 1883729 1883756) (-1126 "SINT.spad" 1881556 1881565 1882590 1882719) (-1125 "SIMPAN.spad" 1881284 1881293 1881546 1881551) (-1124 "SIG.spad" 1880614 1880623 1881274 1881279) (-1123 "SIGNRF.spad" 1879732 1879743 1880604 1880609) (-1122 "SIGNEF.spad" 1879011 1879028 1879722 1879727) (-1121 "SIGAST.spad" 1878396 1878405 1879001 1879006) (-1120 "SHP.spad" 1876324 1876339 1878352 1878357) (-1119 "SHDP.spad" 1866035 1866062 1866544 1866675) (-1118 "SGROUP.spad" 1865643 1865652 1866025 1866030) (-1117 "SGROUP.spad" 1865249 1865260 1865633 1865638) (-1116 "SGCF.spad" 1858412 1858421 1865239 1865244) (-1115 "SFRTCAT.spad" 1857342 1857359 1858380 1858407) (-1114 "SFRGCD.spad" 1856405 1856425 1857332 1857337) (-1113 "SFQCMPK.spad" 1851042 1851062 1856395 1856400) (-1112 "SFORT.spad" 1850481 1850495 1851032 1851037) (-1111 "SEXOF.spad" 1850324 1850364 1850471 1850476) (-1110 "SEX.spad" 1850216 1850225 1850314 1850319) (-1109 "SEXCAT.spad" 1847817 1847857 1850206 1850211) (-1108 "SET.spad" 1846141 1846152 1847238 1847277) (-1107 "SETMN.spad" 1844591 1844608 1846131 1846136) (-1106 "SETCAT.spad" 1843913 1843922 1844581 1844586) (-1105 "SETCAT.spad" 1843233 1843244 1843903 1843908) (-1104 "SETAGG.spad" 1839782 1839793 1843213 1843228) (-1103 "SETAGG.spad" 1836339 1836352 1839772 1839777) (-1102 "SEQAST.spad" 1836042 1836051 1836329 1836334) (-1101 "SEGXCAT.spad" 1835198 1835211 1836032 1836037) (-1100 "SEG.spad" 1835011 1835022 1835117 1835122) (-1099 "SEGCAT.spad" 1833936 1833947 1835001 1835006) (-1098 "SEGBIND.spad" 1833694 1833705 1833883 1833888) (-1097 "SEGBIND2.spad" 1833392 1833405 1833684 1833689) (-1096 "SEGAST.spad" 1833106 1833115 1833382 1833387) (-1095 "SEG2.spad" 1832541 1832554 1833062 1833067) (-1094 "SDVAR.spad" 1831817 1831828 1832531 1832536) (-1093 "SDPOL.spad" 1829243 1829254 1829534 1829661) (-1092 "SCPKG.spad" 1827332 1827343 1829233 1829238) (-1091 "SCOPE.spad" 1826485 1826494 1827322 1827327) (-1090 "SCACHE.spad" 1825181 1825192 1826475 1826480) (-1089 "SASTCAT.spad" 1825090 1825099 1825171 1825176) (-1088 "SAOS.spad" 1824962 1824971 1825080 1825085) (-1087 "SAERFFC.spad" 1824675 1824695 1824952 1824957) (-1086 "SAE.spad" 1822850 1822866 1823461 1823596) (-1085 "SAEFACT.spad" 1822551 1822571 1822840 1822845) (-1084 "RURPK.spad" 1820210 1820226 1822541 1822546) (-1083 "RULESET.spad" 1819663 1819687 1820200 1820205) (-1082 "RULE.spad" 1817903 1817927 1819653 1819658) (-1081 "RULECOLD.spad" 1817755 1817768 1817893 1817898) (-1080 "RTVALUE.spad" 1817490 1817499 1817745 1817750) (-1079 "RSTRCAST.spad" 1817207 1817216 1817480 1817485) (-1078 "RSETGCD.spad" 1813585 1813605 1817197 1817202) (-1077 "RSETCAT.spad" 1803521 1803538 1813553 1813580) (-1076 "RSETCAT.spad" 1793477 1793496 1803511 1803516) (-1075 "RSDCMPK.spad" 1791929 1791949 1793467 1793472) (-1074 "RRCC.spad" 1790313 1790343 1791919 1791924) (-1073 "RRCC.spad" 1788695 1788727 1790303 1790308) (-1072 "RPTAST.spad" 1788397 1788406 1788685 1788690) (-1071 "RPOLCAT.spad" 1767757 1767772 1788265 1788392) (-1070 "RPOLCAT.spad" 1746831 1746848 1767341 1767346) (-1069 "ROUTINE.spad" 1742714 1742723 1745478 1745505) (-1068 "ROMAN.spad" 1742042 1742051 1742580 1742709) (-1067 "ROIRC.spad" 1741122 1741154 1742032 1742037) (-1066 "RNS.spad" 1740025 1740034 1741024 1741117) (-1065 "RNS.spad" 1739014 1739025 1740015 1740020) (-1064 "RNG.spad" 1738749 1738758 1739004 1739009) (-1063 "RNGBIND.spad" 1737909 1737923 1738704 1738709) (-1062 "RMODULE.spad" 1737674 1737685 1737899 1737904) (-1061 "RMCAT2.spad" 1737094 1737151 1737664 1737669) (-1060 "RMATRIX.spad" 1735918 1735937 1736261 1736300) (-1059 "RMATCAT.spad" 1731497 1731528 1735874 1735913) (-1058 "RMATCAT.spad" 1726966 1726999 1731345 1731350) (-1057 "RLINSET.spad" 1726360 1726371 1726956 1726961) (-1056 "RINTERP.spad" 1726248 1726268 1726350 1726355) (-1055 "RING.spad" 1725718 1725727 1726228 1726243) (-1054 "RING.spad" 1725196 1725207 1725708 1725713) (-1053 "RIDIST.spad" 1724588 1724597 1725186 1725191) (-1052 "RGCHAIN.spad" 1723171 1723187 1724073 1724100) (-1051 "RGBCSPC.spad" 1722952 1722964 1723161 1723166) (-1050 "RGBCMDL.spad" 1722482 1722494 1722942 1722947) (-1049 "RF.spad" 1720124 1720135 1722472 1722477) (-1048 "RFFACTOR.spad" 1719586 1719597 1720114 1720119) (-1047 "RFFACT.spad" 1719321 1719333 1719576 1719581) (-1046 "RFDIST.spad" 1718317 1718326 1719311 1719316) (-1045 "RETSOL.spad" 1717736 1717749 1718307 1718312) (-1044 "RETRACT.spad" 1717164 1717175 1717726 1717731) (-1043 "RETRACT.spad" 1716590 1716603 1717154 1717159) (-1042 "RETAST.spad" 1716402 1716411 1716580 1716585) (-1041 "RESULT.spad" 1714462 1714471 1715049 1715076) (-1040 "RESRING.spad" 1713809 1713856 1714400 1714457) (-1039 "RESLATC.spad" 1713133 1713144 1713799 1713804) (-1038 "REPSQ.spad" 1712864 1712875 1713123 1713128) (-1037 "REP.spad" 1710418 1710427 1712854 1712859) (-1036 "REPDB.spad" 1710125 1710136 1710408 1710413) (-1035 "REP2.spad" 1699783 1699794 1709967 1709972) (-1034 "REP1.spad" 1693979 1693990 1699733 1699738) (-1033 "REGSET.spad" 1691776 1691793 1693625 1693652) (-1032 "REF.spad" 1691111 1691122 1691731 1691736) (-1031 "REDORDER.spad" 1690317 1690334 1691101 1691106) (-1030 "RECLOS.spad" 1689100 1689120 1689804 1689897) (-1029 "REALSOLV.spad" 1688240 1688249 1689090 1689095) (-1028 "REAL.spad" 1688112 1688121 1688230 1688235) (-1027 "REAL0Q.spad" 1685410 1685425 1688102 1688107) (-1026 "REAL0.spad" 1682254 1682269 1685400 1685405) (-1025 "RDUCEAST.spad" 1681975 1681984 1682244 1682249) (-1024 "RDIV.spad" 1681630 1681655 1681965 1681970) (-1023 "RDIST.spad" 1681197 1681208 1681620 1681625) (-1022 "RDETRS.spad" 1680061 1680079 1681187 1681192) (-1021 "RDETR.spad" 1678200 1678218 1680051 1680056) (-1020 "RDEEFS.spad" 1677299 1677316 1678190 1678195) (-1019 "RDEEF.spad" 1676309 1676326 1677289 1677294) (-1018 "RCFIELD.spad" 1673495 1673504 1676211 1676304) (-1017 "RCFIELD.spad" 1670767 1670778 1673485 1673490) (-1016 "RCAGG.spad" 1668695 1668706 1670757 1670762) (-1015 "RCAGG.spad" 1666550 1666563 1668614 1668619) (-1014 "RATRET.spad" 1665910 1665921 1666540 1666545) (-1013 "RATFACT.spad" 1665602 1665614 1665900 1665905) (-1012 "RANDSRC.spad" 1664921 1664930 1665592 1665597) (-1011 "RADUTIL.spad" 1664677 1664686 1664911 1664916) (-1010 "RADIX.spad" 1661598 1661612 1663144 1663237) (-1009 "RADFF.spad" 1660011 1660048 1660130 1660286) (-1008 "RADCAT.spad" 1659606 1659615 1660001 1660006) (-1007 "RADCAT.spad" 1659199 1659210 1659596 1659601) (-1006 "QUEUE.spad" 1658547 1658558 1658806 1658833) (-1005 "QUAT.spad" 1657128 1657139 1657471 1657536) (-1004 "QUATCT2.spad" 1656748 1656767 1657118 1657123) (-1003 "QUATCAT.spad" 1654918 1654929 1656678 1656743) (-1002 "QUATCAT.spad" 1652839 1652852 1654601 1654606) (-1001 "QUAGG.spad" 1651666 1651677 1652807 1652834) (-1000 "QQUTAST.spad" 1651434 1651443 1651656 1651661) (-999 "QFORM.spad" 1650899 1650913 1651424 1651429) (-998 "QFCAT.spad" 1649602 1649612 1650801 1650894) (-997 "QFCAT.spad" 1647896 1647908 1649097 1649102) (-996 "QFCAT2.spad" 1647589 1647605 1647886 1647891) (-995 "QEQUAT.spad" 1647148 1647156 1647579 1647584) (-994 "QCMPACK.spad" 1641895 1641914 1647138 1647143) (-993 "QALGSET.spad" 1637974 1638006 1641809 1641814) (-992 "QALGSET2.spad" 1635970 1635988 1637964 1637969) (-991 "PWFFINTB.spad" 1633386 1633407 1635960 1635965) (-990 "PUSHVAR.spad" 1632725 1632744 1633376 1633381) (-989 "PTRANFN.spad" 1628853 1628863 1632715 1632720) (-988 "PTPACK.spad" 1625941 1625951 1628843 1628848) (-987 "PTFUNC2.spad" 1625764 1625778 1625931 1625936) (-986 "PTCAT.spad" 1625019 1625029 1625732 1625759) (-985 "PSQFR.spad" 1624326 1624350 1625009 1625014) (-984 "PSEUDLIN.spad" 1623212 1623222 1624316 1624321) (-983 "PSETPK.spad" 1608645 1608661 1623090 1623095) (-982 "PSETCAT.spad" 1602565 1602588 1608625 1608640) (-981 "PSETCAT.spad" 1596459 1596484 1602521 1602526) (-980 "PSCURVE.spad" 1595442 1595450 1596449 1596454) (-979 "PSCAT.spad" 1594225 1594254 1595340 1595437) (-978 "PSCAT.spad" 1593098 1593129 1594215 1594220) (-977 "PRTITION.spad" 1592059 1592067 1593088 1593093) (-976 "PRTDAST.spad" 1591778 1591786 1592049 1592054) (-975 "PRS.spad" 1581340 1581357 1591734 1591739) (-974 "PRQAGG.spad" 1580775 1580785 1581308 1581335) (-973 "PROPLOG.spad" 1580074 1580082 1580765 1580770) (-972 "PROPFRML.spad" 1578642 1578653 1580064 1580069) (-971 "PROPERTY.spad" 1578130 1578138 1578632 1578637) (-970 "PRODUCT.spad" 1575812 1575824 1576096 1576151) (-969 "PR.spad" 1574204 1574216 1574903 1575030) (-968 "PRINT.spad" 1573956 1573964 1574194 1574199) (-967 "PRIMES.spad" 1572209 1572219 1573946 1573951) (-966 "PRIMELT.spad" 1570290 1570304 1572199 1572204) (-965 "PRIMCAT.spad" 1569917 1569925 1570280 1570285) (-964 "PRIMARR.spad" 1568922 1568932 1569100 1569127) (-963 "PRIMARR2.spad" 1567689 1567701 1568912 1568917) (-962 "PREASSOC.spad" 1567071 1567083 1567679 1567684) (-961 "PPCURVE.spad" 1566208 1566216 1567061 1567066) (-960 "PORTNUM.spad" 1565983 1565991 1566198 1566203) (-959 "POLYROOT.spad" 1564832 1564854 1565939 1565944) (-958 "POLY.spad" 1562167 1562177 1562682 1562809) (-957 "POLYLIFT.spad" 1561432 1561455 1562157 1562162) (-956 "POLYCATQ.spad" 1559550 1559572 1561422 1561427) (-955 "POLYCAT.spad" 1553020 1553041 1559418 1559545) (-954 "POLYCAT.spad" 1545828 1545851 1552228 1552233) (-953 "POLY2UP.spad" 1545280 1545294 1545818 1545823) (-952 "POLY2.spad" 1544877 1544889 1545270 1545275) (-951 "POLUTIL.spad" 1543818 1543847 1544833 1544838) (-950 "POLTOPOL.spad" 1542566 1542581 1543808 1543813) (-949 "POINT.spad" 1541404 1541414 1541491 1541518) (-948 "PNTHEORY.spad" 1538106 1538114 1541394 1541399) (-947 "PMTOOLS.spad" 1536881 1536895 1538096 1538101) (-946 "PMSYM.spad" 1536430 1536440 1536871 1536876) (-945 "PMQFCAT.spad" 1536021 1536035 1536420 1536425) (-944 "PMPRED.spad" 1535500 1535514 1536011 1536016) (-943 "PMPREDFS.spad" 1534954 1534976 1535490 1535495) (-942 "PMPLCAT.spad" 1534034 1534052 1534886 1534891) (-941 "PMLSAGG.spad" 1533619 1533633 1534024 1534029) (-940 "PMKERNEL.spad" 1533198 1533210 1533609 1533614) (-939 "PMINS.spad" 1532778 1532788 1533188 1533193) (-938 "PMFS.spad" 1532355 1532373 1532768 1532773) (-937 "PMDOWN.spad" 1531645 1531659 1532345 1532350) (-936 "PMASS.spad" 1530655 1530663 1531635 1531640) (-935 "PMASSFS.spad" 1529622 1529638 1530645 1530650) (-934 "PLOTTOOL.spad" 1529402 1529410 1529612 1529617) (-933 "PLOT.spad" 1524325 1524333 1529392 1529397) (-932 "PLOT3D.spad" 1520789 1520797 1524315 1524320) (-931 "PLOT1.spad" 1519946 1519956 1520779 1520784) (-930 "PLEQN.spad" 1507236 1507263 1519936 1519941) (-929 "PINTERP.spad" 1506858 1506877 1507226 1507231) (-928 "PINTERPA.spad" 1506642 1506658 1506848 1506853) (-927 "PI.spad" 1506251 1506259 1506616 1506637) (-926 "PID.spad" 1505221 1505229 1506177 1506246) (-925 "PICOERCE.spad" 1504878 1504888 1505211 1505216) (-924 "PGROEB.spad" 1503479 1503493 1504868 1504873) (-923 "PGE.spad" 1495096 1495104 1503469 1503474) (-922 "PGCD.spad" 1493986 1494003 1495086 1495091) (-921 "PFRPAC.spad" 1493135 1493145 1493976 1493981) (-920 "PFR.spad" 1489798 1489808 1493037 1493130) (-919 "PFOTOOLS.spad" 1489056 1489072 1489788 1489793) (-918 "PFOQ.spad" 1488426 1488444 1489046 1489051) (-917 "PFO.spad" 1487845 1487872 1488416 1488421) (-916 "PF.spad" 1487419 1487431 1487650 1487743) (-915 "PFECAT.spad" 1485101 1485109 1487345 1487414) (-914 "PFECAT.spad" 1482811 1482821 1485057 1485062) (-913 "PFBRU.spad" 1480699 1480711 1482801 1482806) (-912 "PFBR.spad" 1478259 1478282 1480689 1480694) (-911 "PERM.spad" 1473944 1473954 1478089 1478104) (-910 "PERMGRP.spad" 1468706 1468716 1473934 1473939) (-909 "PERMCAT.spad" 1467264 1467274 1468686 1468701) (-908 "PERMAN.spad" 1465796 1465810 1467254 1467259) (-907 "PENDTREE.spad" 1465137 1465147 1465425 1465430) (-906 "PDRING.spad" 1463688 1463698 1465117 1465132) (-905 "PDRING.spad" 1462247 1462259 1463678 1463683) (-904 "PDEPROB.spad" 1461262 1461270 1462237 1462242) (-903 "PDEPACK.spad" 1455302 1455310 1461252 1461257) (-902 "PDECOMP.spad" 1454772 1454789 1455292 1455297) (-901 "PDECAT.spad" 1453128 1453136 1454762 1454767) (-900 "PCOMP.spad" 1452981 1452994 1453118 1453123) (-899 "PBWLB.spad" 1451569 1451586 1452971 1452976) (-898 "PATTERN.spad" 1446108 1446118 1451559 1451564) (-897 "PATTERN2.spad" 1445846 1445858 1446098 1446103) (-896 "PATTERN1.spad" 1444182 1444198 1445836 1445841) (-895 "PATRES.spad" 1441757 1441769 1444172 1444177) (-894 "PATRES2.spad" 1441429 1441443 1441747 1441752) (-893 "PATMATCH.spad" 1439626 1439657 1441137 1441142) (-892 "PATMAB.spad" 1439055 1439065 1439616 1439621) (-891 "PATLRES.spad" 1438141 1438155 1439045 1439050) (-890 "PATAB.spad" 1437905 1437915 1438131 1438136) (-889 "PARTPERM.spad" 1435305 1435313 1437895 1437900) (-888 "PARSURF.spad" 1434739 1434767 1435295 1435300) (-887 "PARSU2.spad" 1434536 1434552 1434729 1434734) (-886 "script-parser.spad" 1434056 1434064 1434526 1434531) (-885 "PARSCURV.spad" 1433490 1433518 1434046 1434051) (-884 "PARSC2.spad" 1433281 1433297 1433480 1433485) (-883 "PARPCURV.spad" 1432743 1432771 1433271 1433276) (-882 "PARPC2.spad" 1432534 1432550 1432733 1432738) (-881 "PARAMAST.spad" 1431662 1431670 1432524 1432529) (-880 "PAN2EXPR.spad" 1431074 1431082 1431652 1431657) (-879 "PALETTE.spad" 1430044 1430052 1431064 1431069) (-878 "PAIR.spad" 1429031 1429044 1429632 1429637) (-877 "PADICRC.spad" 1426365 1426383 1427536 1427629) (-876 "PADICRAT.spad" 1424380 1424392 1424601 1424694) (-875 "PADIC.spad" 1424075 1424087 1424306 1424375) (-874 "PADICCT.spad" 1422624 1422636 1424001 1424070) (-873 "PADEPAC.spad" 1421313 1421332 1422614 1422619) (-872 "PADE.spad" 1420065 1420081 1421303 1421308) (-871 "OWP.spad" 1419305 1419335 1419923 1419990) (-870 "OVERSET.spad" 1418878 1418886 1419295 1419300) (-869 "OVAR.spad" 1418659 1418682 1418868 1418873) (-868 "OUT.spad" 1417745 1417753 1418649 1418654) (-867 "OUTFORM.spad" 1407137 1407145 1417735 1417740) (-866 "OUTBFILE.spad" 1406555 1406563 1407127 1407132) (-865 "OUTBCON.spad" 1405561 1405569 1406545 1406550) (-864 "OUTBCON.spad" 1404565 1404575 1405551 1405556) (-863 "OSI.spad" 1404040 1404048 1404555 1404560) (-862 "OSGROUP.spad" 1403958 1403966 1404030 1404035) (-861 "ORTHPOL.spad" 1402443 1402453 1403875 1403880) (-860 "OREUP.spad" 1401896 1401924 1402123 1402162) (-859 "ORESUP.spad" 1401197 1401221 1401576 1401615) (-858 "OREPCTO.spad" 1399054 1399066 1401117 1401122) (-857 "OREPCAT.spad" 1393201 1393211 1399010 1399049) (-856 "OREPCAT.spad" 1387238 1387250 1393049 1393054) (-855 "ORDSET.spad" 1386410 1386418 1387228 1387233) (-854 "ORDSET.spad" 1385580 1385590 1386400 1386405) (-853 "ORDRING.spad" 1384970 1384978 1385560 1385575) (-852 "ORDRING.spad" 1384368 1384378 1384960 1384965) (-851 "ORDMON.spad" 1384223 1384231 1384358 1384363) (-850 "ORDFUNS.spad" 1383355 1383371 1384213 1384218) (-849 "ORDFIN.spad" 1383175 1383183 1383345 1383350) (-848 "ORDCOMP.spad" 1381640 1381650 1382722 1382751) (-847 "ORDCOMP2.spad" 1380933 1380945 1381630 1381635) (-846 "OPTPROB.spad" 1379571 1379579 1380923 1380928) (-845 "OPTPACK.spad" 1371980 1371988 1379561 1379566) (-844 "OPTCAT.spad" 1369659 1369667 1371970 1371975) (-843 "OPSIG.spad" 1369313 1369321 1369649 1369654) (-842 "OPQUERY.spad" 1368862 1368870 1369303 1369308) (-841 "OP.spad" 1368604 1368614 1368684 1368751) (-840 "OPERCAT.spad" 1368070 1368080 1368594 1368599) (-839 "OPERCAT.spad" 1367534 1367546 1368060 1368065) (-838 "ONECOMP.spad" 1366279 1366289 1367081 1367110) (-837 "ONECOMP2.spad" 1365703 1365715 1366269 1366274) (-836 "OMSERVER.spad" 1364709 1364717 1365693 1365698) (-835 "OMSAGG.spad" 1364497 1364507 1364665 1364704) (-834 "OMPKG.spad" 1363113 1363121 1364487 1364492) (-833 "OM.spad" 1362086 1362094 1363103 1363108) (-832 "OMLO.spad" 1361511 1361523 1361972 1362011) (-831 "OMEXPR.spad" 1361345 1361355 1361501 1361506) (-830 "OMERR.spad" 1360890 1360898 1361335 1361340) (-829 "OMERRK.spad" 1359924 1359932 1360880 1360885) (-828 "OMENC.spad" 1359268 1359276 1359914 1359919) (-827 "OMDEV.spad" 1353577 1353585 1359258 1359263) (-826 "OMCONN.spad" 1352986 1352994 1353567 1353572) (-825 "OINTDOM.spad" 1352749 1352757 1352912 1352981) (-824 "OFMONOID.spad" 1350872 1350882 1352705 1352710) (-823 "ODVAR.spad" 1350133 1350143 1350862 1350867) (-822 "ODR.spad" 1349777 1349803 1349945 1350094) (-821 "ODPOL.spad" 1347159 1347169 1347499 1347626) (-820 "ODP.spad" 1337006 1337026 1337379 1337510) (-819 "ODETOOLS.spad" 1335655 1335674 1336996 1337001) (-818 "ODESYS.spad" 1333349 1333366 1335645 1335650) (-817 "ODERTRIC.spad" 1329358 1329375 1333306 1333311) (-816 "ODERED.spad" 1328757 1328781 1329348 1329353) (-815 "ODERAT.spad" 1326372 1326389 1328747 1328752) (-814 "ODEPRRIC.spad" 1323409 1323431 1326362 1326367) (-813 "ODEPROB.spad" 1322666 1322674 1323399 1323404) (-812 "ODEPRIM.spad" 1320000 1320022 1322656 1322661) (-811 "ODEPAL.spad" 1319386 1319410 1319990 1319995) (-810 "ODEPACK.spad" 1306052 1306060 1319376 1319381) (-809 "ODEINT.spad" 1305487 1305503 1306042 1306047) (-808 "ODEIFTBL.spad" 1302882 1302890 1305477 1305482) (-807 "ODEEF.spad" 1298373 1298389 1302872 1302877) (-806 "ODECONST.spad" 1297910 1297928 1298363 1298368) (-805 "ODECAT.spad" 1296508 1296516 1297900 1297905) (-804 "OCT.spad" 1294644 1294654 1295358 1295397) (-803 "OCTCT2.spad" 1294290 1294311 1294634 1294639) (-802 "OC.spad" 1292086 1292096 1294246 1294285) (-801 "OC.spad" 1289607 1289619 1291769 1291774) (-800 "OCAMON.spad" 1289455 1289463 1289597 1289602) (-799 "OASGP.spad" 1289270 1289278 1289445 1289450) (-798 "OAMONS.spad" 1288792 1288800 1289260 1289265) (-797 "OAMON.spad" 1288653 1288661 1288782 1288787) (-796 "OAGROUP.spad" 1288515 1288523 1288643 1288648) (-795 "NUMTUBE.spad" 1288106 1288122 1288505 1288510) (-794 "NUMQUAD.spad" 1276082 1276090 1288096 1288101) (-793 "NUMODE.spad" 1267436 1267444 1276072 1276077) (-792 "NUMINT.spad" 1265002 1265010 1267426 1267431) (-791 "NUMFMT.spad" 1263842 1263850 1264992 1264997) (-790 "NUMERIC.spad" 1255956 1255966 1263647 1263652) (-789 "NTSCAT.spad" 1254464 1254480 1255924 1255951) (-788 "NTPOLFN.spad" 1254015 1254025 1254381 1254386) (-787 "NSUP.spad" 1247061 1247071 1251601 1251754) (-786 "NSUP2.spad" 1246453 1246465 1247051 1247056) (-785 "NSMP.spad" 1242684 1242703 1242992 1243119) (-784 "NREP.spad" 1241062 1241076 1242674 1242679) (-783 "NPCOEF.spad" 1240308 1240328 1241052 1241057) (-782 "NORMRETR.spad" 1239906 1239945 1240298 1240303) (-781 "NORMPK.spad" 1237808 1237827 1239896 1239901) (-780 "NORMMA.spad" 1237496 1237522 1237798 1237803) (-779 "NONE.spad" 1237237 1237245 1237486 1237491) (-778 "NONE1.spad" 1236913 1236923 1237227 1237232) (-777 "NODE1.spad" 1236400 1236416 1236903 1236908) (-776 "NNI.spad" 1235295 1235303 1236374 1236395) (-775 "NLINSOL.spad" 1233921 1233931 1235285 1235290) (-774 "NIPROB.spad" 1232462 1232470 1233911 1233916) (-773 "NFINTBAS.spad" 1230022 1230039 1232452 1232457) (-772 "NETCLT.spad" 1229996 1230007 1230012 1230017) (-771 "NCODIV.spad" 1228212 1228228 1229986 1229991) (-770 "NCNTFRAC.spad" 1227854 1227868 1228202 1228207) (-769 "NCEP.spad" 1226020 1226034 1227844 1227849) (-768 "NASRING.spad" 1225616 1225624 1226010 1226015) (-767 "NASRING.spad" 1225210 1225220 1225606 1225611) (-766 "NARNG.spad" 1224562 1224570 1225200 1225205) (-765 "NARNG.spad" 1223912 1223922 1224552 1224557) (-764 "NAGSP.spad" 1222989 1222997 1223902 1223907) (-763 "NAGS.spad" 1212650 1212658 1222979 1222984) (-762 "NAGF07.spad" 1211081 1211089 1212640 1212645) (-761 "NAGF04.spad" 1205483 1205491 1211071 1211076) (-760 "NAGF02.spad" 1199552 1199560 1205473 1205478) (-759 "NAGF01.spad" 1195313 1195321 1199542 1199547) (-758 "NAGE04.spad" 1189013 1189021 1195303 1195308) (-757 "NAGE02.spad" 1179673 1179681 1189003 1189008) (-756 "NAGE01.spad" 1175675 1175683 1179663 1179668) (-755 "NAGD03.spad" 1173679 1173687 1175665 1175670) (-754 "NAGD02.spad" 1166426 1166434 1173669 1173674) (-753 "NAGD01.spad" 1160719 1160727 1166416 1166421) (-752 "NAGC06.spad" 1156594 1156602 1160709 1160714) (-751 "NAGC05.spad" 1155095 1155103 1156584 1156589) (-750 "NAGC02.spad" 1154362 1154370 1155085 1155090) (-749 "NAALG.spad" 1153903 1153913 1154330 1154357) (-748 "NAALG.spad" 1153464 1153476 1153893 1153898) (-747 "MULTSQFR.spad" 1150422 1150439 1153454 1153459) (-746 "MULTFACT.spad" 1149805 1149822 1150412 1150417) (-745 "MTSCAT.spad" 1147899 1147920 1149703 1149800) (-744 "MTHING.spad" 1147558 1147568 1147889 1147894) (-743 "MSYSCMD.spad" 1146992 1147000 1147548 1147553) (-742 "MSET.spad" 1144950 1144960 1146698 1146737) (-741 "MSETAGG.spad" 1144795 1144805 1144918 1144945) (-740 "MRING.spad" 1141772 1141784 1144503 1144570) (-739 "MRF2.spad" 1141342 1141356 1141762 1141767) (-738 "MRATFAC.spad" 1140888 1140905 1141332 1141337) (-737 "MPRFF.spad" 1138928 1138947 1140878 1140883) (-736 "MPOLY.spad" 1136399 1136414 1136758 1136885) (-735 "MPCPF.spad" 1135663 1135682 1136389 1136394) (-734 "MPC3.spad" 1135480 1135520 1135653 1135658) (-733 "MPC2.spad" 1135126 1135159 1135470 1135475) (-732 "MONOTOOL.spad" 1133477 1133494 1135116 1135121) (-731 "MONOID.spad" 1132796 1132804 1133467 1133472) (-730 "MONOID.spad" 1132113 1132123 1132786 1132791) (-729 "MONOGEN.spad" 1130861 1130874 1131973 1132108) (-728 "MONOGEN.spad" 1129631 1129646 1130745 1130750) (-727 "MONADWU.spad" 1127661 1127669 1129621 1129626) (-726 "MONADWU.spad" 1125689 1125699 1127651 1127656) (-725 "MONAD.spad" 1124849 1124857 1125679 1125684) (-724 "MONAD.spad" 1124007 1124017 1124839 1124844) (-723 "MOEBIUS.spad" 1122743 1122757 1123987 1124002) (-722 "MODULE.spad" 1122613 1122623 1122711 1122738) (-721 "MODULE.spad" 1122503 1122515 1122603 1122608) (-720 "MODRING.spad" 1121838 1121877 1122483 1122498) (-719 "MODOP.spad" 1120503 1120515 1121660 1121727) (-718 "MODMONOM.spad" 1120234 1120252 1120493 1120498) (-717 "MODMON.spad" 1117029 1117045 1117748 1117901) (-716 "MODFIELD.spad" 1116391 1116430 1116931 1117024) (-715 "MMLFORM.spad" 1115251 1115259 1116381 1116386) (-714 "MMAP.spad" 1114993 1115027 1115241 1115246) (-713 "MLO.spad" 1113452 1113462 1114949 1114988) (-712 "MLIFT.spad" 1112064 1112081 1113442 1113447) (-711 "MKUCFUNC.spad" 1111599 1111617 1112054 1112059) (-710 "MKRECORD.spad" 1111203 1111216 1111589 1111594) (-709 "MKFUNC.spad" 1110610 1110620 1111193 1111198) (-708 "MKFLCFN.spad" 1109578 1109588 1110600 1110605) (-707 "MKBCFUNC.spad" 1109073 1109091 1109568 1109573) (-706 "MINT.spad" 1108512 1108520 1108975 1109068) (-705 "MHROWRED.spad" 1107023 1107033 1108502 1108507) (-704 "MFLOAT.spad" 1105543 1105551 1106913 1107018) (-703 "MFINFACT.spad" 1104943 1104965 1105533 1105538) (-702 "MESH.spad" 1102725 1102733 1104933 1104938) (-701 "MDDFACT.spad" 1100936 1100946 1102715 1102720) (-700 "MDAGG.spad" 1100227 1100237 1100916 1100931) (-699 "MCMPLX.spad" 1096238 1096246 1096852 1097053) (-698 "MCDEN.spad" 1095448 1095460 1096228 1096233) (-697 "MCALCFN.spad" 1092570 1092596 1095438 1095443) (-696 "MAYBE.spad" 1091854 1091865 1092560 1092565) (-695 "MATSTOR.spad" 1089162 1089172 1091844 1091849) (-694 "MATRIX.spad" 1087866 1087876 1088350 1088377) (-693 "MATLIN.spad" 1085210 1085234 1087750 1087755) (-692 "MATCAT.spad" 1076939 1076961 1085178 1085205) (-691 "MATCAT.spad" 1068540 1068564 1076781 1076786) (-690 "MATCAT2.spad" 1067822 1067870 1068530 1068535) (-689 "MAPPKG3.spad" 1066737 1066751 1067812 1067817) (-688 "MAPPKG2.spad" 1066075 1066087 1066727 1066732) (-687 "MAPPKG1.spad" 1064903 1064913 1066065 1066070) (-686 "MAPPAST.spad" 1064218 1064226 1064893 1064898) (-685 "MAPHACK3.spad" 1064030 1064044 1064208 1064213) (-684 "MAPHACK2.spad" 1063799 1063811 1064020 1064025) (-683 "MAPHACK1.spad" 1063443 1063453 1063789 1063794) (-682 "MAGMA.spad" 1061233 1061250 1063433 1063438) (-681 "MACROAST.spad" 1060812 1060820 1061223 1061228) (-680 "M3D.spad" 1058532 1058542 1060190 1060195) (-679 "LZSTAGG.spad" 1055770 1055780 1058522 1058527) (-678 "LZSTAGG.spad" 1053006 1053018 1055760 1055765) (-677 "LWORD.spad" 1049711 1049728 1052996 1053001) (-676 "LSTAST.spad" 1049495 1049503 1049701 1049706) (-675 "LSQM.spad" 1047725 1047739 1048119 1048170) (-674 "LSPP.spad" 1047260 1047277 1047715 1047720) (-673 "LSMP.spad" 1046110 1046138 1047250 1047255) (-672 "LSMP1.spad" 1043928 1043942 1046100 1046105) (-671 "LSAGG.spad" 1043597 1043607 1043896 1043923) (-670 "LSAGG.spad" 1043286 1043298 1043587 1043592) (-669 "LPOLY.spad" 1042240 1042259 1043142 1043211) (-668 "LPEFRAC.spad" 1041511 1041521 1042230 1042235) (-667 "LO.spad" 1040912 1040926 1041445 1041472) (-666 "LOGIC.spad" 1040514 1040522 1040902 1040907) (-665 "LOGIC.spad" 1040114 1040124 1040504 1040509) (-664 "LODOOPS.spad" 1039044 1039056 1040104 1040109) (-663 "LODO.spad" 1038428 1038444 1038724 1038763) (-662 "LODOF.spad" 1037474 1037491 1038385 1038390) (-661 "LODOCAT.spad" 1036140 1036150 1037430 1037469) (-660 "LODOCAT.spad" 1034804 1034816 1036096 1036101) (-659 "LODO2.spad" 1034077 1034089 1034484 1034523) (-658 "LODO1.spad" 1033477 1033487 1033757 1033796) (-657 "LODEEF.spad" 1032279 1032297 1033467 1033472) (-656 "LNAGG.spad" 1028111 1028121 1032269 1032274) (-655 "LNAGG.spad" 1023907 1023919 1028067 1028072) (-654 "LMOPS.spad" 1020675 1020692 1023897 1023902) (-653 "LMODULE.spad" 1020443 1020453 1020665 1020670) (-652 "LMDICT.spad" 1019730 1019740 1019994 1020021) (-651 "LLINSET.spad" 1019127 1019137 1019720 1019725) (-650 "LITERAL.spad" 1019033 1019044 1019117 1019122) (-649 "LIST.spad" 1016768 1016778 1018180 1018207) (-648 "LIST3.spad" 1016079 1016093 1016758 1016763) (-647 "LIST2.spad" 1014781 1014793 1016069 1016074) (-646 "LIST2MAP.spad" 1011684 1011696 1014771 1014776) (-645 "LINSET.spad" 1011306 1011316 1011674 1011679) (-644 "LINEXP.spad" 1010740 1010750 1011286 1011301) (-643 "LINDEP.spad" 1009549 1009561 1010652 1010657) (-642 "LIMITRF.spad" 1007477 1007487 1009539 1009544) (-641 "LIMITPS.spad" 1006380 1006393 1007467 1007472) (-640 "LIE.spad" 1004396 1004408 1005670 1005815) (-639 "LIECAT.spad" 1003872 1003882 1004322 1004391) (-638 "LIECAT.spad" 1003376 1003388 1003828 1003833) (-637 "LIB.spad" 1001426 1001434 1002035 1002050) (-636 "LGROBP.spad" 998779 998798 1001416 1001421) (-635 "LF.spad" 997734 997750 998769 998774) (-634 "LFCAT.spad" 996793 996801 997724 997729) (-633 "LEXTRIPK.spad" 992296 992311 996783 996788) (-632 "LEXP.spad" 990299 990326 992276 992291) (-631 "LETAST.spad" 989998 990006 990289 990294) (-630 "LEADCDET.spad" 988396 988413 989988 989993) (-629 "LAZM3PK.spad" 987100 987122 988386 988391) (-628 "LAUPOL.spad" 985793 985806 986693 986762) (-627 "LAPLACE.spad" 985376 985392 985783 985788) (-626 "LA.spad" 984816 984830 985298 985337) (-625 "LALG.spad" 984592 984602 984796 984811) (-624 "LALG.spad" 984376 984388 984582 984587) (-623 "KVTFROM.spad" 984111 984121 984366 984371) (-622 "KTVLOGIC.spad" 983623 983631 984101 984106) (-621 "KRCFROM.spad" 983361 983371 983613 983618) (-620 "KOVACIC.spad" 982084 982101 983351 983356) (-619 "KONVERT.spad" 981806 981816 982074 982079) (-618 "KOERCE.spad" 981543 981553 981796 981801) (-617 "KERNEL.spad" 980198 980208 981327 981332) (-616 "KERNEL2.spad" 979901 979913 980188 980193) (-615 "KDAGG.spad" 979010 979032 979881 979896) (-614 "KDAGG.spad" 978127 978151 979000 979005) (-613 "KAFILE.spad" 977090 977106 977325 977352) (-612 "JORDAN.spad" 974919 974931 976380 976525) (-611 "JOINAST.spad" 974613 974621 974909 974914) (-610 "JAVACODE.spad" 974479 974487 974603 974608) (-609 "IXAGG.spad" 972612 972636 974469 974474) (-608 "IXAGG.spad" 970600 970626 972459 972464) (-607 "IVECTOR.spad" 969370 969385 969525 969552) (-606 "ITUPLE.spad" 968531 968541 969360 969365) (-605 "ITRIGMNP.spad" 967370 967389 968521 968526) (-604 "ITFUN3.spad" 966876 966890 967360 967365) (-603 "ITFUN2.spad" 966620 966632 966866 966871) (-602 "ITFORM.spad" 965975 965983 966610 966615) (-601 "ITAYLOR.spad" 963969 963984 965839 965936) (-600 "ISUPS.spad" 956406 956421 962943 963040) (-599 "ISUMP.spad" 955907 955923 956396 956401) (-598 "ISTRING.spad" 954995 955008 955076 955103) (-597 "ISAST.spad" 954714 954722 954985 954990) (-596 "IRURPK.spad" 953431 953450 954704 954709) (-595 "IRSN.spad" 951435 951443 953421 953426) (-594 "IRRF2F.spad" 949920 949930 951391 951396) (-593 "IRREDFFX.spad" 949521 949532 949910 949915) (-592 "IROOT.spad" 947860 947870 949511 949516) (-591 "IR.spad" 945661 945675 947715 947742) (-590 "IRFORM.spad" 944985 944993 945651 945656) (-589 "IR2.spad" 944013 944029 944975 944980) (-588 "IR2F.spad" 943219 943235 944003 944008) (-587 "IPRNTPK.spad" 942979 942987 943209 943214) (-586 "IPF.spad" 942544 942556 942784 942877) (-585 "IPADIC.spad" 942305 942331 942470 942539) (-584 "IP4ADDR.spad" 941862 941870 942295 942300) (-583 "IOMODE.spad" 941384 941392 941852 941857) (-582 "IOBFILE.spad" 940745 940753 941374 941379) (-581 "IOBCON.spad" 940610 940618 940735 940740) (-580 "INVLAPLA.spad" 940259 940275 940600 940605) (-579 "INTTR.spad" 933641 933658 940249 940254) (-578 "INTTOOLS.spad" 931396 931412 933215 933220) (-577 "INTSLPE.spad" 930716 930724 931386 931391) (-576 "INTRVL.spad" 930282 930292 930630 930711) (-575 "INTRF.spad" 928706 928720 930272 930277) (-574 "INTRET.spad" 928138 928148 928696 928701) (-573 "INTRAT.spad" 926865 926882 928128 928133) (-572 "INTPM.spad" 925250 925266 926508 926513) (-571 "INTPAF.spad" 923114 923132 925182 925187) (-570 "INTPACK.spad" 913488 913496 923104 923109) (-569 "INT.spad" 912936 912944 913342 913483) (-568 "INTHERTR.spad" 912210 912227 912926 912931) (-567 "INTHERAL.spad" 911880 911904 912200 912205) (-566 "INTHEORY.spad" 908319 908327 911870 911875) (-565 "INTG0.spad" 902052 902070 908251 908256) (-564 "INTFTBL.spad" 896081 896089 902042 902047) (-563 "INTFACT.spad" 895140 895150 896071 896076) (-562 "INTEF.spad" 893525 893541 895130 895135) (-561 "INTDOM.spad" 892148 892156 893451 893520) (-560 "INTDOM.spad" 890833 890843 892138 892143) (-559 "INTCAT.spad" 889092 889102 890747 890828) (-558 "INTBIT.spad" 888599 888607 889082 889087) (-557 "INTALG.spad" 887787 887814 888589 888594) (-556 "INTAF.spad" 887287 887303 887777 887782) (-555 "INTABL.spad" 885805 885836 885968 885995) (-554 "INT8.spad" 885685 885693 885795 885800) (-553 "INT64.spad" 885564 885572 885675 885680) (-552 "INT32.spad" 885443 885451 885554 885559) (-551 "INT16.spad" 885322 885330 885433 885438) (-550 "INS.spad" 882825 882833 885224 885317) (-549 "INS.spad" 880414 880424 882815 882820) (-548 "INPSIGN.spad" 879862 879875 880404 880409) (-547 "INPRODPF.spad" 878958 878977 879852 879857) (-546 "INPRODFF.spad" 878046 878070 878948 878953) (-545 "INNMFACT.spad" 877021 877038 878036 878041) (-544 "INMODGCD.spad" 876509 876539 877011 877016) (-543 "INFSP.spad" 874806 874828 876499 876504) (-542 "INFPROD0.spad" 873886 873905 874796 874801) (-541 "INFORM.spad" 871085 871093 873876 873881) (-540 "INFORM1.spad" 870710 870720 871075 871080) (-539 "INFINITY.spad" 870262 870270 870700 870705) (-538 "INETCLTS.spad" 870239 870247 870252 870257) (-537 "INEP.spad" 868777 868799 870229 870234) (-536 "INDE.spad" 868506 868523 868767 868772) (-535 "INCRMAPS.spad" 867927 867937 868496 868501) (-534 "INBFILE.spad" 866999 867007 867917 867922) (-533 "INBFF.spad" 862793 862804 866989 866994) (-532 "INBCON.spad" 861083 861091 862783 862788) (-531 "INBCON.spad" 859371 859381 861073 861078) (-530 "INAST.spad" 859032 859040 859361 859366) (-529 "IMPTAST.spad" 858740 858748 859022 859027) (-528 "IMATRIX.spad" 857685 857711 858197 858224) (-527 "IMATQF.spad" 856779 856823 857641 857646) (-526 "IMATLIN.spad" 855384 855408 856735 856740) (-525 "ILIST.spad" 854042 854057 854567 854594) (-524 "IIARRAY2.spad" 853430 853468 853649 853676) (-523 "IFF.spad" 852840 852856 853111 853204) (-522 "IFAST.spad" 852454 852462 852830 852835) (-521 "IFARRAY.spad" 849947 849962 851637 851664) (-520 "IFAMON.spad" 849809 849826 849903 849908) (-519 "IEVALAB.spad" 849214 849226 849799 849804) (-518 "IEVALAB.spad" 848617 848631 849204 849209) (-517 "IDPO.spad" 848415 848427 848607 848612) (-516 "IDPOAMS.spad" 848171 848183 848405 848410) (-515 "IDPOAM.spad" 847891 847903 848161 848166) (-514 "IDPC.spad" 846829 846841 847881 847886) (-513 "IDPAM.spad" 846574 846586 846819 846824) (-512 "IDPAG.spad" 846321 846333 846564 846569) (-511 "IDENT.spad" 845971 845979 846311 846316) (-510 "IDECOMP.spad" 843210 843228 845961 845966) (-509 "IDEAL.spad" 838159 838198 843145 843150) (-508 "ICDEN.spad" 837348 837364 838149 838154) (-507 "ICARD.spad" 836539 836547 837338 837343) (-506 "IBPTOOLS.spad" 835146 835163 836529 836534) (-505 "IBITS.spad" 834349 834362 834782 834809) (-504 "IBATOOL.spad" 831326 831345 834339 834344) (-503 "IBACHIN.spad" 829833 829848 831316 831321) (-502 "IARRAY2.spad" 828821 828847 829440 829467) (-501 "IARRAY1.spad" 827866 827881 828004 828031) (-500 "IAN.spad" 826089 826097 827682 827775) (-499 "IALGFACT.spad" 825692 825725 826079 826084) (-498 "HYPCAT.spad" 825116 825124 825682 825687) (-497 "HYPCAT.spad" 824538 824548 825106 825111) (-496 "HOSTNAME.spad" 824346 824354 824528 824533) (-495 "HOMOTOP.spad" 824089 824099 824336 824341) (-494 "HOAGG.spad" 821371 821381 824079 824084) (-493 "HOAGG.spad" 818428 818440 821138 821143) (-492 "HEXADEC.spad" 816530 816538 816895 816988) (-491 "HEUGCD.spad" 815565 815576 816520 816525) (-490 "HELLFDIV.spad" 815155 815179 815555 815560) (-489 "HEAP.spad" 814547 814557 814762 814789) (-488 "HEADAST.spad" 814080 814088 814537 814542) (-487 "HDP.spad" 803923 803939 804300 804431) (-486 "HDMP.spad" 801137 801152 801753 801880) (-485 "HB.spad" 799388 799396 801127 801132) (-484 "HASHTBL.spad" 797858 797889 798069 798096) (-483 "HASAST.spad" 797574 797582 797848 797853) (-482 "HACKPI.spad" 797065 797073 797476 797569) (-481 "GTSET.spad" 796004 796020 796711 796738) (-480 "GSTBL.spad" 794523 794558 794697 794712) (-479 "GSERIES.spad" 791694 791721 792655 792804) (-478 "GROUP.spad" 790967 790975 791674 791689) (-477 "GROUP.spad" 790248 790258 790957 790962) (-476 "GROEBSOL.spad" 788742 788763 790238 790243) (-475 "GRMOD.spad" 787313 787325 788732 788737) (-474 "GRMOD.spad" 785882 785896 787303 787308) (-473 "GRIMAGE.spad" 778771 778779 785872 785877) (-472 "GRDEF.spad" 777150 777158 778761 778766) (-471 "GRAY.spad" 775613 775621 777140 777145) (-470 "GRALG.spad" 774690 774702 775603 775608) (-469 "GRALG.spad" 773765 773779 774680 774685) (-468 "GPOLSET.spad" 773219 773242 773447 773474) (-467 "GOSPER.spad" 772488 772506 773209 773214) (-466 "GMODPOL.spad" 771636 771663 772456 772483) (-465 "GHENSEL.spad" 770719 770733 771626 771631) (-464 "GENUPS.spad" 767012 767025 770709 770714) (-463 "GENUFACT.spad" 766589 766599 767002 767007) (-462 "GENPGCD.spad" 766175 766192 766579 766584) (-461 "GENMFACT.spad" 765627 765646 766165 766170) (-460 "GENEEZ.spad" 763578 763591 765617 765622) (-459 "GDMP.spad" 760634 760651 761408 761535) (-458 "GCNAALG.spad" 754557 754584 760428 760495) (-457 "GCDDOM.spad" 753733 753741 754483 754552) (-456 "GCDDOM.spad" 752971 752981 753723 753728) (-455 "GB.spad" 750497 750535 752927 752932) (-454 "GBINTERN.spad" 746517 746555 750487 750492) (-453 "GBF.spad" 742284 742322 746507 746512) (-452 "GBEUCLID.spad" 740166 740204 742274 742279) (-451 "GAUSSFAC.spad" 739479 739487 740156 740161) (-450 "GALUTIL.spad" 737805 737815 739435 739440) (-449 "GALPOLYU.spad" 736259 736272 737795 737800) (-448 "GALFACTU.spad" 734432 734451 736249 736254) (-447 "GALFACT.spad" 724621 724632 734422 734427) (-446 "FVFUN.spad" 721644 721652 724611 724616) (-445 "FVC.spad" 720696 720704 721634 721639) (-444 "FUNDESC.spad" 720374 720382 720686 720691) (-443 "FUNCTION.spad" 720223 720235 720364 720369) (-442 "FT.spad" 718520 718528 720213 720218) (-441 "FTEM.spad" 717685 717693 718510 718515) (-440 "FSUPFACT.spad" 716585 716604 717621 717626) (-439 "FST.spad" 714671 714679 716575 716580) (-438 "FSRED.spad" 714151 714167 714661 714666) (-437 "FSPRMELT.spad" 713033 713049 714108 714113) (-436 "FSPECF.spad" 711124 711140 713023 713028) (-435 "FS.spad" 705392 705402 710899 711119) (-434 "FS.spad" 699438 699450 704947 704952) (-433 "FSINT.spad" 699098 699114 699428 699433) (-432 "FSERIES.spad" 698289 698301 698918 699017) (-431 "FSCINT.spad" 697606 697622 698279 698284) (-430 "FSAGG.spad" 696723 696733 697562 697601) (-429 "FSAGG.spad" 695802 695814 696643 696648) (-428 "FSAGG2.spad" 694545 694561 695792 695797) (-427 "FS2UPS.spad" 689036 689070 694535 694540) (-426 "FS2.spad" 688683 688699 689026 689031) (-425 "FS2EXPXP.spad" 687808 687831 688673 688678) (-424 "FRUTIL.spad" 686762 686772 687798 687803) (-423 "FR.spad" 680478 680488 685786 685855) (-422 "FRNAALG.spad" 675597 675607 680420 680473) (-421 "FRNAALG.spad" 670728 670740 675553 675558) (-420 "FRNAAF2.spad" 670184 670202 670718 670723) (-419 "FRMOD.spad" 669594 669624 670115 670120) (-418 "FRIDEAL.spad" 668819 668840 669574 669589) (-417 "FRIDEAL2.spad" 668423 668455 668809 668814) (-416 "FRETRCT.spad" 667934 667944 668413 668418) (-415 "FRETRCT.spad" 667311 667323 667792 667797) (-414 "FRAMALG.spad" 665659 665672 667267 667306) (-413 "FRAMALG.spad" 664039 664054 665649 665654) (-412 "FRAC.spad" 661138 661148 661541 661714) (-411 "FRAC2.spad" 660743 660755 661128 661133) (-410 "FR2.spad" 660079 660091 660733 660738) (-409 "FPS.spad" 656894 656902 659969 660074) (-408 "FPS.spad" 653737 653747 656814 656819) (-407 "FPC.spad" 652783 652791 653639 653732) (-406 "FPC.spad" 651915 651925 652773 652778) (-405 "FPATMAB.spad" 651677 651687 651905 651910) (-404 "FPARFRAC.spad" 650164 650181 651667 651672) (-403 "FORTRAN.spad" 648670 648713 650154 650159) (-402 "FORT.spad" 647619 647627 648660 648665) (-401 "FORTFN.spad" 644789 644797 647609 647614) (-400 "FORTCAT.spad" 644473 644481 644779 644784) (-399 "FORMULA.spad" 641947 641955 644463 644468) (-398 "FORMULA1.spad" 641426 641436 641937 641942) (-397 "FORDER.spad" 641117 641141 641416 641421) (-396 "FOP.spad" 640318 640326 641107 641112) (-395 "FNLA.spad" 639742 639764 640286 640313) (-394 "FNCAT.spad" 638337 638345 639732 639737) (-393 "FNAME.spad" 638229 638237 638327 638332) (-392 "FMTC.spad" 638027 638035 638155 638224) (-391 "FMONOID.spad" 637692 637702 637983 637988) (-390 "FMONCAT.spad" 634845 634855 637682 637687) (-389 "FM.spad" 634540 634552 634779 634806) (-388 "FMFUN.spad" 631570 631578 634530 634535) (-387 "FMC.spad" 630622 630630 631560 631565) (-386 "FMCAT.spad" 628290 628308 630590 630617) (-385 "FM1.spad" 627647 627659 628224 628251) (-384 "FLOATRP.spad" 625382 625396 627637 627642) (-383 "FLOAT.spad" 618696 618704 625248 625377) (-382 "FLOATCP.spad" 616127 616141 618686 618691) (-381 "FLINEXP.spad" 615839 615849 616107 616122) (-380 "FLINEXP.spad" 615505 615517 615775 615780) (-379 "FLASORT.spad" 614831 614843 615495 615500) (-378 "FLALG.spad" 612477 612496 614757 614826) (-377 "FLAGG.spad" 609519 609529 612457 612472) (-376 "FLAGG.spad" 606462 606474 609402 609407) (-375 "FLAGG2.spad" 605187 605203 606452 606457) (-374 "FINRALG.spad" 603248 603261 605143 605182) (-373 "FINRALG.spad" 601235 601250 603132 603137) (-372 "FINITE.spad" 600387 600395 601225 601230) (-371 "FINAALG.spad" 589508 589518 600329 600382) (-370 "FINAALG.spad" 578641 578653 589464 589469) (-369 "FILE.spad" 578224 578234 578631 578636) (-368 "FILECAT.spad" 576750 576767 578214 578219) (-367 "FIELD.spad" 576156 576164 576652 576745) (-366 "FIELD.spad" 575648 575658 576146 576151) (-365 "FGROUP.spad" 574295 574305 575628 575643) (-364 "FGLMICPK.spad" 573082 573097 574285 574290) (-363 "FFX.spad" 572457 572472 572798 572891) (-362 "FFSLPE.spad" 571960 571981 572447 572452) (-361 "FFPOLY.spad" 563222 563233 571950 571955) (-360 "FFPOLY2.spad" 562282 562299 563212 563217) (-359 "FFP.spad" 561679 561699 561998 562091) (-358 "FF.spad" 561127 561143 561360 561453) (-357 "FFNBX.spad" 559639 559659 560843 560936) (-356 "FFNBP.spad" 558152 558169 559355 559448) (-355 "FFNB.spad" 556617 556638 557833 557926) (-354 "FFINTBAS.spad" 554131 554150 556607 556612) (-353 "FFIELDC.spad" 551708 551716 554033 554126) (-352 "FFIELDC.spad" 549371 549381 551698 551703) (-351 "FFHOM.spad" 548119 548136 549361 549366) (-350 "FFF.spad" 545554 545565 548109 548114) (-349 "FFCGX.spad" 544401 544421 545270 545363) (-348 "FFCGP.spad" 543290 543310 544117 544210) (-347 "FFCG.spad" 542082 542103 542971 543064) (-346 "FFCAT.spad" 535255 535277 541921 542077) (-345 "FFCAT.spad" 528507 528531 535175 535180) (-344 "FFCAT2.spad" 528254 528294 528497 528502) (-343 "FEXPR.spad" 519971 520017 528010 528049) (-342 "FEVALAB.spad" 519679 519689 519961 519966) (-341 "FEVALAB.spad" 519172 519184 519456 519461) (-340 "FDIV.spad" 518614 518638 519162 519167) (-339 "FDIVCAT.spad" 516678 516702 518604 518609) (-338 "FDIVCAT.spad" 514740 514766 516668 516673) (-337 "FDIV2.spad" 514396 514436 514730 514735) (-336 "FCTRDATA.spad" 513404 513412 514386 514391) (-335 "FCPAK1.spad" 511971 511979 513394 513399) (-334 "FCOMP.spad" 511350 511360 511961 511966) (-333 "FC.spad" 501357 501365 511340 511345) (-332 "FAXF.spad" 494328 494342 501259 501352) (-331 "FAXF.spad" 487351 487367 494284 494289) (-330 "FARRAY.spad" 485501 485511 486534 486561) (-329 "FAMR.spad" 483637 483649 485399 485496) (-328 "FAMR.spad" 481757 481771 483521 483526) (-327 "FAMONOID.spad" 481425 481435 481711 481716) (-326 "FAMONC.spad" 479721 479733 481415 481420) (-325 "FAGROUP.spad" 479345 479355 479617 479644) (-324 "FACUTIL.spad" 477549 477566 479335 479340) (-323 "FACTFUNC.spad" 476743 476753 477539 477544) (-322 "EXPUPXS.spad" 473576 473599 474875 475024) (-321 "EXPRTUBE.spad" 470864 470872 473566 473571) (-320 "EXPRODE.spad" 468024 468040 470854 470859) (-319 "EXPR.spad" 463299 463309 464013 464420) (-318 "EXPR2UPS.spad" 459421 459434 463289 463294) (-317 "EXPR2.spad" 459126 459138 459411 459416) (-316 "EXPEXPAN.spad" 456066 456091 456698 456791) (-315 "EXIT.spad" 455737 455745 456056 456061) (-314 "EXITAST.spad" 455473 455481 455727 455732) (-313 "EVALCYC.spad" 454933 454947 455463 455468) (-312 "EVALAB.spad" 454505 454515 454923 454928) (-311 "EVALAB.spad" 454075 454087 454495 454500) (-310 "EUCDOM.spad" 451649 451657 454001 454070) (-309 "EUCDOM.spad" 449285 449295 451639 451644) (-308 "ESTOOLS.spad" 441131 441139 449275 449280) (-307 "ESTOOLS2.spad" 440734 440748 441121 441126) (-306 "ESTOOLS1.spad" 440419 440430 440724 440729) (-305 "ES.spad" 433234 433242 440409 440414) (-304 "ES.spad" 425955 425965 433132 433137) (-303 "ESCONT.spad" 422748 422756 425945 425950) (-302 "ESCONT1.spad" 422497 422509 422738 422743) (-301 "ES2.spad" 422002 422018 422487 422492) (-300 "ES1.spad" 421572 421588 421992 421997) (-299 "ERROR.spad" 418899 418907 421562 421567) (-298 "EQTBL.spad" 417371 417393 417580 417607) (-297 "EQ.spad" 412176 412186 414963 415075) (-296 "EQ2.spad" 411894 411906 412166 412171) (-295 "EP.spad" 408220 408230 411884 411889) (-294 "ENV.spad" 406898 406906 408210 408215) (-293 "ENTIRER.spad" 406566 406574 406842 406893) (-292 "EMR.spad" 405773 405814 406492 406561) (-291 "ELTAGG.spad" 404027 404046 405763 405768) (-290 "ELTAGG.spad" 402245 402266 403983 403988) (-289 "ELTAB.spad" 401694 401712 402235 402240) (-288 "ELFUTS.spad" 401081 401100 401684 401689) (-287 "ELEMFUN.spad" 400770 400778 401071 401076) (-286 "ELEMFUN.spad" 400457 400467 400760 400765) (-285 "ELAGG.spad" 398428 398438 400437 400452) (-284 "ELAGG.spad" 396336 396348 398347 398352) (-283 "ELABOR.spad" 395682 395690 396326 396331) (-282 "ELABEXPR.spad" 394614 394622 395672 395677) (-281 "EFUPXS.spad" 391390 391420 394570 394575) (-280 "EFULS.spad" 388226 388249 391346 391351) (-279 "EFSTRUC.spad" 386241 386257 388216 388221) (-278 "EF.spad" 381017 381033 386231 386236) (-277 "EAB.spad" 379293 379301 381007 381012) (-276 "E04UCFA.spad" 378829 378837 379283 379288) (-275 "E04NAFA.spad" 378406 378414 378819 378824) (-274 "E04MBFA.spad" 377986 377994 378396 378401) (-273 "E04JAFA.spad" 377522 377530 377976 377981) (-272 "E04GCFA.spad" 377058 377066 377512 377517) (-271 "E04FDFA.spad" 376594 376602 377048 377053) (-270 "E04DGFA.spad" 376130 376138 376584 376589) (-269 "E04AGNT.spad" 371980 371988 376120 376125) (-268 "DVARCAT.spad" 368669 368679 371970 371975) (-267 "DVARCAT.spad" 365356 365368 368659 368664) (-266 "DSMP.spad" 362823 362837 363128 363255) (-265 "DROPT.spad" 356782 356790 362813 362818) (-264 "DROPT1.spad" 356447 356457 356772 356777) (-263 "DROPT0.spad" 351304 351312 356437 356442) (-262 "DRAWPT.spad" 349477 349485 351294 351299) (-261 "DRAW.spad" 342353 342366 349467 349472) (-260 "DRAWHACK.spad" 341661 341671 342343 342348) (-259 "DRAWCX.spad" 339131 339139 341651 341656) (-258 "DRAWCURV.spad" 338678 338693 339121 339126) (-257 "DRAWCFUN.spad" 328210 328218 338668 338673) (-256 "DQAGG.spad" 326388 326398 328178 328205) (-255 "DPOLCAT.spad" 321737 321753 326256 326383) (-254 "DPOLCAT.spad" 317172 317190 321693 321698) (-253 "DPMO.spad" 309398 309414 309536 309837) (-252 "DPMM.spad" 301637 301655 301762 302063) (-251 "DOMTMPLT.spad" 301297 301305 301627 301632) (-250 "DOMCTOR.spad" 301052 301060 301287 301292) (-249 "DOMAIN.spad" 300139 300147 301042 301047) (-248 "DMP.spad" 297399 297414 297969 298096) (-247 "DLP.spad" 296751 296761 297389 297394) (-246 "DLIST.spad" 295330 295340 295934 295961) (-245 "DLAGG.spad" 293747 293757 295320 295325) (-244 "DIVRING.spad" 293289 293297 293691 293742) (-243 "DIVRING.spad" 292875 292885 293279 293284) (-242 "DISPLAY.spad" 291065 291073 292865 292870) (-241 "DIRPROD.spad" 280645 280661 281285 281416) (-240 "DIRPROD2.spad" 279463 279481 280635 280640) (-239 "DIRPCAT.spad" 278407 278423 279327 279458) (-238 "DIRPCAT.spad" 277080 277098 278002 278007) (-237 "DIOSP.spad" 275905 275913 277070 277075) (-236 "DIOPS.spad" 274901 274911 275885 275900) (-235 "DIOPS.spad" 273871 273883 274857 274862) (-234 "DIFRING.spad" 273167 273175 273851 273866) (-233 "DIFRING.spad" 272471 272481 273157 273162) (-232 "DIFEXT.spad" 271642 271652 272451 272466) (-231 "DIFEXT.spad" 270730 270742 271541 271546) (-230 "DIAGG.spad" 270360 270370 270710 270725) (-229 "DIAGG.spad" 269998 270010 270350 270355) (-228 "DHMATRIX.spad" 268310 268320 269455 269482) (-227 "DFSFUN.spad" 261950 261958 268300 268305) (-226 "DFLOAT.spad" 258681 258689 261840 261945) (-225 "DFINTTLS.spad" 256912 256928 258671 258676) (-224 "DERHAM.spad" 254826 254858 256892 256907) (-223 "DEQUEUE.spad" 254150 254160 254433 254460) (-222 "DEGRED.spad" 253767 253781 254140 254145) (-221 "DEFINTRF.spad" 251304 251314 253757 253762) (-220 "DEFINTEF.spad" 249814 249830 251294 251299) (-219 "DEFAST.spad" 249182 249190 249804 249809) (-218 "DECIMAL.spad" 247288 247296 247649 247742) (-217 "DDFACT.spad" 245101 245118 247278 247283) (-216 "DBLRESP.spad" 244701 244725 245091 245096) (-215 "DBASE.spad" 243365 243375 244691 244696) (-214 "DATAARY.spad" 242827 242840 243355 243360) (-213 "D03FAFA.spad" 242655 242663 242817 242822) (-212 "D03EEFA.spad" 242475 242483 242645 242650) (-211 "D03AGNT.spad" 241561 241569 242465 242470) (-210 "D02EJFA.spad" 241023 241031 241551 241556) (-209 "D02CJFA.spad" 240501 240509 241013 241018) (-208 "D02BHFA.spad" 239991 239999 240491 240496) (-207 "D02BBFA.spad" 239481 239489 239981 239986) (-206 "D02AGNT.spad" 234295 234303 239471 239476) (-205 "D01WGTS.spad" 232614 232622 234285 234290) (-204 "D01TRNS.spad" 232591 232599 232604 232609) (-203 "D01GBFA.spad" 232113 232121 232581 232586) (-202 "D01FCFA.spad" 231635 231643 232103 232108) (-201 "D01ASFA.spad" 231103 231111 231625 231630) (-200 "D01AQFA.spad" 230549 230557 231093 231098) (-199 "D01APFA.spad" 229973 229981 230539 230544) (-198 "D01ANFA.spad" 229467 229475 229963 229968) (-197 "D01AMFA.spad" 228977 228985 229457 229462) (-196 "D01ALFA.spad" 228517 228525 228967 228972) (-195 "D01AKFA.spad" 228043 228051 228507 228512) (-194 "D01AJFA.spad" 227566 227574 228033 228038) (-193 "D01AGNT.spad" 223633 223641 227556 227561) (-192 "CYCLOTOM.spad" 223139 223147 223623 223628) (-191 "CYCLES.spad" 219995 220003 223129 223134) (-190 "CVMP.spad" 219412 219422 219985 219990) (-189 "CTRIGMNP.spad" 217912 217928 219402 219407) (-188 "CTOR.spad" 217603 217611 217902 217907) (-187 "CTORKIND.spad" 217206 217214 217593 217598) (-186 "CTORCAT.spad" 216455 216463 217196 217201) (-185 "CTORCAT.spad" 215702 215712 216445 216450) (-184 "CTORCALL.spad" 215291 215301 215692 215697) (-183 "CSTTOOLS.spad" 214536 214549 215281 215286) (-182 "CRFP.spad" 208260 208273 214526 214531) (-181 "CRCEAST.spad" 207980 207988 208250 208255) (-180 "CRAPACK.spad" 207031 207041 207970 207975) (-179 "CPMATCH.spad" 206535 206550 206956 206961) (-178 "CPIMA.spad" 206240 206259 206525 206530) (-177 "COORDSYS.spad" 201249 201259 206230 206235) (-176 "CONTOUR.spad" 200660 200668 201239 201244) (-175 "CONTFRAC.spad" 196410 196420 200562 200655) (-174 "CONDUIT.spad" 196168 196176 196400 196405) (-173 "COMRING.spad" 195842 195850 196106 196163) (-172 "COMPPROP.spad" 195360 195368 195832 195837) (-171 "COMPLPAT.spad" 195127 195142 195350 195355) (-170 "COMPLEX.spad" 189264 189274 189508 189769) (-169 "COMPLEX2.spad" 188979 188991 189254 189259) (-168 "COMPILER.spad" 188528 188536 188969 188974) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2268420 2268425 2268430 2268435) (-2 NIL 2268400 2268405 2268410 2268415) (-1 NIL 2268380 2268385 2268390 2268395) (0 NIL 2268360 2268365 2268370 2268375) (-1303 "ZMOD.spad" 2268169 2268182 2268298 2268355) (-1302 "ZLINDEP.spad" 2267235 2267246 2268159 2268164) (-1301 "ZDSOLVE.spad" 2257180 2257202 2267225 2267230) (-1300 "YSTREAM.spad" 2256675 2256686 2257170 2257175) (-1299 "XRPOLY.spad" 2255895 2255915 2256531 2256600) (-1298 "XPR.spad" 2253690 2253703 2255613 2255712) (-1297 "XPOLY.spad" 2253245 2253256 2253546 2253615) (-1296 "XPOLYC.spad" 2252564 2252580 2253171 2253240) (-1295 "XPBWPOLY.spad" 2251001 2251021 2252344 2252413) (-1294 "XF.spad" 2249464 2249479 2250903 2250996) (-1293 "XF.spad" 2247907 2247924 2249348 2249353) (-1292 "XFALG.spad" 2244955 2244971 2247833 2247902) (-1291 "XEXPPKG.spad" 2244206 2244232 2244945 2244950) (-1290 "XDPOLY.spad" 2243820 2243836 2244062 2244131) (-1289 "XALG.spad" 2243480 2243491 2243776 2243815) (-1288 "WUTSET.spad" 2239319 2239336 2243126 2243153) (-1287 "WP.spad" 2238518 2238562 2239177 2239244) (-1286 "WHILEAST.spad" 2238316 2238325 2238508 2238513) (-1285 "WHEREAST.spad" 2237987 2237996 2238306 2238311) (-1284 "WFFINTBS.spad" 2235650 2235672 2237977 2237982) (-1283 "WEIER.spad" 2233872 2233883 2235640 2235645) (-1282 "VSPACE.spad" 2233545 2233556 2233840 2233867) (-1281 "VSPACE.spad" 2233238 2233251 2233535 2233540) (-1280 "VOID.spad" 2232915 2232924 2233228 2233233) (-1279 "VIEW.spad" 2230595 2230604 2232905 2232910) (-1278 "VIEWDEF.spad" 2225796 2225805 2230585 2230590) (-1277 "VIEW3D.spad" 2209757 2209766 2225786 2225791) (-1276 "VIEW2D.spad" 2197648 2197657 2209747 2209752) (-1275 "VECTOR.spad" 2196322 2196333 2196573 2196600) (-1274 "VECTOR2.spad" 2194961 2194974 2196312 2196317) (-1273 "VECTCAT.spad" 2192865 2192876 2194929 2194956) (-1272 "VECTCAT.spad" 2190576 2190589 2192642 2192647) (-1271 "VARIABLE.spad" 2190356 2190371 2190566 2190571) (-1270 "UTYPE.spad" 2190000 2190009 2190346 2190351) (-1269 "UTSODETL.spad" 2189295 2189319 2189956 2189961) (-1268 "UTSODE.spad" 2187511 2187531 2189285 2189290) (-1267 "UTS.spad" 2182315 2182343 2185978 2186075) (-1266 "UTSCAT.spad" 2179794 2179810 2182213 2182310) (-1265 "UTSCAT.spad" 2176917 2176935 2179338 2179343) (-1264 "UTS2.spad" 2176512 2176547 2176907 2176912) (-1263 "URAGG.spad" 2171185 2171196 2176502 2176507) (-1262 "URAGG.spad" 2165822 2165835 2171141 2171146) (-1261 "UPXSSING.spad" 2163467 2163493 2164903 2165036) (-1260 "UPXS.spad" 2160621 2160649 2161599 2161748) (-1259 "UPXSCONS.spad" 2158380 2158400 2158753 2158902) (-1258 "UPXSCCA.spad" 2156951 2156971 2158226 2158375) (-1257 "UPXSCCA.spad" 2155664 2155686 2156941 2156946) (-1256 "UPXSCAT.spad" 2154253 2154269 2155510 2155659) (-1255 "UPXS2.spad" 2153796 2153849 2154243 2154248) (-1254 "UPSQFREE.spad" 2152210 2152224 2153786 2153791) (-1253 "UPSCAT.spad" 2149821 2149845 2152108 2152205) (-1252 "UPSCAT.spad" 2147138 2147164 2149427 2149432) (-1251 "UPOLYC.spad" 2142178 2142189 2146980 2147133) (-1250 "UPOLYC.spad" 2137110 2137123 2141914 2141919) (-1249 "UPOLYC2.spad" 2136581 2136600 2137100 2137105) (-1248 "UP.spad" 2133780 2133795 2134167 2134320) (-1247 "UPMP.spad" 2132680 2132693 2133770 2133775) (-1246 "UPDIVP.spad" 2132245 2132259 2132670 2132675) (-1245 "UPDECOMP.spad" 2130490 2130504 2132235 2132240) (-1244 "UPCDEN.spad" 2129699 2129715 2130480 2130485) (-1243 "UP2.spad" 2129063 2129084 2129689 2129694) (-1242 "UNISEG.spad" 2128416 2128427 2128982 2128987) (-1241 "UNISEG2.spad" 2127913 2127926 2128372 2128377) (-1240 "UNIFACT.spad" 2127016 2127028 2127903 2127908) (-1239 "ULS.spad" 2117574 2117602 2118661 2119090) (-1238 "ULSCONS.spad" 2109970 2109990 2110340 2110489) (-1237 "ULSCCAT.spad" 2107707 2107727 2109816 2109965) (-1236 "ULSCCAT.spad" 2105552 2105574 2107663 2107668) (-1235 "ULSCAT.spad" 2103784 2103800 2105398 2105547) (-1234 "ULS2.spad" 2103298 2103351 2103774 2103779) (-1233 "UINT8.spad" 2103175 2103184 2103288 2103293) (-1232 "UINT64.spad" 2103051 2103060 2103165 2103170) (-1231 "UINT32.spad" 2102927 2102936 2103041 2103046) (-1230 "UINT16.spad" 2102803 2102812 2102917 2102922) (-1229 "UFD.spad" 2101868 2101877 2102729 2102798) (-1228 "UFD.spad" 2100995 2101006 2101858 2101863) (-1227 "UDVO.spad" 2099876 2099885 2100985 2100990) (-1226 "UDPO.spad" 2097369 2097380 2099832 2099837) (-1225 "TYPE.spad" 2097301 2097310 2097359 2097364) (-1224 "TYPEAST.spad" 2097220 2097229 2097291 2097296) (-1223 "TWOFACT.spad" 2095872 2095887 2097210 2097215) (-1222 "TUPLE.spad" 2095358 2095369 2095771 2095776) (-1221 "TUBETOOL.spad" 2092225 2092234 2095348 2095353) (-1220 "TUBE.spad" 2090872 2090889 2092215 2092220) (-1219 "TS.spad" 2089471 2089487 2090437 2090534) (-1218 "TSETCAT.spad" 2076598 2076615 2089439 2089466) (-1217 "TSETCAT.spad" 2063711 2063730 2076554 2076559) (-1216 "TRMANIP.spad" 2058077 2058094 2063417 2063422) (-1215 "TRIMAT.spad" 2057040 2057065 2058067 2058072) (-1214 "TRIGMNIP.spad" 2055567 2055584 2057030 2057035) (-1213 "TRIGCAT.spad" 2055079 2055088 2055557 2055562) (-1212 "TRIGCAT.spad" 2054589 2054600 2055069 2055074) (-1211 "TREE.spad" 2053164 2053175 2054196 2054223) (-1210 "TRANFUN.spad" 2053003 2053012 2053154 2053159) (-1209 "TRANFUN.spad" 2052840 2052851 2052993 2052998) (-1208 "TOPSP.spad" 2052514 2052523 2052830 2052835) (-1207 "TOOLSIGN.spad" 2052177 2052188 2052504 2052509) (-1206 "TEXTFILE.spad" 2050738 2050747 2052167 2052172) (-1205 "TEX.spad" 2047884 2047893 2050728 2050733) (-1204 "TEX1.spad" 2047440 2047451 2047874 2047879) (-1203 "TEMUTL.spad" 2046995 2047004 2047430 2047435) (-1202 "TBCMPPK.spad" 2045088 2045111 2046985 2046990) (-1201 "TBAGG.spad" 2044138 2044161 2045068 2045083) (-1200 "TBAGG.spad" 2043196 2043221 2044128 2044133) (-1199 "TANEXP.spad" 2042604 2042615 2043186 2043191) (-1198 "TABLE.spad" 2041015 2041038 2041285 2041312) (-1197 "TABLEAU.spad" 2040496 2040507 2041005 2041010) (-1196 "TABLBUMP.spad" 2037299 2037310 2040486 2040491) (-1195 "SYSTEM.spad" 2036527 2036536 2037289 2037294) (-1194 "SYSSOLP.spad" 2034010 2034021 2036517 2036522) (-1193 "SYSPTR.spad" 2033909 2033918 2034000 2034005) (-1192 "SYSNNI.spad" 2033091 2033102 2033899 2033904) (-1191 "SYSINT.spad" 2032495 2032506 2033081 2033086) (-1190 "SYNTAX.spad" 2028701 2028710 2032485 2032490) (-1189 "SYMTAB.spad" 2026769 2026778 2028691 2028696) (-1188 "SYMS.spad" 2022792 2022801 2026759 2026764) (-1187 "SYMPOLY.spad" 2021799 2021810 2021881 2022008) (-1186 "SYMFUNC.spad" 2021300 2021311 2021789 2021794) (-1185 "SYMBOL.spad" 2018803 2018812 2021290 2021295) (-1184 "SWITCH.spad" 2015574 2015583 2018793 2018798) (-1183 "SUTS.spad" 2012479 2012507 2014041 2014138) (-1182 "SUPXS.spad" 2009620 2009648 2010611 2010760) (-1181 "SUP.spad" 2006433 2006444 2007206 2007359) (-1180 "SUPFRACF.spad" 2005538 2005556 2006423 2006428) (-1179 "SUP2.spad" 2004930 2004943 2005528 2005533) (-1178 "SUMRF.spad" 2003904 2003915 2004920 2004925) (-1177 "SUMFS.spad" 2003541 2003558 2003894 2003899) (-1176 "SULS.spad" 1994086 1994114 1995186 1995615) (-1175 "SUCHTAST.spad" 1993855 1993864 1994076 1994081) (-1174 "SUCH.spad" 1993537 1993552 1993845 1993850) (-1173 "SUBSPACE.spad" 1985652 1985667 1993527 1993532) (-1172 "SUBRESP.spad" 1984822 1984836 1985608 1985613) (-1171 "STTF.spad" 1980921 1980937 1984812 1984817) (-1170 "STTFNC.spad" 1977389 1977405 1980911 1980916) (-1169 "STTAYLOR.spad" 1970024 1970035 1977270 1977275) (-1168 "STRTBL.spad" 1968529 1968546 1968678 1968705) (-1167 "STRING.spad" 1967938 1967947 1967952 1967979) (-1166 "STRICAT.spad" 1967726 1967735 1967906 1967933) (-1165 "STREAM.spad" 1964644 1964655 1967251 1967266) (-1164 "STREAM3.spad" 1964217 1964232 1964634 1964639) (-1163 "STREAM2.spad" 1963345 1963358 1964207 1964212) (-1162 "STREAM1.spad" 1963051 1963062 1963335 1963340) (-1161 "STINPROD.spad" 1961987 1962003 1963041 1963046) (-1160 "STEP.spad" 1961188 1961197 1961977 1961982) (-1159 "STEPAST.spad" 1960422 1960431 1961178 1961183) (-1158 "STBL.spad" 1958948 1958976 1959115 1959130) (-1157 "STAGG.spad" 1958023 1958034 1958938 1958943) (-1156 "STAGG.spad" 1957096 1957109 1958013 1958018) (-1155 "STACK.spad" 1956453 1956464 1956703 1956730) (-1154 "SREGSET.spad" 1954157 1954174 1956099 1956126) (-1153 "SRDCMPK.spad" 1952718 1952738 1954147 1954152) (-1152 "SRAGG.spad" 1947861 1947870 1952686 1952713) (-1151 "SRAGG.spad" 1943024 1943035 1947851 1947856) (-1150 "SQMATRIX.spad" 1940640 1940658 1941556 1941643) (-1149 "SPLTREE.spad" 1935192 1935205 1940076 1940103) (-1148 "SPLNODE.spad" 1931780 1931793 1935182 1935187) (-1147 "SPFCAT.spad" 1930589 1930598 1931770 1931775) (-1146 "SPECOUT.spad" 1929141 1929150 1930579 1930584) (-1145 "SPADXPT.spad" 1920736 1920745 1929131 1929136) (-1144 "spad-parser.spad" 1920201 1920210 1920726 1920731) (-1143 "SPADAST.spad" 1919902 1919911 1920191 1920196) (-1142 "SPACEC.spad" 1904101 1904112 1919892 1919897) (-1141 "SPACE3.spad" 1903877 1903888 1904091 1904096) (-1140 "SORTPAK.spad" 1903426 1903439 1903833 1903838) (-1139 "SOLVETRA.spad" 1901189 1901200 1903416 1903421) (-1138 "SOLVESER.spad" 1899717 1899728 1901179 1901184) (-1137 "SOLVERAD.spad" 1895743 1895754 1899707 1899712) (-1136 "SOLVEFOR.spad" 1894205 1894223 1895733 1895738) (-1135 "SNTSCAT.spad" 1893805 1893822 1894173 1894200) (-1134 "SMTS.spad" 1892077 1892103 1893370 1893467) (-1133 "SMP.spad" 1889552 1889572 1889942 1890069) (-1132 "SMITH.spad" 1888397 1888422 1889542 1889547) (-1131 "SMATCAT.spad" 1886507 1886537 1888341 1888392) (-1130 "SMATCAT.spad" 1884549 1884581 1886385 1886390) (-1129 "SKAGG.spad" 1883512 1883523 1884517 1884544) (-1128 "SINT.spad" 1882344 1882353 1883378 1883507) (-1127 "SIMPAN.spad" 1882072 1882081 1882334 1882339) (-1126 "SIG.spad" 1881402 1881411 1882062 1882067) (-1125 "SIGNRF.spad" 1880520 1880531 1881392 1881397) (-1124 "SIGNEF.spad" 1879799 1879816 1880510 1880515) (-1123 "SIGAST.spad" 1879184 1879193 1879789 1879794) (-1122 "SHP.spad" 1877112 1877127 1879140 1879145) (-1121 "SHDP.spad" 1866823 1866850 1867332 1867463) (-1120 "SGROUP.spad" 1866431 1866440 1866813 1866818) (-1119 "SGROUP.spad" 1866037 1866048 1866421 1866426) (-1118 "SGCF.spad" 1859200 1859209 1866027 1866032) (-1117 "SFRTCAT.spad" 1858130 1858147 1859168 1859195) (-1116 "SFRGCD.spad" 1857193 1857213 1858120 1858125) (-1115 "SFQCMPK.spad" 1851830 1851850 1857183 1857188) (-1114 "SFORT.spad" 1851269 1851283 1851820 1851825) (-1113 "SEXOF.spad" 1851112 1851152 1851259 1851264) (-1112 "SEX.spad" 1851004 1851013 1851102 1851107) (-1111 "SEXCAT.spad" 1848605 1848645 1850994 1850999) (-1110 "SET.spad" 1846929 1846940 1848026 1848065) (-1109 "SETMN.spad" 1845379 1845396 1846919 1846924) (-1108 "SETCAT.spad" 1844701 1844710 1845369 1845374) (-1107 "SETCAT.spad" 1844021 1844032 1844691 1844696) (-1106 "SETAGG.spad" 1840570 1840581 1844001 1844016) (-1105 "SETAGG.spad" 1837127 1837140 1840560 1840565) (-1104 "SEQAST.spad" 1836830 1836839 1837117 1837122) (-1103 "SEGXCAT.spad" 1835986 1835999 1836820 1836825) (-1102 "SEG.spad" 1835799 1835810 1835905 1835910) (-1101 "SEGCAT.spad" 1834724 1834735 1835789 1835794) (-1100 "SEGBIND.spad" 1834482 1834493 1834671 1834676) (-1099 "SEGBIND2.spad" 1834180 1834193 1834472 1834477) (-1098 "SEGAST.spad" 1833894 1833903 1834170 1834175) (-1097 "SEG2.spad" 1833329 1833342 1833850 1833855) (-1096 "SDVAR.spad" 1832605 1832616 1833319 1833324) (-1095 "SDPOL.spad" 1830031 1830042 1830322 1830449) (-1094 "SCPKG.spad" 1828120 1828131 1830021 1830026) (-1093 "SCOPE.spad" 1827273 1827282 1828110 1828115) (-1092 "SCACHE.spad" 1825969 1825980 1827263 1827268) (-1091 "SASTCAT.spad" 1825878 1825887 1825959 1825964) (-1090 "SAOS.spad" 1825750 1825759 1825868 1825873) (-1089 "SAERFFC.spad" 1825463 1825483 1825740 1825745) (-1088 "SAE.spad" 1823638 1823654 1824249 1824384) (-1087 "SAEFACT.spad" 1823339 1823359 1823628 1823633) (-1086 "RURPK.spad" 1820998 1821014 1823329 1823334) (-1085 "RULESET.spad" 1820451 1820475 1820988 1820993) (-1084 "RULE.spad" 1818691 1818715 1820441 1820446) (-1083 "RULECOLD.spad" 1818543 1818556 1818681 1818686) (-1082 "RTVALUE.spad" 1818278 1818287 1818533 1818538) (-1081 "RSTRCAST.spad" 1817995 1818004 1818268 1818273) (-1080 "RSETGCD.spad" 1814373 1814393 1817985 1817990) (-1079 "RSETCAT.spad" 1804309 1804326 1814341 1814368) (-1078 "RSETCAT.spad" 1794265 1794284 1804299 1804304) (-1077 "RSDCMPK.spad" 1792717 1792737 1794255 1794260) (-1076 "RRCC.spad" 1791101 1791131 1792707 1792712) (-1075 "RRCC.spad" 1789483 1789515 1791091 1791096) (-1074 "RPTAST.spad" 1789185 1789194 1789473 1789478) (-1073 "RPOLCAT.spad" 1768545 1768560 1789053 1789180) (-1072 "RPOLCAT.spad" 1747618 1747635 1768128 1768133) (-1071 "ROUTINE.spad" 1743501 1743510 1746265 1746292) (-1070 "ROMAN.spad" 1742829 1742838 1743367 1743496) (-1069 "ROIRC.spad" 1741909 1741941 1742819 1742824) (-1068 "RNS.spad" 1740812 1740821 1741811 1741904) (-1067 "RNS.spad" 1739801 1739812 1740802 1740807) (-1066 "RNG.spad" 1739536 1739545 1739791 1739796) (-1065 "RNGBIND.spad" 1738696 1738710 1739491 1739496) (-1064 "RMODULE.spad" 1738461 1738472 1738686 1738691) (-1063 "RMCAT2.spad" 1737881 1737938 1738451 1738456) (-1062 "RMATRIX.spad" 1736705 1736724 1737048 1737087) (-1061 "RMATCAT.spad" 1732284 1732315 1736661 1736700) (-1060 "RMATCAT.spad" 1727753 1727786 1732132 1732137) (-1059 "RLINSET.spad" 1727147 1727158 1727743 1727748) (-1058 "RINTERP.spad" 1727035 1727055 1727137 1727142) (-1057 "RING.spad" 1726505 1726514 1727015 1727030) (-1056 "RING.spad" 1725983 1725994 1726495 1726500) (-1055 "RIDIST.spad" 1725375 1725384 1725973 1725978) (-1054 "RGCHAIN.spad" 1723958 1723974 1724860 1724887) (-1053 "RGBCSPC.spad" 1723739 1723751 1723948 1723953) (-1052 "RGBCMDL.spad" 1723269 1723281 1723729 1723734) (-1051 "RF.spad" 1720911 1720922 1723259 1723264) (-1050 "RFFACTOR.spad" 1720373 1720384 1720901 1720906) (-1049 "RFFACT.spad" 1720108 1720120 1720363 1720368) (-1048 "RFDIST.spad" 1719104 1719113 1720098 1720103) (-1047 "RETSOL.spad" 1718523 1718536 1719094 1719099) (-1046 "RETRACT.spad" 1717951 1717962 1718513 1718518) (-1045 "RETRACT.spad" 1717377 1717390 1717941 1717946) (-1044 "RETAST.spad" 1717189 1717198 1717367 1717372) (-1043 "RESULT.spad" 1715249 1715258 1715836 1715863) (-1042 "RESRING.spad" 1714596 1714643 1715187 1715244) (-1041 "RESLATC.spad" 1713920 1713931 1714586 1714591) (-1040 "REPSQ.spad" 1713651 1713662 1713910 1713915) (-1039 "REP.spad" 1711205 1711214 1713641 1713646) (-1038 "REPDB.spad" 1710912 1710923 1711195 1711200) (-1037 "REP2.spad" 1700570 1700581 1710754 1710759) (-1036 "REP1.spad" 1694766 1694777 1700520 1700525) (-1035 "REGSET.spad" 1692563 1692580 1694412 1694439) (-1034 "REF.spad" 1691898 1691909 1692518 1692523) (-1033 "REDORDER.spad" 1691104 1691121 1691888 1691893) (-1032 "RECLOS.spad" 1689887 1689907 1690591 1690684) (-1031 "REALSOLV.spad" 1689027 1689036 1689877 1689882) (-1030 "REAL.spad" 1688899 1688908 1689017 1689022) (-1029 "REAL0Q.spad" 1686197 1686212 1688889 1688894) (-1028 "REAL0.spad" 1683041 1683056 1686187 1686192) (-1027 "RDUCEAST.spad" 1682762 1682771 1683031 1683036) (-1026 "RDIV.spad" 1682417 1682442 1682752 1682757) (-1025 "RDIST.spad" 1681984 1681995 1682407 1682412) (-1024 "RDETRS.spad" 1680848 1680866 1681974 1681979) (-1023 "RDETR.spad" 1678987 1679005 1680838 1680843) (-1022 "RDEEFS.spad" 1678086 1678103 1678977 1678982) (-1021 "RDEEF.spad" 1677096 1677113 1678076 1678081) (-1020 "RCFIELD.spad" 1674282 1674291 1676998 1677091) (-1019 "RCFIELD.spad" 1671554 1671565 1674272 1674277) (-1018 "RCAGG.spad" 1669482 1669493 1671544 1671549) (-1017 "RCAGG.spad" 1667337 1667350 1669401 1669406) (-1016 "RATRET.spad" 1666697 1666708 1667327 1667332) (-1015 "RATFACT.spad" 1666389 1666401 1666687 1666692) (-1014 "RANDSRC.spad" 1665708 1665717 1666379 1666384) (-1013 "RADUTIL.spad" 1665464 1665473 1665698 1665703) (-1012 "RADIX.spad" 1662385 1662399 1663931 1664024) (-1011 "RADFF.spad" 1660798 1660835 1660917 1661073) (-1010 "RADCAT.spad" 1660393 1660402 1660788 1660793) (-1009 "RADCAT.spad" 1659986 1659997 1660383 1660388) (-1008 "QUEUE.spad" 1659334 1659345 1659593 1659620) (-1007 "QUAT.spad" 1657915 1657926 1658258 1658323) (-1006 "QUATCT2.spad" 1657535 1657554 1657905 1657910) (-1005 "QUATCAT.spad" 1655705 1655716 1657465 1657530) (-1004 "QUATCAT.spad" 1653626 1653639 1655388 1655393) (-1003 "QUAGG.spad" 1652453 1652464 1653594 1653621) (-1002 "QQUTAST.spad" 1652221 1652230 1652443 1652448) (-1001 "QFORM.spad" 1651685 1651700 1652211 1652216) (-1000 "QFCAT.spad" 1650387 1650398 1651587 1651680) (-999 "QFCAT.spad" 1648681 1648693 1649882 1649887) (-998 "QFCAT2.spad" 1648374 1648390 1648671 1648676) (-997 "QEQUAT.spad" 1647933 1647941 1648364 1648369) (-996 "QCMPACK.spad" 1642680 1642699 1647923 1647928) (-995 "QALGSET.spad" 1638759 1638791 1642594 1642599) (-994 "QALGSET2.spad" 1636755 1636773 1638749 1638754) (-993 "PWFFINTB.spad" 1634171 1634192 1636745 1636750) (-992 "PUSHVAR.spad" 1633510 1633529 1634161 1634166) (-991 "PTRANFN.spad" 1629638 1629648 1633500 1633505) (-990 "PTPACK.spad" 1626726 1626736 1629628 1629633) (-989 "PTFUNC2.spad" 1626549 1626563 1626716 1626721) (-988 "PTCAT.spad" 1625804 1625814 1626517 1626544) (-987 "PSQFR.spad" 1625111 1625135 1625794 1625799) (-986 "PSEUDLIN.spad" 1623997 1624007 1625101 1625106) (-985 "PSETPK.spad" 1609430 1609446 1623875 1623880) (-984 "PSETCAT.spad" 1603350 1603373 1609410 1609425) (-983 "PSETCAT.spad" 1597244 1597269 1603306 1603311) (-982 "PSCURVE.spad" 1596227 1596235 1597234 1597239) (-981 "PSCAT.spad" 1595010 1595039 1596125 1596222) (-980 "PSCAT.spad" 1593883 1593914 1595000 1595005) (-979 "PRTITION.spad" 1592844 1592852 1593873 1593878) (-978 "PRTDAST.spad" 1592563 1592571 1592834 1592839) (-977 "PRS.spad" 1582125 1582142 1592519 1592524) (-976 "PRQAGG.spad" 1581560 1581570 1582093 1582120) (-975 "PROPLOG.spad" 1580859 1580867 1581550 1581555) (-974 "PROPFUN2.spad" 1580482 1580495 1580849 1580854) (-973 "PROPFUN1.spad" 1580075 1580086 1580472 1580477) (-972 "PROPFRML.spad" 1578643 1578654 1580065 1580070) (-971 "PROPERTY.spad" 1578131 1578139 1578633 1578638) (-970 "PRODUCT.spad" 1575813 1575825 1576097 1576152) (-969 "PR.spad" 1574205 1574217 1574904 1575031) (-968 "PRINT.spad" 1573957 1573965 1574195 1574200) (-967 "PRIMES.spad" 1572210 1572220 1573947 1573952) (-966 "PRIMELT.spad" 1570291 1570305 1572200 1572205) (-965 "PRIMCAT.spad" 1569918 1569926 1570281 1570286) (-964 "PRIMARR.spad" 1568923 1568933 1569101 1569128) (-963 "PRIMARR2.spad" 1567690 1567702 1568913 1568918) (-962 "PREASSOC.spad" 1567072 1567084 1567680 1567685) (-961 "PPCURVE.spad" 1566209 1566217 1567062 1567067) (-960 "PORTNUM.spad" 1565984 1565992 1566199 1566204) (-959 "POLYROOT.spad" 1564833 1564855 1565940 1565945) (-958 "POLY.spad" 1562168 1562178 1562683 1562810) (-957 "POLYLIFT.spad" 1561433 1561456 1562158 1562163) (-956 "POLYCATQ.spad" 1559551 1559573 1561423 1561428) (-955 "POLYCAT.spad" 1553021 1553042 1559419 1559546) (-954 "POLYCAT.spad" 1545829 1545852 1552229 1552234) (-953 "POLY2UP.spad" 1545281 1545295 1545819 1545824) (-952 "POLY2.spad" 1544878 1544890 1545271 1545276) (-951 "POLUTIL.spad" 1543819 1543848 1544834 1544839) (-950 "POLTOPOL.spad" 1542567 1542582 1543809 1543814) (-949 "POINT.spad" 1541405 1541415 1541492 1541519) (-948 "PNTHEORY.spad" 1538107 1538115 1541395 1541400) (-947 "PMTOOLS.spad" 1536882 1536896 1538097 1538102) (-946 "PMSYM.spad" 1536431 1536441 1536872 1536877) (-945 "PMQFCAT.spad" 1536022 1536036 1536421 1536426) (-944 "PMPRED.spad" 1535501 1535515 1536012 1536017) (-943 "PMPREDFS.spad" 1534955 1534977 1535491 1535496) (-942 "PMPLCAT.spad" 1534035 1534053 1534887 1534892) (-941 "PMLSAGG.spad" 1533620 1533634 1534025 1534030) (-940 "PMKERNEL.spad" 1533199 1533211 1533610 1533615) (-939 "PMINS.spad" 1532779 1532789 1533189 1533194) (-938 "PMFS.spad" 1532356 1532374 1532769 1532774) (-937 "PMDOWN.spad" 1531646 1531660 1532346 1532351) (-936 "PMASS.spad" 1530656 1530664 1531636 1531641) (-935 "PMASSFS.spad" 1529623 1529639 1530646 1530651) (-934 "PLOTTOOL.spad" 1529403 1529411 1529613 1529618) (-933 "PLOT.spad" 1524326 1524334 1529393 1529398) (-932 "PLOT3D.spad" 1520790 1520798 1524316 1524321) (-931 "PLOT1.spad" 1519947 1519957 1520780 1520785) (-930 "PLEQN.spad" 1507237 1507264 1519937 1519942) (-929 "PINTERP.spad" 1506859 1506878 1507227 1507232) (-928 "PINTERPA.spad" 1506643 1506659 1506849 1506854) (-927 "PI.spad" 1506252 1506260 1506617 1506638) (-926 "PID.spad" 1505222 1505230 1506178 1506247) (-925 "PICOERCE.spad" 1504879 1504889 1505212 1505217) (-924 "PGROEB.spad" 1503480 1503494 1504869 1504874) (-923 "PGE.spad" 1495097 1495105 1503470 1503475) (-922 "PGCD.spad" 1493987 1494004 1495087 1495092) (-921 "PFRPAC.spad" 1493136 1493146 1493977 1493982) (-920 "PFR.spad" 1489799 1489809 1493038 1493131) (-919 "PFOTOOLS.spad" 1489057 1489073 1489789 1489794) (-918 "PFOQ.spad" 1488427 1488445 1489047 1489052) (-917 "PFO.spad" 1487846 1487873 1488417 1488422) (-916 "PF.spad" 1487420 1487432 1487651 1487744) (-915 "PFECAT.spad" 1485102 1485110 1487346 1487415) (-914 "PFECAT.spad" 1482812 1482822 1485058 1485063) (-913 "PFBRU.spad" 1480700 1480712 1482802 1482807) (-912 "PFBR.spad" 1478260 1478283 1480690 1480695) (-911 "PERM.spad" 1473945 1473955 1478090 1478105) (-910 "PERMGRP.spad" 1468707 1468717 1473935 1473940) (-909 "PERMCAT.spad" 1467265 1467275 1468687 1468702) (-908 "PERMAN.spad" 1465797 1465811 1467255 1467260) (-907 "PENDTREE.spad" 1465138 1465148 1465426 1465431) (-906 "PDRING.spad" 1463689 1463699 1465118 1465133) (-905 "PDRING.spad" 1462248 1462260 1463679 1463684) (-904 "PDEPROB.spad" 1461263 1461271 1462238 1462243) (-903 "PDEPACK.spad" 1455303 1455311 1461253 1461258) (-902 "PDECOMP.spad" 1454773 1454790 1455293 1455298) (-901 "PDECAT.spad" 1453129 1453137 1454763 1454768) (-900 "PCOMP.spad" 1452982 1452995 1453119 1453124) (-899 "PBWLB.spad" 1451570 1451587 1452972 1452977) (-898 "PATTERN.spad" 1446109 1446119 1451560 1451565) (-897 "PATTERN2.spad" 1445847 1445859 1446099 1446104) (-896 "PATTERN1.spad" 1444183 1444199 1445837 1445842) (-895 "PATRES.spad" 1441758 1441770 1444173 1444178) (-894 "PATRES2.spad" 1441430 1441444 1441748 1441753) (-893 "PATMATCH.spad" 1439627 1439658 1441138 1441143) (-892 "PATMAB.spad" 1439056 1439066 1439617 1439622) (-891 "PATLRES.spad" 1438142 1438156 1439046 1439051) (-890 "PATAB.spad" 1437906 1437916 1438132 1438137) (-889 "PARTPERM.spad" 1435306 1435314 1437896 1437901) (-888 "PARSURF.spad" 1434740 1434768 1435296 1435301) (-887 "PARSU2.spad" 1434537 1434553 1434730 1434735) (-886 "script-parser.spad" 1434057 1434065 1434527 1434532) (-885 "PARSCURV.spad" 1433491 1433519 1434047 1434052) (-884 "PARSC2.spad" 1433282 1433298 1433481 1433486) (-883 "PARPCURV.spad" 1432744 1432772 1433272 1433277) (-882 "PARPC2.spad" 1432535 1432551 1432734 1432739) (-881 "PARAMAST.spad" 1431663 1431671 1432525 1432530) (-880 "PAN2EXPR.spad" 1431075 1431083 1431653 1431658) (-879 "PALETTE.spad" 1430045 1430053 1431065 1431070) (-878 "PAIR.spad" 1429032 1429045 1429633 1429638) (-877 "PADICRC.spad" 1426366 1426384 1427537 1427630) (-876 "PADICRAT.spad" 1424381 1424393 1424602 1424695) (-875 "PADIC.spad" 1424076 1424088 1424307 1424376) (-874 "PADICCT.spad" 1422625 1422637 1424002 1424071) (-873 "PADEPAC.spad" 1421314 1421333 1422615 1422620) (-872 "PADE.spad" 1420066 1420082 1421304 1421309) (-871 "OWP.spad" 1419306 1419336 1419924 1419991) (-870 "OVERSET.spad" 1418879 1418887 1419296 1419301) (-869 "OVAR.spad" 1418660 1418683 1418869 1418874) (-868 "OUT.spad" 1417746 1417754 1418650 1418655) (-867 "OUTFORM.spad" 1407138 1407146 1417736 1417741) (-866 "OUTBFILE.spad" 1406556 1406564 1407128 1407133) (-865 "OUTBCON.spad" 1405562 1405570 1406546 1406551) (-864 "OUTBCON.spad" 1404566 1404576 1405552 1405557) (-863 "OSI.spad" 1404041 1404049 1404556 1404561) (-862 "OSGROUP.spad" 1403959 1403967 1404031 1404036) (-861 "ORTHPOL.spad" 1402444 1402454 1403876 1403881) (-860 "OREUP.spad" 1401897 1401925 1402124 1402163) (-859 "ORESUP.spad" 1401198 1401222 1401577 1401616) (-858 "OREPCTO.spad" 1399055 1399067 1401118 1401123) (-857 "OREPCAT.spad" 1393202 1393212 1399011 1399050) (-856 "OREPCAT.spad" 1387239 1387251 1393050 1393055) (-855 "ORDSET.spad" 1386411 1386419 1387229 1387234) (-854 "ORDSET.spad" 1385581 1385591 1386401 1386406) (-853 "ORDRING.spad" 1384971 1384979 1385561 1385576) (-852 "ORDRING.spad" 1384369 1384379 1384961 1384966) (-851 "ORDMON.spad" 1384224 1384232 1384359 1384364) (-850 "ORDFUNS.spad" 1383356 1383372 1384214 1384219) (-849 "ORDFIN.spad" 1383176 1383184 1383346 1383351) (-848 "ORDCOMP.spad" 1381641 1381651 1382723 1382752) (-847 "ORDCOMP2.spad" 1380934 1380946 1381631 1381636) (-846 "OPTPROB.spad" 1379572 1379580 1380924 1380929) (-845 "OPTPACK.spad" 1371981 1371989 1379562 1379567) (-844 "OPTCAT.spad" 1369660 1369668 1371971 1371976) (-843 "OPSIG.spad" 1369314 1369322 1369650 1369655) (-842 "OPQUERY.spad" 1368863 1368871 1369304 1369309) (-841 "OP.spad" 1368605 1368615 1368685 1368752) (-840 "OPERCAT.spad" 1368071 1368081 1368595 1368600) (-839 "OPERCAT.spad" 1367535 1367547 1368061 1368066) (-838 "ONECOMP.spad" 1366280 1366290 1367082 1367111) (-837 "ONECOMP2.spad" 1365704 1365716 1366270 1366275) (-836 "OMSERVER.spad" 1364710 1364718 1365694 1365699) (-835 "OMSAGG.spad" 1364498 1364508 1364666 1364705) (-834 "OMPKG.spad" 1363114 1363122 1364488 1364493) (-833 "OM.spad" 1362087 1362095 1363104 1363109) (-832 "OMLO.spad" 1361512 1361524 1361973 1362012) (-831 "OMEXPR.spad" 1361346 1361356 1361502 1361507) (-830 "OMERR.spad" 1360891 1360899 1361336 1361341) (-829 "OMERRK.spad" 1359925 1359933 1360881 1360886) (-828 "OMENC.spad" 1359269 1359277 1359915 1359920) (-827 "OMDEV.spad" 1353578 1353586 1359259 1359264) (-826 "OMCONN.spad" 1352987 1352995 1353568 1353573) (-825 "OINTDOM.spad" 1352750 1352758 1352913 1352982) (-824 "OFMONOID.spad" 1350873 1350883 1352706 1352711) (-823 "ODVAR.spad" 1350134 1350144 1350863 1350868) (-822 "ODR.spad" 1349778 1349804 1349946 1350095) (-821 "ODPOL.spad" 1347160 1347170 1347500 1347627) (-820 "ODP.spad" 1337007 1337027 1337380 1337511) (-819 "ODETOOLS.spad" 1335656 1335675 1336997 1337002) (-818 "ODESYS.spad" 1333350 1333367 1335646 1335651) (-817 "ODERTRIC.spad" 1329359 1329376 1333307 1333312) (-816 "ODERED.spad" 1328758 1328782 1329349 1329354) (-815 "ODERAT.spad" 1326373 1326390 1328748 1328753) (-814 "ODEPRRIC.spad" 1323410 1323432 1326363 1326368) (-813 "ODEPROB.spad" 1322667 1322675 1323400 1323405) (-812 "ODEPRIM.spad" 1320001 1320023 1322657 1322662) (-811 "ODEPAL.spad" 1319387 1319411 1319991 1319996) (-810 "ODEPACK.spad" 1306053 1306061 1319377 1319382) (-809 "ODEINT.spad" 1305488 1305504 1306043 1306048) (-808 "ODEIFTBL.spad" 1302883 1302891 1305478 1305483) (-807 "ODEEF.spad" 1298374 1298390 1302873 1302878) (-806 "ODECONST.spad" 1297911 1297929 1298364 1298369) (-805 "ODECAT.spad" 1296509 1296517 1297901 1297906) (-804 "OCT.spad" 1294645 1294655 1295359 1295398) (-803 "OCTCT2.spad" 1294291 1294312 1294635 1294640) (-802 "OC.spad" 1292087 1292097 1294247 1294286) (-801 "OC.spad" 1289608 1289620 1291770 1291775) (-800 "OCAMON.spad" 1289456 1289464 1289598 1289603) (-799 "OASGP.spad" 1289271 1289279 1289446 1289451) (-798 "OAMONS.spad" 1288793 1288801 1289261 1289266) (-797 "OAMON.spad" 1288654 1288662 1288783 1288788) (-796 "OAGROUP.spad" 1288516 1288524 1288644 1288649) (-795 "NUMTUBE.spad" 1288107 1288123 1288506 1288511) (-794 "NUMQUAD.spad" 1276083 1276091 1288097 1288102) (-793 "NUMODE.spad" 1267437 1267445 1276073 1276078) (-792 "NUMINT.spad" 1265003 1265011 1267427 1267432) (-791 "NUMFMT.spad" 1263843 1263851 1264993 1264998) (-790 "NUMERIC.spad" 1255957 1255967 1263648 1263653) (-789 "NTSCAT.spad" 1254465 1254481 1255925 1255952) (-788 "NTPOLFN.spad" 1254016 1254026 1254382 1254387) (-787 "NSUP.spad" 1247062 1247072 1251602 1251755) (-786 "NSUP2.spad" 1246454 1246466 1247052 1247057) (-785 "NSMP.spad" 1242684 1242703 1242992 1243119) (-784 "NREP.spad" 1241062 1241076 1242674 1242679) (-783 "NPCOEF.spad" 1240308 1240328 1241052 1241057) (-782 "NORMRETR.spad" 1239906 1239945 1240298 1240303) (-781 "NORMPK.spad" 1237808 1237827 1239896 1239901) (-780 "NORMMA.spad" 1237496 1237522 1237798 1237803) (-779 "NONE.spad" 1237237 1237245 1237486 1237491) (-778 "NONE1.spad" 1236913 1236923 1237227 1237232) (-777 "NODE1.spad" 1236400 1236416 1236903 1236908) (-776 "NNI.spad" 1235295 1235303 1236374 1236395) (-775 "NLINSOL.spad" 1233921 1233931 1235285 1235290) (-774 "NIPROB.spad" 1232462 1232470 1233911 1233916) (-773 "NFINTBAS.spad" 1230022 1230039 1232452 1232457) (-772 "NETCLT.spad" 1229996 1230007 1230012 1230017) (-771 "NCODIV.spad" 1228212 1228228 1229986 1229991) (-770 "NCNTFRAC.spad" 1227854 1227868 1228202 1228207) (-769 "NCEP.spad" 1226020 1226034 1227844 1227849) (-768 "NASRING.spad" 1225616 1225624 1226010 1226015) (-767 "NASRING.spad" 1225210 1225220 1225606 1225611) (-766 "NARNG.spad" 1224562 1224570 1225200 1225205) (-765 "NARNG.spad" 1223912 1223922 1224552 1224557) (-764 "NAGSP.spad" 1222989 1222997 1223902 1223907) (-763 "NAGS.spad" 1212650 1212658 1222979 1222984) (-762 "NAGF07.spad" 1211081 1211089 1212640 1212645) (-761 "NAGF04.spad" 1205483 1205491 1211071 1211076) (-760 "NAGF02.spad" 1199552 1199560 1205473 1205478) (-759 "NAGF01.spad" 1195313 1195321 1199542 1199547) (-758 "NAGE04.spad" 1189013 1189021 1195303 1195308) (-757 "NAGE02.spad" 1179673 1179681 1189003 1189008) (-756 "NAGE01.spad" 1175675 1175683 1179663 1179668) (-755 "NAGD03.spad" 1173679 1173687 1175665 1175670) (-754 "NAGD02.spad" 1166426 1166434 1173669 1173674) (-753 "NAGD01.spad" 1160719 1160727 1166416 1166421) (-752 "NAGC06.spad" 1156594 1156602 1160709 1160714) (-751 "NAGC05.spad" 1155095 1155103 1156584 1156589) (-750 "NAGC02.spad" 1154362 1154370 1155085 1155090) (-749 "NAALG.spad" 1153903 1153913 1154330 1154357) (-748 "NAALG.spad" 1153464 1153476 1153893 1153898) (-747 "MULTSQFR.spad" 1150422 1150439 1153454 1153459) (-746 "MULTFACT.spad" 1149805 1149822 1150412 1150417) (-745 "MTSCAT.spad" 1147899 1147920 1149703 1149800) (-744 "MTHING.spad" 1147558 1147568 1147889 1147894) (-743 "MSYSCMD.spad" 1146992 1147000 1147548 1147553) (-742 "MSET.spad" 1144950 1144960 1146698 1146737) (-741 "MSETAGG.spad" 1144795 1144805 1144918 1144945) (-740 "MRING.spad" 1141772 1141784 1144503 1144570) (-739 "MRF2.spad" 1141342 1141356 1141762 1141767) (-738 "MRATFAC.spad" 1140888 1140905 1141332 1141337) (-737 "MPRFF.spad" 1138928 1138947 1140878 1140883) (-736 "MPOLY.spad" 1136399 1136414 1136758 1136885) (-735 "MPCPF.spad" 1135663 1135682 1136389 1136394) (-734 "MPC3.spad" 1135480 1135520 1135653 1135658) (-733 "MPC2.spad" 1135126 1135159 1135470 1135475) (-732 "MONOTOOL.spad" 1133477 1133494 1135116 1135121) (-731 "MONOID.spad" 1132796 1132804 1133467 1133472) (-730 "MONOID.spad" 1132113 1132123 1132786 1132791) (-729 "MONOGEN.spad" 1130861 1130874 1131973 1132108) (-728 "MONOGEN.spad" 1129631 1129646 1130745 1130750) (-727 "MONADWU.spad" 1127661 1127669 1129621 1129626) (-726 "MONADWU.spad" 1125689 1125699 1127651 1127656) (-725 "MONAD.spad" 1124849 1124857 1125679 1125684) (-724 "MONAD.spad" 1124007 1124017 1124839 1124844) (-723 "MOEBIUS.spad" 1122743 1122757 1123987 1124002) (-722 "MODULE.spad" 1122613 1122623 1122711 1122738) (-721 "MODULE.spad" 1122503 1122515 1122603 1122608) (-720 "MODRING.spad" 1121838 1121877 1122483 1122498) (-719 "MODOP.spad" 1120503 1120515 1121660 1121727) (-718 "MODMONOM.spad" 1120234 1120252 1120493 1120498) (-717 "MODMON.spad" 1117029 1117045 1117748 1117901) (-716 "MODFIELD.spad" 1116391 1116430 1116931 1117024) (-715 "MMLFORM.spad" 1115251 1115259 1116381 1116386) (-714 "MMAP.spad" 1114993 1115027 1115241 1115246) (-713 "MLO.spad" 1113452 1113462 1114949 1114988) (-712 "MLIFT.spad" 1112064 1112081 1113442 1113447) (-711 "MKUCFUNC.spad" 1111599 1111617 1112054 1112059) (-710 "MKRECORD.spad" 1111203 1111216 1111589 1111594) (-709 "MKFUNC.spad" 1110610 1110620 1111193 1111198) (-708 "MKFLCFN.spad" 1109578 1109588 1110600 1110605) (-707 "MKBCFUNC.spad" 1109073 1109091 1109568 1109573) (-706 "MINT.spad" 1108512 1108520 1108975 1109068) (-705 "MHROWRED.spad" 1107023 1107033 1108502 1108507) (-704 "MFLOAT.spad" 1105543 1105551 1106913 1107018) (-703 "MFINFACT.spad" 1104943 1104965 1105533 1105538) (-702 "MESH.spad" 1102725 1102733 1104933 1104938) (-701 "MDDFACT.spad" 1100936 1100946 1102715 1102720) (-700 "MDAGG.spad" 1100227 1100237 1100916 1100931) (-699 "MCMPLX.spad" 1096238 1096246 1096852 1097053) (-698 "MCDEN.spad" 1095448 1095460 1096228 1096233) (-697 "MCALCFN.spad" 1092570 1092596 1095438 1095443) (-696 "MAYBE.spad" 1091854 1091865 1092560 1092565) (-695 "MATSTOR.spad" 1089162 1089172 1091844 1091849) (-694 "MATRIX.spad" 1087866 1087876 1088350 1088377) (-693 "MATLIN.spad" 1085210 1085234 1087750 1087755) (-692 "MATCAT.spad" 1076939 1076961 1085178 1085205) (-691 "MATCAT.spad" 1068540 1068564 1076781 1076786) (-690 "MATCAT2.spad" 1067822 1067870 1068530 1068535) (-689 "MAPPKG3.spad" 1066737 1066751 1067812 1067817) (-688 "MAPPKG2.spad" 1066075 1066087 1066727 1066732) (-687 "MAPPKG1.spad" 1064903 1064913 1066065 1066070) (-686 "MAPPAST.spad" 1064218 1064226 1064893 1064898) (-685 "MAPHACK3.spad" 1064030 1064044 1064208 1064213) (-684 "MAPHACK2.spad" 1063799 1063811 1064020 1064025) (-683 "MAPHACK1.spad" 1063443 1063453 1063789 1063794) (-682 "MAGMA.spad" 1061233 1061250 1063433 1063438) (-681 "MACROAST.spad" 1060812 1060820 1061223 1061228) (-680 "M3D.spad" 1058532 1058542 1060190 1060195) (-679 "LZSTAGG.spad" 1055770 1055780 1058522 1058527) (-678 "LZSTAGG.spad" 1053006 1053018 1055760 1055765) (-677 "LWORD.spad" 1049711 1049728 1052996 1053001) (-676 "LSTAST.spad" 1049495 1049503 1049701 1049706) (-675 "LSQM.spad" 1047725 1047739 1048119 1048170) (-674 "LSPP.spad" 1047260 1047277 1047715 1047720) (-673 "LSMP.spad" 1046110 1046138 1047250 1047255) (-672 "LSMP1.spad" 1043928 1043942 1046100 1046105) (-671 "LSAGG.spad" 1043597 1043607 1043896 1043923) (-670 "LSAGG.spad" 1043286 1043298 1043587 1043592) (-669 "LPOLY.spad" 1042240 1042259 1043142 1043211) (-668 "LPEFRAC.spad" 1041511 1041521 1042230 1042235) (-667 "LO.spad" 1040912 1040926 1041445 1041472) (-666 "LOGIC.spad" 1040514 1040522 1040902 1040907) (-665 "LOGIC.spad" 1040114 1040124 1040504 1040509) (-664 "LODOOPS.spad" 1039044 1039056 1040104 1040109) (-663 "LODO.spad" 1038428 1038444 1038724 1038763) (-662 "LODOF.spad" 1037474 1037491 1038385 1038390) (-661 "LODOCAT.spad" 1036140 1036150 1037430 1037469) (-660 "LODOCAT.spad" 1034804 1034816 1036096 1036101) (-659 "LODO2.spad" 1034077 1034089 1034484 1034523) (-658 "LODO1.spad" 1033477 1033487 1033757 1033796) (-657 "LODEEF.spad" 1032279 1032297 1033467 1033472) (-656 "LNAGG.spad" 1028111 1028121 1032269 1032274) (-655 "LNAGG.spad" 1023907 1023919 1028067 1028072) (-654 "LMOPS.spad" 1020675 1020692 1023897 1023902) (-653 "LMODULE.spad" 1020443 1020453 1020665 1020670) (-652 "LMDICT.spad" 1019730 1019740 1019994 1020021) (-651 "LLINSET.spad" 1019127 1019137 1019720 1019725) (-650 "LITERAL.spad" 1019033 1019044 1019117 1019122) (-649 "LIST.spad" 1016768 1016778 1018180 1018207) (-648 "LIST3.spad" 1016079 1016093 1016758 1016763) (-647 "LIST2.spad" 1014781 1014793 1016069 1016074) (-646 "LIST2MAP.spad" 1011684 1011696 1014771 1014776) (-645 "LINSET.spad" 1011306 1011316 1011674 1011679) (-644 "LINEXP.spad" 1010740 1010750 1011286 1011301) (-643 "LINDEP.spad" 1009549 1009561 1010652 1010657) (-642 "LIMITRF.spad" 1007477 1007487 1009539 1009544) (-641 "LIMITPS.spad" 1006380 1006393 1007467 1007472) (-640 "LIE.spad" 1004396 1004408 1005670 1005815) (-639 "LIECAT.spad" 1003872 1003882 1004322 1004391) (-638 "LIECAT.spad" 1003376 1003388 1003828 1003833) (-637 "LIB.spad" 1001426 1001434 1002035 1002050) (-636 "LGROBP.spad" 998779 998798 1001416 1001421) (-635 "LF.spad" 997734 997750 998769 998774) (-634 "LFCAT.spad" 996793 996801 997724 997729) (-633 "LEXTRIPK.spad" 992296 992311 996783 996788) (-632 "LEXP.spad" 990299 990326 992276 992291) (-631 "LETAST.spad" 989998 990006 990289 990294) (-630 "LEADCDET.spad" 988396 988413 989988 989993) (-629 "LAZM3PK.spad" 987100 987122 988386 988391) (-628 "LAUPOL.spad" 985793 985806 986693 986762) (-627 "LAPLACE.spad" 985376 985392 985783 985788) (-626 "LA.spad" 984816 984830 985298 985337) (-625 "LALG.spad" 984592 984602 984796 984811) (-624 "LALG.spad" 984376 984388 984582 984587) (-623 "KVTFROM.spad" 984111 984121 984366 984371) (-622 "KTVLOGIC.spad" 983623 983631 984101 984106) (-621 "KRCFROM.spad" 983361 983371 983613 983618) (-620 "KOVACIC.spad" 982084 982101 983351 983356) (-619 "KONVERT.spad" 981806 981816 982074 982079) (-618 "KOERCE.spad" 981543 981553 981796 981801) (-617 "KERNEL.spad" 980198 980208 981327 981332) (-616 "KERNEL2.spad" 979901 979913 980188 980193) (-615 "KDAGG.spad" 979010 979032 979881 979896) (-614 "KDAGG.spad" 978127 978151 979000 979005) (-613 "KAFILE.spad" 977090 977106 977325 977352) (-612 "JORDAN.spad" 974919 974931 976380 976525) (-611 "JOINAST.spad" 974613 974621 974909 974914) (-610 "JAVACODE.spad" 974479 974487 974603 974608) (-609 "IXAGG.spad" 972612 972636 974469 974474) (-608 "IXAGG.spad" 970600 970626 972459 972464) (-607 "IVECTOR.spad" 969370 969385 969525 969552) (-606 "ITUPLE.spad" 968531 968541 969360 969365) (-605 "ITRIGMNP.spad" 967370 967389 968521 968526) (-604 "ITFUN3.spad" 966876 966890 967360 967365) (-603 "ITFUN2.spad" 966620 966632 966866 966871) (-602 "ITFORM.spad" 965975 965983 966610 966615) (-601 "ITAYLOR.spad" 963969 963984 965839 965936) (-600 "ISUPS.spad" 956406 956421 962943 963040) (-599 "ISUMP.spad" 955907 955923 956396 956401) (-598 "ISTRING.spad" 954995 955008 955076 955103) (-597 "ISAST.spad" 954714 954722 954985 954990) (-596 "IRURPK.spad" 953431 953450 954704 954709) (-595 "IRSN.spad" 951435 951443 953421 953426) (-594 "IRRF2F.spad" 949920 949930 951391 951396) (-593 "IRREDFFX.spad" 949521 949532 949910 949915) (-592 "IROOT.spad" 947860 947870 949511 949516) (-591 "IR.spad" 945661 945675 947715 947742) (-590 "IRFORM.spad" 944985 944993 945651 945656) (-589 "IR2.spad" 944013 944029 944975 944980) (-588 "IR2F.spad" 943219 943235 944003 944008) (-587 "IPRNTPK.spad" 942979 942987 943209 943214) (-586 "IPF.spad" 942544 942556 942784 942877) (-585 "IPADIC.spad" 942305 942331 942470 942539) (-584 "IP4ADDR.spad" 941862 941870 942295 942300) (-583 "IOMODE.spad" 941384 941392 941852 941857) (-582 "IOBFILE.spad" 940745 940753 941374 941379) (-581 "IOBCON.spad" 940610 940618 940735 940740) (-580 "INVLAPLA.spad" 940259 940275 940600 940605) (-579 "INTTR.spad" 933641 933658 940249 940254) (-578 "INTTOOLS.spad" 931396 931412 933215 933220) (-577 "INTSLPE.spad" 930716 930724 931386 931391) (-576 "INTRVL.spad" 930282 930292 930630 930711) (-575 "INTRF.spad" 928706 928720 930272 930277) (-574 "INTRET.spad" 928138 928148 928696 928701) (-573 "INTRAT.spad" 926865 926882 928128 928133) (-572 "INTPM.spad" 925250 925266 926508 926513) (-571 "INTPAF.spad" 923114 923132 925182 925187) (-570 "INTPACK.spad" 913488 913496 923104 923109) (-569 "INT.spad" 912936 912944 913342 913483) (-568 "INTHERTR.spad" 912210 912227 912926 912931) (-567 "INTHERAL.spad" 911880 911904 912200 912205) (-566 "INTHEORY.spad" 908319 908327 911870 911875) (-565 "INTG0.spad" 902052 902070 908251 908256) (-564 "INTFTBL.spad" 896081 896089 902042 902047) (-563 "INTFACT.spad" 895140 895150 896071 896076) (-562 "INTEF.spad" 893525 893541 895130 895135) (-561 "INTDOM.spad" 892148 892156 893451 893520) (-560 "INTDOM.spad" 890833 890843 892138 892143) (-559 "INTCAT.spad" 889092 889102 890747 890828) (-558 "INTBIT.spad" 888599 888607 889082 889087) (-557 "INTALG.spad" 887787 887814 888589 888594) (-556 "INTAF.spad" 887287 887303 887777 887782) (-555 "INTABL.spad" 885805 885836 885968 885995) (-554 "INT8.spad" 885685 885693 885795 885800) (-553 "INT64.spad" 885564 885572 885675 885680) (-552 "INT32.spad" 885443 885451 885554 885559) (-551 "INT16.spad" 885322 885330 885433 885438) (-550 "INS.spad" 882825 882833 885224 885317) (-549 "INS.spad" 880414 880424 882815 882820) (-548 "INPSIGN.spad" 879862 879875 880404 880409) (-547 "INPRODPF.spad" 878958 878977 879852 879857) (-546 "INPRODFF.spad" 878046 878070 878948 878953) (-545 "INNMFACT.spad" 877021 877038 878036 878041) (-544 "INMODGCD.spad" 876509 876539 877011 877016) (-543 "INFSP.spad" 874806 874828 876499 876504) (-542 "INFPROD0.spad" 873886 873905 874796 874801) (-541 "INFORM.spad" 871085 871093 873876 873881) (-540 "INFORM1.spad" 870710 870720 871075 871080) (-539 "INFINITY.spad" 870262 870270 870700 870705) (-538 "INETCLTS.spad" 870239 870247 870252 870257) (-537 "INEP.spad" 868777 868799 870229 870234) (-536 "INDE.spad" 868506 868523 868767 868772) (-535 "INCRMAPS.spad" 867927 867937 868496 868501) (-534 "INBFILE.spad" 866999 867007 867917 867922) (-533 "INBFF.spad" 862793 862804 866989 866994) (-532 "INBCON.spad" 861083 861091 862783 862788) (-531 "INBCON.spad" 859371 859381 861073 861078) (-530 "INAST.spad" 859032 859040 859361 859366) (-529 "IMPTAST.spad" 858740 858748 859022 859027) (-528 "IMATRIX.spad" 857685 857711 858197 858224) (-527 "IMATQF.spad" 856779 856823 857641 857646) (-526 "IMATLIN.spad" 855384 855408 856735 856740) (-525 "ILIST.spad" 854042 854057 854567 854594) (-524 "IIARRAY2.spad" 853430 853468 853649 853676) (-523 "IFF.spad" 852840 852856 853111 853204) (-522 "IFAST.spad" 852454 852462 852830 852835) (-521 "IFARRAY.spad" 849947 849962 851637 851664) (-520 "IFAMON.spad" 849809 849826 849903 849908) (-519 "IEVALAB.spad" 849214 849226 849799 849804) (-518 "IEVALAB.spad" 848617 848631 849204 849209) (-517 "IDPO.spad" 848415 848427 848607 848612) (-516 "IDPOAMS.spad" 848171 848183 848405 848410) (-515 "IDPOAM.spad" 847891 847903 848161 848166) (-514 "IDPC.spad" 846829 846841 847881 847886) (-513 "IDPAM.spad" 846574 846586 846819 846824) (-512 "IDPAG.spad" 846321 846333 846564 846569) (-511 "IDENT.spad" 845971 845979 846311 846316) (-510 "IDECOMP.spad" 843210 843228 845961 845966) (-509 "IDEAL.spad" 838159 838198 843145 843150) (-508 "ICDEN.spad" 837348 837364 838149 838154) (-507 "ICARD.spad" 836539 836547 837338 837343) (-506 "IBPTOOLS.spad" 835146 835163 836529 836534) (-505 "IBITS.spad" 834349 834362 834782 834809) (-504 "IBATOOL.spad" 831326 831345 834339 834344) (-503 "IBACHIN.spad" 829833 829848 831316 831321) (-502 "IARRAY2.spad" 828821 828847 829440 829467) (-501 "IARRAY1.spad" 827866 827881 828004 828031) (-500 "IAN.spad" 826089 826097 827682 827775) (-499 "IALGFACT.spad" 825692 825725 826079 826084) (-498 "HYPCAT.spad" 825116 825124 825682 825687) (-497 "HYPCAT.spad" 824538 824548 825106 825111) (-496 "HOSTNAME.spad" 824346 824354 824528 824533) (-495 "HOMOTOP.spad" 824089 824099 824336 824341) (-494 "HOAGG.spad" 821371 821381 824079 824084) (-493 "HOAGG.spad" 818428 818440 821138 821143) (-492 "HEXADEC.spad" 816530 816538 816895 816988) (-491 "HEUGCD.spad" 815565 815576 816520 816525) (-490 "HELLFDIV.spad" 815155 815179 815555 815560) (-489 "HEAP.spad" 814547 814557 814762 814789) (-488 "HEADAST.spad" 814080 814088 814537 814542) (-487 "HDP.spad" 803923 803939 804300 804431) (-486 "HDMP.spad" 801137 801152 801753 801880) (-485 "HB.spad" 799388 799396 801127 801132) (-484 "HASHTBL.spad" 797858 797889 798069 798096) (-483 "HASAST.spad" 797574 797582 797848 797853) (-482 "HACKPI.spad" 797065 797073 797476 797569) (-481 "GTSET.spad" 796004 796020 796711 796738) (-480 "GSTBL.spad" 794523 794558 794697 794712) (-479 "GSERIES.spad" 791694 791721 792655 792804) (-478 "GROUP.spad" 790967 790975 791674 791689) (-477 "GROUP.spad" 790248 790258 790957 790962) (-476 "GROEBSOL.spad" 788742 788763 790238 790243) (-475 "GRMOD.spad" 787313 787325 788732 788737) (-474 "GRMOD.spad" 785882 785896 787303 787308) (-473 "GRIMAGE.spad" 778771 778779 785872 785877) (-472 "GRDEF.spad" 777150 777158 778761 778766) (-471 "GRAY.spad" 775613 775621 777140 777145) (-470 "GRALG.spad" 774690 774702 775603 775608) (-469 "GRALG.spad" 773765 773779 774680 774685) (-468 "GPOLSET.spad" 773219 773242 773447 773474) (-467 "GOSPER.spad" 772488 772506 773209 773214) (-466 "GMODPOL.spad" 771636 771663 772456 772483) (-465 "GHENSEL.spad" 770719 770733 771626 771631) (-464 "GENUPS.spad" 767012 767025 770709 770714) (-463 "GENUFACT.spad" 766589 766599 767002 767007) (-462 "GENPGCD.spad" 766175 766192 766579 766584) (-461 "GENMFACT.spad" 765627 765646 766165 766170) (-460 "GENEEZ.spad" 763578 763591 765617 765622) (-459 "GDMP.spad" 760634 760651 761408 761535) (-458 "GCNAALG.spad" 754557 754584 760428 760495) (-457 "GCDDOM.spad" 753733 753741 754483 754552) (-456 "GCDDOM.spad" 752971 752981 753723 753728) (-455 "GB.spad" 750497 750535 752927 752932) (-454 "GBINTERN.spad" 746517 746555 750487 750492) (-453 "GBF.spad" 742284 742322 746507 746512) (-452 "GBEUCLID.spad" 740166 740204 742274 742279) (-451 "GAUSSFAC.spad" 739479 739487 740156 740161) (-450 "GALUTIL.spad" 737805 737815 739435 739440) (-449 "GALPOLYU.spad" 736259 736272 737795 737800) (-448 "GALFACTU.spad" 734432 734451 736249 736254) (-447 "GALFACT.spad" 724621 724632 734422 734427) (-446 "FVFUN.spad" 721644 721652 724611 724616) (-445 "FVC.spad" 720696 720704 721634 721639) (-444 "FUNDESC.spad" 720374 720382 720686 720691) (-443 "FUNCTION.spad" 720223 720235 720364 720369) (-442 "FT.spad" 718520 718528 720213 720218) (-441 "FTEM.spad" 717685 717693 718510 718515) (-440 "FSUPFACT.spad" 716585 716604 717621 717626) (-439 "FST.spad" 714671 714679 716575 716580) (-438 "FSRED.spad" 714151 714167 714661 714666) (-437 "FSPRMELT.spad" 713033 713049 714108 714113) (-436 "FSPECF.spad" 711124 711140 713023 713028) (-435 "FS.spad" 705392 705402 710899 711119) (-434 "FS.spad" 699438 699450 704947 704952) (-433 "FSINT.spad" 699098 699114 699428 699433) (-432 "FSERIES.spad" 698289 698301 698918 699017) (-431 "FSCINT.spad" 697606 697622 698279 698284) (-430 "FSAGG.spad" 696723 696733 697562 697601) (-429 "FSAGG.spad" 695802 695814 696643 696648) (-428 "FSAGG2.spad" 694545 694561 695792 695797) (-427 "FS2UPS.spad" 689036 689070 694535 694540) (-426 "FS2.spad" 688683 688699 689026 689031) (-425 "FS2EXPXP.spad" 687808 687831 688673 688678) (-424 "FRUTIL.spad" 686762 686772 687798 687803) (-423 "FR.spad" 680478 680488 685786 685855) (-422 "FRNAALG.spad" 675597 675607 680420 680473) (-421 "FRNAALG.spad" 670728 670740 675553 675558) (-420 "FRNAAF2.spad" 670184 670202 670718 670723) (-419 "FRMOD.spad" 669594 669624 670115 670120) (-418 "FRIDEAL.spad" 668819 668840 669574 669589) (-417 "FRIDEAL2.spad" 668423 668455 668809 668814) (-416 "FRETRCT.spad" 667934 667944 668413 668418) (-415 "FRETRCT.spad" 667311 667323 667792 667797) (-414 "FRAMALG.spad" 665659 665672 667267 667306) (-413 "FRAMALG.spad" 664039 664054 665649 665654) (-412 "FRAC.spad" 661138 661148 661541 661714) (-411 "FRAC2.spad" 660743 660755 661128 661133) (-410 "FR2.spad" 660079 660091 660733 660738) (-409 "FPS.spad" 656894 656902 659969 660074) (-408 "FPS.spad" 653737 653747 656814 656819) (-407 "FPC.spad" 652783 652791 653639 653732) (-406 "FPC.spad" 651915 651925 652773 652778) (-405 "FPATMAB.spad" 651677 651687 651905 651910) (-404 "FPARFRAC.spad" 650164 650181 651667 651672) (-403 "FORTRAN.spad" 648670 648713 650154 650159) (-402 "FORT.spad" 647619 647627 648660 648665) (-401 "FORTFN.spad" 644789 644797 647609 647614) (-400 "FORTCAT.spad" 644473 644481 644779 644784) (-399 "FORMULA.spad" 641947 641955 644463 644468) (-398 "FORMULA1.spad" 641426 641436 641937 641942) (-397 "FORDER.spad" 641117 641141 641416 641421) (-396 "FOP.spad" 640318 640326 641107 641112) (-395 "FNLA.spad" 639742 639764 640286 640313) (-394 "FNCAT.spad" 638337 638345 639732 639737) (-393 "FNAME.spad" 638229 638237 638327 638332) (-392 "FMTC.spad" 638027 638035 638155 638224) (-391 "FMONOID.spad" 637692 637702 637983 637988) (-390 "FMONCAT.spad" 634845 634855 637682 637687) (-389 "FM.spad" 634540 634552 634779 634806) (-388 "FMFUN.spad" 631570 631578 634530 634535) (-387 "FMC.spad" 630622 630630 631560 631565) (-386 "FMCAT.spad" 628290 628308 630590 630617) (-385 "FM1.spad" 627647 627659 628224 628251) (-384 "FLOATRP.spad" 625382 625396 627637 627642) (-383 "FLOAT.spad" 618696 618704 625248 625377) (-382 "FLOATCP.spad" 616127 616141 618686 618691) (-381 "FLINEXP.spad" 615839 615849 616107 616122) (-380 "FLINEXP.spad" 615505 615517 615775 615780) (-379 "FLASORT.spad" 614831 614843 615495 615500) (-378 "FLALG.spad" 612477 612496 614757 614826) (-377 "FLAGG.spad" 609519 609529 612457 612472) (-376 "FLAGG.spad" 606462 606474 609402 609407) (-375 "FLAGG2.spad" 605187 605203 606452 606457) (-374 "FINRALG.spad" 603248 603261 605143 605182) (-373 "FINRALG.spad" 601235 601250 603132 603137) (-372 "FINITE.spad" 600387 600395 601225 601230) (-371 "FINAALG.spad" 589508 589518 600329 600382) (-370 "FINAALG.spad" 578641 578653 589464 589469) (-369 "FILE.spad" 578224 578234 578631 578636) (-368 "FILECAT.spad" 576750 576767 578214 578219) (-367 "FIELD.spad" 576156 576164 576652 576745) (-366 "FIELD.spad" 575648 575658 576146 576151) (-365 "FGROUP.spad" 574295 574305 575628 575643) (-364 "FGLMICPK.spad" 573082 573097 574285 574290) (-363 "FFX.spad" 572457 572472 572798 572891) (-362 "FFSLPE.spad" 571960 571981 572447 572452) (-361 "FFPOLY.spad" 563222 563233 571950 571955) (-360 "FFPOLY2.spad" 562282 562299 563212 563217) (-359 "FFP.spad" 561679 561699 561998 562091) (-358 "FF.spad" 561127 561143 561360 561453) (-357 "FFNBX.spad" 559639 559659 560843 560936) (-356 "FFNBP.spad" 558152 558169 559355 559448) (-355 "FFNB.spad" 556617 556638 557833 557926) (-354 "FFINTBAS.spad" 554131 554150 556607 556612) (-353 "FFIELDC.spad" 551708 551716 554033 554126) (-352 "FFIELDC.spad" 549371 549381 551698 551703) (-351 "FFHOM.spad" 548119 548136 549361 549366) (-350 "FFF.spad" 545554 545565 548109 548114) (-349 "FFCGX.spad" 544401 544421 545270 545363) (-348 "FFCGP.spad" 543290 543310 544117 544210) (-347 "FFCG.spad" 542082 542103 542971 543064) (-346 "FFCAT.spad" 535255 535277 541921 542077) (-345 "FFCAT.spad" 528507 528531 535175 535180) (-344 "FFCAT2.spad" 528254 528294 528497 528502) (-343 "FEXPR.spad" 519971 520017 528010 528049) (-342 "FEVALAB.spad" 519679 519689 519961 519966) (-341 "FEVALAB.spad" 519172 519184 519456 519461) (-340 "FDIV.spad" 518614 518638 519162 519167) (-339 "FDIVCAT.spad" 516678 516702 518604 518609) (-338 "FDIVCAT.spad" 514740 514766 516668 516673) (-337 "FDIV2.spad" 514396 514436 514730 514735) (-336 "FCTRDATA.spad" 513404 513412 514386 514391) (-335 "FCPAK1.spad" 511971 511979 513394 513399) (-334 "FCOMP.spad" 511350 511360 511961 511966) (-333 "FC.spad" 501357 501365 511340 511345) (-332 "FAXF.spad" 494328 494342 501259 501352) (-331 "FAXF.spad" 487351 487367 494284 494289) (-330 "FARRAY.spad" 485501 485511 486534 486561) (-329 "FAMR.spad" 483637 483649 485399 485496) (-328 "FAMR.spad" 481757 481771 483521 483526) (-327 "FAMONOID.spad" 481425 481435 481711 481716) (-326 "FAMONC.spad" 479721 479733 481415 481420) (-325 "FAGROUP.spad" 479345 479355 479617 479644) (-324 "FACUTIL.spad" 477549 477566 479335 479340) (-323 "FACTFUNC.spad" 476743 476753 477539 477544) (-322 "EXPUPXS.spad" 473576 473599 474875 475024) (-321 "EXPRTUBE.spad" 470864 470872 473566 473571) (-320 "EXPRODE.spad" 468024 468040 470854 470859) (-319 "EXPR.spad" 463299 463309 464013 464420) (-318 "EXPR2UPS.spad" 459421 459434 463289 463294) (-317 "EXPR2.spad" 459126 459138 459411 459416) (-316 "EXPEXPAN.spad" 456066 456091 456698 456791) (-315 "EXIT.spad" 455737 455745 456056 456061) (-314 "EXITAST.spad" 455473 455481 455727 455732) (-313 "EVALCYC.spad" 454933 454947 455463 455468) (-312 "EVALAB.spad" 454505 454515 454923 454928) (-311 "EVALAB.spad" 454075 454087 454495 454500) (-310 "EUCDOM.spad" 451649 451657 454001 454070) (-309 "EUCDOM.spad" 449285 449295 451639 451644) (-308 "ESTOOLS.spad" 441131 441139 449275 449280) (-307 "ESTOOLS2.spad" 440734 440748 441121 441126) (-306 "ESTOOLS1.spad" 440419 440430 440724 440729) (-305 "ES.spad" 433234 433242 440409 440414) (-304 "ES.spad" 425955 425965 433132 433137) (-303 "ESCONT.spad" 422748 422756 425945 425950) (-302 "ESCONT1.spad" 422497 422509 422738 422743) (-301 "ES2.spad" 422002 422018 422487 422492) (-300 "ES1.spad" 421572 421588 421992 421997) (-299 "ERROR.spad" 418899 418907 421562 421567) (-298 "EQTBL.spad" 417371 417393 417580 417607) (-297 "EQ.spad" 412176 412186 414963 415075) (-296 "EQ2.spad" 411894 411906 412166 412171) (-295 "EP.spad" 408220 408230 411884 411889) (-294 "ENV.spad" 406898 406906 408210 408215) (-293 "ENTIRER.spad" 406566 406574 406842 406893) (-292 "EMR.spad" 405773 405814 406492 406561) (-291 "ELTAGG.spad" 404027 404046 405763 405768) (-290 "ELTAGG.spad" 402245 402266 403983 403988) (-289 "ELTAB.spad" 401694 401712 402235 402240) (-288 "ELFUTS.spad" 401081 401100 401684 401689) (-287 "ELEMFUN.spad" 400770 400778 401071 401076) (-286 "ELEMFUN.spad" 400457 400467 400760 400765) (-285 "ELAGG.spad" 398428 398438 400437 400452) (-284 "ELAGG.spad" 396336 396348 398347 398352) (-283 "ELABOR.spad" 395682 395690 396326 396331) (-282 "ELABEXPR.spad" 394614 394622 395672 395677) (-281 "EFUPXS.spad" 391390 391420 394570 394575) (-280 "EFULS.spad" 388226 388249 391346 391351) (-279 "EFSTRUC.spad" 386241 386257 388216 388221) (-278 "EF.spad" 381017 381033 386231 386236) (-277 "EAB.spad" 379293 379301 381007 381012) (-276 "E04UCFA.spad" 378829 378837 379283 379288) (-275 "E04NAFA.spad" 378406 378414 378819 378824) (-274 "E04MBFA.spad" 377986 377994 378396 378401) (-273 "E04JAFA.spad" 377522 377530 377976 377981) (-272 "E04GCFA.spad" 377058 377066 377512 377517) (-271 "E04FDFA.spad" 376594 376602 377048 377053) (-270 "E04DGFA.spad" 376130 376138 376584 376589) (-269 "E04AGNT.spad" 371980 371988 376120 376125) (-268 "DVARCAT.spad" 368669 368679 371970 371975) (-267 "DVARCAT.spad" 365356 365368 368659 368664) (-266 "DSMP.spad" 362823 362837 363128 363255) (-265 "DROPT.spad" 356782 356790 362813 362818) (-264 "DROPT1.spad" 356447 356457 356772 356777) (-263 "DROPT0.spad" 351304 351312 356437 356442) (-262 "DRAWPT.spad" 349477 349485 351294 351299) (-261 "DRAW.spad" 342353 342366 349467 349472) (-260 "DRAWHACK.spad" 341661 341671 342343 342348) (-259 "DRAWCX.spad" 339131 339139 341651 341656) (-258 "DRAWCURV.spad" 338678 338693 339121 339126) (-257 "DRAWCFUN.spad" 328210 328218 338668 338673) (-256 "DQAGG.spad" 326388 326398 328178 328205) (-255 "DPOLCAT.spad" 321737 321753 326256 326383) (-254 "DPOLCAT.spad" 317172 317190 321693 321698) (-253 "DPMO.spad" 309398 309414 309536 309837) (-252 "DPMM.spad" 301637 301655 301762 302063) (-251 "DOMTMPLT.spad" 301297 301305 301627 301632) (-250 "DOMCTOR.spad" 301052 301060 301287 301292) (-249 "DOMAIN.spad" 300139 300147 301042 301047) (-248 "DMP.spad" 297399 297414 297969 298096) (-247 "DLP.spad" 296751 296761 297389 297394) (-246 "DLIST.spad" 295330 295340 295934 295961) (-245 "DLAGG.spad" 293747 293757 295320 295325) (-244 "DIVRING.spad" 293289 293297 293691 293742) (-243 "DIVRING.spad" 292875 292885 293279 293284) (-242 "DISPLAY.spad" 291065 291073 292865 292870) (-241 "DIRPROD.spad" 280645 280661 281285 281416) (-240 "DIRPROD2.spad" 279463 279481 280635 280640) (-239 "DIRPCAT.spad" 278407 278423 279327 279458) (-238 "DIRPCAT.spad" 277080 277098 278002 278007) (-237 "DIOSP.spad" 275905 275913 277070 277075) (-236 "DIOPS.spad" 274901 274911 275885 275900) (-235 "DIOPS.spad" 273871 273883 274857 274862) (-234 "DIFRING.spad" 273167 273175 273851 273866) (-233 "DIFRING.spad" 272471 272481 273157 273162) (-232 "DIFEXT.spad" 271642 271652 272451 272466) (-231 "DIFEXT.spad" 270730 270742 271541 271546) (-230 "DIAGG.spad" 270360 270370 270710 270725) (-229 "DIAGG.spad" 269998 270010 270350 270355) (-228 "DHMATRIX.spad" 268310 268320 269455 269482) (-227 "DFSFUN.spad" 261950 261958 268300 268305) (-226 "DFLOAT.spad" 258681 258689 261840 261945) (-225 "DFINTTLS.spad" 256912 256928 258671 258676) (-224 "DERHAM.spad" 254826 254858 256892 256907) (-223 "DEQUEUE.spad" 254150 254160 254433 254460) (-222 "DEGRED.spad" 253767 253781 254140 254145) (-221 "DEFINTRF.spad" 251304 251314 253757 253762) (-220 "DEFINTEF.spad" 249814 249830 251294 251299) (-219 "DEFAST.spad" 249182 249190 249804 249809) (-218 "DECIMAL.spad" 247288 247296 247649 247742) (-217 "DDFACT.spad" 245101 245118 247278 247283) (-216 "DBLRESP.spad" 244701 244725 245091 245096) (-215 "DBASE.spad" 243365 243375 244691 244696) (-214 "DATAARY.spad" 242827 242840 243355 243360) (-213 "D03FAFA.spad" 242655 242663 242817 242822) (-212 "D03EEFA.spad" 242475 242483 242645 242650) (-211 "D03AGNT.spad" 241561 241569 242465 242470) (-210 "D02EJFA.spad" 241023 241031 241551 241556) (-209 "D02CJFA.spad" 240501 240509 241013 241018) (-208 "D02BHFA.spad" 239991 239999 240491 240496) (-207 "D02BBFA.spad" 239481 239489 239981 239986) (-206 "D02AGNT.spad" 234295 234303 239471 239476) (-205 "D01WGTS.spad" 232614 232622 234285 234290) (-204 "D01TRNS.spad" 232591 232599 232604 232609) (-203 "D01GBFA.spad" 232113 232121 232581 232586) (-202 "D01FCFA.spad" 231635 231643 232103 232108) (-201 "D01ASFA.spad" 231103 231111 231625 231630) (-200 "D01AQFA.spad" 230549 230557 231093 231098) (-199 "D01APFA.spad" 229973 229981 230539 230544) (-198 "D01ANFA.spad" 229467 229475 229963 229968) (-197 "D01AMFA.spad" 228977 228985 229457 229462) (-196 "D01ALFA.spad" 228517 228525 228967 228972) (-195 "D01AKFA.spad" 228043 228051 228507 228512) (-194 "D01AJFA.spad" 227566 227574 228033 228038) (-193 "D01AGNT.spad" 223633 223641 227556 227561) (-192 "CYCLOTOM.spad" 223139 223147 223623 223628) (-191 "CYCLES.spad" 219995 220003 223129 223134) (-190 "CVMP.spad" 219412 219422 219985 219990) (-189 "CTRIGMNP.spad" 217912 217928 219402 219407) (-188 "CTOR.spad" 217603 217611 217902 217907) (-187 "CTORKIND.spad" 217206 217214 217593 217598) (-186 "CTORCAT.spad" 216455 216463 217196 217201) (-185 "CTORCAT.spad" 215702 215712 216445 216450) (-184 "CTORCALL.spad" 215291 215301 215692 215697) (-183 "CSTTOOLS.spad" 214536 214549 215281 215286) (-182 "CRFP.spad" 208260 208273 214526 214531) (-181 "CRCEAST.spad" 207980 207988 208250 208255) (-180 "CRAPACK.spad" 207031 207041 207970 207975) (-179 "CPMATCH.spad" 206535 206550 206956 206961) (-178 "CPIMA.spad" 206240 206259 206525 206530) (-177 "COORDSYS.spad" 201249 201259 206230 206235) (-176 "CONTOUR.spad" 200660 200668 201239 201244) (-175 "CONTFRAC.spad" 196410 196420 200562 200655) (-174 "CONDUIT.spad" 196168 196176 196400 196405) (-173 "COMRING.spad" 195842 195850 196106 196163) (-172 "COMPPROP.spad" 195360 195368 195832 195837) (-171 "COMPLPAT.spad" 195127 195142 195350 195355) (-170 "COMPLEX.spad" 189264 189274 189508 189769) (-169 "COMPLEX2.spad" 188979 188991 189254 189259) (-168 "COMPILER.spad" 188528 188536 188969 188974) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 18c8f05a..0b98eb29 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,15 +1,15 @@
-(188562 . 3479296395)
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) #0#) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
-((((-569)) . T) (($) -2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T))
+(188562 . 3479376217)
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
+((((-569)) . T) (($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T))
(((|#2| |#2|) . T))
((((-569)) . T))
-((($ $) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2| |#2|) . T) ((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2| |#2|) . T) ((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#2|) . T))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
(|has| |#1| (-915))
((((-867)) . T))
((((-867)) . T))
@@ -19,48 +19,48 @@
((($) . T))
(((|#2| |#2|) . T))
((((-144)) . T))
-((((-541)) . T) (((-1165)) . T) (((-226)) . T) (((-383)) . T) (((-898 (-383))) . T))
+((((-541)) . T) (((-1167)) . T) (((-226)) . T) (((-383)) . T) (((-898 (-383))) . T))
(((|#1|) . T))
((((-226)) . T) (((-867)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((($ $) . T) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T))
-(-2774 (|has| |#1| (-825)) (|has| |#1| (-855)))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((($ $) . T) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T))
+(-2776 (|has| |#1| (-825)) (|has| |#1| (-855)))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T))
((((-867)) . T))
((((-867)) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
(|has| |#1| (-853))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-319 |#1|)) . T) (((-569)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
((((-569)) . T) (((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
((((-412 (-569))) . T) (((-704)) . T) (($) . T))
((((-867)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
(((|#4|) . T))
((((-412 (-569))) . T) (((-704)) . T) (($) . T))
((((-867)) . T))
-((((-867)) |has| (-1100 |#1|) (-1106)))
-((((-867)) . T) (((-1188)) . T))
+((((-867)) |has| (-1102 |#1|) (-1108)))
+((((-867)) . T) (((-1190)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1188)) . T))
-(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(((|#2| (-487 (-2426 |#1|) (-776))) . T))
-(((|#1| (-536 (-1183))) . T))
+((((-1190)) . T))
+(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#2| (-487 (-2428 |#1|) (-776))) . T))
+(((|#1| (-536 (-1185))) . T))
(((#0=(-875 |#1|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
-((((-1165)) . T) (((-964 (-129))) . T) (((-867)) . T))
+((((-1167)) . T) (((-964 (-129))) . T) (((-867)) . T))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(|has| |#4| (-372))
(|has| |#3| (-372))
(((|#1|) . T))
-((((-1183)) . T))
+((((-1185)) . T))
((((-511)) . T))
((((-875 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
((((-867)) . T))
@@ -71,22 +71,22 @@
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-561))
-((((-569)) . T) (((-412 (-569))) -2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-((((-2 (|:| -2150 |#1|) (|:| -4320 |#2|))) . T))
+((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((((-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) . T))
((($) . T))
-((((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1183)) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1185)) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
-((((-1183)) . T))
+((((-1185)) . T))
((((-569)) . T) (($) . T))
((((-586 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T) (((-569)) . T) (($) . T))
((((-867)) . T))
((((-867)) . T))
@@ -97,12 +97,12 @@
(((|#1| |#2|) . T))
((((-867)) . T))
(((|#1|) . T))
-(|has| |#1| (-1106))
-(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(|has| |#1| (-1108))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#1|) . T))
((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
((((-116 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
@@ -110,14 +110,14 @@
((((-412 (-569))) . T) (($) . T) (((-569)) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
(((|#2|) . T) (((-569)) . T) ((|#6|) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
((($) . T))
(((|#2|) . T))
((($) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
((($ $) . T))
((($) . T))
((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
@@ -126,30 +126,30 @@
(((|#1|) . T))
(|has| |#1| (-372))
(((|#1|) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(((|#1|) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-569)) . T))
((((-867)) . T))
(((|#1| |#2|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T) (((-569)) . T) (($) . T))
(|has| |#1| (-561))
(((|#1| |#1|) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-(|has| |#1| (-1106))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-(|has| |#1| (-1106))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+(|has| |#1| (-1108))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+(|has| |#1| (-1108))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(|has| |#1| (-853))
((($) . T) (((-412 (-569))) . T))
((((-867)) . T))
@@ -158,19 +158,19 @@
((((-569) (-129)) . T))
((($) . T) (((-412 (-569))) . T))
((((-129)) . T))
-(-2774 (|has| |#4| (-798)) (|has| |#4| (-853)))
-(-2774 (|has| |#4| (-798)) (|has| |#4| (-853)))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-2776 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(-2776 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
(((|#1| |#2|) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
-((((-1188)) . T))
-(((|#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) (((-1183) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|))))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-1190)) . T))
+(((|#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) (((-1185) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1185) |#2|))))
(((|#1| |#2|) . T))
-(|has| |#1| (-1106))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
+(|has| |#1| (-1108))
((((-569)) . T) (((-412 (-569))) . T))
-(((|#1| (-1183) (-1094 (-1183)) (-536 (-1094 (-1183)))) . T))
+(((|#1| (-1185) (-1096 (-1185)) (-536 (-1096 (-1185)))) . T))
((((-569) |#1|) . T))
((((-569)) . T))
((((-569)) . T))
@@ -179,43 +179,43 @@
((((-569)) . T))
((((-569)) . T))
(((|#1|) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(((|#1| (-776)) . T))
(|has| |#2| (-798))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
(|has| |#2| (-853))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1165) |#1|) . T))
+((((-1167) |#1|) . T))
((((-569) (-129)) . T))
(((|#1|) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
(((|#3| (-776)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
((($) . T) (((-412 (-569))) . T))
((($) . T))
((($) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
((((-412 (-569))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-412 (-569))) . T) (((-569)) . T))
-((((-569)) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
-((((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#2|) . T))
-((((-1183) |#2|) |has| |#2| (-519 (-1183) |#2|)) ((|#2| |#2|) |has| |#2| (-312 |#2|)))
+((((-569)) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
+((((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#2|) . T))
+((((-1185) |#2|) |has| |#2| (-519 (-1185) |#2|)) ((|#2| |#2|) |has| |#2| (-312 |#2|)))
((((-412 (-569))) . T) (((-569)) . T))
-((((-569)) . T) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1088)) . T) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+((((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1090)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))
(((|#1|) . T) (($) . T))
((((-569)) . T))
((((-569)) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
((((-569)) . T))
((((-569)) . T))
((((-412 (-569))) . T) (($) . T))
-(((#0=(-704) (-1179 #0#)) . T))
+(((#0=(-704) (-1181 #0#)) . T))
((((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T))
@@ -226,19 +226,19 @@
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-867)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((((-1165) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((((-1167) |#1|) . T))
(((|#3| |#3|) . T))
((((-867)) . T))
((((-867)) . T))
(((|#1| |#1|) . T))
-(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T))
(((|#1|) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
@@ -246,80 +246,80 @@
((((-867)) . T))
((((-569) |#1|) . T))
((((-867)) . T))
-((((-170 (-226))) |has| |#1| (-1028)) (((-170 (-383))) |has| |#1| (-1028)) (((-541)) |has| |#1| (-619 (-541))) (((-1179 |#1|)) . T) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-170 (-226))) |has| |#1| (-1030)) (((-170 (-383))) |has| |#1| (-1030)) (((-541)) |has| |#1| (-619 (-541))) (((-1181 |#1|)) . T) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
(|has| |#1| (-367))
((((-867)) . T))
((($) . T))
((($) . T))
((((-129)) . T))
-(-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))
-(-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))
-(-2774 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-((((-867)) . T) (((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
+(-12 (|has| |#4| (-234)) (|has| |#4| (-1057)))
+(-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))
+(-2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
+((((-867)) . T) (((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
((((-867)) . T))
(((|#1|) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T))
(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
-(((|#2|) . T) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
(|has| |#1| (-561))
-((((-569)) -2774 (|has| |#4| (-173)) (|has| |#4| (-853)) (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106))) (|has| |#4| (-1055))) ((|#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-1106))) (((-412 (-569))) -12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))
-((((-569)) -2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055))) ((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-569)) -2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108))) (|has| |#4| (-1057))) ((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-1108))) (((-412 (-569))) -12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))
+((((-569)) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(|has| |#1| (-561))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(((|#1|) . T))
(|has| |#1| (-561))
(|has| |#1| (-561))
(|has| |#1| (-561))
((((-704)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))
+(-12 (|has| |#1| (-1010)) (|has| |#1| (-1210)))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
(((|#2|) . T) (($) . T) (((-412 (-569))) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
-(-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))
+(-12 (|has| |#1| (-1108)) (|has| |#2| (-1108)))
((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
-(((|#4| |#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($ $) |has| |#4| (-173)))
-(((|#3| |#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($ $) |has| |#3| (-173)))
+(((|#4| |#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))) (($ $) |has| |#4| (-173)))
+(((|#3| |#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($ $) |has| |#3| (-173)))
(((|#2|) . T))
(((|#1|) . T))
((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))))
((((-867)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2150 |#1|) (|:| -4320 |#2|))) . T) (((-867)) . T))
+((((-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) . T) (((-867)) . T))
((((-541)) |has| |#1| (-619 (-541))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))))
-(((|#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($) |has| |#4| (-173)))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
-((((-2 (|:| -2150 |#1|) (|:| -4320 |#2|))) . T))
+(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))) (($) |has| |#4| (-173)))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173)))
+((((-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) . T))
((((-867)) . T))
((((-867)) . T))
((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
((((-649 |#1|)) . T))
-(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
((((-412 $) (-412 $)) |has| |#2| (-561)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T))
(((|#1|) . T))
(|has| |#2| (-915))
-((((-1165) (-52)) . T))
+((((-1167) (-52)) . T))
((((-569)) |has| #0=(-412 |#2|) (-644 (-569))) ((#0#) . T))
((((-541)) . T) (((-226)) . T) (((-383)) . T) (((-898 (-383))) . T))
((((-867)) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))
(((|#1|) |has| |#1| (-173)))
(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
((((-867)) . T))
@@ -330,80 +330,80 @@
(|has| |#1| (-855))
(((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) . T) (((-1188)) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((((-1188)) . T))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T) (((-1190)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-1190)) . T))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(|has| |#1| (-234))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((|#1| (-536 (-823 (-1183)))) . T))
-(((|#1| (-977)) . T))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| (-536 (-823 (-1185)))) . T))
+(((|#1| (-979)) . T))
((((-569)) . T) ((|#2|) . T))
(((#0=(-875 |#1|) $) |has| #0# (-289 #0# #0#)))
((((-569) |#4|) . T))
((((-569) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1158))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
-(|has| (-1259 |#1| |#2| |#3| |#4|) (-145))
-(|has| (-1259 |#1| |#2| |#3| |#4|) (-147))
+(|has| |#1| (-1160))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
+(|has| (-1261 |#1| |#2| |#3| |#4|) (-145))
+(|has| (-1261 |#1| |#2| |#3| |#4|) (-147))
(|has| |#1| (-145))
(|has| |#1| (-147))
(((|#1|) |has| |#1| (-173)))
-((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
-(|has| |#1| (-1106))
-((((-1165) |#1|) . T))
+((((-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057))))
+(|has| |#1| (-1108))
+((((-1167) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
-((((-1131 |#1| (-1183))) . T) (((-569)) . T) (((-823 (-1183))) . T) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-1183)) . T))
+((((-1133 |#1| (-1185))) . T) (((-569)) . T) (((-823 (-1185))) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-1185)) . T))
(|has| |#2| (-372))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1055)))
+(((|#2|) |has| |#2| (-1057)))
((((-867)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) #0#) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
(((|#1|) . T))
-((((-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((#0=(-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) #0#) |has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))))
+((((-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((#0=(-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) #0#) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))))
((((-867)) . T))
((((-569) |#1|) . T))
((((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383))))) (((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569))))))
((($) . T))
((((-867)) . T))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
((((-867)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-867)) . T))
((((-867)) . T))
-(|has| (-1258 |#2| |#3| |#4|) (-147))
-(|has| (-1258 |#2| |#3| |#4|) (-145))
-(((|#2|) |has| |#2| (-1106)) (((-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(|has| (-1260 |#2| |#3| |#4|) (-147))
+(|has| (-1260 |#2| |#3| |#4|) (-145))
+(((|#2|) |has| |#2| (-1108)) (((-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))))
(((|#1|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-867)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))
(((|#1|) . T))
((((-569) |#1|) . T))
(((|#2|) |has| |#2| (-173)))
(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((((-867)) |has| |#1| (-1106)))
-(-2774 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((((-867)) |has| |#1| (-1108)))
+(-2776 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
((((-916 |#1|)) . T))
((((-412 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-569) |#1|)))
@@ -414,13 +414,13 @@
((((-867)) . T))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
(|has| |#1| (-367))
-(-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))
+(-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))
(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
(|has| |#1| (-367))
(|has| |#1| (-15 * (|#1| (-776) |#1|)))
((((-569)) . T))
((((-569)) . T))
-((((-1148 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T))
+((((-1150 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-173)) (($) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
@@ -428,130 +428,130 @@
((((-569) |#1|) . T))
((((-867)) . T))
(((|#2|) . T))
-(-2774 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
((($) |has| |#1| (-561)) (((-569)) . T))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
-((((-1265 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
-((((-1269 |#2|)) . T) (((-1265 |#1| |#2| |#3|)) . T) (((-1237 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
+((((-1267 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
+((((-1271 |#2|)) . T) (((-1267 |#1| |#2| |#3|)) . T) (((-1239 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T))
(((|#1|) . T))
-((((-1183)) -12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-1185)) -12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-(-2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561)))
-(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
+(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561)))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
((($ $) |has| |#1| (-561)) ((|#1| |#1|) . T))
-(((#0=(-704) (-1179 #0#)) . T))
+(((#0=(-704) (-1181 #0#)) . T))
((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
((((-412 (-569))) . T) (($) . T))
-((((-867)) . T) (((-1273 |#4|)) . T))
-((((-867)) . T) (((-1273 |#3|)) . T))
+((((-867)) . T) (((-1275 |#4|)) . T))
+((((-867)) . T) (((-1275 |#3|)) . T))
((((-586 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
((($) . T) (((-412 (-569))) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) . T))
((((-867)) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
((($) . T))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1265 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-(((|#3|) |has| |#3| (-1055)))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
-(|has| (-1100 |#1|) (-1106))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1267 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+(((|#3|) |has| |#3| (-1057)))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(|has| (-1102 |#1|) (-1108))
(((|#2| (-824 |#1|)) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#2|) . T) ((|#6|) . T))
(|has| |#1| (-367))
((((-569)) . T) ((|#2|) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#2|) . T) ((|#6|) . T))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((#0=(-1088) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((#0=(-1090) |#2|) . T) ((#0# $) . T) (($ $) . T))
((((-867)) . T))
((((-916 |#1|)) . T))
((((-144)) . T))
((((-144)) . T))
-(((|#3|) |has| |#3| (-1106)) (((-569)) -12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
+(((|#3|) |has| |#3| (-1108)) (((-569)) -12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#1|) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
(((|#1|) |has| |#1| (-173)))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
(|has| |#1| (-367))
-((((-1188)) . T))
+((((-1190)) . T))
(((|#1|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
(|has| |#2| (-825))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-853))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-541)) |has| |#1| (-619 (-541))))
(((|#1| |#2|) . T))
-((((-1183)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183)))))
-((((-1165) |#1|) . T))
+((((-1185)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185)))))
+((((-1167) |#1|) . T))
(((|#1| |#2| |#3| (-536 |#3|)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
((((-867)) . T))
((((-412 (-569))) . T))
(((|#1|) . T))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
((((-412 (-569))) . T))
(|has| |#1| (-372))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
((((-569)) . T))
((((-569)) . T))
(((|#1|) . T) (((-569)) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
((((-867)) . T))
((((-867)) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
-(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
-((((-1183) #0=(-875 |#1|)) |has| #0# (-519 (-1183) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
+(-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))
+((((-1185) #0=(-875 |#1|)) |has| #0# (-519 (-1185) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
(((|#1|) . T))
((((-569) |#4|) . T))
((((-569) |#3|) . T))
(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+((((-1261 |#1| |#2| |#3| |#4|)) . T))
((((-412 (-569))) . T) (((-569)) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
((((-569)) . T))
((((-569)) . T))
-((($) . T) (((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
-((((-569)) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+((((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))))
(((|#1|) . T))
(((|#1|) . T))
((((-412 (-569))) . T) (($) . T))
@@ -559,7 +559,7 @@
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
((($) . T) (((-412 (-569))) . T))
(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
(((|#1|) |has| |#1| (-561)))
@@ -567,104 +567,104 @@
((((-569) |#3|) . T))
((((-867)) . T))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
((((-867)) . T))
((((-569) |#1|) . T))
(((|#1|) . T))
((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1183) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1185) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-173)))
-((($) -2774 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
-(((|#2| |#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
+((($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+(((|#2| |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($ $) |has| |#2| (-173)))
((((-144)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-372)) (|has| |#2| (-372)))
((((-867)) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173)))
(((|#1|) . T))
((((-867)) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(|has| $ (-147))
-((((-1188)) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
+((((-1190)) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
((((-569) |#1|) . T))
-((($) -2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+((($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))))
(|has| |#1| (-367))
-(-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))
+(-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))
(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
(|has| |#1| (-367))
(|has| |#1| (-15 * (|#1| (-776) |#1|)))
(((|#1|) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
((((-867)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
(((|#2| (-536 (-869 |#1|))) . T))
((((-867)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
((((-586 |#1|)) . T))
((($) . T))
((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
(((|#1|) . T) (($) . T))
((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
-((((-1181 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
-((((-1269 |#2|)) . T) (((-1181 |#1| |#2| |#3|)) . T) (((-1174 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((((-1183 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
+((((-1271 |#2|)) . T) (((-1183 |#1| |#2| |#3|)) . T) (((-1176 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
(((|#4|) . T))
(((|#3|) . T))
((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T))
-((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
+((((-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057))))
(((|#1|) . T))
((((-867)) . T))
((((-867)) . T))
-((((-569)) . T) (((-412 (-569))) -2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
((((-569) |#2|) . T))
((((-867)) . T))
((($) . T) (((-569)) . T) ((|#2|) . T) (((-412 (-569))) . T))
((((-867)) . T))
((((-867)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1181 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
-((((-867)) . T))
-(((|#2|) |has| |#2| (-1055)))
-(|has| |#1| (-1106))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1183 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) . T))
+(((|#2|) |has| |#2| (-1057)))
+(|has| |#1| (-1108))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) |has| |#1| (-173)) (($) . T))
(((|#1|) . T))
-(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
((((-867)) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-(((#0=(-1088) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+(((#0=(-1090) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
((($) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1106)) (((-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(((|#2|) |has| |#2| (-1108)) (((-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))))
(((|#2|) |has| |#1| (-367)))
((((-569) |#1|) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
((((-867)) . T))
((((-412 |#2|) |#3|) . T))
(((|#1| (-412 (-569))) . T))
@@ -673,37 +673,37 @@
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1190)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((((-1188)) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-1190)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-412 (-569))) . T) (($) . T))
((((-412 (-569))) . T) (($) . T))
((((-412 (-569))) . T) (($) . T))
(((|#2| |#3| (-869 |#1|)) . T))
-((((-1183)) |has| |#2| (-906 (-1183))))
+((((-1185)) |has| |#2| (-906 (-1185))))
(((|#1|) . T))
(((|#1| (-536 |#2|) |#2|) . T))
-(((|#1| (-776) (-1088)) . T))
+(((|#1| (-776) (-1090)) . T))
((((-412 (-569))) |has| |#2| (-367)) (($) . T))
-(((|#1| (-536 (-1094 (-1183))) (-1094 (-1183))) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#1| (-536 (-1096 (-1185))) (-1096 (-1185))) . T))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(((|#2|) . T))
(((|#1|) . T))
(((|#2|) . T))
-((((-1005 |#1|)) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2774 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-1007 |#1|)) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(|has| |#2| (-798))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#2| (-853))
((((-899 |#1|)) . T) (((-824 |#1|)) . T))
-((((-824 (-1183))) . T))
+((((-824 (-1185))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -714,134 +714,134 @@
((((-412 (-569))) . T) (((-867)) . T))
((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
(|has| |#1| (-234))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((((-1265 |#1| |#2| |#3|) $) -12 (|has| (-1265 |#1| |#2| |#3|) (-289 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((((-1267 |#1| |#2| |#3|) $) -12 (|has| (-1267 |#1| |#2| |#3|) (-289 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1146 |#1| |#2|)) |has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
-(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
-(((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+((((-1148 |#1| |#2|)) |has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
+(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
+(((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
(((|#2|) . T))
-((((-867)) -2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106))) (((-1273 |#2|)) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T) (($) . T))
+((((-867)) -2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) (((-1275 |#2|)) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T) (($) . T))
(((|#1|) |has| |#1| (-173)))
((((-569)) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-(|has| |#1| (-1106))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+(|has| |#1| (-1108))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-569) (-144)) . T))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))))
((((-569)) . T))
(((|#1|) . T) ((|#2|) . T) (((-569)) . T))
-((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-569)) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-569)) . T))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057)))
(((|#1|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057)))
((($) . T) (((-569)) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
(((|#2|) |has| |#1| (-367)))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((((-1188)) . T))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((((-1190)) . T))
((((-412 (-569))) . T) (((-569)) . T) (($) . T))
-(((|#1| (-536 #0=(-1183)) #0#) . T))
+(((|#1| (-536 #0=(-1185)) #0#) . T))
(((|#1|) . T) (($) . T))
((((-569)) . T))
(|has| |#4| (-173))
(|has| |#3| (-173))
(((#0=(-412 (-958 |#1|)) #0#) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-(|has| |#1| (-1106))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-(|has| |#1| (-1106))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+(|has| |#1| (-1108))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+(|has| |#1| (-1108))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
(((|#1| |#1|) |has| |#1| (-173)))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
((((-412 (-958 |#1|))) . T))
(((|#1|) . T) (((-569)) . T) (($) . T))
(((|#1|) |has| |#1| (-173)))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
((((-867)) . T))
((((-867)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1055)) (((-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))
+((((-1261 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1057)) (((-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))
(((|#1| |#2|) . T))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
(|has| |#3| (-798))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
(|has| |#3| (-853))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
(((|#2|) . T))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
-(((|#1| (-1163 |#1|)) |has| |#1| (-853)))
+(((|#1| (-1165 |#1|)) |has| |#1| (-853)))
((((-569) |#2|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#1|) . T))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-1158)))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-1160)))
((((-412 (-569))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((($) . T) (((-412 (-569))) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#2|) . T))
((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))))
-(((|#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-367))))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367))))
+(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367))))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367))))
((((-867)) . T))
(((|#1|) . T))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-915)))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-915)))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-915)))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-915)))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#2|) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
(((|#2|) . T))
-((($ $) . T) ((#0=(-1183) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-823 (-1183)) |#1|) . T) ((#1# $) . T))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-915)))
+((($ $) . T) ((#0=(-1185) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-823 (-1185)) |#1|) . T) ((#1# $) . T))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-915)))
((((-569) |#2|) . T))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((($) -2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))))
((((-569) |#1|) . T))
(|has| (-412 |#2|) (-147))
(|has| (-412 |#2|) (-145))
@@ -854,40 +854,40 @@
(|has| |#1| (-561))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-867)) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
(|has| |#1| (-38 (-412 (-569))))
-((((-393) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
+((((-393) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
(|has| |#1| (-38 (-412 (-569))))
-(|has| |#2| (-1158))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-((((-867)) . T) (((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1222)) . T) (((-867)) . T) (((-1188)) . T))
+(|has| |#2| (-1160))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((((-867)) . T) (((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-1224)) . T) (((-867)) . T) (((-1190)) . T))
((((-116 |#1|)) . T))
-((((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
(((|#1|) . T))
-((((-393) (-1165)) . T))
+((((-393) (-1167)) . T))
(|has| |#1| (-561))
((((-569) |#1|) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
(((|#2|) . T))
((((-867)) . T))
((((-824 |#1|)) . T))
(((|#2|) |has| |#2| (-173)))
-((((-1183) (-52)) . T))
+((((-1185) (-52)) . T))
(((|#1|) . T))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
@@ -896,24 +896,24 @@
((((-649 |#1|)) . T))
((((-867)) . T))
((((-541)) |has| |#1| (-619 (-541))))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(((|#2|) |has| |#2| (-312 |#2|)))
(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1179 |#1|)) . T))
+(((|#1| (-1181 |#1|)) . T))
(|has| $ (-147))
(((|#2|) . T))
(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
(|has| |#2| (-372))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(((|#1| |#2|) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
(((|#1| |#2|) . T))
((((-867)) . T))
@@ -921,81 +921,81 @@
((((-867)) . T))
((((-867)) . T))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
((((-867)) . T))
-((((-1181 |#1| |#2| |#3|) $) -12 (|has| (-1181 |#1| |#2| |#3|) (-289 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T))
+((((-1183 |#1| |#2| |#3|) $) -12 (|has| (-1183 |#1| |#2| |#3|) (-289 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T))
((($ $) . T))
((($ $) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((#0=(-1265 |#1| |#2| |#3|) #0#) -12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1183) #0#) -12 (|has| (-1265 |#1| |#2| |#3|) (-519 (-1183) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))
-(-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((#0=(-1267 |#1| |#2| |#3|) #0#) -12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1185) #0#) -12 (|has| (-1267 |#1| |#2| |#3|) (-519 (-1185) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+(-12 (|has| |#1| (-1108)) (|has| |#2| (-1108)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-569)) . T) (($) . T))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((($) . T) (((-569)) . T) ((|#2|) . T))
((((-569)) . T) (($) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
((((-412 (-569))) . T) (((-569)) . T))
((((-569) (-144)) . T))
((((-144)) . T))
(((|#1|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-112)) . T))
(((|#1|) . T))
-((((-541)) |has| |#1| (-619 (-541))) (((-226)) . #0=(|has| |#1| (-1028))) (((-383)) . #0#))
+((((-541)) |has| |#1| (-619 (-541))) (((-226)) . #0=(|has| |#1| (-1030))) (((-383)) . #0#))
((((-867)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
(|has| |#1| (-825))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-561)))
(|has| |#1| (-561))
(|has| |#1| (-855))
-((($) . T) (((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
(|has| |#1| (-915))
(((|#1|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-867)) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-561)))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
-(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
+(((|#1| (-1275 |#1|) (-1275 |#1|)) . T))
((((-569) (-144)) . T))
((($) . T))
-(-2774 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-((((-1188)) . T) (((-867)) . T))
-((((-1188)) . T))
+(-2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
+((((-1190)) . T) (((-867)) . T))
+((((-1190)) . T))
((((-867)) . T))
-(|has| |#1| (-1106))
-(((|#1| (-977)) . T))
+(|has| |#1| (-1108))
+(((|#1| (-979)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
(-12 (|has| |#1| (-478)) (|has| |#2| (-478)))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
((($) . T) (((-569)) . T) (((-875 |#1|)) . T) (((-412 (-569))) . T))
(((|#1|) . T))
(|has| |#2| (-798))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(|has| |#2| (-853))
(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
-(-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
+(-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-173)) ((|#4|) . T) (((-569)) . T))
(((|#2|) |has| |#2| (-173)))
@@ -1007,24 +1007,24 @@
(((|#1|) . T))
((((-412 (-569))) . T) (($) . T))
(((|#2|) . T) (($) . T) (((-412 (-569))) . T))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
(|has| |#1| (-833))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
-(|has| |#1| (-1106))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T))
+(|has| |#1| (-1108))
(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
((($) |has| |#1| (-561)))
(((|#2|) . T) (((-412 (-569))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1106)))
-(((|#3|) |has| |#3| (-1106)))
+(((|#4|) |has| |#4| (-1108)))
+(((|#3|) |has| |#3| (-1108)))
(|has| |#3| (-372))
-((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-569)) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-569)) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
((((-867)) . T))
((((-867)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1| |#1|) |has| |#1| (-173)))
(|has| |#2| (-367))
@@ -1032,37 +1032,37 @@
(((|#1|) |has| |#1| (-173)))
((((-412 (-569))) . T) (((-569)) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
((($) . T) (((-569)) . T))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
((((-144)) . T))
(((|#1|) . T))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))))
((((-144)) . T))
((((-144)) . T))
((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#) ((|#2|) . T) (((-569)) . T))
(((|#1| |#2| |#3|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057)))
(((|#1|) |has| |#1| (-173)))
(|has| $ (-147))
(|has| $ (-147))
-((((-1188)) . T))
+((((-1190)) . T))
(((|#1|) |has| |#1| (-173)))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-867)) . T))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1057)) (|has| |#1| (-1120)))
((($ $) |has| |#1| (-289 $ $)) ((|#1| $) |has| |#1| (-289 |#1| |#1|)))
(((|#1| (-412 (-569))) . T))
(((|#1|) . T))
((((-412 (-569))) . T) (((-569)) . T) (($) . T))
-((((-1183)) . T))
+((((-1185)) . T))
(|has| |#1| (-561))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
(|has| |#1| (-561))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
@@ -1073,35 +1073,35 @@
(|has| |#1| (-147))
(|has| |#1| (-145))
(|has| |#4| (-853))
-(((|#2| (-241 (-2426 |#1|) (-776)) (-869 |#1|)) . T))
+(((|#2| (-241 (-2428 |#1|) (-776)) (-869 |#1|)) . T))
(|has| |#3| (-853))
(((|#1| (-536 |#3|) |#3|) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
(((#0=(-412 (-569)) #0#) |has| |#2| (-367)) (($ $) . T))
((((-875 |#1|)) . T))
-(|has| |#1| (-147))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
((((-867)) . T))
-(|has| |#1| (-145))
+(|has| |#1| (-147))
((((-412 (-569))) |has| |#2| (-367)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
-(-2774 (|has| |#1| (-353)) (|has| |#1| (-372)))
-((((-1148 |#2| |#1|)) . T) ((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(|has| |#1| (-145))
+(-2776 (|has| |#1| (-353)) (|has| |#1| (-372)))
+((((-1150 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-173))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
-(((|#2|) . T) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))
+(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
((((-867)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
((((-704)) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(|has| |#1| (-561))
(((|#1|) . T))
(((|#1|) . T))
@@ -1110,12 +1110,12 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1183) (-52)) . T))
+((((-1185) (-52)) . T))
(((|#1|) . T) (($) . T))
-((((-1010 10)) . T) (((-412 (-569))) . T) (((-867)) . T))
+((((-1012 10)) . T) (((-412 (-569))) . T) (((-867)) . T))
((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
(((|#1|) . T))
-((((-1010 16)) . T) (((-412 (-569))) . T) (((-867)) . T))
+((((-1012 16)) . T) (((-412 (-569))) . T) (((-867)) . T))
((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
(((|#1| (-569)) . T))
((((-867)) . T))
@@ -1125,39 +1125,39 @@
(((|#1| (-412 (-569))) . T))
(((|#3|) . T) (((-617 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-569)) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
-(((#0=(-1181 |#1| |#2| |#3|) #0#) -12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1183) #0#) -12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+(((#0=(-1183 |#1| |#2| |#3|) #0#) -12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1185) #0#) -12 (|has| (-1183 |#1| |#2| |#3|) (-519 (-1185) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))))
((((-867)) . T))
((((-867)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) |has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))))
((((-867)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1183) (-52)) . T))
+((((-1185) (-52)) . T))
(((|#3|) . T))
((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-833))
((($) . T) (((-569)) . T) ((|#1|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(|has| (-1100 |#1|) (-1106))
-(((|#2| |#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367))))
-((((-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+(|has| (-1102 |#1|) (-1108))
+(((|#2| |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($ $) |has| |#2| (-173)))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367))))
+((((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173)))
((((-569)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
((((-776)) . T))
(((|#2|) |has| |#2| (-173)))
(((|#1|) |has| |#1| (-173)))
@@ -1165,7 +1165,7 @@
((((-569)) . T))
(((|#2|) . T))
((((-867)) . T))
-(((|#1| (-412 (-569)) (-1088)) . T))
+(((|#1| (-412 (-569)) (-1090)) . T))
(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
(|has| |#1| (-561))
@@ -1173,104 +1173,104 @@
((((-116 |#1|)) . T))
(((|#1|) . T))
((((-412 (-569))) . T) (($) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-561)))
-((((-1188)) . T))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-561)))
+((((-1190)) . T))
((($) . T) (((-412 (-569))) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-561)))
(|has| |#1| (-145))
((((-569)) . T))
(|has| |#1| (-147))
((((-569)) . T))
-((((-898 (-569))) . T) (((-898 (-383))) . T) (((-541)) . T) (((-1183)) . T))
+((((-898 (-569))) . T) (((-898 (-383))) . T) (((-541)) . T) (((-1185)) . T))
((((-867)) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
((($) . T))
(((|#1|) . T))
((((-867)) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-173)))
-((($) -2774 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
((((-875 |#1|)) . T))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
-(-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))
-(|has| |#2| (-1158))
-(((#0=(-52)) . T) (((-2 (|:| -2003 (-1183)) (|:| -2214 #0#))) . T))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108)))
+(-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))
+(|has| |#2| (-1160))
+(((#0=(-52)) . T) (((-2 (|:| -2006 (-1185)) (|:| -2216 #0#))) . T))
(((|#1| |#2|) . T))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(((|#1| (-569) (-1088)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1| (-412 (-569)) (-1088)) . T))
-((($) -2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
+(((|#1| (-569) (-1090)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1| (-412 (-569)) (-1090)) . T))
+((($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
((((-569) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-372))
(-12 (|has| |#1| (-372)) (|has| |#2| (-372)))
((((-867)) . T))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
+((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
(((|#1|) . T))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#4|) . T))
(|has| |#1| (-353))
-((((-569)) -2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055))) ((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
+((((-569)) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))
(((|#1|) . T))
(((|#4|) . T) (((-867)) . T))
-(((|#3|) . T) ((|#2|) . T) (($) -2774 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055))) (((-569)) . T) ((|#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))))
-(((|#2|) . T) (($) -2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) (((-569)) . T) ((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) #0#) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+(((|#3|) . T) ((|#2|) . T) (($) -2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057))) (((-569)) . T) ((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))))
+(((|#2|) . T) (($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) (((-569)) . T) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
(|has| |#1| (-561))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-867)) . T))
(((|#1| |#2|) . T))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-915)))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-915)))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-915)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-915)))
((((-412 (-569))) . T) (((-569)) . T))
((((-569)) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
((($) . T))
((((-867)) . T))
(((|#1|) . T))
((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
((((-867)) . T))
-(((|#3| |#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($ $) |has| |#3| (-173)))
-(|has| |#1| (-1028))
+(((|#3| |#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($ $) |has| |#3| (-173)))
+(|has| |#1| (-1030))
((((-867)) . T))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173)))
((((-569) (-112)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
(((|#1|) |has| |#1| (-312 |#1|)))
-((((-1188)) . T))
+((((-1190)) . T))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
-((((-1183) $) |has| |#1| (-519 (-1183) $)) (($ $) |has| |#1| (-312 $)) ((|#1| |#1|) |has| |#1| (-312 |#1|)) (((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)))
-((((-1183)) |has| |#1| (-906 (-1183))))
-(-2774 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))
+((((-1185) $) |has| |#1| (-519 (-1185) $)) (($ $) |has| |#1| (-312 $)) ((|#1| |#1|) |has| |#1| (-312 |#1|)) (((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)))
+((((-1185)) |has| |#1| (-906 (-1185))))
+(-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-393) |#1|) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
-(|has| |#1| (-1106))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(|has| |#1| (-1108))
(((|#2|) . T) (((-867)) . T))
((((-867)) . T))
(((|#2|) . T))
((((-916 |#1|)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
(((|#1| |#2|) . T))
((($) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
@@ -1279,29 +1279,29 @@
(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
(((|#1| |#1|) . T))
(((#0=(-875 |#1|)) |has| #0# (-312 #0#)))
-((((-569)) . T) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1044 (-412 (-569))))) ((|#1|) . T))
+((((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
(((|#1|) . T))
(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
(-12 (|has| |#1| (-798)) (|has| |#2| (-798)))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
((($) . T) (((-569)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-1208))
+(|has| |#1| (-1210))
(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
((((-412 (-569))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1055)))
-(((|#3|) |has| |#3| (-1055)))
+(((|#4|) |has| |#4| (-1057)))
+(((|#3|) |has| |#3| (-1057)))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
(|has| |#1| (-367))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
-((($ $) . T) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((($ $) . T) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
((((-867)) . T))
((((-867)) . T))
@@ -1316,29 +1316,29 @@
(((|#1| |#2|) . T))
(|has| |#1| (-853))
(|has| |#1| (-853))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-561)))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-561)))
((($) . T))
-(((#0=(-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) #0#) |has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))))
+(((#0=(-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) #0#) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))))
((($) . T))
((($) . T))
-(((|#2|) |has| |#2| (-1106)))
-((((-867)) -2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106))) (((-1273 |#2|)) . T))
+(((|#2|) |has| |#2| (-1108)))
+((((-867)) -2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) (((-1275 |#2|)) . T))
((($) . T))
((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-1165) (-52)) . T))
+((((-1167) (-52)) . T))
(((|#2|) |has| |#2| (-173)))
-((($) -2774 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
((((-867)) . T))
(((|#2|) . T))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
((((-569)) |has| #0=(-412 |#2|) (-644 (-569))) ((#0#) . T))
((($) . T) (((-569)) . T))
((((-569) (-144)) . T))
-((((-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((|#1| |#2|) . T))
+((((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#1| |#2|) . T))
((((-412 (-569))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-867)) . T))
((((-916 |#1|)) . T))
(|has| |#1| (-367))
@@ -1346,62 +1346,62 @@
(|has| |#1| (-367))
(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
(|has| |#1| (-853))
-((($) -2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
(|has| |#1| (-367))
(((|#1|) . T) (($) . T))
(|has| |#1| (-853))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
-((((-1183)) |has| |#1| (-906 (-1183))))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((((-1185)) |has| |#1| (-906 (-1185))))
(|has| |#1| (-853))
((((-511)) . T))
-(((|#1| (-1183)) . T))
-(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
-((((-867)) . T) (((-1188)) . T))
+(((|#1| (-1185)) . T))
+(((|#1| (-1275 |#1|) (-1275 |#1|)) . T))
+((((-867)) . T) (((-1190)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1188)) . T))
-(|has| |#1| (-1106))
-(((|#1| (-1183) (-823 (-1183)) (-536 (-823 (-1183)))) . T))
+((((-1190)) . T))
+(|has| |#1| (-1108))
+(((|#1| (-1185) (-823 (-1185)) (-536 (-823 (-1185)))) . T))
((((-412 (-958 |#1|))) . T))
((((-541)) . T))
((((-867)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((|#1| |#2|) . T))
+((((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-173)))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-173)))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
(((|#1|) . T))
((((-541)) |has| |#1| (-619 (-541))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))))
((((-867)) . T))
((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-(((|#2|) . T) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-511)) . T))
(|has| |#2| (-853))
((((-511)) . T))
-(-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))
+(-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))
(|has| |#1| (-561))
((((-875 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
-((((-1165) |#1|) . T))
-(|has| |#1| (-1158))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+((((-1167) |#1|) . T))
+(|has| |#1| (-1160))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
((((-964 |#1|)) . T))
-(((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-569))) (((-569)) |has| |#1| (-1044 (-569))) (((-1183)) |has| |#1| (-1044 (-1183))) ((|#1|) . T))
+(((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-569))) (((-569)) |has| |#1| (-1046 (-569))) (((-1185)) |has| |#1| (-1046 (-1185))) ((|#1|) . T))
((((-569) |#2|) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383))))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T) (((-569)) . T))
((((-649 |#4|)) . T) (((-867)) . T))
@@ -1409,37 +1409,37 @@
((((-541)) |has| |#4| (-619 (-541))))
((((-867)) . T) (((-649 |#4|)) . T))
((($) |has| |#1| (-853)))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
-((((-569)) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
+((((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))))
(((|#1|) . T))
-(((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
+(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
((((-649 |#4|)) . T) (((-867)) . T))
((((-541)) |has| |#4| (-619 (-541))))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
(((|#1|) . T))
-((((-1183)) |has| (-412 |#2|) (-906 (-1183))))
+((((-1185)) |has| (-412 |#2|) (-906 (-1185))))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) #0#) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
((($) . T))
((($) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-867)) -2774 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-618 (-867))) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1106))) (((-1273 |#3|)) . T))
+((((-867)) -2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-618 (-867))) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)) (|has| |#3| (-1108))) (((-1275 |#3|)) . T))
((((-569) |#2|) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
-(((|#2| |#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($ $) |has| |#2| (-173)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
+(((|#2| |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($ $) |has| |#2| (-173)))
(((|#2|) . T) (((-569)) . T))
((((-867)) . T))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#2|) . T))
((((-867)) . T))
((((-867)) . T))
-((((-1165) (-1183) (-569) (-226) (-867)) . T))
+((((-1167) (-1185) (-569) (-226) (-867)) . T))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
@@ -1472,12 +1472,12 @@
((((-412 (-569))) . T) (($) . T))
((((-867)) . T))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
((($) . T) (((-412 (-569))) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173)))
(|has| $ (-147))
((((-412 |#2|)) . T))
-((((-412 (-569))) |has| #0=(-412 |#2|) (-1044 (-412 (-569)))) (((-569)) |has| #0# (-1044 (-569))) ((#0#) . T))
+((((-412 (-569))) |has| #0=(-412 |#2|) (-1046 (-412 (-569)))) (((-569)) |has| #0# (-1046 (-569))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-173)))
(|has| |#2| (-145))
@@ -1485,30 +1485,30 @@
(((|#3|) |has| |#3| (-173)))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
(|has| |#1| (-147))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
(|has| |#1| (-147))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
(|has| |#1| (-147))
(((|#1|) . T))
(|has| |#2| (-234))
(((|#2|) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1183) (-52)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-1185) (-52)) . T))
((((-867)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
(((|#1| |#1|) . T))
-((((-1183)) |has| |#2| (-906 (-1183))))
+((((-1185)) |has| |#2| (-906 (-1185))))
((((-129)) . T))
((((-899 |#1|)) . T) ((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T))
((((-569) (-112)) . T))
(|has| |#1| (-561))
(((|#2|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-569)) . T) (((-824 (-1183))) . T))
+(((|#1|) . T) (((-569)) . T) (((-824 (-1185))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
@@ -1517,27 +1517,27 @@
(|has| |#1| (-38 (-412 (-569))))
(((|#3|) . T))
(|has| |#1| (-38 (-412 (-569))))
-((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))))
(((|#1|) . T))
-((((-1010 2)) . T) (((-412 (-569))) . T) (((-867)) . T))
+((((-1012 2)) . T) (((-412 (-569))) . T) (((-867)) . T))
((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
-((((-1005 |#1|)) . T) ((|#1|) . T))
+((((-1007 |#1|)) . T) ((|#1|) . T))
((((-867)) . T))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1179 |#1|)) . T))
+(((|#1| (-1181 |#1|)) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
(((|#3|) . T) (($) . T))
(|has| |#1| (-855))
(((|#1|) . T) (((-569)) . T) (($) . T))
(((|#2|) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
((((-569) |#2|) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
@@ -1545,36 +1545,36 @@
((((-569) |#3|) . T))
(((|#2|) . T))
((((-867)) . T))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
-(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
+(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) #0#) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#2| (-367))
-(((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+(((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))))
(|has| |#1| (-38 (-412 (-569))))
(((|#2|) . T))
(|has| |#1| (-38 (-412 (-569))))
(((|#2|) . T))
(((|#1|) |has| |#1| (-173)))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T))
-((((-1165) (-52)) . T))
+((((-1167) (-52)) . T))
(((|#1|) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#2|) |has| |#2| (-173)))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-569)) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) (((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))))
((((-569) |#3|) . T))
((((-569) (-144)) . T))
((((-144)) . T))
((((-867)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
((((-112)) . T))
(|has| |#1| (-147))
(((|#1|) . T))
@@ -1582,7 +1582,7 @@
((($) . T))
(|has| |#1| (-561))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
((((-144)) . T))
@@ -1590,97 +1590,97 @@
((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
-((((-1165) (-52)) . T))
+((((-1167) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1| |#2|) . T))
((((-569) (-144)) . T))
-(((#0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) #0#) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(|has| |#1| (-855))
-(((|#2| (-776) (-1088)) . T))
+(((|#2| (-776) (-1090)) . T))
(((|#1| |#2|) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-561)))
(|has| |#1| (-796))
(((|#1|) |has| |#1| (-173)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-2774 (|has| |#1| (-147)) (-12 (|has| |#1| (-367)) (|has| |#2| (-147))))
-(-2774 (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| |#2| (-145))))
+(-2776 (|has| |#1| (-147)) (-12 (|has| |#1| (-367)) (|has| |#2| (-147))))
+(-2776 (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| |#2| (-145))))
(((|#4|) . T))
(|has| |#1| (-145))
-((((-1165) |#1|) . T))
+((((-1167) |#1|) . T))
(|has| |#1| (-147))
(((|#1|) . T))
((((-569)) . T))
((((-867)) . T))
(((|#1| |#2|) . T))
((((-867)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#3|) . T))
-((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T))
((((-867)) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(((|#1|) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))) (((-964 |#1|)) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))) (((-964 |#1|)) . T))
(|has| |#1| (-853))
(|has| |#1| (-853))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-964 |#1|)) . T))
-(((|#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-367))))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367))))
+(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367))))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367))))
(|has| |#2| (-367))
(((|#1|) |has| |#1| (-173)))
-(((|#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))) (($) |has| |#4| (-173)))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
-(((|#2|) |has| |#2| (-1055)))
-((((-1165) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))) (($) |has| |#4| (-173)))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173)))
+(((|#2|) |has| |#2| (-1057)))
+((((-1167) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))
(((|#2| (-899 |#1|)) . T))
((($) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
-((((-393) (-1165)) . T))
+((((-393) (-1167)) . T))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-867)) -2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106))) (((-1273 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2003 (-1165)) (|:| -2214 #0#))) . T))
+((((-867)) -2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) (((-1275 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2006 (-1167)) (|:| -2216 #0#))) . T))
(((|#1|) . T))
((((-867)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
((((-144)) . T))
(|has| |#2| (-145))
((((-569)) . T))
(|has| |#2| (-147))
(|has| |#1| (-478))
-(-2774 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+(-2776 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))
(|has| |#1| (-367))
((((-867)) . T))
(|has| |#1| (-38 (-412 (-569))))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
((($) |has| |#1| (-561)))
-((((-1188)) . T))
+((((-1190)) . T))
(|has| |#1| (-853))
(|has| |#1| (-853))
((((-867)) . T))
(((|#2|) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1183)) |has| |#1| (-906 (-1183))))
+((((-1185)) |has| |#1| (-906 (-1185))))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
((((-867)) . T))
((((-867)) . T))
-(|has| |#1| (-1106))
-(((|#2| (-487 (-2426 |#1|) (-776)) (-869 |#1|)) . T))
+(|has| |#1| (-1108))
+(((|#2| (-487 (-2428 |#1|) (-776)) (-869 |#1|)) . T))
((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#))
-(((|#1| (-536 (-1183)) (-1183)) . T))
+(((|#1| (-536 (-1185)) (-1185)) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-867)) . T))
@@ -1699,18 +1699,18 @@
(((|#2|) |has| |#2| (-173)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-1183) (-52)) . T))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
+((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-1185) (-52)) . T))
((($ $) . T))
(((|#1| (-569)) . T))
((((-916 |#1|)) . T))
-(((|#1|) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))) (($) -2774 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
-(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057))) (($) -2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))))
+(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
(|has| |#1| (-855))
(|has| |#1| (-855))
((((-569) |#2|) . T))
@@ -1719,30 +1719,30 @@
((((-569)) . T))
(|has| |#1| (-855))
((((-694 |#2|)) . T) (((-867)) . T))
-((((-1265 |#1| |#2| |#3|)) -12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+((((-1267 |#1| |#2| |#3|)) -12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))))
((((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1| |#2|) . T))
((((-412 (-958 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
(((|#1|) |has| |#1| (-173)))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367))))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(-2774 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-915)))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367))))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(-2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-915)))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
((((-569) |#2|) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367))))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367))))
(|has| |#1| (-353))
-(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))
(((|#2|) . T) (((-569)) . T))
((($) . T) (((-412 (-569))) . T))
((((-569) (-112)) . T))
(|has| |#1| (-825))
(|has| |#1| (-825))
(((|#1|) . T))
-(-2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
(|has| |#1| (-853))
(|has| |#1| (-853))
(|has| |#1| (-853))
@@ -1751,22 +1751,22 @@
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-1185)) |has| |#1| (-906 (-1185))) (((-1090)) . T))
(((|#1|) . T))
(|has| |#1| (-853))
-(((#0=(-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) #0#) |has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(|has| |#1| (-1106))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
+(((#0=(-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) #0#) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(|has| |#1| (-1108))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-((((-1148 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T) (((-569)) . T))
+((((-1150 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T) (((-569)) . T))
(((|#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
@@ -1778,14 +1778,14 @@
(((|#1| (-536 |#2|) |#2|) . T))
((((-867)) . T))
((((-144)) . T) (((-867)) . T))
-(((|#1| (-776) (-1088)) . T))
+(((|#1| (-776) (-1090)) . T))
(((|#3|) . T))
((((-144)) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) -2774 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))) ((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) -2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))) ((|#1|) . T))
(((|#1|) . T))
((((-144)) . T))
(((|#2|) |has| |#2| (-173)))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108)))
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -1797,78 +1797,78 @@
((((-867)) . T))
((((-867)) . T))
(((|#2|) . T))
-(((|#1| (-1179 |#1|)) . T))
-((((-1088)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(((|#1| (-1181 |#1|)) . T))
+((((-1090)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
((($) . T) ((|#1|) . T) (((-412 (-569))) . T))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
((($) |has| |#1| (-561)))
(((|#2|) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) . T))
((($) |has| |#1| (-853)))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
(|has| |#1| (-915))
-((((-1183)) . T))
+((((-1185)) . T))
((((-867)) . T))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((#0=(-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) #0#) |has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-915)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-915)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((#0=(-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) #0#) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-915)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367))))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367))))
(|has| |#1| (-855))
(|has| |#1| (-561))
((((-586 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-2774 (-12 (|has| |#1| (-367)) (|has| |#2| (-825))) (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-825))) (-12 (|has| |#1| (-367)) (|has| |#2| (-855))))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
((((-916 |#1|)) . T))
(((|#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-776)) . T))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
((((-677 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-867)) . T) (((-1188)) . T))
+((((-867)) . T) (((-1190)) . T))
((((-541)) . T))
((((-867)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-867)) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((((-1188)) . T))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-1190)) . T))
((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-569)) . T))
(((|#3|) . T) (((-569)) . T) (((-617 $)) . T))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
(((|#2|) . T))
-(-2774 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1106)))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
-(|has| |#1| (-1208))
-(|has| |#1| (-1208))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
-(|has| |#1| (-1208))
-(|has| |#1| (-1208))
+(-2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)) (|has| |#3| (-1108)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T))
+(|has| |#1| (-1210))
+(|has| |#1| (-1210))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108)))
+(|has| |#1| (-1210))
+(|has| |#1| (-1210))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
((($ $) . T) ((#0=(-412 (-569)) #0#) . T) ((#1=(-412 |#1|) #1#) . T) ((|#1| |#1|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
@@ -1881,55 +1881,55 @@
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
-((((-1165) (-52)) . T))
-(|has| |#1| (-1106))
+((((-1167) (-52)) . T))
+(|has| |#1| (-1108))
(((|#1|) |has| |#1| (-173)) (($) . T))
-(-2774 (|has| |#2| (-825)) (|has| |#2| (-855)))
+(-2776 (|has| |#2| (-825)) (|has| |#2| (-855)))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
((((-569)) . T) (($) . T))
((((-776)) . T))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-867)) . T))
((($) . T) (((-569)) . T))
((($) . T))
(|has| |#2| (-915))
(|has| |#1| (-367))
-(((|#2|) |has| |#2| (-1106)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-((((-541)) . T) (((-412 (-1179 (-569)))) . T) (((-226)) . T) (((-383)) . T))
+(((|#2|) |has| |#2| (-1108)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-541)) . T) (((-412 (-1181 (-569)))) . T) (((-226)) . T) (((-383)) . T))
((((-383)) . T) (((-226)) . T) (((-867)) . T))
(|has| |#1| (-915))
(|has| |#1| (-915))
(|has| |#1| (-915))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-915)))
((($) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
((($) . T) ((|#2|) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367))))
-((((-1181 |#1| |#2| |#3|)) -12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367))))
+((((-1183 |#1| |#2| |#3|)) -12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
(((|#1|) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173)))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
((((-867)) . T))
((((-867)) . T))
((($ $) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((($ $) . T))
((((-569) (-112)) . T))
((($) . T))
(((|#1|) . T))
((((-569)) . T))
((((-112)) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561)))
(|has| |#1| (-38 (-412 (-569))))
(((|#1| (-569)) . T))
((($) . T))
@@ -1938,33 +1938,33 @@
(((|#1|) . T))
((((-569)) . T))
(((|#1| |#2|) . T))
-((((-1183)) |has| |#1| (-1055)))
+((((-1185)) |has| |#1| (-1057)))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(((|#1|) . T))
((((-867)) . T))
(((|#1| (-569)) . T))
-(((|#1| (-1265 |#1| |#2| |#3|)) . T))
+(((|#1| (-1267 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-412 (-569))) . T))
-(((|#1| (-1237 |#1| |#2| |#3|)) . T))
+(((|#1| (-1239 |#1| |#2| |#3|)) . T))
(((|#1| (-776)) . T))
(((|#1|) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-867)) . T))
-(|has| |#1| (-1106))
-((((-1165) |#1|) . T))
+(|has| |#1| (-1108))
+((((-1167) |#1|) . T))
((($) . T))
(|has| |#2| (-147))
(|has| |#2| (-145))
-(((|#1| (-536 (-823 (-1183))) (-823 (-1183))) . T))
+(((|#1| (-536 (-823 (-1185))) (-823 (-1185))) . T))
((((-867)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1055)))
+((((-1261 |#1| |#2| |#3| |#4|)) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1057)))
((((-569) (-112)) . T))
-((((-867)) |has| |#1| (-1106)))
+((((-867)) |has| |#1| (-1108)))
(((|#1|) . T) (((-569)) . T) (($) . T))
(|has| |#2| (-173))
((((-569)) . T))
@@ -1972,61 +1972,61 @@
(((|#1|) . T))
((((-569)) . T))
((((-867)) . T))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-353)))
((((-867)) . T))
(|has| |#1| (-147))
(((|#3|) . T))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
((((-867)) . T))
-((((-1258 |#2| |#3| |#4|)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-1260 |#2| |#3| |#4|)) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T))
((((-867)) . T))
-((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (((-617 $)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) -2774 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1055)) (((-1183)) . T))
+((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (((-617 $)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) -2776 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1057)) (((-1185)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-776)) . T))
(((|#1|) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(((|#1|) |has| |#1| (-312 |#1|)))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T))
((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-561))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
(((|#1|) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
-(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173)))
+(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
(((|#1|) |has| |#1| (-173)))
((((-867)) . T))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
(((|#1|) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
-(((|#3|) |has| |#3| (-1106)))
+(((|#3|) |has| |#3| (-1108)))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367))))
-((((-1258 |#2| |#3| |#4|)) . T))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367))))
+((((-1260 |#2| |#3| |#4|)) . T))
((((-112)) . T))
(|has| |#1| (-825))
(|has| |#1| (-825))
-(((|#1| (-569) (-1088)) . T))
+(((|#1| (-569) (-1090)) . T))
((($) |has| |#1| (-312 $)) ((|#1|) |has| |#1| (-312 |#1|)))
(|has| |#1| (-853))
(|has| |#1| (-853))
-(((|#1| (-569) (-1088)) . T))
-(-2774 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-(((|#1| (-412 (-569)) (-1088)) . T))
-(((|#1| (-776) (-1088)) . T))
+(((|#1| (-569) (-1090)) . T))
+(-2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+(((|#1| (-412 (-569)) (-1090)) . T))
+(((|#1| (-776) (-1090)) . T))
(|has| |#1| (-855))
(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T))
(|has| |#2| (-145))
@@ -2034,45 +2034,45 @@
(((|#2|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-412 (-569))) |has| |#2| (-367)) (($) . T) (((-569)) . T))
-((((-569)) -2774 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
+((((-569)) -2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))))
(((|#1|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-569)))) ((|#2|) |has| |#1| (-367)))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
-((((-694 (-343 (-3806) (-3806 (QUOTE X) (QUOTE HESS)) (-704)))) . T))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108)))
+((((-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704)))) . T))
(((|#2|) |has| |#2| (-173)))
(((|#1|) |has| |#1| (-173)))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
((((-867)) . T))
(|has| |#3| (-853))
((((-867)) . T))
-((((-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
+((((-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
((((-867)) . T))
-(((|#1| |#1|) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
+(((|#1| |#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057))))
(((|#1|) . T))
((((-569)) . T))
((((-569)) . T))
-(((|#1|) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
+(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057))))
(((|#2|) |has| |#2| (-367)))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
(|has| |#1| (-855))
(((|#1|) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#1|) . T) (((-569)) . T))
(((|#2|) . T))
((((-569)) . T) ((|#3|) . T))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) |has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-915)))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-915)))
(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
((((-867)) . T))
((((-867)) . T))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-569)) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) (((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))))
((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
((((-867)) . T))
(|has| |#1| (-38 (-412 (-569))))
@@ -2087,10 +2087,10 @@
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| (-1181 |#1| |#2| |#3|)) . T))
+(((|#1| (-1183 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-412 (-569))) . T))
-(((|#1| (-1174 |#1| |#2| |#3|)) . T))
+(((|#1| (-1176 |#1| |#2| |#3|)) . T))
(((|#1| |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
(((|#1| (-776)) . T))
(((|#1|) . T))
@@ -2105,54 +2105,54 @@
(|has| |#1| (-145))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) |has| |#1| (-173)))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-569)) . T) ((|#1|) . T) (($) . T) (((-412 (-569))) . T) (((-1183)) |has| |#1| (-1044 (-1183))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-569)) . T) ((|#1|) . T) (($) . T) (((-412 (-569))) . T) (((-1185)) |has| |#1| (-1046 (-1185))))
(((|#1| |#2|) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) -2774 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))) ((|#1|) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) -2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))) ((|#1|) . T))
((((-144)) . T))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(((|#1|) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) . T) (($ $) . T))
(((|#2|) . T) ((|#1|) . T) (((-569)) . T))
((((-867)) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| (-412 |#2|) (-234))
((((-649 |#1|)) . T))
(|has| |#1| (-915))
-(((|#2|) |has| |#2| (-1055)))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+(((|#2|) |has| |#2| (-1057)))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
(|has| |#1| (-367))
(((|#1|) |has| |#1| (-173)))
(((|#1| |#1|) . T))
((((-875 |#1|)) . T))
((((-867)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1106)))
+(((|#2|) |has| |#2| (-1108)))
(((|#1|) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
-((((-649 $)) . T) (((-1165)) . T) (((-1183)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T))
-((($) -2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) (((-569)) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
+((((-649 $)) . T) (((-1167)) . T) (((-1185)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T))
+((($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) (((-569)) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))))
((((-412 (-569))) . T) (((-569)) . T) (((-617 $)) . T))
(((|#1|) . T))
((((-867)) . T))
((($) . T))
(((|#1| (-536 |#2|) |#2|) . T))
((((-867)) . T))
-(((|#1| (-569) (-1088)) . T))
-(((|#1| (-412 (-569)) (-1088)) . T))
+(((|#1| (-569) (-1090)) . T))
+(((|#1| (-412 (-569)) (-1090)) . T))
((((-916 |#1|)) . T))
((((-867)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-776) (-1088)) . T))
+(((|#1| (-776) (-1090)) . T))
(((#0=(-412 |#2|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-569)) -2774 (|has| (-412 (-569)) (-1044 (-569))) (|has| |#1| (-1044 (-569)))) (((-412 (-569))) . T))
+(((|#1|) . T) (((-569)) -2776 (|has| (-412 (-569)) (-1046 (-569))) (|has| |#1| (-1046 (-569)))) (((-412 (-569))) . T))
(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
@@ -2172,13 +2172,13 @@
((((-704)) . T))
(((|#2|) |has| |#2| (-173)))
(|has| |#2| (-853))
-((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
-((((-112)) |has| |#1| (-1106)) (((-867)) -2774 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1106))))
+((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))))
+((((-112)) |has| |#1| (-1108)) (((-867)) -2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120)) (|has| |#1| (-1108))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
@@ -2190,33 +2190,33 @@
((((-704)) . T) (((-412 (-569))) . T) (((-569)) . T))
(((|#1| |#1|) |has| |#1| (-173)))
(((|#2|) . T))
-((($) . T) (((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
((((-569) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
((((-383)) . T))
((((-704)) . T))
((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#))
(((|#1|) |has| |#1| (-173)))
((((-412 (-958 |#1|))) . T))
(((|#2| |#2|) . T))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#3|) |has| |#3| (-1055)))
+(((|#3|) |has| |#3| (-1057)))
(|has| |#2| (-915))
(|has| |#1| (-915))
(|has| |#1| (-367))
-((((-1183)) |has| |#2| (-906 (-1183))))
+((((-1185)) |has| |#2| (-906 (-1185))))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-412 (-569))) . T) (($) . T))
(|has| |#1| (-478))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-367))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1055)) (|has| |#1| (-1118)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1057)) (|has| |#1| (-1120)))
(|has| |#1| (-38 (-412 (-569))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
@@ -2237,18 +2237,18 @@
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-855))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
(((|#1| |#2|) . T))
((($) . T) (((-569)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) ((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) ((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
(|has| |#1| (-372))
(|has| |#1| (-855))
-(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T))
((((-116 |#1|)) . T))
(((|#1|) |has| |#1| (-173)))
(((|#2|) |has| |#2| (-173)))
@@ -2259,51 +2259,51 @@
(|has| |#1| (-367))
((((-867)) . T))
((((-867)) . T))
-((((-541)) |has| |#1| (-619 (-541))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#1| (-1028))) (((-226)) . #0#))
+((((-541)) |has| |#1| (-619 (-541))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#1| (-1030))) (((-226)) . #0#))
(((|#1|) |has| |#1| (-367)))
((((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((($ $) . T) (((-617 $) $) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-((($) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T))
-((($) -2774 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)))
-((($) . T) (((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+((($) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T))
+((($) -2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)))
+((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-367))
((((-383)) . T) (((-569)) . T) (((-412 (-569))) . T))
((((-649 (-785 |#1| (-869 |#2|)))) . T) (((-867)) . T))
((((-541)) |has| (-785 |#1| (-869 |#2|)) (-619 (-541))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-383)) . T))
(((|#1|) |has| |#1| (-173)))
-(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))
(((|#1|) |has| |#1| (-173)))
((((-867)) . T))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-915)))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-915)))
(((|#1|) . T))
((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
((((-776)) . T))
-(|has| |#1| (-1106))
-((($) -2774 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1055))) (((-569)) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055))) ((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))))
+(|has| |#1| (-1108))
+((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) (((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))))
((((-867)) . T))
-((((-1183)) . T) (((-867)) . T))
+((((-1185)) . T) (((-867)) . T))
((((-569)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
((((-412 (-569))) . T) (((-569)) . T) (((-617 $)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
((((-569)) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-(((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (($) . T))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (($) . T))
((((-569)) . T))
(|has| |#1| (-367))
-(-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147)))
-(-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145)))
+(-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147)))
+(-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145)))
(|has| |#1| (-367))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -2319,52 +2319,52 @@
(((|#2|) . T))
((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#))
((((-412 (-569))) |has| |#2| (-367)) (($) . T))
-(|has| |#1| (-1106))
-((((-1148 |#2| |#1|)) . T) ((|#1|) . T) (((-569)) . T))
+(|has| |#1| (-1108))
+((((-1150 |#2| |#1|)) . T) ((|#1|) . T) (((-569)) . T))
(((|#1| |#2|) . T))
-((((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))
+((((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))
(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
(((|#3|) |has| |#3| (-173)))
(((|#2|) . T) (($) . T) (((-569)) . T))
(((|#1|) . T) (($) . T) (((-569)) . T))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108)))
((((-867)) . T))
((((-569)) . T))
(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
((((-958 |#1|)) . T) (((-867)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-293)) (|has| |#1| (-367))) ((#0=(-412 (-569)) #0#) |has| |#1| (-367)))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
+(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-293)) (|has| |#1| (-367))) ((#0=(-412 (-569)) #0#) |has| |#1| (-367)))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
((((-958 |#1|)) . T))
((($) . T))
((((-569) |#1|) . T))
-((((-1183)) |has| (-412 |#2|) (-906 (-1183))))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367)))
+((((-1185)) |has| (-412 |#2|) (-906 (-1185))))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367)))
((((-541)) |has| |#2| (-619 (-541))))
((((-694 |#2|)) . T) (((-867)) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
((((-875 |#1|)) . T))
(((|#1|) |has| |#1| (-173)))
-(-2774 (|has| |#4| (-798)) (|has| |#4| (-853)))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(-2776 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-867)) . T))
((((-867)) . T))
(((|#1|) . T))
((($) . T) (((-569)) . T) ((|#2|) . T))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367))))
-(((|#2|) |has| |#2| (-1055)))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367))))
+(((|#2|) |has| |#2| (-1057)))
(((|#3|) . T))
(((|#1|) . T))
((((-412 |#2|)) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367))))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367))))
(((|#1|) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173)))
+(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))
((((-569) |#1|) . T))
(((|#1|) . T))
((($) . T))
@@ -2372,18 +2372,18 @@
((((-412 (-569))) . T) (($) . T))
((((-412 (-569))) . T) (($) . T))
((((-412 (-569))) . T) (($) . T))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-1227)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-1229)))
((($) . T))
-((((-412 (-569))) |has| #0=(-412 |#2|) (-1044 (-412 (-569)))) (((-569)) |has| #0# (-1044 (-569))) ((#0#) . T))
+((((-412 (-569))) |has| #0=(-412 |#2|) (-1046 (-412 (-569)))) (((-569)) |has| #0# (-1046 (-569))) ((#0#) . T))
(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
(((|#1| (-776)) . T))
(|has| |#1| (-855))
(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
((((-569)) . T))
(|has| |#1| (-38 (-412 (-569))))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) |has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(|has| |#1| (-853))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
@@ -2404,63 +2404,63 @@
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-((((-1165)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T))
+((((-1167)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T))
((((-867)) . T))
-(((|#2|) . T) (((-569)) . T) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1088)) . T) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+(((|#2|) . T) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1090)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))
(((|#1| |#2|) . T))
((((-144)) . T))
((((-785 |#1| (-869 |#2|))) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-(|has| |#1| (-1208))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+(|has| |#1| (-1210))
((((-867)) . T))
(((|#1|) . T))
-(-2774 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)) (|has| |#3| (-1106)))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)))
+(-2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)) (|has| |#3| (-1108)))
+((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)))
(((|#2|) . T))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
((((-916 |#1|)) . T))
((($) . T))
((((-412 (-958 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-541)) |has| |#4| (-619 (-541))))
((((-867)) . T) (((-649 |#4|)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-853))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) |has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))))
-(|has| |#1| (-1106))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))))
+(|has| |#1| (-1108))
(|has| |#1| (-367))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367))))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367))))
((((-677 |#1|)) . T))
-(((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))) (($) |has| |#3| (-173)))
+(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173)))
((($) . T) (((-412 (-569))) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147)))
-(-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145)))
+(-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147)))
+(-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145)))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)))
(|has| |#1| (-853))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T) (((-569)) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#2|) |has| |#2| (-173)))
((((-569)) . T) ((|#1|) . T))
(((|#2|) . T) (($) . T) (((-569)) . T))
@@ -2473,10 +2473,10 @@
((((-867)) . T))
((((-867)) . T))
((((-541)) |has| |#1| (-619 (-541))))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-569)) . T) (($) . T) (((-412 (-569))) . T))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
-(((|#1|) -2774 (|has| |#1| (-173)) (|has| |#1| (-367))))
+((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367))))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
@@ -2486,35 +2486,35 @@
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#2|) |has| |#2| (-367)))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
(((|#2|) . T))
((((-412 (-569))) . T) (((-704)) . T) (($) . T))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((#0=(-785 |#1| (-869 |#2|)) #0#) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))))
((((-569)) . T) (($) . T))
((((-869 |#1|)) . T))
(((|#2|) |has| |#2| (-173)))
(((|#1|) |has| |#1| (-173)))
(((|#2|) . T))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1094 (-1183))) . T))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+((((-1185)) |has| |#1| (-906 (-1185))) (((-1090)) . T))
+((((-1185)) |has| |#1| (-906 (-1185))) (((-1096 (-1185))) . T))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
((((-412 (-569))) . T) (((-569)) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(|has| |#1| (-38 (-412 (-569))))
-(((|#4|) |has| |#4| (-1055)) (((-569)) -12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))))
-(((|#3|) |has| |#3| (-1055)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))))
+(((|#4|) |has| |#4| (-1057)) (((-569)) -12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))))
+(((|#3|) |has| |#3| (-1057)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))))
(|has| |#1| (-145))
(|has| |#1| (-147))
((($ $) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120)) (|has| |#1| (-1108)))
(|has| |#1| (-561))
(((|#2|) . T))
((((-569)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#1|) . T))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
((((-586 |#1|)) . T))
((($) . T))
@@ -2523,7 +2523,7 @@
((($) . T))
(((|#1|) . T))
((((-867)) . T))
-(((|#2|) |has| |#2| (-6 (-4446 "*"))))
+(((|#2|) |has| |#2| (-6 (-4449 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
@@ -2533,74 +2533,74 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T) (((-569)) . T))
-((((-1258 |#2| |#3| |#4|)) . T) (((-569)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
-((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (((-569)) -2774 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))) (|has| |#1| (-1055))) ((|#1|) . T) (((-617 $)) . T) (($) |has| |#1| (-561)) (((-412 (-569))) -2774 (|has| |#1| (-561)) (|has| |#1| (-1044 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1055)) (((-1183)) . T))
-((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((((-1260 |#2| |#3| |#4|)) . T) (((-569)) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (((-569)) -2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))) (|has| |#1| (-1057))) ((|#1|) . T) (((-617 $)) . T) (($) |has| |#1| (-561)) (((-412 (-569))) -2776 (|has| |#1| (-561)) (|has| |#1| (-1046 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1057)) (((-1185)) . T))
+((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
((($) . T) (((-116 |#1|)) . T) (((-412 (-569))) . T))
-((((-1131 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
-((((-1179 |#1|)) . T) (((-1088)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
-((((-1131 |#1| (-1183))) . T) (((-1094 (-1183))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-1183)) . T))
-(|has| |#1| (-1106))
+((((-1133 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
+((((-1181 |#1|)) . T) (((-1090)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
+((((-1133 |#1| (-1185))) . T) (((-1096 (-1185))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-1185)) . T))
+(|has| |#1| (-1108))
((($) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))) (((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383)))))
(((|#1| |#2|) . T))
-((((-1183) |#1|) . T))
+((((-1185) |#1|) . T))
(((|#4|) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
-((((-1183) (-52)) . T))
-((((-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-1185) (-52)) . T))
+((((-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T))
((((-867)) . T))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)) (|has| |#2| (-1106)))
-(((#0=(-1259 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108)))
+(((#0=(-1261 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-173)) ((#0=(-412 (-569)) #0#) |has| |#1| (-561)) (($ $) |has| |#1| (-561)))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#1| $) |has| |#1| (-289 |#1| |#1|)))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)) (($) |has| |#1| (-561)))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
(|has| |#1| (-367))
-((($) |has| |#1| (-853)) (((-569)) -2774 (|has| |#1| (-21)) (|has| |#1| (-853))))
+((($) |has| |#1| (-853)) (((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-853))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
((((-412 (-569))) . T) (($) . T))
(((|#3|) |has| |#3| (-367)))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
-((((-1183)) . T))
-((($) . T) (((-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569)))) (((-569)) . T))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
+((((-1185)) . T))
+((($) . T) (((-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569)))) (((-569)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
(((|#2| |#3|) . T))
-(-2774 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
(((|#1| (-536 |#2|)) . T))
(((|#1| (-776)) . T))
-(((|#1| (-536 (-1094 (-1183)))) . T))
+(((|#1| (-536 (-1096 (-1185)))) . T))
(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
(|has| |#2| (-915))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
((((-867)) . T))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367))))
-(((|#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1055))) (($) |has| |#2| (-173)))
-((($ $) . T) ((#0=(-1258 |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) |has| #0# (-38 (-412 (-569)))))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367))))
+(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173)))
+((($ $) . T) ((#0=(-1260 |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) |has| #0# (-38 (-412 (-569)))))
((((-916 |#1|)) . T))
(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
((($) . T) (((-412 (-569))) . T))
((((-867)) . T))
((($) . T))
((($) . T))
-(-2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561)))
(|has| |#1| (-367))
(|has| |#1| (-367))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367)) (|has| |#1| (-353)))
-(-2774 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)))
+((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))
((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-867)) . T))
@@ -2623,13 +2623,13 @@
(((|#1|) . T))
((((-867)) . T))
(((|#2|) |has| |#2| (-173)))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#1|) |has| |#1| (-173)))
(((|#2|) . T))
(((|#1|) . T))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-569)) . T) (($) . T))
(((|#3|) . T) (((-569)) . T) (($) . T))
((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T))
@@ -2639,40 +2639,40 @@
((($ $) . T))
((($) . T))
((((-867)) . T))
-(((|#1| (-536 (-1183))) . T))
+(((|#1| (-536 (-1185))) . T))
(((|#1|) |has| |#1| (-173)))
((((-867)) . T))
(((|#2|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
(((|#2|) . T))
-(((|#2|) -2774 (|has| |#2| (-6 (-4446 "*"))) (|has| |#2| (-173))))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#2|) -2776 (|has| |#2| (-6 (-4449 "*"))) (|has| |#2| (-173))))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(|has| |#2| (-915))
(|has| |#1| (-915))
(((|#2|) |has| |#2| (-173)))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)))
((((-867)) . T))
((((-867)) . T))
((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
(((|#1| |#2|) . T))
((($) . T) (((-569)) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T))
(((|#1|) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-867)) . T))
(((|#1| |#2|) . T))
((($) . T) (((-569)) . T))
(((|#1| (-412 (-569))) . T))
(((|#1|) . T))
-(-2774 (|has| |#1| (-293)) (|has| |#1| (-367)))
+(-2776 (|has| |#1| (-293)) (|has| |#1| (-367)))
((((-144)) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
(|has| |#1| (-853))
((((-867)) . T))
((((-867)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1| |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2682,20 +2682,20 @@
((((-867)) . T))
((((-867)) . T))
((((-188)) . T) (((-867)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-867)) . T))
((((-867)) . T))
((((-541)) |has| |#1| (-619 (-541))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))))
-((((-1183) (-52)) . T))
+((((-1185) (-52)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-649 (-144))) . T) (((-1165)) . T))
+((((-649 (-144))) . T) (((-1167)) . T))
((((-867)) . T))
-((((-1165)) . T))
-((((-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
+((((-1167)) . T))
+((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|)))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
(|has| |#1| (-855))
((((-867)) . T))
((((-541)) |has| |#1| (-619 (-541))))
@@ -2707,16 +2707,16 @@
(((|#2|) . T))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T) (((-617 $)) . T))
-(-2774 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-((((-1183) (-52)) . T))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1057)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
+((((-1185) (-52)) . T))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(|has| |#1| (-915))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
(|has| |#1| (-915))
@@ -2727,21 +2727,21 @@
((((-569)) . T))
(((#0=(-412 (-569)) #0#) . T) (($ $) . T))
((((-412 (-569))) . T) (($) . T))
-(((|#1| (-412 (-569)) (-1088)) . T))
-(|has| |#1| (-1106))
+(((|#1| (-412 (-569)) (-1090)) . T))
+(|has| |#1| (-1108))
(|has| |#1| (-561))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(|has| |#1| (-825))
(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T))
((((-412 |#2|)) . T))
(|has| |#1| (-853))
-((((-1209 |#1|)) . T) (((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-1211 |#1|)) . T) (((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
(((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) . T) ((#1=(-569) #1#) . T) (($ $) . T))
((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-(((|#2|) |has| |#2| (-1055)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))))
+(((|#2|) |has| |#2| (-1057)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057))))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -2754,39 +2754,39 @@
(((|#2|) |has| |#2| (-173)))
(((|#1|) . T))
(((|#2|) . T))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -2003 (-1183)) (|:| -2214 #0#))) . T))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -2006 (-1185)) (|:| -2216 #0#))) . T))
(|has| |#1| (-353))
((((-569)) . T))
((((-867)) . T))
(((|#1|) . T))
-(((#0=(-1259 |#1| |#2| |#3| |#4|) $) |has| #0# (-289 #0# #0#)))
+(((#0=(-1261 |#1| |#2| |#3| |#4|) $) |has| #0# (-289 #0# #0#)))
(|has| |#1| (-367))
-(((|#1|) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))) (($) -2774 (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))) (((-569)) -2774 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055))))
-(((#0=(-1088) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057))) (($) -2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) (((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))))
+(((#0=(-1090) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
(((#0=(-412 (-569)) #0#) . T) ((#1=(-704) #1#) . T) (($ $) . T))
((((-319 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
((((-867)) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#1|) . T))
-(((|#1|) -2774 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|))))
-(((|#1|) -2774 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|))))
+(((|#1|) -2776 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|))))
+(((|#1|) -2776 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|))))
(((|#2|) . T))
((((-412 (-569))) . T) (((-704)) . T) (($) . T))
((((-584)) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-234))
((((-869 |#1|)) . T))
-((((-1183)) |has| |#1| (-906 (-1183))) ((|#3|) . T))
+((((-1185)) |has| |#1| (-906 (-1185))) ((|#3|) . T))
((((-649 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-367)) (|has| |#2| (-1028)))
+(-12 (|has| |#1| (-367)) (|has| |#2| (-1030)))
((((-412 (-569))) . T) (($) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)))
((($) . T) (((-412 (-569))) . T))
((((-867)) . T))
(|has| |#1| (-367))
@@ -2795,12 +2795,12 @@
((((-569)) . T) (((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
((((-569)) . T))
(((|#3|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#2|) . T))
(((|#1|) . T))
((((-569)) . T))
-(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (($) . T) (((-569)) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (($) . T) (((-569)) . T))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2810,7 +2810,7 @@
(((|#1|) . T) (($) . T))
(((|#1|) . T) (((-569)) . T))
(((|#1|) . T) (((-569)) . T))
-(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
+(((|#1| (-1275 |#1|) (-1275 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
((((-867)) . T))
@@ -2818,8 +2818,8 @@
(((|#2|) . T))
(((|#3|) . T))
(((#0=(-116 |#1|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
-((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
-((((-1131 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#2|) . T))
+((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((((-1133 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2841,10 +2841,10 @@
(|has| |#1| (-915))
(|has| |#1| (-915))
(((|#4|) . T))
-(|has| |#2| (-1028))
+(|has| |#2| (-1030))
((($) . T))
(|has| |#1| (-915))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
@@ -2853,31 +2853,31 @@
(|has| |#1| (-367))
((((-916 |#1|)) . T))
((($) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) |has| |#1| (-853)) (((-569)) -2774 (|has| |#1| (-21)) (|has| |#1| (-853))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) |has| |#1| (-853)) (((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-853))))
((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
-(-2774 (|has| |#1| (-372)) (|has| |#1| (-855)))
+(-2776 (|has| |#1| (-372)) (|has| |#1| (-855)))
(((|#1|) . T))
((((-776)) . T))
((((-867)) . T))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))))
((((-412 |#2|) |#3|) . T))
((($) . T) (((-412 (-569))) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T) (((-617 $)) . T))
((((-569)) . T) (($) . T))
((((-569)) . T) (($) . T))
((((-776) |#1|) . T))
-(((|#2| (-241 (-2426 |#1|) (-776))) . T))
+(((|#2| (-241 (-2428 |#1|) (-776))) . T))
(((|#1| (-536 |#3|)) . T))
((((-412 (-569))) . T))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-((((-1165)) . T) (((-867)) . T))
-(((#0=(-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) #0#) |has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))))
-((((-1165)) . T))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-1167)) . T) (((-867)) . T))
+(((#0=(-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) #0#) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))))
+((((-1167)) . T))
(|has| |#1| (-915))
(|has| |#2| (-367))
(((|#1|) . T) (($) . T) (((-569)) . T))
-(-2774 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
((((-170 (-383))) . T) (((-226)) . T) (((-383)) . T))
((((-867)) . T))
(((|#1|) . T))
@@ -2894,13 +2894,13 @@
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
-(-2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
(|has| |#1| (-38 (-412 (-569))))
(-12 (|has| |#1| (-550)) (|has| |#1| (-833)))
((((-867)) . T))
-((((-1183)) -2774 (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183))))))
+((((-1185)) -2776 (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1185))))))
(|has| |#1| (-367))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))))
(|has| |#1| (-367))
((((-412 (-569))) . T) (($) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
@@ -2910,16 +2910,16 @@
(((|#2|) |has| |#1| (-367)))
(((|#2|) |has| |#1| (-367)))
((((-569)) . T) (($) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
-(((|#2|) . T) (((-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) (((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))) (((-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))))
+(((|#2|) . T) (((-1185)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) (((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569)))) (((-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569)))))
(((|#2|) . T))
-((((-1183) #0=(-1259 |#1| |#2| |#3| |#4|)) |has| #0# (-519 (-1183) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
+((((-1185) #0=(-1261 |#1| |#2| |#3| |#4|)) |has| #0# (-519 (-1185) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T))
((((-617 $) $) . T) (($ $) . T))
-((((-170 (-226))) . T) (((-170 (-383))) . T) (((-1179 (-704))) . T) (((-898 (-383))) . T))
+((((-170 (-226))) . T) (((-170 (-383))) . T) (((-1181 (-704))) . T) (((-898 (-383))) . T))
(((|#3|) . T))
(|has| |#1| (-561))
(|has| (-412 |#2|) (-234))
@@ -2931,44 +2931,44 @@
((($ $) . T))
((($) . T))
((((-867)) . T))
-((((-1183)) |has| |#2| (-906 (-1183))))
+((((-1185)) |has| |#2| (-906 (-1185))))
((((-412 (-569))) . T) (($) . T))
(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-867)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#2|) |has| |#1| (-367)))
((((-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-383)))) (((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-569)))))
(|has| |#1| (-367))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
(|has| |#1| (-367))
(((|#1|) . T))
((($) . T) (((-569)) . T) ((|#2|) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
(|has| |#1| (-367))
(((|#3|) . T))
-((((-1165)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T))
+((((-1167)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T))
(((|#1|) . T))
(|has| |#1| (-561))
-(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
-(-2774 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(((|#2|) . T))
(((|#2|) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(|has| |#1| (-38 (-412 (-569))))
(((|#1| |#2|) . T))
(|has| |#1| (-38 (-412 (-569))))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
((($) . T))
-((((-1165) |#1|) . T))
+((((-1167) |#1|) . T))
(|has| |#1| (-147))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
(|has| |#1| (-147))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))
((($) . T))
(|has| |#1| (-147))
((((-586 |#1|)) . T))
@@ -2979,14 +2979,14 @@
((($) . T))
((($) . T))
((((-412 |#2|)) . T))
-((((-412 (-569))) |has| |#2| (-1044 (-569))) (((-569)) |has| |#2| (-1044 (-569))) (((-1183)) |has| |#2| (-1044 (-1183))) ((|#2|) . T))
+((((-412 (-569))) |has| |#2| (-1046 (-569))) (((-569)) |has| |#2| (-1046 (-569))) (((-1185)) |has| |#2| (-1046 (-1185))) ((|#2|) . T))
(((#0=(-412 |#2|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-353)))
(|has| |#1| (-147))
((((-867)) . T))
((($) . T))
-((((-1146 |#1| |#2|)) . T))
+((((-1148 |#1| |#2|)) . T))
(((|#1| (-569)) . T))
(((|#1| (-412 (-569))) . T))
((((-569)) |has| |#2| (-892 (-569))) (((-383)) |has| |#2| (-892 (-383))))
@@ -2996,24 +2996,24 @@
(((|#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
(((|#2|) . T))
((((-867)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((((-1183) (-52)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((((-1185) (-52)) . T))
((((-412 |#2|)) . T))
((((-867)) . T))
(((|#1|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(|has| |#1| (-796))
(|has| |#1| (-796))
((((-867)) . T))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-226)) . T) (((-383)) . T) (((-898 (-383))) . T))
((((-867)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561)))
((((-867)) . T))
((((-867)) . T))
@@ -3029,22 +3029,22 @@
((((-569)) . T))
((((-867)) . T))
((((-569)) . T))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
((((-170 (-383))) . T) (((-226)) . T) (((-383)) . T))
((((-867)) . T))
((((-867)) . T))
-((((-1165)) . T) (((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
+((((-1167)) . T) (((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T))
((((-867)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1183))) (|has| |#1| (-1055)) (|has| |#1| (-1118)) (|has| |#1| (-1106)))
-(|has| |#1| (-1158))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120)) (|has| |#1| (-1108)))
+(|has| |#1| (-1160))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
((((-569) |#1|) . T))
@@ -3059,26 +3059,26 @@
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-312 |#1|)))
((((-569) |#1|) . T))
-((((-1183) |#1|) . T))
-(((|#1|) -2774 (|has| |#1| (-173)) (|has| |#1| (-367))))
+((((-1185) |#1|) . T))
+(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367))))
(((|#1|) . T))
-(((|#1|) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1055))))
+(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057))))
((((-569)) . T) (((-412 (-569))) . T))
(((|#1|) . T))
(|has| |#1| (-561))
((($) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
((((-383)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-367))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
(|has| |#1| (-367))
(|has| |#1| (-561))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-785 |#1| (-869 |#2|))) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
@@ -3086,19 +3086,19 @@
(((|#1| (-536 |#2|)) . T))
(((|#1| (-776)) . T))
(|has| |#1| (-234))
-(((|#1| (-536 (-1094 (-1183)))) . T))
+(((|#1| (-536 (-1096 (-1185)))) . T))
(|has| |#2| (-367))
((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T))
(((|#1|) . T))
(((|#1|) . T) (((-569)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-867)) . T))
((((-867)) . T))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
((((-867)) . T))
-((((-1126)) . T) (((-867)) . T))
+((((-1128)) . T) (((-867)) . T))
((((-541)) . T) (((-867)) . T))
(((|#1|) . T))
((($ $) . T) (((-617 $) $) . T))
@@ -3107,16 +3107,16 @@
((((-569)) . T))
(((|#3|) . T))
((((-867)) . T))
-(-2774 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
-((((-569)) . T) (((-412 (-569))) -2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
-((((-1131 |#1| |#2|)) . T) ((|#2|) . T) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-569)) . T))
-((((-1179 |#1|)) . T) (((-569)) . T) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1088)) . T) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
-(-2774 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055)))
-((((-1131 |#1| (-1183))) . T) (((-569)) . T) (((-1094 (-1183))) . T) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) (((-1183)) . T))
+(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+((((-1133 |#1| |#2|)) . T) ((|#2|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-569)) . T))
+((((-1181 |#1|)) . T) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1090)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))
+(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057)))
+((((-1133 |#1| (-1185))) . T) (((-569)) . T) (((-1096 (-1185))) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-1185)) . T))
(((#0=(-586 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T))
((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
(((|#1|) |has| |#1| (-173)))
-(((|#1| (-1273 |#1|) (-1273 |#1|)) . T))
+(((|#1| (-1275 |#1|) (-1275 |#1|)) . T))
((((-586 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
((($) . T) (((-412 (-569))) . T))
(((|#1|) . T))
@@ -3124,13 +3124,13 @@
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-412 (-569))) . T))
-(((|#2|) |has| |#2| (-6 (-4446 "*"))))
+(((|#2|) |has| |#2| (-6 (-4449 "*"))))
(((|#1|) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T))
(((|#1|) . T))
((((-867)) . T))
((((-297 |#3|)) . T))
-(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
@@ -3138,77 +3138,77 @@
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
(((|#2|) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
((((-867)) . T))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(|has| |#2| (-915))
(|has| |#1| (-915))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-867)) . T))
(((|#1|) . T))
-((((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) . T))
+((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
(((|#1|) . T))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
-((((-1183)) . T) ((|#1|) . T))
+((((-1185)) . T) ((|#1|) . T))
((((-867)) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T))
((((-867)) . T))
((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))
+(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))
(((#0=(-412 (-569)) #0#) . T))
((((-412 (-569))) . T))
(((|#1|) |has| |#1| (-173)))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(((|#1|) . T))
(((|#1|) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(((|#1|) . T))
((((-412 (-569))) . T) (((-569)) . T) (($) . T))
((((-541)) . T))
((((-867)) . T))
((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
-((((-1183)) |has| |#2| (-906 (-1183))) (((-1088)) . T))
+((((-1185)) |has| |#2| (-906 (-1185))) (((-1090)) . T))
((((-867)) . T))
-((((-1258 |#2| |#3| |#4|)) . T))
+((((-1260 |#2| |#3| |#4|)) . T))
((((-916 |#1|)) . T))
((($) . T) (((-412 (-569))) . T))
(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
((((-867)) . T))
-(|has| |#1| (-1227))
+(|has| |#1| (-1229))
(((|#2|) . T))
((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
-((((-1183)) |has| |#1| (-906 (-1183))))
+((((-1185)) |has| |#1| (-906 (-1185))))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
-(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T))
+(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
((($) . T) (((-412 (-569))) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1055)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))))
+(((|#2|) |has| |#2| (-1057)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057))))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
-((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-561))))
+((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))))
(|has| |#1| (-561))
(((|#1|) |has| |#1| (-367)))
((((-569)) . T))
(|has| |#1| (-796))
-((((-1183) #0=(-116 |#1|)) |has| #0# (-519 (-1183) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
+((((-1185) #0=(-116 |#1|)) |has| #0# (-519 (-1185) #0#)) ((#0# #0#) |has| #0# (-312 #0#)))
(|has| |#1| (-796))
-(((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
-((((-1088)) . T) ((|#2|) . T) (((-569)) |has| |#2| (-1044 (-569))) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
+(((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))))
+((((-1090)) . T) ((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -3216,14 +3216,14 @@
((((-569) (-776)) . T) ((|#3| (-776)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-867)) . T))
(|has| |#2| (-825))
(|has| |#2| (-825))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383))))
(((|#1|) . T))
((((-875 |#1|)) . T))
@@ -3236,8 +3236,8 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-173)))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
-(((|#2|) -2774 (|has| |#2| (-6 (-4446 "*"))) (|has| |#2| (-173))))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
+(((|#2|) -2776 (|has| |#2| (-6 (-4449 "*"))) (|has| |#2| (-173))))
(((|#2|) . T))
(|has| |#1| (-367))
(((|#2|) . T))
@@ -3249,14 +3249,14 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#2| (-776)) . T))
-((((-1183)) . T))
+((((-1185)) . T))
((((-875 |#1|)) . T))
-(-2774 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(-2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
((((-867)) . T))
(((|#1|) . T))
-(-2774 (|has| |#2| (-798)) (|has| |#2| (-853)))
-(-2774 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855))))
+(-2776 (|has| |#2| (-798)) (|has| |#2| (-853)))
+(-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855))))
((((-875 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-372))
@@ -3274,27 +3274,27 @@
(((|#1|) . T))
((((-867)) . T))
((($) . T) ((|#2|) . T) (((-412 (-569))) . T))
-(|has| |#1| (-1106))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(|has| |#1| (-1108))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-867)) . T))
(|has| |#2| (-915))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))))
((((-867)) . T))
((((-867)) . T))
-(((|#3|) |has| |#3| (-1055)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))))
-((((-1131 |#1| |#2|)) . T) (((-958 |#1|)) |has| |#2| (-619 (-1183))) (((-867)) . T))
-((((-958 |#1|)) |has| |#2| (-619 (-1183))) (((-1165)) -12 (|has| |#1| (-1044 (-569))) (|has| |#2| (-619 (-1183)))) (((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383))))) (((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))))
-((((-1179 |#1|)) . T) (((-867)) . T))
+(((|#3|) |has| |#3| (-1057)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))))
+((((-1133 |#1| |#2|)) . T) (((-958 |#1|)) |has| |#2| (-619 (-1185))) (((-867)) . T))
+((((-958 |#1|)) |has| |#2| (-619 (-1185))) (((-1167)) -12 (|has| |#1| (-1046 (-569))) (|has| |#2| (-619 (-1185)))) (((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383))))) (((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))))
+((((-1181 |#1|)) . T) (((-867)) . T))
((((-867)) . T))
-((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T) (((-1183)) . T))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T) (((-1185)) . T))
((((-867)) . T))
((((-569)) . T))
(((|#1|) . T))
@@ -3305,18 +3305,18 @@
((((-867)) . T))
(((|#1|) . T))
((((-867)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
((((-649 |#1|)) . T))
-((($) . T) (((-569)) . T) (((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T))
-((((-569)) -2774 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055))) (($) -2774 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1055))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)))
-((((-1188)) . T))
-((((-1188)) . T))
+((($) . T) (((-569)) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T))
+((((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) (($) -2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)))
+((((-1190)) . T))
+((((-1190)) . T))
((((-569)) . T) (((-412 (-569))) . T))
-((((-1188)) . T))
+((((-1190)) . T))
(((|#1|) |has| |#1| (-173)) (($) . T))
-((((-1188)) . T))
+((((-1190)) . T))
(((|#1|) |has| |#1| (-312 |#1|)))
((((-383)) . T))
((((-867)) . T))
@@ -3326,26 +3326,26 @@
((((-412 (-569))) . T) (($) . T))
((((-412 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1106))
-(((|#2| (-487 (-2426 |#1|) (-776))) . T))
+(|has| |#1| (-1108))
+(((|#2| (-487 (-2428 |#1|) (-776))) . T))
((((-569) |#1|) . T))
-((((-1165)) . T) (((-867)) . T))
+((((-1167)) . T) (((-867)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-536 (-1183))) . T))
-(-2774 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(((|#1| (-536 (-1185))) . T))
+(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
((((-569)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-1088)) . T))
+((((-1185)) |has| |#1| (-906 (-1185))) (((-1090)) . T))
(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569))))
(|has| |#1| (-561))
-(((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
+(((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (((-569)) . T) (($) . T))
((($) . T) (((-412 (-569))) . T))
((($) . T))
((($) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
(((|#1|) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
((((-867)) . T))
((((-144)) . T))
(((|#1|) . T) (((-412 (-569))) . T))
@@ -3353,16 +3353,16 @@
(((|#1|) . T))
((((-867)) . T))
(((|#1|) . T))
-(|has| |#1| (-1158))
+(|has| |#1| (-1160))
(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
(((|#1|) . T))
((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
((((-867)) . T))
-((((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-569)) |has| |#1| (-1044 (-569))) ((|#1|) . T) ((|#2|) . T))
-((((-1088)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))))
+((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T) ((|#2|) . T))
+((((-1090)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))))
((((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383)))) (((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T))
((((-569) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
@@ -3374,178 +3374,178 @@
((($) . T))
(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367)))
((((-412 (-569))) . T) (($) . T))
-(|has| |#1| (-1106))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
+(|has| |#1| (-1108))
(|has| |#2| (-367))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367)))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367)))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-38 (-412 (-569))))
((((-569)) . T))
-((((-1183)) -12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055))))
-((((-1183)) -12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))
+((((-1185)) -12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057))))
+((((-1185)) -12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057))))
(((|#1|) . T))
(|has| |#1| (-234))
-(((|#2| (-241 (-2426 |#1|) (-776))) . T))
+(((|#2| (-241 (-2428 |#1|) (-776))) . T))
(((|#1| (-536 |#3|)) . T))
(|has| |#1| (-372))
(|has| |#1| (-372))
(|has| |#1| (-372))
(((|#1|) . T) (($) . T))
(((|#1| (-536 |#2|)) . T))
-(-2774 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(((|#1| (-776)) . T))
(|has| |#1| (-561))
-(-2774 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-867)) . T))
((((-569)) . T) (((-412 (-569))) . T) (($) . T))
-(-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
-(-2774 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
+(-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
+(-2776 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
(((|#1|) |has| |#1| (-173)))
-(((|#4|) |has| |#4| (-1055)))
-(((|#3|) |has| |#3| (-1055)))
+(((|#4|) |has| |#4| (-1057)))
+(((|#3|) |has| |#3| (-1057)))
(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
(-12 (|has| |#1| (-367)) (|has| |#2| (-825)))
-((((-569)) . T) (((-412 (-569))) -2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))) ((|#2|) . T) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
-((((-1131 |#1| |#2|)) . T) (((-569)) . T) ((|#3|) . T) (($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))) ((|#2|) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T))
+((((-1133 |#1| |#2|)) . T) (((-569)) . T) ((|#3|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) ((|#2|) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
((((-677 |#1|)) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T))
((($ $) . T) ((#0=(-412 (-569)) #0#) . T))
((((-867)) . T))
-((((-649 $)) . T) (((-1165)) . T) (((-1183)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
+((((-649 $)) . T) (((-1167)) . T) (((-1185)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
((($) . T) (((-412 (-569))) . T))
(((|#1|) . T))
-(((|#4|) |has| |#4| (-1106)) (((-569)) -12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106))) (((-412 (-569))) -12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))
-(((|#3|) |has| |#3| (-1106)) (((-569)) -12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (((-412 (-569))) -12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))
+(((|#4|) |has| |#4| (-1108)) (((-569)) -12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108))) (((-412 (-569))) -12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))
+(((|#3|) |has| |#3| (-1108)) (((-569)) -12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))
(|has| |#2| (-367))
-(((|#2|) |has| |#2| (-1055)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))))
+(((|#2|) |has| |#2| (-1057)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057))))
(((|#1|) . T))
(|has| |#2| (-367))
-(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
+(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T))
(((|#2| |#2|) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) . T) (($) . T) (((-412 (-569))) . T))
(((|#2|) . T))
-((((-867)) |has| |#1| (-1106)))
+((((-867)) |has| |#1| (-1108)))
((($) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#2| (-825))
(|has| |#2| (-825))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(|has| |#1| (-367))
(|has| |#1| (-367))
(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
(|has| |#1| (-367))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
(((|#1|) |has| |#2| (-422 |#1|)))
(((|#1|) |has| |#2| (-422 |#1|)))
-((((-1165)) . T))
+((((-1167)) . T))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-649 |#1|)) . T) (((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-649 |#1|)) . T) (((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
((((-649 |#1|)) . T))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-867)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1222)) . T) (((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) |has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-867)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1224)) . T) (((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
((((-569) |#1|) . T))
((((-569) |#1|) . T))
((((-569) |#1|) . T))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
((((-569) |#1|) . T))
(((|#1|) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
-((((-1183)) |has| |#1| (-906 (-1183))) (((-823 (-1183))) . T))
-(-2774 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173)))
+((((-1185)) |has| |#1| (-906 (-1185))) (((-823 (-1185))) . T))
+(-2776 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
((((-824 |#1|)) . T))
(((|#1| |#2|) . T))
((((-867)) . T))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
(((|#1| |#2|) . T))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
(|has| |#1| (-38 (-412 (-569))))
((((-867)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561)))
(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569))))
(|has| |#1| (-367))
-(-2774 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (-12 (|has| |#1| (-367)) (|has| |#2| (-234))))
+(-2776 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (-12 (|has| |#1| (-367)) (|has| |#2| (-234))))
(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))
(|has| |#1| (-367))
(((|#1|) . T))
-(((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T))
+(((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T))
((((-569) |#1|) . T))
((((-319 |#1|)) . T))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
-(((#0=(-704) (-1179 #0#)) . T))
-((((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
+(((#0=(-704) (-1181 #0#)) . T))
+((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T))
(((|#1|) . T) (($) . T) (((-569)) . T) (((-412 (-569))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-853))
-(((|#2|) . T) (((-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2774 (|has| |#1| (-367)) (|has| |#1| (-561))))
+(((|#2|) . T) (((-1185)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))))
((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1131 |#1| (-1183))) . T) (((-823 (-1183))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1044 (-569))) (((-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) (((-1183)) . T))
+((((-1133 |#1| (-1185))) . T) (((-823 (-1185))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-1185)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1088) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1183) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-1094 (-1183)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1090) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1185) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-1096 (-1185)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))))
(|has| |#2| (-915))
-((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
(((|#1|) |has| |#1| (-173)))
((((-569) |#1|) . T))
(((|#1|) . T))
-((((-1188)) . T))
-(((#0=(-1259 |#1| |#2| |#3| |#4|)) |has| #0# (-312 #0#)))
+((((-1190)) . T))
+(((#0=(-1261 |#1| |#2| |#3| |#4|)) |has| #0# (-312 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2| |#2|) |has| |#1| (-367)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2| |#2|) |has| |#1| (-367)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
(|has| |#2| (-234))
(|has| $ (-147))
((((-867)) . T))
-((($) . T) (((-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
+((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T))
((((-867)) . T))
(|has| |#1| (-853))
((((-129)) . T))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))
((((-412 (-569))) . T) (((-704)) . T) (($) . T) (((-569)) . T))
(((|#1|) . T))
((((-129)) . T))
@@ -3553,45 +3553,45 @@
((((-867)) . T))
(-12 (|has| |#1| (-310)) (|has| |#1| (-915)))
(((|#2| (-677 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((((-867)) |has| |#1| (-1106)))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((((-867)) |has| |#1| (-1108)))
(((|#4|) . T))
(|has| |#1| (-561))
-((($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
-((((-1183)) -2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))
-(((|#1|) . T) (($) -2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183)))))
+((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T))
+((((-1185)) -2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))
+(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185)))))
((((-569) |#1|) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
-(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))
(((|#1|) . T))
-(((|#1| (-536 (-823 (-1183)))) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
-((((-569)) . T) ((|#2|) . T) (($) . T) (((-412 (-569))) . T) (((-1183)) |has| |#2| (-1044 (-1183))))
+(((|#1| (-536 (-823 (-1185)))) . T))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-569)) . T) ((|#2|) . T) (($) . T) (((-412 (-569))) . T) (((-1185)) |has| |#2| (-1046 (-1185))))
(((|#1|) . T))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
(((|#1|) . T))
-(-2774 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
-((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+(-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
+((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)))
((($) . T) (((-875 |#1|)) . T) (((-412 (-569))) . T))
-((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)))
(|has| |#1| (-561))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-412 |#2|)) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-412 (-569)) #0#) . T) (($ $) . T))
(((|#2|) . T) (((-412 (-569))) . T) (($) . T))
@@ -3611,68 +3611,68 @@
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
-(((|#1|) . T) (((-867)) . T) (((-1188)) . T))
+(((|#1|) . T) (((-867)) . T) (((-1190)) . T))
((((-867)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
((((-114)) . T) ((|#1|) . T) (((-569)) . T))
-(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T))
((((-129)) . T))
((($) . T) (((-569)) . T) (((-116 |#1|)) . T) (((-412 (-569))) . T))
(((|#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T))
((((-867)) . T))
-((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
+((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T))
((($) . T) (((-569)) . T))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-1110)) . T))
-((((-867)) . T))
-((((-1188)) . T) (((-867)) . T))
-((((-1188)) . T) (((-867)) . T))
-((($) -2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((((-1188)) . T))
-((((-1188)) . T))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-1112)) . T))
+((((-867)) . T))
+((((-1190)) . T) (((-867)) . T))
+((((-1190)) . T) (((-867)) . T))
+((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((((-1190)) . T))
+((((-1190)) . T))
((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
((($) . T))
-((($) -2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-((($ $) . T) (((-1183) $) . T))
-((((-1265 |#1| |#2| |#3|)) . T))
+((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
+((($ $) . T) (((-1185) $) . T))
+((((-1267 |#1| |#2| |#3|)) . T))
(|has| |#2| (-915))
-((((-1265 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)))
(|has| |#1| (-367))
(((|#1|) . T))
-((((-1265 |#1| |#2| |#3|)) . T) (((-1237 |#1| |#2| |#3|)) . T))
-((((-1183)) . T) (((-867)) . T))
+((((-1267 |#1| |#2| |#3|)) . T) (((-1239 |#1| |#2| |#3|)) . T))
+((((-1185)) . T) (((-867)) . T))
(|has| |#1| (-915))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-173)))
((((-704)) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
-((((-1188)) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
+((((-1190)) . T))
(((|#1|) |has| |#1| (-173)))
-((((-1188)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
+((((-1190)) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T))
(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561)))
-((((-1188)) . T))
-((((-1259 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T))
+((((-1190)) . T))
+((((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T))
(((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)) (($) |has| |#1| (-561)))
((((-412 (-569))) . T) (($) . T))
(((|#1| (-569)) . T))
(((|#1|) |has| |#1| (-173)))
((((-412 (-569))) . T) (((-569)) . T) (($) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-((((-1188)) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
-((((-1188)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-1190)) . T))
+((((-1190)) . T))
(|has| |#1| (-367))
(|has| |#1| (-367))
-(-2774 (|has| |#1| (-173)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-173)) (|has| |#1| (-561)))
(((|#1| (-569)) . T))
(((|#1| (-412 (-569))) . T))
(((|#1| (-776)) . T))
@@ -3680,54 +3680,54 @@
(((|#1| (-536 |#2|) |#2|) . T))
((((-569) |#1|) . T))
((((-569) |#1|) . T))
-(|has| |#1| (-1106))
+(|has| |#1| (-1108))
((((-569) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-898 (-383))) . T) (((-898 (-569))) . T) (((-1183)) . T) (((-541)) . T))
+((((-898 (-383))) . T) (((-898 (-569))) . T) (((-1185)) . T) (((-541)) . T))
(((|#1|) . T))
((((-867)) . T))
-(-2774 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-(-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
+(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+(-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))
((((-569)) . T))
((((-569)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-2774 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1055)))
-((((-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))))
-(-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
+(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057)))
+((((-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057))))
+(-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-367))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
(|has| |#1| (-234))
((($) . T) (((-569)) . T) (((-412 (-569))) . T))
((($) . T) (((-569)) . T))
((($) . T) (((-569)) . T))
-((($) . T) ((#0=(-1258 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
+((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))))
((((-867)) . T))
-(((|#1| (-776) (-1088)) . T))
+(((|#1| (-776) (-1090)) . T))
((((-569) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-569) |#1|) . T))
((((-569) |#1|) . T))
((((-116 |#1|)) . T))
((((-412 (-569))) . T) (((-569)) . T))
-(((|#2|) |has| |#2| (-1055)))
+(((|#2|) |has| |#2| (-1057)))
((((-412 (-569))) . T) (($) . T))
(((|#2|) . T))
((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)))
((((-569)) . T))
((((-569)) . T))
-((((-1165) (-1183) (-569) (-226) (-867)) . T))
+((((-1167) (-1185) (-569) (-226) (-867)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
((((-569)) . T) ((|#2|) |has| |#2| (-173)))
((((-114)) . T) ((|#1|) . T) (((-569)) . T))
-(-2774 (|has| |#1| (-353)) (|has| |#1| (-372)))
+(-2776 (|has| |#1| (-353)) (|has| |#1| (-372)))
(((|#1| |#2|) . T))
((((-226)) . T))
((((-412 (-569))) . T) (($) . T) (((-569)) . T))
@@ -3735,29 +3735,29 @@
((($) . T) ((|#1|) . T))
((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T))
((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))))
-(((|#2|) |has| |#2| (-1106)) (((-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (((-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))))
+(((|#2|) |has| |#2| (-1108)) (((-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))))
(((|#1|) . T))
(((|#1|) . T))
((((-541)) |has| |#1| (-619 (-541))))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108))))
((($) . T) (((-412 (-569))) . T))
(|has| |#1| (-915))
(|has| |#1| (-915))
-((((-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) (((-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) (((-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) (((-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) (((-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541)))))
+((((-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) (((-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) (((-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) (((-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) (((-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541)))))
((((-867)) . T))
((((-867)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-173)))
(((|#1|) . T) (((-569)) . T))
-((((-1188)) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-561)))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
+((((-1190)) . T))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-561)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
(((|#2|) . T))
-(-2774 (|has| |#1| (-21)) (|has| |#1| (-853)))
+(-2776 (|has| |#1| (-21)) (|has| |#1| (-853)))
(((|#1|) |has| |#1| (-173)))
(((|#1|) . T))
(((|#1|) . T))
-((((-867)) -2774 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))))
+((((-867)) -2776 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108)))))
((((-412 |#2|) |#3|) . T))
((((-412 (-569))) . T) (($) . T))
(|has| |#1| (-38 (-412 (-569))))
@@ -3771,23 +3771,23 @@
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((#0=(-569) #0#) . T))
((($) . T) (((-412 (-569))) . T))
-(-2774 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1055)))
-(-2774 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1055)))
-((((-867)) . T) (((-1188)) . T))
+(-2776 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1057)))
+(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057)))
+((((-867)) . T) (((-1190)) . T))
(|has| |#4| (-798))
-(-2774 (|has| |#4| (-798)) (|has| |#4| (-853)))
+(-2776 (|has| |#4| (-798)) (|has| |#4| (-853)))
(|has| |#4| (-853))
(|has| |#3| (-798))
-((((-1188)) . T))
-(-2774 (|has| |#3| (-798)) (|has| |#3| (-853)))
+((((-1190)) . T))
+(-2776 (|has| |#3| (-798)) (|has| |#3| (-853)))
(|has| |#3| (-853))
((((-569)) . T))
(((|#2|) . T))
-((((-1183)) -2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))))
-((((-1183)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183)))))
+((((-1185)) -2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))))
+((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -3795,18 +3795,18 @@
(((|#1|) . T) (($) . T))
(((|#1|) . T))
((((-869 |#1|)) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-((((-1146 |#1| |#2|)) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
-(((|#2|) . T) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
+((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-1148 |#1| |#2|)) . T))
+((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)))
+(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
((($) . T))
-(|has| |#1| (-1028))
-(((|#2|) . T) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+(|has| |#1| (-1030))
+(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
((((-867)) . T))
-((((-541)) |has| |#2| (-619 (-541))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#2| (-1028))) (((-226)) . #0#))
+((((-541)) |has| |#2| (-619 (-541))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#2| (-1030))) (((-226)) . #0#))
((((-297 |#3|)) . T))
-((((-1183) (-52)) . T))
+((((-1185) (-52)) . T))
(((|#1|) . T))
(|has| |#1| (-38 (-412 (-569))))
(|has| |#1| (-38 (-412 (-569))))
@@ -3816,33 +3816,33 @@
((($ $) . T))
((((-412 |#2|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
((((-412 (-569))) . T) (((-704)) . T) (($) . T))
-((((-1181 |#1| |#2| |#3|)) . T))
-((((-1181 |#1| |#2| |#3|)) . T) (((-1174 |#1| |#2| |#3|)) . T))
+((((-1183 |#1| |#2| |#3|)) . T))
+((((-1183 |#1| |#2| |#3|)) . T) (((-1176 |#1| |#2| |#3|)) . T))
((((-867)) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
((((-569) |#1|) . T))
-((((-1181 |#1| |#2| |#3|)) |has| |#1| (-367)))
+((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-367))
-(((|#3|) . T) ((|#2|) . T) (($) -2774 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1055))) ((|#4|) -2774 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1055))))
-(((|#2|) . T) (($) -2774 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1055))) ((|#3|) -2774 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1055))))
+(((|#3|) . T) ((|#2|) . T) (($) -2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057))) ((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))))
+(((|#2|) . T) (($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-367))
((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) (((-569)) |has| |#2| (-1044 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
-((((-1183)) . T) ((|#1|) . T))
+((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T))
+((((-1185)) . T) ((|#1|) . T))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
((((-188)) . T) (((-867)) . T))
((((-867)) . T))
(((|#1|) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
((((-129)) . T) (((-867)) . T))
((((-569) |#1|) . T))
((((-129)) . T))
@@ -3851,50 +3851,50 @@
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
((((-867)) . T))
((((-867)) . T))
((((-867)) . T))
(((|#1| (-536 |#2|)) . T))
-((((-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) . T))
+((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T))
((((-569) (-129)) . T))
(((|#1| (-569)) . T))
(((|#1| (-412 (-569))) . T))
(((|#1| (-776)) . T))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-((((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-(-2774 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
-(-2774 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
+((((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))
+(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))
((($) . T))
(((|#2| (-536 (-869 |#1|))) . T))
-((((-1188)) . T))
-((((-1188)) . T))
+((((-1190)) . T))
+((((-1190)) . T))
((((-569) |#1|) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
(((|#2|) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-867)) . T) (((-1188)) . T))
-((((-1188)) . T))
-((((-867)) -2774 (|has| |#1| (-618 (-867))) (|has| |#1| (-1106))))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-867)) . T) (((-1190)) . T))
+((((-1190)) . T))
+((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))))
(((|#1|) . T))
(((|#2| (-776)) . T))
(((|#1| |#2|) . T))
-((((-1165) |#1|) . T))
+((((-1167) |#1|) . T))
((((-412 |#2|)) . T))
-((((-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T))
+((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T))
(|has| |#1| (-561))
(|has| |#1| (-561))
((($) . T) ((|#2|) . T))
@@ -3905,33 +3905,33 @@
((((-569)) . T) (($) . T))
(((|#2| $) |has| |#2| (-289 |#2| |#2|)))
(((|#1| (-649 |#1|)) |has| |#1| (-853)))
-(-2774 (|has| |#1| (-234)) (|has| |#1| (-353)))
-(-2774 (|has| |#1| (-367)) (|has| |#1| (-353)))
-((((-1269 |#1|)) . T) (((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1044 (-412 (-569)))))
-(|has| |#1| (-1106))
+(-2776 (|has| |#1| (-234)) (|has| |#1| (-353)))
+(-2776 (|has| |#1| (-367)) (|has| |#1| (-353)))
+((((-1271 |#1|)) . T) (((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))))
+(|has| |#1| (-1108))
(((|#1|) . T))
-((((-1269 |#1|)) . T) (((-569)) . T) (($) -2774 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-1088)) . T) ((|#2|) . T) (((-412 (-569))) -2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))))
+((((-1271 |#1|)) . T) (((-569)) . T) (($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-1090)) . T) ((|#2|) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))))
((((-412 (-569))) . T) (($) . T))
-((((-1005 |#1|)) . T) ((|#1|) . T) (((-569)) -2774 (|has| (-1005 |#1|) (-1044 (-569))) (|has| |#1| (-1044 (-569)))) (((-412 (-569))) -2774 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))
+((((-1007 |#1|)) . T) ((|#1|) . T) (((-569)) -2776 (|has| (-1007 |#1|) (-1046 (-569))) (|has| |#1| (-1046 (-569)))) (((-412 (-569))) -2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))
((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-((((-1183)) |has| |#1| (-906 (-1183))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+((((-1185)) |has| |#1| (-906 (-1185))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))
+(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))
(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1146 |#1| |#2|) #0#) |has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))))
+(((#0=(-1148 |#1| |#2|) #0#) |has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((#0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) #0#) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))))
(((#0=(-116 |#1|)) |has| #0# (-312 #0#)))
((($ $) . T))
-(-2774 (|has| |#1| (-855)) (|has| |#1| (-1106)))
+(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108)))
((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-234)) ((|#2| |#1|) |has| |#1| (-234)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-483 . -1106) T) ((-266 . -519) 188453) ((-248 . -519) 188396) ((-246 . -1106) 188346) ((-576 . -111) 188331) ((-536 . -23) T) ((-137 . -1106) T) ((-133 . -1106) T) ((-117 . -312) 188288) ((-138 . -1106) T) ((-484 . -519) 188080) ((-682 . -621) 188064) ((-699 . -102) T) ((-1147 . -519) 187983) ((-395 . -131) T) ((-1286 . -982) 187952) ((-1030 . -1057) 187889) ((-31 . -93) T) ((-607 . -494) 187873) ((-1030 . -645) 187810) ((-626 . -131) T) ((-824 . -851) T) ((-528 . -57) 187760) ((-524 . -519) 187693) ((-358 . -1057) 187638) ((-59 . -519) 187571) ((-521 . -519) 187504) ((-423 . -906) 187463) ((-170 . -1055) T) ((-502 . -519) 187396) ((-501 . -519) 187329) ((-358 . -645) 187274) ((-804 . -1044) 187054) ((-704 . -38) 187019) ((-1246 . -621) 186767) ((-347 . -353) T) ((-1100 . -1099) 186751) ((-1100 . -1106) 186729) ((-860 . -621) 186626) ((-170 . -244) 186577) ((-170 . -234) 186528) ((-1100 . -1101) 186486) ((-877 . -289) 186444) ((-226 . -800) T) ((-226 . -797) T) ((-699 . -287) NIL) ((-576 . -621) 186416) ((-1156 . -1199) 186395) ((-412 . -998) 186379) ((-48 . -1057) 186344) ((-706 . -21) T) ((-706 . -25) T) ((-48 . -645) 186309) ((-1288 . -653) 186283) ((-319 . -160) 186262) ((-319 . -143) 186241) ((-1156 . -107) 186191) ((-116 . -21) T) ((-40 . -232) 186168) ((-134 . -25) T) ((-116 . -25) T) ((-613 . -291) 186144) ((-480 . -291) 186123) ((-1246 . -329) 186100) ((-1246 . -1055) T) ((-860 . -1055) T) ((-804 . -342) 186084) ((-139 . -186) T) ((-117 . -1158) NIL) ((-91 . -618) 186016) ((-482 . -131) T) ((-1246 . -234) T) ((-1102 . -495) 185997) ((-1102 . -618) 185963) ((-1096 . -495) 185944) ((-1096 . -618) 185910) ((-598 . -1223) T) ((-1079 . -495) 185891) ((-576 . -1055) T) ((-1079 . -618) 185857) ((-667 . -722) 185841) ((-1072 . -495) 185822) ((-1072 . -618) 185788) ((-964 . -291) 185765) ((-60 . -34) T) ((-1068 . -800) T) ((-1068 . -797) T) ((-1042 . -495) 185746) ((-1025 . -495) 185727) ((-821 . -731) T) ((-736 . -47) 185692) ((-628 . -38) 185679) ((-359 . -293) T) ((-356 . -293) T) ((-348 . -293) T) ((-266 . -293) 185610) ((-248 . -293) 185541) ((-1042 . -618) 185507) ((-1030 . -102) T) ((-1025 . -618) 185473) ((-631 . -495) 185454) ((-418 . -731) T) ((-117 . -38) 185399) ((-488 . -495) 185380) ((-631 . -618) 185346) ((-418 . -478) T) ((-219 . -495) 185327) ((-488 . -618) 185293) ((-358 . -102) T) ((-219 . -618) 185259) ((-1217 . -1064) T) ((-347 . -651) 185189) ((-716 . -1064) T) ((-1181 . -47) 185166) ((-1180 . -47) 185136) ((-1174 . -47) 185113) ((-128 . -291) 185088) ((-1041 . -151) 185034) ((-916 . -293) T) ((-1132 . -47) 185006) ((-699 . -312) NIL) ((-520 . -618) 184988) ((-515 . -618) 184970) ((-513 . -618) 184952) ((-330 . -1106) 184902) ((-717 . -457) 184833) ((-48 . -102) T) ((-1257 . -289) 184818) ((-1236 . -289) 184738) ((-649 . -671) 184722) ((-649 . -656) 184706) ((-343 . -21) T) ((-343 . -25) T) ((-40 . -353) NIL) ((-175 . -21) T) ((-175 . -25) T) ((-649 . -377) 184690) ((-610 . -495) 184672) ((-607 . -289) 184649) ((-610 . -618) 184616) ((-393 . -102) T) ((-1126 . -143) T) ((-126 . -618) 184548) ((-879 . -1106) T) ((-663 . -416) 184532) ((-719 . -618) 184514) ((-250 . -618) 184481) ((-188 . -618) 184463) ((-162 . -618) 184445) ((-157 . -618) 184427) ((-1288 . -731) T) ((-1108 . -34) T) ((-876 . -800) NIL) ((-876 . -797) NIL) ((-863 . -855) T) ((-736 . -892) NIL) ((-1297 . -131) T) ((-385 . -131) T) ((-898 . -621) 184395) ((-910 . -102) T) ((-736 . -1044) 184271) ((-536 . -131) T) ((-1093 . -416) 184255) ((-1006 . -494) 184239) ((-117 . -405) 184216) ((-1174 . -1223) 184195) ((-787 . -416) 184179) ((-785 . -416) 184163) ((-949 . -34) T) ((-699 . -1158) NIL) ((-253 . -653) 183998) ((-252 . -653) 183820) ((-822 . -926) 183799) ((-459 . -416) 183783) ((-607 . -19) 183767) ((-1152 . -1216) 183736) ((-1174 . -892) NIL) ((-1174 . -890) 183688) ((-607 . -609) 183665) ((-1209 . -618) 183597) ((-1182 . -618) 183579) ((-62 . -400) T) ((-1180 . -1044) 183514) ((-1174 . -1044) 183480) ((-699 . -38) 183430) ((-40 . -651) 183360) ((-479 . -289) 183345) ((-1229 . -618) 183327) ((-736 . -381) 183311) ((-843 . -618) 183293) ((-663 . -1064) T) ((-1257 . -1008) 183259) ((-1236 . -1008) 183225) ((-1094 . -621) 183209) ((-1069 . -1199) 183184) ((-1082 . -621) 183161) ((-877 . -619) 182968) ((-877 . -618) 182950) ((-1196 . -494) 182887) ((-423 . -1028) 182865) ((-48 . -312) 182852) ((-1069 . -107) 182798) ((-484 . -494) 182735) ((-525 . -1223) T) ((-1174 . -342) 182687) ((-1147 . -494) 182658) ((-1174 . -381) 182610) ((-1093 . -1064) T) ((-442 . -102) T) ((-184 . -1106) T) ((-253 . -34) T) ((-252 . -34) T) ((-787 . -1064) T) ((-785 . -1064) T) ((-736 . -906) 182587) ((-459 . -1064) T) ((-59 . -494) 182571) ((-1040 . -1062) 182545) ((-524 . -494) 182529) ((-521 . -494) 182513) ((-502 . -494) 182497) ((-501 . -494) 182481) ((-246 . -519) 182414) ((-1040 . -111) 182381) ((-1181 . -906) 182294) ((-1180 . -906) 182200) ((-1174 . -906) 182033) ((-1132 . -906) 182017) ((-675 . -1118) T) ((-358 . -1158) T) ((-650 . -93) T) ((-325 . -1062) 181999) ((-253 . -796) 181978) ((-253 . -799) 181929) ((-31 . -495) 181910) ((-253 . -798) 181889) ((-252 . -796) 181868) ((-252 . -799) 181819) ((-252 . -798) 181798) ((-31 . -618) 181764) ((-50 . -1064) T) ((-253 . -731) 181674) ((-252 . -731) 181584) ((-1217 . -1106) T) ((-675 . -23) T) ((-586 . -1064) T) ((-523 . -1064) T) ((-383 . -1062) 181549) ((-325 . -111) 181524) ((-73 . -387) T) ((-73 . -400) T) ((-1030 . -38) 181461) ((-699 . -405) 181443) ((-99 . -102) T) ((-716 . -1106) T) ((-1301 . -1057) 181430) ((-1009 . -145) 181402) ((-1009 . -147) 181374) ((-875 . -651) 181346) ((-383 . -111) 181302) ((-322 . -1227) 181281) ((-479 . -1008) 181247) ((-358 . -38) 181212) ((-40 . -374) 181184) ((-878 . -618) 181056) ((-127 . -125) 181040) ((-121 . -125) 181024) ((-841 . -1062) 180994) ((-838 . -21) 180946) ((-832 . -1062) 180930) ((-838 . -25) 180882) ((-322 . -561) 180833) ((-522 . -621) 180814) ((-569 . -833) T) ((-241 . -1223) T) ((-1040 . -621) 180783) ((-841 . -111) 180748) ((-832 . -111) 180727) ((-1257 . -618) 180709) ((-1236 . -618) 180691) ((-1236 . -619) 180362) ((-1179 . -915) 180341) ((-1131 . -915) 180320) ((-48 . -38) 180285) ((-1295 . -1118) T) ((-607 . -618) 180197) ((-607 . -619) 180158) ((-1293 . -1118) T) ((-365 . -621) 180142) ((-325 . -621) 180126) ((-241 . -1044) 179953) ((-1179 . -653) 179878) ((-1131 . -653) 179803) ((-859 . -653) 179777) ((-723 . -618) 179759) ((-551 . -372) T) ((-1295 . -23) T) ((-1293 . -23) T) ((-496 . -1106) T) ((-383 . -621) 179709) ((-383 . -623) 179691) ((-1040 . -1055) T) ((-870 . -102) T) ((-1196 . -289) 179670) ((-170 . -372) 179621) ((-1010 . -1223) T) ((-841 . -621) 179575) ((-832 . -621) 179530) ((-44 . -23) T) ((-484 . -289) 179509) ((-591 . -1106) T) ((-1152 . -1115) 179478) ((-1110 . -1109) 179430) ((-395 . -21) T) ((-395 . -25) T) ((-152 . -1118) T) ((-1301 . -102) T) ((-1010 . -890) 179412) ((-1010 . -892) 179394) ((-1217 . -722) 179291) ((-628 . -232) 179275) ((-626 . -21) T) ((-292 . -561) T) ((-626 . -25) T) ((-1203 . -1106) T) ((-716 . -722) 179240) ((-241 . -381) 179209) ((-1010 . -1044) 179169) ((-383 . -1055) T) ((-224 . -1064) T) ((-117 . -232) 179146) ((-59 . -289) 179123) ((-152 . -23) T) ((-521 . -289) 179100) ((-330 . -519) 179033) ((-501 . -289) 179010) ((-383 . -244) T) ((-383 . -234) T) ((-841 . -1055) T) ((-832 . -1055) T) ((-717 . -955) 178979) ((-706 . -855) T) ((-479 . -618) 178961) ((-1259 . -1057) 178866) ((-585 . -651) 178838) ((-569 . -651) 178810) ((-500 . -651) 178760) ((-832 . -234) 178739) ((-134 . -855) T) ((-1259 . -645) 178631) ((-663 . -1106) T) ((-1196 . -609) 178610) ((-555 . -1199) 178589) ((-340 . -1106) T) ((-322 . -367) 178568) ((-412 . -147) 178547) ((-412 . -145) 178526) ((-970 . -1118) 178425) ((-241 . -906) 178357) ((-820 . -1118) 178267) ((-659 . -857) 178251) ((-484 . -609) 178230) ((-555 . -107) 178180) ((-1010 . -381) 178162) ((-1010 . -342) 178144) ((-97 . -1106) T) ((-970 . -23) 177955) ((-482 . -21) T) ((-482 . -25) T) ((-820 . -23) 177825) ((-1183 . -618) 177807) ((-59 . -19) 177791) ((-1183 . -619) 177713) ((-1179 . -731) T) ((-1131 . -731) T) ((-521 . -19) 177697) ((-501 . -19) 177681) ((-59 . -609) 177658) ((-1093 . -1106) T) ((-907 . -102) 177636) ((-859 . -731) T) ((-787 . -1106) T) ((-521 . -609) 177613) ((-501 . -609) 177590) ((-785 . -1106) T) ((-785 . -1071) 177557) ((-466 . -1106) T) ((-459 . -1106) T) ((-591 . -722) 177532) ((-654 . -1106) T) ((-1265 . -47) 177509) ((-1259 . -102) T) ((-1258 . -47) 177479) ((-1237 . -47) 177456) ((-1217 . -173) 177407) ((-1180 . -310) 177386) ((-1174 . -310) 177365) ((-1102 . -621) 177346) ((-1096 . -621) 177327) ((-1086 . -561) 177278) ((-1010 . -906) NIL) ((-1086 . -1227) 177229) ((-675 . -131) T) ((-632 . -1118) T) ((-1079 . -621) 177210) ((-1072 . -621) 177191) ((-1042 . -621) 177172) ((-1025 . -621) 177153) ((-704 . -651) 177103) ((-277 . -1106) T) ((-85 . -446) T) ((-85 . -400) T) ((-719 . -1062) 177073) ((-716 . -173) T) ((-50 . -1106) T) ((-600 . -47) 177050) ((-226 . -653) 177015) ((-586 . -1106) T) ((-523 . -1106) T) ((-492 . -825) T) ((-492 . -926) T) ((-363 . -1227) T) ((-357 . -1227) T) ((-349 . -1227) T) ((-322 . -1118) T) ((-319 . -1057) 176925) ((-316 . -1057) 176854) ((-108 . -1227) T) ((-631 . -621) 176835) ((-363 . -561) T) ((-218 . -926) T) ((-218 . -825) T) ((-319 . -645) 176745) ((-316 . -645) 176674) ((-357 . -561) T) ((-349 . -561) T) ((-488 . -621) 176655) ((-108 . -561) T) ((-663 . -722) 176625) ((-1174 . -1028) NIL) ((-219 . -621) 176606) ((-322 . -23) T) ((-67 . -1223) T) ((-1006 . -618) 176538) ((-699 . -232) 176520) ((-719 . -111) 176485) ((-649 . -34) T) ((-246 . -494) 176469) ((-1108 . -1104) 176453) ((-172 . -1106) T) ((-1301 . -1158) T) ((-1297 . -21) T) ((-1297 . -25) T) ((-1295 . -131) T) ((-1293 . -131) T) ((-958 . -915) 176432) ((-1286 . -102) T) ((-1269 . -618) 176398) ((-1258 . -1044) 176333) ((-520 . -621) 176317) ((-1237 . -1223) 176296) ((-1237 . -892) NIL) ((-1237 . -890) 176248) ((-486 . -915) 176227) ((-1237 . -1044) 176193) ((-1217 . -519) 176160) ((-1093 . -722) 176009) ((-1068 . -653) 175996) ((-958 . -653) 175921) ((-602 . -495) 175902) ((-590 . -495) 175883) ((-787 . -722) 175712) ((-602 . -618) 175678) ((-590 . -618) 175644) ((-541 . -618) 175626) ((-541 . -619) 175607) ((-785 . -722) 175456) ((-1083 . -102) T) ((-385 . -25) T) ((-628 . -651) 175428) ((-385 . -21) T) ((-486 . -653) 175353) ((-466 . -722) 175324) ((-459 . -722) 175173) ((-993 . -102) T) ((-1196 . -619) NIL) ((-1196 . -618) 175155) ((-1148 . -1129) 175100) ((-742 . -102) T) ((-117 . -651) 175030) ((-610 . -621) 175012) ((-1052 . -1216) 174941) ((-907 . -312) 174879) ((-536 . -25) T) ((-881 . -93) T) ((-719 . -621) 174833) ((-686 . -93) T) ((-650 . -495) 174814) ((-141 . -102) T) ((-44 . -131) T) ((-681 . -93) T) ((-669 . -618) 174796) ((-347 . -1064) T) ((-292 . -1118) T) ((-650 . -618) 174749) ((-483 . -93) T) ((-359 . -618) 174731) ((-356 . -618) 174713) ((-348 . -618) 174695) ((-266 . -619) 174443) ((-266 . -618) 174425) ((-248 . -618) 174407) ((-248 . -619) 174268) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1147 . -618) 174250) ((-1126 . -645) 174237) ((-1126 . -1057) 174224) ((-824 . -731) T) ((-824 . -862) T) ((-607 . -291) 174201) ((-586 . -722) 174166) ((-484 . -619) NIL) ((-484 . -618) 174148) ((-523 . -722) 174093) ((-319 . -102) T) ((-316 . -102) T) ((-292 . -23) T) ((-152 . -131) T) ((-916 . -618) 174075) ((-916 . -619) 174057) ((-391 . -731) T) ((-877 . -1062) 174009) ((-877 . -111) 173947) ((-719 . -1055) T) ((-717 . -1249) 173931) ((-699 . -353) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-524 . -618) 173863) ((-383 . -800) T) ((-224 . -1106) T) ((-168 . -1223) T) ((-383 . -797) T) ((-226 . -799) T) ((-226 . -796) T) ((-59 . -619) 173824) ((-59 . -618) 173736) ((-226 . -731) T) ((-521 . -619) 173697) ((-521 . -618) 173609) ((-502 . -618) 173541) ((-501 . -619) 173502) ((-501 . -618) 173414) ((-1086 . -367) 173365) ((-40 . -416) 173342) ((-77 . -1223) T) ((-876 . -915) NIL) ((-363 . -332) 173326) ((-363 . -367) T) ((-357 . -332) 173310) ((-357 . -367) T) ((-349 . -332) 173294) ((-349 . -367) T) ((-319 . -287) 173273) ((-108 . -367) T) ((-70 . -1223) T) ((-1237 . -342) 173225) ((-876 . -653) 173170) ((-1237 . -381) 173122) ((-970 . -131) 172977) ((-820 . -131) 172847) ((-964 . -656) 172831) ((-1093 . -173) 172742) ((-964 . -377) 172726) ((-1068 . -799) T) ((-1068 . -796) T) ((-877 . -621) 172624) ((-787 . -173) 172515) ((-785 . -173) 172426) ((-821 . -47) 172388) ((-1068 . -731) T) ((-330 . -494) 172372) ((-958 . -731) T) ((-1286 . -312) 172310) ((-459 . -173) 172221) ((-246 . -289) 172198) ((-1265 . -906) 172111) ((-1258 . -906) 172017) ((-1257 . -1062) 171852) ((-486 . -731) T) ((-1237 . -906) 171685) ((-1236 . -1062) 171493) ((-1217 . -293) 171472) ((-1193 . -1223) T) ((-1190 . -372) T) ((-1189 . -372) T) ((-1152 . -151) 171456) ((-1126 . -102) T) ((-1124 . -1106) T) ((-1086 . -23) T) ((-1086 . -1118) T) ((-1081 . -102) T) ((-1063 . -618) 171423) ((-933 . -961) T) ((-742 . -312) 171361) ((-75 . -1223) T) ((-669 . -386) 171333) ((-170 . -915) 171286) ((-30 . -961) T) ((-112 . -849) T) ((-1 . -618) 171268) ((-1009 . -414) 171240) ((-128 . -656) 171222) ((-50 . -625) 171206) ((-699 . -651) 171141) ((-600 . -906) 171054) ((-443 . -102) T) ((-128 . -377) 171036) ((-141 . -312) NIL) ((-877 . -1055) T) ((-838 . -855) 171015) ((-81 . -1223) T) ((-716 . -293) T) ((-40 . -1064) T) ((-586 . -173) T) ((-523 . -173) T) ((-516 . -618) 170997) ((-170 . -653) 170907) ((-512 . -618) 170889) ((-355 . -147) 170871) ((-355 . -145) T) ((-363 . -1118) T) ((-357 . -1118) T) ((-349 . -1118) T) ((-1010 . -310) T) ((-920 . -310) T) ((-877 . -244) T) ((-108 . -1118) T) ((-877 . -234) 170850) ((-1257 . -111) 170671) ((-1236 . -111) 170460) ((-246 . -1261) 170444) ((-569 . -853) T) ((-363 . -23) T) ((-358 . -353) T) ((-319 . -312) 170431) ((-316 . -312) 170372) ((-357 . -23) T) ((-322 . -131) T) ((-349 . -23) T) ((-1010 . -1028) T) ((-31 . -621) 170353) ((-108 . -23) T) ((-659 . -1057) 170337) ((-246 . -609) 170314) ((-336 . -1106) T) ((-659 . -645) 170284) ((-1259 . -38) 170176) ((-1246 . -915) 170155) ((-112 . -1106) T) ((-1041 . -102) T) ((-1246 . -653) 170080) ((-876 . -799) NIL) ((-860 . -653) 170054) ((-876 . -796) NIL) ((-821 . -892) NIL) ((-876 . -731) T) ((-1093 . -519) 169927) ((-787 . -519) 169874) ((-785 . -519) 169826) ((-576 . -653) 169813) ((-821 . -1044) 169641) ((-459 . -519) 169584) ((-393 . -394) T) ((-1257 . -621) 169397) ((-1236 . -621) 169145) ((-60 . -1223) T) ((-626 . -855) 169124) ((-505 . -666) T) ((-1152 . -982) 169093) ((-1030 . -651) 169030) ((-1009 . -457) T) ((-704 . -853) T) ((-515 . -797) T) ((-479 . -1062) 168865) ((-347 . -1106) T) ((-316 . -1158) NIL) ((-292 . -131) T) ((-399 . -1106) T) ((-875 . -1064) T) ((-699 . -374) 168832) ((-358 . -651) 168762) ((-224 . -625) 168739) ((-330 . -289) 168716) ((-479 . -111) 168537) ((-1257 . -1055) T) ((-1236 . -1055) T) ((-821 . -381) 168521) ((-170 . -731) T) ((-659 . -102) T) ((-1257 . -244) 168500) ((-1257 . -234) 168452) ((-1236 . -234) 168357) ((-1236 . -244) 168336) ((-1009 . -407) NIL) ((-675 . -644) 168284) ((-319 . -38) 168194) ((-316 . -38) 168123) ((-69 . -618) 168105) ((-322 . -498) 168071) ((-48 . -651) 168021) ((-1196 . -291) 168000) ((-1231 . -855) T) ((-1119 . -1118) 167910) ((-83 . -1223) T) ((-61 . -618) 167892) ((-484 . -291) 167871) ((-1288 . -1044) 167848) ((-1171 . -1106) T) ((-1119 . -23) 167718) ((-821 . -906) 167654) ((-1246 . -731) T) ((-1108 . -1223) T) ((-479 . -621) 167480) ((-1093 . -293) 167411) ((-972 . -1106) T) ((-899 . -102) T) ((-787 . -293) 167322) ((-330 . -19) 167306) ((-59 . -291) 167283) ((-785 . -293) 167214) ((-860 . -731) T) ((-117 . -853) NIL) ((-521 . -291) 167191) ((-330 . -609) 167168) ((-501 . -291) 167145) ((-459 . -293) 167076) ((-1041 . -312) 166927) ((-881 . -495) 166908) ((-881 . -618) 166874) ((-686 . -495) 166855) ((-576 . -731) T) ((-681 . -495) 166836) ((-686 . -618) 166786) ((-681 . -618) 166752) ((-667 . -618) 166734) ((-483 . -495) 166715) ((-483 . -618) 166681) ((-246 . -619) 166642) ((-246 . -495) 166619) ((-138 . -495) 166600) ((-137 . -495) 166581) ((-133 . -495) 166562) ((-246 . -618) 166454) ((-214 . -102) T) ((-138 . -618) 166420) ((-137 . -618) 166386) ((-133 . -618) 166352) ((-1153 . -34) T) ((-949 . -1223) T) ((-347 . -722) 166297) ((-675 . -25) T) ((-675 . -21) T) ((-1183 . -621) 166278) ((-479 . -1055) T) ((-640 . -422) 166243) ((-612 . -422) 166208) ((-1126 . -1158) T) ((-717 . -1057) 166031) ((-586 . -293) T) ((-523 . -293) T) ((-1258 . -310) 166010) ((-479 . -234) 165962) ((-479 . -244) 165941) ((-1237 . -310) 165920) ((-717 . -645) 165749) ((-1237 . -1028) NIL) ((-1086 . -131) T) ((-877 . -800) 165728) ((-144 . -102) T) ((-40 . -1106) T) ((-877 . -797) 165707) ((-649 . -1016) 165691) ((-585 . -1064) T) ((-569 . -1064) T) ((-500 . -1064) T) ((-412 . -457) T) ((-363 . -131) T) ((-319 . -405) 165675) ((-316 . -405) 165636) ((-357 . -131) T) ((-349 . -131) T) ((-1188 . -1106) T) ((-1126 . -38) 165623) ((-1100 . -618) 165590) ((-108 . -131) T) ((-960 . -1106) T) ((-927 . -1106) T) ((-776 . -1106) T) ((-677 . -1106) T) ((-706 . -147) T) ((-116 . -147) T) ((-1295 . -21) T) ((-1295 . -25) T) ((-1293 . -21) T) ((-1293 . -25) T) ((-669 . -1062) 165574) ((-536 . -855) T) ((-505 . -855) T) ((-359 . -1062) 165526) ((-356 . -1062) 165478) ((-348 . -1062) 165430) ((-253 . -1223) T) ((-252 . -1223) T) ((-266 . -1062) 165273) ((-248 . -1062) 165116) ((-669 . -111) 165095) ((-552 . -849) T) ((-359 . -111) 165033) ((-356 . -111) 164971) ((-348 . -111) 164909) ((-266 . -111) 164738) ((-248 . -111) 164567) ((-822 . -1227) 164546) ((-628 . -416) 164530) ((-44 . -21) T) ((-44 . -25) T) ((-820 . -644) 164436) ((-822 . -561) 164415) ((-253 . -1044) 164242) ((-252 . -1044) 164069) ((-126 . -119) 164053) ((-916 . -1062) 164018) ((-717 . -102) T) ((-704 . -1064) T) ((-602 . -621) 163999) ((-590 . -621) 163980) ((-541 . -623) 163883) ((-347 . -173) T) ((-88 . -618) 163865) ((-152 . -21) T) ((-152 . -25) T) ((-916 . -111) 163821) ((-40 . -722) 163766) ((-875 . -1106) T) ((-669 . -621) 163743) ((-650 . -621) 163724) ((-359 . -621) 163661) ((-356 . -621) 163598) ((-552 . -1106) T) ((-348 . -621) 163535) ((-330 . -619) 163496) ((-330 . -618) 163408) ((-266 . -621) 163161) ((-248 . -621) 162946) ((-1236 . -797) 162899) ((-1236 . -800) 162852) ((-253 . -381) 162821) ((-252 . -381) 162790) ((-659 . -38) 162760) ((-613 . -34) T) ((-487 . -1118) 162670) ((-480 . -34) T) ((-1119 . -131) 162540) ((-970 . -25) 162351) ((-916 . -621) 162301) ((-879 . -618) 162283) ((-970 . -21) 162238) ((-820 . -21) 162148) ((-820 . -25) 161999) ((-1229 . -372) T) ((-628 . -1064) T) ((-1185 . -561) 161978) ((-1179 . -47) 161955) ((-359 . -1055) T) ((-356 . -1055) T) ((-487 . -23) 161825) ((-348 . -1055) T) ((-266 . -1055) T) ((-248 . -1055) T) ((-1131 . -47) 161797) ((-117 . -1064) T) ((-1040 . -653) 161771) ((-964 . -34) T) ((-359 . -234) 161750) ((-359 . -244) T) ((-356 . -234) 161729) ((-356 . -244) T) ((-348 . -234) 161708) ((-348 . -244) T) ((-266 . -329) 161680) ((-248 . -329) 161637) ((-266 . -234) 161616) ((-1163 . -151) 161600) ((-253 . -906) 161532) ((-252 . -906) 161464) ((-1088 . -855) T) ((-419 . -1118) T) ((-1060 . -23) T) ((-916 . -1055) T) ((-325 . -653) 161446) ((-1030 . -853) T) ((-1217 . -1008) 161412) ((-1180 . -926) 161391) ((-1174 . -926) 161370) ((-1174 . -825) NIL) ((-1005 . -1057) 161266) ((-916 . -244) T) ((-822 . -367) 161245) ((-389 . -23) T) ((-127 . -1106) 161223) ((-121 . -1106) 161201) ((-916 . -234) T) ((-128 . -34) T) ((-383 . -653) 161166) ((-1005 . -645) 161114) ((-875 . -722) 161101) ((-1301 . -651) 161073) ((-1052 . -151) 161038) ((-40 . -173) T) ((-699 . -416) 161020) ((-717 . -312) 161007) ((-841 . -653) 160967) ((-832 . -653) 160941) ((-322 . -25) T) ((-322 . -21) T) ((-663 . -289) 160920) ((-585 . -1106) T) ((-569 . -1106) T) ((-500 . -1106) T) ((-246 . -291) 160897) ((-316 . -232) 160858) ((-1179 . -892) NIL) ((-55 . -1106) T) ((-1131 . -892) 160717) ((-129 . -855) T) ((-1179 . -1044) 160597) ((-1131 . -1044) 160480) ((-184 . -618) 160462) ((-859 . -1044) 160358) ((-787 . -289) 160285) ((-822 . -1118) T) ((-1040 . -731) T) ((-607 . -656) 160269) ((-1052 . -982) 160198) ((-1005 . -102) T) ((-822 . -23) T) ((-717 . -1158) 160176) ((-699 . -1064) T) ((-607 . -377) 160160) ((-355 . -457) T) ((-347 . -293) T) ((-1274 . -1106) T) ((-249 . -1106) T) ((-404 . -102) T) ((-292 . -21) T) ((-292 . -25) T) ((-365 . -731) T) ((-715 . -1106) T) ((-704 . -1106) T) ((-365 . -478) T) ((-1217 . -618) 160142) ((-1179 . -381) 160126) ((-1131 . -381) 160110) ((-1030 . -416) 160072) ((-141 . -230) 160054) ((-383 . -799) T) ((-383 . -796) T) ((-875 . -173) T) ((-383 . -731) T) ((-716 . -618) 160036) ((-717 . -38) 159865) ((-1273 . -1271) 159849) ((-355 . -407) T) ((-1273 . -1106) 159799) ((-585 . -722) 159786) ((-569 . -722) 159773) ((-500 . -722) 159738) ((-1259 . -651) 159628) ((-319 . -634) 159607) ((-841 . -731) T) ((-832 . -731) T) ((-649 . -1223) T) ((-1086 . -644) 159555) ((-1179 . -906) 159498) ((-1131 . -906) 159482) ((-667 . -1062) 159466) ((-108 . -644) 159448) ((-487 . -131) 159318) ((-1185 . -1118) T) ((-958 . -47) 159287) ((-628 . -1106) T) ((-667 . -111) 159266) ((-496 . -618) 159232) ((-330 . -291) 159209) ((-486 . -47) 159166) ((-1185 . -23) T) ((-117 . -1106) T) ((-103 . -102) 159144) ((-1285 . -1118) T) ((-553 . -855) T) ((-1060 . -131) T) ((-1030 . -1064) T) ((-824 . -1044) 159128) ((-1009 . -729) 159100) ((-1285 . -23) T) ((-704 . -722) 159065) ((-591 . -618) 159047) ((-391 . -1044) 159031) ((-358 . -1064) T) ((-389 . -131) T) ((-327 . -1044) 159015) ((-1203 . -618) 158997) ((-1126 . -833) T) ((-1111 . -1106) T) ((-226 . -892) 158979) ((-1010 . -926) T) ((-91 . -34) T) ((-1010 . -825) T) ((-920 . -926) T) ((-1086 . -21) T) ((-1086 . -25) T) ((-492 . -1227) T) ((-1005 . -312) 158944) ((-881 . -621) 158925) ((-719 . -653) 158885) ((-218 . -1227) T) ((-686 . -621) 158866) ((-226 . -1044) 158826) ((-40 . -293) T) ((-681 . -621) 158807) ((-492 . -561) T) ((-483 . -621) 158788) ((-319 . -651) 158472) ((-316 . -651) 158386) ((-363 . -25) T) ((-363 . -21) T) ((-357 . -25) T) ((-218 . -561) T) ((-357 . -21) T) ((-349 . -25) T) ((-349 . -21) T) ((-246 . -621) 158363) ((-138 . -621) 158344) ((-137 . -621) 158325) ((-133 . -621) 158306) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1064) T) ((-585 . -173) T) ((-569 . -173) T) ((-500 . -173) T) ((-663 . -618) 158288) ((-742 . -741) 158272) ((-340 . -618) 158254) ((-68 . -387) T) ((-68 . -400) T) ((-1108 . -107) 158238) ((-1068 . -892) 158220) ((-958 . -892) 158145) ((-658 . -1118) T) ((-628 . -722) 158132) ((-486 . -892) NIL) ((-1152 . -102) T) ((-1100 . -623) 158116) ((-1068 . -1044) 158098) ((-97 . -618) 158080) ((-482 . -147) T) ((-958 . -1044) 157960) ((-117 . -722) 157905) ((-658 . -23) T) ((-486 . -1044) 157781) ((-1093 . -619) NIL) ((-1093 . -618) 157763) ((-787 . -619) NIL) ((-787 . -618) 157724) ((-785 . -619) 157358) ((-785 . -618) 157272) ((-1119 . -644) 157178) ((-466 . -618) 157160) ((-459 . -618) 157142) ((-459 . -619) 157003) ((-1041 . -230) 156949) ((-877 . -915) 156928) ((-126 . -34) T) ((-822 . -131) T) ((-654 . -618) 156910) ((-583 . -102) T) ((-359 . -1292) 156894) ((-356 . -1292) 156878) ((-348 . -1292) 156862) ((-127 . -519) 156795) ((-121 . -519) 156728) ((-516 . -797) T) ((-516 . -800) T) ((-515 . -799) T) ((-103 . -312) 156666) ((-223 . -102) 156644) ((-704 . -173) T) ((-699 . -1106) T) ((-877 . -653) 156596) ((-65 . -388) T) ((-277 . -618) 156578) ((-65 . -400) T) ((-958 . -381) 156562) ((-875 . -293) T) ((-50 . -618) 156544) ((-1005 . -38) 156492) ((-1126 . -651) 156464) ((-586 . -618) 156446) ((-486 . -381) 156430) ((-586 . -619) 156412) ((-523 . -618) 156394) ((-916 . -1292) 156381) ((-876 . -1223) T) ((-706 . -457) T) ((-500 . -519) 156347) ((-492 . -367) T) ((-359 . -372) 156326) ((-356 . -372) 156305) ((-348 . -372) 156284) ((-719 . -731) T) ((-218 . -367) T) ((-116 . -457) T) ((-1296 . -1287) 156268) ((-876 . -890) 156245) ((-876 . -892) NIL) ((-970 . -855) 156144) ((-820 . -855) 156095) ((-1230 . -102) T) ((-659 . -661) 156079) ((-1209 . -34) T) ((-172 . -618) 156061) ((-1119 . -21) 155971) ((-1119 . -25) 155822) ((-876 . -1044) 155799) ((-958 . -906) 155780) ((-1246 . -47) 155757) ((-916 . -372) T) ((-59 . -656) 155741) ((-521 . -656) 155725) ((-486 . -906) 155702) ((-71 . -446) T) ((-71 . -400) T) ((-501 . -656) 155686) ((-59 . -377) 155670) ((-628 . -173) T) ((-521 . -377) 155654) ((-501 . -377) 155638) ((-832 . -713) 155622) ((-1179 . -310) 155601) ((-1185 . -131) T) ((-1148 . -1057) 155585) ((-117 . -173) T) ((-1148 . -645) 155517) ((-1152 . -312) 155455) ((-170 . -1223) T) ((-1285 . -131) T) ((-871 . -1057) 155425) ((-640 . -749) 155409) ((-612 . -749) 155393) ((-1258 . -926) 155372) ((-1237 . -926) 155351) ((-1237 . -825) NIL) ((-871 . -645) 155321) ((-699 . -722) 155271) ((-1236 . -915) 155224) ((-1030 . -1106) T) ((-876 . -381) 155201) ((-876 . -342) 155178) ((-911 . -1118) T) ((-170 . -890) 155162) ((-170 . -892) 155087) ((-492 . -1118) T) ((-358 . -1106) T) ((-218 . -1118) T) ((-76 . -446) T) ((-76 . -400) T) ((-170 . -1044) 154983) ((-322 . -855) T) ((-1273 . -519) 154916) ((-1257 . -653) 154813) ((-1236 . -653) 154683) ((-877 . -799) 154662) ((-877 . -796) 154641) ((-877 . -731) T) ((-492 . -23) T) ((-224 . -618) 154623) ((-175 . -457) T) ((-223 . -312) 154561) ((-86 . -446) T) ((-86 . -400) T) ((-218 . -23) T) ((-1297 . -1290) 154540) ((-682 . -1044) 154524) ((-585 . -293) T) ((-569 . -293) T) ((-500 . -293) T) ((-136 . -475) 154479) ((-659 . -651) 154438) ((-48 . -1106) T) ((-717 . -232) 154422) ((-876 . -906) NIL) ((-1246 . -892) NIL) ((-895 . -102) T) ((-891 . -102) T) ((-393 . -1106) T) ((-170 . -381) 154406) ((-170 . -342) 154390) ((-1246 . -1044) 154270) ((-860 . -1044) 154166) ((-1148 . -102) T) ((-667 . -797) 154145) ((-658 . -131) T) ((-117 . -519) 154053) ((-667 . -800) 154032) ((-576 . -1044) 154014) ((-297 . -1280) 153984) ((-871 . -102) T) ((-969 . -561) 153963) ((-1217 . -1062) 153846) ((-1009 . -1057) 153791) ((-487 . -644) 153697) ((-910 . -1106) T) ((-1030 . -722) 153634) ((-716 . -1062) 153599) ((-1009 . -645) 153544) ((-622 . -102) T) ((-607 . -34) T) ((-1153 . -1223) T) ((-1217 . -111) 153413) ((-479 . -653) 153310) ((-358 . -722) 153255) ((-170 . -906) 153214) ((-704 . -293) T) ((-699 . -173) T) ((-716 . -111) 153170) ((-1301 . -1064) T) ((-1246 . -381) 153154) ((-423 . -1227) 153132) ((-1124 . -618) 153114) ((-316 . -853) NIL) ((-423 . -561) T) ((-226 . -310) T) ((-1236 . -796) 153067) ((-1236 . -799) 153020) ((-1257 . -731) T) ((-1236 . -731) T) ((-48 . -722) 152985) ((-226 . -1028) T) ((-355 . -1280) 152962) ((-1259 . -416) 152928) ((-723 . -731) T) ((-336 . -618) 152910) ((-1246 . -906) 152853) ((-1217 . -621) 152735) ((-112 . -618) 152717) ((-112 . -619) 152699) ((-723 . -478) T) ((-716 . -621) 152649) ((-1296 . -1057) 152633) ((-487 . -21) 152543) ((-127 . -494) 152527) ((-121 . -494) 152511) ((-487 . -25) 152362) ((-1296 . -645) 152332) ((-628 . -293) T) ((-591 . -1062) 152307) ((-442 . -1106) T) ((-1068 . -310) T) ((-117 . -293) T) ((-1110 . -102) T) ((-1009 . -102) T) ((-591 . -111) 152275) ((-1148 . -312) 152213) ((-1217 . -1055) T) ((-1068 . -1028) T) ((-66 . -1223) T) ((-1060 . -25) T) ((-1060 . -21) T) ((-716 . -1055) T) ((-389 . -21) T) ((-389 . -25) T) ((-699 . -519) NIL) ((-1030 . -173) T) ((-716 . -244) T) ((-1068 . -550) T) ((-717 . -651) 152123) ((-511 . -102) T) ((-507 . -102) T) ((-358 . -173) T) ((-347 . -618) 152105) ((-412 . -1057) 152057) ((-399 . -618) 152039) ((-1126 . -853) T) ((-479 . -731) T) ((-898 . -1044) 152007) ((-412 . -645) 151959) ((-108 . -855) T) ((-663 . -1062) 151943) ((-492 . -131) T) ((-1259 . -1064) T) ((-218 . -131) T) ((-1163 . -102) 151921) ((-99 . -1106) T) ((-246 . -671) 151905) ((-246 . -656) 151889) ((-663 . -111) 151868) ((-591 . -621) 151852) ((-319 . -416) 151836) ((-246 . -377) 151820) ((-1166 . -236) 151767) ((-1005 . -232) 151751) ((-74 . -1223) T) ((-48 . -173) T) ((-706 . -392) T) ((-706 . -143) T) ((-1296 . -102) T) ((-1203 . -621) 151733) ((-1093 . -1062) 151576) ((-266 . -915) 151555) ((-248 . -915) 151534) ((-787 . -1062) 151357) ((-785 . -1062) 151200) ((-613 . -1223) T) ((-1171 . -618) 151182) ((-1093 . -111) 151011) ((-1052 . -102) T) ((-480 . -1223) T) ((-466 . -1062) 150982) ((-459 . -1062) 150825) ((-669 . -653) 150809) ((-876 . -310) T) ((-787 . -111) 150618) ((-785 . -111) 150447) ((-359 . -653) 150399) ((-356 . -653) 150351) ((-348 . -653) 150303) ((-266 . -653) 150228) ((-248 . -653) 150153) ((-1165 . -855) T) ((-1094 . -1044) 150137) ((-466 . -111) 150098) ((-459 . -111) 149927) ((-1082 . -1044) 149904) ((-1006 . -34) T) ((-972 . -618) 149886) ((-964 . -1223) T) ((-126 . -1016) 149870) ((-969 . -1118) T) ((-876 . -1028) NIL) ((-740 . -1118) T) ((-720 . -1118) T) ((-663 . -621) 149788) ((-1273 . -494) 149772) ((-1148 . -38) 149732) ((-969 . -23) T) ((-916 . -653) 149697) ((-870 . -1106) T) ((-848 . -102) T) ((-822 . -21) T) ((-640 . -1057) 149681) ((-612 . -1057) 149665) ((-822 . -25) T) ((-740 . -23) T) ((-720 . -23) T) ((-640 . -645) 149649) ((-110 . -666) T) ((-612 . -645) 149633) ((-586 . -1062) 149598) ((-523 . -1062) 149543) ((-228 . -57) 149501) ((-458 . -23) T) ((-412 . -102) T) ((-265 . -102) T) ((-699 . -293) T) ((-871 . -38) 149471) ((-586 . -111) 149427) ((-523 . -111) 149356) ((-1093 . -621) 149092) ((-423 . -1118) T) ((-319 . -1064) 148982) ((-316 . -1064) T) ((-128 . -1223) T) ((-787 . -621) 148730) ((-785 . -621) 148496) ((-663 . -1055) T) ((-1301 . -1106) T) ((-459 . -621) 148281) ((-170 . -310) 148212) ((-423 . -23) T) ((-40 . -618) 148194) ((-40 . -619) 148178) ((-108 . -998) 148160) ((-116 . -874) 148144) ((-654 . -621) 148128) ((-48 . -519) 148094) ((-1209 . -1016) 148078) ((-1188 . -618) 148045) ((-1196 . -34) T) ((-960 . -618) 148011) ((-927 . -618) 147993) ((-1119 . -855) 147944) ((-776 . -618) 147926) ((-677 . -618) 147908) ((-1163 . -312) 147846) ((-484 . -34) T) ((-1098 . -1223) T) ((-482 . -457) T) ((-1147 . -34) T) ((-1093 . -1055) T) ((-50 . -621) 147815) ((-787 . -1055) T) ((-785 . -1055) T) ((-652 . -236) 147799) ((-637 . -236) 147745) ((-586 . -621) 147695) ((-523 . -621) 147625) ((-1246 . -310) 147604) ((-1093 . -329) 147565) ((-459 . -1055) T) ((-1185 . -21) T) ((-1093 . -234) 147544) ((-787 . -329) 147521) ((-787 . -234) T) ((-785 . -329) 147493) ((-736 . -1227) 147472) ((-330 . -656) 147456) ((-1185 . -25) T) ((-59 . -34) T) ((-524 . -34) T) ((-521 . -34) T) ((-459 . -329) 147435) ((-330 . -377) 147419) ((-502 . -34) T) ((-501 . -34) T) ((-1009 . -1158) NIL) ((-736 . -561) 147350) ((-640 . -102) T) ((-612 . -102) T) ((-359 . -731) T) ((-356 . -731) T) ((-348 . -731) T) ((-266 . -731) T) ((-248 . -731) T) ((-1052 . -312) 147258) ((-907 . -1106) 147236) ((-50 . -1055) T) ((-1285 . -21) T) ((-1285 . -25) T) ((-1181 . -561) 147215) ((-1180 . -1227) 147194) ((-1180 . -561) 147145) ((-586 . -1055) T) ((-523 . -1055) T) ((-1174 . -1227) 147124) ((-365 . -1044) 147108) ((-325 . -1044) 147092) ((-1030 . -293) T) ((-383 . -892) 147074) ((-1174 . -561) 147025) ((-1009 . -38) 146970) ((-1005 . -651) 146893) ((-804 . -1118) T) ((-916 . -731) T) ((-586 . -244) T) ((-586 . -234) T) ((-523 . -234) T) ((-523 . -244) T) ((-1132 . -561) 146872) ((-358 . -293) T) ((-652 . -700) 146856) ((-383 . -1044) 146816) ((-297 . -1057) 146737) ((-1126 . -1064) T) ((-103 . -125) 146721) ((-297 . -645) 146663) ((-804 . -23) T) ((-1295 . -1290) 146639) ((-1273 . -289) 146616) ((-412 . -312) 146581) ((-1293 . -1290) 146560) ((-1259 . -1106) T) ((-875 . -618) 146542) ((-841 . -1044) 146511) ((-204 . -792) T) ((-203 . -792) T) ((-202 . -792) T) ((-201 . -792) T) ((-200 . -792) T) ((-199 . -792) T) ((-198 . -792) T) ((-197 . -792) T) ((-196 . -792) T) ((-195 . -792) T) ((-552 . -618) 146493) ((-500 . -1008) T) ((-276 . -844) T) ((-275 . -844) T) ((-274 . -844) T) ((-273 . -844) T) ((-48 . -293) T) ((-272 . -844) T) ((-271 . -844) T) ((-270 . -844) T) ((-194 . -792) T) ((-617 . -855) T) ((-659 . -416) 146477) ((-224 . -621) 146439) ((-110 . -855) T) ((-658 . -21) T) ((-658 . -25) T) ((-1296 . -38) 146409) ((-117 . -289) 146360) ((-1273 . -19) 146344) ((-1273 . -609) 146321) ((-1286 . -1106) T) ((-355 . -1057) 146266) ((-1083 . -1106) T) ((-993 . -1106) T) ((-969 . -131) T) ((-742 . -1106) T) ((-355 . -645) 146211) ((-740 . -131) T) ((-720 . -131) T) ((-516 . -798) T) ((-516 . -799) T) ((-458 . -131) T) ((-412 . -1158) 146189) ((-224 . -1055) T) ((-297 . -102) 145971) ((-141 . -1106) T) ((-704 . -1008) T) ((-91 . -1223) T) ((-127 . -618) 145903) ((-121 . -618) 145835) ((-1301 . -173) T) ((-1180 . -367) 145814) ((-1174 . -367) 145793) ((-319 . -1106) T) ((-423 . -131) T) ((-316 . -1106) T) ((-412 . -38) 145745) ((-1139 . -102) T) ((-1259 . -722) 145637) ((-659 . -1064) T) ((-1141 . -1268) T) ((-322 . -145) 145616) ((-322 . -147) 145595) ((-136 . -1106) T) ((-139 . -1106) T) ((-114 . -1106) T) ((-863 . -102) T) ((-585 . -618) 145577) ((-569 . -619) 145476) ((-569 . -618) 145458) ((-500 . -618) 145440) ((-500 . -619) 145385) ((-490 . -23) T) ((-487 . -855) 145336) ((-492 . -644) 145318) ((-971 . -618) 145300) ((-218 . -644) 145282) ((-226 . -409) T) ((-667 . -653) 145266) ((-55 . -618) 145248) ((-1179 . -926) 145227) ((-736 . -1118) T) ((-355 . -102) T) ((-1222 . -1089) T) ((-1126 . -849) T) ((-823 . -855) T) ((-736 . -23) T) ((-347 . -1062) 145172) ((-1165 . -1164) T) ((-1153 . -107) 145156) ((-1181 . -1118) T) ((-1180 . -1118) T) ((-520 . -1044) 145140) ((-1174 . -1118) T) ((-1132 . -1118) T) ((-347 . -111) 145069) ((-1010 . -1227) T) ((-126 . -1223) T) ((-920 . -1227) T) ((-699 . -289) NIL) ((-1274 . -618) 145051) ((-1181 . -23) T) ((-1180 . -23) T) ((-1174 . -23) T) ((-1010 . -561) T) ((-1148 . -232) 145035) ((-920 . -561) T) ((-1132 . -23) T) ((-249 . -618) 145017) ((-1081 . -1106) T) ((-804 . -131) T) ((-715 . -618) 144999) ((-319 . -722) 144909) ((-316 . -722) 144838) ((-704 . -618) 144820) ((-704 . -619) 144765) ((-412 . -405) 144749) ((-443 . -1106) T) ((-492 . -25) T) ((-492 . -21) T) ((-1126 . -1106) T) ((-218 . -25) T) ((-218 . -21) T) ((-717 . -416) 144733) ((-719 . -1044) 144702) ((-1273 . -618) 144614) ((-1273 . -619) 144575) ((-1259 . -173) T) ((-246 . -34) T) ((-347 . -621) 144505) ((-399 . -621) 144487) ((-932 . -980) T) ((-1209 . -1223) T) ((-667 . -796) 144466) ((-667 . -799) 144445) ((-403 . -400) T) ((-528 . -102) 144423) ((-1041 . -1106) T) ((-223 . -1001) 144407) ((-509 . -102) T) ((-628 . -618) 144389) ((-45 . -855) NIL) ((-628 . -619) 144366) ((-1041 . -615) 144341) ((-907 . -519) 144274) ((-347 . -1055) T) ((-117 . -619) NIL) ((-117 . -618) 144256) ((-877 . -1223) T) ((-675 . -422) 144240) ((-675 . -1129) 144185) ((-505 . -151) 144167) ((-347 . -234) T) ((-347 . -244) T) ((-40 . -1062) 144112) ((-877 . -890) 144096) ((-877 . -892) 144021) ((-717 . -1064) T) ((-699 . -1008) NIL) ((-1257 . -47) 143991) ((-1236 . -47) 143968) ((-1147 . -1016) 143939) ((-3 . |UnionCategory|) T) ((-1126 . -722) 143926) ((-1111 . -618) 143908) ((-1086 . -147) 143887) ((-1086 . -145) 143838) ((-972 . -621) 143822) ((-226 . -926) T) ((-40 . -111) 143751) ((-877 . -1044) 143615) ((-1010 . -367) T) ((-1009 . -232) 143592) ((-706 . -1057) 143579) ((-920 . -367) T) ((-706 . -645) 143566) ((-322 . -1211) 143532) ((-383 . -310) T) ((-322 . -1208) 143498) ((-319 . -173) 143477) ((-316 . -173) T) ((-586 . -1292) 143464) ((-523 . -1292) 143441) ((-363 . -147) 143420) ((-116 . -1057) 143407) ((-363 . -145) 143358) ((-357 . -147) 143337) ((-357 . -145) 143288) ((-349 . -147) 143267) ((-613 . -1199) 143243) ((-116 . -645) 143230) ((-349 . -145) 143181) ((-322 . -35) 143147) ((-480 . -1199) 143126) ((0 . |EnumerationCategory|) T) ((-322 . -95) 143092) ((-383 . -1028) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -236) 143042) ((-659 . -1106) T) ((-613 . -107) 142989) ((-490 . -131) T) ((-480 . -107) 142939) ((-241 . -1118) 142849) ((-877 . -381) 142833) ((-877 . -342) 142817) ((-241 . -23) 142687) ((-40 . -621) 142617) ((-1068 . -926) T) ((-1068 . -825) T) ((-586 . -372) T) ((-523 . -372) T) ((-1286 . -519) 142550) ((-1265 . -561) 142529) ((-355 . -1158) T) ((-330 . -34) T) ((-44 . -422) 142513) ((-1188 . -621) 142449) ((-878 . -1223) T) ((-395 . -749) 142433) ((-1258 . -1227) 142412) ((-1258 . -561) 142363) ((-1148 . -651) 142322) ((-736 . -131) T) ((-677 . -621) 142306) ((-1237 . -1227) 142285) ((-1237 . -561) 142236) ((-1236 . -1223) 142215) ((-1236 . -892) 142088) ((-1236 . -890) 142058) ((-1181 . -131) T) ((-314 . -1089) T) ((-1180 . -131) T) ((-742 . -519) 141991) ((-1174 . -131) T) ((-1132 . -131) T) ((-899 . -1106) T) ((-144 . -849) T) ((-1030 . -1008) T) ((-696 . -618) 141973) ((-1010 . -23) T) ((-528 . -312) 141911) ((-1010 . -1118) T) ((-141 . -519) NIL) ((-871 . -651) 141856) ((-1009 . -353) NIL) ((-977 . -23) T) ((-920 . -1118) T) ((-355 . -38) 141821) ((-920 . -23) T) ((-877 . -906) 141780) ((-82 . -618) 141762) ((-40 . -1055) T) ((-875 . -1062) 141749) ((-875 . -111) 141734) ((-706 . -102) T) ((-699 . -618) 141716) ((-607 . -1223) T) ((-601 . -561) 141695) ((-432 . -1118) T) ((-343 . -1057) 141679) ((-214 . -1106) T) ((-175 . -1057) 141611) ((-479 . -47) 141581) ((-134 . -102) T) ((-40 . -234) 141553) ((-40 . -244) T) ((-116 . -102) T) ((-600 . -561) 141532) ((-343 . -645) 141516) ((-699 . -619) 141424) ((-319 . -519) 141390) ((-175 . -645) 141322) ((-316 . -519) 141214) ((-1257 . -1044) 141198) ((-1236 . -1044) 140984) ((-1005 . -416) 140968) ((-432 . -23) T) ((-1126 . -173) T) ((-1259 . -293) T) ((-659 . -722) 140938) ((-144 . -1106) T) ((-48 . -1008) T) ((-412 . -232) 140922) ((-298 . -236) 140872) ((-876 . -926) T) ((-876 . -825) NIL) ((-875 . -621) 140844) ((-869 . -855) T) ((-1236 . -342) 140814) ((-1236 . -381) 140784) ((-223 . -1127) 140768) ((-1273 . -291) 140745) ((-1217 . -653) 140670) ((-1009 . -651) 140600) ((-969 . -21) T) ((-969 . -25) T) ((-740 . -21) T) ((-740 . -25) T) ((-720 . -21) T) ((-720 . -25) T) ((-716 . -653) 140565) ((-458 . -21) T) ((-458 . -25) T) ((-343 . -102) T) ((-175 . -102) T) ((-1005 . -1064) T) ((-875 . -1055) T) ((-779 . -102) T) ((-1258 . -367) 140544) ((-1257 . -906) 140450) ((-1237 . -367) 140429) ((-1236 . -906) 140280) ((-1030 . -618) 140262) ((-412 . -833) 140215) ((-1181 . -498) 140181) ((-170 . -926) 140112) ((-1180 . -498) 140078) ((-1174 . -498) 140044) ((-717 . -1106) T) ((-1132 . -498) 140010) ((-585 . -1062) 139997) ((-569 . -1062) 139984) ((-500 . -1062) 139949) ((-319 . -293) 139928) ((-316 . -293) T) ((-358 . -618) 139910) ((-423 . -25) T) ((-423 . -21) T) ((-99 . -289) 139889) ((-585 . -111) 139874) ((-569 . -111) 139859) ((-500 . -111) 139815) ((-1183 . -892) 139782) ((-907 . -494) 139766) ((-48 . -618) 139748) ((-48 . -619) 139693) ((-241 . -131) 139563) ((-1296 . -651) 139522) ((-1246 . -926) 139501) ((-821 . -1227) 139480) ((-393 . -495) 139461) ((-1041 . -519) 139305) ((-393 . -618) 139271) ((-821 . -561) 139202) ((-591 . -653) 139177) ((-266 . -47) 139149) ((-248 . -47) 139106) ((-536 . -514) 139083) ((-585 . -621) 139055) ((-569 . -621) 139027) ((-500 . -621) 138960) ((-1080 . -1223) T) ((-1006 . -1223) T) ((-1265 . -23) T) ((-704 . -1062) 138925) ((-1265 . -1118) T) ((-1258 . -1118) T) ((-1258 . -23) T) ((-1237 . -1118) T) ((-1237 . -23) T) ((-1009 . -374) 138897) ((-112 . -372) T) ((-479 . -906) 138803) ((-1217 . -731) T) ((-910 . -618) 138785) ((-55 . -621) 138767) ((-91 . -107) 138751) ((-1126 . -293) T) ((-911 . -855) 138702) ((-706 . -1158) T) ((-704 . -111) 138658) ((-848 . -651) 138575) ((-601 . -1118) T) ((-600 . -1118) T) ((-717 . -722) 138404) ((-716 . -731) T) ((-1010 . -131) T) ((-977 . -131) T) ((-492 . -855) T) ((-920 . -131) T) ((-804 . -25) T) ((-804 . -21) T) ((-218 . -855) T) ((-412 . -651) 138341) ((-585 . -1055) T) ((-569 . -1055) T) ((-500 . -1055) T) ((-601 . -23) T) ((-347 . -1292) 138318) ((-322 . -457) 138297) ((-343 . -312) 138284) ((-600 . -23) T) ((-432 . -131) T) ((-663 . -653) 138258) ((-246 . -1016) 138242) ((-877 . -310) T) ((-1297 . -1287) 138226) ((-776 . -797) T) ((-776 . -800) T) ((-706 . -38) 138213) ((-569 . -234) T) ((-500 . -244) T) ((-500 . -234) T) ((-1156 . -236) 138163) ((-1093 . -915) 138142) ((-116 . -38) 138129) ((-210 . -805) T) ((-209 . -805) T) ((-208 . -805) T) ((-207 . -805) T) ((-877 . -1028) 138107) ((-1286 . -494) 138091) ((-787 . -915) 138070) ((-785 . -915) 138049) ((-1196 . -1223) T) ((-459 . -915) 138028) ((-742 . -494) 138012) ((-1093 . -653) 137937) ((-704 . -621) 137872) ((-787 . -653) 137797) ((-628 . -1062) 137784) ((-484 . -1223) T) ((-347 . -372) T) ((-141 . -494) 137766) ((-785 . -653) 137691) ((-1147 . -1223) T) ((-554 . -855) T) ((-466 . -653) 137662) ((-266 . -892) 137521) ((-248 . -892) NIL) ((-117 . -1062) 137466) ((-459 . -653) 137391) ((-669 . -1044) 137368) ((-628 . -111) 137353) ((-395 . -1057) 137337) ((-359 . -1044) 137321) ((-356 . -1044) 137305) ((-348 . -1044) 137289) ((-266 . -1044) 137133) ((-248 . -1044) 137009) ((-117 . -111) 136938) ((-59 . -1223) T) ((-395 . -645) 136922) ((-626 . -1057) 136906) ((-524 . -1223) T) ((-521 . -1223) T) ((-502 . -1223) T) ((-501 . -1223) T) ((-442 . -618) 136888) ((-439 . -618) 136870) ((-626 . -645) 136854) ((-3 . -102) T) ((-1033 . -1216) 136823) ((-838 . -102) T) ((-694 . -57) 136781) ((-704 . -1055) T) ((-640 . -651) 136750) ((-612 . -651) 136719) ((-50 . -653) 136693) ((-292 . -457) T) ((-481 . -1216) 136662) ((0 . -102) T) ((-586 . -653) 136627) ((-523 . -653) 136572) ((-49 . -102) T) ((-916 . -1044) 136559) ((-704 . -244) T) ((-1086 . -414) 136538) ((-736 . -644) 136486) ((-1005 . -1106) T) ((-717 . -173) 136377) ((-628 . -621) 136272) ((-492 . -998) 136254) ((-266 . -381) 136238) ((-248 . -381) 136222) ((-404 . -1106) T) ((-1032 . -102) 136200) ((-343 . -38) 136184) ((-218 . -998) 136166) ((-117 . -621) 136096) ((-175 . -38) 136028) ((-1257 . -310) 136007) ((-1236 . -310) 135986) ((-663 . -731) T) ((-99 . -618) 135968) ((-482 . -1057) 135933) ((-1174 . -644) 135885) ((-482 . -645) 135850) ((-490 . -25) T) ((-490 . -21) T) ((-1236 . -1028) 135802) ((-1063 . -1223) T) ((-628 . -1055) T) ((-383 . -409) T) ((-395 . -102) T) ((-1111 . -623) 135717) ((-266 . -906) 135663) ((-248 . -906) 135640) ((-117 . -1055) T) ((-821 . -1118) T) ((-1093 . -731) T) ((-628 . -234) 135619) ((-626 . -102) T) ((-787 . -731) T) ((-785 . -731) T) ((-418 . -1118) T) ((-117 . -244) T) ((-40 . -372) NIL) ((-117 . -234) NIL) ((-1228 . -855) T) ((-459 . -731) T) ((-821 . -23) T) ((-736 . -25) T) ((-736 . -21) T) ((-1083 . -289) 135598) ((-78 . -401) T) ((-78 . -400) T) ((-538 . -772) 135580) ((-699 . -1062) 135530) ((-1265 . -131) T) ((-1258 . -131) T) ((-1237 . -131) T) ((-1181 . -25) T) ((-1148 . -416) 135514) ((-640 . -371) 135446) ((-612 . -371) 135378) ((-1163 . -1155) 135362) ((-103 . -1106) 135340) ((-1181 . -21) T) ((-1180 . -21) T) ((-870 . -618) 135322) ((-1005 . -722) 135270) ((-224 . -653) 135237) ((-699 . -111) 135171) ((-50 . -731) T) ((-1180 . -25) T) ((-355 . -353) T) ((-1174 . -21) T) ((-1086 . -457) 135122) ((-1174 . -25) T) ((-717 . -519) 135069) ((-586 . -731) T) ((-523 . -731) T) ((-1132 . -21) T) ((-1132 . -25) T) ((-601 . -131) T) ((-297 . -651) 134804) ((-600 . -131) T) ((-363 . -457) T) ((-357 . -457) T) ((-349 . -457) T) ((-479 . -310) 134783) ((-1231 . -102) T) ((-316 . -289) 134718) ((-108 . -457) T) ((-79 . -446) T) ((-79 . -400) T) ((-482 . -102) T) ((-696 . -621) 134702) ((-1301 . -618) 134684) ((-1301 . -619) 134666) ((-1086 . -407) 134645) ((-1041 . -494) 134576) ((-569 . -800) T) ((-569 . -797) T) ((-1069 . -236) 134522) ((-363 . -407) 134473) ((-357 . -407) 134424) ((-349 . -407) 134375) ((-1288 . -1118) T) ((-1297 . -1057) 134359) ((-385 . -1057) 134343) ((-1297 . -645) 134313) ((-385 . -645) 134283) ((-699 . -621) 134218) ((-1288 . -23) T) ((-1275 . -102) T) ((-176 . -618) 134200) ((-1148 . -1064) T) ((-552 . -372) T) ((-675 . -749) 134184) ((-1185 . -145) 134163) ((-1185 . -147) 134142) ((-1152 . -1106) T) ((-1152 . -1077) 134111) ((-69 . -1223) T) ((-1030 . -1062) 134048) ((-355 . -651) 133978) ((-871 . -1064) T) ((-241 . -644) 133884) ((-699 . -1055) T) ((-358 . -1062) 133829) ((-61 . -1223) T) ((-1030 . -111) 133745) ((-907 . -618) 133656) ((-699 . -244) T) ((-699 . -234) NIL) ((-848 . -853) 133635) ((-704 . -800) T) ((-704 . -797) T) ((-1009 . -416) 133612) ((-358 . -111) 133541) ((-383 . -926) T) ((-412 . -853) 133520) ((-717 . -293) 133431) ((-224 . -731) T) ((-1265 . -498) 133397) ((-1258 . -498) 133363) ((-1237 . -498) 133329) ((-583 . -1106) T) ((-319 . -1008) 133308) ((-223 . -1106) 133286) ((-1230 . -849) T) ((-322 . -979) 133248) ((-105 . -102) T) ((-48 . -1062) 133213) ((-1297 . -102) T) ((-385 . -102) T) ((-48 . -111) 133169) ((-1010 . -644) 133151) ((-1259 . -618) 133133) ((-536 . -102) T) ((-505 . -102) T) ((-1139 . -1140) 133117) ((-152 . -1280) 133101) ((-246 . -1223) T) ((-1222 . -102) T) ((-1030 . -621) 133038) ((-1179 . -1227) 133017) ((-358 . -621) 132947) ((-1131 . -1227) 132926) ((-241 . -21) 132836) ((-241 . -25) 132687) ((-127 . -119) 132671) ((-121 . -119) 132655) ((-44 . -749) 132639) ((-1179 . -561) 132550) ((-1131 . -561) 132481) ((-1230 . -1106) T) ((-1041 . -289) 132456) ((-1173 . -1089) T) ((-1000 . -1089) T) ((-821 . -131) T) ((-117 . -800) NIL) ((-117 . -797) NIL) ((-359 . -310) T) ((-356 . -310) T) ((-348 . -310) T) ((-253 . -1118) 132366) ((-252 . -1118) 132276) ((-1030 . -1055) T) ((-1009 . -1064) T) ((-48 . -621) 132209) ((-347 . -653) 132154) ((-626 . -38) 132138) ((-1286 . -618) 132100) ((-1286 . -619) 132061) ((-1083 . -618) 132043) ((-1030 . -244) T) ((-358 . -1055) T) ((-820 . -1280) 132013) ((-253 . -23) T) ((-252 . -23) T) ((-993 . -618) 131995) ((-742 . -619) 131956) ((-742 . -618) 131938) ((-804 . -855) 131917) ((-1166 . -151) 131864) ((-1005 . -519) 131776) ((-358 . -234) T) ((-358 . -244) T) ((-393 . -621) 131757) ((-1010 . -25) T) ((-141 . -618) 131739) ((-141 . -619) 131698) ((-916 . -310) T) ((-1010 . -21) T) ((-977 . -25) T) ((-920 . -21) T) ((-920 . -25) T) ((-432 . -21) T) ((-432 . -25) T) ((-848 . -416) 131682) ((-48 . -1055) T) ((-1295 . -1287) 131666) ((-1293 . -1287) 131650) ((-1041 . -609) 131625) ((-319 . -619) 131486) ((-319 . -618) 131468) ((-316 . -619) NIL) ((-316 . -618) 131450) ((-48 . -244) T) ((-48 . -234) T) ((-659 . -289) 131411) ((-555 . -236) 131361) ((-139 . -618) 131328) ((-136 . -618) 131310) ((-114 . -618) 131292) ((-482 . -38) 131257) ((-1297 . -1294) 131236) ((-1288 . -131) T) ((-1296 . -1064) T) ((-1088 . -102) T) ((-88 . -1223) T) ((-505 . -312) NIL) ((-1006 . -107) 131220) ((-895 . -1106) T) ((-891 . -1106) T) ((-1273 . -656) 131204) ((-1273 . -377) 131188) ((-330 . -1223) T) ((-598 . -855) T) ((-1148 . -1106) T) ((-1148 . -1059) 131128) ((-103 . -519) 131061) ((-933 . -618) 131043) ((-347 . -731) T) ((-30 . -618) 131025) ((-871 . -1106) T) ((-848 . -1064) 131004) ((-40 . -653) 130949) ((-226 . -1227) T) ((-412 . -1064) T) ((-1165 . -151) 130931) ((-1005 . -293) 130882) ((-622 . -1106) T) ((-226 . -561) T) ((-322 . -1254) 130866) ((-322 . -1251) 130836) ((-706 . -651) 130808) ((-1196 . -1199) 130787) ((-1081 . -618) 130769) ((-1196 . -107) 130719) ((-652 . -151) 130703) ((-637 . -151) 130649) ((-116 . -651) 130621) ((-484 . -1199) 130600) ((-492 . -147) T) ((-492 . -145) NIL) ((-1126 . -619) 130515) ((-443 . -618) 130497) ((-218 . -147) T) ((-218 . -145) NIL) ((-1126 . -618) 130479) ((-129 . -102) T) ((-52 . -102) T) ((-1237 . -644) 130431) ((-484 . -107) 130381) ((-999 . -23) T) ((-1297 . -38) 130351) ((-1179 . -1118) T) ((-1131 . -1118) T) ((-1068 . -1227) T) ((-314 . -102) T) ((-859 . -1118) T) ((-958 . -1227) 130330) ((-486 . -1227) 130309) ((-1068 . -561) T) ((-958 . -561) 130240) ((-1179 . -23) T) ((-1157 . -1089) T) ((-1131 . -23) T) ((-859 . -23) T) ((-486 . -561) 130171) ((-1148 . -722) 130103) ((-675 . -1057) 130087) ((-1152 . -519) 130020) ((-675 . -645) 130004) ((-1041 . -619) NIL) ((-1041 . -618) 129986) ((-96 . -1089) T) ((-871 . -722) 129956) ((-1217 . -47) 129925) ((-253 . -131) T) ((-252 . -131) T) ((-1110 . -1106) T) ((-1009 . -1106) T) ((-62 . -618) 129907) ((-1174 . -855) NIL) ((-1030 . -797) T) ((-1030 . -800) T) ((-1301 . -1062) 129894) ((-1301 . -111) 129879) ((-1265 . -25) T) ((-1265 . -21) T) ((-875 . -653) 129866) ((-1258 . -21) T) ((-1258 . -25) T) ((-1237 . -21) T) ((-1237 . -25) T) ((-1033 . -151) 129850) ((-877 . -825) 129829) ((-877 . -926) T) ((-717 . -289) 129756) ((-601 . -21) T) ((-343 . -651) 129715) ((-601 . -25) T) ((-600 . -21) T) ((-175 . -651) 129632) ((-40 . -731) T) ((-223 . -519) 129565) ((-600 . -25) T) ((-481 . -151) 129549) ((-468 . -151) 129533) ((-927 . -799) T) ((-927 . -731) T) ((-776 . -798) T) ((-776 . -799) T) ((-511 . -1106) T) ((-507 . -1106) T) ((-776 . -731) T) ((-226 . -367) T) ((-1295 . -1057) 129517) ((-1293 . -1057) 129501) ((-1295 . -645) 129471) ((-1163 . -1106) 129449) ((-876 . -1227) T) ((-1293 . -645) 129419) ((-659 . -618) 129401) ((-876 . -561) T) ((-699 . -372) NIL) ((-44 . -1057) 129385) ((-1301 . -621) 129367) ((-1296 . -1106) T) ((-675 . -102) T) ((-363 . -1280) 129351) ((-357 . -1280) 129335) ((-44 . -645) 129319) ((-349 . -1280) 129303) ((-553 . -102) T) ((-525 . -855) 129282) ((-1052 . -1106) T) ((-822 . -457) 129261) ((-152 . -1057) 129245) ((-1052 . -1077) 129174) ((-1033 . -982) 129143) ((-824 . -1118) T) ((-1009 . -722) 129088) ((-152 . -645) 129072) ((-391 . -1118) T) ((-481 . -982) 129041) ((-468 . -982) 129010) ((-110 . -151) 128992) ((-73 . -618) 128974) ((-899 . -618) 128956) ((-1086 . -729) 128935) ((-1301 . -1055) T) ((-821 . -644) 128883) ((-297 . -1064) 128825) ((-170 . -1227) 128730) ((-226 . -1118) T) ((-327 . -23) T) ((-1174 . -998) 128682) ((-848 . -1106) T) ((-1259 . -1062) 128587) ((-1132 . -745) 128566) ((-1257 . -926) 128545) ((-1236 . -926) 128524) ((-875 . -731) T) ((-170 . -561) 128435) ((-585 . -653) 128422) ((-569 . -653) 128409) ((-412 . -1106) T) ((-265 . -1106) T) ((-214 . -618) 128391) ((-500 . -653) 128356) ((-226 . -23) T) ((-1236 . -825) 128309) ((-1295 . -102) T) ((-358 . -1292) 128286) ((-1293 . -102) T) ((-1259 . -111) 128178) ((-820 . -1057) 128075) ((-820 . -645) 128017) ((-144 . -618) 127999) ((-999 . -131) T) ((-44 . -102) T) ((-241 . -855) 127950) ((-1246 . -1227) 127929) ((-103 . -494) 127913) ((-1296 . -722) 127883) ((-1093 . -47) 127844) ((-1068 . -1118) T) ((-958 . -1118) T) ((-127 . -34) T) ((-121 . -34) T) ((-787 . -47) 127821) ((-785 . -47) 127793) ((-1246 . -561) 127704) ((-358 . -372) T) ((-486 . -1118) T) ((-1179 . -131) T) ((-1131 . -131) T) ((-459 . -47) 127683) ((-876 . -367) T) ((-859 . -131) T) ((-152 . -102) T) ((-1068 . -23) T) ((-958 . -23) T) ((-576 . -561) T) ((-821 . -25) T) ((-821 . -21) T) ((-1148 . -519) 127616) ((-597 . -1089) T) ((-591 . -1044) 127600) ((-1259 . -621) 127474) ((-486 . -23) T) ((-355 . -1064) T) ((-1217 . -906) 127455) ((-675 . -312) 127393) ((-1119 . -1280) 127363) ((-704 . -653) 127328) ((-1009 . -173) T) ((-969 . -145) 127307) ((-640 . -1106) T) ((-612 . -1106) T) ((-969 . -147) 127286) ((-1010 . -855) T) ((-740 . -147) 127265) ((-740 . -145) 127244) ((-977 . -855) T) ((-838 . -651) 127161) ((-479 . -926) 127140) ((-322 . -1057) 126975) ((-319 . -1062) 126885) ((-316 . -1062) 126814) ((-1005 . -289) 126772) ((-412 . -722) 126724) ((-322 . -645) 126565) ((-706 . -853) T) ((-1259 . -1055) T) ((-319 . -111) 126461) ((-316 . -111) 126374) ((-970 . -102) T) ((-820 . -102) 126164) ((-717 . -619) NIL) ((-717 . -618) 126146) ((-663 . -1044) 126042) ((-1259 . -329) 125986) ((-1041 . -291) 125961) ((-585 . -731) T) ((-569 . -799) T) ((-170 . -367) 125912) ((-569 . -796) T) ((-569 . -731) T) ((-500 . -731) T) ((-1152 . -494) 125896) ((-1093 . -892) NIL) ((-876 . -1118) T) ((-117 . -915) NIL) ((-1295 . -1294) 125872) ((-1293 . -1294) 125851) ((-787 . -892) NIL) ((-785 . -892) 125710) ((-1288 . -25) T) ((-1288 . -21) T) ((-1220 . -102) 125688) ((-1112 . -400) T) ((-628 . -653) 125675) ((-459 . -892) NIL) ((-680 . -102) 125653) ((-1093 . -1044) 125480) ((-876 . -23) T) ((-787 . -1044) 125339) ((-785 . -1044) 125196) ((-117 . -653) 125141) ((-459 . -1044) 125017) ((-319 . -621) 124581) ((-316 . -621) 124464) ((-395 . -651) 124433) ((-654 . -1044) 124417) ((-632 . -102) T) ((-223 . -494) 124401) ((-1273 . -34) T) ((-626 . -651) 124360) ((-292 . -1057) 124347) ((-136 . -621) 124331) ((-292 . -645) 124318) ((-640 . -722) 124302) ((-612 . -722) 124286) ((-675 . -38) 124246) ((-322 . -102) T) ((-85 . -618) 124228) ((-50 . -1044) 124212) ((-1126 . -1062) 124199) ((-1093 . -381) 124183) ((-787 . -381) 124167) ((-704 . -731) T) ((-704 . -799) T) ((-704 . -796) T) ((-586 . -1044) 124154) ((-523 . -1044) 124131) ((-60 . -57) 124093) ((-327 . -131) T) ((-319 . -1055) 123983) ((-316 . -1055) T) ((-170 . -1118) T) ((-785 . -381) 123967) ((-45 . -151) 123917) ((-1010 . -998) 123899) ((-459 . -381) 123883) ((-412 . -173) T) ((-319 . -244) 123862) ((-316 . -244) T) ((-316 . -234) NIL) ((-297 . -1106) 123644) ((-226 . -131) T) ((-1126 . -111) 123629) ((-170 . -23) T) ((-804 . -147) 123608) ((-804 . -145) 123587) ((-253 . -644) 123493) ((-252 . -644) 123399) ((-322 . -287) 123365) ((-1163 . -519) 123298) ((-482 . -651) 123248) ((-1139 . -1106) T) ((-226 . -1066) T) ((-820 . -312) 123186) ((-1093 . -906) 123121) ((-787 . -906) 123064) ((-785 . -906) 123048) ((-1295 . -38) 123018) ((-1293 . -38) 122988) ((-1246 . -1118) T) ((-860 . -1118) T) ((-459 . -906) 122965) ((-863 . -1106) T) ((-1246 . -23) T) ((-1126 . -621) 122937) ((-576 . -1118) T) ((-860 . -23) T) ((-628 . -731) T) ((-359 . -926) T) ((-356 . -926) T) ((-292 . -102) T) ((-348 . -926) T) ((-1068 . -131) T) ((-976 . -1089) T) ((-958 . -131) T) ((-117 . -799) NIL) ((-117 . -796) NIL) ((-117 . -731) T) ((-699 . -915) NIL) ((-1052 . -519) 122838) ((-486 . -131) T) ((-576 . -23) T) ((-680 . -312) 122776) ((-640 . -766) T) ((-612 . -766) T) ((-1237 . -855) NIL) ((-1086 . -1057) 122686) ((-1009 . -293) T) ((-699 . -653) 122636) ((-253 . -21) T) ((-355 . -1106) T) ((-253 . -25) T) ((-252 . -21) T) ((-252 . -25) T) ((-152 . -38) 122620) ((-2 . -102) T) ((-916 . -926) T) ((-1086 . -645) 122488) ((-487 . -1280) 122458) ((-1126 . -1055) T) ((-716 . -310) T) ((-363 . -1057) 122410) ((-357 . -1057) 122362) ((-349 . -1057) 122314) ((-363 . -645) 122266) ((-224 . -1044) 122243) ((-357 . -645) 122195) ((-108 . -1057) 122145) ((-349 . -645) 122097) ((-297 . -722) 122039) ((-706 . -1064) T) ((-492 . -457) T) ((-412 . -519) 121951) ((-108 . -645) 121901) ((-218 . -457) T) ((-1126 . -234) T) ((-298 . -151) 121851) ((-1005 . -619) 121812) ((-1005 . -618) 121794) ((-995 . -618) 121776) ((-116 . -1064) T) ((-659 . -1062) 121760) ((-226 . -498) T) ((-404 . -618) 121742) ((-404 . -619) 121719) ((-1060 . -1280) 121689) ((-659 . -111) 121668) ((-1148 . -494) 121652) ((-1297 . -651) 121611) ((-385 . -651) 121580) ((-820 . -38) 121550) ((-63 . -446) T) ((-63 . -400) T) ((-1166 . -102) T) ((-876 . -131) T) ((-489 . -102) 121528) ((-1301 . -372) T) ((-1086 . -102) T) ((-1067 . -102) T) ((-355 . -722) 121473) ((-736 . -147) 121452) ((-736 . -145) 121431) ((-659 . -621) 121349) ((-1030 . -653) 121286) ((-528 . -1106) 121264) ((-363 . -102) T) ((-357 . -102) T) ((-349 . -102) T) ((-108 . -102) T) ((-509 . -1106) T) ((-358 . -653) 121209) ((-1179 . -644) 121157) ((-1131 . -644) 121105) ((-389 . -514) 121084) ((-838 . -853) 121063) ((-383 . -1227) T) ((-699 . -731) T) ((-343 . -1064) T) ((-1237 . -998) 121015) ((-175 . -1064) T) ((-103 . -618) 120947) ((-1181 . -145) 120926) ((-1181 . -147) 120905) ((-383 . -561) T) ((-1180 . -147) 120884) ((-1180 . -145) 120863) ((-1174 . -145) 120770) ((-412 . -293) T) ((-1174 . -147) 120677) ((-1132 . -147) 120656) ((-1132 . -145) 120635) ((-322 . -38) 120476) ((-170 . -131) T) ((-316 . -800) NIL) ((-316 . -797) NIL) ((-659 . -1055) T) ((-48 . -653) 120441) ((-1119 . -1057) 120338) ((-899 . -621) 120315) ((-1119 . -645) 120257) ((-1173 . -102) T) ((-1000 . -102) T) ((-999 . -21) T) ((-127 . -1016) 120241) ((-121 . -1016) 120225) ((-999 . -25) T) ((-907 . -119) 120209) ((-1165 . -102) T) ((-1246 . -131) T) ((-1179 . -25) T) ((-1179 . -21) T) ((-860 . -131) T) ((-1131 . -25) T) ((-1131 . -21) T) ((-859 . -25) T) ((-859 . -21) T) ((-787 . -310) 120188) ((-652 . -102) 120166) ((-637 . -102) T) ((-1166 . -312) 119961) ((-576 . -131) T) ((-626 . -853) 119940) ((-1163 . -494) 119924) ((-1156 . -151) 119874) ((-1152 . -618) 119836) ((-1152 . -619) 119797) ((-1030 . -796) T) ((-1030 . -799) T) ((-1030 . -731) T) ((-717 . -1062) 119620) ((-489 . -312) 119558) ((-458 . -422) 119528) ((-355 . -173) T) ((-292 . -38) 119515) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-347 . -1044) 119492) ((-270 . -102) T) ((-213 . -102) T) ((-212 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-358 . -731) T) ((-717 . -111) 119301) ((-675 . -232) 119285) ((-586 . -310) T) ((-523 . -310) T) ((-297 . -519) 119234) ((-108 . -312) NIL) ((-72 . -400) T) ((-1119 . -102) 119024) ((-838 . -416) 119008) ((-1126 . -800) T) ((-1126 . -797) T) ((-706 . -1106) T) ((-583 . -618) 118990) ((-383 . -367) T) ((-170 . -498) 118968) ((-223 . -618) 118900) ((-134 . -1106) T) ((-116 . -1106) T) ((-48 . -731) T) ((-1052 . -494) 118865) ((-141 . -430) 118847) ((-141 . -372) T) ((-1033 . -102) T) ((-517 . -514) 118826) ((-717 . -621) 118582) ((-481 . -102) T) ((-468 . -102) T) ((-1040 . -1118) T) ((-1230 . -618) 118564) ((-1188 . -1044) 118500) ((-1181 . -35) 118466) ((-1181 . -95) 118432) ((-1181 . -1211) 118398) ((-1181 . -1208) 118364) ((-1165 . -312) NIL) ((-89 . -401) T) ((-89 . -400) T) ((-1086 . -1158) 118343) ((-1180 . -1208) 118309) ((-1180 . -1211) 118275) ((-1040 . -23) T) ((-1180 . -95) 118241) ((-576 . -498) T) ((-1180 . -35) 118207) ((-1174 . -1208) 118173) ((-1174 . -1211) 118139) ((-1174 . -95) 118105) ((-365 . -1118) T) ((-363 . -1158) 118084) ((-357 . -1158) 118063) ((-349 . -1158) 118042) ((-1174 . -35) 118008) ((-1132 . -35) 117974) ((-1132 . -95) 117940) ((-108 . -1158) T) ((-1132 . -1211) 117906) ((-838 . -1064) 117885) ((-652 . -312) 117823) ((-637 . -312) 117674) ((-1132 . -1208) 117640) ((-717 . -1055) T) ((-1068 . -644) 117622) ((-1086 . -38) 117490) ((-958 . -644) 117438) ((-1010 . -147) T) ((-1010 . -145) NIL) ((-383 . -1118) T) ((-327 . -25) T) ((-325 . -23) T) ((-949 . -855) 117417) ((-717 . -329) 117394) ((-486 . -644) 117342) ((-40 . -1044) 117230) ((-717 . -234) T) ((-706 . -722) 117217) ((-343 . -1106) T) ((-175 . -1106) T) ((-334 . -855) T) ((-423 . -457) 117167) ((-383 . -23) T) ((-363 . -38) 117132) ((-357 . -38) 117097) ((-349 . -38) 117062) ((-80 . -446) T) ((-80 . -400) T) ((-226 . -25) T) ((-226 . -21) T) ((-841 . -1118) T) ((-108 . -38) 117012) ((-832 . -1118) T) ((-779 . -1106) T) ((-116 . -722) 116999) ((-677 . -1044) 116983) ((-617 . -102) T) ((-841 . -23) T) ((-832 . -23) T) ((-1163 . -289) 116960) ((-1119 . -312) 116898) ((-487 . -1057) 116795) ((-1108 . -236) 116779) ((-64 . -401) T) ((-64 . -400) T) ((-1157 . -102) T) ((-110 . -102) T) ((-487 . -645) 116721) ((-40 . -381) 116698) ((-96 . -102) T) ((-658 . -857) 116682) ((-1141 . -1089) T) ((-1068 . -21) T) ((-1068 . -25) T) ((-1060 . -1057) 116666) ((-820 . -232) 116635) ((-958 . -25) T) ((-958 . -21) T) ((-1060 . -645) 116577) ((-626 . -1064) T) ((-1126 . -372) T) ((-1033 . -312) 116515) ((-675 . -651) 116474) ((-486 . -25) T) ((-486 . -21) T) ((-389 . -1057) 116458) ((-895 . -618) 116440) ((-891 . -618) 116422) ((-528 . -519) 116355) ((-253 . -855) 116306) ((-252 . -855) 116257) ((-389 . -645) 116227) ((-876 . -644) 116204) ((-481 . -312) 116142) ((-468 . -312) 116080) ((-355 . -293) T) ((-1163 . -1261) 116064) ((-1148 . -618) 116026) ((-1148 . -619) 115987) ((-1146 . -102) T) ((-1005 . -1062) 115883) ((-40 . -906) 115835) ((-1163 . -609) 115812) ((-1301 . -653) 115799) ((-871 . -495) 115776) ((-1069 . -151) 115722) ((-877 . -1227) T) ((-1005 . -111) 115604) ((-343 . -722) 115588) ((-871 . -618) 115550) ((-175 . -722) 115482) ((-412 . -289) 115440) ((-877 . -561) T) ((-108 . -405) 115422) ((-84 . -388) T) ((-84 . -400) T) ((-706 . -173) T) ((-622 . -618) 115404) ((-99 . -731) T) ((-487 . -102) 115194) ((-99 . -478) T) ((-116 . -173) T) ((-1295 . -651) 115153) ((-1293 . -651) 115112) ((-1119 . -38) 115082) ((-170 . -644) 115030) ((-1060 . -102) T) ((-1005 . -621) 114920) ((-876 . -25) T) ((-820 . -239) 114899) ((-876 . -21) T) ((-823 . -102) T) ((-44 . -651) 114842) ((-419 . -102) T) ((-389 . -102) T) ((-110 . -312) NIL) ((-228 . -102) 114820) ((-127 . -1223) T) ((-121 . -1223) T) ((-822 . -1057) 114771) ((-822 . -645) 114713) ((-1040 . -131) T) ((-675 . -371) 114697) ((-152 . -651) 114656) ((-1005 . -1055) T) ((-1246 . -644) 114604) ((-1110 . -618) 114586) ((-1009 . -618) 114568) ((-520 . -23) T) ((-515 . -23) T) ((-347 . -310) T) ((-513 . -23) T) ((-325 . -131) T) ((-3 . -1106) T) ((-1009 . -619) 114552) ((-1005 . -244) 114531) ((-1005 . -234) 114510) ((-1301 . -731) T) ((-1265 . -145) 114489) ((-838 . -1106) T) ((-1265 . -147) 114468) ((-1258 . -147) 114447) ((-1258 . -145) 114426) ((-1257 . -1227) 114405) ((-1237 . -145) 114312) ((-1237 . -147) 114219) ((-1236 . -1227) 114198) ((-383 . -131) T) ((-569 . -892) 114180) ((0 . -1106) T) ((-175 . -173) T) ((-170 . -21) T) ((-170 . -25) T) ((-49 . -1106) T) ((-1259 . -653) 114085) ((-1257 . -561) 114036) ((-719 . -1118) T) ((-1236 . -561) 113987) ((-569 . -1044) 113969) ((-600 . -147) 113948) ((-600 . -145) 113927) ((-500 . -1044) 113870) ((-1141 . -1143) T) ((-87 . -388) T) ((-87 . -400) T) ((-877 . -367) T) ((-841 . -131) T) ((-832 . -131) T) ((-970 . -651) 113814) ((-719 . -23) T) ((-511 . -618) 113780) ((-507 . -618) 113762) ((-820 . -651) 113512) ((-1297 . -1064) T) ((-383 . -1066) T) ((-1032 . -1106) 113490) ((-55 . -1044) 113472) ((-907 . -34) T) ((-487 . -312) 113410) ((-597 . -102) T) ((-1163 . -619) 113371) ((-1163 . -618) 113303) ((-1185 . -1057) 113186) ((-45 . -102) T) ((-822 . -102) T) ((-1185 . -645) 113083) ((-1246 . -25) T) ((-1246 . -21) T) ((-860 . -25) T) ((-44 . -371) 113067) ((-860 . -21) T) ((-736 . -457) 113018) ((-1296 . -618) 113000) ((-1285 . -1057) 112970) ((-1060 . -312) 112908) ((-676 . -1089) T) ((-611 . -1089) T) ((-395 . -1106) T) ((-576 . -25) T) ((-576 . -21) T) ((-181 . -1089) T) ((-161 . -1089) T) ((-156 . -1089) T) ((-154 . -1089) T) ((-1285 . -645) 112878) ((-626 . -1106) T) ((-704 . -892) 112860) ((-1273 . -1223) T) ((-228 . -312) 112798) ((-144 . -372) T) ((-1052 . -619) 112740) ((-1052 . -618) 112683) ((-316 . -915) NIL) ((-1231 . -849) T) ((-704 . -1044) 112628) ((-716 . -926) T) ((-479 . -1227) 112607) ((-1180 . -457) 112586) ((-1174 . -457) 112565) ((-333 . -102) T) ((-877 . -1118) T) ((-322 . -651) 112447) ((-319 . -653) 112268) ((-316 . -653) 112197) ((-479 . -561) 112148) ((-343 . -519) 112114) ((-555 . -151) 112064) ((-40 . -310) T) ((-848 . -618) 112046) ((-706 . -293) T) ((-877 . -23) T) ((-383 . -498) T) ((-1086 . -232) 112016) ((-517 . -102) T) ((-412 . -619) 111823) ((-412 . -618) 111805) ((-265 . -618) 111787) ((-116 . -293) T) ((-1259 . -731) T) ((-1257 . -367) 111766) ((-1236 . -367) 111745) ((-1286 . -34) T) ((-1231 . -1106) T) ((-117 . -1223) T) ((-108 . -232) 111727) ((-1185 . -102) T) ((-482 . -1106) T) ((-528 . -494) 111711) ((-742 . -34) T) ((-658 . -1057) 111695) ((-487 . -38) 111665) ((-658 . -645) 111635) ((-141 . -34) T) ((-117 . -890) 111612) ((-117 . -892) NIL) ((-628 . -1044) 111495) ((-649 . -855) 111474) ((-1285 . -102) T) ((-298 . -102) T) ((-717 . -372) 111453) ((-117 . -1044) 111430) ((-395 . -722) 111414) ((-626 . -722) 111398) ((-45 . -312) 111202) ((-821 . -145) 111181) ((-821 . -147) 111160) ((-292 . -651) 111132) ((-1296 . -386) 111111) ((-824 . -855) T) ((-1275 . -1106) T) ((-1166 . -230) 111058) ((-391 . -855) 111037) ((-1265 . -1211) 111003) ((-1265 . -1208) 110969) ((-1258 . -1208) 110935) ((-520 . -131) T) ((-1258 . -1211) 110901) ((-1237 . -1208) 110867) ((-1237 . -1211) 110833) ((-1265 . -35) 110799) ((-1265 . -95) 110765) ((-640 . -618) 110734) ((-612 . -618) 110703) ((-226 . -855) T) ((-1258 . -95) 110669) ((-1258 . -35) 110635) ((-1257 . -1118) T) ((-1126 . -653) 110622) ((-1237 . -95) 110588) ((-1236 . -1118) T) ((-598 . -151) 110570) ((-1086 . -353) 110549) ((-175 . -293) T) ((-117 . -381) 110526) ((-117 . -342) 110503) ((-1237 . -35) 110469) ((-875 . -310) T) ((-316 . -799) NIL) ((-316 . -796) NIL) ((-319 . -731) 110318) ((-316 . -731) T) ((-479 . -367) 110297) ((-363 . -353) 110276) ((-357 . -353) 110255) ((-349 . -353) 110234) ((-319 . -478) 110213) ((-1257 . -23) T) ((-1236 . -23) T) ((-723 . -1118) T) ((-719 . -131) T) ((-658 . -102) T) ((-482 . -722) 110178) ((-45 . -285) 110128) ((-105 . -1106) T) ((-68 . -618) 110110) ((-976 . -102) T) ((-869 . -102) T) ((-628 . -906) 110069) ((-1297 . -1106) T) ((-385 . -1106) T) ((-82 . -1223) T) ((-1222 . -1106) T) ((-1068 . -855) T) ((-117 . -906) NIL) ((-787 . -926) 110048) ((-718 . -855) T) ((-536 . -1106) T) ((-505 . -1106) T) ((-359 . -1227) T) ((-356 . -1227) T) ((-348 . -1227) T) ((-266 . -1227) 110027) ((-248 . -1227) 110006) ((-538 . -865) T) ((-1119 . -232) 109975) ((-1165 . -833) T) ((-1148 . -1062) 109959) ((-395 . -766) T) ((-699 . -1223) T) ((-696 . -1044) 109943) ((-359 . -561) T) ((-356 . -561) T) ((-348 . -561) T) ((-266 . -561) 109874) ((-248 . -561) 109805) ((-530 . -1089) T) ((-1148 . -111) 109784) ((-458 . -749) 109754) ((-871 . -1062) 109724) ((-822 . -38) 109666) ((-699 . -890) 109648) ((-699 . -892) 109630) ((-298 . -312) 109434) ((-916 . -1227) T) ((-1163 . -291) 109411) ((-1086 . -651) 109306) ((-675 . -416) 109290) ((-871 . -111) 109255) ((-1010 . -457) T) ((-699 . -1044) 109200) ((-916 . -561) T) ((-538 . -618) 109182) ((-586 . -926) T) ((-492 . -1057) 109132) ((-479 . -1118) T) ((-523 . -926) T) ((-920 . -457) T) ((-65 . -618) 109114) ((-218 . -1057) 109064) ((-492 . -645) 109014) ((-363 . -651) 108951) ((-357 . -651) 108888) ((-349 . -651) 108825) ((-637 . -230) 108771) ((-218 . -645) 108721) ((-108 . -651) 108671) ((-479 . -23) T) ((-1126 . -799) T) ((-877 . -131) T) ((-1126 . -796) T) ((-1288 . -1290) 108650) ((-1126 . -731) T) ((-659 . -653) 108624) ((-297 . -618) 108365) ((-1148 . -621) 108283) ((-1041 . -34) T) ((-820 . -853) 108262) ((-585 . -310) T) ((-569 . -310) T) ((-500 . -310) T) ((-1297 . -722) 108232) ((-699 . -381) 108214) ((-699 . -342) 108196) ((-482 . -173) T) ((-385 . -722) 108166) ((-871 . -621) 108101) ((-876 . -855) NIL) ((-569 . -1028) T) ((-500 . -1028) T) ((-1139 . -618) 108083) ((-1119 . -239) 108062) ((-215 . -102) T) ((-1156 . -102) T) ((-71 . -618) 108044) ((-1148 . -1055) T) ((-1185 . -38) 107941) ((-863 . -618) 107923) ((-569 . -550) T) ((-675 . -1064) T) ((-736 . -955) 107876) ((-1148 . -234) 107855) ((-1088 . -1106) T) ((-1040 . -25) T) ((-1040 . -21) T) ((-1009 . -1062) 107800) ((-911 . -102) T) ((-871 . -1055) T) ((-699 . -906) NIL) ((-359 . -332) 107784) ((-359 . -367) T) ((-356 . -332) 107768) ((-356 . -367) T) ((-348 . -332) 107752) ((-348 . -367) T) ((-492 . -102) T) ((-1285 . -38) 107722) ((-551 . -855) T) ((-528 . -692) 107672) ((-218 . -102) T) ((-1030 . -1044) 107552) ((-1009 . -111) 107481) ((-1181 . -979) 107450) ((-525 . -151) 107434) ((-1086 . -374) 107413) ((-355 . -618) 107395) ((-325 . -21) T) ((-358 . -1044) 107372) ((-325 . -25) T) ((-1180 . -979) 107334) ((-1174 . -979) 107303) ((-76 . -618) 107285) ((-1132 . -979) 107252) ((-704 . -310) T) ((-129 . -849) T) ((-916 . -367) T) ((-383 . -25) T) ((-383 . -21) T) ((-916 . -332) 107239) ((-86 . -618) 107221) ((-704 . -1028) T) ((-682 . -855) T) ((-1257 . -131) T) ((-1236 . -131) T) ((-907 . -1016) 107205) ((-841 . -21) T) ((-48 . -1044) 107148) ((-841 . -25) T) ((-832 . -25) T) ((-832 . -21) T) ((-1119 . -651) 106898) ((-1295 . -1064) T) ((-554 . -102) T) ((-1293 . -1064) T) ((-659 . -731) T) ((-1110 . -623) 106801) ((-1009 . -621) 106731) ((-1296 . -1062) 106715) ((-820 . -416) 106684) ((-103 . -119) 106668) ((-129 . -1106) T) ((-52 . -1106) T) ((-932 . -618) 106650) ((-876 . -998) 106627) ((-828 . -102) T) ((-1296 . -111) 106606) ((-658 . -38) 106576) ((-576 . -855) T) ((-359 . -1118) T) ((-356 . -1118) T) ((-348 . -1118) T) ((-266 . -1118) T) ((-248 . -1118) T) ((-628 . -310) 106555) ((-1156 . -312) 106359) ((-669 . -23) T) ((-529 . -1089) T) ((-314 . -1106) T) ((-487 . -232) 106328) ((-152 . -1064) T) ((-359 . -23) T) ((-356 . -23) T) ((-348 . -23) T) ((-117 . -310) T) ((-266 . -23) T) ((-248 . -23) T) ((-1009 . -1055) T) ((-717 . -915) 106307) ((-1163 . -621) 106284) ((-1009 . -234) 106256) ((-1009 . -244) T) ((-117 . -1028) NIL) ((-916 . -1118) T) ((-1258 . -457) 106235) ((-1237 . -457) 106214) ((-528 . -618) 106146) ((-717 . -653) 106071) ((-412 . -1062) 106023) ((-509 . -618) 106005) ((-916 . -23) T) ((-492 . -312) NIL) ((-1296 . -621) 105961) ((-479 . -131) T) ((-218 . -312) NIL) ((-412 . -111) 105899) ((-820 . -1064) 105829) ((-742 . -1104) 105813) ((-1257 . -498) 105779) ((-1236 . -498) 105745) ((-553 . -849) T) ((-141 . -1104) 105727) ((-482 . -293) T) ((-1296 . -1055) T) ((-1228 . -102) T) ((-1069 . -102) T) ((-848 . -621) 105595) ((-505 . -519) NIL) ((-487 . -239) 105574) ((-412 . -621) 105472) ((-969 . -1057) 105355) ((-740 . -1057) 105325) ((-969 . -645) 105222) ((-1179 . -145) 105201) ((-740 . -645) 105171) ((-458 . -1057) 105141) ((-1179 . -147) 105120) ((-1131 . -147) 105099) ((-1131 . -145) 105078) ((-640 . -1062) 105062) ((-612 . -1062) 105046) ((-458 . -645) 105016) ((-1181 . -1264) 105000) ((-1181 . -1251) 104977) ((-675 . -1106) T) ((-675 . -1059) 104917) ((-1180 . -1256) 104878) ((-553 . -1106) T) ((-492 . -1158) T) ((-1180 . -1251) 104848) ((-1180 . -1254) 104832) ((-1174 . -1235) 104793) ((-218 . -1158) T) ((-347 . -926) T) ((-823 . -268) 104777) ((-640 . -111) 104756) ((-612 . -111) 104735) ((-1174 . -1251) 104712) ((-848 . -1055) 104691) ((-1174 . -1233) 104675) ((-520 . -25) T) ((-500 . -305) T) ((-516 . -23) T) ((-515 . -25) T) ((-513 . -25) T) ((-512 . -23) T) ((-423 . -1057) 104649) ((-412 . -1055) T) ((-322 . -1064) T) ((-699 . -310) T) ((-423 . -645) 104623) ((-108 . -853) T) ((-717 . -731) T) ((-412 . -244) T) ((-412 . -234) 104602) ((-492 . -38) 104552) ((-218 . -38) 104502) ((-479 . -498) 104468) ((-1230 . -372) T) ((-1165 . -1150) T) ((-1107 . -102) T) ((-706 . -618) 104450) ((-706 . -619) 104365) ((-719 . -21) T) ((-719 . -25) T) ((-1141 . -102) T) ((-487 . -651) 104115) ((-134 . -618) 104097) ((-116 . -618) 104079) ((-157 . -25) T) ((-1295 . -1106) T) ((-877 . -644) 104027) ((-1293 . -1106) T) ((-969 . -102) T) ((-740 . -102) T) ((-720 . -102) T) ((-458 . -102) T) ((-821 . -457) 103978) ((-44 . -1106) T) ((-1094 . -855) T) ((-1069 . -312) 103829) ((-669 . -131) T) ((-1060 . -651) 103798) ((-675 . -722) 103782) ((-292 . -1064) T) ((-359 . -131) T) ((-356 . -131) T) ((-348 . -131) T) ((-266 . -131) T) ((-248 . -131) T) ((-389 . -651) 103751) ((-423 . -102) T) ((-152 . -1106) T) ((-45 . -230) 103701) ((-804 . -1057) 103685) ((-964 . -855) 103664) ((-1005 . -653) 103602) ((-804 . -645) 103586) ((-241 . -1280) 103556) ((-1030 . -310) T) ((-297 . -1062) 103477) ((-916 . -131) T) ((-40 . -926) T) ((-492 . -405) 103459) ((-358 . -310) T) ((-218 . -405) 103441) ((-1086 . -416) 103425) ((-297 . -111) 103341) ((-1190 . -855) T) ((-1189 . -855) T) ((-877 . -25) T) ((-877 . -21) T) ((-343 . -618) 103323) ((-1259 . -47) 103267) ((-226 . -147) T) ((-175 . -618) 103249) ((-1119 . -853) 103228) ((-779 . -618) 103210) ((-128 . -855) T) ((-613 . -236) 103157) ((-480 . -236) 103107) ((-1295 . -722) 103077) ((-48 . -310) T) ((-1293 . -722) 103047) ((-65 . -621) 102976) ((-970 . -1106) T) ((-820 . -1106) 102766) ((-315 . -102) T) ((-907 . -1223) T) ((-48 . -1028) T) ((-1236 . -644) 102674) ((-694 . -102) 102652) ((-44 . -722) 102636) ((-555 . -102) T) ((-297 . -621) 102567) ((-67 . -387) T) ((-67 . -400) T) ((-667 . -23) T) ((-822 . -651) 102503) ((-675 . -766) T) ((-1220 . -1106) 102481) ((-355 . -1062) 102426) ((-680 . -1106) 102404) ((-1068 . -147) T) ((-958 . -147) 102383) ((-958 . -145) 102362) ((-804 . -102) T) ((-152 . -722) 102346) ((-486 . -147) 102325) ((-486 . -145) 102304) ((-355 . -111) 102233) ((-1086 . -1064) T) ((-325 . -855) 102212) ((-1265 . -979) 102181) ((-632 . -1106) T) ((-1258 . -979) 102143) ((-516 . -131) T) ((-512 . -131) T) ((-298 . -230) 102093) ((-363 . -1064) T) ((-357 . -1064) T) ((-349 . -1064) T) ((-297 . -1055) 102035) ((-1237 . -979) 102004) ((-383 . -855) T) ((-108 . -1064) T) ((-1005 . -731) T) ((-875 . -926) T) ((-848 . -800) 101983) ((-848 . -797) 101962) ((-423 . -312) 101901) ((-473 . -102) T) ((-600 . -979) 101870) ((-322 . -1106) T) ((-412 . -800) 101849) ((-412 . -797) 101828) ((-505 . -494) 101810) ((-1259 . -1044) 101776) ((-1257 . -21) T) ((-1257 . -25) T) ((-1236 . -21) T) ((-1236 . -25) T) ((-820 . -722) 101718) ((-355 . -621) 101648) ((-704 . -409) T) ((-1286 . -1223) T) ((-611 . -102) T) ((-1119 . -416) 101617) ((-1009 . -372) NIL) ((-676 . -102) T) ((-181 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1185 . -651) 101527) ((-742 . -1223) T) ((-736 . -1057) 101370) ((-44 . -766) T) ((-736 . -645) 101219) ((-598 . -102) T) ((-77 . -401) T) ((-77 . -400) T) ((-658 . -661) 101203) ((-141 . -1223) T) ((-876 . -147) T) ((-876 . -145) NIL) ((-1222 . -93) T) ((-355 . -1055) T) ((-70 . -387) T) ((-70 . -400) T) ((-1172 . -102) T) ((-675 . -519) 101136) ((-1285 . -651) 101081) ((-694 . -312) 101019) ((-969 . -38) 100916) ((-1187 . -618) 100898) ((-740 . -38) 100868) ((-555 . -312) 100672) ((-1181 . -1057) 100555) ((-319 . -1223) T) ((-355 . -234) T) ((-355 . -244) T) ((-316 . -1223) T) ((-292 . -1106) T) ((-1180 . -1057) 100390) ((-1174 . -1057) 100180) ((-1132 . -1057) 100063) ((-1181 . -645) 99960) ((-1180 . -645) 99801) ((-716 . -1227) T) ((-1174 . -645) 99597) ((-1163 . -656) 99581) ((-1132 . -645) 99478) ((-1217 . -561) 99457) ((-824 . -390) 99441) ((-716 . -561) T) ((-319 . -890) 99425) ((-319 . -892) 99350) ((-316 . -890) 99311) ((-316 . -892) NIL) ((-804 . -312) 99276) ((-322 . -722) 99117) ((-391 . -390) 99101) ((-327 . -326) 99078) ((-490 . -102) T) ((-479 . -25) T) ((-479 . -21) T) ((-423 . -38) 99052) ((-319 . -1044) 98715) ((-226 . -1208) T) ((-226 . -1211) T) ((-3 . -618) 98697) ((-316 . -1044) 98627) ((-2 . -1106) T) ((-2 . |RecordCategory|) T) ((-838 . -618) 98609) ((-1119 . -1064) 98539) ((-585 . -926) T) ((-569 . -825) T) ((-569 . -926) T) ((-500 . -926) T) ((-136 . -1044) 98523) ((-226 . -95) T) ((-170 . -147) 98502) ((-75 . -446) T) ((0 . -618) 98484) ((-75 . -400) T) ((-170 . -145) 98435) ((-226 . -35) T) ((-49 . -618) 98417) ((-482 . -1064) T) ((-492 . -232) 98399) ((-489 . -974) 98383) ((-487 . -853) 98362) ((-218 . -232) 98344) ((-81 . -446) T) ((-81 . -400) T) ((-1152 . -34) T) ((-820 . -173) 98323) ((-736 . -102) T) ((-658 . -651) 98282) ((-1032 . -618) 98249) ((-505 . -289) 98224) ((-319 . -381) 98193) ((-316 . -381) 98154) ((-316 . -342) 98115) ((-1091 . -618) 98097) ((-821 . -955) 98044) ((-667 . -131) T) ((-1246 . -145) 98023) ((-1246 . -147) 98002) ((-1181 . -102) T) ((-1180 . -102) T) ((-1174 . -102) T) ((-1166 . -1106) T) ((-1132 . -102) T) ((-223 . -34) T) ((-292 . -722) 97989) ((-1166 . -615) 97965) ((-598 . -312) NIL) ((-489 . -1106) 97943) ((-395 . -618) 97925) ((-515 . -855) T) ((-1156 . -230) 97875) ((-1265 . -1264) 97859) ((-1265 . -1251) 97836) ((-1258 . -1256) 97797) ((-1258 . -1251) 97767) ((-1258 . -1254) 97751) ((-1237 . -1235) 97712) ((-1237 . -1251) 97689) ((-626 . -618) 97671) ((-1237 . -1233) 97655) ((-704 . -926) T) ((-1181 . -287) 97621) ((-1180 . -287) 97587) ((-1174 . -287) 97553) ((-1086 . -1106) T) ((-1067 . -1106) T) ((-48 . -305) T) ((-319 . -906) 97519) ((-316 . -906) NIL) ((-1067 . -1074) 97498) ((-1126 . -892) 97480) ((-804 . -38) 97464) ((-266 . -644) 97412) ((-248 . -644) 97360) ((-706 . -1062) 97347) ((-600 . -1251) 97324) ((-1132 . -287) 97290) ((-322 . -173) 97221) ((-363 . -1106) T) ((-357 . -1106) T) ((-349 . -1106) T) ((-505 . -19) 97203) ((-1126 . -1044) 97185) ((-1108 . -151) 97169) ((-108 . -1106) T) ((-116 . -1062) 97156) ((-716 . -367) T) ((-505 . -609) 97131) ((-706 . -111) 97116) ((-441 . -102) T) ((-881 . -1268) T) ((-251 . -102) T) ((-45 . -1155) 97066) ((-116 . -111) 97051) ((-640 . -725) T) ((-612 . -725) T) ((-1275 . -618) 97033) ((-1231 . -618) 97015) ((-1229 . -855) T) ((-820 . -519) 96948) ((-1041 . -1223) T) ((-241 . -1057) 96845) ((-1217 . -1118) T) ((-1217 . -23) T) ((-949 . -151) 96829) ((-1179 . -457) 96760) ((-1174 . -312) 96645) ((-241 . -645) 96587) ((-1173 . -1106) T) ((-1165 . -1106) T) ((-1148 . -653) 96561) ((-530 . -102) T) ((-525 . -102) 96511) ((-1132 . -312) 96498) ((-1131 . -457) 96449) ((-1093 . -1227) 96428) ((-787 . -1227) 96407) ((-785 . -1227) 96386) ((-62 . -1223) T) ((-482 . -618) 96338) ((-482 . -619) 96260) ((-1093 . -561) 96191) ((-1000 . -1106) T) ((-787 . -561) 96102) ((-785 . -561) 96033) ((-487 . -416) 96002) ((-628 . -926) 95981) ((-459 . -1227) 95960) ((-736 . -312) 95947) ((-706 . -621) 95919) ((-403 . -618) 95901) ((-680 . -519) 95834) ((-669 . -25) T) ((-669 . -21) T) ((-459 . -561) 95765) ((-359 . -25) T) ((-359 . -21) T) ((-117 . -926) T) ((-117 . -825) NIL) ((-356 . -25) T) ((-356 . -21) T) ((-348 . -25) T) ((-348 . -21) T) ((-266 . -25) T) ((-266 . -21) T) ((-248 . -25) T) ((-248 . -21) T) ((-83 . -388) T) ((-83 . -400) T) ((-134 . -621) 95747) ((-116 . -621) 95719) ((-1086 . -722) 95587) ((-1010 . -1057) 95537) ((-1010 . -645) 95487) ((-949 . -986) 95471) ((-920 . -645) 95423) ((-920 . -1057) 95375) ((-916 . -21) T) ((-916 . -25) T) ((-877 . -855) 95326) ((-871 . -653) 95286) ((-716 . -1118) T) ((-716 . -23) T) ((-292 . -173) T) ((-706 . -1055) T) ((-314 . -93) T) ((-706 . -234) T) ((-652 . -1106) 95264) ((-637 . -615) 95239) ((-637 . -1106) T) ((-586 . -1227) T) ((-586 . -561) T) ((-523 . -1227) T) ((-523 . -561) T) ((-492 . -651) 95189) ((-432 . -1057) 95173) ((-432 . -645) 95157) ((-363 . -722) 95109) ((-357 . -722) 95061) ((-343 . -1062) 95045) ((-349 . -722) 94997) ((-343 . -111) 94976) ((-175 . -1062) 94908) ((-218 . -651) 94858) ((-175 . -111) 94769) ((-108 . -722) 94719) ((-276 . -1106) T) ((-275 . -1106) T) ((-274 . -1106) T) ((-273 . -1106) T) ((-272 . -1106) T) ((-271 . -1106) T) ((-270 . -1106) T) ((-213 . -1106) T) ((-212 . -1106) T) ((-170 . -1211) 94697) ((-170 . -1208) 94675) ((-210 . -1106) T) ((-209 . -1106) T) ((-116 . -1055) T) ((-208 . -1106) T) ((-207 . -1106) T) ((-204 . -1106) T) ((-203 . -1106) T) ((-202 . -1106) T) ((-201 . -1106) T) ((-200 . -1106) T) ((-199 . -1106) T) ((-198 . -1106) T) ((-197 . -1106) T) ((-196 . -1106) T) ((-195 . -1106) T) ((-194 . -1106) T) ((-241 . -102) 94465) ((-170 . -35) 94443) ((-170 . -95) 94421) ((-659 . -1044) 94317) ((-487 . -1064) 94247) ((-1119 . -1106) 94037) ((-1148 . -34) T) ((-675 . -494) 94021) ((-73 . -1223) T) ((-105 . -618) 94003) ((-1297 . -618) 93985) ((-385 . -618) 93967) ((-343 . -621) 93919) ((-175 . -621) 93836) ((-1222 . -495) 93817) ((-736 . -38) 93666) ((-576 . -1211) T) ((-576 . -1208) T) ((-536 . -618) 93648) ((-525 . -312) 93586) ((-505 . -618) 93568) ((-505 . -619) 93550) ((-1222 . -618) 93516) ((-1174 . -1158) NIL) ((-1033 . -1077) 93485) ((-1033 . -1106) T) ((-1010 . -102) T) ((-977 . -102) T) ((-920 . -102) T) ((-899 . -1044) 93462) ((-1148 . -731) T) ((-1009 . -653) 93407) ((-481 . -1106) T) ((-468 . -1106) T) ((-591 . -23) T) ((-576 . -35) T) ((-576 . -95) T) ((-432 . -102) T) ((-1069 . -230) 93353) ((-1181 . -38) 93250) ((-871 . -731) T) ((-699 . -926) T) ((-516 . -25) T) ((-512 . -21) T) ((-512 . -25) T) ((-1180 . -38) 93091) ((-343 . -1055) T) ((-1174 . -38) 92887) ((-1086 . -173) T) ((-175 . -1055) T) ((-1132 . -38) 92784) ((-717 . -47) 92761) ((-363 . -173) T) ((-357 . -173) T) ((-524 . -57) 92735) ((-502 . -57) 92685) ((-355 . -1292) 92662) ((-226 . -457) T) ((-322 . -293) 92613) ((-349 . -173) T) ((-175 . -244) T) ((-1236 . -855) 92512) ((-108 . -173) T) ((-877 . -998) 92496) ((-663 . -1118) T) ((-586 . -367) T) ((-586 . -332) 92483) ((-523 . -332) 92460) ((-523 . -367) T) ((-319 . -310) 92439) ((-316 . -310) T) ((-607 . -855) 92418) ((-1119 . -722) 92360) ((-525 . -285) 92344) ((-663 . -23) T) ((-423 . -232) 92328) ((-316 . -1028) NIL) ((-340 . -23) T) ((-103 . -1016) 92312) ((-45 . -36) 92291) ((-617 . -1106) T) ((-355 . -372) T) ((-529 . -102) T) ((-500 . -27) T) ((-241 . -312) 92229) ((-1093 . -1118) T) ((-1296 . -653) 92203) ((-787 . -1118) T) ((-785 . -1118) T) ((-459 . -1118) T) ((-1068 . -457) T) ((-1157 . -1106) T) ((-958 . -457) 92154) ((-1121 . -1089) T) ((-110 . -1106) T) ((-1093 . -23) T) ((-822 . -1064) T) ((-787 . -23) T) ((-785 . -23) T) ((-486 . -457) 92105) ((-1166 . -519) 91888) ((-385 . -386) 91867) ((-1185 . -416) 91851) ((-466 . -23) T) ((-459 . -23) T) ((-96 . -1106) T) ((-489 . -519) 91784) ((-1265 . -1057) 91667) ((-1265 . -645) 91564) ((-1258 . -645) 91405) ((-1258 . -1057) 91240) ((-292 . -293) T) ((-1237 . -1057) 91030) ((-1088 . -618) 91012) ((-1088 . -619) 90993) ((-412 . -915) 90972) ((-1237 . -645) 90768) ((-50 . -1118) T) ((-1217 . -131) T) ((-1030 . -926) T) ((-1009 . -731) T) ((-848 . -653) 90741) ((-717 . -892) NIL) ((-601 . -1057) 90701) ((-586 . -1118) T) ((-523 . -1118) T) ((-600 . -1057) 90584) ((-1174 . -405) 90536) ((-1010 . -312) NIL) ((-820 . -494) 90520) ((-601 . -645) 90493) ((-358 . -926) T) ((-600 . -645) 90390) ((-1163 . -34) T) ((-412 . -653) 90342) ((-50 . -23) T) ((-716 . -131) T) ((-717 . -1044) 90222) ((-586 . -23) T) ((-108 . -519) NIL) ((-523 . -23) T) ((-170 . -414) 90193) ((-1146 . -1106) T) ((-1288 . -1287) 90177) ((-706 . -800) T) ((-706 . -797) T) ((-1126 . -310) T) ((-383 . -147) T) ((-283 . -618) 90159) ((-282 . -618) 90141) ((-1236 . -998) 90111) ((-48 . -926) T) ((-680 . -494) 90095) ((-253 . -1280) 90065) ((-252 . -1280) 90035) ((-1183 . -855) T) ((-1119 . -173) 90014) ((-1126 . -1028) T) ((-1052 . -34) T) ((-841 . -147) 89993) ((-841 . -145) 89972) ((-742 . -107) 89956) ((-617 . -132) T) ((-487 . -1106) 89746) ((-1185 . -1064) T) ((-876 . -457) T) ((-85 . -1223) T) ((-241 . -38) 89716) ((-141 . -107) 89698) ((-717 . -381) 89682) ((-838 . -621) 89550) ((-1296 . -731) T) ((-1285 . -1064) T) ((-1126 . -550) T) ((-584 . -102) T) ((-129 . -495) 89532) ((-1265 . -102) T) ((-395 . -1062) 89516) ((-1258 . -102) T) ((-1179 . -955) 89485) ((-129 . -618) 89452) ((-52 . -618) 89434) ((-1131 . -955) 89401) ((-658 . -416) 89385) ((-1237 . -102) T) ((-1165 . -519) NIL) ((-667 . -25) T) ((-626 . -1062) 89369) ((-667 . -21) T) ((-969 . -651) 89279) ((-740 . -651) 89224) ((-720 . -651) 89196) ((-395 . -111) 89175) ((-223 . -256) 89159) ((-1060 . -1059) 89099) ((-1060 . -1106) T) ((-1010 . -1158) T) ((-823 . -1106) T) ((-458 . -651) 89014) ((-347 . -1227) T) ((-640 . -653) 88998) ((-626 . -111) 88977) ((-612 . -653) 88961) ((-601 . -102) T) ((-314 . -495) 88942) ((-591 . -131) T) ((-600 . -102) T) ((-419 . -1106) T) ((-389 . -1106) T) ((-314 . -618) 88908) ((-228 . -1106) 88886) ((-652 . -519) 88819) ((-637 . -519) 88663) ((-838 . -1055) 88642) ((-649 . -151) 88626) ((-347 . -561) T) ((-717 . -906) 88569) ((-555 . -230) 88519) ((-1265 . -287) 88485) ((-1258 . -287) 88451) ((-1086 . -293) 88402) ((-492 . -853) T) ((-224 . -1118) T) ((-1237 . -287) 88368) ((-1217 . -498) 88334) ((-1010 . -38) 88284) ((-218 . -853) T) ((-423 . -651) 88243) ((-920 . -38) 88195) ((-848 . -799) 88174) ((-848 . -796) 88153) ((-848 . -731) 88132) ((-363 . -293) T) ((-357 . -293) T) ((-349 . -293) T) ((-170 . -457) 88063) ((-432 . -38) 88047) ((-108 . -293) T) ((-224 . -23) T) ((-412 . -799) 88026) ((-412 . -796) 88005) ((-412 . -731) T) ((-505 . -291) 87980) ((-482 . -1062) 87945) ((-663 . -131) T) ((-626 . -621) 87914) ((-1119 . -519) 87847) ((-340 . -131) T) ((-170 . -407) 87826) ((-487 . -722) 87768) ((-820 . -289) 87745) ((-482 . -111) 87701) ((-658 . -1064) T) ((-821 . -1057) 87544) ((-1284 . -1089) T) ((-1246 . -457) 87475) ((-821 . -645) 87324) ((-1283 . -1089) T) ((-1093 . -131) T) ((-1060 . -722) 87266) ((-787 . -131) T) ((-785 . -131) T) ((-576 . -457) T) ((-1033 . -519) 87199) ((-626 . -1055) T) ((-597 . -1106) T) ((-538 . -174) T) ((-466 . -131) T) ((-459 . -131) T) ((-45 . -1106) T) ((-389 . -722) 87169) ((-822 . -1106) T) ((-481 . -519) 87102) ((-468 . -519) 87035) ((-458 . -371) 87005) ((-45 . -615) 86984) ((-319 . -305) T) ((-482 . -621) 86934) ((-1237 . -312) 86819) ((-675 . -618) 86781) ((-59 . -855) 86760) ((-1010 . -405) 86742) ((-553 . -618) 86724) ((-804 . -651) 86683) ((-820 . -609) 86660) ((-521 . -855) 86639) ((-501 . -855) 86618) ((-40 . -1227) T) ((-1005 . -1044) 86514) ((-50 . -131) T) ((-586 . -131) T) ((-523 . -131) T) ((-297 . -653) 86374) ((-347 . -332) 86351) ((-347 . -367) T) ((-325 . -326) 86328) ((-322 . -289) 86313) ((-40 . -561) T) ((-383 . -1208) T) ((-383 . -1211) T) ((-1041 . -1199) 86288) ((-1196 . -236) 86238) ((-1174 . -232) 86190) ((-333 . -1106) T) ((-383 . -95) T) ((-383 . -35) T) ((-1041 . -107) 86136) ((-482 . -1055) T) ((-1297 . -1062) 86120) ((-484 . -236) 86070) ((-1166 . -494) 86004) ((-1288 . -1057) 85988) ((-385 . -1062) 85972) ((-1288 . -645) 85942) ((-482 . -244) T) ((-821 . -102) T) ((-719 . -147) 85921) ((-719 . -145) 85900) ((-489 . -494) 85884) ((-490 . -339) 85853) ((-1297 . -111) 85832) ((-517 . -1106) T) ((-487 . -173) 85811) ((-1005 . -381) 85795) ((-418 . -102) T) ((-385 . -111) 85774) ((-1005 . -342) 85758) ((-281 . -989) 85742) ((-280 . -989) 85726) ((-1295 . -618) 85708) ((-1293 . -618) 85690) ((-110 . -519) NIL) ((-1179 . -1249) 85674) ((-859 . -857) 85658) ((-1185 . -1106) T) ((-103 . -1223) T) ((-958 . -955) 85619) ((-822 . -722) 85561) ((-1237 . -1158) NIL) ((-486 . -955) 85506) ((-1068 . -143) T) ((-60 . -102) 85484) ((-44 . -618) 85466) ((-78 . -618) 85448) ((-355 . -653) 85393) ((-1285 . -1106) T) ((-516 . -855) T) ((-347 . -1118) T) ((-298 . -1106) T) ((-1005 . -906) 85352) ((-298 . -615) 85331) ((-1297 . -621) 85280) ((-1265 . -38) 85177) ((-1258 . -38) 85018) ((-1237 . -38) 84814) ((-492 . -1064) T) ((-385 . -621) 84798) ((-218 . -1064) T) ((-347 . -23) T) ((-152 . -618) 84780) ((-838 . -800) 84759) ((-838 . -797) 84738) ((-1222 . -621) 84719) ((-601 . -38) 84692) ((-600 . -38) 84589) ((-875 . -561) T) ((-224 . -131) T) ((-322 . -1008) 84555) ((-79 . -618) 84537) ((-717 . -310) 84516) ((-297 . -731) 84418) ((-829 . -102) T) ((-869 . -849) T) ((-297 . -478) 84397) ((-1288 . -102) T) ((-40 . -367) T) ((-877 . -147) 84376) ((-490 . -651) 84358) ((-877 . -145) 84337) ((-1165 . -494) 84319) ((-1297 . -1055) T) ((-487 . -519) 84252) ((-1152 . -1223) T) ((-970 . -618) 84234) ((-652 . -494) 84218) ((-637 . -494) 84149) ((-820 . -618) 83880) ((-48 . -27) T) ((-1185 . -722) 83777) ((-658 . -1106) T) ((-866 . -865) T) ((-441 . -368) 83751) ((-736 . -651) 83661) ((-1108 . -102) T) ((-976 . -1106) T) ((-869 . -1106) T) ((-821 . -312) 83648) ((-538 . -532) T) ((-538 . -581) T) ((-1293 . -386) 83620) ((-1060 . -519) 83553) ((-1166 . -289) 83529) ((-241 . -232) 83498) ((-253 . -1057) 83395) ((-252 . -1057) 83292) ((-1285 . -722) 83262) ((-1173 . -93) T) ((-1000 . -93) T) ((-822 . -173) 83241) ((-253 . -645) 83183) ((-252 . -645) 83125) ((-1220 . -495) 83102) ((-228 . -519) 83035) ((-626 . -800) 83014) ((-626 . -797) 82993) ((-1220 . -618) 82905) ((-223 . -1223) T) ((-680 . -618) 82837) ((-1181 . -651) 82747) ((-1163 . -1016) 82731) ((-949 . -102) 82681) ((-355 . -731) T) ((-866 . -618) 82663) ((-1180 . -651) 82545) ((-1174 . -651) 82382) ((-1132 . -651) 82292) ((-1237 . -405) 82244) ((-1119 . -494) 82228) ((-60 . -312) 82166) ((-334 . -102) T) ((-1217 . -21) T) ((-1217 . -25) T) ((-40 . -1118) T) ((-716 . -21) T) ((-632 . -618) 82148) ((-520 . -326) 82127) ((-716 . -25) T) ((-444 . -102) T) ((-108 . -289) NIL) ((-927 . -1118) T) ((-40 . -23) T) ((-776 . -1118) T) ((-569 . -1227) T) ((-500 . -1227) T) ((-322 . -618) 82109) ((-1010 . -232) 82091) ((-170 . -166) 82075) ((-585 . -561) T) ((-569 . -561) T) ((-500 . -561) T) ((-776 . -23) T) ((-1257 . -147) 82054) ((-1166 . -609) 82030) ((-1257 . -145) 82009) ((-1033 . -494) 81993) ((-1236 . -145) 81918) ((-1236 . -147) 81843) ((-1288 . -1294) 81822) ((-481 . -494) 81806) ((-468 . -494) 81790) ((-528 . -34) T) ((-658 . -722) 81760) ((-112 . -973) T) ((-667 . -855) 81739) ((-1185 . -173) 81690) ((-369 . -102) T) ((-241 . -239) 81669) ((-253 . -102) T) ((-252 . -102) T) ((-1246 . -955) 81638) ((-246 . -855) 81617) ((-821 . -38) 81466) ((-45 . -519) 81258) ((-1165 . -289) 81233) ((-215 . -1106) T) ((-1156 . -1106) T) ((-1156 . -615) 81212) ((-591 . -25) T) ((-591 . -21) T) ((-1108 . -312) 81150) ((-969 . -416) 81134) ((-704 . -1227) T) ((-637 . -289) 81109) ((-1093 . -644) 81057) ((-787 . -644) 81005) ((-785 . -644) 80953) ((-347 . -131) T) ((-292 . -618) 80935) ((-911 . -1106) T) ((-704 . -561) T) ((-129 . -621) 80917) ((-875 . -1118) T) ((-459 . -644) 80865) ((-911 . -909) 80849) ((-383 . -457) T) ((-492 . -1106) T) ((-949 . -312) 80787) ((-706 . -653) 80774) ((-554 . -849) T) ((-218 . -1106) T) ((-319 . -926) 80753) ((-316 . -926) T) ((-316 . -825) NIL) ((-395 . -725) T) ((-875 . -23) T) ((-116 . -653) 80740) ((-479 . -145) 80719) ((-423 . -416) 80703) ((-479 . -147) 80682) ((-110 . -494) 80664) ((-314 . -621) 80645) ((-2 . -618) 80627) ((-187 . -102) T) ((-1165 . -19) 80609) ((-1165 . -609) 80584) ((-663 . -21) T) ((-663 . -25) T) ((-598 . -1150) T) ((-1119 . -289) 80561) ((-340 . -25) T) ((-340 . -21) T) ((-241 . -651) 80311) ((-500 . -367) T) ((-1288 . -38) 80281) ((-1179 . -1057) 80104) ((-1148 . -1223) T) ((-1131 . -1057) 79947) ((-859 . -1057) 79931) ((-637 . -609) 79906) ((-1295 . -1062) 79890) ((-1179 . -645) 79719) ((-1131 . -645) 79568) ((-859 . -645) 79538) ((-1293 . -1062) 79522) ((-1257 . -1208) 79488) ((-554 . -1106) T) ((-1093 . -25) T) ((-1093 . -21) T) ((-536 . -797) T) ((-536 . -800) T) ((-117 . -1227) T) ((-969 . -1064) T) ((-628 . -561) T) ((-787 . -25) T) ((-787 . -21) T) ((-785 . -21) T) ((-785 . -25) T) ((-740 . -1064) T) ((-720 . -1064) T) ((-675 . -1062) 79472) ((-522 . -1089) T) ((-466 . -25) T) ((-117 . -561) T) ((-466 . -21) T) ((-459 . -25) T) ((-459 . -21) T) ((-1257 . -1211) 79438) ((-1157 . -93) T) ((-1148 . -1044) 79334) ((-822 . -293) 79313) ((-1257 . -95) 79279) ((-828 . -1106) T) ((-1240 . -102) 79257) ((-972 . -973) T) ((-675 . -111) 79236) ((-298 . -519) 79028) ((-1237 . -232) 78980) ((-1236 . -1208) 78946) ((-1236 . -1211) 78912) ((-253 . -312) 78850) ((-252 . -312) 78788) ((-1231 . -372) T) ((-1166 . -619) NIL) ((-1166 . -618) 78770) ((-1228 . -849) T) ((-1148 . -381) 78754) ((-1126 . -825) T) ((-96 . -93) T) ((-1126 . -926) T) ((-1119 . -609) 78731) ((-1086 . -619) 78715) ((-1010 . -651) 78665) ((-920 . -651) 78602) ((-820 . -291) 78579) ((-489 . -618) 78511) ((-613 . -151) 78458) ((-492 . -722) 78408) ((-423 . -1064) T) ((-487 . -494) 78392) ((-432 . -651) 78351) ((-330 . -855) 78330) ((-343 . -653) 78304) ((-50 . -21) T) ((-50 . -25) T) ((-218 . -722) 78254) ((-170 . -729) 78225) ((-175 . -653) 78157) ((-586 . -21) T) ((-586 . -25) T) ((-523 . -25) T) ((-523 . -21) T) ((-480 . -151) 78107) ((-1086 . -618) 78089) ((-1067 . -618) 78071) ((-999 . -102) T) ((-867 . -102) T) ((-804 . -416) 78034) ((-40 . -131) T) ((-704 . -367) T) ((-706 . -731) T) ((-706 . -799) T) ((-706 . -796) T) ((-213 . -901) T) ((-585 . -1118) T) ((-569 . -1118) T) ((-500 . -1118) T) ((-363 . -618) 78016) ((-357 . -618) 77998) ((-349 . -618) 77980) ((-66 . -401) T) ((-66 . -400) T) ((-108 . -619) 77910) ((-108 . -618) 77852) ((-212 . -901) T) ((-964 . -151) 77836) ((-776 . -131) T) ((-675 . -621) 77754) ((-134 . -731) T) ((-116 . -731) T) ((-1257 . -35) 77720) ((-1060 . -494) 77704) ((-585 . -23) T) ((-569 . -23) T) ((-500 . -23) T) ((-1236 . -95) 77670) ((-1236 . -35) 77636) ((-1179 . -102) T) ((-1131 . -102) T) ((-859 . -102) T) ((-228 . -494) 77620) ((-1295 . -111) 77599) ((-1293 . -111) 77578) ((-44 . -1062) 77562) ((-1295 . -621) 77508) ((-1246 . -1249) 77492) ((-860 . -857) 77476) ((-1295 . -1055) T) ((-1185 . -293) 77455) ((-110 . -289) 77430) ((-1293 . -621) 77359) ((-128 . -151) 77341) ((-1148 . -906) 77300) ((-44 . -111) 77279) ((-1228 . -1106) T) ((-1188 . -1268) T) ((-1173 . -495) 77260) ((-1173 . -618) 77226) ((-675 . -1055) T) ((-1165 . -619) NIL) ((-1165 . -618) 77208) ((-1069 . -615) 77183) ((-1069 . -1106) T) ((-1000 . -495) 77164) ((-74 . -446) T) ((-74 . -400) T) ((-1000 . -618) 77130) ((-152 . -1062) 77114) ((-675 . -234) 77093) ((-576 . -559) 77077) ((-359 . -147) 77056) ((-359 . -145) 77007) ((-356 . -147) 76986) ((-356 . -145) 76937) ((-348 . -147) 76916) ((-348 . -145) 76867) ((-266 . -145) 76846) ((-266 . -147) 76825) ((-253 . -38) 76795) ((-248 . -147) 76774) ((-117 . -367) T) ((-248 . -145) 76753) ((-252 . -38) 76723) ((-152 . -111) 76702) ((-1009 . -1044) 76590) ((-1174 . -853) NIL) ((-699 . -1227) T) ((-804 . -1064) T) ((-704 . -1118) T) ((-1293 . -1055) T) ((-1163 . -1223) T) ((-1009 . -381) 76567) ((-916 . -145) T) ((-916 . -147) 76549) ((-875 . -131) T) ((-820 . -1062) 76446) ((-704 . -23) T) ((-699 . -561) T) ((-226 . -1057) 76411) ((-652 . -618) 76343) ((-652 . -619) 76304) ((-637 . -619) NIL) ((-637 . -618) 76286) ((-492 . -173) T) ((-226 . -645) 76251) ((-224 . -21) T) ((-218 . -173) T) ((-224 . -25) T) ((-479 . -1211) 76217) ((-479 . -1208) 76183) ((-276 . -618) 76165) ((-275 . -618) 76147) ((-274 . -618) 76129) ((-273 . -618) 76111) ((-272 . -618) 76093) ((-505 . -656) 76075) ((-271 . -618) 76057) ((-343 . -731) T) ((-270 . -618) 76039) ((-110 . -19) 76021) ((-175 . -731) T) ((-505 . -377) 76003) ((-213 . -618) 75985) ((-525 . -1155) 75969) ((-505 . -123) T) ((-110 . -609) 75944) ((-212 . -618) 75926) ((-479 . -35) 75892) ((-479 . -95) 75858) ((-210 . -618) 75840) ((-209 . -618) 75822) ((-208 . -618) 75804) ((-207 . -618) 75786) ((-204 . -618) 75768) ((-203 . -618) 75750) ((-202 . -618) 75732) ((-201 . -618) 75714) ((-200 . -618) 75696) ((-199 . -618) 75678) ((-198 . -618) 75660) ((-541 . -1109) 75612) ((-197 . -618) 75594) ((-196 . -618) 75576) ((-45 . -494) 75513) ((-195 . -618) 75495) ((-194 . -618) 75477) ((-152 . -621) 75446) ((-1121 . -102) T) ((-820 . -111) 75336) ((-649 . -102) 75286) ((-487 . -289) 75263) ((-1119 . -618) 74994) ((-1107 . -1106) T) ((-1052 . -1223) T) ((-1296 . -1044) 74978) ((-1068 . -1057) 74965) ((-1179 . -312) 74952) ((-958 . -1057) 74795) ((-1141 . -1106) T) ((-1131 . -312) 74782) ((-628 . -1118) T) ((-1068 . -645) 74769) ((-1102 . -1089) T) ((-958 . -645) 74618) ((-1096 . -1089) T) ((-486 . -1057) 74461) ((-1079 . -1089) T) ((-1072 . -1089) T) ((-1042 . -1089) T) ((-1025 . -1089) T) ((-117 . -1118) T) ((-486 . -645) 74310) ((-824 . -102) T) ((-631 . -1089) T) ((-628 . -23) T) ((-1156 . -519) 74102) ((-488 . -1089) T) ((-391 . -102) T) ((-327 . -102) T) ((-219 . -1089) T) ((-969 . -1106) T) ((-152 . -1055) T) ((-736 . -416) 74086) ((-117 . -23) T) ((-1009 . -906) 74038) ((-740 . -1106) T) ((-720 . -1106) T) ((-458 . -1106) T) ((-412 . -1223) T) ((-319 . -435) 74022) ((-597 . -93) T) ((-1265 . -651) 73932) ((-1033 . -619) 73893) ((-1030 . -1227) T) ((-226 . -102) T) ((-1033 . -618) 73855) ((-1258 . -651) 73737) ((-821 . -232) 73721) ((-820 . -621) 73451) ((-1237 . -651) 73288) ((-1030 . -561) T) ((-838 . -653) 73261) ((-358 . -1227) T) ((-481 . -618) 73223) ((-481 . -619) 73184) ((-468 . -619) 73145) ((-468 . -618) 73107) ((-601 . -651) 73066) ((-412 . -890) 73050) ((-322 . -1062) 72885) ((-412 . -892) 72810) ((-600 . -651) 72720) ((-848 . -1044) 72616) ((-492 . -519) NIL) ((-487 . -609) 72593) ((-358 . -561) T) ((-218 . -519) NIL) ((-877 . -457) T) ((-423 . -1106) T) ((-412 . -1044) 72457) ((-322 . -111) 72278) ((-699 . -367) T) ((-226 . -287) T) ((-1220 . -621) 72255) ((-48 . -1227) T) ((-820 . -1055) 72185) ((-1179 . -1158) 72163) ((-585 . -131) T) ((-569 . -131) T) ((-500 . -131) T) ((-1166 . -291) 72139) ((-48 . -561) T) ((-1068 . -102) T) ((-958 . -102) T) ((-876 . -1057) 72084) ((-319 . -27) 72063) ((-820 . -234) 72015) ((-250 . -840) 71997) ((-241 . -853) 71976) ((-188 . -840) 71958) ((-718 . -102) T) ((-298 . -494) 71895) ((-876 . -645) 71840) ((-486 . -102) T) ((-736 . -1064) T) ((-617 . -618) 71822) ((-617 . -619) 71683) ((-412 . -381) 71667) ((-412 . -342) 71651) ((-322 . -621) 71477) ((-1179 . -38) 71306) ((-1131 . -38) 71155) ((-859 . -38) 71125) ((-395 . -653) 71109) ((-649 . -312) 71047) ((-1157 . -495) 71028) ((-1157 . -618) 70994) ((-969 . -722) 70891) ((-740 . -722) 70861) ((-223 . -107) 70845) ((-45 . -289) 70770) ((-626 . -653) 70744) ((-315 . -1106) T) ((-292 . -1062) 70731) ((-110 . -618) 70713) ((-110 . -619) 70695) ((-458 . -722) 70665) ((-821 . -255) 70604) ((-694 . -1106) 70582) ((-555 . -1106) T) ((-1181 . -1064) T) ((-1180 . -1064) T) ((-96 . -495) 70563) ((-1174 . -1064) T) ((-292 . -111) 70548) ((-1132 . -1064) T) ((-555 . -615) 70527) ((-96 . -618) 70493) ((-1010 . -853) T) ((-228 . -692) 70451) ((-699 . -1118) T) ((-1217 . -745) 70427) ((-1030 . -367) T) ((-843 . -840) 70409) ((-838 . -799) 70388) ((-412 . -906) 70347) ((-322 . -1055) T) ((-347 . -25) T) ((-347 . -21) T) ((-170 . -1057) 70257) ((-68 . -1223) T) ((-838 . -796) 70236) ((-423 . -722) 70210) ((-804 . -1106) T) ((-717 . -926) 70189) ((-704 . -131) T) ((-170 . -645) 70017) ((-699 . -23) T) ((-492 . -293) T) ((-838 . -731) 69996) ((-322 . -234) 69948) ((-322 . -244) 69927) ((-218 . -293) T) ((-129 . -372) T) ((-1257 . -457) 69906) ((-1236 . -457) 69885) ((-358 . -332) 69862) ((-358 . -367) T) ((-1146 . -618) 69844) ((-45 . -1261) 69794) ((-876 . -102) T) ((-649 . -285) 69778) ((-704 . -1066) T) ((-1284 . -102) T) ((-1283 . -102) T) ((-482 . -653) 69743) ((-473 . -1106) T) ((-45 . -609) 69668) ((-1165 . -291) 69643) ((-292 . -621) 69615) ((-40 . -644) 69554) ((-1246 . -1057) 69377) ((-860 . -1057) 69361) ((-48 . -367) T) ((-1112 . -618) 69343) ((-1246 . -645) 69172) ((-860 . -645) 69142) ((-637 . -291) 69117) ((-821 . -651) 69027) ((-576 . -1057) 69014) ((-487 . -618) 68745) ((-241 . -416) 68714) ((-958 . -312) 68701) ((-576 . -645) 68688) ((-65 . -1223) T) ((-1069 . -519) 68532) ((-676 . -1106) T) ((-628 . -131) T) ((-486 . -312) 68519) ((-611 . -1106) T) ((-551 . -102) T) ((-117 . -131) T) ((-292 . -1055) T) ((-181 . -1106) T) ((-161 . -1106) T) ((-156 . -1106) T) ((-154 . -1106) T) ((-458 . -766) T) ((-31 . -1089) T) ((-969 . -173) 68470) ((-976 . -93) T) ((-1086 . -1062) 68380) ((-626 . -799) 68359) ((-598 . -1106) T) ((-626 . -796) 68338) ((-626 . -731) T) ((-298 . -289) 68317) ((-297 . -1223) T) ((-1060 . -618) 68279) ((-1060 . -619) 68240) ((-1030 . -1118) T) ((-170 . -102) T) ((-277 . -855) T) ((-1172 . -1106) T) ((-823 . -618) 68222) ((-1119 . -291) 68199) ((-1108 . -230) 68183) ((-1009 . -310) T) ((-804 . -722) 68167) ((-363 . -1062) 68119) ((-358 . -1118) T) ((-357 . -1062) 68071) ((-419 . -618) 68053) ((-389 . -618) 68035) ((-349 . -1062) 67987) ((-228 . -618) 67919) ((-1086 . -111) 67815) ((-1030 . -23) T) ((-108 . -1062) 67765) ((-904 . -102) T) ((-846 . -102) T) ((-813 . -102) T) ((-774 . -102) T) ((-682 . -102) T) ((-479 . -457) 67744) ((-423 . -173) T) ((-363 . -111) 67682) ((-357 . -111) 67620) ((-349 . -111) 67558) ((-253 . -232) 67527) ((-252 . -232) 67496) ((-358 . -23) T) ((-71 . -1223) T) ((-226 . -38) 67461) ((-108 . -111) 67395) ((-40 . -25) T) ((-40 . -21) T) ((-675 . -725) T) ((-170 . -287) 67373) ((-48 . -1118) T) ((-927 . -25) T) ((-776 . -25) T) ((-1297 . -653) 67347) ((-1156 . -494) 67284) ((-490 . -1106) T) ((-1288 . -651) 67243) ((-1246 . -102) T) ((-1068 . -1158) T) ((-860 . -102) T) ((-241 . -1064) 67173) ((-970 . -797) 67126) ((-970 . -800) 67079) ((-385 . -653) 67063) ((-48 . -23) T) ((-820 . -800) 67014) ((-820 . -797) 66965) ((-553 . -372) T) ((-298 . -609) 66944) ((-482 . -731) T) ((-576 . -102) T) ((-1086 . -621) 66762) ((-250 . -186) T) ((-188 . -186) T) ((-876 . -312) 66719) ((-658 . -289) 66698) ((-112 . -666) T) ((-363 . -621) 66635) ((-357 . -621) 66572) ((-349 . -621) 66509) ((-76 . -1223) T) ((-108 . -621) 66459) ((-1068 . -38) 66446) ((-669 . -378) 66425) ((-958 . -38) 66274) ((-736 . -1106) T) ((-486 . -38) 66123) ((-86 . -1223) T) ((-597 . -495) 66104) ((-576 . -287) T) ((-1237 . -853) NIL) ((-597 . -618) 66070) ((-1181 . -1106) T) ((-1180 . -1106) T) ((-1086 . -1055) T) ((-355 . -1044) 66047) ((-822 . -495) 66031) ((-1010 . -1064) T) ((-45 . -618) 66013) ((-45 . -619) NIL) ((-920 . -1064) T) ((-822 . -618) 65982) ((-1174 . -1106) T) ((-1153 . -102) 65960) ((-1086 . -244) 65911) ((-432 . -1064) T) ((-363 . -1055) T) ((-369 . -368) 65888) ((-357 . -1055) T) ((-349 . -1055) T) ((-253 . -239) 65867) ((-252 . -239) 65846) ((-1086 . -234) 65771) ((-1132 . -1106) T) ((-297 . -906) 65730) ((-108 . -1055) T) ((-699 . -131) T) ((-423 . -519) 65572) ((-363 . -234) 65551) ((-363 . -244) T) ((-44 . -725) T) ((-357 . -234) 65530) ((-357 . -244) T) ((-349 . -234) 65509) ((-349 . -244) T) ((-1173 . -621) 65490) ((-170 . -312) 65455) ((-108 . -244) T) ((-108 . -234) T) ((-1000 . -621) 65436) ((-322 . -797) T) ((-875 . -21) T) ((-875 . -25) T) ((-412 . -310) T) ((-505 . -34) T) ((-110 . -291) 65411) ((-1119 . -1062) 65308) ((-876 . -1158) NIL) ((-333 . -618) 65290) ((-412 . -1028) 65268) ((-1119 . -111) 65158) ((-696 . -1268) T) ((-441 . -1106) T) ((-251 . -1106) T) ((-1297 . -731) T) ((-63 . -618) 65140) ((-876 . -38) 65085) ((-528 . -1223) T) ((-607 . -151) 65069) ((-517 . -618) 65051) ((-1246 . -312) 65038) ((-736 . -722) 64887) ((-536 . -798) T) ((-536 . -799) T) ((-569 . -644) 64869) ((-500 . -644) 64829) ((-359 . -457) T) ((-356 . -457) T) ((-348 . -457) T) ((-266 . -457) 64780) ((-530 . -1106) T) ((-525 . -1106) 64730) ((-248 . -457) 64681) ((-1156 . -289) 64660) ((-1185 . -618) 64642) ((-694 . -519) 64575) ((-969 . -293) 64554) ((-555 . -519) 64346) ((-253 . -651) 64166) ((-252 . -651) 63973) ((-1285 . -618) 63942) ((-1179 . -232) 63926) ((-1119 . -621) 63656) ((-170 . -1158) 63635) ((-1285 . -495) 63619) ((-1181 . -722) 63516) ((-1180 . -722) 63357) ((-898 . -102) T) ((-1174 . -722) 63153) ((-1132 . -722) 63050) ((-1163 . -679) 63034) ((-359 . -407) 62985) ((-356 . -407) 62936) ((-348 . -407) 62887) ((-1030 . -131) T) ((-804 . -519) 62799) ((-298 . -619) NIL) ((-298 . -618) 62781) ((-916 . -457) T) ((-970 . -372) 62734) ((-820 . -372) 62713) ((-515 . -514) 62692) ((-513 . -514) 62671) ((-492 . -289) NIL) ((-487 . -291) 62648) ((-423 . -293) T) ((-358 . -131) T) ((-218 . -289) NIL) ((-699 . -498) NIL) ((-99 . -1118) T) ((-170 . -38) 62476) ((-1257 . -979) 62438) ((-1153 . -312) 62376) ((-1236 . -979) 62345) ((-916 . -407) T) ((-1119 . -1055) 62275) ((-1259 . -561) T) ((-1156 . -609) 62254) ((-112 . -855) T) ((-1069 . -494) 62185) ((-585 . -21) T) ((-585 . -25) T) ((-569 . -21) T) ((-569 . -25) T) ((-500 . -25) T) ((-500 . -21) T) ((-1246 . -1158) 62163) ((-1119 . -234) 62115) ((-48 . -131) T) ((-1204 . -102) T) ((-241 . -1106) 61905) ((-876 . -405) 61882) ((-1094 . -102) T) ((-1082 . -102) T) ((-613 . -102) T) ((-480 . -102) T) ((-1246 . -38) 61711) ((-860 . -38) 61681) ((-1040 . -1057) 61655) ((-736 . -173) 61566) ((-658 . -618) 61548) ((-650 . -1089) T) ((-1040 . -645) 61532) ((-576 . -38) 61519) ((-976 . -495) 61500) ((-976 . -618) 61466) ((-964 . -102) 61416) ((-869 . -618) 61398) ((-869 . -619) 61320) ((-598 . -519) NIL) ((-1265 . -1064) T) ((-1258 . -1064) T) ((-325 . -1057) 61302) ((-1237 . -1064) T) ((-1301 . -1118) T) ((-1217 . -147) 61281) ((-325 . -645) 61263) ((-1217 . -145) 61242) ((-1191 . -102) T) ((-1190 . -102) T) ((-1189 . -102) T) ((-1181 . -173) 61193) ((-601 . -1064) T) ((-600 . -1064) T) ((-1180 . -173) 61124) ((-1174 . -173) 61055) ((-383 . -1057) 61020) ((-1157 . -621) 61001) ((-1132 . -173) 60952) ((-1010 . -1106) T) ((-977 . -1106) T) ((-920 . -1106) T) ((-383 . -645) 60917) ((-804 . -802) 60901) ((-704 . -25) T) ((-704 . -21) T) ((-117 . -644) 60878) ((-706 . -892) 60860) ((-432 . -1106) T) ((-319 . -1227) 60839) ((-316 . -1227) T) ((-170 . -405) 60823) ((-841 . -1057) 60793) ((-479 . -979) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -618) 60737) ((-832 . -1057) 60721) ((-108 . -800) T) ((-108 . -797) T) ((-706 . -1044) 60703) ((-319 . -561) 60682) ((-316 . -561) T) ((-841 . -645) 60652) ((-832 . -645) 60622) ((-1301 . -23) T) ((-134 . -1044) 60604) ((-96 . -621) 60585) ((-999 . -651) 60567) ((-487 . -1062) 60464) ((-45 . -291) 60389) ((-241 . -722) 60331) ((-522 . -102) T) ((-487 . -111) 60221) ((-1098 . -102) 60191) ((-1040 . -102) T) ((-1179 . -651) 60101) ((-1131 . -651) 60011) ((-859 . -651) 59970) ((-649 . -833) 59949) ((-736 . -519) 59892) ((-1060 . -1062) 59876) ((-1141 . -93) T) ((-1069 . -289) 59851) ((-628 . -21) T) ((-628 . -25) T) ((-529 . -1106) T) ((-675 . -653) 59825) ((-365 . -102) T) ((-325 . -102) T) ((-389 . -1062) 59809) ((-1060 . -111) 59788) ((-821 . -416) 59772) ((-117 . -25) T) ((-89 . -618) 59754) ((-117 . -21) T) ((-613 . -312) 59549) ((-480 . -312) 59353) ((-1156 . -619) NIL) ((-389 . -111) 59332) ((-383 . -102) T) ((-215 . -618) 59314) ((-1156 . -618) 59296) ((-1174 . -519) 59065) ((-1010 . -722) 59015) ((-1132 . -519) 58985) ((-920 . -722) 58937) ((-487 . -621) 58667) ((-355 . -310) T) ((-1196 . -151) 58617) ((-964 . -312) 58555) ((-841 . -102) T) ((-432 . -722) 58539) ((-226 . -833) T) ((-832 . -102) T) ((-830 . -102) T) ((-484 . -151) 58489) ((-1257 . -1256) 58468) ((-1126 . -1227) T) ((-343 . -1044) 58435) ((-1257 . -1251) 58405) ((-1257 . -1254) 58389) ((-1236 . -1235) 58368) ((-80 . -618) 58350) ((-911 . -618) 58332) ((-1236 . -1251) 58309) ((-1126 . -561) T) ((-927 . -855) T) ((-776 . -855) T) ((-677 . -855) T) ((-492 . -619) 58239) ((-492 . -618) 58180) ((-383 . -287) T) ((-1236 . -1233) 58164) ((-1259 . -1118) T) ((-218 . -619) 58094) ((-218 . -618) 58035) ((-1295 . -653) 58009) ((-1069 . -609) 57984) ((-823 . -621) 57968) ((-59 . -151) 57952) ((-521 . -151) 57936) ((-501 . -151) 57920) ((-363 . -1292) 57904) ((-357 . -1292) 57888) ((-349 . -1292) 57872) ((-319 . -367) 57851) ((-316 . -367) T) ((-487 . -1055) 57781) ((-699 . -644) 57763) ((-1293 . -653) 57737) ((-128 . -312) NIL) ((-1259 . -23) T) ((-694 . -494) 57721) ((-64 . -618) 57703) ((-1119 . -800) 57654) ((-1119 . -797) 57605) ((-555 . -494) 57542) ((-675 . -34) T) ((-487 . -234) 57494) ((-298 . -291) 57473) ((-241 . -173) 57452) ((-821 . -1064) T) ((-44 . -653) 57410) ((-1086 . -372) 57361) ((-736 . -293) 57292) ((-525 . -519) 57225) ((-822 . -1062) 57176) ((-1093 . -145) 57155) ((-554 . -618) 57137) ((-363 . -372) 57116) ((-357 . -372) 57095) ((-349 . -372) 57074) ((-1093 . -147) 57053) ((-876 . -232) 57030) ((-822 . -111) 56972) ((-787 . -145) 56951) ((-787 . -147) 56930) ((-266 . -955) 56897) ((-253 . -853) 56876) ((-248 . -955) 56821) ((-252 . -853) 56800) ((-785 . -145) 56779) ((-785 . -147) 56758) ((-152 . -653) 56732) ((-584 . -1106) T) ((-459 . -147) 56711) ((-459 . -145) 56690) ((-675 . -731) T) ((-828 . -618) 56672) ((-1265 . -1106) T) ((-1258 . -1106) T) ((-1237 . -1106) T) ((-1217 . -1211) 56638) ((-1217 . -1208) 56604) ((-1181 . -293) 56583) ((-1180 . -293) 56534) ((-1174 . -293) 56485) ((-1132 . -293) 56464) ((-343 . -906) 56445) ((-1010 . -173) T) ((-920 . -173) T) ((-699 . -21) T) ((-699 . -25) T) ((-226 . -651) 56395) ((-601 . -1106) T) ((-600 . -1106) T) ((-479 . -1254) 56379) ((-479 . -1251) 56349) ((-423 . -289) 56277) ((-552 . -855) T) ((-319 . -1118) 56126) ((-316 . -1118) T) ((-1217 . -35) 56092) ((-1217 . -95) 56058) ((-84 . -618) 56040) ((-91 . -102) 56018) ((-1301 . -131) T) ((-719 . -1057) 55988) ((-597 . -621) 55969) ((-586 . -145) T) ((-586 . -147) 55951) ((-523 . -147) 55933) ((-523 . -145) T) ((-719 . -645) 55903) ((-319 . -23) 55755) ((-40 . -346) 55729) ((-316 . -23) T) ((-822 . -621) 55643) ((-1165 . -656) 55625) ((-1288 . -1064) T) ((-1165 . -377) 55607) ((-820 . -653) 55455) ((-1102 . -102) T) ((-1096 . -102) T) ((-1079 . -102) T) ((-170 . -232) 55439) ((-1072 . -102) T) ((-1042 . -102) T) ((-1025 . -102) T) ((-598 . -494) 55421) ((-631 . -102) T) ((-241 . -519) 55354) ((-488 . -102) T) ((-1295 . -731) T) ((-1293 . -731) T) ((-219 . -102) T) ((-1185 . -1062) 55237) ((-1068 . -651) 55209) ((-958 . -651) 55119) ((-1185 . -111) 54988) ((-881 . -1089) T) ((-486 . -651) 54898) ((-866 . -174) T) ((-822 . -1055) T) ((-686 . -1089) T) ((-681 . -1089) T) ((-520 . -102) T) ((-515 . -102) T) ((-48 . -644) 54858) ((-513 . -102) T) ((-483 . -1089) T) ((-1285 . -1062) 54828) ((-138 . -1089) T) ((-137 . -1089) T) ((-133 . -1089) T) ((-1040 . -38) 54812) ((-822 . -234) T) ((-822 . -244) 54791) ((-1285 . -111) 54756) ((-1265 . -722) 54653) ((-1258 . -722) 54494) ((-555 . -289) 54473) ((-1246 . -232) 54457) ((-1228 . -618) 54439) ((-611 . -93) T) ((-1069 . -619) NIL) ((-1069 . -618) 54421) ((-676 . -93) T) ((-181 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1237 . -722) 54217) ((-1009 . -926) T) ((-152 . -731) T) ((-1185 . -621) 54070) ((-1119 . -372) 54049) ((-1030 . -25) T) ((-1010 . -519) NIL) ((-253 . -416) 54018) ((-252 . -416) 53987) ((-1030 . -21) T) ((-877 . -1057) 53939) ((-601 . -722) 53912) ((-600 . -722) 53809) ((-804 . -289) 53767) ((-126 . -102) 53745) ((-838 . -1044) 53641) ((-170 . -833) 53620) ((-322 . -653) 53517) ((-820 . -34) T) ((-719 . -102) T) ((-1126 . -1118) T) ((-1032 . -1223) T) ((-877 . -645) 53469) ((-383 . -38) 53434) ((-358 . -25) T) ((-358 . -21) T) ((-188 . -102) T) ((-162 . -102) T) ((-250 . -102) T) ((-157 . -102) T) ((-359 . -1280) 53418) ((-356 . -1280) 53402) ((-348 . -1280) 53386) ((-170 . -353) 53365) ((-569 . -855) T) ((-1126 . -23) T) ((-87 . -618) 53347) ((-706 . -310) T) ((-841 . -38) 53317) ((-832 . -38) 53287) ((-1285 . -621) 53229) ((-1259 . -131) T) ((-1156 . -291) 53208) ((-970 . -731) 53107) ((-970 . -798) 53060) ((-970 . -799) 53013) ((-820 . -796) 52992) ((-116 . -310) T) ((-91 . -312) 52930) ((-680 . -34) T) ((-555 . -609) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-820 . -799) 52860) ((-820 . -798) 52839) ((-706 . -1028) T) ((-658 . -1062) 52823) ((-876 . -651) 52753) ((-820 . -731) 52663) ((-970 . -478) 52616) ((-487 . -800) 52567) ((-487 . -797) 52518) ((-916 . -1280) 52505) ((-1185 . -1055) T) ((-658 . -111) 52484) ((-1185 . -329) 52461) ((-1209 . -102) 52439) ((-1107 . -618) 52421) ((-706 . -550) T) ((-821 . -1106) T) ((-1285 . -1055) T) ((-1141 . -495) 52402) ((-1229 . -102) T) ((-418 . -1106) T) ((-1141 . -618) 52368) ((-253 . -1064) 52298) ((-252 . -1064) 52228) ((-843 . -102) T) ((-292 . -653) 52215) ((-598 . -289) 52190) ((-694 . -692) 52148) ((-969 . -618) 52130) ((-877 . -102) T) ((-740 . -618) 52112) ((-720 . -618) 52094) ((-1265 . -173) 52045) ((-1258 . -173) 51976) ((-1237 . -173) 51907) ((-704 . -855) T) ((-1010 . -293) T) ((-458 . -618) 51889) ((-632 . -731) T) ((-60 . -1106) 51867) ((-246 . -151) 51851) ((-920 . -293) T) ((-1030 . -1018) T) ((-632 . -478) T) ((-717 . -1227) 51830) ((-658 . -621) 51748) ((-170 . -651) 51643) ((-1273 . -855) 51622) ((-601 . -173) 51601) ((-600 . -173) 51552) ((-1257 . -645) 51393) ((-1257 . -1057) 51228) ((-1236 . -645) 51042) ((-1236 . -1057) 50850) ((-717 . -561) 50761) ((-412 . -926) T) ((-412 . -825) 50740) ((-322 . -799) T) ((-976 . -621) 50721) ((-322 . -731) T) ((-423 . -618) 50703) ((-423 . -619) 50610) ((-649 . -1155) 50594) ((-110 . -656) 50576) ((-175 . -310) T) ((-126 . -312) 50514) ((-110 . -377) 50496) ((-403 . -1223) T) ((-319 . -131) 50367) ((-316 . -131) T) ((-69 . -400) T) ((-110 . -123) T) ((-525 . -494) 50351) ((-659 . -1118) T) ((-598 . -19) 50333) ((-61 . -446) T) ((-61 . -400) T) ((-829 . -1106) T) ((-598 . -609) 50308) ((-482 . -1044) 50268) ((-658 . -1055) T) ((-659 . -23) T) ((-1288 . -1106) T) ((-31 . -102) T) ((-1246 . -651) 50178) ((-860 . -651) 50137) ((-821 . -722) 49986) ((-582 . -865) T) ((-576 . -651) 49958) ((-117 . -855) NIL) ((-1179 . -416) 49942) ((-1131 . -416) 49926) ((-859 . -416) 49910) ((-878 . -102) 49861) ((-1257 . -102) T) ((-1237 . -519) 49630) ((-1236 . -102) T) ((-1209 . -312) 49568) ((-1181 . -289) 49553) ((-1180 . -289) 49538) ((-530 . -93) T) ((-1174 . -289) 49386) ((-315 . -618) 49368) ((-1108 . -1106) T) ((-1086 . -653) 49278) ((-716 . -457) T) ((-694 . -618) 49210) ((-292 . -731) T) ((-108 . -915) NIL) ((-694 . -619) 49171) ((-606 . -618) 49153) ((-582 . -618) 49135) ((-555 . -619) NIL) ((-555 . -618) 49117) ((-534 . -618) 49099) ((-516 . -514) 49078) ((-492 . -1062) 49028) ((-479 . -1057) 48863) ((-512 . -514) 48842) ((-479 . -645) 48683) ((-218 . -1062) 48633) ((-363 . -653) 48585) ((-357 . -653) 48537) ((-226 . -853) T) ((-349 . -653) 48489) ((-607 . -102) 48439) ((-487 . -372) 48418) ((-108 . -653) 48368) ((-492 . -111) 48302) ((-241 . -494) 48286) ((-347 . -147) 48268) ((-347 . -145) T) ((-170 . -374) 48239) ((-949 . -1271) 48223) ((-218 . -111) 48157) ((-877 . -312) 48122) ((-949 . -1106) 48072) ((-804 . -619) 48033) ((-804 . -618) 48015) ((-723 . -102) T) ((-334 . -1106) T) ((-215 . -621) 47992) ((-1126 . -131) T) ((-719 . -38) 47962) ((-319 . -498) 47941) ((-505 . -1223) T) ((-1257 . -287) 47907) ((-1236 . -287) 47873) ((-330 . -151) 47857) ((-444 . -1106) T) ((-1069 . -291) 47832) ((-1288 . -722) 47802) ((-1166 . -34) T) ((-1297 . -1044) 47779) ((-473 . -618) 47761) ((-489 . -34) T) ((-385 . -1044) 47745) ((-1179 . -1064) T) ((-1131 . -1064) T) ((-859 . -1064) T) ((-1068 . -853) T) ((-492 . -621) 47695) ((-218 . -621) 47645) ((-821 . -173) 47556) ((-525 . -289) 47533) ((-1265 . -293) 47512) ((-1204 . -368) 47486) ((-1094 . -268) 47470) ((-676 . -495) 47451) ((-676 . -618) 47417) ((-611 . -495) 47398) ((-117 . -998) 47375) ((-611 . -618) 47325) ((-479 . -102) T) ((-181 . -495) 47306) ((-181 . -618) 47272) ((-161 . -495) 47253) ((-156 . -495) 47234) ((-154 . -495) 47215) ((-161 . -618) 47181) ((-156 . -618) 47147) ((-369 . -1106) T) ((-253 . -1106) T) ((-252 . -1106) T) ((-154 . -618) 47113) ((-1258 . -293) 47064) ((-1237 . -293) 47015) ((-877 . -1158) 46993) ((-1181 . -1008) 46959) ((-613 . -368) 46899) ((-1180 . -1008) 46865) ((-613 . -230) 46812) ((-699 . -855) T) ((-598 . -618) 46794) ((-598 . -619) NIL) ((-480 . -230) 46744) ((-492 . -1055) T) ((-1174 . -1008) 46710) ((-88 . -445) T) ((-88 . -400) T) ((-218 . -1055) T) ((-1132 . -1008) 46676) ((-1086 . -731) T) ((-717 . -1118) T) ((-601 . -293) 46655) ((-600 . -293) 46634) ((-492 . -244) T) ((-492 . -234) T) ((-218 . -244) T) ((-218 . -234) T) ((-1172 . -618) 46616) ((-877 . -38) 46568) ((-363 . -731) T) ((-357 . -731) T) ((-349 . -731) T) ((-108 . -799) T) ((-108 . -796) T) ((-717 . -23) T) ((-108 . -731) T) ((-525 . -1261) 46552) ((-1301 . -25) T) ((-479 . -287) 46518) ((-1301 . -21) T) ((-1236 . -312) 46457) ((-1183 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-525 . -609) 46378) ((-1119 . -653) 46226) ((-607 . -312) 46164) ((-45 . -656) 46114) ((-45 . -671) 46064) ((-45 . -377) 46014) ((-1165 . -34) T) ((-876 . -853) NIL) ((-659 . -131) T) ((-490 . -618) 45996) ((-241 . -289) 45973) ((-187 . -1106) T) ((-1093 . -457) 45924) ((-821 . -519) 45798) ((-669 . -1057) 45782) ((-652 . -34) T) ((-637 . -34) T) ((-787 . -457) 45713) ((-669 . -645) 45697) ((-359 . -1057) 45649) ((-356 . -1057) 45601) ((-348 . -1057) 45553) ((-266 . -1057) 45396) ((-248 . -1057) 45239) ((-785 . -457) 45190) ((-359 . -645) 45142) ((-356 . -645) 45094) ((-348 . -645) 45046) ((-266 . -645) 44895) ((-248 . -645) 44744) ((-459 . -457) 44695) ((-958 . -416) 44679) ((-736 . -618) 44661) ((-253 . -722) 44603) ((-252 . -722) 44545) ((-736 . -619) 44406) ((-486 . -416) 44390) ((-343 . -305) T) ((-529 . -93) T) ((-355 . -926) T) ((-1006 . -102) 44368) ((-916 . -1057) 44333) ((-1030 . -855) T) ((-60 . -519) 44266) ((-916 . -645) 44231) ((-1236 . -1158) 44183) ((-1010 . -289) NIL) ((-226 . -1064) T) ((-383 . -833) T) ((-1119 . -34) T) ((-586 . -457) T) ((-523 . -457) T) ((-1240 . -1099) 44167) ((-1240 . -1106) 44145) ((-241 . -609) 44122) ((-1240 . -1101) 44079) ((-1181 . -618) 44061) ((-1180 . -618) 44043) ((-1174 . -618) 44025) ((-1174 . -619) NIL) ((-1132 . -618) 44007) ((-877 . -405) 43991) ((-602 . -102) T) ((-590 . -102) T) ((-541 . -102) T) ((-1257 . -38) 43832) ((-1236 . -38) 43646) ((-875 . -147) T) ((-586 . -407) T) ((-523 . -407) T) ((-1269 . -102) T) ((-1259 . -21) T) ((-1259 . -25) T) ((-1119 . -796) 43625) ((-1119 . -799) 43576) ((-1119 . -798) 43555) ((-999 . -1106) T) ((-1033 . -34) T) ((-867 . -1106) T) ((-1119 . -731) 43465) ((-669 . -102) T) ((-650 . -102) T) ((-555 . -291) 43444) ((-1196 . -102) T) ((-481 . -34) T) ((-468 . -34) T) ((-359 . -102) T) ((-356 . -102) T) ((-348 . -102) T) ((-266 . -102) T) ((-248 . -102) T) ((-482 . -310) T) ((-1068 . -1064) T) ((-958 . -1064) T) ((-319 . -644) 43350) ((-316 . -644) 43311) ((-1179 . -1106) T) ((-486 . -1064) T) ((-484 . -102) T) ((-441 . -618) 43293) ((-1131 . -1106) T) ((-251 . -618) 43275) ((-859 . -1106) T) ((-1147 . -102) T) ((-821 . -293) 43206) ((-969 . -1062) 43089) ((-482 . -1028) T) ((-740 . -1062) 43059) ((-1040 . -651) 43018) ((-458 . -1062) 42988) ((-1153 . -1127) 42972) ((-1108 . -519) 42905) ((-969 . -111) 42774) ((-916 . -102) T) ((-740 . -111) 42739) ((-530 . -495) 42720) ((-530 . -618) 42686) ((-59 . -102) 42636) ((-525 . -619) 42597) ((-525 . -618) 42509) ((-524 . -102) 42487) ((-521 . -102) 42437) ((-502 . -102) 42415) ((-501 . -102) 42365) ((-458 . -111) 42328) ((-253 . -173) 42307) ((-252 . -173) 42286) ((-325 . -651) 42268) ((-423 . -1062) 42242) ((-1217 . -979) 42204) ((-1005 . -1118) T) ((-383 . -651) 42154) ((-1141 . -621) 42135) ((-949 . -519) 42068) ((-492 . -800) T) ((-479 . -38) 41909) ((-423 . -111) 41876) ((-492 . -797) T) ((-1006 . -312) 41814) ((-218 . -800) T) ((-218 . -797) T) ((-1005 . -23) T) ((-717 . -131) T) ((-1236 . -405) 41784) ((-841 . -651) 41729) ((-832 . -651) 41688) ((-319 . -25) 41540) ((-170 . -416) 41524) ((-319 . -21) 41395) ((-316 . -25) T) ((-316 . -21) T) ((-869 . -372) T) ((-969 . -621) 41248) ((-110 . -34) T) ((-740 . -621) 41204) ((-720 . -621) 41186) ((-487 . -653) 41034) ((-876 . -1064) T) ((-598 . -291) 41009) ((-585 . -147) T) ((-569 . -147) T) ((-500 . -147) T) ((-1179 . -722) 40838) ((-1063 . -102) 40816) ((-1131 . -722) 40665) ((-1126 . -644) 40647) ((-859 . -722) 40617) ((-675 . -1223) T) ((-1 . -102) T) ((-423 . -621) 40525) ((-241 . -618) 40256) ((-1121 . -1106) T) ((-1246 . -416) 40240) ((-1196 . -312) 40044) ((-969 . -1055) T) ((-740 . -1055) T) ((-720 . -1055) T) ((-649 . -1106) 39994) ((-1060 . -653) 39978) ((-860 . -416) 39962) ((-516 . -102) T) ((-512 . -102) T) ((-266 . -312) 39949) ((-248 . -312) 39936) ((-969 . -329) 39915) ((-389 . -653) 39899) ((-675 . -1044) 39795) ((-484 . -312) 39599) ((-253 . -519) 39532) ((-252 . -519) 39465) ((-1147 . -312) 39391) ((-824 . -1106) T) ((-804 . -1062) 39375) ((-1265 . -289) 39360) ((-1258 . -289) 39345) ((-1237 . -289) 39193) ((-391 . -1106) T) ((-327 . -1106) T) ((-423 . -1055) T) ((-170 . -1064) T) ((-59 . -312) 39131) ((-804 . -111) 39110) ((-600 . -289) 39095) ((-524 . -312) 39033) ((-521 . -312) 38971) ((-502 . -312) 38909) ((-501 . -312) 38847) ((-423 . -234) 38826) ((-487 . -34) T) ((-1010 . -619) 38756) ((-226 . -1106) T) ((-1010 . -618) 38716) ((-977 . -618) 38676) ((-977 . -619) 38651) ((-920 . -618) 38633) ((-704 . -147) T) ((-706 . -926) T) ((-706 . -825) T) ((-432 . -618) 38615) ((-1126 . -21) T) ((-1126 . -25) T) ((-675 . -381) 38599) ((-116 . -926) T) ((-877 . -232) 38583) ((-78 . -1223) T) ((-126 . -125) 38567) ((-1060 . -34) T) ((-1295 . -1044) 38541) ((-1293 . -1044) 38498) ((-1246 . -1064) T) ((-860 . -1064) T) ((-487 . -796) 38477) ((-359 . -1158) 38456) ((-356 . -1158) 38435) ((-348 . -1158) 38414) ((-487 . -799) 38365) ((-487 . -798) 38344) ((-228 . -34) T) ((-487 . -731) 38254) ((-804 . -621) 38100) ((-667 . -1057) 38084) ((-60 . -494) 38068) ((-576 . -1064) T) ((-667 . -645) 38052) ((-1179 . -173) 37943) ((-1131 . -173) 37854) ((-1068 . -1106) T) ((-1093 . -955) 37799) ((-958 . -1106) T) ((-822 . -653) 37750) ((-787 . -955) 37719) ((-718 . -1106) T) ((-785 . -955) 37686) ((-521 . -285) 37670) ((-675 . -906) 37629) ((-486 . -1106) T) ((-459 . -955) 37596) ((-79 . -1223) T) ((-359 . -38) 37561) ((-356 . -38) 37526) ((-348 . -38) 37491) ((-266 . -38) 37340) ((-248 . -38) 37189) ((-916 . -1158) T) ((-529 . -495) 37170) ((-628 . -147) 37149) ((-628 . -145) 37128) ((-529 . -618) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-419 . -731) T) ((-804 . -1055) T) ((-347 . -457) T) ((-1265 . -1008) 37060) ((-1258 . -1008) 37026) ((-1237 . -1008) 36992) ((-916 . -38) 36957) ((-226 . -722) 36922) ((-322 . -47) 36892) ((-40 . -414) 36864) ((-140 . -618) 36846) ((-1005 . -131) T) ((-820 . -1223) T) ((-175 . -926) T) ((-554 . -372) T) ((-611 . -621) 36827) ((-347 . -407) T) ((-719 . -651) 36772) ((-676 . -621) 36753) ((-181 . -621) 36734) ((-161 . -621) 36715) ((-156 . -621) 36696) ((-154 . -621) 36677) ((-525 . -291) 36654) ((-1236 . -232) 36624) ((-881 . -102) T) ((-820 . -1044) 36451) ((-45 . -34) T) ((-686 . -102) T) ((-681 . -102) T) ((-667 . -102) T) ((-659 . -21) T) ((-659 . -25) T) ((-1108 . -494) 36435) ((-680 . -1223) T) ((-483 . -102) T) ((-246 . -102) 36385) ((-551 . -849) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-876 . -1106) T) ((-1185 . -653) 36310) ((-1068 . -722) 36297) ((-736 . -1062) 36140) ((-1179 . -519) 36087) ((-958 . -722) 35936) ((-1131 . -519) 35888) ((-1284 . -1106) T) ((-1283 . -1106) T) ((-486 . -722) 35737) ((-67 . -618) 35719) ((-736 . -111) 35548) ((-949 . -494) 35532) ((-1285 . -653) 35492) ((-822 . -731) T) ((-1181 . -1062) 35375) ((-1180 . -1062) 35210) ((-1174 . -1062) 35000) ((-1132 . -1062) 34883) ((-1009 . -1227) T) ((-1100 . -102) 34861) ((-820 . -381) 34830) ((-584 . -618) 34812) ((-551 . -1106) T) ((-1009 . -561) T) ((-1181 . -111) 34681) ((-1180 . -111) 34502) ((-1174 . -111) 34271) ((-1132 . -111) 34140) ((-1111 . -1109) 34104) ((-383 . -853) T) ((-1265 . -618) 34086) ((-1258 . -618) 34068) ((-877 . -651) 34005) ((-1237 . -618) 33987) ((-1237 . -619) NIL) ((-241 . -291) 33964) ((-40 . -457) T) ((-226 . -173) T) ((-170 . -1106) T) ((-736 . -621) 33749) ((-699 . -147) T) ((-699 . -145) NIL) ((-601 . -618) 33731) ((-600 . -618) 33713) ((-904 . -1106) T) ((-846 . -1106) T) ((-813 . -1106) T) ((-774 . -1106) T) ((-663 . -857) 33697) ((-682 . -1106) T) ((-820 . -906) 33629) ((-1228 . -372) T) ((-40 . -407) NIL) ((-1181 . -621) 33511) ((-1126 . -666) T) ((-876 . -722) 33456) ((-253 . -494) 33440) ((-252 . -494) 33424) ((-1180 . -621) 33167) ((-1174 . -621) 32962) ((-717 . -644) 32910) ((-658 . -653) 32884) ((-1132 . -621) 32766) ((-298 . -34) T) ((-736 . -1055) T) ((-586 . -1280) 32753) ((-523 . -1280) 32730) ((-1246 . -1106) T) ((-1179 . -293) 32641) ((-1131 . -293) 32572) ((-1068 . -173) T) ((-860 . -1106) T) ((-958 . -173) 32483) ((-787 . -1249) 32467) ((-649 . -519) 32400) ((-77 . -618) 32382) ((-736 . -329) 32347) ((-1185 . -731) T) ((-576 . -1106) T) ((-486 . -173) 32258) ((-246 . -312) 32196) ((-1148 . -1118) T) ((-70 . -618) 32178) ((-1285 . -731) T) ((-1181 . -1055) T) ((-1180 . -1055) T) ((-330 . -102) 32128) ((-1174 . -1055) T) ((-1148 . -23) T) ((-1132 . -1055) T) ((-91 . -1127) 32112) ((-871 . -1118) T) ((-1181 . -234) 32071) ((-1180 . -244) 32050) ((-1180 . -234) 32002) ((-1174 . -234) 31889) ((-1174 . -244) 31868) ((-322 . -906) 31774) ((-871 . -23) T) ((-170 . -722) 31602) ((-412 . -1227) T) ((-1107 . -372) T) ((-1009 . -367) T) ((-875 . -457) T) ((-1030 . -147) T) ((-949 . -289) 31579) ((-316 . -855) NIL) ((-1257 . -651) 31461) ((-879 . -102) T) ((-1236 . -651) 31316) ((-717 . -25) T) ((-412 . -561) T) ((-717 . -21) T) ((-530 . -621) 31297) ((-358 . -147) 31279) ((-358 . -145) T) ((-1153 . -1106) 31257) ((-458 . -725) T) ((-75 . -618) 31239) ((-114 . -855) T) ((-246 . -285) 31223) ((-241 . -1062) 31120) ((-81 . -618) 31102) ((-740 . -372) 31055) ((-1183 . -833) T) ((-742 . -236) 31039) ((-1166 . -1223) T) ((-141 . -236) 31021) ((-241 . -111) 30911) ((-1246 . -722) 30740) ((-48 . -147) T) ((-876 . -173) T) ((-860 . -722) 30710) ((-489 . -1223) T) ((-958 . -519) 30657) ((-658 . -731) T) ((-576 . -722) 30644) ((-1040 . -1064) T) ((-486 . -519) 30587) ((-949 . -19) 30571) ((-949 . -609) 30548) ((-821 . -619) NIL) ((-821 . -618) 30530) ((-1217 . -1057) 30413) ((-1010 . -1062) 30363) ((-418 . -618) 30345) ((-253 . -289) 30322) ((-252 . -289) 30299) ((-492 . -915) NIL) ((-319 . -29) 30269) ((-108 . -1223) T) ((-1009 . -1118) T) ((-218 . -915) NIL) ((-1217 . -645) 30166) ((-920 . -1062) 30118) ((-1086 . -1044) 30014) ((-1010 . -111) 29948) ((-716 . -1057) 29913) ((-1009 . -23) T) ((-920 . -111) 29851) ((-742 . -700) 29835) ((-716 . -645) 29800) ((-266 . -232) 29784) ((-432 . -1062) 29768) ((-383 . -1064) T) ((-241 . -621) 29498) ((-699 . -1211) NIL) ((-492 . -653) 29448) ((-479 . -651) 29330) ((-108 . -890) 29312) ((-108 . -892) 29294) ((-699 . -1208) NIL) ((-218 . -653) 29244) ((-363 . -1044) 29228) ((-357 . -1044) 29212) ((-330 . -312) 29150) ((-349 . -1044) 29134) ((-226 . -293) T) ((-432 . -111) 29113) ((-60 . -618) 29045) ((-170 . -173) T) ((-1126 . -855) T) ((-108 . -1044) 29005) ((-898 . -1106) T) ((-841 . -1064) T) ((-832 . -1064) T) ((-699 . -35) NIL) ((-699 . -95) NIL) ((-316 . -998) 28966) ((-184 . -102) T) ((-585 . -457) T) ((-569 . -457) T) ((-500 . -457) T) ((-412 . -367) T) ((-241 . -1055) 28896) ((-1156 . -34) T) ((-482 . -926) T) ((-1005 . -644) 28844) ((-253 . -609) 28821) ((-252 . -609) 28798) ((-1086 . -381) 28782) ((-876 . -519) 28690) ((-241 . -234) 28642) ((-1165 . -1223) T) ((-1010 . -621) 28592) ((-920 . -621) 28529) ((-829 . -618) 28511) ((-1296 . -1118) T) ((-1288 . -618) 28493) ((-1246 . -173) 28384) ((-432 . -621) 28353) ((-108 . -381) 28335) ((-108 . -342) 28317) ((-1068 . -293) T) ((-958 . -293) 28248) ((-804 . -372) 28227) ((-652 . -1223) T) ((-637 . -1223) T) ((-591 . -1057) 28202) ((-486 . -293) 28133) ((-576 . -173) T) ((-330 . -285) 28117) ((-1296 . -23) T) ((-1217 . -102) T) ((-1204 . -1106) T) ((-1094 . -1106) T) ((-1082 . -1106) T) ((-591 . -645) 28092) ((-83 . -618) 28074) ((-1190 . -849) T) ((-1189 . -849) T) ((-716 . -102) T) ((-359 . -353) 28053) ((-613 . -1106) T) ((-356 . -353) 28032) ((-348 . -353) 28011) ((-480 . -1106) T) ((-1196 . -230) 27961) ((-266 . -255) 27923) ((-1148 . -131) T) ((-613 . -615) 27899) ((-1086 . -906) 27832) ((-1010 . -1055) T) ((-920 . -1055) T) ((-480 . -615) 27811) ((-1174 . -797) NIL) ((-1174 . -800) NIL) ((-1108 . -619) 27772) ((-484 . -230) 27722) ((-1108 . -618) 27704) ((-1010 . -244) T) ((-1010 . -234) T) ((-432 . -1055) T) ((-964 . -1106) 27654) ((-920 . -244) T) ((-871 . -131) T) ((-704 . -457) T) ((-848 . -1118) 27633) ((-108 . -906) NIL) ((-1217 . -287) 27599) ((-877 . -853) 27578) ((-1119 . -1223) T) ((-911 . -731) T) ((-170 . -519) 27490) ((-1005 . -25) T) ((-911 . -478) T) ((-412 . -1118) T) ((-492 . -799) T) ((-492 . -796) T) ((-916 . -353) T) ((-492 . -731) T) ((-218 . -799) T) ((-218 . -796) T) ((-1005 . -21) T) ((-218 . -731) T) ((-848 . -23) 27442) ((-1191 . -1106) T) ((-663 . -1057) 27426) ((-1190 . -1106) T) ((-529 . -621) 27407) ((-1189 . -1106) T) ((-322 . -310) 27386) ((-1041 . -236) 27332) ((-663 . -645) 27302) ((-412 . -23) T) ((-949 . -619) 27263) ((-949 . -618) 27175) ((-649 . -494) 27159) ((-45 . -1016) 27109) ((-622 . -973) T) ((-496 . -102) T) ((-334 . -618) 27091) ((-1119 . -1044) 26918) ((-598 . -656) 26900) ((-130 . -1106) T) ((-128 . -1106) T) ((-598 . -377) 26882) ((-347 . -1280) 26859) ((-444 . -618) 26841) ((-1246 . -519) 26788) ((-1093 . -1057) 26631) ((-1033 . -1223) T) ((-876 . -293) T) ((-1179 . -289) 26558) ((-1093 . -645) 26407) ((-1006 . -1001) 26391) ((-787 . -1057) 26214) ((-785 . -1057) 26057) ((-787 . -645) 25886) ((-785 . -645) 25735) ((-481 . -1223) T) ((-468 . -1223) T) ((-591 . -102) T) ((-466 . -1057) 25706) ((-459 . -1057) 25549) ((-669 . -651) 25518) ((-628 . -457) 25497) ((-466 . -645) 25468) ((-459 . -645) 25317) ((-359 . -651) 25254) ((-356 . -651) 25191) ((-348 . -651) 25128) ((-266 . -651) 25038) ((-248 . -651) 24948) ((-1288 . -386) 24920) ((-522 . -1106) T) ((-117 . -457) T) ((-1203 . -102) T) ((-1098 . -1106) 24890) ((-1040 . -1106) T) ((-1121 . -93) T) ((-899 . -855) T) ((-1265 . -111) 24759) ((-355 . -1227) T) ((-1265 . -1062) 24642) ((-1119 . -381) 24611) ((-1258 . -1062) 24446) ((-1237 . -1062) 24236) ((-1258 . -111) 24057) ((-1237 . -111) 23826) ((-1217 . -312) 23813) ((-1009 . -131) T) ((-916 . -651) 23763) ((-369 . -618) 23745) ((-355 . -561) T) ((-292 . -310) T) ((-601 . -1062) 23705) ((-600 . -1062) 23588) ((-586 . -1057) 23553) ((-523 . -1057) 23498) ((-365 . -1106) T) ((-325 . -1106) T) ((-253 . -618) 23459) ((-252 . -618) 23420) ((-586 . -645) 23385) ((-523 . -645) 23330) ((-699 . -414) 23297) ((-640 . -23) T) ((-612 . -23) T) ((-663 . -102) T) ((-601 . -111) 23250) ((-600 . -111) 23119) ((-383 . -1106) T) ((-340 . -102) T) ((-170 . -293) 23030) ((-1236 . -853) 22983) ((-719 . -1064) T) ((-1153 . -519) 22916) ((-1119 . -906) 22848) ((-841 . -1106) T) ((-832 . -1106) T) ((-830 . -1106) T) ((-97 . -102) T) ((-144 . -855) T) ((-617 . -890) 22832) ((-110 . -1223) T) ((-1093 . -102) T) ((-1069 . -34) T) ((-787 . -102) T) ((-785 . -102) T) ((-1265 . -621) 22714) ((-1258 . -621) 22457) ((-466 . -102) T) ((-459 . -102) T) ((-1237 . -621) 22252) ((-241 . -800) 22203) ((-241 . -797) 22154) ((-654 . -102) T) ((-601 . -621) 22112) ((-600 . -621) 21994) ((-1246 . -293) 21905) ((-669 . -639) 21889) ((-187 . -618) 21871) ((-649 . -289) 21848) ((-1040 . -722) 21832) ((-576 . -293) T) ((-969 . -653) 21757) ((-1296 . -131) T) ((-740 . -653) 21717) ((-720 . -653) 21704) ((-277 . -102) T) ((-458 . -653) 21634) ((-50 . -102) T) ((-586 . -102) T) ((-523 . -102) T) ((-1265 . -1055) T) ((-1258 . -1055) T) ((-1237 . -1055) T) ((-512 . -651) 21616) ((-325 . -722) 21598) ((-1265 . -234) 21557) ((-1258 . -244) 21536) ((-1258 . -234) 21488) ((-1237 . -234) 21375) ((-1237 . -244) 21354) ((-1217 . -38) 21251) ((-601 . -1055) T) ((-600 . -1055) T) ((-1010 . -800) T) ((-1010 . -797) T) ((-977 . -800) T) ((-977 . -797) T) ((-877 . -1064) T) ((-109 . -618) 21233) ((-699 . -457) T) ((-383 . -722) 21198) ((-423 . -653) 21172) ((-875 . -874) 21156) ((-716 . -38) 21121) ((-600 . -234) 21080) ((-40 . -729) 21052) ((-355 . -332) 21029) ((-355 . -367) T) ((-1086 . -310) 20980) ((-297 . -1118) 20861) ((-1112 . -1223) T) ((-172 . -102) T) ((-1240 . -618) 20828) ((-848 . -131) 20780) ((-649 . -1261) 20764) ((-841 . -722) 20734) ((-832 . -722) 20704) ((-487 . -1223) T) ((-363 . -310) T) ((-357 . -310) T) ((-349 . -310) T) ((-649 . -609) 20681) ((-412 . -131) T) ((-525 . -671) 20665) ((-108 . -310) T) ((-297 . -23) 20548) ((-525 . -656) 20532) ((-699 . -407) NIL) ((-525 . -377) 20516) ((-294 . -618) 20498) ((-91 . -1106) 20476) ((-108 . -1028) T) ((-569 . -143) T) ((-1273 . -151) 20460) ((-487 . -1044) 20287) ((-1259 . -145) 20248) ((-1259 . -147) 20209) ((-1060 . -1223) T) ((-999 . -618) 20191) ((-867 . -618) 20173) ((-821 . -1062) 20016) ((-1284 . -93) T) ((-1283 . -93) T) ((-1179 . -619) NIL) ((-1102 . -1106) T) ((-1096 . -1106) T) ((-1093 . -312) 20003) ((-1079 . -1106) T) ((-228 . -1223) T) ((-1072 . -1106) T) ((-1042 . -1106) T) ((-1025 . -1106) T) ((-787 . -312) 19990) ((-785 . -312) 19977) ((-1179 . -618) 19959) ((-821 . -111) 19788) ((-1131 . -618) 19770) ((-631 . -1106) T) ((-582 . -174) T) ((-534 . -174) T) ((-459 . -312) 19757) ((-488 . -1106) T) ((-1131 . -619) 19505) ((-1040 . -173) T) ((-949 . -291) 19482) ((-219 . -1106) T) ((-859 . -618) 19464) ((-613 . -519) 19247) ((-81 . -621) 19188) ((-823 . -1044) 19172) ((-480 . -519) 18964) ((-969 . -731) T) ((-740 . -731) T) ((-720 . -731) T) ((-355 . -1118) T) ((-1186 . -618) 18946) ((-224 . -102) T) ((-487 . -381) 18915) ((-520 . -1106) T) ((-515 . -1106) T) ((-513 . -1106) T) ((-804 . -653) 18889) ((-1030 . -457) T) ((-964 . -519) 18822) ((-355 . -23) T) ((-640 . -131) T) ((-612 . -131) T) ((-358 . -457) T) ((-241 . -372) 18801) ((-383 . -173) T) ((-1257 . -1064) T) ((-1236 . -1064) T) ((-226 . -1008) T) ((-821 . -621) 18538) ((-704 . -392) T) ((-423 . -731) T) ((-706 . -1227) T) ((-1148 . -644) 18486) ((-585 . -874) 18470) ((-1288 . -1062) 18454) ((-1166 . -1199) 18430) ((-706 . -561) T) ((-126 . -1106) 18408) ((-719 . -1106) T) ((-487 . -906) 18340) ((-250 . -1106) T) ((-188 . -1106) T) ((-663 . -38) 18310) ((-358 . -407) T) ((-319 . -147) 18289) ((-319 . -145) 18268) ((-128 . -519) NIL) ((-116 . -561) T) ((-316 . -147) 18224) ((-316 . -145) 18180) ((-48 . -457) T) ((-162 . -1106) T) ((-157 . -1106) T) ((-1166 . -107) 18127) ((-787 . -1158) 18105) ((-694 . -34) T) ((-1288 . -111) 18084) ((-555 . -34) T) ((-489 . -107) 18068) ((-253 . -291) 18045) ((-252 . -291) 18022) ((-876 . -289) 17973) ((-45 . -1223) T) ((-1229 . -849) T) ((-821 . -1055) T) ((-667 . -651) 17942) ((-1185 . -47) 17919) ((-821 . -329) 17881) ((-1093 . -38) 17730) ((-821 . -234) 17709) ((-787 . -38) 17538) ((-785 . -38) 17387) ((-1121 . -495) 17368) ((-459 . -38) 17217) ((-1121 . -618) 17183) ((-1124 . -102) T) ((-649 . -619) 17144) ((-649 . -618) 17056) ((-586 . -1158) T) ((-523 . -1158) T) ((-1153 . -494) 17040) ((-347 . -1057) 16985) ((-1209 . -1106) 16963) ((-1148 . -25) T) ((-1148 . -21) T) ((-347 . -645) 16908) ((-1288 . -621) 16857) ((-479 . -1064) T) ((-1229 . -1106) T) ((-1237 . -797) NIL) ((-1237 . -800) NIL) ((-1005 . -855) 16836) ((-843 . -1106) T) ((-824 . -618) 16818) ((-871 . -21) T) ((-871 . -25) T) ((-804 . -731) T) ((-175 . -1227) T) ((-586 . -38) 16783) ((-523 . -38) 16748) ((-391 . -618) 16730) ((-336 . -102) T) ((-327 . -618) 16712) ((-170 . -289) 16670) ((-63 . -1223) T) ((-112 . -102) T) ((-877 . -1106) T) ((-175 . -561) T) ((-719 . -722) 16640) ((-297 . -131) 16523) ((-226 . -618) 16505) ((-226 . -619) 16435) ((-1009 . -644) 16374) ((-1288 . -1055) T) ((-1126 . -147) T) ((-637 . -1199) 16349) ((-736 . -915) 16328) ((-598 . -34) T) ((-652 . -107) 16312) ((-637 . -107) 16258) ((-1246 . -289) 16185) ((-736 . -653) 16110) ((-298 . -1223) T) ((-1185 . -1044) 16006) ((-949 . -623) 15983) ((-582 . -581) T) ((-582 . -532) T) ((-534 . -532) T) ((-1174 . -915) NIL) ((-1068 . -619) 15898) ((-1068 . -618) 15880) ((-958 . -618) 15862) ((-718 . -495) 15812) ((-347 . -102) T) ((-253 . -1062) 15709) ((-252 . -1062) 15606) ((-399 . -102) T) ((-31 . -1106) T) ((-958 . -619) 15467) ((-718 . -618) 15402) ((-1286 . -1216) 15371) ((-486 . -618) 15353) ((-486 . -619) 15214) ((-266 . -416) 15198) ((-248 . -416) 15182) ((-253 . -111) 15072) ((-252 . -111) 14962) ((-1181 . -653) 14887) ((-1180 . -653) 14784) ((-1174 . -653) 14636) ((-1132 . -653) 14561) ((-355 . -131) T) ((-82 . -446) T) ((-82 . -400) T) ((-1009 . -25) T) ((-1009 . -21) T) ((-878 . -1106) 14512) ((-40 . -1057) 14457) ((-877 . -722) 14409) ((-40 . -645) 14354) ((-383 . -293) T) ((-170 . -1008) 14305) ((-699 . -392) T) ((-1005 . -1003) 14289) ((-706 . -1118) T) ((-699 . -166) 14271) ((-1257 . -1106) T) ((-1236 . -1106) T) ((-319 . -1208) 14250) ((-319 . -1211) 14229) ((-1171 . -102) T) ((-319 . -965) 14208) ((-134 . -1118) T) ((-116 . -1118) T) ((-607 . -1271) 14192) ((-706 . -23) T) ((-607 . -1106) 14142) ((-319 . -95) 14121) ((-91 . -519) 14054) ((-175 . -367) T) ((-253 . -621) 13784) ((-252 . -621) 13514) ((-319 . -35) 13493) ((-613 . -494) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-972 . -102) T) ((-723 . -1106) T) ((-480 . -494) 13364) ((-412 . -644) 13312) ((-658 . -1044) 13208) ((-964 . -494) 13192) ((-359 . -1064) T) ((-356 . -1064) T) ((-348 . -1064) T) ((-266 . -1064) T) ((-248 . -1064) T) ((-876 . -619) NIL) ((-876 . -618) 13174) ((-1284 . -495) 13155) ((-1283 . -495) 13136) ((-1296 . -21) T) ((-1284 . -618) 13102) ((-1283 . -618) 13068) ((-576 . -1008) T) ((-736 . -731) T) ((-1296 . -25) T) ((-253 . -1055) 12998) ((-252 . -1055) 12928) ((-72 . -1223) T) ((-253 . -234) 12880) ((-252 . -234) 12832) ((-40 . -102) T) ((-916 . -1064) T) ((-1188 . -102) T) ((-128 . -494) 12814) ((-1181 . -731) T) ((-1180 . -731) T) ((-1174 . -731) T) ((-1174 . -796) NIL) ((-1174 . -799) NIL) ((-960 . -102) T) ((-927 . -102) T) ((-875 . -1057) 12801) ((-1132 . -731) T) ((-776 . -102) T) ((-677 . -102) T) ((-875 . -645) 12788) ((-551 . -618) 12770) ((-479 . -1106) T) ((-343 . -1118) T) ((-175 . -1118) T) ((-322 . -926) 12749) ((-1257 . -722) 12590) ((-877 . -173) T) ((-1236 . -722) 12404) ((-848 . -21) 12356) ((-848 . -25) 12308) ((-246 . -1155) 12292) ((-126 . -519) 12225) ((-412 . -25) T) ((-412 . -21) T) ((-343 . -23) T) ((-170 . -619) 11991) ((-170 . -618) 11973) ((-175 . -23) T) ((-649 . -291) 11950) ((-525 . -34) T) ((-904 . -618) 11932) ((-89 . -1223) T) ((-846 . -618) 11914) ((-813 . -618) 11896) ((-774 . -618) 11878) ((-682 . -618) 11860) ((-241 . -653) 11708) ((-1183 . -1106) T) ((-1179 . -1062) 11531) ((-1156 . -1223) T) ((-1131 . -1062) 11374) ((-859 . -1062) 11358) ((-1240 . -623) 11342) ((-1179 . -111) 11151) ((-1131 . -111) 10980) ((-859 . -111) 10959) ((-1230 . -855) T) ((-1246 . -619) NIL) ((-1246 . -618) 10941) ((-347 . -1158) T) ((-860 . -618) 10923) ((-1082 . -289) 10902) ((-80 . -1223) T) ((-1010 . -915) NIL) ((-613 . -289) 10878) ((-1209 . -519) 10811) ((-492 . -1223) T) ((-576 . -618) 10793) ((-480 . -289) 10772) ((-1217 . -651) 10682) ((-522 . -93) T) ((-1093 . -232) 10666) ((-218 . -1223) T) ((-1010 . -653) 10616) ((-964 . -289) 10593) ((-292 . -926) T) ((-822 . -310) 10572) ((-875 . -102) T) ((-787 . -232) 10556) ((-920 . -653) 10508) ((-716 . -651) 10458) ((-699 . -729) 10425) ((-640 . -21) T) ((-640 . -25) T) ((-612 . -21) T) ((-552 . -102) T) ((-347 . -38) 10390) ((-492 . -890) 10372) ((-492 . -892) 10354) ((-479 . -722) 10195) ((-218 . -890) 10177) ((-64 . -1223) T) ((-218 . -892) 10159) ((-612 . -25) T) ((-432 . -653) 10133) ((-1179 . -621) 9902) ((-492 . -1044) 9862) ((-877 . -519) 9774) ((-1131 . -621) 9566) ((-859 . -621) 9484) ((-218 . -1044) 9444) ((-241 . -34) T) ((-1006 . -1106) 9422) ((-585 . -1057) 9409) ((-569 . -1057) 9396) ((-500 . -1057) 9361) ((-1257 . -173) 9292) ((-1236 . -173) 9223) ((-585 . -645) 9210) ((-569 . -645) 9197) ((-500 . -645) 9162) ((-717 . -145) 9141) ((-717 . -147) 9120) ((-706 . -131) T) ((-136 . -470) 9097) ((-1153 . -618) 9029) ((-663 . -661) 9013) ((-128 . -289) 8988) ((-116 . -131) T) ((-482 . -1227) T) ((-613 . -609) 8964) ((-480 . -609) 8943) ((-340 . -339) 8912) ((-602 . -1106) T) ((-590 . -1106) T) ((-541 . -1106) T) ((-482 . -561) T) ((-1179 . -1055) T) ((-1131 . -1055) T) ((-859 . -1055) T) ((-241 . -796) 8891) ((-241 . -799) 8842) ((-241 . -798) 8821) ((-1179 . -329) 8798) ((-241 . -731) 8708) ((-964 . -19) 8692) ((-492 . -381) 8674) ((-492 . -342) 8656) ((-1131 . -329) 8628) ((-358 . -1280) 8605) ((-218 . -381) 8587) ((-218 . -342) 8569) ((-964 . -609) 8546) ((-1179 . -234) T) ((-1269 . -1106) T) ((-669 . -1106) T) ((-650 . -1106) T) ((-1196 . -1106) T) ((-1093 . -255) 8483) ((-591 . -651) 8443) ((-359 . -1106) T) ((-356 . -1106) T) ((-348 . -1106) T) ((-266 . -1106) T) ((-248 . -1106) T) ((-84 . -1223) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1196 . -615) 8378) ((-1236 . -519) 8238) ((-1147 . -1106) T) ((-1121 . -621) 8219) ((-484 . -1106) T) ((-1086 . -926) 8170) ((-1010 . -799) T) ((-484 . -615) 8149) ((-253 . -800) 8100) ((-253 . -797) 8051) ((-252 . -800) 8002) ((-40 . -1158) NIL) ((-252 . -797) 7953) ((-1010 . -796) T) ((-128 . -19) 7935) ((-1010 . -731) T) ((-704 . -1057) 7900) ((-977 . -799) T) ((-920 . -731) T) ((-916 . -1106) T) ((-128 . -609) 7875) ((-704 . -645) 7840) ((-91 . -494) 7824) ((-492 . -906) NIL) ((-898 . -618) 7806) ((-226 . -1062) 7771) ((-877 . -293) T) ((-218 . -906) NIL) ((-838 . -1118) 7750) ((-59 . -1106) 7700) ((-524 . -1106) 7678) ((-521 . -1106) 7628) ((-502 . -1106) 7606) ((-501 . -1106) 7556) ((-585 . -102) T) ((-569 . -102) T) ((-500 . -102) T) ((-479 . -173) 7487) ((-363 . -926) T) ((-357 . -926) T) ((-349 . -926) T) ((-226 . -111) 7443) ((-838 . -23) 7395) ((-432 . -731) T) ((-108 . -926) T) ((-40 . -38) 7340) ((-108 . -825) T) ((-586 . -353) T) ((-523 . -353) T) ((-841 . -289) 7319) ((-319 . -457) 7298) ((-316 . -457) T) ((-663 . -651) 7257) ((-607 . -519) 7190) ((-343 . -131) T) ((-175 . -131) T) ((-297 . -25) 7054) ((-297 . -21) 6937) ((-45 . -1199) 6916) ((-66 . -618) 6898) ((-55 . -102) T) ((-340 . -651) 6880) ((-45 . -107) 6830) ((-824 . -621) 6814) ((-1274 . -102) T) ((-1273 . -102) 6764) ((-1265 . -653) 6689) ((-1258 . -653) 6586) ((-1237 . -653) 6438) ((-1108 . -430) 6422) ((-1108 . -372) 6401) ((-391 . -621) 6385) ((-327 . -621) 6369) ((-1237 . -915) NIL) ((-1204 . -618) 6351) ((-1069 . -1223) T) ((-1093 . -651) 6261) ((-1068 . -1062) 6248) ((-1068 . -111) 6233) ((-958 . -1062) 6076) ((-958 . -111) 5905) ((-787 . -651) 5815) ((-785 . -651) 5725) ((-628 . -1057) 5712) ((-669 . -722) 5696) ((-628 . -645) 5683) ((-486 . -1062) 5526) ((-482 . -367) T) ((-466 . -651) 5482) ((-459 . -651) 5392) ((-226 . -621) 5342) ((-359 . -722) 5294) ((-356 . -722) 5246) ((-117 . -1057) 5191) ((-348 . -722) 5143) ((-266 . -722) 4992) ((-248 . -722) 4841) ((-1102 . -93) T) ((-1096 . -93) T) ((-117 . -645) 4786) ((-1079 . -93) T) ((-949 . -656) 4770) ((-1072 . -93) T) ((-486 . -111) 4599) ((-1063 . -1106) 4577) ((-1042 . -93) T) ((-949 . -377) 4561) ((-249 . -102) T) ((-1025 . -93) T) ((-74 . -618) 4543) ((-969 . -47) 4522) ((-715 . -102) T) ((-704 . -102) T) ((-1 . -1106) T) ((-626 . -1118) T) ((-1094 . -618) 4504) ((-631 . -93) T) ((-1082 . -618) 4486) ((-916 . -722) 4451) ((-126 . -494) 4435) ((-488 . -93) T) ((-626 . -23) T) ((-395 . -23) T) ((-87 . -1223) T) ((-219 . -93) T) ((-613 . -618) 4417) ((-613 . -619) NIL) ((-480 . -619) NIL) ((-480 . -618) 4399) ((-355 . -25) T) ((-355 . -21) T) ((-50 . -651) 4358) ((-516 . -1106) T) ((-512 . -1106) T) ((-127 . -312) 4296) ((-121 . -312) 4234) ((-601 . -653) 4208) ((-600 . -653) 4133) ((-586 . -651) 4083) ((-226 . -1055) T) ((-523 . -651) 4013) ((-383 . -1008) T) ((-226 . -244) T) ((-226 . -234) T) ((-1068 . -621) 3985) ((-1068 . -623) 3966) ((-964 . -619) 3927) ((-964 . -618) 3839) ((-958 . -621) 3628) ((-875 . -38) 3615) ((-718 . -621) 3565) ((-1257 . -293) 3516) ((-1236 . -293) 3467) ((-486 . -621) 3252) ((-1126 . -457) T) ((-507 . -855) T) ((-319 . -1145) 3231) ((-1005 . -147) 3210) ((-1005 . -145) 3189) ((-500 . -312) 3176) ((-298 . -1199) 3155) ((-1191 . -618) 3137) ((-1190 . -618) 3119) ((-1189 . -618) 3101) ((-876 . -1062) 3046) ((-482 . -1118) T) ((-139 . -840) 3028) ((-114 . -840) 3009) ((-628 . -102) T) ((-1209 . -494) 2993) ((-253 . -372) 2972) ((-252 . -372) 2951) ((-1068 . -1055) T) ((-298 . -107) 2901) ((-130 . -618) 2883) ((-128 . -619) NIL) ((-128 . -618) 2827) ((-117 . -102) T) ((-958 . -1055) T) ((-876 . -111) 2756) ((-482 . -23) T) ((-486 . -1055) T) ((-1068 . -234) T) ((-958 . -329) 2725) ((-486 . -329) 2682) ((-359 . -173) T) ((-356 . -173) T) ((-348 . -173) T) ((-266 . -173) 2593) ((-248 . -173) 2504) ((-969 . -1044) 2400) ((-522 . -495) 2381) ((-740 . -1044) 2352) ((-522 . -618) 2318) ((-1111 . -102) T) ((-1098 . -618) 2277) ((-1040 . -618) 2259) ((-699 . -1057) 2209) ((-1286 . -151) 2193) ((-1284 . -621) 2174) ((-1283 . -621) 2155) ((-1278 . -618) 2137) ((-1265 . -731) T) ((-699 . -645) 2087) ((-1258 . -731) T) ((-1237 . -796) NIL) ((-1237 . -799) NIL) ((-170 . -1062) 1997) ((-916 . -173) T) ((-876 . -621) 1927) ((-1237 . -731) T) ((-1009 . -346) 1901) ((-224 . -651) 1853) ((-1006 . -519) 1786) ((-848 . -855) 1765) ((-569 . -1158) T) ((-479 . -293) 1716) ((-601 . -731) T) ((-365 . -618) 1698) ((-325 . -618) 1680) ((-423 . -1044) 1576) ((-600 . -731) T) ((-412 . -855) 1527) ((-170 . -111) 1423) ((-838 . -131) 1375) ((-742 . -151) 1359) ((-1273 . -312) 1297) ((-492 . -310) T) ((-383 . -618) 1264) ((-525 . -1016) 1248) ((-383 . -619) 1162) ((-218 . -310) T) ((-141 . -151) 1144) ((-719 . -289) 1123) ((-492 . -1028) T) ((-585 . -38) 1110) ((-569 . -38) 1097) ((-500 . -38) 1062) ((-218 . -1028) T) ((-876 . -1055) T) ((-841 . -618) 1044) ((-832 . -618) 1026) ((-830 . -618) 1008) ((-821 . -915) 987) ((-1297 . -1118) T) ((-1246 . -1062) 810) ((-860 . -1062) 794) ((-876 . -244) T) ((-876 . -234) NIL) ((-694 . -1223) T) ((-1297 . -23) T) ((-821 . -653) 719) ((-555 . -1223) T) ((-423 . -342) 703) ((-576 . -1062) 690) ((-1246 . -111) 499) ((-706 . -644) 481) ((-860 . -111) 460) ((-385 . -23) T) ((-170 . -621) 238) ((-1196 . -519) 30) ((-881 . -1106) T) ((-686 . -1106) T) ((-681 . -1106) T) ((-667 . -1106) T)) \ No newline at end of file
+(((-483 . -1108) T) ((-266 . -519) 188453) ((-248 . -519) 188396) ((-246 . -1108) 188346) ((-576 . -111) 188331) ((-536 . -23) T) ((-137 . -1108) T) ((-133 . -1108) T) ((-117 . -312) 188288) ((-138 . -1108) T) ((-484 . -519) 188080) ((-682 . -621) 188064) ((-699 . -102) T) ((-1149 . -519) 187983) ((-395 . -131) T) ((-1288 . -984) 187952) ((-1032 . -1059) 187889) ((-31 . -93) T) ((-607 . -494) 187873) ((-1032 . -645) 187810) ((-626 . -131) T) ((-824 . -851) T) ((-528 . -57) 187760) ((-524 . -519) 187693) ((-358 . -1059) 187638) ((-59 . -519) 187571) ((-521 . -519) 187504) ((-423 . -906) 187463) ((-170 . -1057) T) ((-502 . -519) 187396) ((-501 . -519) 187329) ((-358 . -645) 187274) ((-804 . -1046) 187054) ((-704 . -38) 187019) ((-1248 . -621) 186767) ((-347 . -353) T) ((-1102 . -1101) 186751) ((-1102 . -1108) 186729) ((-860 . -621) 186626) ((-170 . -244) 186577) ((-170 . -234) 186528) ((-1102 . -1103) 186486) ((-877 . -289) 186444) ((-226 . -800) T) ((-226 . -797) T) ((-699 . -287) NIL) ((-576 . -621) 186416) ((-1158 . -1201) 186395) ((-412 . -1000) 186379) ((-48 . -1059) 186344) ((-706 . -21) T) ((-706 . -25) T) ((-48 . -645) 186309) ((-1290 . -653) 186283) ((-319 . -160) 186262) ((-319 . -143) 186241) ((-1158 . -107) 186191) ((-116 . -21) T) ((-40 . -232) 186168) ((-134 . -25) T) ((-116 . -25) T) ((-613 . -291) 186144) ((-480 . -291) 186123) ((-1248 . -329) 186100) ((-1248 . -1057) T) ((-860 . -1057) T) ((-804 . -342) 186084) ((-139 . -186) T) ((-117 . -1160) NIL) ((-91 . -618) 186016) ((-482 . -131) T) ((-1248 . -234) T) ((-1104 . -495) 185997) ((-1104 . -618) 185963) ((-1098 . -495) 185944) ((-1098 . -618) 185910) ((-598 . -1225) T) ((-1081 . -495) 185891) ((-576 . -1057) T) ((-1081 . -618) 185857) ((-667 . -722) 185841) ((-1074 . -495) 185822) ((-1074 . -618) 185788) ((-964 . -291) 185765) ((-60 . -34) T) ((-1070 . -800) T) ((-1070 . -797) T) ((-1044 . -495) 185746) ((-1027 . -495) 185727) ((-821 . -731) T) ((-736 . -47) 185692) ((-628 . -38) 185679) ((-359 . -293) T) ((-356 . -293) T) ((-348 . -293) T) ((-266 . -293) 185610) ((-248 . -293) 185541) ((-1044 . -618) 185507) ((-1032 . -102) T) ((-1027 . -618) 185473) ((-631 . -495) 185454) ((-418 . -731) T) ((-117 . -38) 185399) ((-488 . -495) 185380) ((-631 . -618) 185346) ((-418 . -478) T) ((-219 . -495) 185327) ((-488 . -618) 185293) ((-358 . -102) T) ((-219 . -618) 185259) ((-1219 . -1066) T) ((-347 . -651) 185189) ((-716 . -1066) T) ((-1183 . -47) 185166) ((-1182 . -47) 185136) ((-1176 . -47) 185113) ((-128 . -291) 185088) ((-1043 . -151) 185034) ((-916 . -293) T) ((-1134 . -47) 185006) ((-699 . -312) NIL) ((-520 . -618) 184988) ((-515 . -618) 184970) ((-513 . -618) 184952) ((-330 . -1108) 184902) ((-717 . -457) 184833) ((-48 . -102) T) ((-1259 . -289) 184818) ((-1238 . -289) 184738) ((-649 . -671) 184722) ((-649 . -656) 184706) ((-343 . -21) T) ((-343 . -25) T) ((-40 . -353) NIL) ((-175 . -21) T) ((-175 . -25) T) ((-649 . -377) 184690) ((-610 . -495) 184672) ((-607 . -289) 184649) ((-610 . -618) 184616) ((-393 . -102) T) ((-1128 . -143) T) ((-126 . -618) 184548) ((-879 . -1108) T) ((-663 . -416) 184532) ((-719 . -618) 184514) ((-250 . -618) 184481) ((-188 . -618) 184463) ((-162 . -618) 184445) ((-157 . -618) 184427) ((-1290 . -731) T) ((-1110 . -34) T) ((-876 . -800) NIL) ((-876 . -797) NIL) ((-863 . -855) T) ((-736 . -892) NIL) ((-1299 . -131) T) ((-385 . -131) T) ((-898 . -621) 184395) ((-910 . -102) T) ((-736 . -1046) 184271) ((-536 . -131) T) ((-1095 . -416) 184255) ((-1008 . -494) 184239) ((-117 . -405) 184216) ((-1176 . -1225) 184195) ((-787 . -416) 184179) ((-785 . -416) 184163) ((-949 . -34) T) ((-699 . -1160) NIL) ((-253 . -653) 183998) ((-252 . -653) 183820) ((-822 . -926) 183799) ((-459 . -416) 183783) ((-607 . -19) 183767) ((-1154 . -1218) 183736) ((-1176 . -892) NIL) ((-1176 . -890) 183688) ((-607 . -609) 183665) ((-1211 . -618) 183597) ((-1184 . -618) 183579) ((-62 . -400) T) ((-1182 . -1046) 183514) ((-1176 . -1046) 183480) ((-699 . -38) 183430) ((-40 . -651) 183360) ((-479 . -289) 183345) ((-1231 . -618) 183327) ((-736 . -381) 183311) ((-843 . -618) 183293) ((-663 . -1066) T) ((-1259 . -1010) 183259) ((-1238 . -1010) 183225) ((-1096 . -621) 183209) ((-1071 . -1201) 183184) ((-1084 . -621) 183161) ((-877 . -619) 182968) ((-877 . -618) 182950) ((-1198 . -494) 182887) ((-423 . -1030) 182865) ((-48 . -312) 182852) ((-1071 . -107) 182798) ((-484 . -494) 182735) ((-525 . -1225) T) ((-1176 . -342) 182687) ((-1149 . -494) 182658) ((-1176 . -381) 182610) ((-1095 . -1066) T) ((-442 . -102) T) ((-184 . -1108) T) ((-253 . -34) T) ((-252 . -34) T) ((-787 . -1066) T) ((-785 . -1066) T) ((-736 . -906) 182587) ((-459 . -1066) T) ((-59 . -494) 182571) ((-1042 . -1064) 182545) ((-524 . -494) 182529) ((-521 . -494) 182513) ((-502 . -494) 182497) ((-501 . -494) 182481) ((-246 . -519) 182414) ((-1042 . -111) 182381) ((-1183 . -906) 182294) ((-1182 . -906) 182200) ((-1176 . -906) 182033) ((-1134 . -906) 182017) ((-675 . -1120) T) ((-358 . -1160) T) ((-650 . -93) T) ((-325 . -1064) 181999) ((-253 . -796) 181978) ((-253 . -799) 181929) ((-31 . -495) 181910) ((-253 . -798) 181889) ((-252 . -796) 181868) ((-252 . -799) 181819) ((-252 . -798) 181798) ((-31 . -618) 181764) ((-50 . -1066) T) ((-253 . -731) 181674) ((-252 . -731) 181584) ((-1219 . -1108) T) ((-675 . -23) T) ((-586 . -1066) T) ((-523 . -1066) T) ((-383 . -1064) 181549) ((-325 . -111) 181524) ((-73 . -387) T) ((-73 . -400) T) ((-1032 . -38) 181461) ((-699 . -405) 181443) ((-99 . -102) T) ((-716 . -1108) T) ((-1303 . -1059) 181430) ((-1011 . -145) 181402) ((-1011 . -147) 181374) ((-875 . -651) 181346) ((-383 . -111) 181302) ((-322 . -1229) 181281) ((-479 . -1010) 181247) ((-358 . -38) 181212) ((-40 . -374) 181184) ((-878 . -618) 181056) ((-127 . -125) 181040) ((-121 . -125) 181024) ((-841 . -1064) 180994) ((-838 . -21) 180946) ((-832 . -1064) 180930) ((-838 . -25) 180882) ((-322 . -561) 180833) ((-522 . -621) 180814) ((-569 . -833) T) ((-241 . -1225) T) ((-1042 . -621) 180783) ((-841 . -111) 180748) ((-832 . -111) 180727) ((-1259 . -618) 180709) ((-1238 . -618) 180691) ((-1238 . -619) 180362) ((-1181 . -915) 180341) ((-1133 . -915) 180320) ((-48 . -38) 180285) ((-1297 . -1120) T) ((-607 . -618) 180197) ((-607 . -619) 180158) ((-1295 . -1120) T) ((-365 . -621) 180142) ((-325 . -621) 180126) ((-241 . -1046) 179953) ((-1181 . -653) 179878) ((-1133 . -653) 179803) ((-859 . -653) 179777) ((-723 . -618) 179759) ((-551 . -372) T) ((-1297 . -23) T) ((-1295 . -23) T) ((-496 . -1108) T) ((-383 . -621) 179709) ((-383 . -623) 179691) ((-1042 . -1057) T) ((-870 . -102) T) ((-1198 . -289) 179670) ((-170 . -372) 179621) ((-1012 . -1225) T) ((-841 . -621) 179575) ((-832 . -621) 179530) ((-44 . -23) T) ((-484 . -289) 179509) ((-591 . -1108) T) ((-1154 . -1117) 179478) ((-1112 . -1111) 179430) ((-395 . -21) T) ((-395 . -25) T) ((-152 . -1120) T) ((-1303 . -102) T) ((-1012 . -890) 179412) ((-1012 . -892) 179394) ((-1219 . -722) 179291) ((-628 . -232) 179275) ((-626 . -21) T) ((-292 . -561) T) ((-626 . -25) T) ((-1205 . -1108) T) ((-716 . -722) 179240) ((-241 . -381) 179209) ((-1012 . -1046) 179169) ((-383 . -1057) T) ((-224 . -1066) T) ((-117 . -232) 179146) ((-59 . -289) 179123) ((-152 . -23) T) ((-521 . -289) 179100) ((-330 . -519) 179033) ((-501 . -289) 179010) ((-383 . -244) T) ((-383 . -234) T) ((-841 . -1057) T) ((-832 . -1057) T) ((-717 . -955) 178979) ((-706 . -855) T) ((-479 . -618) 178961) ((-1261 . -1059) 178866) ((-585 . -651) 178838) ((-569 . -651) 178810) ((-500 . -651) 178760) ((-832 . -234) 178739) ((-134 . -855) T) ((-1261 . -645) 178631) ((-663 . -1108) T) ((-1198 . -609) 178610) ((-555 . -1201) 178589) ((-340 . -1108) T) ((-322 . -367) 178568) ((-412 . -147) 178547) ((-412 . -145) 178526) ((-970 . -1120) 178425) ((-241 . -906) 178357) ((-820 . -1120) 178267) ((-659 . -857) 178251) ((-484 . -609) 178230) ((-555 . -107) 178180) ((-1012 . -381) 178162) ((-1012 . -342) 178144) ((-97 . -1108) T) ((-970 . -23) 177955) ((-482 . -21) T) ((-482 . -25) T) ((-820 . -23) 177825) ((-1185 . -618) 177807) ((-59 . -19) 177791) ((-1185 . -619) 177713) ((-1181 . -731) T) ((-1133 . -731) T) ((-521 . -19) 177697) ((-501 . -19) 177681) ((-59 . -609) 177658) ((-1095 . -1108) T) ((-907 . -102) 177636) ((-859 . -731) T) ((-787 . -1108) T) ((-521 . -609) 177613) ((-501 . -609) 177590) ((-785 . -1108) T) ((-785 . -1073) 177557) ((-466 . -1108) T) ((-459 . -1108) T) ((-591 . -722) 177532) ((-654 . -1108) T) ((-1267 . -47) 177509) ((-1261 . -102) T) ((-1260 . -47) 177479) ((-1239 . -47) 177456) ((-1219 . -173) 177407) ((-1182 . -310) 177386) ((-1176 . -310) 177365) ((-1104 . -621) 177346) ((-1098 . -621) 177327) ((-1088 . -561) 177278) ((-1012 . -906) NIL) ((-1088 . -1229) 177229) ((-675 . -131) T) ((-632 . -1120) T) ((-1081 . -621) 177210) ((-1074 . -621) 177191) ((-1044 . -621) 177172) ((-1027 . -621) 177153) ((-704 . -651) 177103) ((-277 . -1108) T) ((-85 . -446) T) ((-85 . -400) T) ((-719 . -1064) 177073) ((-716 . -173) T) ((-50 . -1108) T) ((-600 . -47) 177050) ((-226 . -653) 177015) ((-586 . -1108) T) ((-523 . -1108) T) ((-492 . -825) T) ((-492 . -926) T) ((-363 . -1229) T) ((-357 . -1229) T) ((-349 . -1229) T) ((-322 . -1120) T) ((-319 . -1059) 176925) ((-316 . -1059) 176854) ((-108 . -1229) T) ((-631 . -621) 176835) ((-363 . -561) T) ((-218 . -926) T) ((-218 . -825) T) ((-319 . -645) 176745) ((-316 . -645) 176674) ((-357 . -561) T) ((-349 . -561) T) ((-488 . -621) 176655) ((-108 . -561) T) ((-663 . -722) 176625) ((-1176 . -1030) NIL) ((-219 . -621) 176606) ((-322 . -23) T) ((-67 . -1225) T) ((-1008 . -618) 176538) ((-699 . -232) 176520) ((-719 . -111) 176485) ((-649 . -34) T) ((-246 . -494) 176469) ((-1110 . -1106) 176453) ((-172 . -1108) T) ((-1303 . -1160) T) ((-1299 . -21) T) ((-1299 . -25) T) ((-1297 . -131) T) ((-1295 . -131) T) ((-958 . -915) 176432) ((-1288 . -102) T) ((-1271 . -618) 176398) ((-1260 . -1046) 176333) ((-520 . -621) 176317) ((-1239 . -1225) 176296) ((-1239 . -892) NIL) ((-1239 . -890) 176248) ((-486 . -915) 176227) ((-1239 . -1046) 176193) ((-1219 . -519) 176160) ((-1095 . -722) 176009) ((-1070 . -653) 175996) ((-958 . -653) 175921) ((-602 . -495) 175902) ((-590 . -495) 175883) ((-787 . -722) 175712) ((-602 . -618) 175678) ((-590 . -618) 175644) ((-541 . -618) 175626) ((-541 . -619) 175607) ((-785 . -722) 175456) ((-1085 . -102) T) ((-385 . -25) T) ((-628 . -651) 175428) ((-385 . -21) T) ((-486 . -653) 175353) ((-466 . -722) 175324) ((-459 . -722) 175173) ((-995 . -102) T) ((-1198 . -619) NIL) ((-1198 . -618) 175155) ((-1150 . -1131) 175100) ((-742 . -102) T) ((-117 . -651) 175030) ((-610 . -621) 175012) ((-1054 . -1218) 174941) ((-907 . -312) 174879) ((-536 . -25) T) ((-881 . -93) T) ((-719 . -621) 174833) ((-686 . -93) T) ((-650 . -495) 174814) ((-141 . -102) T) ((-44 . -131) T) ((-681 . -93) T) ((-669 . -618) 174796) ((-347 . -1066) T) ((-292 . -1120) T) ((-650 . -618) 174749) ((-483 . -93) T) ((-359 . -618) 174731) ((-356 . -618) 174713) ((-348 . -618) 174695) ((-266 . -619) 174443) ((-266 . -618) 174425) ((-248 . -618) 174407) ((-248 . -619) 174268) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1149 . -618) 174250) ((-1128 . -645) 174237) ((-1128 . -1059) 174224) ((-824 . -731) T) ((-824 . -862) T) ((-607 . -291) 174201) ((-586 . -722) 174166) ((-484 . -619) NIL) ((-484 . -618) 174148) ((-523 . -722) 174093) ((-319 . -102) T) ((-316 . -102) T) ((-292 . -23) T) ((-152 . -131) T) ((-916 . -618) 174075) ((-916 . -619) 174057) ((-391 . -731) T) ((-877 . -1064) 174009) ((-877 . -111) 173947) ((-719 . -1057) T) ((-717 . -1251) 173931) ((-699 . -353) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-524 . -618) 173863) ((-383 . -800) T) ((-224 . -1108) T) ((-168 . -1225) T) ((-383 . -797) T) ((-226 . -799) T) ((-226 . -796) T) ((-59 . -619) 173824) ((-59 . -618) 173736) ((-226 . -731) T) ((-521 . -619) 173697) ((-521 . -618) 173609) ((-502 . -618) 173541) ((-501 . -619) 173502) ((-501 . -618) 173414) ((-1088 . -367) 173365) ((-40 . -416) 173342) ((-77 . -1225) T) ((-876 . -915) NIL) ((-363 . -332) 173326) ((-363 . -367) T) ((-357 . -332) 173310) ((-357 . -367) T) ((-349 . -332) 173294) ((-349 . -367) T) ((-319 . -287) 173273) ((-108 . -367) T) ((-70 . -1225) T) ((-1239 . -342) 173225) ((-876 . -653) 173170) ((-1239 . -381) 173122) ((-970 . -131) 172977) ((-820 . -131) 172847) ((-964 . -656) 172831) ((-1095 . -173) 172742) ((-964 . -377) 172726) ((-1070 . -799) T) ((-1070 . -796) T) ((-877 . -621) 172624) ((-787 . -173) 172515) ((-785 . -173) 172426) ((-821 . -47) 172388) ((-1070 . -731) T) ((-330 . -494) 172372) ((-958 . -731) T) ((-1288 . -312) 172310) ((-459 . -173) 172221) ((-246 . -289) 172198) ((-1267 . -906) 172111) ((-1260 . -906) 172017) ((-1259 . -1064) 171852) ((-486 . -731) T) ((-1239 . -906) 171685) ((-1238 . -1064) 171493) ((-1219 . -293) 171472) ((-1195 . -1225) T) ((-1192 . -372) T) ((-1191 . -372) T) ((-1154 . -151) 171456) ((-1128 . -102) T) ((-1126 . -1108) T) ((-1088 . -23) T) ((-1088 . -1120) T) ((-1083 . -102) T) ((-1065 . -618) 171423) ((-933 . -961) T) ((-742 . -312) 171361) ((-75 . -1225) T) ((-669 . -386) 171333) ((-170 . -915) 171286) ((-30 . -961) T) ((-112 . -849) T) ((-1 . -618) 171268) ((-1011 . -414) 171240) ((-128 . -656) 171222) ((-50 . -625) 171206) ((-699 . -651) 171141) ((-600 . -906) 171054) ((-443 . -102) T) ((-128 . -377) 171036) ((-141 . -312) NIL) ((-877 . -1057) T) ((-838 . -855) 171015) ((-81 . -1225) T) ((-716 . -293) T) ((-40 . -1066) T) ((-586 . -173) T) ((-523 . -173) T) ((-516 . -618) 170997) ((-170 . -653) 170907) ((-512 . -618) 170889) ((-355 . -147) 170871) ((-355 . -145) T) ((-363 . -1120) T) ((-357 . -1120) T) ((-349 . -1120) T) ((-1012 . -310) T) ((-920 . -310) T) ((-877 . -244) T) ((-108 . -1120) T) ((-877 . -234) 170850) ((-1259 . -111) 170671) ((-1238 . -111) 170460) ((-246 . -1263) 170444) ((-569 . -853) T) ((-363 . -23) T) ((-358 . -353) T) ((-319 . -312) 170431) ((-316 . -312) 170372) ((-357 . -23) T) ((-322 . -131) T) ((-349 . -23) T) ((-1012 . -1030) T) ((-31 . -621) 170353) ((-108 . -23) T) ((-659 . -1059) 170337) ((-246 . -609) 170314) ((-336 . -1108) T) ((-659 . -645) 170284) ((-1261 . -38) 170176) ((-1248 . -915) 170155) ((-112 . -1108) T) ((-1043 . -102) T) ((-1248 . -653) 170080) ((-876 . -799) NIL) ((-860 . -653) 170054) ((-876 . -796) NIL) ((-821 . -892) NIL) ((-876 . -731) T) ((-1095 . -519) 169927) ((-787 . -519) 169874) ((-785 . -519) 169826) ((-576 . -653) 169813) ((-821 . -1046) 169641) ((-459 . -519) 169584) ((-393 . -394) T) ((-1259 . -621) 169397) ((-1238 . -621) 169145) ((-60 . -1225) T) ((-626 . -855) 169124) ((-505 . -666) T) ((-1154 . -984) 169093) ((-1032 . -651) 169030) ((-1011 . -457) T) ((-704 . -853) T) ((-515 . -797) T) ((-479 . -1064) 168865) ((-347 . -1108) T) ((-316 . -1160) NIL) ((-292 . -131) T) ((-399 . -1108) T) ((-875 . -1066) T) ((-699 . -374) 168832) ((-358 . -651) 168762) ((-224 . -625) 168739) ((-330 . -289) 168716) ((-479 . -111) 168537) ((-1259 . -1057) T) ((-1238 . -1057) T) ((-821 . -381) 168521) ((-170 . -731) T) ((-659 . -102) T) ((-1259 . -244) 168500) ((-1259 . -234) 168452) ((-1238 . -234) 168357) ((-1238 . -244) 168336) ((-1011 . -407) NIL) ((-675 . -644) 168284) ((-319 . -38) 168194) ((-316 . -38) 168123) ((-69 . -618) 168105) ((-322 . -498) 168071) ((-48 . -651) 168021) ((-1198 . -291) 168000) ((-1233 . -855) T) ((-1121 . -1120) 167910) ((-83 . -1225) T) ((-61 . -618) 167892) ((-484 . -291) 167871) ((-1290 . -1046) 167848) ((-1173 . -1108) T) ((-1121 . -23) 167718) ((-821 . -906) 167654) ((-1248 . -731) T) ((-1110 . -1225) T) ((-479 . -621) 167480) ((-1095 . -293) 167411) ((-972 . -1108) T) ((-899 . -102) T) ((-787 . -293) 167322) ((-330 . -19) 167306) ((-59 . -291) 167283) ((-785 . -293) 167214) ((-860 . -731) T) ((-117 . -853) NIL) ((-521 . -291) 167191) ((-330 . -609) 167168) ((-501 . -291) 167145) ((-459 . -293) 167076) ((-1043 . -312) 166927) ((-881 . -495) 166908) ((-881 . -618) 166874) ((-686 . -495) 166855) ((-576 . -731) T) ((-681 . -495) 166836) ((-686 . -618) 166786) ((-681 . -618) 166752) ((-667 . -618) 166734) ((-483 . -495) 166715) ((-483 . -618) 166681) ((-246 . -619) 166642) ((-246 . -495) 166619) ((-138 . -495) 166600) ((-137 . -495) 166581) ((-133 . -495) 166562) ((-246 . -618) 166454) ((-214 . -102) T) ((-138 . -618) 166420) ((-137 . -618) 166386) ((-133 . -618) 166352) ((-1155 . -34) T) ((-949 . -1225) T) ((-347 . -722) 166297) ((-675 . -25) T) ((-675 . -21) T) ((-1185 . -621) 166278) ((-479 . -1057) T) ((-640 . -422) 166243) ((-612 . -422) 166208) ((-1128 . -1160) T) ((-717 . -1059) 166031) ((-586 . -293) T) ((-523 . -293) T) ((-1260 . -310) 166010) ((-479 . -234) 165962) ((-479 . -244) 165941) ((-1239 . -310) 165920) ((-717 . -645) 165749) ((-1239 . -1030) NIL) ((-1088 . -131) T) ((-877 . -800) 165728) ((-144 . -102) T) ((-40 . -1108) T) ((-877 . -797) 165707) ((-649 . -1018) 165691) ((-585 . -1066) T) ((-569 . -1066) T) ((-500 . -1066) T) ((-412 . -457) T) ((-363 . -131) T) ((-319 . -405) 165675) ((-316 . -405) 165636) ((-357 . -131) T) ((-349 . -131) T) ((-1190 . -1108) T) ((-1128 . -38) 165623) ((-1102 . -618) 165590) ((-108 . -131) T) ((-960 . -1108) T) ((-927 . -1108) T) ((-776 . -1108) T) ((-677 . -1108) T) ((-706 . -147) T) ((-116 . -147) T) ((-1297 . -21) T) ((-1297 . -25) T) ((-1295 . -21) T) ((-1295 . -25) T) ((-669 . -1064) 165574) ((-536 . -855) T) ((-505 . -855) T) ((-359 . -1064) 165526) ((-356 . -1064) 165478) ((-348 . -1064) 165430) ((-253 . -1225) T) ((-252 . -1225) T) ((-266 . -1064) 165273) ((-248 . -1064) 165116) ((-669 . -111) 165095) ((-552 . -849) T) ((-359 . -111) 165033) ((-356 . -111) 164971) ((-348 . -111) 164909) ((-266 . -111) 164738) ((-248 . -111) 164567) ((-822 . -1229) 164546) ((-628 . -416) 164530) ((-44 . -21) T) ((-44 . -25) T) ((-820 . -644) 164436) ((-822 . -561) 164415) ((-253 . -1046) 164242) ((-252 . -1046) 164069) ((-126 . -119) 164053) ((-916 . -1064) 164018) ((-717 . -102) T) ((-704 . -1066) T) ((-602 . -621) 163999) ((-590 . -621) 163980) ((-541 . -623) 163883) ((-347 . -173) T) ((-88 . -618) 163865) ((-152 . -21) T) ((-152 . -25) T) ((-916 . -111) 163821) ((-40 . -722) 163766) ((-875 . -1108) T) ((-669 . -621) 163743) ((-650 . -621) 163724) ((-359 . -621) 163661) ((-356 . -621) 163598) ((-552 . -1108) T) ((-348 . -621) 163535) ((-330 . -619) 163496) ((-330 . -618) 163408) ((-266 . -621) 163161) ((-248 . -621) 162946) ((-1238 . -797) 162899) ((-1238 . -800) 162852) ((-253 . -381) 162821) ((-252 . -381) 162790) ((-659 . -38) 162760) ((-613 . -34) T) ((-487 . -1120) 162670) ((-480 . -34) T) ((-1121 . -131) 162540) ((-970 . -25) 162351) ((-916 . -621) 162301) ((-879 . -618) 162283) ((-970 . -21) 162238) ((-820 . -21) 162148) ((-820 . -25) 161999) ((-1231 . -372) T) ((-628 . -1066) T) ((-1187 . -561) 161978) ((-1181 . -47) 161955) ((-359 . -1057) T) ((-356 . -1057) T) ((-487 . -23) 161825) ((-348 . -1057) T) ((-266 . -1057) T) ((-248 . -1057) T) ((-1133 . -47) 161797) ((-117 . -1066) T) ((-1042 . -653) 161771) ((-964 . -34) T) ((-359 . -234) 161750) ((-359 . -244) T) ((-356 . -234) 161729) ((-356 . -244) T) ((-348 . -234) 161708) ((-348 . -244) T) ((-266 . -329) 161680) ((-248 . -329) 161637) ((-266 . -234) 161616) ((-1165 . -151) 161600) ((-253 . -906) 161532) ((-252 . -906) 161464) ((-1090 . -855) T) ((-419 . -1120) T) ((-1062 . -23) T) ((-916 . -1057) T) ((-325 . -653) 161446) ((-1032 . -853) T) ((-1219 . -1010) 161412) ((-1182 . -926) 161391) ((-1176 . -926) 161370) ((-1176 . -825) NIL) ((-1007 . -1059) 161266) ((-973 . -1225) T) ((-916 . -244) T) ((-822 . -367) 161245) ((-389 . -23) T) ((-127 . -1108) 161223) ((-121 . -1108) 161201) ((-916 . -234) T) ((-128 . -34) T) ((-383 . -653) 161166) ((-1007 . -645) 161114) ((-875 . -722) 161101) ((-1303 . -651) 161073) ((-1054 . -151) 161038) ((-40 . -173) T) ((-699 . -416) 161020) ((-717 . -312) 161007) ((-841 . -653) 160967) ((-832 . -653) 160941) ((-322 . -25) T) ((-322 . -21) T) ((-663 . -289) 160920) ((-585 . -1108) T) ((-569 . -1108) T) ((-500 . -1108) T) ((-246 . -291) 160897) ((-316 . -232) 160858) ((-1181 . -892) NIL) ((-55 . -1108) T) ((-1133 . -892) 160717) ((-129 . -855) T) ((-1181 . -1046) 160597) ((-1133 . -1046) 160480) ((-184 . -618) 160462) ((-859 . -1046) 160358) ((-787 . -289) 160285) ((-822 . -1120) T) ((-1042 . -731) T) ((-607 . -656) 160269) ((-1054 . -984) 160198) ((-1007 . -102) T) ((-822 . -23) T) ((-717 . -1160) 160176) ((-699 . -1066) T) ((-607 . -377) 160160) ((-355 . -457) T) ((-347 . -293) T) ((-1276 . -1108) T) ((-249 . -1108) T) ((-404 . -102) T) ((-292 . -21) T) ((-292 . -25) T) ((-365 . -731) T) ((-715 . -1108) T) ((-704 . -1108) T) ((-365 . -478) T) ((-1219 . -618) 160142) ((-1181 . -381) 160126) ((-1133 . -381) 160110) ((-1032 . -416) 160072) ((-141 . -230) 160054) ((-383 . -799) T) ((-383 . -796) T) ((-875 . -173) T) ((-383 . -731) T) ((-716 . -618) 160036) ((-717 . -38) 159865) ((-1275 . -1273) 159849) ((-355 . -407) T) ((-1275 . -1108) 159799) ((-585 . -722) 159786) ((-569 . -722) 159773) ((-500 . -722) 159738) ((-1261 . -651) 159628) ((-319 . -634) 159607) ((-841 . -731) T) ((-832 . -731) T) ((-649 . -1225) T) ((-1088 . -644) 159555) ((-1181 . -906) 159498) ((-1133 . -906) 159482) ((-667 . -1064) 159466) ((-108 . -644) 159448) ((-487 . -131) 159318) ((-1187 . -1120) T) ((-958 . -47) 159287) ((-628 . -1108) T) ((-667 . -111) 159266) ((-496 . -618) 159232) ((-330 . -291) 159209) ((-486 . -47) 159166) ((-1187 . -23) T) ((-117 . -1108) T) ((-103 . -102) 159144) ((-1287 . -1120) T) ((-553 . -855) T) ((-1062 . -131) T) ((-1032 . -1066) T) ((-824 . -1046) 159128) ((-1011 . -729) 159100) ((-1287 . -23) T) ((-704 . -722) 159065) ((-591 . -618) 159047) ((-391 . -1046) 159031) ((-358 . -1066) T) ((-389 . -131) T) ((-327 . -1046) 159015) ((-1205 . -618) 158997) ((-1128 . -833) T) ((-1113 . -1108) T) ((-226 . -892) 158979) ((-1012 . -926) T) ((-91 . -34) T) ((-1012 . -825) T) ((-920 . -926) T) ((-1088 . -21) T) ((-1088 . -25) T) ((-492 . -1229) T) ((-1007 . -312) 158944) ((-881 . -621) 158925) ((-719 . -653) 158885) ((-218 . -1229) T) ((-686 . -621) 158866) ((-226 . -1046) 158826) ((-40 . -293) T) ((-681 . -621) 158807) ((-492 . -561) T) ((-483 . -621) 158788) ((-319 . -651) 158472) ((-316 . -651) 158386) ((-363 . -25) T) ((-363 . -21) T) ((-357 . -25) T) ((-218 . -561) T) ((-357 . -21) T) ((-349 . -25) T) ((-349 . -21) T) ((-246 . -621) 158363) ((-138 . -621) 158344) ((-137 . -621) 158325) ((-133 . -621) 158306) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1066) T) ((-585 . -173) T) ((-569 . -173) T) ((-500 . -173) T) ((-663 . -618) 158288) ((-742 . -741) 158272) ((-340 . -618) 158254) ((-68 . -387) T) ((-68 . -400) T) ((-1110 . -107) 158238) ((-1070 . -892) 158220) ((-958 . -892) 158145) ((-658 . -1120) T) ((-628 . -722) 158132) ((-486 . -892) NIL) ((-1154 . -102) T) ((-1102 . -623) 158116) ((-1070 . -1046) 158098) ((-97 . -618) 158080) ((-482 . -147) T) ((-958 . -1046) 157960) ((-117 . -722) 157905) ((-658 . -23) T) ((-486 . -1046) 157781) ((-1095 . -619) NIL) ((-1095 . -618) 157763) ((-787 . -619) NIL) ((-787 . -618) 157724) ((-785 . -619) 157358) ((-785 . -618) 157272) ((-1121 . -644) 157178) ((-466 . -618) 157160) ((-459 . -618) 157142) ((-459 . -619) 157003) ((-1043 . -230) 156949) ((-877 . -915) 156928) ((-126 . -34) T) ((-822 . -131) T) ((-654 . -618) 156910) ((-583 . -102) T) ((-359 . -1294) 156894) ((-356 . -1294) 156878) ((-348 . -1294) 156862) ((-127 . -519) 156795) ((-121 . -519) 156728) ((-516 . -797) T) ((-516 . -800) T) ((-515 . -799) T) ((-103 . -312) 156666) ((-223 . -102) 156644) ((-704 . -173) T) ((-699 . -1108) T) ((-877 . -653) 156596) ((-65 . -388) T) ((-277 . -618) 156578) ((-65 . -400) T) ((-958 . -381) 156562) ((-875 . -293) T) ((-50 . -618) 156544) ((-1007 . -38) 156492) ((-1128 . -651) 156464) ((-586 . -618) 156446) ((-486 . -381) 156430) ((-586 . -619) 156412) ((-523 . -618) 156394) ((-916 . -1294) 156381) ((-876 . -1225) T) ((-706 . -457) T) ((-500 . -519) 156347) ((-492 . -367) T) ((-359 . -372) 156326) ((-356 . -372) 156305) ((-348 . -372) 156284) ((-719 . -731) T) ((-218 . -367) T) ((-116 . -457) T) ((-1298 . -1289) 156268) ((-876 . -890) 156245) ((-876 . -892) NIL) ((-970 . -855) 156144) ((-820 . -855) 156095) ((-1232 . -102) T) ((-659 . -661) 156079) ((-1211 . -34) T) ((-172 . -618) 156061) ((-1121 . -21) 155971) ((-1121 . -25) 155822) ((-876 . -1046) 155799) ((-958 . -906) 155780) ((-1248 . -47) 155757) ((-916 . -372) T) ((-59 . -656) 155741) ((-521 . -656) 155725) ((-486 . -906) 155702) ((-71 . -446) T) ((-71 . -400) T) ((-501 . -656) 155686) ((-59 . -377) 155670) ((-628 . -173) T) ((-521 . -377) 155654) ((-501 . -377) 155638) ((-832 . -713) 155622) ((-1181 . -310) 155601) ((-1187 . -131) T) ((-1150 . -1059) 155585) ((-117 . -173) T) ((-1150 . -645) 155517) ((-1154 . -312) 155455) ((-170 . -1225) T) ((-1287 . -131) T) ((-871 . -1059) 155425) ((-640 . -749) 155409) ((-612 . -749) 155393) ((-1260 . -926) 155372) ((-1239 . -926) 155351) ((-1239 . -825) NIL) ((-871 . -645) 155321) ((-699 . -722) 155271) ((-1238 . -915) 155224) ((-1032 . -1108) T) ((-876 . -381) 155201) ((-876 . -342) 155178) ((-911 . -1120) T) ((-170 . -890) 155162) ((-170 . -892) 155087) ((-492 . -1120) T) ((-358 . -1108) T) ((-218 . -1120) T) ((-76 . -446) T) ((-76 . -400) T) ((-170 . -1046) 154983) ((-322 . -855) T) ((-1275 . -519) 154916) ((-1259 . -653) 154813) ((-1238 . -653) 154683) ((-877 . -799) 154662) ((-877 . -796) 154641) ((-877 . -731) T) ((-492 . -23) T) ((-224 . -618) 154623) ((-175 . -457) T) ((-223 . -312) 154561) ((-86 . -446) T) ((-86 . -400) T) ((-218 . -23) T) ((-1299 . -1292) 154540) ((-682 . -1046) 154524) ((-585 . -293) T) ((-569 . -293) T) ((-500 . -293) T) ((-136 . -475) 154479) ((-659 . -651) 154438) ((-48 . -1108) T) ((-717 . -232) 154422) ((-876 . -906) NIL) ((-1248 . -892) NIL) ((-895 . -102) T) ((-891 . -102) T) ((-393 . -1108) T) ((-170 . -381) 154406) ((-170 . -342) 154390) ((-1248 . -1046) 154270) ((-860 . -1046) 154166) ((-1150 . -102) T) ((-667 . -797) 154145) ((-658 . -131) T) ((-117 . -519) 154053) ((-667 . -800) 154032) ((-576 . -1046) 154014) ((-297 . -1282) 153984) ((-871 . -102) T) ((-969 . -561) 153963) ((-1219 . -1064) 153846) ((-1011 . -1059) 153791) ((-487 . -644) 153697) ((-910 . -1108) T) ((-1032 . -722) 153634) ((-716 . -1064) 153599) ((-1011 . -645) 153544) ((-622 . -102) T) ((-607 . -34) T) ((-1155 . -1225) T) ((-1219 . -111) 153413) ((-479 . -653) 153310) ((-358 . -722) 153255) ((-170 . -906) 153214) ((-704 . -293) T) ((-699 . -173) T) ((-716 . -111) 153170) ((-1303 . -1066) T) ((-1248 . -381) 153154) ((-423 . -1229) 153132) ((-1126 . -618) 153114) ((-316 . -853) NIL) ((-423 . -561) T) ((-226 . -310) T) ((-1238 . -796) 153067) ((-1238 . -799) 153020) ((-1259 . -731) T) ((-1238 . -731) T) ((-48 . -722) 152985) ((-226 . -1030) T) ((-355 . -1282) 152962) ((-1261 . -416) 152928) ((-723 . -731) T) ((-336 . -618) 152910) ((-1248 . -906) 152853) ((-1219 . -621) 152735) ((-112 . -618) 152717) ((-112 . -619) 152699) ((-723 . -478) T) ((-716 . -621) 152649) ((-1298 . -1059) 152633) ((-487 . -21) 152543) ((-127 . -494) 152527) ((-121 . -494) 152511) ((-487 . -25) 152362) ((-1298 . -645) 152332) ((-628 . -293) T) ((-591 . -1064) 152307) ((-442 . -1108) T) ((-1070 . -310) T) ((-117 . -293) T) ((-1112 . -102) T) ((-1011 . -102) T) ((-591 . -111) 152275) ((-1150 . -312) 152213) ((-1219 . -1057) T) ((-1070 . -1030) T) ((-66 . -1225) T) ((-1062 . -25) T) ((-1062 . -21) T) ((-716 . -1057) T) ((-389 . -21) T) ((-389 . -25) T) ((-699 . -519) NIL) ((-1032 . -173) T) ((-716 . -244) T) ((-1070 . -550) T) ((-717 . -651) 152123) ((-511 . -102) T) ((-507 . -102) T) ((-358 . -173) T) ((-347 . -618) 152105) ((-412 . -1059) 152057) ((-399 . -618) 152039) ((-1128 . -853) T) ((-479 . -731) T) ((-898 . -1046) 152007) ((-412 . -645) 151959) ((-108 . -855) T) ((-663 . -1064) 151943) ((-492 . -131) T) ((-1261 . -1066) T) ((-218 . -131) T) ((-1165 . -102) 151921) ((-99 . -1108) T) ((-246 . -671) 151905) ((-246 . -656) 151889) ((-663 . -111) 151868) ((-591 . -621) 151852) ((-319 . -416) 151836) ((-246 . -377) 151820) ((-1168 . -236) 151767) ((-1007 . -232) 151751) ((-74 . -1225) T) ((-48 . -173) T) ((-706 . -392) T) ((-706 . -143) T) ((-1298 . -102) T) ((-1205 . -621) 151733) ((-1095 . -1064) 151576) ((-266 . -915) 151555) ((-248 . -915) 151534) ((-787 . -1064) 151357) ((-785 . -1064) 151200) ((-613 . -1225) T) ((-1173 . -618) 151182) ((-1095 . -111) 151011) ((-1054 . -102) T) ((-480 . -1225) T) ((-466 . -1064) 150982) ((-459 . -1064) 150825) ((-669 . -653) 150809) ((-876 . -310) T) ((-787 . -111) 150618) ((-785 . -111) 150447) ((-359 . -653) 150399) ((-356 . -653) 150351) ((-348 . -653) 150303) ((-266 . -653) 150228) ((-248 . -653) 150153) ((-1167 . -855) T) ((-1096 . -1046) 150137) ((-466 . -111) 150098) ((-459 . -111) 149927) ((-1084 . -1046) 149904) ((-1008 . -34) T) ((-972 . -618) 149886) ((-964 . -1225) T) ((-126 . -1018) 149870) ((-969 . -1120) T) ((-876 . -1030) NIL) ((-740 . -1120) T) ((-720 . -1120) T) ((-663 . -621) 149788) ((-1275 . -494) 149772) ((-1150 . -38) 149732) ((-969 . -23) T) ((-916 . -653) 149697) ((-870 . -1108) T) ((-848 . -102) T) ((-822 . -21) T) ((-640 . -1059) 149681) ((-612 . -1059) 149665) ((-822 . -25) T) ((-740 . -23) T) ((-720 . -23) T) ((-640 . -645) 149649) ((-110 . -666) T) ((-612 . -645) 149633) ((-586 . -1064) 149598) ((-523 . -1064) 149543) ((-228 . -57) 149501) ((-458 . -23) T) ((-412 . -102) T) ((-265 . -102) T) ((-699 . -293) T) ((-871 . -38) 149471) ((-586 . -111) 149427) ((-523 . -111) 149356) ((-1095 . -621) 149092) ((-423 . -1120) T) ((-319 . -1066) 148982) ((-316 . -1066) T) ((-128 . -1225) T) ((-787 . -621) 148730) ((-785 . -621) 148496) ((-663 . -1057) T) ((-1303 . -1108) T) ((-459 . -621) 148281) ((-170 . -310) 148212) ((-423 . -23) T) ((-40 . -618) 148194) ((-40 . -619) 148178) ((-108 . -1000) 148160) ((-116 . -874) 148144) ((-654 . -621) 148128) ((-48 . -519) 148094) ((-1211 . -1018) 148078) ((-1190 . -618) 148045) ((-1198 . -34) T) ((-960 . -618) 148011) ((-927 . -618) 147993) ((-1121 . -855) 147944) ((-776 . -618) 147926) ((-677 . -618) 147908) ((-1165 . -312) 147846) ((-484 . -34) T) ((-1100 . -1225) T) ((-482 . -457) T) ((-1149 . -34) T) ((-1095 . -1057) T) ((-50 . -621) 147815) ((-787 . -1057) T) ((-785 . -1057) T) ((-652 . -236) 147799) ((-637 . -236) 147745) ((-586 . -621) 147695) ((-523 . -621) 147625) ((-1248 . -310) 147604) ((-1095 . -329) 147565) ((-459 . -1057) T) ((-1187 . -21) T) ((-1095 . -234) 147544) ((-787 . -329) 147521) ((-787 . -234) T) ((-785 . -329) 147493) ((-736 . -1229) 147472) ((-330 . -656) 147456) ((-1187 . -25) T) ((-59 . -34) T) ((-524 . -34) T) ((-521 . -34) T) ((-459 . -329) 147435) ((-330 . -377) 147419) ((-502 . -34) T) ((-501 . -34) T) ((-1011 . -1160) NIL) ((-736 . -561) 147350) ((-640 . -102) T) ((-612 . -102) T) ((-359 . -731) T) ((-356 . -731) T) ((-348 . -731) T) ((-266 . -731) T) ((-248 . -731) T) ((-1054 . -312) 147258) ((-907 . -1108) 147236) ((-50 . -1057) T) ((-1287 . -21) T) ((-1287 . -25) T) ((-1183 . -561) 147215) ((-1182 . -1229) 147194) ((-1182 . -561) 147145) ((-586 . -1057) T) ((-523 . -1057) T) ((-1176 . -1229) 147124) ((-365 . -1046) 147108) ((-325 . -1046) 147092) ((-1032 . -293) T) ((-383 . -892) 147074) ((-1176 . -561) 147025) ((-1011 . -38) 146970) ((-1007 . -651) 146893) ((-804 . -1120) T) ((-916 . -731) T) ((-586 . -244) T) ((-586 . -234) T) ((-523 . -234) T) ((-523 . -244) T) ((-1134 . -561) 146872) ((-358 . -293) T) ((-652 . -700) 146856) ((-383 . -1046) 146816) ((-297 . -1059) 146737) ((-1128 . -1066) T) ((-103 . -125) 146721) ((-297 . -645) 146663) ((-804 . -23) T) ((-1297 . -1292) 146639) ((-1275 . -289) 146616) ((-412 . -312) 146581) ((-1295 . -1292) 146560) ((-1261 . -1108) T) ((-875 . -618) 146542) ((-841 . -1046) 146511) ((-204 . -792) T) ((-203 . -792) T) ((-202 . -792) T) ((-201 . -792) T) ((-200 . -792) T) ((-199 . -792) T) ((-198 . -792) T) ((-197 . -792) T) ((-196 . -792) T) ((-195 . -792) T) ((-552 . -618) 146493) ((-500 . -1010) T) ((-276 . -844) T) ((-275 . -844) T) ((-274 . -844) T) ((-273 . -844) T) ((-48 . -293) T) ((-272 . -844) T) ((-271 . -844) T) ((-270 . -844) T) ((-194 . -792) T) ((-617 . -855) T) ((-659 . -416) 146477) ((-224 . -621) 146439) ((-110 . -855) T) ((-658 . -21) T) ((-658 . -25) T) ((-1298 . -38) 146409) ((-117 . -289) 146360) ((-1275 . -19) 146344) ((-1275 . -609) 146321) ((-1288 . -1108) T) ((-355 . -1059) 146266) ((-1085 . -1108) T) ((-995 . -1108) T) ((-969 . -131) T) ((-742 . -1108) T) ((-355 . -645) 146211) ((-740 . -131) T) ((-720 . -131) T) ((-516 . -798) T) ((-516 . -799) T) ((-458 . -131) T) ((-412 . -1160) 146189) ((-224 . -1057) T) ((-297 . -102) 145971) ((-141 . -1108) T) ((-704 . -1010) T) ((-91 . -1225) T) ((-127 . -618) 145903) ((-121 . -618) 145835) ((-1303 . -173) T) ((-1182 . -367) 145814) ((-1176 . -367) 145793) ((-319 . -1108) T) ((-423 . -131) T) ((-316 . -1108) T) ((-412 . -38) 145745) ((-1141 . -102) T) ((-1261 . -722) 145637) ((-659 . -1066) T) ((-1143 . -1270) T) ((-322 . -145) 145616) ((-322 . -147) 145595) ((-136 . -1108) T) ((-139 . -1108) T) ((-114 . -1108) T) ((-863 . -102) T) ((-585 . -618) 145577) ((-569 . -619) 145476) ((-569 . -618) 145458) ((-500 . -618) 145440) ((-500 . -619) 145385) ((-490 . -23) T) ((-487 . -855) 145336) ((-492 . -644) 145318) ((-971 . -618) 145300) ((-218 . -644) 145282) ((-226 . -409) T) ((-667 . -653) 145266) ((-55 . -618) 145248) ((-1181 . -926) 145227) ((-736 . -1120) T) ((-355 . -102) T) ((-1224 . -1091) T) ((-1128 . -849) T) ((-823 . -855) T) ((-736 . -23) T) ((-347 . -1064) 145172) ((-1167 . -1166) T) ((-1155 . -107) 145156) ((-1183 . -1120) T) ((-1182 . -1120) T) ((-520 . -1046) 145140) ((-1176 . -1120) T) ((-1134 . -1120) T) ((-347 . -111) 145069) ((-1012 . -1229) T) ((-126 . -1225) T) ((-920 . -1229) T) ((-699 . -289) NIL) ((-1276 . -618) 145051) ((-1183 . -23) T) ((-1182 . -23) T) ((-1176 . -23) T) ((-1012 . -561) T) ((-1150 . -232) 145035) ((-920 . -561) T) ((-1134 . -23) T) ((-249 . -618) 145017) ((-1083 . -1108) T) ((-804 . -131) T) ((-715 . -618) 144999) ((-319 . -722) 144909) ((-316 . -722) 144838) ((-704 . -618) 144820) ((-704 . -619) 144765) ((-412 . -405) 144749) ((-443 . -1108) T) ((-492 . -25) T) ((-492 . -21) T) ((-1128 . -1108) T) ((-218 . -25) T) ((-218 . -21) T) ((-717 . -416) 144733) ((-719 . -1046) 144702) ((-1275 . -618) 144614) ((-1275 . -619) 144575) ((-1261 . -173) T) ((-246 . -34) T) ((-347 . -621) 144505) ((-399 . -621) 144487) ((-932 . -982) T) ((-1211 . -1225) T) ((-667 . -796) 144466) ((-667 . -799) 144445) ((-403 . -400) T) ((-528 . -102) 144423) ((-1043 . -1108) T) ((-223 . -1003) 144407) ((-509 . -102) T) ((-628 . -618) 144389) ((-45 . -855) NIL) ((-628 . -619) 144366) ((-1043 . -615) 144341) ((-907 . -519) 144274) ((-347 . -1057) T) ((-117 . -619) NIL) ((-117 . -618) 144256) ((-877 . -1225) T) ((-675 . -422) 144240) ((-675 . -1131) 144185) ((-505 . -151) 144167) ((-347 . -234) T) ((-347 . -244) T) ((-40 . -1064) 144112) ((-877 . -890) 144096) ((-877 . -892) 144021) ((-717 . -1066) T) ((-699 . -1010) NIL) ((-1259 . -47) 143991) ((-1238 . -47) 143968) ((-1149 . -1018) 143939) ((-3 . |UnionCategory|) T) ((-1128 . -722) 143926) ((-1113 . -618) 143908) ((-1088 . -147) 143887) ((-1088 . -145) 143838) ((-972 . -621) 143822) ((-226 . -926) T) ((-40 . -111) 143751) ((-877 . -1046) 143615) ((-1012 . -367) T) ((-1011 . -232) 143592) ((-706 . -1059) 143579) ((-920 . -367) T) ((-706 . -645) 143566) ((-322 . -1213) 143532) ((-383 . -310) T) ((-322 . -1210) 143498) ((-319 . -173) 143477) ((-316 . -173) T) ((-586 . -1294) 143464) ((-523 . -1294) 143441) ((-363 . -147) 143420) ((-116 . -1059) 143407) ((-363 . -145) 143358) ((-357 . -147) 143337) ((-357 . -145) 143288) ((-349 . -147) 143267) ((-613 . -1201) 143243) ((-116 . -645) 143230) ((-349 . -145) 143181) ((-322 . -35) 143147) ((-480 . -1201) 143126) ((0 . |EnumerationCategory|) T) ((-322 . -95) 143092) ((-383 . -1030) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -236) 143042) ((-659 . -1108) T) ((-613 . -107) 142989) ((-490 . -131) T) ((-480 . -107) 142939) ((-241 . -1120) 142849) ((-877 . -381) 142833) ((-877 . -342) 142817) ((-241 . -23) 142687) ((-40 . -621) 142617) ((-1070 . -926) T) ((-1070 . -825) T) ((-586 . -372) T) ((-523 . -372) T) ((-1288 . -519) 142550) ((-1267 . -561) 142529) ((-355 . -1160) T) ((-330 . -34) T) ((-44 . -422) 142513) ((-1190 . -621) 142449) ((-878 . -1225) T) ((-395 . -749) 142433) ((-1260 . -1229) 142412) ((-1260 . -561) 142363) ((-1150 . -651) 142322) ((-736 . -131) T) ((-677 . -621) 142306) ((-1239 . -1229) 142285) ((-1239 . -561) 142236) ((-1238 . -1225) 142215) ((-1238 . -892) 142088) ((-1238 . -890) 142058) ((-1183 . -131) T) ((-314 . -1091) T) ((-1182 . -131) T) ((-742 . -519) 141991) ((-1176 . -131) T) ((-1134 . -131) T) ((-899 . -1108) T) ((-144 . -849) T) ((-1032 . -1010) T) ((-696 . -618) 141973) ((-1012 . -23) T) ((-528 . -312) 141911) ((-1012 . -1120) T) ((-141 . -519) NIL) ((-871 . -651) 141856) ((-1011 . -353) NIL) ((-979 . -23) T) ((-920 . -1120) T) ((-355 . -38) 141821) ((-920 . -23) T) ((-877 . -906) 141780) ((-82 . -618) 141762) ((-40 . -1057) T) ((-875 . -1064) 141749) ((-875 . -111) 141734) ((-706 . -102) T) ((-699 . -618) 141716) ((-607 . -1225) T) ((-601 . -561) 141695) ((-432 . -1120) T) ((-343 . -1059) 141679) ((-214 . -1108) T) ((-175 . -1059) 141611) ((-479 . -47) 141581) ((-134 . -102) T) ((-40 . -234) 141553) ((-40 . -244) T) ((-116 . -102) T) ((-600 . -561) 141532) ((-343 . -645) 141516) ((-699 . -619) 141424) ((-319 . -519) 141390) ((-175 . -645) 141322) ((-316 . -519) 141214) ((-1259 . -1046) 141198) ((-1238 . -1046) 140984) ((-1007 . -416) 140968) ((-432 . -23) T) ((-1128 . -173) T) ((-1261 . -293) T) ((-659 . -722) 140938) ((-144 . -1108) T) ((-48 . -1010) T) ((-412 . -232) 140922) ((-298 . -236) 140872) ((-876 . -926) T) ((-876 . -825) NIL) ((-875 . -621) 140844) ((-869 . -855) T) ((-1238 . -342) 140814) ((-1238 . -381) 140784) ((-223 . -1129) 140768) ((-1275 . -291) 140745) ((-1219 . -653) 140670) ((-1011 . -651) 140600) ((-969 . -21) T) ((-969 . -25) T) ((-740 . -21) T) ((-740 . -25) T) ((-720 . -21) T) ((-720 . -25) T) ((-716 . -653) 140565) ((-458 . -21) T) ((-458 . -25) T) ((-343 . -102) T) ((-175 . -102) T) ((-1007 . -1066) T) ((-875 . -1057) T) ((-779 . -102) T) ((-1260 . -367) 140544) ((-1259 . -906) 140450) ((-1239 . -367) 140429) ((-1238 . -906) 140280) ((-1032 . -618) 140262) ((-412 . -833) 140215) ((-1183 . -498) 140181) ((-170 . -926) 140112) ((-1182 . -498) 140078) ((-1176 . -498) 140044) ((-717 . -1108) T) ((-1134 . -498) 140010) ((-585 . -1064) 139997) ((-569 . -1064) 139984) ((-500 . -1064) 139949) ((-319 . -293) 139928) ((-316 . -293) T) ((-358 . -618) 139910) ((-423 . -25) T) ((-423 . -21) T) ((-99 . -289) 139889) ((-585 . -111) 139874) ((-569 . -111) 139859) ((-500 . -111) 139815) ((-1185 . -892) 139782) ((-907 . -494) 139766) ((-48 . -618) 139748) ((-48 . -619) 139693) ((-241 . -131) 139563) ((-1298 . -651) 139522) ((-1248 . -926) 139501) ((-821 . -1229) 139480) ((-393 . -495) 139461) ((-1043 . -519) 139305) ((-393 . -618) 139271) ((-821 . -561) 139202) ((-591 . -653) 139177) ((-266 . -47) 139149) ((-248 . -47) 139106) ((-536 . -514) 139083) ((-585 . -621) 139055) ((-569 . -621) 139027) ((-500 . -621) 138960) ((-1082 . -1225) T) ((-1008 . -1225) T) ((-1267 . -23) T) ((-704 . -1064) 138925) ((-1267 . -1120) T) ((-1260 . -1120) T) ((-1260 . -23) T) ((-1239 . -1120) T) ((-1239 . -23) T) ((-1011 . -374) 138897) ((-112 . -372) T) ((-479 . -906) 138803) ((-1219 . -731) T) ((-910 . -618) 138785) ((-55 . -621) 138767) ((-91 . -107) 138751) ((-1128 . -293) T) ((-911 . -855) 138702) ((-706 . -1160) T) ((-704 . -111) 138658) ((-848 . -651) 138575) ((-601 . -1120) T) ((-600 . -1120) T) ((-717 . -722) 138404) ((-716 . -731) T) ((-1012 . -131) T) ((-979 . -131) T) ((-492 . -855) T) ((-920 . -131) T) ((-804 . -25) T) ((-804 . -21) T) ((-218 . -855) T) ((-412 . -651) 138341) ((-585 . -1057) T) ((-569 . -1057) T) ((-500 . -1057) T) ((-601 . -23) T) ((-347 . -1294) 138318) ((-322 . -457) 138297) ((-343 . -312) 138284) ((-600 . -23) T) ((-432 . -131) T) ((-663 . -653) 138258) ((-246 . -1018) 138242) ((-877 . -310) T) ((-1299 . -1289) 138226) ((-776 . -797) T) ((-776 . -800) T) ((-706 . -38) 138213) ((-569 . -234) T) ((-500 . -244) T) ((-500 . -234) T) ((-1158 . -236) 138163) ((-1095 . -915) 138142) ((-116 . -38) 138129) ((-210 . -805) T) ((-209 . -805) T) ((-208 . -805) T) ((-207 . -805) T) ((-877 . -1030) 138107) ((-1288 . -494) 138091) ((-787 . -915) 138070) ((-785 . -915) 138049) ((-1198 . -1225) T) ((-459 . -915) 138028) ((-742 . -494) 138012) ((-1095 . -653) 137937) ((-704 . -621) 137872) ((-787 . -653) 137797) ((-628 . -1064) 137784) ((-484 . -1225) T) ((-347 . -372) T) ((-141 . -494) 137766) ((-785 . -653) 137691) ((-1149 . -1225) T) ((-554 . -855) T) ((-466 . -653) 137662) ((-266 . -892) 137521) ((-248 . -892) NIL) ((-117 . -1064) 137466) ((-459 . -653) 137391) ((-669 . -1046) 137368) ((-628 . -111) 137353) ((-395 . -1059) 137337) ((-359 . -1046) 137321) ((-356 . -1046) 137305) ((-348 . -1046) 137289) ((-266 . -1046) 137133) ((-248 . -1046) 137009) ((-117 . -111) 136938) ((-59 . -1225) T) ((-395 . -645) 136922) ((-626 . -1059) 136906) ((-524 . -1225) T) ((-521 . -1225) T) ((-502 . -1225) T) ((-501 . -1225) T) ((-442 . -618) 136888) ((-439 . -618) 136870) ((-626 . -645) 136854) ((-3 . -102) T) ((-1035 . -1218) 136823) ((-838 . -102) T) ((-694 . -57) 136781) ((-704 . -1057) T) ((-640 . -651) 136750) ((-612 . -651) 136719) ((-50 . -653) 136693) ((-292 . -457) T) ((-481 . -1218) 136662) ((0 . -102) T) ((-586 . -653) 136627) ((-523 . -653) 136572) ((-49 . -102) T) ((-916 . -1046) 136559) ((-704 . -244) T) ((-1088 . -414) 136538) ((-736 . -644) 136486) ((-1007 . -1108) T) ((-717 . -173) 136377) ((-628 . -621) 136272) ((-492 . -1000) 136254) ((-266 . -381) 136238) ((-248 . -381) 136222) ((-404 . -1108) T) ((-1034 . -102) 136200) ((-343 . -38) 136184) ((-218 . -1000) 136166) ((-117 . -621) 136096) ((-175 . -38) 136028) ((-1259 . -310) 136007) ((-1238 . -310) 135986) ((-663 . -731) T) ((-99 . -618) 135968) ((-482 . -1059) 135933) ((-1176 . -644) 135885) ((-482 . -645) 135850) ((-490 . -25) T) ((-490 . -21) T) ((-1238 . -1030) 135802) ((-1065 . -1225) T) ((-628 . -1057) T) ((-383 . -409) T) ((-395 . -102) T) ((-1113 . -623) 135717) ((-266 . -906) 135663) ((-248 . -906) 135640) ((-117 . -1057) T) ((-821 . -1120) T) ((-1095 . -731) T) ((-628 . -234) 135619) ((-626 . -102) T) ((-787 . -731) T) ((-785 . -731) T) ((-418 . -1120) T) ((-117 . -244) T) ((-40 . -372) NIL) ((-117 . -234) NIL) ((-1230 . -855) T) ((-459 . -731) T) ((-821 . -23) T) ((-736 . -25) T) ((-736 . -21) T) ((-1085 . -289) 135598) ((-78 . -401) T) ((-78 . -400) T) ((-538 . -772) 135580) ((-699 . -1064) 135530) ((-1267 . -131) T) ((-1260 . -131) T) ((-1239 . -131) T) ((-1183 . -25) T) ((-1150 . -416) 135514) ((-640 . -371) 135446) ((-612 . -371) 135378) ((-1165 . -1157) 135362) ((-103 . -1108) 135340) ((-1183 . -21) T) ((-1182 . -21) T) ((-870 . -618) 135322) ((-1007 . -722) 135270) ((-224 . -653) 135237) ((-699 . -111) 135171) ((-50 . -731) T) ((-1182 . -25) T) ((-355 . -353) T) ((-1176 . -21) T) ((-1088 . -457) 135122) ((-1176 . -25) T) ((-717 . -519) 135069) ((-586 . -731) T) ((-523 . -731) T) ((-1134 . -21) T) ((-1134 . -25) T) ((-601 . -131) T) ((-297 . -651) 134804) ((-600 . -131) T) ((-363 . -457) T) ((-357 . -457) T) ((-349 . -457) T) ((-479 . -310) 134783) ((-1233 . -102) T) ((-316 . -289) 134718) ((-108 . -457) T) ((-79 . -446) T) ((-79 . -400) T) ((-482 . -102) T) ((-696 . -621) 134702) ((-1303 . -618) 134684) ((-1303 . -619) 134666) ((-1088 . -407) 134645) ((-1043 . -494) 134576) ((-569 . -800) T) ((-569 . -797) T) ((-1071 . -236) 134522) ((-363 . -407) 134473) ((-357 . -407) 134424) ((-349 . -407) 134375) ((-1290 . -1120) T) ((-1299 . -1059) 134359) ((-385 . -1059) 134343) ((-1299 . -645) 134313) ((-385 . -645) 134283) ((-699 . -621) 134218) ((-1290 . -23) T) ((-1277 . -102) T) ((-176 . -618) 134200) ((-1150 . -1066) T) ((-552 . -372) T) ((-675 . -749) 134184) ((-1187 . -145) 134163) ((-1187 . -147) 134142) ((-1154 . -1108) T) ((-1154 . -1079) 134111) ((-69 . -1225) T) ((-1032 . -1064) 134048) ((-355 . -651) 133978) ((-871 . -1066) T) ((-241 . -644) 133884) ((-699 . -1057) T) ((-358 . -1064) 133829) ((-61 . -1225) T) ((-1032 . -111) 133745) ((-907 . -618) 133656) ((-699 . -244) T) ((-699 . -234) NIL) ((-848 . -853) 133635) ((-704 . -800) T) ((-704 . -797) T) ((-1011 . -416) 133612) ((-358 . -111) 133541) ((-383 . -926) T) ((-412 . -853) 133520) ((-717 . -293) 133431) ((-224 . -731) T) ((-1267 . -498) 133397) ((-1260 . -498) 133363) ((-1239 . -498) 133329) ((-583 . -1108) T) ((-319 . -1010) 133308) ((-223 . -1108) 133286) ((-1232 . -849) T) ((-322 . -981) 133248) ((-105 . -102) T) ((-48 . -1064) 133213) ((-1299 . -102) T) ((-385 . -102) T) ((-48 . -111) 133169) ((-1012 . -644) 133151) ((-1261 . -618) 133133) ((-536 . -102) T) ((-505 . -102) T) ((-1141 . -1142) 133117) ((-152 . -1282) 133101) ((-246 . -1225) T) ((-1224 . -102) T) ((-1032 . -621) 133038) ((-1181 . -1229) 133017) ((-358 . -621) 132947) ((-1133 . -1229) 132926) ((-241 . -21) 132836) ((-241 . -25) 132687) ((-127 . -119) 132671) ((-121 . -119) 132655) ((-44 . -749) 132639) ((-1181 . -561) 132550) ((-1133 . -561) 132481) ((-1232 . -1108) T) ((-1043 . -289) 132456) ((-1175 . -1091) T) ((-1002 . -1091) T) ((-821 . -131) T) ((-117 . -800) NIL) ((-117 . -797) NIL) ((-359 . -310) T) ((-356 . -310) T) ((-348 . -310) T) ((-253 . -1120) 132366) ((-252 . -1120) 132276) ((-1032 . -1057) T) ((-1011 . -1066) T) ((-48 . -621) 132209) ((-347 . -653) 132154) ((-626 . -38) 132138) ((-1288 . -618) 132100) ((-1288 . -619) 132061) ((-1085 . -618) 132043) ((-1032 . -244) T) ((-358 . -1057) T) ((-820 . -1282) 132013) ((-253 . -23) T) ((-252 . -23) T) ((-995 . -618) 131995) ((-742 . -619) 131956) ((-742 . -618) 131938) ((-804 . -855) 131917) ((-1168 . -151) 131864) ((-1007 . -519) 131776) ((-358 . -234) T) ((-358 . -244) T) ((-393 . -621) 131757) ((-1012 . -25) T) ((-141 . -618) 131739) ((-141 . -619) 131698) ((-916 . -310) T) ((-1012 . -21) T) ((-979 . -25) T) ((-920 . -21) T) ((-920 . -25) T) ((-432 . -21) T) ((-432 . -25) T) ((-848 . -416) 131682) ((-48 . -1057) T) ((-1297 . -1289) 131666) ((-1295 . -1289) 131650) ((-1043 . -609) 131625) ((-319 . -619) 131486) ((-319 . -618) 131468) ((-316 . -619) NIL) ((-316 . -618) 131450) ((-48 . -244) T) ((-48 . -234) T) ((-659 . -289) 131411) ((-555 . -236) 131361) ((-139 . -618) 131328) ((-136 . -618) 131310) ((-114 . -618) 131292) ((-482 . -38) 131257) ((-1299 . -1296) 131236) ((-1290 . -131) T) ((-1298 . -1066) T) ((-1090 . -102) T) ((-88 . -1225) T) ((-505 . -312) NIL) ((-1008 . -107) 131220) ((-895 . -1108) T) ((-891 . -1108) T) ((-1275 . -656) 131204) ((-1275 . -377) 131188) ((-330 . -1225) T) ((-598 . -855) T) ((-1150 . -1108) T) ((-1150 . -1061) 131128) ((-103 . -519) 131061) ((-933 . -618) 131043) ((-347 . -731) T) ((-30 . -618) 131025) ((-871 . -1108) T) ((-848 . -1066) 131004) ((-40 . -653) 130949) ((-226 . -1229) T) ((-412 . -1066) T) ((-1167 . -151) 130931) ((-1007 . -293) 130882) ((-622 . -1108) T) ((-226 . -561) T) ((-322 . -1256) 130866) ((-322 . -1253) 130836) ((-706 . -651) 130808) ((-1198 . -1201) 130787) ((-1083 . -618) 130769) ((-1198 . -107) 130719) ((-652 . -151) 130703) ((-637 . -151) 130649) ((-116 . -651) 130621) ((-484 . -1201) 130600) ((-492 . -147) T) ((-492 . -145) NIL) ((-1128 . -619) 130515) ((-443 . -618) 130497) ((-218 . -147) T) ((-218 . -145) NIL) ((-1128 . -618) 130479) ((-129 . -102) T) ((-52 . -102) T) ((-1239 . -644) 130431) ((-484 . -107) 130381) ((-1001 . -23) T) ((-1299 . -38) 130351) ((-1181 . -1120) T) ((-1133 . -1120) T) ((-1070 . -1229) T) ((-314 . -102) T) ((-859 . -1120) T) ((-958 . -1229) 130330) ((-486 . -1229) 130309) ((-1070 . -561) T) ((-958 . -561) 130240) ((-1181 . -23) T) ((-1159 . -1091) T) ((-1133 . -23) T) ((-859 . -23) T) ((-486 . -561) 130171) ((-1150 . -722) 130103) ((-675 . -1059) 130087) ((-1154 . -519) 130020) ((-675 . -645) 130004) ((-1043 . -619) NIL) ((-1043 . -618) 129986) ((-96 . -1091) T) ((-871 . -722) 129956) ((-1219 . -47) 129925) ((-253 . -131) T) ((-252 . -131) T) ((-1112 . -1108) T) ((-1011 . -1108) T) ((-62 . -618) 129907) ((-1176 . -855) NIL) ((-1032 . -797) T) ((-1032 . -800) T) ((-1303 . -1064) 129894) ((-1303 . -111) 129879) ((-1267 . -25) T) ((-1267 . -21) T) ((-875 . -653) 129866) ((-1260 . -21) T) ((-1260 . -25) T) ((-1239 . -21) T) ((-1239 . -25) T) ((-1035 . -151) 129850) ((-877 . -825) 129829) ((-877 . -926) T) ((-717 . -289) 129756) ((-601 . -21) T) ((-343 . -651) 129715) ((-601 . -25) T) ((-600 . -21) T) ((-175 . -651) 129632) ((-40 . -731) T) ((-223 . -519) 129565) ((-600 . -25) T) ((-481 . -151) 129549) ((-468 . -151) 129533) ((-927 . -799) T) ((-927 . -731) T) ((-776 . -798) T) ((-776 . -799) T) ((-511 . -1108) T) ((-507 . -1108) T) ((-776 . -731) T) ((-226 . -367) T) ((-1297 . -1059) 129517) ((-1295 . -1059) 129501) ((-1297 . -645) 129471) ((-1165 . -1108) 129449) ((-876 . -1229) T) ((-1295 . -645) 129419) ((-659 . -618) 129401) ((-876 . -561) T) ((-699 . -372) NIL) ((-44 . -1059) 129385) ((-1303 . -621) 129367) ((-1298 . -1108) T) ((-675 . -102) T) ((-363 . -1282) 129351) ((-357 . -1282) 129335) ((-44 . -645) 129319) ((-349 . -1282) 129303) ((-553 . -102) T) ((-525 . -855) 129282) ((-1054 . -1108) T) ((-822 . -457) 129261) ((-152 . -1059) 129245) ((-1054 . -1079) 129174) ((-1035 . -984) 129143) ((-824 . -1120) T) ((-1011 . -722) 129088) ((-152 . -645) 129072) ((-391 . -1120) T) ((-481 . -984) 129041) ((-468 . -984) 129010) ((-110 . -151) 128992) ((-73 . -618) 128974) ((-899 . -618) 128956) ((-1088 . -729) 128935) ((-1303 . -1057) T) ((-821 . -644) 128883) ((-297 . -1066) 128825) ((-170 . -1229) 128730) ((-226 . -1120) T) ((-327 . -23) T) ((-1176 . -1000) 128682) ((-848 . -1108) T) ((-1261 . -1064) 128587) ((-1134 . -745) 128566) ((-1259 . -926) 128545) ((-1238 . -926) 128524) ((-875 . -731) T) ((-170 . -561) 128435) ((-585 . -653) 128422) ((-569 . -653) 128409) ((-412 . -1108) T) ((-265 . -1108) T) ((-214 . -618) 128391) ((-500 . -653) 128356) ((-226 . -23) T) ((-1238 . -825) 128309) ((-1297 . -102) T) ((-358 . -1294) 128286) ((-1295 . -102) T) ((-1261 . -111) 128178) ((-820 . -1059) 128075) ((-820 . -645) 128017) ((-144 . -618) 127999) ((-1001 . -131) T) ((-44 . -102) T) ((-241 . -855) 127950) ((-1248 . -1229) 127929) ((-103 . -494) 127913) ((-1298 . -722) 127883) ((-1095 . -47) 127844) ((-1070 . -1120) T) ((-958 . -1120) T) ((-127 . -34) T) ((-121 . -34) T) ((-787 . -47) 127821) ((-785 . -47) 127793) ((-1248 . -561) 127704) ((-358 . -372) T) ((-486 . -1120) T) ((-1181 . -131) T) ((-1133 . -131) T) ((-459 . -47) 127683) ((-876 . -367) T) ((-859 . -131) T) ((-152 . -102) T) ((-1070 . -23) T) ((-958 . -23) T) ((-576 . -561) T) ((-821 . -25) T) ((-821 . -21) T) ((-1150 . -519) 127616) ((-597 . -1091) T) ((-591 . -1046) 127600) ((-1261 . -621) 127474) ((-486 . -23) T) ((-355 . -1066) T) ((-1219 . -906) 127455) ((-675 . -312) 127393) ((-1121 . -1282) 127363) ((-704 . -653) 127328) ((-1011 . -173) T) ((-969 . -145) 127307) ((-640 . -1108) T) ((-612 . -1108) T) ((-969 . -147) 127286) ((-1012 . -855) T) ((-740 . -147) 127265) ((-740 . -145) 127244) ((-979 . -855) T) ((-838 . -651) 127161) ((-479 . -926) 127140) ((-322 . -1059) 126975) ((-319 . -1064) 126885) ((-316 . -1064) 126814) ((-1007 . -289) 126772) ((-412 . -722) 126724) ((-322 . -645) 126565) ((-706 . -853) T) ((-1261 . -1057) T) ((-319 . -111) 126461) ((-316 . -111) 126374) ((-970 . -102) T) ((-820 . -102) 126164) ((-717 . -619) NIL) ((-717 . -618) 126146) ((-663 . -1046) 126042) ((-1261 . -329) 125986) ((-1043 . -291) 125961) ((-585 . -731) T) ((-569 . -799) T) ((-170 . -367) 125912) ((-569 . -796) T) ((-569 . -731) T) ((-500 . -731) T) ((-1154 . -494) 125896) ((-1095 . -892) NIL) ((-876 . -1120) T) ((-117 . -915) NIL) ((-1297 . -1296) 125872) ((-1295 . -1296) 125851) ((-787 . -892) NIL) ((-785 . -892) 125710) ((-1290 . -25) T) ((-1290 . -21) T) ((-1222 . -102) 125688) ((-1114 . -400) T) ((-628 . -653) 125675) ((-459 . -892) NIL) ((-680 . -102) 125653) ((-1095 . -1046) 125480) ((-876 . -23) T) ((-787 . -1046) 125339) ((-785 . -1046) 125196) ((-117 . -653) 125141) ((-459 . -1046) 125017) ((-319 . -621) 124581) ((-316 . -621) 124464) ((-395 . -651) 124433) ((-654 . -1046) 124417) ((-632 . -102) T) ((-223 . -494) 124401) ((-1275 . -34) T) ((-626 . -651) 124360) ((-292 . -1059) 124347) ((-136 . -621) 124331) ((-292 . -645) 124318) ((-640 . -722) 124302) ((-612 . -722) 124286) ((-675 . -38) 124246) ((-322 . -102) T) ((-85 . -618) 124228) ((-50 . -1046) 124212) ((-1128 . -1064) 124199) ((-1095 . -381) 124183) ((-787 . -381) 124167) ((-704 . -731) T) ((-704 . -799) T) ((-704 . -796) T) ((-586 . -1046) 124154) ((-523 . -1046) 124131) ((-60 . -57) 124093) ((-327 . -131) T) ((-319 . -1057) 123983) ((-316 . -1057) T) ((-170 . -1120) T) ((-785 . -381) 123967) ((-45 . -151) 123917) ((-1012 . -1000) 123899) ((-459 . -381) 123883) ((-412 . -173) T) ((-319 . -244) 123862) ((-316 . -244) T) ((-316 . -234) NIL) ((-297 . -1108) 123644) ((-226 . -131) T) ((-1128 . -111) 123629) ((-170 . -23) T) ((-804 . -147) 123608) ((-804 . -145) 123587) ((-253 . -644) 123493) ((-252 . -644) 123399) ((-322 . -287) 123365) ((-1165 . -519) 123298) ((-482 . -651) 123248) ((-1141 . -1108) T) ((-226 . -1068) T) ((-820 . -312) 123186) ((-1095 . -906) 123121) ((-787 . -906) 123064) ((-785 . -906) 123048) ((-1297 . -38) 123018) ((-1295 . -38) 122988) ((-1248 . -1120) T) ((-860 . -1120) T) ((-459 . -906) 122965) ((-863 . -1108) T) ((-1248 . -23) T) ((-1128 . -621) 122937) ((-576 . -1120) T) ((-860 . -23) T) ((-628 . -731) T) ((-359 . -926) T) ((-356 . -926) T) ((-292 . -102) T) ((-348 . -926) T) ((-1070 . -131) T) ((-978 . -1091) T) ((-958 . -131) T) ((-117 . -799) NIL) ((-117 . -796) NIL) ((-117 . -731) T) ((-699 . -915) NIL) ((-1054 . -519) 122838) ((-486 . -131) T) ((-576 . -23) T) ((-680 . -312) 122776) ((-640 . -766) T) ((-612 . -766) T) ((-1239 . -855) NIL) ((-1088 . -1059) 122686) ((-1011 . -293) T) ((-699 . -653) 122636) ((-253 . -21) T) ((-355 . -1108) T) ((-253 . -25) T) ((-252 . -21) T) ((-252 . -25) T) ((-152 . -38) 122620) ((-2 . -102) T) ((-916 . -926) T) ((-1088 . -645) 122488) ((-487 . -1282) 122458) ((-1128 . -1057) T) ((-716 . -310) T) ((-363 . -1059) 122410) ((-357 . -1059) 122362) ((-349 . -1059) 122314) ((-363 . -645) 122266) ((-224 . -1046) 122243) ((-357 . -645) 122195) ((-108 . -1059) 122145) ((-349 . -645) 122097) ((-297 . -722) 122039) ((-706 . -1066) T) ((-492 . -457) T) ((-412 . -519) 121951) ((-108 . -645) 121901) ((-218 . -457) T) ((-1128 . -234) T) ((-298 . -151) 121851) ((-1007 . -619) 121812) ((-1007 . -618) 121794) ((-997 . -618) 121776) ((-116 . -1066) T) ((-659 . -1064) 121760) ((-226 . -498) T) ((-404 . -618) 121742) ((-404 . -619) 121719) ((-1062 . -1282) 121689) ((-659 . -111) 121668) ((-1150 . -494) 121652) ((-1299 . -651) 121611) ((-385 . -651) 121580) ((-820 . -38) 121550) ((-63 . -446) T) ((-63 . -400) T) ((-1168 . -102) T) ((-876 . -131) T) ((-489 . -102) 121528) ((-1303 . -372) T) ((-1088 . -102) T) ((-1069 . -102) T) ((-355 . -722) 121473) ((-736 . -147) 121452) ((-736 . -145) 121431) ((-659 . -621) 121349) ((-1032 . -653) 121286) ((-528 . -1108) 121264) ((-363 . -102) T) ((-357 . -102) T) ((-349 . -102) T) ((-108 . -102) T) ((-509 . -1108) T) ((-358 . -653) 121209) ((-1181 . -644) 121157) ((-1133 . -644) 121105) ((-389 . -514) 121084) ((-838 . -853) 121063) ((-383 . -1229) T) ((-699 . -731) T) ((-343 . -1066) T) ((-1239 . -1000) 121015) ((-175 . -1066) T) ((-103 . -618) 120947) ((-1183 . -145) 120926) ((-1183 . -147) 120905) ((-383 . -561) T) ((-1182 . -147) 120884) ((-1182 . -145) 120863) ((-1176 . -145) 120770) ((-412 . -293) T) ((-1176 . -147) 120677) ((-1134 . -147) 120656) ((-1134 . -145) 120635) ((-322 . -38) 120476) ((-170 . -131) T) ((-316 . -800) NIL) ((-316 . -797) NIL) ((-659 . -1057) T) ((-48 . -653) 120441) ((-1121 . -1059) 120338) ((-899 . -621) 120315) ((-1121 . -645) 120257) ((-1175 . -102) T) ((-1002 . -102) T) ((-1001 . -21) T) ((-127 . -1018) 120241) ((-121 . -1018) 120225) ((-1001 . -25) T) ((-907 . -119) 120209) ((-1167 . -102) T) ((-1248 . -131) T) ((-1181 . -25) T) ((-1181 . -21) T) ((-860 . -131) T) ((-1133 . -25) T) ((-1133 . -21) T) ((-859 . -25) T) ((-859 . -21) T) ((-787 . -310) 120188) ((-652 . -102) 120166) ((-637 . -102) T) ((-1168 . -312) 119961) ((-576 . -131) T) ((-626 . -853) 119940) ((-1165 . -494) 119924) ((-1158 . -151) 119874) ((-1154 . -618) 119836) ((-1154 . -619) 119797) ((-1032 . -796) T) ((-1032 . -799) T) ((-1032 . -731) T) ((-717 . -1064) 119620) ((-489 . -312) 119558) ((-458 . -422) 119528) ((-355 . -173) T) ((-292 . -38) 119515) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-347 . -1046) 119492) ((-270 . -102) T) ((-213 . -102) T) ((-212 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-358 . -731) T) ((-717 . -111) 119301) ((-675 . -232) 119285) ((-586 . -310) T) ((-523 . -310) T) ((-297 . -519) 119234) ((-108 . -312) NIL) ((-72 . -400) T) ((-1121 . -102) 119024) ((-838 . -416) 119008) ((-1128 . -800) T) ((-1128 . -797) T) ((-706 . -1108) T) ((-583 . -618) 118990) ((-383 . -367) T) ((-170 . -498) 118968) ((-223 . -618) 118900) ((-134 . -1108) T) ((-116 . -1108) T) ((-48 . -731) T) ((-1054 . -494) 118865) ((-141 . -430) 118847) ((-141 . -372) T) ((-1035 . -102) T) ((-517 . -514) 118826) ((-717 . -621) 118582) ((-481 . -102) T) ((-468 . -102) T) ((-1042 . -1120) T) ((-1232 . -618) 118564) ((-1190 . -1046) 118500) ((-1183 . -35) 118466) ((-1183 . -95) 118432) ((-1183 . -1213) 118398) ((-1183 . -1210) 118364) ((-1167 . -312) NIL) ((-89 . -401) T) ((-89 . -400) T) ((-1088 . -1160) 118343) ((-1182 . -1210) 118309) ((-1182 . -1213) 118275) ((-1042 . -23) T) ((-1182 . -95) 118241) ((-576 . -498) T) ((-1182 . -35) 118207) ((-1176 . -1210) 118173) ((-1176 . -1213) 118139) ((-1176 . -95) 118105) ((-365 . -1120) T) ((-363 . -1160) 118084) ((-357 . -1160) 118063) ((-349 . -1160) 118042) ((-1176 . -35) 118008) ((-1134 . -35) 117974) ((-1134 . -95) 117940) ((-108 . -1160) T) ((-1134 . -1213) 117906) ((-838 . -1066) 117885) ((-652 . -312) 117823) ((-637 . -312) 117674) ((-1134 . -1210) 117640) ((-717 . -1057) T) ((-1070 . -644) 117622) ((-1088 . -38) 117490) ((-958 . -644) 117438) ((-1012 . -147) T) ((-1012 . -145) NIL) ((-383 . -1120) T) ((-327 . -25) T) ((-325 . -23) T) ((-949 . -855) 117417) ((-717 . -329) 117394) ((-486 . -644) 117342) ((-40 . -1046) 117230) ((-717 . -234) T) ((-706 . -722) 117217) ((-343 . -1108) T) ((-175 . -1108) T) ((-334 . -855) T) ((-423 . -457) 117167) ((-383 . -23) T) ((-363 . -38) 117132) ((-357 . -38) 117097) ((-349 . -38) 117062) ((-80 . -446) T) ((-80 . -400) T) ((-226 . -25) T) ((-226 . -21) T) ((-841 . -1120) T) ((-108 . -38) 117012) ((-832 . -1120) T) ((-779 . -1108) T) ((-116 . -722) 116999) ((-677 . -1046) 116983) ((-617 . -102) T) ((-841 . -23) T) ((-832 . -23) T) ((-1165 . -289) 116960) ((-1121 . -312) 116898) ((-487 . -1059) 116795) ((-1110 . -236) 116779) ((-64 . -401) T) ((-64 . -400) T) ((-1159 . -102) T) ((-110 . -102) T) ((-487 . -645) 116721) ((-40 . -381) 116698) ((-96 . -102) T) ((-658 . -857) 116682) ((-1143 . -1091) T) ((-1070 . -21) T) ((-1070 . -25) T) ((-1062 . -1059) 116666) ((-820 . -232) 116635) ((-958 . -25) T) ((-958 . -21) T) ((-1062 . -645) 116577) ((-626 . -1066) T) ((-1128 . -372) T) ((-1035 . -312) 116515) ((-675 . -651) 116474) ((-486 . -25) T) ((-486 . -21) T) ((-389 . -1059) 116458) ((-895 . -618) 116440) ((-891 . -618) 116422) ((-528 . -519) 116355) ((-253 . -855) 116306) ((-252 . -855) 116257) ((-389 . -645) 116227) ((-876 . -644) 116204) ((-481 . -312) 116142) ((-468 . -312) 116080) ((-355 . -293) T) ((-1165 . -1263) 116064) ((-1150 . -618) 116026) ((-1150 . -619) 115987) ((-1148 . -102) T) ((-1007 . -1064) 115883) ((-40 . -906) 115835) ((-1165 . -609) 115812) ((-1303 . -653) 115799) ((-871 . -495) 115776) ((-1071 . -151) 115722) ((-877 . -1229) T) ((-1007 . -111) 115604) ((-343 . -722) 115588) ((-871 . -618) 115550) ((-175 . -722) 115482) ((-412 . -289) 115440) ((-877 . -561) T) ((-108 . -405) 115422) ((-84 . -388) T) ((-84 . -400) T) ((-706 . -173) T) ((-622 . -618) 115404) ((-99 . -731) T) ((-487 . -102) 115194) ((-99 . -478) T) ((-116 . -173) T) ((-1297 . -651) 115153) ((-1295 . -651) 115112) ((-1121 . -38) 115082) ((-170 . -644) 115030) ((-1062 . -102) T) ((-1007 . -621) 114920) ((-876 . -25) T) ((-820 . -239) 114899) ((-876 . -21) T) ((-823 . -102) T) ((-44 . -651) 114842) ((-419 . -102) T) ((-389 . -102) T) ((-110 . -312) NIL) ((-228 . -102) 114820) ((-127 . -1225) T) ((-121 . -1225) T) ((-822 . -1059) 114771) ((-822 . -645) 114713) ((-1042 . -131) T) ((-675 . -371) 114697) ((-152 . -651) 114656) ((-1007 . -1057) T) ((-1248 . -644) 114604) ((-1112 . -618) 114586) ((-1011 . -618) 114568) ((-520 . -23) T) ((-515 . -23) T) ((-347 . -310) T) ((-513 . -23) T) ((-325 . -131) T) ((-3 . -1108) T) ((-1011 . -619) 114552) ((-1007 . -244) 114531) ((-1007 . -234) 114510) ((-1303 . -731) T) ((-1267 . -145) 114489) ((-838 . -1108) T) ((-1267 . -147) 114468) ((-1260 . -147) 114447) ((-1260 . -145) 114426) ((-1259 . -1229) 114405) ((-1239 . -145) 114312) ((-1239 . -147) 114219) ((-1238 . -1229) 114198) ((-383 . -131) T) ((-569 . -892) 114180) ((0 . -1108) T) ((-175 . -173) T) ((-170 . -21) T) ((-170 . -25) T) ((-49 . -1108) T) ((-1261 . -653) 114085) ((-1259 . -561) 114036) ((-719 . -1120) T) ((-1238 . -561) 113987) ((-569 . -1046) 113969) ((-600 . -147) 113948) ((-600 . -145) 113927) ((-500 . -1046) 113870) ((-1143 . -1145) T) ((-87 . -388) T) ((-87 . -400) T) ((-877 . -367) T) ((-841 . -131) T) ((-832 . -131) T) ((-970 . -651) 113814) ((-719 . -23) T) ((-511 . -618) 113780) ((-507 . -618) 113762) ((-820 . -651) 113512) ((-1299 . -1066) T) ((-383 . -1068) T) ((-1034 . -1108) 113490) ((-55 . -1046) 113472) ((-907 . -34) T) ((-487 . -312) 113410) ((-597 . -102) T) ((-1165 . -619) 113371) ((-1165 . -618) 113303) ((-1187 . -1059) 113186) ((-45 . -102) T) ((-822 . -102) T) ((-1187 . -645) 113083) ((-1248 . -25) T) ((-1248 . -21) T) ((-860 . -25) T) ((-44 . -371) 113067) ((-860 . -21) T) ((-736 . -457) 113018) ((-1298 . -618) 113000) ((-1287 . -1059) 112970) ((-1062 . -312) 112908) ((-676 . -1091) T) ((-611 . -1091) T) ((-395 . -1108) T) ((-576 . -25) T) ((-576 . -21) T) ((-181 . -1091) T) ((-161 . -1091) T) ((-156 . -1091) T) ((-154 . -1091) T) ((-1287 . -645) 112878) ((-626 . -1108) T) ((-704 . -892) 112860) ((-1275 . -1225) T) ((-228 . -312) 112798) ((-144 . -372) T) ((-1054 . -619) 112740) ((-1054 . -618) 112683) ((-316 . -915) NIL) ((-1233 . -849) T) ((-704 . -1046) 112628) ((-716 . -926) T) ((-479 . -1229) 112607) ((-1182 . -457) 112586) ((-1176 . -457) 112565) ((-333 . -102) T) ((-877 . -1120) T) ((-322 . -651) 112447) ((-319 . -653) 112268) ((-316 . -653) 112197) ((-479 . -561) 112148) ((-343 . -519) 112114) ((-555 . -151) 112064) ((-40 . -310) T) ((-848 . -618) 112046) ((-706 . -293) T) ((-877 . -23) T) ((-383 . -498) T) ((-1088 . -232) 112016) ((-517 . -102) T) ((-412 . -619) 111823) ((-412 . -618) 111805) ((-265 . -618) 111787) ((-116 . -293) T) ((-1261 . -731) T) ((-1259 . -367) 111766) ((-1238 . -367) 111745) ((-1288 . -34) T) ((-1233 . -1108) T) ((-117 . -1225) T) ((-108 . -232) 111727) ((-1187 . -102) T) ((-482 . -1108) T) ((-528 . -494) 111711) ((-742 . -34) T) ((-658 . -1059) 111695) ((-487 . -38) 111665) ((-658 . -645) 111635) ((-141 . -34) T) ((-117 . -890) 111612) ((-117 . -892) NIL) ((-628 . -1046) 111495) ((-649 . -855) 111474) ((-1287 . -102) T) ((-298 . -102) T) ((-717 . -372) 111453) ((-117 . -1046) 111430) ((-395 . -722) 111414) ((-626 . -722) 111398) ((-45 . -312) 111202) ((-821 . -145) 111181) ((-821 . -147) 111160) ((-292 . -651) 111132) ((-1298 . -386) 111111) ((-824 . -855) T) ((-1277 . -1108) T) ((-1168 . -230) 111058) ((-391 . -855) 111037) ((-1267 . -1213) 111003) ((-1267 . -1210) 110969) ((-1260 . -1210) 110935) ((-520 . -131) T) ((-1260 . -1213) 110901) ((-1239 . -1210) 110867) ((-1239 . -1213) 110833) ((-1267 . -35) 110799) ((-1267 . -95) 110765) ((-640 . -618) 110734) ((-612 . -618) 110703) ((-226 . -855) T) ((-1260 . -95) 110669) ((-1260 . -35) 110635) ((-1259 . -1120) T) ((-1128 . -653) 110622) ((-1239 . -95) 110588) ((-1238 . -1120) T) ((-598 . -151) 110570) ((-1088 . -353) 110549) ((-175 . -293) T) ((-117 . -381) 110526) ((-117 . -342) 110503) ((-1239 . -35) 110469) ((-875 . -310) T) ((-316 . -799) NIL) ((-316 . -796) NIL) ((-319 . -731) 110318) ((-316 . -731) T) ((-479 . -367) 110297) ((-363 . -353) 110276) ((-357 . -353) 110255) ((-349 . -353) 110234) ((-319 . -478) 110213) ((-1259 . -23) T) ((-1238 . -23) T) ((-723 . -1120) T) ((-719 . -131) T) ((-658 . -102) T) ((-482 . -722) 110178) ((-45 . -285) 110128) ((-105 . -1108) T) ((-68 . -618) 110110) ((-978 . -102) T) ((-869 . -102) T) ((-628 . -906) 110069) ((-1299 . -1108) T) ((-385 . -1108) T) ((-82 . -1225) T) ((-1224 . -1108) T) ((-1070 . -855) T) ((-117 . -906) NIL) ((-787 . -926) 110048) ((-718 . -855) T) ((-536 . -1108) T) ((-505 . -1108) T) ((-359 . -1229) T) ((-356 . -1229) T) ((-348 . -1229) T) ((-266 . -1229) 110027) ((-248 . -1229) 110006) ((-538 . -865) T) ((-1121 . -232) 109975) ((-1167 . -833) T) ((-1150 . -1064) 109959) ((-395 . -766) T) ((-699 . -1225) T) ((-696 . -1046) 109943) ((-359 . -561) T) ((-356 . -561) T) ((-348 . -561) T) ((-266 . -561) 109874) ((-248 . -561) 109805) ((-530 . -1091) T) ((-1150 . -111) 109784) ((-458 . -749) 109754) ((-871 . -1064) 109724) ((-822 . -38) 109666) ((-699 . -890) 109648) ((-699 . -892) 109630) ((-298 . -312) 109434) ((-916 . -1229) T) ((-1165 . -291) 109411) ((-1088 . -651) 109306) ((-675 . -416) 109290) ((-871 . -111) 109255) ((-1012 . -457) T) ((-699 . -1046) 109200) ((-916 . -561) T) ((-538 . -618) 109182) ((-586 . -926) T) ((-492 . -1059) 109132) ((-479 . -1120) T) ((-523 . -926) T) ((-920 . -457) T) ((-65 . -618) 109114) ((-218 . -1059) 109064) ((-492 . -645) 109014) ((-363 . -651) 108951) ((-357 . -651) 108888) ((-349 . -651) 108825) ((-637 . -230) 108771) ((-218 . -645) 108721) ((-108 . -651) 108671) ((-479 . -23) T) ((-1128 . -799) T) ((-877 . -131) T) ((-1128 . -796) T) ((-1290 . -1292) 108650) ((-1128 . -731) T) ((-659 . -653) 108624) ((-297 . -618) 108365) ((-1150 . -621) 108283) ((-1043 . -34) T) ((-820 . -853) 108262) ((-585 . -310) T) ((-569 . -310) T) ((-500 . -310) T) ((-1299 . -722) 108232) ((-699 . -381) 108214) ((-699 . -342) 108196) ((-482 . -173) T) ((-385 . -722) 108166) ((-871 . -621) 108101) ((-876 . -855) NIL) ((-569 . -1030) T) ((-500 . -1030) T) ((-1141 . -618) 108083) ((-1121 . -239) 108062) ((-215 . -102) T) ((-1158 . -102) T) ((-71 . -618) 108044) ((-1150 . -1057) T) ((-1187 . -38) 107941) ((-863 . -618) 107923) ((-569 . -550) T) ((-675 . -1066) T) ((-736 . -955) 107876) ((-1150 . -234) 107855) ((-1090 . -1108) T) ((-1042 . -25) T) ((-1042 . -21) T) ((-1011 . -1064) 107800) ((-911 . -102) T) ((-871 . -1057) T) ((-699 . -906) NIL) ((-359 . -332) 107784) ((-359 . -367) T) ((-356 . -332) 107768) ((-356 . -367) T) ((-348 . -332) 107752) ((-348 . -367) T) ((-492 . -102) T) ((-1287 . -38) 107722) ((-551 . -855) T) ((-528 . -692) 107672) ((-218 . -102) T) ((-1032 . -1046) 107552) ((-1011 . -111) 107481) ((-1183 . -981) 107450) ((-525 . -151) 107434) ((-1088 . -374) 107413) ((-355 . -618) 107395) ((-325 . -21) T) ((-358 . -1046) 107372) ((-325 . -25) T) ((-1182 . -981) 107334) ((-1176 . -981) 107303) ((-76 . -618) 107285) ((-1134 . -981) 107252) ((-704 . -310) T) ((-129 . -849) T) ((-916 . -367) T) ((-383 . -25) T) ((-383 . -21) T) ((-916 . -332) 107239) ((-86 . -618) 107221) ((-704 . -1030) T) ((-682 . -855) T) ((-1259 . -131) T) ((-1238 . -131) T) ((-907 . -1018) 107205) ((-841 . -21) T) ((-48 . -1046) 107148) ((-841 . -25) T) ((-832 . -25) T) ((-832 . -21) T) ((-1121 . -651) 106898) ((-1297 . -1066) T) ((-554 . -102) T) ((-1295 . -1066) T) ((-659 . -731) T) ((-1112 . -623) 106801) ((-1011 . -621) 106731) ((-1298 . -1064) 106715) ((-820 . -416) 106684) ((-103 . -119) 106668) ((-129 . -1108) T) ((-52 . -1108) T) ((-932 . -618) 106650) ((-876 . -1000) 106627) ((-828 . -102) T) ((-1298 . -111) 106606) ((-658 . -38) 106576) ((-576 . -855) T) ((-359 . -1120) T) ((-356 . -1120) T) ((-348 . -1120) T) ((-266 . -1120) T) ((-248 . -1120) T) ((-628 . -310) 106555) ((-1158 . -312) 106359) ((-669 . -23) T) ((-529 . -1091) T) ((-314 . -1108) T) ((-487 . -232) 106328) ((-152 . -1066) T) ((-359 . -23) T) ((-356 . -23) T) ((-348 . -23) T) ((-117 . -310) T) ((-266 . -23) T) ((-248 . -23) T) ((-1011 . -1057) T) ((-717 . -915) 106307) ((-1165 . -621) 106284) ((-1011 . -234) 106256) ((-1011 . -244) T) ((-117 . -1030) NIL) ((-916 . -1120) T) ((-1260 . -457) 106235) ((-1239 . -457) 106214) ((-528 . -618) 106146) ((-717 . -653) 106071) ((-412 . -1064) 106023) ((-509 . -618) 106005) ((-916 . -23) T) ((-492 . -312) NIL) ((-1298 . -621) 105961) ((-479 . -131) T) ((-218 . -312) NIL) ((-412 . -111) 105899) ((-820 . -1066) 105829) ((-742 . -1106) 105813) ((-1259 . -498) 105779) ((-1238 . -498) 105745) ((-553 . -849) T) ((-141 . -1106) 105727) ((-482 . -293) T) ((-1298 . -1057) T) ((-1230 . -102) T) ((-1071 . -102) T) ((-848 . -621) 105595) ((-505 . -519) NIL) ((-487 . -239) 105574) ((-412 . -621) 105472) ((-969 . -1059) 105355) ((-740 . -1059) 105325) ((-969 . -645) 105222) ((-1181 . -145) 105201) ((-740 . -645) 105171) ((-458 . -1059) 105141) ((-1181 . -147) 105120) ((-1133 . -147) 105099) ((-1133 . -145) 105078) ((-640 . -1064) 105062) ((-612 . -1064) 105046) ((-458 . -645) 105016) ((-1183 . -1266) 105000) ((-1183 . -1253) 104977) ((-675 . -1108) T) ((-675 . -1061) 104917) ((-1182 . -1258) 104878) ((-553 . -1108) T) ((-492 . -1160) T) ((-1182 . -1253) 104848) ((-1182 . -1256) 104832) ((-1176 . -1237) 104793) ((-218 . -1160) T) ((-347 . -926) T) ((-823 . -268) 104777) ((-640 . -111) 104756) ((-612 . -111) 104735) ((-1176 . -1253) 104712) ((-848 . -1057) 104691) ((-1176 . -1235) 104675) ((-520 . -25) T) ((-500 . -305) T) ((-516 . -23) T) ((-515 . -25) T) ((-513 . -25) T) ((-512 . -23) T) ((-423 . -1059) 104649) ((-412 . -1057) T) ((-322 . -1066) T) ((-699 . -310) T) ((-423 . -645) 104623) ((-108 . -853) T) ((-717 . -731) T) ((-412 . -244) T) ((-412 . -234) 104602) ((-492 . -38) 104552) ((-218 . -38) 104502) ((-479 . -498) 104468) ((-1232 . -372) T) ((-1167 . -1152) T) ((-1109 . -102) T) ((-706 . -618) 104450) ((-706 . -619) 104365) ((-719 . -21) T) ((-719 . -25) T) ((-1143 . -102) T) ((-487 . -651) 104115) ((-134 . -618) 104097) ((-116 . -618) 104079) ((-157 . -25) T) ((-1297 . -1108) T) ((-877 . -644) 104027) ((-1295 . -1108) T) ((-969 . -102) T) ((-740 . -102) T) ((-720 . -102) T) ((-458 . -102) T) ((-821 . -457) 103978) ((-44 . -1108) T) ((-1096 . -855) T) ((-1071 . -312) 103829) ((-669 . -131) T) ((-1062 . -651) 103798) ((-675 . -722) 103782) ((-292 . -1066) T) ((-359 . -131) T) ((-356 . -131) T) ((-348 . -131) T) ((-266 . -131) T) ((-248 . -131) T) ((-389 . -651) 103751) ((-423 . -102) T) ((-152 . -1108) T) ((-45 . -230) 103701) ((-804 . -1059) 103685) ((-964 . -855) 103664) ((-1007 . -653) 103602) ((-804 . -645) 103586) ((-241 . -1282) 103556) ((-1032 . -310) T) ((-297 . -1064) 103477) ((-916 . -131) T) ((-40 . -926) T) ((-492 . -405) 103459) ((-358 . -310) T) ((-218 . -405) 103441) ((-1088 . -416) 103425) ((-297 . -111) 103341) ((-1192 . -855) T) ((-1191 . -855) T) ((-877 . -25) T) ((-877 . -21) T) ((-343 . -618) 103323) ((-1261 . -47) 103267) ((-226 . -147) T) ((-175 . -618) 103249) ((-1121 . -853) 103228) ((-779 . -618) 103210) ((-128 . -855) T) ((-613 . -236) 103157) ((-480 . -236) 103107) ((-1297 . -722) 103077) ((-48 . -310) T) ((-1295 . -722) 103047) ((-65 . -621) 102976) ((-970 . -1108) T) ((-820 . -1108) 102766) ((-315 . -102) T) ((-907 . -1225) T) ((-48 . -1030) T) ((-1238 . -644) 102674) ((-694 . -102) 102652) ((-44 . -722) 102636) ((-555 . -102) T) ((-297 . -621) 102567) ((-67 . -387) T) ((-67 . -400) T) ((-667 . -23) T) ((-822 . -651) 102503) ((-675 . -766) T) ((-1222 . -1108) 102481) ((-355 . -1064) 102426) ((-680 . -1108) 102404) ((-1070 . -147) T) ((-958 . -147) 102383) ((-958 . -145) 102362) ((-804 . -102) T) ((-152 . -722) 102346) ((-486 . -147) 102325) ((-486 . -145) 102304) ((-355 . -111) 102233) ((-1088 . -1066) T) ((-325 . -855) 102212) ((-1267 . -981) 102181) ((-632 . -1108) T) ((-1260 . -981) 102143) ((-516 . -131) T) ((-512 . -131) T) ((-298 . -230) 102093) ((-363 . -1066) T) ((-357 . -1066) T) ((-349 . -1066) T) ((-297 . -1057) 102035) ((-1239 . -981) 102004) ((-383 . -855) T) ((-108 . -1066) T) ((-1007 . -731) T) ((-875 . -926) T) ((-848 . -800) 101983) ((-848 . -797) 101962) ((-423 . -312) 101901) ((-473 . -102) T) ((-600 . -981) 101870) ((-322 . -1108) T) ((-412 . -800) 101849) ((-412 . -797) 101828) ((-505 . -494) 101810) ((-1261 . -1046) 101776) ((-1259 . -21) T) ((-1259 . -25) T) ((-1238 . -21) T) ((-1238 . -25) T) ((-820 . -722) 101718) ((-355 . -621) 101648) ((-704 . -409) T) ((-1288 . -1225) T) ((-611 . -102) T) ((-1121 . -416) 101617) ((-1011 . -372) NIL) ((-676 . -102) T) ((-181 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1187 . -651) 101527) ((-742 . -1225) T) ((-736 . -1059) 101370) ((-44 . -766) T) ((-736 . -645) 101219) ((-598 . -102) T) ((-77 . -401) T) ((-77 . -400) T) ((-658 . -661) 101203) ((-141 . -1225) T) ((-876 . -147) T) ((-876 . -145) NIL) ((-1224 . -93) T) ((-355 . -1057) T) ((-70 . -387) T) ((-70 . -400) T) ((-1174 . -102) T) ((-675 . -519) 101136) ((-1287 . -651) 101081) ((-694 . -312) 101019) ((-969 . -38) 100916) ((-1189 . -618) 100898) ((-740 . -38) 100868) ((-555 . -312) 100672) ((-1183 . -1059) 100555) ((-319 . -1225) T) ((-355 . -234) T) ((-355 . -244) T) ((-316 . -1225) T) ((-292 . -1108) T) ((-1182 . -1059) 100390) ((-1176 . -1059) 100180) ((-1134 . -1059) 100063) ((-1183 . -645) 99960) ((-1182 . -645) 99801) ((-716 . -1229) T) ((-1176 . -645) 99597) ((-1165 . -656) 99581) ((-1134 . -645) 99478) ((-1219 . -561) 99457) ((-824 . -390) 99441) ((-716 . -561) T) ((-319 . -890) 99425) ((-319 . -892) 99350) ((-316 . -890) 99311) ((-316 . -892) NIL) ((-804 . -312) 99276) ((-322 . -722) 99117) ((-391 . -390) 99101) ((-327 . -326) 99078) ((-490 . -102) T) ((-479 . -25) T) ((-479 . -21) T) ((-423 . -38) 99052) ((-319 . -1046) 98715) ((-226 . -1210) T) ((-226 . -1213) T) ((-3 . -618) 98697) ((-316 . -1046) 98627) ((-2 . -1108) T) ((-2 . |RecordCategory|) T) ((-838 . -618) 98609) ((-1121 . -1066) 98539) ((-585 . -926) T) ((-569 . -825) T) ((-569 . -926) T) ((-500 . -926) T) ((-136 . -1046) 98523) ((-226 . -95) T) ((-170 . -147) 98502) ((-75 . -446) T) ((0 . -618) 98484) ((-75 . -400) T) ((-170 . -145) 98435) ((-226 . -35) T) ((-49 . -618) 98417) ((-482 . -1066) T) ((-492 . -232) 98399) ((-489 . -976) 98383) ((-487 . -853) 98362) ((-218 . -232) 98344) ((-81 . -446) T) ((-81 . -400) T) ((-1154 . -34) T) ((-820 . -173) 98323) ((-736 . -102) T) ((-658 . -651) 98282) ((-1034 . -618) 98249) ((-505 . -289) 98224) ((-319 . -381) 98193) ((-316 . -381) 98154) ((-316 . -342) 98115) ((-1093 . -618) 98097) ((-821 . -955) 98044) ((-667 . -131) T) ((-1248 . -145) 98023) ((-1248 . -147) 98002) ((-1183 . -102) T) ((-1182 . -102) T) ((-1176 . -102) T) ((-1168 . -1108) T) ((-1134 . -102) T) ((-223 . -34) T) ((-292 . -722) 97989) ((-1168 . -615) 97965) ((-598 . -312) NIL) ((-489 . -1108) 97943) ((-395 . -618) 97925) ((-515 . -855) T) ((-1158 . -230) 97875) ((-1267 . -1266) 97859) ((-1267 . -1253) 97836) ((-1260 . -1258) 97797) ((-1260 . -1253) 97767) ((-1260 . -1256) 97751) ((-1239 . -1237) 97712) ((-1239 . -1253) 97689) ((-626 . -618) 97671) ((-1239 . -1235) 97655) ((-704 . -926) T) ((-1183 . -287) 97621) ((-1182 . -287) 97587) ((-1176 . -287) 97553) ((-1088 . -1108) T) ((-1069 . -1108) T) ((-48 . -305) T) ((-319 . -906) 97519) ((-316 . -906) NIL) ((-1069 . -1076) 97498) ((-1128 . -892) 97480) ((-804 . -38) 97464) ((-266 . -644) 97412) ((-248 . -644) 97360) ((-706 . -1064) 97347) ((-600 . -1253) 97324) ((-1134 . -287) 97290) ((-322 . -173) 97221) ((-363 . -1108) T) ((-357 . -1108) T) ((-349 . -1108) T) ((-505 . -19) 97203) ((-1128 . -1046) 97185) ((-1110 . -151) 97169) ((-108 . -1108) T) ((-116 . -1064) 97156) ((-716 . -367) T) ((-505 . -609) 97131) ((-706 . -111) 97116) ((-441 . -102) T) ((-881 . -1270) T) ((-251 . -102) T) ((-45 . -1157) 97066) ((-116 . -111) 97051) ((-640 . -725) T) ((-612 . -725) T) ((-1277 . -618) 97033) ((-1233 . -618) 97015) ((-1231 . -855) T) ((-820 . -519) 96948) ((-1043 . -1225) T) ((-241 . -1059) 96845) ((-1219 . -1120) T) ((-1219 . -23) T) ((-949 . -151) 96829) ((-1181 . -457) 96760) ((-1176 . -312) 96645) ((-241 . -645) 96587) ((-1175 . -1108) T) ((-1167 . -1108) T) ((-1150 . -653) 96561) ((-530 . -102) T) ((-525 . -102) 96511) ((-1134 . -312) 96498) ((-1133 . -457) 96449) ((-1095 . -1229) 96428) ((-787 . -1229) 96407) ((-785 . -1229) 96386) ((-62 . -1225) T) ((-482 . -618) 96338) ((-482 . -619) 96260) ((-1095 . -561) 96191) ((-1002 . -1108) T) ((-787 . -561) 96102) ((-785 . -561) 96033) ((-487 . -416) 96002) ((-628 . -926) 95981) ((-459 . -1229) 95960) ((-736 . -312) 95947) ((-706 . -621) 95919) ((-403 . -618) 95901) ((-680 . -519) 95834) ((-669 . -25) T) ((-669 . -21) T) ((-459 . -561) 95765) ((-359 . -25) T) ((-359 . -21) T) ((-117 . -926) T) ((-117 . -825) NIL) ((-356 . -25) T) ((-356 . -21) T) ((-348 . -25) T) ((-348 . -21) T) ((-266 . -25) T) ((-266 . -21) T) ((-248 . -25) T) ((-248 . -21) T) ((-83 . -388) T) ((-83 . -400) T) ((-134 . -621) 95747) ((-116 . -621) 95719) ((-1088 . -722) 95587) ((-1012 . -1059) 95537) ((-1012 . -645) 95487) ((-949 . -988) 95471) ((-920 . -645) 95423) ((-920 . -1059) 95375) ((-916 . -21) T) ((-916 . -25) T) ((-877 . -855) 95326) ((-871 . -653) 95286) ((-716 . -1120) T) ((-716 . -23) T) ((-292 . -173) T) ((-706 . -1057) T) ((-314 . -93) T) ((-706 . -234) T) ((-652 . -1108) 95264) ((-637 . -615) 95239) ((-637 . -1108) T) ((-586 . -1229) T) ((-586 . -561) T) ((-523 . -1229) T) ((-523 . -561) T) ((-492 . -651) 95189) ((-432 . -1059) 95173) ((-432 . -645) 95157) ((-363 . -722) 95109) ((-357 . -722) 95061) ((-343 . -1064) 95045) ((-349 . -722) 94997) ((-343 . -111) 94976) ((-175 . -1064) 94908) ((-218 . -651) 94858) ((-175 . -111) 94769) ((-108 . -722) 94719) ((-276 . -1108) T) ((-275 . -1108) T) ((-274 . -1108) T) ((-273 . -1108) T) ((-272 . -1108) T) ((-271 . -1108) T) ((-270 . -1108) T) ((-213 . -1108) T) ((-212 . -1108) T) ((-170 . -1213) 94697) ((-170 . -1210) 94675) ((-210 . -1108) T) ((-209 . -1108) T) ((-116 . -1057) T) ((-208 . -1108) T) ((-207 . -1108) T) ((-204 . -1108) T) ((-203 . -1108) T) ((-202 . -1108) T) ((-201 . -1108) T) ((-200 . -1108) T) ((-199 . -1108) T) ((-198 . -1108) T) ((-197 . -1108) T) ((-196 . -1108) T) ((-195 . -1108) T) ((-194 . -1108) T) ((-241 . -102) 94465) ((-170 . -35) 94443) ((-170 . -95) 94421) ((-659 . -1046) 94317) ((-487 . -1066) 94247) ((-1121 . -1108) 94037) ((-1150 . -34) T) ((-675 . -494) 94021) ((-73 . -1225) T) ((-105 . -618) 94003) ((-1299 . -618) 93985) ((-385 . -618) 93967) ((-343 . -621) 93919) ((-175 . -621) 93836) ((-1224 . -495) 93817) ((-736 . -38) 93666) ((-576 . -1213) T) ((-576 . -1210) T) ((-536 . -618) 93648) ((-525 . -312) 93586) ((-505 . -618) 93568) ((-505 . -619) 93550) ((-1224 . -618) 93516) ((-1176 . -1160) NIL) ((-1035 . -1079) 93485) ((-1035 . -1108) T) ((-1012 . -102) T) ((-979 . -102) T) ((-920 . -102) T) ((-899 . -1046) 93462) ((-1150 . -731) T) ((-1011 . -653) 93407) ((-481 . -1108) T) ((-468 . -1108) T) ((-591 . -23) T) ((-576 . -35) T) ((-576 . -95) T) ((-432 . -102) T) ((-1071 . -230) 93353) ((-1183 . -38) 93250) ((-871 . -731) T) ((-699 . -926) T) ((-516 . -25) T) ((-512 . -21) T) ((-512 . -25) T) ((-1182 . -38) 93091) ((-343 . -1057) T) ((-1176 . -38) 92887) ((-1088 . -173) T) ((-175 . -1057) T) ((-1134 . -38) 92784) ((-717 . -47) 92761) ((-363 . -173) T) ((-357 . -173) T) ((-524 . -57) 92735) ((-502 . -57) 92685) ((-355 . -1294) 92662) ((-226 . -457) T) ((-322 . -293) 92613) ((-349 . -173) T) ((-175 . -244) T) ((-1238 . -855) 92512) ((-108 . -173) T) ((-877 . -1000) 92496) ((-663 . -1120) T) ((-586 . -367) T) ((-586 . -332) 92483) ((-523 . -332) 92460) ((-523 . -367) T) ((-319 . -310) 92439) ((-316 . -310) T) ((-607 . -855) 92418) ((-1121 . -722) 92360) ((-525 . -285) 92344) ((-663 . -23) T) ((-423 . -232) 92328) ((-316 . -1030) NIL) ((-340 . -23) T) ((-103 . -1018) 92312) ((-45 . -36) 92291) ((-617 . -1108) T) ((-355 . -372) T) ((-529 . -102) T) ((-500 . -27) T) ((-241 . -312) 92229) ((-1095 . -1120) T) ((-1298 . -653) 92203) ((-787 . -1120) T) ((-785 . -1120) T) ((-459 . -1120) T) ((-1070 . -457) T) ((-1159 . -1108) T) ((-958 . -457) 92154) ((-1123 . -1091) T) ((-110 . -1108) T) ((-1095 . -23) T) ((-822 . -1066) T) ((-787 . -23) T) ((-785 . -23) T) ((-486 . -457) 92105) ((-1168 . -519) 91888) ((-385 . -386) 91867) ((-1187 . -416) 91851) ((-466 . -23) T) ((-459 . -23) T) ((-96 . -1108) T) ((-489 . -519) 91784) ((-1267 . -1059) 91667) ((-1267 . -645) 91564) ((-1260 . -645) 91405) ((-1260 . -1059) 91240) ((-292 . -293) T) ((-1239 . -1059) 91030) ((-1090 . -618) 91012) ((-1090 . -619) 90993) ((-412 . -915) 90972) ((-1239 . -645) 90768) ((-50 . -1120) T) ((-1219 . -131) T) ((-1032 . -926) T) ((-1011 . -731) T) ((-848 . -653) 90741) ((-717 . -892) NIL) ((-601 . -1059) 90701) ((-586 . -1120) T) ((-523 . -1120) T) ((-600 . -1059) 90584) ((-1176 . -405) 90536) ((-1012 . -312) NIL) ((-820 . -494) 90520) ((-601 . -645) 90493) ((-358 . -926) T) ((-600 . -645) 90390) ((-1165 . -34) T) ((-412 . -653) 90342) ((-50 . -23) T) ((-716 . -131) T) ((-717 . -1046) 90222) ((-586 . -23) T) ((-108 . -519) NIL) ((-523 . -23) T) ((-170 . -414) 90193) ((-1148 . -1108) T) ((-1290 . -1289) 90177) ((-706 . -800) T) ((-706 . -797) T) ((-1128 . -310) T) ((-383 . -147) T) ((-283 . -618) 90159) ((-282 . -618) 90141) ((-1238 . -1000) 90111) ((-48 . -926) T) ((-680 . -494) 90095) ((-253 . -1282) 90065) ((-252 . -1282) 90035) ((-1185 . -855) T) ((-1121 . -173) 90014) ((-1128 . -1030) T) ((-1054 . -34) T) ((-841 . -147) 89993) ((-841 . -145) 89972) ((-742 . -107) 89956) ((-617 . -132) T) ((-487 . -1108) 89746) ((-1187 . -1066) T) ((-876 . -457) T) ((-85 . -1225) T) ((-241 . -38) 89716) ((-141 . -107) 89698) ((-717 . -381) 89682) ((-838 . -621) 89550) ((-1298 . -731) T) ((-1287 . -1066) T) ((-1128 . -550) T) ((-584 . -102) T) ((-129 . -495) 89532) ((-1267 . -102) T) ((-395 . -1064) 89516) ((-1260 . -102) T) ((-1181 . -955) 89485) ((-129 . -618) 89452) ((-52 . -618) 89434) ((-1133 . -955) 89401) ((-658 . -416) 89385) ((-1239 . -102) T) ((-1167 . -519) NIL) ((-667 . -25) T) ((-626 . -1064) 89369) ((-667 . -21) T) ((-969 . -651) 89279) ((-740 . -651) 89224) ((-720 . -651) 89196) ((-395 . -111) 89175) ((-223 . -256) 89159) ((-1062 . -1061) 89099) ((-1062 . -1108) T) ((-1012 . -1160) T) ((-823 . -1108) T) ((-458 . -651) 89014) ((-347 . -1229) T) ((-640 . -653) 88998) ((-626 . -111) 88977) ((-612 . -653) 88961) ((-601 . -102) T) ((-314 . -495) 88942) ((-591 . -131) T) ((-600 . -102) T) ((-419 . -1108) T) ((-389 . -1108) T) ((-314 . -618) 88908) ((-228 . -1108) 88886) ((-652 . -519) 88819) ((-637 . -519) 88663) ((-838 . -1057) 88642) ((-649 . -151) 88626) ((-347 . -561) T) ((-717 . -906) 88569) ((-555 . -230) 88519) ((-1267 . -287) 88485) ((-1260 . -287) 88451) ((-1088 . -293) 88402) ((-492 . -853) T) ((-224 . -1120) T) ((-1239 . -287) 88368) ((-1219 . -498) 88334) ((-1012 . -38) 88284) ((-218 . -853) T) ((-423 . -651) 88243) ((-920 . -38) 88195) ((-848 . -799) 88174) ((-848 . -796) 88153) ((-848 . -731) 88132) ((-363 . -293) T) ((-357 . -293) T) ((-349 . -293) T) ((-170 . -457) 88063) ((-432 . -38) 88047) ((-108 . -293) T) ((-224 . -23) T) ((-412 . -799) 88026) ((-412 . -796) 88005) ((-412 . -731) T) ((-505 . -291) 87980) ((-482 . -1064) 87945) ((-663 . -131) T) ((-626 . -621) 87914) ((-1121 . -519) 87847) ((-340 . -131) T) ((-170 . -407) 87826) ((-487 . -722) 87768) ((-820 . -289) 87745) ((-482 . -111) 87701) ((-658 . -1066) T) ((-821 . -1059) 87544) ((-1286 . -1091) T) ((-1248 . -457) 87475) ((-821 . -645) 87324) ((-1285 . -1091) T) ((-1095 . -131) T) ((-1062 . -722) 87266) ((-787 . -131) T) ((-785 . -131) T) ((-576 . -457) T) ((-1035 . -519) 87199) ((-626 . -1057) T) ((-597 . -1108) T) ((-538 . -174) T) ((-466 . -131) T) ((-459 . -131) T) ((-45 . -1108) T) ((-389 . -722) 87169) ((-822 . -1108) T) ((-481 . -519) 87102) ((-468 . -519) 87035) ((-458 . -371) 87005) ((-45 . -615) 86984) ((-319 . -305) T) ((-482 . -621) 86934) ((-1239 . -312) 86819) ((-675 . -618) 86781) ((-59 . -855) 86760) ((-1012 . -405) 86742) ((-553 . -618) 86724) ((-804 . -651) 86683) ((-820 . -609) 86660) ((-521 . -855) 86639) ((-501 . -855) 86618) ((-40 . -1229) T) ((-1007 . -1046) 86514) ((-50 . -131) T) ((-586 . -131) T) ((-523 . -131) T) ((-297 . -653) 86374) ((-347 . -332) 86351) ((-347 . -367) T) ((-325 . -326) 86328) ((-322 . -289) 86313) ((-40 . -561) T) ((-383 . -1210) T) ((-383 . -1213) T) ((-1043 . -1201) 86288) ((-1198 . -236) 86238) ((-1176 . -232) 86190) ((-333 . -1108) T) ((-383 . -95) T) ((-383 . -35) T) ((-1043 . -107) 86136) ((-482 . -1057) T) ((-1299 . -1064) 86120) ((-484 . -236) 86070) ((-1168 . -494) 86004) ((-1290 . -1059) 85988) ((-385 . -1064) 85972) ((-1290 . -645) 85942) ((-482 . -244) T) ((-821 . -102) T) ((-719 . -147) 85921) ((-719 . -145) 85900) ((-489 . -494) 85884) ((-490 . -339) 85853) ((-1299 . -111) 85832) ((-517 . -1108) T) ((-487 . -173) 85811) ((-1007 . -381) 85795) ((-418 . -102) T) ((-385 . -111) 85774) ((-1007 . -342) 85758) ((-281 . -991) 85742) ((-280 . -991) 85726) ((-1297 . -618) 85708) ((-1295 . -618) 85690) ((-110 . -519) NIL) ((-1181 . -1251) 85674) ((-859 . -857) 85658) ((-1187 . -1108) T) ((-103 . -1225) T) ((-958 . -955) 85619) ((-822 . -722) 85561) ((-1239 . -1160) NIL) ((-486 . -955) 85506) ((-1070 . -143) T) ((-60 . -102) 85484) ((-44 . -618) 85466) ((-78 . -618) 85448) ((-355 . -653) 85393) ((-1287 . -1108) T) ((-516 . -855) T) ((-347 . -1120) T) ((-298 . -1108) T) ((-1007 . -906) 85352) ((-298 . -615) 85331) ((-1299 . -621) 85280) ((-1267 . -38) 85177) ((-1260 . -38) 85018) ((-1239 . -38) 84814) ((-492 . -1066) T) ((-385 . -621) 84798) ((-218 . -1066) T) ((-347 . -23) T) ((-152 . -618) 84780) ((-838 . -800) 84759) ((-838 . -797) 84738) ((-1224 . -621) 84719) ((-601 . -38) 84692) ((-600 . -38) 84589) ((-875 . -561) T) ((-224 . -131) T) ((-322 . -1010) 84555) ((-79 . -618) 84537) ((-717 . -310) 84516) ((-297 . -731) 84418) ((-829 . -102) T) ((-869 . -849) T) ((-297 . -478) 84397) ((-1290 . -102) T) ((-40 . -367) T) ((-877 . -147) 84376) ((-490 . -651) 84358) ((-877 . -145) 84337) ((-1167 . -494) 84319) ((-1299 . -1057) T) ((-487 . -519) 84252) ((-1154 . -1225) T) ((-970 . -618) 84234) ((-652 . -494) 84218) ((-637 . -494) 84149) ((-820 . -618) 83880) ((-48 . -27) T) ((-1187 . -722) 83777) ((-658 . -1108) T) ((-866 . -865) T) ((-441 . -368) 83751) ((-736 . -651) 83661) ((-1110 . -102) T) ((-978 . -1108) T) ((-869 . -1108) T) ((-821 . -312) 83648) ((-538 . -532) T) ((-538 . -581) T) ((-1295 . -386) 83620) ((-1062 . -519) 83553) ((-1168 . -289) 83529) ((-241 . -232) 83498) ((-253 . -1059) 83395) ((-252 . -1059) 83292) ((-1287 . -722) 83262) ((-1175 . -93) T) ((-1002 . -93) T) ((-822 . -173) 83241) ((-253 . -645) 83183) ((-252 . -645) 83125) ((-1222 . -495) 83102) ((-228 . -519) 83035) ((-626 . -800) 83014) ((-626 . -797) 82993) ((-1222 . -618) 82905) ((-223 . -1225) T) ((-680 . -618) 82837) ((-1183 . -651) 82747) ((-1165 . -1018) 82731) ((-949 . -102) 82681) ((-355 . -731) T) ((-866 . -618) 82663) ((-1182 . -651) 82545) ((-1176 . -651) 82382) ((-1134 . -651) 82292) ((-1239 . -405) 82244) ((-1121 . -494) 82228) ((-60 . -312) 82166) ((-334 . -102) T) ((-1219 . -21) T) ((-1219 . -25) T) ((-40 . -1120) T) ((-716 . -21) T) ((-632 . -618) 82148) ((-520 . -326) 82127) ((-716 . -25) T) ((-444 . -102) T) ((-108 . -289) NIL) ((-927 . -1120) T) ((-40 . -23) T) ((-776 . -1120) T) ((-569 . -1229) T) ((-500 . -1229) T) ((-322 . -618) 82109) ((-1012 . -232) 82091) ((-170 . -166) 82075) ((-585 . -561) T) ((-569 . -561) T) ((-500 . -561) T) ((-776 . -23) T) ((-1259 . -147) 82054) ((-1168 . -609) 82030) ((-1259 . -145) 82009) ((-1035 . -494) 81993) ((-1238 . -145) 81918) ((-1238 . -147) 81843) ((-1290 . -1296) 81822) ((-481 . -494) 81806) ((-468 . -494) 81790) ((-528 . -34) T) ((-658 . -722) 81760) ((-112 . -975) T) ((-667 . -855) 81739) ((-1187 . -173) 81690) ((-369 . -102) T) ((-241 . -239) 81669) ((-253 . -102) T) ((-252 . -102) T) ((-1248 . -955) 81638) ((-246 . -855) 81617) ((-821 . -38) 81466) ((-45 . -519) 81258) ((-1167 . -289) 81233) ((-215 . -1108) T) ((-1158 . -1108) T) ((-1158 . -615) 81212) ((-591 . -25) T) ((-591 . -21) T) ((-1110 . -312) 81150) ((-969 . -416) 81134) ((-704 . -1229) T) ((-637 . -289) 81109) ((-1095 . -644) 81057) ((-787 . -644) 81005) ((-785 . -644) 80953) ((-347 . -131) T) ((-292 . -618) 80935) ((-911 . -1108) T) ((-704 . -561) T) ((-129 . -621) 80917) ((-875 . -1120) T) ((-459 . -644) 80865) ((-911 . -909) 80849) ((-383 . -457) T) ((-492 . -1108) T) ((-949 . -312) 80787) ((-706 . -653) 80774) ((-554 . -849) T) ((-218 . -1108) T) ((-319 . -926) 80753) ((-316 . -926) T) ((-316 . -825) NIL) ((-395 . -725) T) ((-875 . -23) T) ((-116 . -653) 80740) ((-479 . -145) 80719) ((-423 . -416) 80703) ((-479 . -147) 80682) ((-110 . -494) 80664) ((-314 . -621) 80645) ((-2 . -618) 80627) ((-187 . -102) T) ((-1167 . -19) 80609) ((-1167 . -609) 80584) ((-663 . -21) T) ((-663 . -25) T) ((-598 . -1152) T) ((-1121 . -289) 80561) ((-340 . -25) T) ((-340 . -21) T) ((-241 . -651) 80311) ((-500 . -367) T) ((-1290 . -38) 80281) ((-1181 . -1059) 80104) ((-1150 . -1225) T) ((-1133 . -1059) 79947) ((-859 . -1059) 79931) ((-637 . -609) 79906) ((-1297 . -1064) 79890) ((-1181 . -645) 79719) ((-1133 . -645) 79568) ((-859 . -645) 79538) ((-1295 . -1064) 79522) ((-1259 . -1210) 79488) ((-554 . -1108) T) ((-1095 . -25) T) ((-1095 . -21) T) ((-536 . -797) T) ((-536 . -800) T) ((-117 . -1229) T) ((-969 . -1066) T) ((-628 . -561) T) ((-787 . -25) T) ((-787 . -21) T) ((-785 . -21) T) ((-785 . -25) T) ((-740 . -1066) T) ((-720 . -1066) T) ((-675 . -1064) 79472) ((-522 . -1091) T) ((-466 . -25) T) ((-117 . -561) T) ((-466 . -21) T) ((-459 . -25) T) ((-459 . -21) T) ((-1259 . -1213) 79438) ((-1159 . -93) T) ((-1150 . -1046) 79334) ((-822 . -293) 79313) ((-1259 . -95) 79279) ((-828 . -1108) T) ((-1242 . -102) 79257) ((-972 . -975) T) ((-675 . -111) 79236) ((-298 . -519) 79028) ((-1239 . -232) 78980) ((-1238 . -1210) 78946) ((-1238 . -1213) 78912) ((-253 . -312) 78850) ((-252 . -312) 78788) ((-1233 . -372) T) ((-1168 . -619) NIL) ((-1168 . -618) 78770) ((-1230 . -849) T) ((-1150 . -381) 78754) ((-1128 . -825) T) ((-96 . -93) T) ((-1128 . -926) T) ((-1121 . -609) 78731) ((-1088 . -619) 78715) ((-1012 . -651) 78665) ((-920 . -651) 78602) ((-820 . -291) 78579) ((-489 . -618) 78511) ((-613 . -151) 78458) ((-492 . -722) 78408) ((-423 . -1066) T) ((-487 . -494) 78392) ((-432 . -651) 78351) ((-330 . -855) 78330) ((-343 . -653) 78304) ((-50 . -21) T) ((-50 . -25) T) ((-218 . -722) 78254) ((-170 . -729) 78225) ((-175 . -653) 78157) ((-586 . -21) T) ((-586 . -25) T) ((-523 . -25) T) ((-523 . -21) T) ((-480 . -151) 78107) ((-1088 . -618) 78089) ((-1069 . -618) 78071) ((-1001 . -102) T) ((-867 . -102) T) ((-804 . -416) 78034) ((-40 . -131) T) ((-704 . -367) T) ((-706 . -731) T) ((-706 . -799) T) ((-706 . -796) T) ((-213 . -901) T) ((-585 . -1120) T) ((-569 . -1120) T) ((-500 . -1120) T) ((-363 . -618) 78016) ((-357 . -618) 77998) ((-349 . -618) 77980) ((-66 . -401) T) ((-66 . -400) T) ((-108 . -619) 77910) ((-108 . -618) 77852) ((-212 . -901) T) ((-964 . -151) 77836) ((-776 . -131) T) ((-675 . -621) 77754) ((-134 . -731) T) ((-116 . -731) T) ((-1259 . -35) 77720) ((-1062 . -494) 77704) ((-585 . -23) T) ((-569 . -23) T) ((-500 . -23) T) ((-1238 . -95) 77670) ((-1238 . -35) 77636) ((-1181 . -102) T) ((-1133 . -102) T) ((-859 . -102) T) ((-228 . -494) 77620) ((-1297 . -111) 77599) ((-1295 . -111) 77578) ((-44 . -1064) 77562) ((-1297 . -621) 77508) ((-1248 . -1251) 77492) ((-860 . -857) 77476) ((-1297 . -1057) T) ((-1187 . -293) 77455) ((-110 . -289) 77430) ((-1295 . -621) 77359) ((-128 . -151) 77341) ((-1150 . -906) 77300) ((-44 . -111) 77279) ((-1230 . -1108) T) ((-1190 . -1270) T) ((-1175 . -495) 77260) ((-1175 . -618) 77226) ((-675 . -1057) T) ((-1167 . -619) NIL) ((-1167 . -618) 77208) ((-1071 . -615) 77183) ((-1071 . -1108) T) ((-1002 . -495) 77164) ((-74 . -446) T) ((-74 . -400) T) ((-1002 . -618) 77130) ((-152 . -1064) 77114) ((-675 . -234) 77093) ((-576 . -559) 77077) ((-359 . -147) 77056) ((-359 . -145) 77007) ((-356 . -147) 76986) ((-356 . -145) 76937) ((-348 . -147) 76916) ((-348 . -145) 76867) ((-266 . -145) 76846) ((-266 . -147) 76825) ((-253 . -38) 76795) ((-248 . -147) 76774) ((-117 . -367) T) ((-248 . -145) 76753) ((-252 . -38) 76723) ((-152 . -111) 76702) ((-1011 . -1046) 76590) ((-1176 . -853) NIL) ((-699 . -1229) T) ((-804 . -1066) T) ((-704 . -1120) T) ((-1295 . -1057) T) ((-1165 . -1225) T) ((-1011 . -381) 76567) ((-916 . -145) T) ((-916 . -147) 76549) ((-875 . -131) T) ((-820 . -1064) 76446) ((-704 . -23) T) ((-699 . -561) T) ((-226 . -1059) 76411) ((-652 . -618) 76343) ((-652 . -619) 76304) ((-637 . -619) NIL) ((-637 . -618) 76286) ((-492 . -173) T) ((-226 . -645) 76251) ((-224 . -21) T) ((-218 . -173) T) ((-224 . -25) T) ((-479 . -1213) 76217) ((-479 . -1210) 76183) ((-276 . -618) 76165) ((-275 . -618) 76147) ((-274 . -618) 76129) ((-273 . -618) 76111) ((-272 . -618) 76093) ((-505 . -656) 76075) ((-271 . -618) 76057) ((-343 . -731) T) ((-270 . -618) 76039) ((-110 . -19) 76021) ((-175 . -731) T) ((-505 . -377) 76003) ((-213 . -618) 75985) ((-525 . -1157) 75969) ((-505 . -123) T) ((-110 . -609) 75944) ((-212 . -618) 75926) ((-479 . -35) 75892) ((-479 . -95) 75858) ((-210 . -618) 75840) ((-209 . -618) 75822) ((-208 . -618) 75804) ((-207 . -618) 75786) ((-204 . -618) 75768) ((-203 . -618) 75750) ((-202 . -618) 75732) ((-201 . -618) 75714) ((-200 . -618) 75696) ((-199 . -618) 75678) ((-198 . -618) 75660) ((-541 . -1111) 75612) ((-197 . -618) 75594) ((-196 . -618) 75576) ((-45 . -494) 75513) ((-195 . -618) 75495) ((-194 . -618) 75477) ((-152 . -621) 75446) ((-1123 . -102) T) ((-820 . -111) 75336) ((-649 . -102) 75286) ((-487 . -289) 75263) ((-1121 . -618) 74994) ((-1109 . -1108) T) ((-1054 . -1225) T) ((-1298 . -1046) 74978) ((-1070 . -1059) 74965) ((-1181 . -312) 74952) ((-958 . -1059) 74795) ((-1143 . -1108) T) ((-1133 . -312) 74782) ((-628 . -1120) T) ((-1070 . -645) 74769) ((-1104 . -1091) T) ((-958 . -645) 74618) ((-1098 . -1091) T) ((-486 . -1059) 74461) ((-1081 . -1091) T) ((-1074 . -1091) T) ((-1044 . -1091) T) ((-1027 . -1091) T) ((-117 . -1120) T) ((-486 . -645) 74310) ((-824 . -102) T) ((-631 . -1091) T) ((-628 . -23) T) ((-1158 . -519) 74102) ((-488 . -1091) T) ((-391 . -102) T) ((-327 . -102) T) ((-219 . -1091) T) ((-969 . -1108) T) ((-152 . -1057) T) ((-736 . -416) 74086) ((-117 . -23) T) ((-1011 . -906) 74038) ((-740 . -1108) T) ((-720 . -1108) T) ((-458 . -1108) T) ((-412 . -1225) T) ((-319 . -435) 74022) ((-597 . -93) T) ((-1267 . -651) 73932) ((-1035 . -619) 73893) ((-1032 . -1229) T) ((-226 . -102) T) ((-1035 . -618) 73855) ((-1260 . -651) 73737) ((-821 . -232) 73721) ((-820 . -621) 73451) ((-1239 . -651) 73288) ((-1032 . -561) T) ((-838 . -653) 73261) ((-358 . -1229) T) ((-481 . -618) 73223) ((-481 . -619) 73184) ((-468 . -619) 73145) ((-468 . -618) 73107) ((-601 . -651) 73066) ((-412 . -890) 73050) ((-322 . -1064) 72885) ((-412 . -892) 72810) ((-600 . -651) 72720) ((-848 . -1046) 72616) ((-492 . -519) NIL) ((-487 . -609) 72593) ((-358 . -561) T) ((-218 . -519) NIL) ((-877 . -457) T) ((-423 . -1108) T) ((-412 . -1046) 72457) ((-322 . -111) 72278) ((-699 . -367) T) ((-226 . -287) T) ((-1222 . -621) 72255) ((-48 . -1229) T) ((-820 . -1057) 72185) ((-1181 . -1160) 72163) ((-585 . -131) T) ((-569 . -131) T) ((-500 . -131) T) ((-1168 . -291) 72139) ((-48 . -561) T) ((-1070 . -102) T) ((-958 . -102) T) ((-876 . -1059) 72084) ((-319 . -27) 72063) ((-820 . -234) 72015) ((-250 . -840) 71997) ((-241 . -853) 71976) ((-188 . -840) 71958) ((-718 . -102) T) ((-298 . -494) 71895) ((-876 . -645) 71840) ((-486 . -102) T) ((-736 . -1066) T) ((-617 . -618) 71822) ((-617 . -619) 71683) ((-412 . -381) 71667) ((-412 . -342) 71651) ((-322 . -621) 71477) ((-1181 . -38) 71306) ((-1133 . -38) 71155) ((-859 . -38) 71125) ((-395 . -653) 71109) ((-649 . -312) 71047) ((-1159 . -495) 71028) ((-1159 . -618) 70994) ((-969 . -722) 70891) ((-740 . -722) 70861) ((-223 . -107) 70845) ((-45 . -289) 70770) ((-626 . -653) 70744) ((-315 . -1108) T) ((-292 . -1064) 70731) ((-110 . -618) 70713) ((-110 . -619) 70695) ((-458 . -722) 70665) ((-821 . -255) 70604) ((-694 . -1108) 70582) ((-555 . -1108) T) ((-1183 . -1066) T) ((-1182 . -1066) T) ((-96 . -495) 70563) ((-1176 . -1066) T) ((-292 . -111) 70548) ((-1134 . -1066) T) ((-555 . -615) 70527) ((-96 . -618) 70493) ((-1012 . -853) T) ((-228 . -692) 70451) ((-699 . -1120) T) ((-1219 . -745) 70427) ((-1032 . -367) T) ((-843 . -840) 70409) ((-838 . -799) 70388) ((-412 . -906) 70347) ((-322 . -1057) T) ((-347 . -25) T) ((-347 . -21) T) ((-170 . -1059) 70257) ((-68 . -1225) T) ((-838 . -796) 70236) ((-423 . -722) 70210) ((-804 . -1108) T) ((-717 . -926) 70189) ((-704 . -131) T) ((-170 . -645) 70017) ((-699 . -23) T) ((-492 . -293) T) ((-838 . -731) 69996) ((-322 . -234) 69948) ((-322 . -244) 69927) ((-218 . -293) T) ((-129 . -372) T) ((-1259 . -457) 69906) ((-1238 . -457) 69885) ((-358 . -332) 69862) ((-358 . -367) T) ((-1148 . -618) 69844) ((-45 . -1263) 69794) ((-876 . -102) T) ((-649 . -285) 69778) ((-704 . -1068) T) ((-1286 . -102) T) ((-1285 . -102) T) ((-482 . -653) 69743) ((-473 . -1108) T) ((-45 . -609) 69668) ((-1167 . -291) 69643) ((-292 . -621) 69615) ((-40 . -644) 69554) ((-1248 . -1059) 69377) ((-860 . -1059) 69361) ((-48 . -367) T) ((-1114 . -618) 69343) ((-1248 . -645) 69172) ((-860 . -645) 69142) ((-637 . -291) 69117) ((-821 . -651) 69027) ((-576 . -1059) 69014) ((-487 . -618) 68745) ((-241 . -416) 68714) ((-958 . -312) 68701) ((-576 . -645) 68688) ((-65 . -1225) T) ((-1071 . -519) 68532) ((-676 . -1108) T) ((-628 . -131) T) ((-486 . -312) 68519) ((-611 . -1108) T) ((-551 . -102) T) ((-117 . -131) T) ((-292 . -1057) T) ((-181 . -1108) T) ((-161 . -1108) T) ((-156 . -1108) T) ((-154 . -1108) T) ((-458 . -766) T) ((-31 . -1091) T) ((-969 . -173) 68470) ((-978 . -93) T) ((-1088 . -1064) 68380) ((-626 . -799) 68359) ((-598 . -1108) T) ((-626 . -796) 68338) ((-626 . -731) T) ((-298 . -289) 68317) ((-297 . -1225) T) ((-1062 . -618) 68279) ((-1062 . -619) 68240) ((-1032 . -1120) T) ((-170 . -102) T) ((-277 . -855) T) ((-1174 . -1108) T) ((-823 . -618) 68222) ((-1121 . -291) 68199) ((-1110 . -230) 68183) ((-1011 . -310) T) ((-804 . -722) 68167) ((-363 . -1064) 68119) ((-358 . -1120) T) ((-357 . -1064) 68071) ((-419 . -618) 68053) ((-389 . -618) 68035) ((-349 . -1064) 67987) ((-228 . -618) 67919) ((-1088 . -111) 67815) ((-1032 . -23) T) ((-108 . -1064) 67765) ((-904 . -102) T) ((-846 . -102) T) ((-813 . -102) T) ((-774 . -102) T) ((-682 . -102) T) ((-479 . -457) 67744) ((-423 . -173) T) ((-363 . -111) 67682) ((-357 . -111) 67620) ((-349 . -111) 67558) ((-253 . -232) 67527) ((-252 . -232) 67496) ((-358 . -23) T) ((-71 . -1225) T) ((-226 . -38) 67461) ((-108 . -111) 67395) ((-40 . -25) T) ((-40 . -21) T) ((-675 . -725) T) ((-170 . -287) 67373) ((-48 . -1120) T) ((-927 . -25) T) ((-776 . -25) T) ((-1299 . -653) 67347) ((-1158 . -494) 67284) ((-490 . -1108) T) ((-1290 . -651) 67243) ((-1248 . -102) T) ((-1070 . -1160) T) ((-860 . -102) T) ((-241 . -1066) 67173) ((-970 . -797) 67126) ((-970 . -800) 67079) ((-385 . -653) 67063) ((-48 . -23) T) ((-820 . -800) 67014) ((-820 . -797) 66965) ((-553 . -372) T) ((-298 . -609) 66944) ((-482 . -731) T) ((-576 . -102) T) ((-1088 . -621) 66762) ((-250 . -186) T) ((-188 . -186) T) ((-876 . -312) 66719) ((-658 . -289) 66698) ((-112 . -666) T) ((-363 . -621) 66635) ((-357 . -621) 66572) ((-349 . -621) 66509) ((-76 . -1225) T) ((-108 . -621) 66459) ((-1070 . -38) 66446) ((-669 . -378) 66425) ((-958 . -38) 66274) ((-736 . -1108) T) ((-486 . -38) 66123) ((-86 . -1225) T) ((-597 . -495) 66104) ((-576 . -287) T) ((-1239 . -853) NIL) ((-597 . -618) 66070) ((-1183 . -1108) T) ((-1182 . -1108) T) ((-1088 . -1057) T) ((-355 . -1046) 66047) ((-822 . -495) 66031) ((-1012 . -1066) T) ((-45 . -618) 66013) ((-45 . -619) NIL) ((-920 . -1066) T) ((-822 . -618) 65982) ((-1176 . -1108) T) ((-1155 . -102) 65960) ((-1088 . -244) 65911) ((-432 . -1066) T) ((-363 . -1057) T) ((-369 . -368) 65888) ((-357 . -1057) T) ((-349 . -1057) T) ((-253 . -239) 65867) ((-252 . -239) 65846) ((-1088 . -234) 65771) ((-1134 . -1108) T) ((-297 . -906) 65730) ((-108 . -1057) T) ((-699 . -131) T) ((-423 . -519) 65572) ((-363 . -234) 65551) ((-363 . -244) T) ((-44 . -725) T) ((-357 . -234) 65530) ((-357 . -244) T) ((-349 . -234) 65509) ((-349 . -244) T) ((-1175 . -621) 65490) ((-170 . -312) 65455) ((-108 . -244) T) ((-108 . -234) T) ((-1002 . -621) 65436) ((-322 . -797) T) ((-875 . -21) T) ((-875 . -25) T) ((-412 . -310) T) ((-505 . -34) T) ((-110 . -291) 65411) ((-1121 . -1064) 65308) ((-876 . -1160) NIL) ((-333 . -618) 65290) ((-412 . -1030) 65268) ((-1121 . -111) 65158) ((-696 . -1270) T) ((-441 . -1108) T) ((-251 . -1108) T) ((-1299 . -731) T) ((-63 . -618) 65140) ((-876 . -38) 65085) ((-528 . -1225) T) ((-607 . -151) 65069) ((-517 . -618) 65051) ((-1248 . -312) 65038) ((-736 . -722) 64887) ((-536 . -798) T) ((-536 . -799) T) ((-569 . -644) 64869) ((-500 . -644) 64829) ((-359 . -457) T) ((-356 . -457) T) ((-348 . -457) T) ((-266 . -457) 64780) ((-530 . -1108) T) ((-525 . -1108) 64730) ((-248 . -457) 64681) ((-1158 . -289) 64660) ((-1187 . -618) 64642) ((-694 . -519) 64575) ((-969 . -293) 64554) ((-555 . -519) 64346) ((-253 . -651) 64166) ((-252 . -651) 63973) ((-1287 . -618) 63942) ((-1181 . -232) 63926) ((-1121 . -621) 63656) ((-170 . -1160) 63635) ((-1287 . -495) 63619) ((-1183 . -722) 63516) ((-1182 . -722) 63357) ((-898 . -102) T) ((-1176 . -722) 63153) ((-1134 . -722) 63050) ((-1165 . -679) 63034) ((-359 . -407) 62985) ((-356 . -407) 62936) ((-348 . -407) 62887) ((-1032 . -131) T) ((-804 . -519) 62799) ((-298 . -619) NIL) ((-298 . -618) 62781) ((-916 . -457) T) ((-970 . -372) 62734) ((-820 . -372) 62713) ((-515 . -514) 62692) ((-513 . -514) 62671) ((-492 . -289) NIL) ((-487 . -291) 62648) ((-423 . -293) T) ((-358 . -131) T) ((-218 . -289) NIL) ((-699 . -498) NIL) ((-99 . -1120) T) ((-170 . -38) 62476) ((-1259 . -981) 62438) ((-1155 . -312) 62376) ((-1238 . -981) 62345) ((-916 . -407) T) ((-1121 . -1057) 62275) ((-1261 . -561) T) ((-1158 . -609) 62254) ((-112 . -855) T) ((-1071 . -494) 62185) ((-585 . -21) T) ((-585 . -25) T) ((-569 . -21) T) ((-569 . -25) T) ((-500 . -25) T) ((-500 . -21) T) ((-1248 . -1160) 62163) ((-1121 . -234) 62115) ((-48 . -131) T) ((-1206 . -102) T) ((-241 . -1108) 61905) ((-876 . -405) 61882) ((-1096 . -102) T) ((-1084 . -102) T) ((-613 . -102) T) ((-480 . -102) T) ((-1248 . -38) 61711) ((-860 . -38) 61681) ((-1042 . -1059) 61655) ((-736 . -173) 61566) ((-658 . -618) 61548) ((-650 . -1091) T) ((-1042 . -645) 61532) ((-576 . -38) 61519) ((-978 . -495) 61500) ((-978 . -618) 61466) ((-964 . -102) 61416) ((-869 . -618) 61398) ((-869 . -619) 61320) ((-598 . -519) NIL) ((-1267 . -1066) T) ((-1260 . -1066) T) ((-325 . -1059) 61302) ((-1239 . -1066) T) ((-1303 . -1120) T) ((-1219 . -147) 61281) ((-325 . -645) 61263) ((-1219 . -145) 61242) ((-1193 . -102) T) ((-1192 . -102) T) ((-1191 . -102) T) ((-1183 . -173) 61193) ((-601 . -1066) T) ((-600 . -1066) T) ((-1182 . -173) 61124) ((-1176 . -173) 61055) ((-383 . -1059) 61020) ((-1159 . -621) 61001) ((-1134 . -173) 60952) ((-1012 . -1108) T) ((-979 . -1108) T) ((-920 . -1108) T) ((-383 . -645) 60917) ((-804 . -802) 60901) ((-704 . -25) T) ((-704 . -21) T) ((-117 . -644) 60878) ((-706 . -892) 60860) ((-432 . -1108) T) ((-319 . -1229) 60839) ((-316 . -1229) T) ((-170 . -405) 60823) ((-841 . -1059) 60793) ((-479 . -981) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -618) 60737) ((-832 . -1059) 60721) ((-108 . -800) T) ((-108 . -797) T) ((-706 . -1046) 60703) ((-319 . -561) 60682) ((-316 . -561) T) ((-841 . -645) 60652) ((-832 . -645) 60622) ((-1303 . -23) T) ((-134 . -1046) 60604) ((-96 . -621) 60585) ((-1001 . -651) 60567) ((-487 . -1064) 60464) ((-45 . -291) 60389) ((-241 . -722) 60331) ((-522 . -102) T) ((-487 . -111) 60221) ((-1100 . -102) 60191) ((-1042 . -102) T) ((-1181 . -651) 60101) ((-1133 . -651) 60011) ((-859 . -651) 59970) ((-649 . -833) 59949) ((-736 . -519) 59892) ((-1062 . -1064) 59876) ((-1143 . -93) T) ((-1071 . -289) 59851) ((-628 . -21) T) ((-628 . -25) T) ((-529 . -1108) T) ((-675 . -653) 59825) ((-365 . -102) T) ((-325 . -102) T) ((-389 . -1064) 59809) ((-1062 . -111) 59788) ((-821 . -416) 59772) ((-117 . -25) T) ((-89 . -618) 59754) ((-117 . -21) T) ((-613 . -312) 59549) ((-480 . -312) 59353) ((-1158 . -619) NIL) ((-389 . -111) 59332) ((-383 . -102) T) ((-215 . -618) 59314) ((-1158 . -618) 59296) ((-1176 . -519) 59065) ((-1012 . -722) 59015) ((-1134 . -519) 58985) ((-920 . -722) 58937) ((-487 . -621) 58667) ((-355 . -310) T) ((-1198 . -151) 58617) ((-964 . -312) 58555) ((-841 . -102) T) ((-432 . -722) 58539) ((-226 . -833) T) ((-832 . -102) T) ((-830 . -102) T) ((-484 . -151) 58489) ((-1259 . -1258) 58468) ((-1128 . -1229) T) ((-343 . -1046) 58435) ((-1259 . -1253) 58405) ((-1259 . -1256) 58389) ((-1238 . -1237) 58368) ((-80 . -618) 58350) ((-911 . -618) 58332) ((-1238 . -1253) 58309) ((-1128 . -561) T) ((-927 . -855) T) ((-776 . -855) T) ((-677 . -855) T) ((-492 . -619) 58239) ((-492 . -618) 58180) ((-383 . -287) T) ((-1238 . -1235) 58164) ((-1261 . -1120) T) ((-218 . -619) 58094) ((-218 . -618) 58035) ((-1297 . -653) 58009) ((-1071 . -609) 57984) ((-823 . -621) 57968) ((-59 . -151) 57952) ((-521 . -151) 57936) ((-501 . -151) 57920) ((-363 . -1294) 57904) ((-357 . -1294) 57888) ((-349 . -1294) 57872) ((-319 . -367) 57851) ((-316 . -367) T) ((-487 . -1057) 57781) ((-699 . -644) 57763) ((-1295 . -653) 57737) ((-128 . -312) NIL) ((-1261 . -23) T) ((-694 . -494) 57721) ((-64 . -618) 57703) ((-1121 . -800) 57654) ((-1121 . -797) 57605) ((-555 . -494) 57542) ((-675 . -34) T) ((-487 . -234) 57494) ((-298 . -291) 57473) ((-241 . -173) 57452) ((-821 . -1066) T) ((-44 . -653) 57410) ((-1088 . -372) 57361) ((-1095 . -145) 57340) ((-736 . -293) 57271) ((-525 . -519) 57204) ((-822 . -1064) 57155) ((-1095 . -147) 57134) ((-554 . -618) 57116) ((-363 . -372) 57095) ((-357 . -372) 57074) ((-349 . -372) 57053) ((-974 . -1225) T) ((-876 . -232) 57030) ((-822 . -111) 56972) ((-787 . -145) 56951) ((-787 . -147) 56930) ((-266 . -955) 56897) ((-253 . -853) 56876) ((-248 . -955) 56821) ((-252 . -853) 56800) ((-785 . -145) 56779) ((-785 . -147) 56758) ((-152 . -653) 56732) ((-584 . -1108) T) ((-459 . -147) 56711) ((-459 . -145) 56690) ((-675 . -731) T) ((-828 . -618) 56672) ((-1267 . -1108) T) ((-1260 . -1108) T) ((-1239 . -1108) T) ((-1219 . -1213) 56638) ((-1219 . -1210) 56604) ((-1183 . -293) 56583) ((-1182 . -293) 56534) ((-1176 . -293) 56485) ((-1134 . -293) 56464) ((-343 . -906) 56445) ((-1012 . -173) T) ((-920 . -173) T) ((-699 . -21) T) ((-699 . -25) T) ((-226 . -651) 56395) ((-601 . -1108) T) ((-600 . -1108) T) ((-479 . -1256) 56379) ((-479 . -1253) 56349) ((-423 . -289) 56277) ((-552 . -855) T) ((-319 . -1120) 56126) ((-316 . -1120) T) ((-1219 . -35) 56092) ((-1219 . -95) 56058) ((-84 . -618) 56040) ((-91 . -102) 56018) ((-1303 . -131) T) ((-719 . -1059) 55988) ((-597 . -621) 55969) ((-586 . -145) T) ((-586 . -147) 55951) ((-523 . -147) 55933) ((-523 . -145) T) ((-719 . -645) 55903) ((-319 . -23) 55755) ((-40 . -346) 55729) ((-316 . -23) T) ((-822 . -621) 55643) ((-1167 . -656) 55625) ((-1290 . -1066) T) ((-1167 . -377) 55607) ((-820 . -653) 55455) ((-1104 . -102) T) ((-1098 . -102) T) ((-1081 . -102) T) ((-170 . -232) 55439) ((-1074 . -102) T) ((-1044 . -102) T) ((-1027 . -102) T) ((-598 . -494) 55421) ((-631 . -102) T) ((-241 . -519) 55354) ((-488 . -102) T) ((-1297 . -731) T) ((-1295 . -731) T) ((-219 . -102) T) ((-1187 . -1064) 55237) ((-1070 . -651) 55209) ((-958 . -651) 55119) ((-1187 . -111) 54988) ((-881 . -1091) T) ((-486 . -651) 54898) ((-866 . -174) T) ((-822 . -1057) T) ((-686 . -1091) T) ((-681 . -1091) T) ((-520 . -102) T) ((-515 . -102) T) ((-48 . -644) 54858) ((-513 . -102) T) ((-483 . -1091) T) ((-1287 . -1064) 54828) ((-138 . -1091) T) ((-137 . -1091) T) ((-133 . -1091) T) ((-1042 . -38) 54812) ((-822 . -234) T) ((-822 . -244) 54791) ((-1287 . -111) 54756) ((-1267 . -722) 54653) ((-1260 . -722) 54494) ((-555 . -289) 54473) ((-1248 . -232) 54457) ((-1230 . -618) 54439) ((-611 . -93) T) ((-1071 . -619) NIL) ((-1071 . -618) 54421) ((-676 . -93) T) ((-181 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1239 . -722) 54217) ((-1011 . -926) T) ((-152 . -731) T) ((-1187 . -621) 54070) ((-1121 . -372) 54049) ((-1032 . -25) T) ((-1012 . -519) NIL) ((-253 . -416) 54018) ((-252 . -416) 53987) ((-1032 . -21) T) ((-877 . -1059) 53939) ((-601 . -722) 53912) ((-600 . -722) 53809) ((-804 . -289) 53767) ((-126 . -102) 53745) ((-838 . -1046) 53641) ((-170 . -833) 53620) ((-322 . -653) 53517) ((-820 . -34) T) ((-719 . -102) T) ((-1128 . -1120) T) ((-1034 . -1225) T) ((-877 . -645) 53469) ((-383 . -38) 53434) ((-358 . -25) T) ((-358 . -21) T) ((-188 . -102) T) ((-162 . -102) T) ((-250 . -102) T) ((-157 . -102) T) ((-359 . -1282) 53418) ((-356 . -1282) 53402) ((-348 . -1282) 53386) ((-170 . -353) 53365) ((-569 . -855) T) ((-1128 . -23) T) ((-87 . -618) 53347) ((-706 . -310) T) ((-841 . -38) 53317) ((-832 . -38) 53287) ((-1287 . -621) 53229) ((-1261 . -131) T) ((-1158 . -291) 53208) ((-970 . -731) 53107) ((-970 . -798) 53060) ((-970 . -799) 53013) ((-820 . -796) 52992) ((-116 . -310) T) ((-91 . -312) 52930) ((-680 . -34) T) ((-555 . -609) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-820 . -799) 52860) ((-820 . -798) 52839) ((-706 . -1030) T) ((-658 . -1064) 52823) ((-876 . -651) 52753) ((-820 . -731) 52663) ((-970 . -478) 52616) ((-487 . -800) 52567) ((-487 . -797) 52518) ((-916 . -1282) 52505) ((-1187 . -1057) T) ((-658 . -111) 52484) ((-1187 . -329) 52461) ((-1211 . -102) 52439) ((-1109 . -618) 52421) ((-706 . -550) T) ((-821 . -1108) T) ((-1287 . -1057) T) ((-1143 . -495) 52402) ((-1231 . -102) T) ((-418 . -1108) T) ((-1143 . -618) 52368) ((-253 . -1066) 52298) ((-252 . -1066) 52228) ((-843 . -102) T) ((-292 . -653) 52215) ((-598 . -289) 52190) ((-694 . -692) 52148) ((-969 . -618) 52130) ((-877 . -102) T) ((-740 . -618) 52112) ((-720 . -618) 52094) ((-1267 . -173) 52045) ((-1260 . -173) 51976) ((-1239 . -173) 51907) ((-704 . -855) T) ((-1012 . -293) T) ((-458 . -618) 51889) ((-632 . -731) T) ((-60 . -1108) 51867) ((-246 . -151) 51851) ((-920 . -293) T) ((-1032 . -1020) T) ((-632 . -478) T) ((-717 . -1229) 51830) ((-658 . -621) 51748) ((-170 . -651) 51643) ((-1275 . -855) 51622) ((-601 . -173) 51601) ((-600 . -173) 51552) ((-1259 . -645) 51393) ((-1259 . -1059) 51228) ((-1238 . -645) 51042) ((-1238 . -1059) 50850) ((-717 . -561) 50761) ((-412 . -926) T) ((-412 . -825) 50740) ((-322 . -799) T) ((-978 . -621) 50721) ((-322 . -731) T) ((-423 . -618) 50703) ((-423 . -619) 50610) ((-649 . -1157) 50594) ((-110 . -656) 50576) ((-175 . -310) T) ((-126 . -312) 50514) ((-110 . -377) 50496) ((-403 . -1225) T) ((-319 . -131) 50367) ((-316 . -131) T) ((-69 . -400) T) ((-110 . -123) T) ((-525 . -494) 50351) ((-659 . -1120) T) ((-598 . -19) 50333) ((-61 . -446) T) ((-61 . -400) T) ((-829 . -1108) T) ((-598 . -609) 50308) ((-482 . -1046) 50268) ((-658 . -1057) T) ((-659 . -23) T) ((-1290 . -1108) T) ((-31 . -102) T) ((-1248 . -651) 50178) ((-860 . -651) 50137) ((-821 . -722) 49986) ((-582 . -865) T) ((-576 . -651) 49958) ((-117 . -855) NIL) ((-1181 . -416) 49942) ((-1133 . -416) 49926) ((-859 . -416) 49910) ((-878 . -102) 49861) ((-1259 . -102) T) ((-1239 . -519) 49630) ((-1238 . -102) T) ((-1211 . -312) 49568) ((-1183 . -289) 49553) ((-1182 . -289) 49538) ((-530 . -93) T) ((-1176 . -289) 49386) ((-315 . -618) 49368) ((-1110 . -1108) T) ((-1088 . -653) 49278) ((-716 . -457) T) ((-694 . -618) 49210) ((-292 . -731) T) ((-108 . -915) NIL) ((-694 . -619) 49171) ((-606 . -618) 49153) ((-582 . -618) 49135) ((-555 . -619) NIL) ((-555 . -618) 49117) ((-534 . -618) 49099) ((-516 . -514) 49078) ((-492 . -1064) 49028) ((-479 . -1059) 48863) ((-512 . -514) 48842) ((-479 . -645) 48683) ((-218 . -1064) 48633) ((-363 . -653) 48585) ((-357 . -653) 48537) ((-226 . -853) T) ((-349 . -653) 48489) ((-607 . -102) 48439) ((-487 . -372) 48418) ((-108 . -653) 48368) ((-492 . -111) 48302) ((-241 . -494) 48286) ((-347 . -147) 48268) ((-347 . -145) T) ((-170 . -374) 48239) ((-949 . -1273) 48223) ((-218 . -111) 48157) ((-877 . -312) 48122) ((-949 . -1108) 48072) ((-804 . -619) 48033) ((-804 . -618) 48015) ((-723 . -102) T) ((-334 . -1108) T) ((-215 . -621) 47992) ((-1128 . -131) T) ((-719 . -38) 47962) ((-319 . -498) 47941) ((-505 . -1225) T) ((-1259 . -287) 47907) ((-1238 . -287) 47873) ((-330 . -151) 47857) ((-444 . -1108) T) ((-1071 . -291) 47832) ((-1290 . -722) 47802) ((-1168 . -34) T) ((-1299 . -1046) 47779) ((-473 . -618) 47761) ((-489 . -34) T) ((-385 . -1046) 47745) ((-1181 . -1066) T) ((-1133 . -1066) T) ((-859 . -1066) T) ((-1070 . -853) T) ((-492 . -621) 47695) ((-218 . -621) 47645) ((-821 . -173) 47556) ((-525 . -289) 47533) ((-1267 . -293) 47512) ((-1206 . -368) 47486) ((-1096 . -268) 47470) ((-676 . -495) 47451) ((-676 . -618) 47417) ((-611 . -495) 47398) ((-117 . -1000) 47375) ((-611 . -618) 47325) ((-479 . -102) T) ((-181 . -495) 47306) ((-181 . -618) 47272) ((-161 . -495) 47253) ((-156 . -495) 47234) ((-154 . -495) 47215) ((-161 . -618) 47181) ((-156 . -618) 47147) ((-369 . -1108) T) ((-253 . -1108) T) ((-252 . -1108) T) ((-154 . -618) 47113) ((-1260 . -293) 47064) ((-1239 . -293) 47015) ((-877 . -1160) 46993) ((-1183 . -1010) 46959) ((-613 . -368) 46899) ((-1182 . -1010) 46865) ((-613 . -230) 46812) ((-699 . -855) T) ((-598 . -618) 46794) ((-598 . -619) NIL) ((-480 . -230) 46744) ((-492 . -1057) T) ((-1176 . -1010) 46710) ((-88 . -445) T) ((-88 . -400) T) ((-218 . -1057) T) ((-1134 . -1010) 46676) ((-1088 . -731) T) ((-717 . -1120) T) ((-601 . -293) 46655) ((-600 . -293) 46634) ((-492 . -244) T) ((-492 . -234) T) ((-218 . -244) T) ((-218 . -234) T) ((-1174 . -618) 46616) ((-877 . -38) 46568) ((-363 . -731) T) ((-357 . -731) T) ((-349 . -731) T) ((-108 . -799) T) ((-108 . -796) T) ((-717 . -23) T) ((-108 . -731) T) ((-525 . -1263) 46552) ((-1303 . -25) T) ((-479 . -287) 46518) ((-1303 . -21) T) ((-1238 . -312) 46457) ((-1185 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-525 . -609) 46378) ((-1121 . -653) 46226) ((-607 . -312) 46164) ((-45 . -656) 46114) ((-45 . -671) 46064) ((-45 . -377) 46014) ((-1167 . -34) T) ((-876 . -853) NIL) ((-659 . -131) T) ((-490 . -618) 45996) ((-241 . -289) 45973) ((-187 . -1108) T) ((-1095 . -457) 45924) ((-821 . -519) 45798) ((-669 . -1059) 45782) ((-652 . -34) T) ((-637 . -34) T) ((-787 . -457) 45713) ((-669 . -645) 45697) ((-359 . -1059) 45649) ((-356 . -1059) 45601) ((-348 . -1059) 45553) ((-266 . -1059) 45396) ((-248 . -1059) 45239) ((-785 . -457) 45190) ((-359 . -645) 45142) ((-356 . -645) 45094) ((-348 . -645) 45046) ((-266 . -645) 44895) ((-248 . -645) 44744) ((-459 . -457) 44695) ((-958 . -416) 44679) ((-736 . -618) 44661) ((-253 . -722) 44603) ((-252 . -722) 44545) ((-736 . -619) 44406) ((-486 . -416) 44390) ((-343 . -305) T) ((-529 . -93) T) ((-355 . -926) T) ((-1008 . -102) 44368) ((-916 . -1059) 44333) ((-1032 . -855) T) ((-60 . -519) 44266) ((-916 . -645) 44231) ((-1238 . -1160) 44183) ((-1012 . -289) NIL) ((-226 . -1066) T) ((-383 . -833) T) ((-1121 . -34) T) ((-586 . -457) T) ((-523 . -457) T) ((-1242 . -1101) 44167) ((-1242 . -1108) 44145) ((-241 . -609) 44122) ((-1242 . -1103) 44079) ((-1183 . -618) 44061) ((-1182 . -618) 44043) ((-1176 . -618) 44025) ((-1176 . -619) NIL) ((-1134 . -618) 44007) ((-877 . -405) 43991) ((-602 . -102) T) ((-590 . -102) T) ((-541 . -102) T) ((-1259 . -38) 43832) ((-1238 . -38) 43646) ((-875 . -147) T) ((-586 . -407) T) ((-523 . -407) T) ((-1271 . -102) T) ((-1261 . -21) T) ((-1261 . -25) T) ((-1121 . -796) 43625) ((-1121 . -799) 43576) ((-1121 . -798) 43555) ((-1001 . -1108) T) ((-1035 . -34) T) ((-867 . -1108) T) ((-1121 . -731) 43465) ((-669 . -102) T) ((-650 . -102) T) ((-555 . -291) 43444) ((-1198 . -102) T) ((-481 . -34) T) ((-468 . -34) T) ((-359 . -102) T) ((-356 . -102) T) ((-348 . -102) T) ((-266 . -102) T) ((-248 . -102) T) ((-482 . -310) T) ((-1070 . -1066) T) ((-958 . -1066) T) ((-319 . -644) 43350) ((-316 . -644) 43311) ((-1181 . -1108) T) ((-486 . -1066) T) ((-484 . -102) T) ((-441 . -618) 43293) ((-1133 . -1108) T) ((-251 . -618) 43275) ((-859 . -1108) T) ((-1149 . -102) T) ((-821 . -293) 43206) ((-969 . -1064) 43089) ((-482 . -1030) T) ((-740 . -1064) 43059) ((-1042 . -651) 43018) ((-458 . -1064) 42988) ((-1155 . -1129) 42972) ((-1110 . -519) 42905) ((-969 . -111) 42774) ((-916 . -102) T) ((-740 . -111) 42739) ((-530 . -495) 42720) ((-530 . -618) 42686) ((-59 . -102) 42636) ((-525 . -619) 42597) ((-525 . -618) 42509) ((-524 . -102) 42487) ((-521 . -102) 42437) ((-502 . -102) 42415) ((-501 . -102) 42365) ((-458 . -111) 42328) ((-253 . -173) 42307) ((-252 . -173) 42286) ((-325 . -651) 42268) ((-423 . -1064) 42242) ((-1219 . -981) 42204) ((-1007 . -1120) T) ((-383 . -651) 42154) ((-1143 . -621) 42135) ((-949 . -519) 42068) ((-492 . -800) T) ((-479 . -38) 41909) ((-423 . -111) 41876) ((-492 . -797) T) ((-1008 . -312) 41814) ((-218 . -800) T) ((-218 . -797) T) ((-1007 . -23) T) ((-717 . -131) T) ((-1238 . -405) 41784) ((-841 . -651) 41729) ((-832 . -651) 41688) ((-319 . -25) 41540) ((-170 . -416) 41524) ((-319 . -21) 41395) ((-316 . -25) T) ((-316 . -21) T) ((-869 . -372) T) ((-969 . -621) 41248) ((-110 . -34) T) ((-740 . -621) 41204) ((-720 . -621) 41186) ((-487 . -653) 41034) ((-876 . -1066) T) ((-598 . -291) 41009) ((-585 . -147) T) ((-569 . -147) T) ((-500 . -147) T) ((-1181 . -722) 40838) ((-1065 . -102) 40816) ((-1133 . -722) 40665) ((-1128 . -644) 40647) ((-859 . -722) 40617) ((-675 . -1225) T) ((-1 . -102) T) ((-423 . -621) 40525) ((-241 . -618) 40256) ((-1123 . -1108) T) ((-1248 . -416) 40240) ((-1198 . -312) 40044) ((-969 . -1057) T) ((-740 . -1057) T) ((-720 . -1057) T) ((-649 . -1108) 39994) ((-1062 . -653) 39978) ((-860 . -416) 39962) ((-516 . -102) T) ((-512 . -102) T) ((-266 . -312) 39949) ((-248 . -312) 39936) ((-969 . -329) 39915) ((-389 . -653) 39899) ((-675 . -1046) 39795) ((-484 . -312) 39599) ((-253 . -519) 39532) ((-252 . -519) 39465) ((-1149 . -312) 39391) ((-824 . -1108) T) ((-804 . -1064) 39375) ((-1267 . -289) 39360) ((-1260 . -289) 39345) ((-1239 . -289) 39193) ((-391 . -1108) T) ((-327 . -1108) T) ((-423 . -1057) T) ((-170 . -1066) T) ((-59 . -312) 39131) ((-804 . -111) 39110) ((-600 . -289) 39095) ((-524 . -312) 39033) ((-521 . -312) 38971) ((-502 . -312) 38909) ((-501 . -312) 38847) ((-423 . -234) 38826) ((-487 . -34) T) ((-1012 . -619) 38756) ((-226 . -1108) T) ((-1012 . -618) 38716) ((-979 . -618) 38676) ((-979 . -619) 38651) ((-920 . -618) 38633) ((-704 . -147) T) ((-706 . -926) T) ((-706 . -825) T) ((-432 . -618) 38615) ((-1128 . -21) T) ((-1128 . -25) T) ((-675 . -381) 38599) ((-116 . -926) T) ((-877 . -232) 38583) ((-78 . -1225) T) ((-126 . -125) 38567) ((-1062 . -34) T) ((-1297 . -1046) 38541) ((-1295 . -1046) 38498) ((-1248 . -1066) T) ((-860 . -1066) T) ((-487 . -796) 38477) ((-359 . -1160) 38456) ((-356 . -1160) 38435) ((-348 . -1160) 38414) ((-487 . -799) 38365) ((-487 . -798) 38344) ((-228 . -34) T) ((-487 . -731) 38254) ((-804 . -621) 38100) ((-667 . -1059) 38084) ((-60 . -494) 38068) ((-576 . -1066) T) ((-667 . -645) 38052) ((-1181 . -173) 37943) ((-1133 . -173) 37854) ((-1070 . -1108) T) ((-1095 . -955) 37799) ((-958 . -1108) T) ((-822 . -653) 37750) ((-787 . -955) 37719) ((-718 . -1108) T) ((-785 . -955) 37686) ((-521 . -285) 37670) ((-675 . -906) 37629) ((-486 . -1108) T) ((-459 . -955) 37596) ((-79 . -1225) T) ((-359 . -38) 37561) ((-356 . -38) 37526) ((-348 . -38) 37491) ((-266 . -38) 37340) ((-248 . -38) 37189) ((-916 . -1160) T) ((-529 . -495) 37170) ((-628 . -147) 37149) ((-628 . -145) 37128) ((-529 . -618) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-419 . -731) T) ((-804 . -1057) T) ((-347 . -457) T) ((-1267 . -1010) 37060) ((-1260 . -1010) 37026) ((-1239 . -1010) 36992) ((-916 . -38) 36957) ((-226 . -722) 36922) ((-322 . -47) 36892) ((-40 . -414) 36864) ((-140 . -618) 36846) ((-1007 . -131) T) ((-820 . -1225) T) ((-175 . -926) T) ((-554 . -372) T) ((-611 . -621) 36827) ((-347 . -407) T) ((-719 . -651) 36772) ((-676 . -621) 36753) ((-181 . -621) 36734) ((-161 . -621) 36715) ((-156 . -621) 36696) ((-154 . -621) 36677) ((-525 . -291) 36654) ((-1238 . -232) 36624) ((-881 . -102) T) ((-820 . -1046) 36451) ((-45 . -34) T) ((-686 . -102) T) ((-681 . -102) T) ((-667 . -102) T) ((-659 . -21) T) ((-659 . -25) T) ((-1110 . -494) 36435) ((-680 . -1225) T) ((-483 . -102) T) ((-246 . -102) 36385) ((-551 . -849) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-876 . -1108) T) ((-1187 . -653) 36310) ((-1070 . -722) 36297) ((-736 . -1064) 36140) ((-1181 . -519) 36087) ((-958 . -722) 35936) ((-1133 . -519) 35888) ((-1286 . -1108) T) ((-1285 . -1108) T) ((-486 . -722) 35737) ((-67 . -618) 35719) ((-736 . -111) 35548) ((-949 . -494) 35532) ((-1287 . -653) 35492) ((-822 . -731) T) ((-1183 . -1064) 35375) ((-1182 . -1064) 35210) ((-1176 . -1064) 35000) ((-1134 . -1064) 34883) ((-1011 . -1229) T) ((-1102 . -102) 34861) ((-820 . -381) 34830) ((-584 . -618) 34812) ((-551 . -1108) T) ((-1011 . -561) T) ((-1183 . -111) 34681) ((-1182 . -111) 34502) ((-1176 . -111) 34271) ((-1134 . -111) 34140) ((-1113 . -1111) 34104) ((-383 . -853) T) ((-1267 . -618) 34086) ((-1260 . -618) 34068) ((-877 . -651) 34005) ((-1239 . -618) 33987) ((-1239 . -619) NIL) ((-241 . -291) 33964) ((-40 . -457) T) ((-226 . -173) T) ((-170 . -1108) T) ((-736 . -621) 33749) ((-699 . -147) T) ((-699 . -145) NIL) ((-601 . -618) 33731) ((-600 . -618) 33713) ((-904 . -1108) T) ((-846 . -1108) T) ((-813 . -1108) T) ((-774 . -1108) T) ((-663 . -857) 33697) ((-682 . -1108) T) ((-820 . -906) 33629) ((-1230 . -372) T) ((-40 . -407) NIL) ((-1183 . -621) 33511) ((-1128 . -666) T) ((-876 . -722) 33456) ((-253 . -494) 33440) ((-252 . -494) 33424) ((-1182 . -621) 33167) ((-1176 . -621) 32962) ((-717 . -644) 32910) ((-658 . -653) 32884) ((-1134 . -621) 32766) ((-298 . -34) T) ((-736 . -1057) T) ((-586 . -1282) 32753) ((-523 . -1282) 32730) ((-1248 . -1108) T) ((-1181 . -293) 32641) ((-1133 . -293) 32572) ((-1070 . -173) T) ((-860 . -1108) T) ((-958 . -173) 32483) ((-787 . -1251) 32467) ((-649 . -519) 32400) ((-77 . -618) 32382) ((-736 . -329) 32347) ((-1187 . -731) T) ((-576 . -1108) T) ((-486 . -173) 32258) ((-246 . -312) 32196) ((-1150 . -1120) T) ((-70 . -618) 32178) ((-1287 . -731) T) ((-1183 . -1057) T) ((-1182 . -1057) T) ((-330 . -102) 32128) ((-1176 . -1057) T) ((-1150 . -23) T) ((-1134 . -1057) T) ((-91 . -1129) 32112) ((-871 . -1120) T) ((-1183 . -234) 32071) ((-1182 . -244) 32050) ((-1182 . -234) 32002) ((-1176 . -234) 31889) ((-1176 . -244) 31868) ((-322 . -906) 31774) ((-871 . -23) T) ((-170 . -722) 31602) ((-412 . -1229) T) ((-1109 . -372) T) ((-1011 . -367) T) ((-875 . -457) T) ((-1032 . -147) T) ((-949 . -289) 31579) ((-316 . -855) NIL) ((-1259 . -651) 31461) ((-879 . -102) T) ((-1238 . -651) 31316) ((-717 . -25) T) ((-412 . -561) T) ((-717 . -21) T) ((-530 . -621) 31297) ((-358 . -147) 31279) ((-358 . -145) T) ((-1155 . -1108) 31257) ((-458 . -725) T) ((-75 . -618) 31239) ((-114 . -855) T) ((-246 . -285) 31223) ((-241 . -1064) 31120) ((-81 . -618) 31102) ((-740 . -372) 31055) ((-1185 . -833) T) ((-742 . -236) 31039) ((-1168 . -1225) T) ((-141 . -236) 31021) ((-241 . -111) 30911) ((-1248 . -722) 30740) ((-48 . -147) T) ((-876 . -173) T) ((-860 . -722) 30710) ((-489 . -1225) T) ((-958 . -519) 30657) ((-658 . -731) T) ((-576 . -722) 30644) ((-1042 . -1066) T) ((-486 . -519) 30587) ((-949 . -19) 30571) ((-949 . -609) 30548) ((-821 . -619) NIL) ((-821 . -618) 30530) ((-1219 . -1059) 30413) ((-1012 . -1064) 30363) ((-418 . -618) 30345) ((-253 . -289) 30322) ((-252 . -289) 30299) ((-492 . -915) NIL) ((-319 . -29) 30269) ((-108 . -1225) T) ((-1011 . -1120) T) ((-218 . -915) NIL) ((-1219 . -645) 30166) ((-920 . -1064) 30118) ((-1088 . -1046) 30014) ((-1012 . -111) 29948) ((-716 . -1059) 29913) ((-1011 . -23) T) ((-920 . -111) 29851) ((-742 . -700) 29835) ((-716 . -645) 29800) ((-266 . -232) 29784) ((-432 . -1064) 29768) ((-383 . -1066) T) ((-241 . -621) 29498) ((-699 . -1213) NIL) ((-492 . -653) 29448) ((-479 . -651) 29330) ((-108 . -890) 29312) ((-108 . -892) 29294) ((-699 . -1210) NIL) ((-218 . -653) 29244) ((-363 . -1046) 29228) ((-357 . -1046) 29212) ((-330 . -312) 29150) ((-349 . -1046) 29134) ((-226 . -293) T) ((-432 . -111) 29113) ((-60 . -618) 29045) ((-170 . -173) T) ((-1128 . -855) T) ((-108 . -1046) 29005) ((-898 . -1108) T) ((-841 . -1066) T) ((-832 . -1066) T) ((-699 . -35) NIL) ((-699 . -95) NIL) ((-316 . -1000) 28966) ((-184 . -102) T) ((-585 . -457) T) ((-569 . -457) T) ((-500 . -457) T) ((-412 . -367) T) ((-241 . -1057) 28896) ((-1158 . -34) T) ((-482 . -926) T) ((-1007 . -644) 28844) ((-253 . -609) 28821) ((-252 . -609) 28798) ((-1088 . -381) 28782) ((-876 . -519) 28690) ((-241 . -234) 28642) ((-1167 . -1225) T) ((-1012 . -621) 28592) ((-920 . -621) 28529) ((-829 . -618) 28511) ((-1298 . -1120) T) ((-1290 . -618) 28493) ((-1248 . -173) 28384) ((-432 . -621) 28353) ((-108 . -381) 28335) ((-108 . -342) 28317) ((-1070 . -293) T) ((-958 . -293) 28248) ((-804 . -372) 28227) ((-652 . -1225) T) ((-637 . -1225) T) ((-591 . -1059) 28202) ((-486 . -293) 28133) ((-576 . -173) T) ((-330 . -285) 28117) ((-1298 . -23) T) ((-1219 . -102) T) ((-1206 . -1108) T) ((-1096 . -1108) T) ((-1084 . -1108) T) ((-591 . -645) 28092) ((-83 . -618) 28074) ((-1192 . -849) T) ((-1191 . -849) T) ((-716 . -102) T) ((-359 . -353) 28053) ((-613 . -1108) T) ((-356 . -353) 28032) ((-348 . -353) 28011) ((-480 . -1108) T) ((-1198 . -230) 27961) ((-266 . -255) 27923) ((-1150 . -131) T) ((-613 . -615) 27899) ((-1088 . -906) 27832) ((-1012 . -1057) T) ((-920 . -1057) T) ((-480 . -615) 27811) ((-1176 . -797) NIL) ((-1176 . -800) NIL) ((-1110 . -619) 27772) ((-484 . -230) 27722) ((-1110 . -618) 27704) ((-1012 . -244) T) ((-1012 . -234) T) ((-432 . -1057) T) ((-964 . -1108) 27654) ((-920 . -244) T) ((-871 . -131) T) ((-704 . -457) T) ((-848 . -1120) 27633) ((-108 . -906) NIL) ((-1219 . -287) 27599) ((-877 . -853) 27578) ((-1121 . -1225) T) ((-911 . -731) T) ((-170 . -519) 27490) ((-1007 . -25) T) ((-911 . -478) T) ((-412 . -1120) T) ((-492 . -799) T) ((-492 . -796) T) ((-916 . -353) T) ((-492 . -731) T) ((-218 . -799) T) ((-218 . -796) T) ((-1007 . -21) T) ((-218 . -731) T) ((-848 . -23) 27442) ((-1193 . -1108) T) ((-663 . -1059) 27426) ((-1192 . -1108) T) ((-529 . -621) 27407) ((-1191 . -1108) T) ((-322 . -310) 27386) ((-1043 . -236) 27332) ((-663 . -645) 27302) ((-412 . -23) T) ((-949 . -619) 27263) ((-949 . -618) 27175) ((-649 . -494) 27159) ((-45 . -1018) 27109) ((-622 . -975) T) ((-496 . -102) T) ((-334 . -618) 27091) ((-1121 . -1046) 26918) ((-598 . -656) 26900) ((-130 . -1108) T) ((-128 . -1108) T) ((-598 . -377) 26882) ((-347 . -1282) 26859) ((-444 . -618) 26841) ((-1248 . -519) 26788) ((-1095 . -1059) 26631) ((-1035 . -1225) T) ((-876 . -293) T) ((-1181 . -289) 26558) ((-1095 . -645) 26407) ((-1008 . -1003) 26391) ((-787 . -1059) 26214) ((-785 . -1059) 26057) ((-787 . -645) 25886) ((-785 . -645) 25735) ((-481 . -1225) T) ((-468 . -1225) T) ((-591 . -102) T) ((-466 . -1059) 25706) ((-459 . -1059) 25549) ((-669 . -651) 25518) ((-628 . -457) 25497) ((-466 . -645) 25468) ((-459 . -645) 25317) ((-359 . -651) 25254) ((-356 . -651) 25191) ((-348 . -651) 25128) ((-266 . -651) 25038) ((-248 . -651) 24948) ((-1290 . -386) 24920) ((-522 . -1108) T) ((-117 . -457) T) ((-1205 . -102) T) ((-1100 . -1108) 24890) ((-1042 . -1108) T) ((-1123 . -93) T) ((-899 . -855) T) ((-1267 . -111) 24759) ((-355 . -1229) T) ((-1267 . -1064) 24642) ((-1121 . -381) 24611) ((-1260 . -1064) 24446) ((-1239 . -1064) 24236) ((-1260 . -111) 24057) ((-1239 . -111) 23826) ((-1219 . -312) 23813) ((-1011 . -131) T) ((-916 . -651) 23763) ((-369 . -618) 23745) ((-355 . -561) T) ((-292 . -310) T) ((-601 . -1064) 23705) ((-600 . -1064) 23588) ((-586 . -1059) 23553) ((-523 . -1059) 23498) ((-365 . -1108) T) ((-325 . -1108) T) ((-253 . -618) 23459) ((-252 . -618) 23420) ((-586 . -645) 23385) ((-523 . -645) 23330) ((-699 . -414) 23297) ((-640 . -23) T) ((-612 . -23) T) ((-663 . -102) T) ((-601 . -111) 23250) ((-600 . -111) 23119) ((-383 . -1108) T) ((-340 . -102) T) ((-170 . -293) 23030) ((-1238 . -853) 22983) ((-719 . -1066) T) ((-1155 . -519) 22916) ((-1121 . -906) 22848) ((-841 . -1108) T) ((-832 . -1108) T) ((-830 . -1108) T) ((-97 . -102) T) ((-144 . -855) T) ((-617 . -890) 22832) ((-110 . -1225) T) ((-1095 . -102) T) ((-1071 . -34) T) ((-787 . -102) T) ((-785 . -102) T) ((-1267 . -621) 22714) ((-1260 . -621) 22457) ((-466 . -102) T) ((-459 . -102) T) ((-1239 . -621) 22252) ((-241 . -800) 22203) ((-241 . -797) 22154) ((-654 . -102) T) ((-601 . -621) 22112) ((-600 . -621) 21994) ((-1248 . -293) 21905) ((-669 . -639) 21889) ((-187 . -618) 21871) ((-649 . -289) 21848) ((-1042 . -722) 21832) ((-576 . -293) T) ((-969 . -653) 21757) ((-1298 . -131) T) ((-740 . -653) 21717) ((-720 . -653) 21704) ((-277 . -102) T) ((-458 . -653) 21634) ((-50 . -102) T) ((-586 . -102) T) ((-523 . -102) T) ((-1267 . -1057) T) ((-1260 . -1057) T) ((-1239 . -1057) T) ((-512 . -651) 21616) ((-325 . -722) 21598) ((-1267 . -234) 21557) ((-1260 . -244) 21536) ((-1260 . -234) 21488) ((-1239 . -234) 21375) ((-1239 . -244) 21354) ((-1219 . -38) 21251) ((-601 . -1057) T) ((-600 . -1057) T) ((-1012 . -800) T) ((-1012 . -797) T) ((-979 . -800) T) ((-979 . -797) T) ((-877 . -1066) T) ((-109 . -618) 21233) ((-699 . -457) T) ((-383 . -722) 21198) ((-423 . -653) 21172) ((-875 . -874) 21156) ((-716 . -38) 21121) ((-600 . -234) 21080) ((-40 . -729) 21052) ((-355 . -332) 21029) ((-355 . -367) T) ((-1088 . -310) 20980) ((-297 . -1120) 20861) ((-1114 . -1225) T) ((-172 . -102) T) ((-1242 . -618) 20828) ((-848 . -131) 20780) ((-649 . -1263) 20764) ((-841 . -722) 20734) ((-832 . -722) 20704) ((-487 . -1225) T) ((-363 . -310) T) ((-357 . -310) T) ((-349 . -310) T) ((-649 . -609) 20681) ((-412 . -131) T) ((-525 . -671) 20665) ((-108 . -310) T) ((-297 . -23) 20548) ((-525 . -656) 20532) ((-699 . -407) NIL) ((-525 . -377) 20516) ((-294 . -618) 20498) ((-91 . -1108) 20476) ((-108 . -1030) T) ((-569 . -143) T) ((-1275 . -151) 20460) ((-487 . -1046) 20287) ((-1261 . -145) 20248) ((-1261 . -147) 20209) ((-1062 . -1225) T) ((-1001 . -618) 20191) ((-867 . -618) 20173) ((-821 . -1064) 20016) ((-1286 . -93) T) ((-1285 . -93) T) ((-1181 . -619) NIL) ((-1104 . -1108) T) ((-1098 . -1108) T) ((-1095 . -312) 20003) ((-1081 . -1108) T) ((-228 . -1225) T) ((-1074 . -1108) T) ((-1044 . -1108) T) ((-1027 . -1108) T) ((-787 . -312) 19990) ((-785 . -312) 19977) ((-1181 . -618) 19959) ((-821 . -111) 19788) ((-1133 . -618) 19770) ((-631 . -1108) T) ((-582 . -174) T) ((-534 . -174) T) ((-459 . -312) 19757) ((-488 . -1108) T) ((-1133 . -619) 19505) ((-1042 . -173) T) ((-949 . -291) 19482) ((-219 . -1108) T) ((-859 . -618) 19464) ((-613 . -519) 19247) ((-81 . -621) 19188) ((-823 . -1046) 19172) ((-480 . -519) 18964) ((-969 . -731) T) ((-740 . -731) T) ((-720 . -731) T) ((-355 . -1120) T) ((-1188 . -618) 18946) ((-224 . -102) T) ((-487 . -381) 18915) ((-520 . -1108) T) ((-515 . -1108) T) ((-513 . -1108) T) ((-804 . -653) 18889) ((-1032 . -457) T) ((-964 . -519) 18822) ((-355 . -23) T) ((-640 . -131) T) ((-612 . -131) T) ((-358 . -457) T) ((-241 . -372) 18801) ((-383 . -173) T) ((-1259 . -1066) T) ((-1238 . -1066) T) ((-226 . -1010) T) ((-821 . -621) 18538) ((-704 . -392) T) ((-423 . -731) T) ((-706 . -1229) T) ((-1150 . -644) 18486) ((-585 . -874) 18470) ((-1290 . -1064) 18454) ((-1168 . -1201) 18430) ((-706 . -561) T) ((-126 . -1108) 18408) ((-719 . -1108) T) ((-487 . -906) 18340) ((-250 . -1108) T) ((-188 . -1108) T) ((-663 . -38) 18310) ((-358 . -407) T) ((-319 . -147) 18289) ((-319 . -145) 18268) ((-128 . -519) NIL) ((-116 . -561) T) ((-316 . -147) 18224) ((-316 . -145) 18180) ((-48 . -457) T) ((-162 . -1108) T) ((-157 . -1108) T) ((-1168 . -107) 18127) ((-787 . -1160) 18105) ((-694 . -34) T) ((-1290 . -111) 18084) ((-555 . -34) T) ((-489 . -107) 18068) ((-253 . -291) 18045) ((-252 . -291) 18022) ((-876 . -289) 17973) ((-45 . -1225) T) ((-1231 . -849) T) ((-821 . -1057) T) ((-667 . -651) 17942) ((-1187 . -47) 17919) ((-821 . -329) 17881) ((-1095 . -38) 17730) ((-821 . -234) 17709) ((-787 . -38) 17538) ((-785 . -38) 17387) ((-1123 . -495) 17368) ((-459 . -38) 17217) ((-1123 . -618) 17183) ((-1126 . -102) T) ((-649 . -619) 17144) ((-649 . -618) 17056) ((-586 . -1160) T) ((-523 . -1160) T) ((-1155 . -494) 17040) ((-347 . -1059) 16985) ((-1211 . -1108) 16963) ((-1150 . -25) T) ((-1150 . -21) T) ((-347 . -645) 16908) ((-1290 . -621) 16857) ((-479 . -1066) T) ((-1231 . -1108) T) ((-1239 . -797) NIL) ((-1239 . -800) NIL) ((-1007 . -855) 16836) ((-843 . -1108) T) ((-824 . -618) 16818) ((-871 . -21) T) ((-871 . -25) T) ((-804 . -731) T) ((-175 . -1229) T) ((-586 . -38) 16783) ((-523 . -38) 16748) ((-391 . -618) 16730) ((-336 . -102) T) ((-327 . -618) 16712) ((-170 . -289) 16670) ((-63 . -1225) T) ((-112 . -102) T) ((-877 . -1108) T) ((-175 . -561) T) ((-719 . -722) 16640) ((-297 . -131) 16523) ((-226 . -618) 16505) ((-226 . -619) 16435) ((-1011 . -644) 16374) ((-1290 . -1057) T) ((-1128 . -147) T) ((-637 . -1201) 16349) ((-736 . -915) 16328) ((-598 . -34) T) ((-652 . -107) 16312) ((-637 . -107) 16258) ((-1248 . -289) 16185) ((-736 . -653) 16110) ((-298 . -1225) T) ((-1187 . -1046) 16006) ((-949 . -623) 15983) ((-582 . -581) T) ((-582 . -532) T) ((-534 . -532) T) ((-1176 . -915) NIL) ((-1070 . -619) 15898) ((-1070 . -618) 15880) ((-958 . -618) 15862) ((-718 . -495) 15812) ((-347 . -102) T) ((-253 . -1064) 15709) ((-252 . -1064) 15606) ((-399 . -102) T) ((-31 . -1108) T) ((-958 . -619) 15467) ((-718 . -618) 15402) ((-1288 . -1218) 15371) ((-486 . -618) 15353) ((-486 . -619) 15214) ((-266 . -416) 15198) ((-248 . -416) 15182) ((-253 . -111) 15072) ((-252 . -111) 14962) ((-1183 . -653) 14887) ((-1182 . -653) 14784) ((-1176 . -653) 14636) ((-1134 . -653) 14561) ((-355 . -131) T) ((-82 . -446) T) ((-82 . -400) T) ((-1011 . -25) T) ((-1011 . -21) T) ((-878 . -1108) 14512) ((-40 . -1059) 14457) ((-877 . -722) 14409) ((-40 . -645) 14354) ((-383 . -293) T) ((-170 . -1010) 14305) ((-699 . -392) T) ((-1007 . -1005) 14289) ((-706 . -1120) T) ((-699 . -166) 14271) ((-1259 . -1108) T) ((-1238 . -1108) T) ((-319 . -1210) 14250) ((-319 . -1213) 14229) ((-1173 . -102) T) ((-319 . -965) 14208) ((-134 . -1120) T) ((-116 . -1120) T) ((-607 . -1273) 14192) ((-706 . -23) T) ((-607 . -1108) 14142) ((-319 . -95) 14121) ((-91 . -519) 14054) ((-175 . -367) T) ((-253 . -621) 13784) ((-252 . -621) 13514) ((-319 . -35) 13493) ((-613 . -494) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-972 . -102) T) ((-723 . -1108) T) ((-480 . -494) 13364) ((-412 . -644) 13312) ((-658 . -1046) 13208) ((-964 . -494) 13192) ((-359 . -1066) T) ((-356 . -1066) T) ((-348 . -1066) T) ((-266 . -1066) T) ((-248 . -1066) T) ((-876 . -619) NIL) ((-876 . -618) 13174) ((-1286 . -495) 13155) ((-1285 . -495) 13136) ((-1298 . -21) T) ((-1286 . -618) 13102) ((-1285 . -618) 13068) ((-576 . -1010) T) ((-736 . -731) T) ((-1298 . -25) T) ((-253 . -1057) 12998) ((-252 . -1057) 12928) ((-72 . -1225) T) ((-253 . -234) 12880) ((-252 . -234) 12832) ((-40 . -102) T) ((-916 . -1066) T) ((-1190 . -102) T) ((-128 . -494) 12814) ((-1183 . -731) T) ((-1182 . -731) T) ((-1176 . -731) T) ((-1176 . -796) NIL) ((-1176 . -799) NIL) ((-960 . -102) T) ((-927 . -102) T) ((-875 . -1059) 12801) ((-1134 . -731) T) ((-776 . -102) T) ((-677 . -102) T) ((-875 . -645) 12788) ((-551 . -618) 12770) ((-479 . -1108) T) ((-343 . -1120) T) ((-175 . -1120) T) ((-322 . -926) 12749) ((-1259 . -722) 12590) ((-877 . -173) T) ((-1238 . -722) 12404) ((-848 . -21) 12356) ((-848 . -25) 12308) ((-246 . -1157) 12292) ((-126 . -519) 12225) ((-412 . -25) T) ((-412 . -21) T) ((-343 . -23) T) ((-170 . -619) 11991) ((-170 . -618) 11973) ((-175 . -23) T) ((-649 . -291) 11950) ((-525 . -34) T) ((-904 . -618) 11932) ((-89 . -1225) T) ((-846 . -618) 11914) ((-813 . -618) 11896) ((-774 . -618) 11878) ((-682 . -618) 11860) ((-241 . -653) 11708) ((-1185 . -1108) T) ((-1181 . -1064) 11531) ((-1158 . -1225) T) ((-1133 . -1064) 11374) ((-859 . -1064) 11358) ((-1242 . -623) 11342) ((-1181 . -111) 11151) ((-1133 . -111) 10980) ((-859 . -111) 10959) ((-1232 . -855) T) ((-1248 . -619) NIL) ((-1248 . -618) 10941) ((-347 . -1160) T) ((-860 . -618) 10923) ((-1084 . -289) 10902) ((-80 . -1225) T) ((-1012 . -915) NIL) ((-613 . -289) 10878) ((-1211 . -519) 10811) ((-492 . -1225) T) ((-576 . -618) 10793) ((-480 . -289) 10772) ((-1219 . -651) 10682) ((-522 . -93) T) ((-1095 . -232) 10666) ((-218 . -1225) T) ((-1012 . -653) 10616) ((-964 . -289) 10593) ((-292 . -926) T) ((-822 . -310) 10572) ((-875 . -102) T) ((-787 . -232) 10556) ((-920 . -653) 10508) ((-716 . -651) 10458) ((-699 . -729) 10425) ((-640 . -21) T) ((-640 . -25) T) ((-612 . -21) T) ((-552 . -102) T) ((-347 . -38) 10390) ((-492 . -890) 10372) ((-492 . -892) 10354) ((-479 . -722) 10195) ((-218 . -890) 10177) ((-64 . -1225) T) ((-218 . -892) 10159) ((-612 . -25) T) ((-432 . -653) 10133) ((-1181 . -621) 9902) ((-492 . -1046) 9862) ((-877 . -519) 9774) ((-1133 . -621) 9566) ((-859 . -621) 9484) ((-218 . -1046) 9444) ((-241 . -34) T) ((-1008 . -1108) 9422) ((-585 . -1059) 9409) ((-569 . -1059) 9396) ((-500 . -1059) 9361) ((-1259 . -173) 9292) ((-1238 . -173) 9223) ((-585 . -645) 9210) ((-569 . -645) 9197) ((-500 . -645) 9162) ((-717 . -145) 9141) ((-717 . -147) 9120) ((-706 . -131) T) ((-136 . -470) 9097) ((-1155 . -618) 9029) ((-663 . -661) 9013) ((-128 . -289) 8988) ((-116 . -131) T) ((-482 . -1229) T) ((-613 . -609) 8964) ((-480 . -609) 8943) ((-340 . -339) 8912) ((-602 . -1108) T) ((-590 . -1108) T) ((-541 . -1108) T) ((-482 . -561) T) ((-1181 . -1057) T) ((-1133 . -1057) T) ((-859 . -1057) T) ((-241 . -796) 8891) ((-241 . -799) 8842) ((-241 . -798) 8821) ((-1181 . -329) 8798) ((-241 . -731) 8708) ((-964 . -19) 8692) ((-492 . -381) 8674) ((-492 . -342) 8656) ((-1133 . -329) 8628) ((-358 . -1282) 8605) ((-218 . -381) 8587) ((-218 . -342) 8569) ((-964 . -609) 8546) ((-1181 . -234) T) ((-1271 . -1108) T) ((-669 . -1108) T) ((-650 . -1108) T) ((-1198 . -1108) T) ((-1095 . -255) 8483) ((-591 . -651) 8443) ((-359 . -1108) T) ((-356 . -1108) T) ((-348 . -1108) T) ((-266 . -1108) T) ((-248 . -1108) T) ((-84 . -1225) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1198 . -615) 8378) ((-1238 . -519) 8238) ((-1149 . -1108) T) ((-1123 . -621) 8219) ((-484 . -1108) T) ((-1088 . -926) 8170) ((-1012 . -799) T) ((-484 . -615) 8149) ((-253 . -800) 8100) ((-253 . -797) 8051) ((-252 . -800) 8002) ((-40 . -1160) NIL) ((-252 . -797) 7953) ((-1012 . -796) T) ((-128 . -19) 7935) ((-1012 . -731) T) ((-704 . -1059) 7900) ((-979 . -799) T) ((-920 . -731) T) ((-916 . -1108) T) ((-128 . -609) 7875) ((-704 . -645) 7840) ((-91 . -494) 7824) ((-492 . -906) NIL) ((-898 . -618) 7806) ((-226 . -1064) 7771) ((-877 . -293) T) ((-218 . -906) NIL) ((-838 . -1120) 7750) ((-59 . -1108) 7700) ((-524 . -1108) 7678) ((-521 . -1108) 7628) ((-502 . -1108) 7606) ((-501 . -1108) 7556) ((-585 . -102) T) ((-569 . -102) T) ((-500 . -102) T) ((-479 . -173) 7487) ((-363 . -926) T) ((-357 . -926) T) ((-349 . -926) T) ((-226 . -111) 7443) ((-838 . -23) 7395) ((-432 . -731) T) ((-108 . -926) T) ((-40 . -38) 7340) ((-108 . -825) T) ((-586 . -353) T) ((-523 . -353) T) ((-841 . -289) 7319) ((-319 . -457) 7298) ((-316 . -457) T) ((-663 . -651) 7257) ((-607 . -519) 7190) ((-343 . -131) T) ((-175 . -131) T) ((-297 . -25) 7054) ((-297 . -21) 6937) ((-45 . -1201) 6916) ((-66 . -618) 6898) ((-55 . -102) T) ((-340 . -651) 6880) ((-45 . -107) 6830) ((-824 . -621) 6814) ((-1276 . -102) T) ((-1275 . -102) 6764) ((-1267 . -653) 6689) ((-1260 . -653) 6586) ((-1239 . -653) 6438) ((-1110 . -430) 6422) ((-1110 . -372) 6401) ((-391 . -621) 6385) ((-327 . -621) 6369) ((-1239 . -915) NIL) ((-1206 . -618) 6351) ((-1071 . -1225) T) ((-1095 . -651) 6261) ((-1070 . -1064) 6248) ((-1070 . -111) 6233) ((-958 . -1064) 6076) ((-958 . -111) 5905) ((-787 . -651) 5815) ((-785 . -651) 5725) ((-628 . -1059) 5712) ((-669 . -722) 5696) ((-628 . -645) 5683) ((-486 . -1064) 5526) ((-482 . -367) T) ((-466 . -651) 5482) ((-459 . -651) 5392) ((-226 . -621) 5342) ((-359 . -722) 5294) ((-356 . -722) 5246) ((-117 . -1059) 5191) ((-348 . -722) 5143) ((-266 . -722) 4992) ((-248 . -722) 4841) ((-1104 . -93) T) ((-1098 . -93) T) ((-117 . -645) 4786) ((-1081 . -93) T) ((-949 . -656) 4770) ((-1074 . -93) T) ((-486 . -111) 4599) ((-1065 . -1108) 4577) ((-1044 . -93) T) ((-949 . -377) 4561) ((-249 . -102) T) ((-1027 . -93) T) ((-74 . -618) 4543) ((-969 . -47) 4522) ((-715 . -102) T) ((-704 . -102) T) ((-1 . -1108) T) ((-626 . -1120) T) ((-1096 . -618) 4504) ((-631 . -93) T) ((-1084 . -618) 4486) ((-916 . -722) 4451) ((-126 . -494) 4435) ((-488 . -93) T) ((-626 . -23) T) ((-395 . -23) T) ((-87 . -1225) T) ((-219 . -93) T) ((-613 . -618) 4417) ((-613 . -619) NIL) ((-480 . -619) NIL) ((-480 . -618) 4399) ((-355 . -25) T) ((-355 . -21) T) ((-50 . -651) 4358) ((-516 . -1108) T) ((-512 . -1108) T) ((-127 . -312) 4296) ((-121 . -312) 4234) ((-601 . -653) 4208) ((-600 . -653) 4133) ((-586 . -651) 4083) ((-226 . -1057) T) ((-523 . -651) 4013) ((-383 . -1010) T) ((-226 . -244) T) ((-226 . -234) T) ((-1070 . -621) 3985) ((-1070 . -623) 3966) ((-964 . -619) 3927) ((-964 . -618) 3839) ((-958 . -621) 3628) ((-875 . -38) 3615) ((-718 . -621) 3565) ((-1259 . -293) 3516) ((-1238 . -293) 3467) ((-486 . -621) 3252) ((-1128 . -457) T) ((-507 . -855) T) ((-319 . -1147) 3231) ((-1007 . -147) 3210) ((-1007 . -145) 3189) ((-500 . -312) 3176) ((-298 . -1201) 3155) ((-1193 . -618) 3137) ((-1192 . -618) 3119) ((-1191 . -618) 3101) ((-876 . -1064) 3046) ((-482 . -1120) T) ((-139 . -840) 3028) ((-114 . -840) 3009) ((-628 . -102) T) ((-1211 . -494) 2993) ((-253 . -372) 2972) ((-252 . -372) 2951) ((-1070 . -1057) T) ((-298 . -107) 2901) ((-130 . -618) 2883) ((-128 . -619) NIL) ((-128 . -618) 2827) ((-117 . -102) T) ((-958 . -1057) T) ((-876 . -111) 2756) ((-482 . -23) T) ((-486 . -1057) T) ((-1070 . -234) T) ((-958 . -329) 2725) ((-486 . -329) 2682) ((-359 . -173) T) ((-356 . -173) T) ((-348 . -173) T) ((-266 . -173) 2593) ((-248 . -173) 2504) ((-969 . -1046) 2400) ((-522 . -495) 2381) ((-740 . -1046) 2352) ((-522 . -618) 2318) ((-1113 . -102) T) ((-1100 . -618) 2277) ((-1042 . -618) 2259) ((-699 . -1059) 2209) ((-1288 . -151) 2193) ((-1286 . -621) 2174) ((-1285 . -621) 2155) ((-1280 . -618) 2137) ((-1267 . -731) T) ((-699 . -645) 2087) ((-1260 . -731) T) ((-1239 . -796) NIL) ((-1239 . -799) NIL) ((-170 . -1064) 1997) ((-916 . -173) T) ((-876 . -621) 1927) ((-1239 . -731) T) ((-1011 . -346) 1901) ((-224 . -651) 1853) ((-1008 . -519) 1786) ((-848 . -855) 1765) ((-569 . -1160) T) ((-479 . -293) 1716) ((-601 . -731) T) ((-365 . -618) 1698) ((-325 . -618) 1680) ((-423 . -1046) 1576) ((-600 . -731) T) ((-412 . -855) 1527) ((-170 . -111) 1423) ((-838 . -131) 1375) ((-742 . -151) 1359) ((-1275 . -312) 1297) ((-492 . -310) T) ((-383 . -618) 1264) ((-525 . -1018) 1248) ((-383 . -619) 1162) ((-218 . -310) T) ((-141 . -151) 1144) ((-719 . -289) 1123) ((-492 . -1030) T) ((-585 . -38) 1110) ((-569 . -38) 1097) ((-500 . -38) 1062) ((-218 . -1030) T) ((-876 . -1057) T) ((-841 . -618) 1044) ((-832 . -618) 1026) ((-830 . -618) 1008) ((-821 . -915) 987) ((-1299 . -1120) T) ((-1248 . -1064) 810) ((-860 . -1064) 794) ((-876 . -244) T) ((-876 . -234) NIL) ((-694 . -1225) T) ((-1299 . -23) T) ((-821 . -653) 719) ((-555 . -1225) T) ((-423 . -342) 703) ((-576 . -1064) 690) ((-1248 . -111) 499) ((-706 . -644) 481) ((-860 . -111) 460) ((-385 . -23) T) ((-170 . -621) 238) ((-1198 . -519) 30) ((-881 . -1108) T) ((-686 . -1108) T) ((-681 . -1108) T) ((-667 . -1108) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index d754c03e..6040b2ff 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3479296386)
-(4447 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3479376209)
+(4450 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -356,7 +356,8 @@
|PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2|
|PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement|
|IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product|
- |Property| |PropositionalFormula| |PropositionalLogic|
+ |Property| |PropositionalFormula| |PropositionalFormulaFunctions1|
+ |PropositionalFormulaFunctions2| |PropositionalLogic|
|PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst|
|Partition| |PowerSeriesCategory&| |PowerSeriesCategory|
|PlottableSpaceCurveCategory| |PolynomialSetCategory&|
@@ -483,667 +484,663 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |c06fpf| |outputArgs| |lifting1| |showClipRegion|
- |pi| |rational| |primitiveElement| |complexForm| |cot2tan| |part?|
- |preprocess| |dualSignature| |overlabel| |infinity| |quasiComponent|
- |fillPascalTriangle| |rk4qc| |imaginary| |divideIfCan!|
- |noncommutativeJordanAlgebra?| |rquo| |component| |deepestInitial|
- |cond| |bipolarCylindrical| |measure| |lazyIntegrate| |minGbasis|
- |setAdaptive| |freeOf?| |principalIdeal| |OMencodingUnknown|
- |generate| |modifyPointData| |log10| |outputSpacing| |tablePow|
- |e01bef| |map| |s17def| |bivariateSLPEBR| |expextendedint|
- |explicitlyEmpty?| |iicosh| |f04mbf| |bitand| |kernel|
- |partialFraction| |elRow2!| |branchIfCan| |e02def| |besselY|
- |previous| |isQuotient| |incrementBy| |BasicMethod|
- |squareFreeFactors| |column| |lllp| |outerProduct|
- |complexEigenvectors| |bitior| |draw| |f02agf|
- |dimensionOfIrreducibleRepresentation| |arity|
- |tableForDiscreteLogarithm| |numberOfImproperPartitions|
- |inverseIntegralMatrix| |clearTable!| |setfirst!| |nextsousResultant2|
- |expand| |algebraicDecompose| |mapSolve| |acotIfCan| |changeMeasure|
- |ran| |OMputEndAtp| |associatedEquations| |currentEnv|
- |shanksDiscLogAlgorithm| |polyRicDE| |filterWhile| |printHeader|
- |multiEuclidean| |rootKerSimp| |clipBoolean| |UpTriBddDenomInv| |cCot|
- |linearDependence| |sylvesterMatrix| |fortranCarriageReturn|
- |generalizedInverse| |LyndonCoordinates| |filterUntil| |symbol|
- |cCsch| |attributeData| |safeCeiling| |setStatus| UP2UTS |convert|
- |completeEchelonBasis| |radicalSimplify| |factors| |c06fqf|
- |monomRDEsys| |legendre| |select| |expression| |asinhIfCan|
- |makeObject| |setright!| |minIndex| |charpol| |e01bff|
- |brillhartIrreducible?| |ord| |height| |bigEndian|
- |wordsForStrongGenerators| |normInvertible?| |addMatchRestricted|
- |overbar| |integer| |dominantTerm| |coef| |rational?| |tanh2coth|
- |coerceImages| |nextPrime| |noKaratsuba| |coth2tanh| |lowerPolynomial|
- |before?| |internalZeroSetSplit| |coerceP| |exprex| |iipow|
- |setProperty| |initials| |rk4f| |startTableGcd!| |elaborateFile|
- |expenseOfEvaluationIF| |jordanAdmissible?| |lquo| |ranges|
- |iteratedInitials| |redPol| |toroidal| |weight| |nlde| ** |lepol|
- |leastPower| |operators| |omError| |showRegion| |subspace| |permanent|
- |solveid| |outputGeneral| |irreducibleRepresentation| |adaptive?|
- |solveLinearPolynomialEquationByRecursion| |primlimitedint|
- |explicitEntries?| |iitanh| |LagrangeInterpolation|
- |extendedEuclidean| |gcdPrimitive| |getDatabase| |asecIfCan| |e02dff|
- |s17dgf| |PollardSmallFactor| |makeRecord| |univariatePolynomialsGcds|
- |row| |f04mcf| |lo| |cSech| |f02ajf| |elColumn2!| |LowTriBddDenomInv|
- |besselI| |subSet| |resultantnaif| |usingTable?| |cycleSplit!| |incr|
- |lllip| |acoshIfCan| |acsch| |label| |quadratic| |safeFloor|
- |changeThreshhold| |highCommonTerms| |factorsOfCyclicGroupSize|
- |initial| |arrayStack| |reflect| |integralMatrix| |returnType!|
- |limitPlus| |leftRank| |e01bgf| UTS2UP |cTan| |OMputEndAttr|
- |fortranLiteral| |imports| |bezoutMatrix| |ricDsolve| |iidsum|
- |domainTemplate| |style| |fixedPoints| |solveLinear| |denominator|
- |insertMatch| |dmpToHdmp| |nilFactor| |LyndonBasis| |gbasis|
- |brillhartTrials| |maxIndex| |solve1| |stopTableGcd!|
- |createRandomElement| Y |c06frf| |normFactors| |prime| |baseRDEsys|
- |cycles| |rationalIfCan| |makeVariable| |prevPrime| |karatsubaOnce|
- |removeCosSq| |latex| |internalAugment| |littleEndian| |coerceL|
- |e02agf| |basicSet| |checkRur| |aromberg| |elaborate| |accuracyIF|
- |comparison| |mindegTerm| |derivative| |deepestTail|
- |stoseInvertible?reg| |critM| |tail| |conical| |acscIfCan| |powern|
- |prinshINFO| |idealiser| |constructor| |rules| |mainKernel|
- |lieAdmissible?| |powerSum| |makeViewport3D| |euclideanSize|
- |initializeGroupForWordProblem| |testModulus| |outputFixed| |simplify|
- |setScreenResolution| |factorByRecursion| |explimitedint| |nothing|
- |errorInfo| |iicoth| |pointLists| |cCoth| |e02ajf| |option|
- |symmetricGroup| |safetyMargin| |numericalOptimization| |e02gaf|
- |s17dhf| |showSummary| |matrixDimensions|
- |removeRoughlyRedundantFactorsInContents| |showTheFTable| |psolve|
- |atanhIfCan| |stoseInvertible?| |f02akf| |fractionFreeGauss!| |odd?|
- |besselK| |maxColIndex| |printingInfo?| |f04qaf|
- |resultantEuclideannaif| |split!| |simplifyPower| |cubic| |e01bhf|
- |selectMultiDimensionalRoutines| |sizeMultiplication| |showAttributes|
- |fortranLiteralLine| |concat!| |mesh?| |argumentList!| |iidprod|
- |cCosh| |unknown| |rightRank| |startTableInvSet!| LODO2FUN
- |reducedSystem| |macroExpand| |reify| |reduceBasisAtInfinity|
- |addMatch| |regularRepresentation| |rightTrim| |critT| |asechIfCan|
- |lSpaceBasis| |inspect| |finiteBound| |OMputEndBind| |sequence|
- |c06fuf| |triangulate| |quote| |leftTrim| |cycle| |factorial| |entry?|
- |toScale| |cAcsch| |cyclicSubmodule| |hdmpToDmp| |member?|
- |zeroDimensional?| |coerceS| |e02ahf| |critB| |setvalue!|
- |innerEigenvectors| |sinhIfCan| |karatsuba| |say| |npcoef| F |product|
- |weighted| |head| |stoseInvertibleSetreg| |e02akf| |infRittWu?|
- |primes| |htrigs| |intermediateResultsIF| |distribute|
- |possiblyInfinite?| |subtractIfCan| |viewport3D| |sizeLess?|
- |movedPoints| |HenselLift| |e01daf| |asimpson| |idealiserMatrix|
- |equality| |primextintfrac| |iisech| |more?| |cTanh| |function|
- |stoseInvertibleSet| |alternatingGroup| |stopTableInvSet!| |mapdiv|
- |remove| |multivariate| |screenResolution| |jacobiIdentity?|
- |removeRedundantFactorsInContents| |constantOperator| |clearTheFTable|
- |acothIfCan| |number?| |fortran| |sortConstraints| |f02awf|
- |outputFloating| |s17dlf| |variables| |result| |errorKind|
- |makingStats?| |elementary| |semiResultantEuclideannaif| |setlast!|
- |open| |cSinh| |cAsech| |quartic| |goodnessOfFit| |last| |eval|
- |airyAi| |reset| |processTemplate| |matrixConcat3D| |makeGraphImage|
- |endSubProgram| |assoc| |acschIfCan| |doubleRank| |null| |invertIfCan|
- |coshIfCan| |getMultiplicationMatrix| |c06gbf| |minColIndex|
- |traceMatrix| |wrregime| |finiteBasis| |sec2cos| |pattern|
- |selectNonFiniteRoutines| |not| |simplifyExp| |duplicates?| |write|
- |getMatch| |cycleTail| |frobenius| |f07adf| |multinomial| |hclf|
- |indices| |and| RF2UTS |OMputEndBVar| |save| |functorData| |enumerate|
- |supersub| |mesh| |extract!| |critBonD| |operations| |setchildren!|
- |rightRemainder| |or| |taylor| |standardBasisOfCyclicSubmodule|
- |readBytes!| |LiePolyIfCan| |normalizeAtInfinity| |mdeg|
- |wordInGenerators| |pointColorPalette| |getCurve| |e01saf| |xor|
- |laurent| |separate| |functionIsFracPolynomial?| |listexp|
- |solveInField| |viewDeltaYDefault| |completeHensel| |e02baf|
- |parseString| |message| |stosePrepareSubResAlgo| |case|
- |subscriptedVariables| |puiseux| |primlimintfrac| |pToHdmp| |iicsch|
- |fglmIfCan| |stoseSquareFreePart| |sumOfSquares| |f02axf|
- |selectsecond| |Zero| |moduleSum| |fTable|
- |removeRedundantFactorsInPols| |explicitlyFinite?| |rdHack1| |hi|
- |seriesSolve| |cAcoth| |atrapezoidal| |One| |inv| |setMaxPoints|
- |powerAssociative?| |extractIfCan| |setPosition| |pdct| |cAcsc|
- |rewriteSetWithReduction| |tanhIfCan| |lazyGintegrate| |ground?|
- |s18acf| |makeFR| |OMReadError?| |currentSubProgram|
- |setVariableOrder| |parabolic| |pushdown| |exp1| |ground|
- |simplifyLog| |lcm| |airyBi| |setelt!| |failed?| |alternating|
- |randomLC| |permutation| |genericLeftTrace| |writable?| |whatInfinity|
- |getMultiplicationTable| |leadingMonomial| |graphImage|
- |computePowers| |padicFraction| |sech2cosh| |append| |copy!|
- |rightQuotient| |mapGen| |leadingCoefficient| |rightUnit| |shuffle|
- |presuper| |rdregime| |critMTonD1| |e01sbf| |f01rdf|
- |primitiveMonomials| |gcd| |selectSumOfSquaresRoutines| |elt| |output|
- |OMputEndError| |lyndon| |c05adf| |cCsc| |f07aef| |mvar| |e02bbf|
- |hermite| |false| |stoseInternalLastSubResultant| |magnitude|
- |reductum| |areEquivalent?| |OMgetVariable| |bounds| |polygon?|
- |viewDeltaXDefault| |knownInfBasis| |wordInStrongGenerators|
- |pseudoDivide| |factorAndSplit| |poisson| |iiasinh|
- |complementaryBasis| |forLoop| |coleman| |setClipValue| |satisfy?|
- |central?| |removeConstantTerm| |medialSet| |palgint0|
- |wronskianMatrix| |constantToUnaryFunction| GF2FG |basis| |d02gaf|
- |mapUnivariate| |dictionary| |removeRoughlyRedundantFactorsInPols|
- |groebner| |powers| |cAsec| |fractRagits| |ScanRoman|
- |internalSubPolSet?| |maxPoints| |leadingSupport| |tanSum|
- |autoReduced?| |pushup| |vedf2vef| |rroot| |s18adf| |fortranComplex|
- |bernoulli| |iFTable| |subscript| |parabolicCylindrical| |sin2csc|
- |perfectNthRoot| |oddintegers| |categories| |subNode?| |shufflein|
- |inverse| |unit| |addPoint2| |stirling1|
- |genericLeftMinimalPolynomial| |copyInto!| |cosIfCan| |primitive?|
- |has?| |c05nbf| |integralDerivationMatrix| |semicolonSeparate|
- |critMonD1| |padicallyExpand| |makeop| |cyclicEntries| |leftUnit|
- |high| |binaryFunction| |constantCoefficientRicDE| |e02bcf| |f01ref|
- |shiftRoots| |swapColumns!| |exprHasLogarithmicWeights| |OMgetString|
- |inGroundField?| |binaryTournament| |mainMonomials| |completeHermite|
- |orbits| |addBadValue| |roman| |host| |rightOne| |lyndon?|
- |getPickedPoints| |axes| |plusInfinity| |rootSplit| |inverseColeman|
- |d02gbf| |stFuncN| |redmat| |mkPrim| |geometric| |bfEntry|
- |startPolynomial| |minusInfinity| |sin?| |option?|
- |internalInfRittWu?| |s17agf| |removeRoughlyRedundantFactorsInPol|
- |Hausdorff| |iiacos| |drawToScale| |hasSolution?| FG2F |df2st|
- |normalElement| |Beta| |dioSolve| |tanAn| |unitNormal| |rubiksGroup|
- |green| |approxNthRoot| |wholeRagits| |ScanFloatIgnoreSpaces| |key|
- |createMultiplicationMatrix| |fortranLogical| |shrinkable|
- |showIntensityFunctions| |resultantReduit| |terms| |initiallyReduced?|
- |qroot| |tanIfCan| |OMputBind| |sequences| |chebyshevT| |addPoint|
- |scripted?| |clipParametric| |paraboloidal| |filename| |mapmult|
- |cyclicCopy| |transform| |rightMinimalPolynomial| |c05pbf|
- |integralRepresents| |flagFactor| |type| |dimensionsOf|
- |leftRankPolynomial| |sorted?| |degreePartition|
- |antisymmetricTensors| |OMgetSymbol| |low| |trailingCoefficient|
- |commaSeparate| |upperCase!| |opeval| |numberOfFractionalTerms|
- |badValues| |parse| |lowerCase?| |numberOfComputedEntries|
- |transcendent?| |makeFloatFunction| |changeVar| |pdf2ef| |f02aaf|
- |swapRows!| |d02kef| |next| |rightFactorIfCan| |leftOne| |ridHack1|
- |rischDE| |mainCoefficients| |linSolve| |smith| |recoverAfterFail|
- |internalSubQuasiComponent?| |combineFeatureCompatibility|
- |intPatternMatch| |Frobenius| |binaryTree| |controlPanel| |red|
- |ratDenom| |f2st| |fixedPointExquo| |trueEqual| |bfKeys| |cycleElt|
- |newLine| |interReduce| |checkPrecision| |reducedDiscriminant|
- |squareFreePart| |zeroVector| |range| |perfectSquare?| |regime|
- |iiatan| |adaptive| |physicalLength!| |tanNa| EQ |sinh2csch|
- |clipWithRanges| F2FG |minimalPolynomial| |cotIfCan| |s17ahf|
- |fortranInteger| |chebyshevU| |lfextendedint| |colorDef| |sumSquares|
- |froot| |radix| |lhs| |cyclic?| |digamma| |isConnected?|
- |permutations| |youngGroup| |resetNew| |even?| |factorOfDegree|
- |headReduced?| |ScanFloatIgnoreSpacesIfCan| |rhs|
- |createLowComplexityTable| |c06eaf| |transcendentalDecompose| |expint|
- |resultantReduitEuclidean| |restorePrecision| |ellipticCylindrical|
- |retractable?| |deriv| |OMputBVar| |leftMinimalPolynomial| |subset?|
- |sqfrFactor| |merge| |upperCase| |generic| |LiePoly| |d02raf| |pack!|
- |OMgetType| |algebraic?| |integralCoordinates| |pile| |pdf2df| |rule|
- |nthFractionalTerm| |evaluateInverse| |subQuasiComponent?|
- |createGenericMatrix| |rightZero| |rst| |unaryFunction| |ratDsolve|
- |LyndonWordsList| |ldf2lst| |f02abf| |vertConcat| |index| |upperCase?|
- |primintegrate| |interpolate| |normalizeIfCan| |leastMonomial|
- |whitePoint| |completeSmith| |perfectSqrt| |showTheRoutinesTable|
- |leftFactorIfCan| |roughBasicSet| |transcendenceDegree| |rischDEsys|
- |viewpoint| |BumInSepFFE| |ratPoly| |center| |secIfCan| |ode1|
- |sparsityIF| |copies| |initTable!| |setLength!| |iiacot|
- |numberOfHues| |colorFunction| |zeroSquareMatrix| |pair|
- |complexNormalize| |factorList| |computeCycleLength| |fortranDouble|
- |physicalLength| |lflimitedint| |value| |euclideanNormalForm| |closed|
- |explogs2trigs| |factorsOfDegree| |position!| |sqfree| |atoms|
- |cyclotomic| |semiResultantReduitEuclidean| |intensity|
- |numberOfCycles| |randnum| |ListOfTerms| |nthr| |s17ajf| |c06ebf|
- |connectTo| |figureUnits| |symFunc| |antiCommutator|
- |stronglyReduced?| |d03edf| |numericalIntegration| |polygamma|
- |symmetricDifference| |internalDecompose| |primeFactor| |lexGroebner|
- |entry| |lowerCase!| |prolateSpheroidal|
- |removeSuperfluousQuasiComponents| |gderiv|
- |createLowComplexityNormalBasis| |associatorDependence| |sh| |diff|
- |paren| |df2ef| |rightUnits| |sdf2lst| |quickSort| |OMputError|
- |leftZero| |OMencodingBinary| |compiledFunction| |deepCopy|
- |LyndonWordsList1| |firstNumer| |approxSqrt| |horizConcat|
- |complexLimit| |expintegrate| |frst| |yCoordinates| |mainMonomial|
- |uniform| |f02adf| |evaluate| |cscIfCan| |symmetricTensors| |sn|
- |reverse| |crushedSet| |nullSpace| |indicialEquationAtInfinity|
- |dimensions| |multiplyExponents| |diophantineSystem| |deleteRoutine!|
- |complexElementary| |alphabetic?| |printInfo!| |extensionDegree|
- |iiasec| |polCase| |yellow| |rootPower| |call| |pascalTriangle| |ode2|
- |monicDecomposeIfCan| |sayLength| |fortranReal| |lfinfieldint|
- |monomRDE| |euclideanGroebner| |leaves| |identitySquareMatrix| |tree|
- |curveColor| |PDESolve| |stiffnessAndStabilityFactor| |flexibleArray|
- |makeResult| |capacity| |divide| |cyclePartition| |trigs2explogs|
- |eof?| |d03eef| |listConjugateBases| |c06ecf| |euler| |symbolTableOf|
- |lighting| |commutator| |reseed| |firstUncouplingMatrix| |subCase?|
- |inconsistent?| |normalizedAssociate| |difference| |computeCycleEntry|
- |nthFlag| |lowerCase| |getlo| |reduced?| |rk4| |init| |s17akf|
- |decompose| |mirror| |putColorInfo| |bracket| |fi2df|
- |oblateSpheroidal| |generateIrredPoly| |compose| |Gamma| |setRow!|
- |lieAlgebra?| |corrPoly| |totalGroebner| |laurentIfCan| |leftUnits|
- |heapSort| |asinIfCan| |representationType| |swap| |OMencodingSGML|
- |inverseIntegralMatrixAtInfinity| |quasiMonic?| |iifact| |generator|
- |firstDenom| |squareTop| |trigs| |OMputObject| |tanintegrate|
- |lazyEvaluate| |distFact| |resize| |factorGroebnerBasis| |f02aef|
- |rangePascalTriangle| |conjug| |limit|
- |rewriteSetByReducingWithParticularGenerators| |nullity| |iiacsc|
- |reduceLODE| |coerceListOfPairs| |csubst| |leftFactor|
- |getExplanations| |tensorProduct| |setnext!| |lfintegrate|
- |startStats!| |search| |baseRDE| |associator| |d03faf| |ode|
- |hexDigit?| |stack| |byteBuffer| |external?| |elseBranch| |rem|
- |Lazard| |KrullNumber| |inrootof| |pointColor|
- |removeSuperfluousCases| |monicCompleteDecompose| |quo| |is?|
- |fixedDivisor| |argumentListOf| |clipSurface| |mat| |printStatement|
- |gethi| |inputBinaryFile| |stiffnessAndStabilityOfODEIF| |condition|
- |c06ekf| |normalize| |findConstructor| |nthExponent| |cAcosh|
- |makeSeries| |complexExpand| |integral| |matrixGcd| |appendPoint|
- |div| |prod| |sechIfCan| |queue| |rk4a| |acosIfCan| |numFunEvals|
- |getProperty| |integralBasis| |lifting| |expressIdealMember| |exquo|
- |dim| |laurentRep| |collectQuasiMonic| |addiag| |real?| |s17dcf|
- |checkForZero| |infieldIntegrate| |f04maf| ~= |monic?| |iibinom|
- |bindings| |shellSort| |sizePascalTriangle| |besselJ| |extendedint|
- |quasiMonicPolynomials| |llprop| |move| |#| |groebnerFactorize|
- |matrix| |genericRightNorm| |createPrimitiveElement| |dec|
- |probablyZeroDim?| |less?| |iisinh| |integralMatrixAtInfinity| ~
- |coercePreimagesImages| |logpart| |getGoodPrime| |delay| |concat|
- |OMputEndApp| |double?| |untab| |lfextlimint| |identification|
- |complexEigenvalues| |f01mcf| |rightNorm| |color| |linearlyDependent?|
- |rootOfIrreduciblePoly| |dark| |singRicDE| |Lazard2| |printInfo|
- |numberOfVariables| |determinant| |curryLeft| |writeLine!|
- |clearCache| |permutationRepresentation| |coefChoose| |OMgetEndBind|
- |level| |neglist| |droot| |beauzamyBound| |OMsupportsCD?| |escape|
- |univcase| |currentScope| |graeffe| |contains?| |cAsinh| |putProperty|
- |multiple?| |floor| |divideIfCan| |applyRules| |powmod| |rur|
- |subResultantGcdEuclidean| |substring?| |cschIfCan| |block| |d01gaf|
- |integrate| |char| |systemSizeIF| |scopes| |failed|
- |localIntegralBasis| |implies| |internal?| |rationalPower|
- |mappingMode| |recolor| |stopTable!| |logGamma| |primeFrobenius|
- |limitedIntegrate| |octon| |suffix?| |iiperm| |nthRoot| |repSq|
- |squareFree| |vspace| |hasHi| |univariate?| |bat1| |maximumExponent|
- |traverse| |credPol| |removeZero| |edf2efi| |monomials|
- |functionIsContinuousAtEndPoints| |derivationCoordinates|
- |rationalPoints| |compile| |write!| |userOrdered?| |writeUInt8!|
- |prefix?| |status| |listRepresentation| |cartesian| |ratpart|
- |numericIfCan| |gcdcofactprim| |invertibleElseSplit?| |ffactor|
- |OMgetEndBVar| |denomLODE| |lazyPquo| |genericRightTrace| |hue|
- |findCycle| |minrank| |viewWriteAvailable| |consnewpol|
- |getSyntaxFormsFromFile| |noLinearFactor?| |perspective| |chiSquare1|
- |second| |callForm?| |f01qcf| |leftNorm| |sign| |erf| |s15aef| |float|
- |myDegree| |create| |iicos| |bandedHessian| |unary?| |third| |badNum|
- |bombieriNorm| |OMsupportsSymbol?| |sumOfDivisors|
- |numberOfComponents| |pushNewContour| |qualifier| |inf|
- |LazardQuotient2| |unmakeSUP| |diagonalProduct| |constantRight|
- |generic?| |absolutelyIrreducible?| |roughBase?| |void| |localUnquote|
- |hypergeometric0F1| |semiSubResultantGcdEuclidean2| |graphs|
- |mkIntegral| |iroot| |dilog| |d01gbf| |ceiling| |OMclose|
- |getOperator| |pleskenSplit| |eigenvalues| |zeroDimPrime?| |root?|
- |infix?| |generalPosition| |putProperties| |exprToGenUPS|
- |supDimElseRittWu?| |multiplyCoefficients| |computeBasis| |sin|
- |discreteLog| |extendedIntegrate| |pointPlot| |mulmod| |mask|
- |maxPoints3D| |drawComplex| |returns| |cos| |linearlyDependentOverZ?|
- |hspace| |radicalEigenvalues| |univariatePolynomials| |bat|
- |writeInt8!| |merge!| |s21bbf| |alphabetic| |dfRange| |categoryMode|
- |expPot| |expr| |one?| |tan| |read!| |largest| |rowEch| |ODESolve|
- |extractSplittingLeaf| |mkAnswer| |fractRadix| |cot| |isPlus|
- |purelyAlgebraicLeadingMonomial?| |fmecg| |qfactor| |OMgetEndError|
- |lazyPrem| |defineProperty| |nextNormalPrimitivePoly|
- |functionIsOscillatory| |initiallyReduce| |complexNumericIfCan|
- |shade| |sec| |var1StepsDefault| GE |nonSingularModel| |nsqfree|
- |surface| |double| |zoom| |OMgetObject| |polar| |getIdentifier|
- |lintgcd| |repeating?| |nonQsign| |csc| |log| GT |normDeriv2|
- |enterInCache| |iitan| |indicialEquations| |factor1| |rightTrace|
- |rootBound| |genericRightMinimalPolynomial| |sumOfKthPowerDivisors|
- |variable| |minset| |asin| LE |findBinding| |mainExpression|
- |insertRoot!| |qinterval| |exponential| |f01qdf| |s17acf| |iterators|
- BY |OMunhandledSymbol| |quoted?| |trivialIdeal?| |acos| LT |arbitrary|
- |rotatez| |jacobian| |semiSubResultantGcdEuclidean1| |nullary?|
- |constantLeft| |mix| |d02bbf| |create3Space| |nil?| |atan|
- |eigenvector| |zeroDimPrimary?| |LazardQuotient| |leaf?| |makeSUP|
- |hexDigit| |diagonal| |norm| |algebraicSort| |localAbs| |acot|
- |varselect| |calcRanges| |decreasePrecision| |graphStates| |radPoly|
- |size?| |genus| |quoByVar| |linearDependenceOverZ| |superHeight|
- |asec| |linear?| |tab1| |reciprocalPolynomial| |writeByte!| |quotient|
- |drawComplexVectorField| |goto| |dflist| |splitSquarefree|
- |OMsetEncoding| |acsc| |iomode| |UP2ifCan| |rowEchLocal| |constDsolve|
- |declare!| |setMinPoints3D| |qPot| |voidMode| |irDef| |coord|
- |algebraicCoefficients?| |sinh| |makeYoungTableau| |OMgetEndObject|
- |coordinate| |pquo| |closeComponent| |s21bcf| |wholeRadix|
- |eigenMatrix| |isTimes| |nthRootIfCan| |var2StepsDefault| |cosh|
- |algSplitSimple| |permutationGroup| |intChoose| |plenaryPower| NOT
- |rotate| |squareMatrix| |variable?| |headReduce| |FormatArabic|
- |direction| |commonDenominator| |tanh| |iicot| |currentCategoryFrame|
- |contours| |indicialEquation| OR |nextPrimitiveNormalPoly|
- |cylindrical| |changeName| |singleFactorBound| |repeating|
- |HermiteIntegrate| |coth| |setColumn!| |binarySearchTree|
- |changeWeightLevel| |interval| AND |OMgetEndApp| |rightRankPolynomial|
- |leftTrace| |inR?| |hex| |collectUpper| |rotatey|
- |generalizedEigenvector| |bandedJacobian| |keys|
- |discriminantEuclidean| |symmetricProduct| |d02bhf| |doubleDisc|
- |OMreceive| |depth| |s17adf| |buildSyntax| |primaryDecomp| |kmax|
- |subResultantChain| |outputForm| |chiSquare| |f01qef| |twist|
- |moreAlgebraic?| |universe| |nextSublist| |increasePrecision|
- |fixPredicate| |linearPolynomials| |debug| |segment| |graphState|
- |parents| |vectorise| |diagonalMatrix| |mightHaveRoots|
- |solveLinearlyOverQ| |subHeight| |outputAsScript| |tab| |maxrow| D
- |rootRadius| |isOpen?| |rootPoly| |eq?| |df2mf| |coefficients|
- |getZechTable| |normalDenom| |close!| |anfactor| |nextSubsetGray|
- |rowEchelonLocal| |zeroDim?| |repeatUntilLoop| |setRealSteps| |irCtor|
- |OMputApp| |purelyTranscendental?| |OMgetInteger| |partitions|
- |mathieu23| |prem| |s21bdf| |noValueMode| |lookup| |expIfCan|
- |anticoord| |tubePointsDefault| |c02aff| |characteristicSerie|
- |showTheIFTable| |drawStyle| |minPoints3D| |cycleRagits| |isExpt|
- |createThreeSpace| |setleaves!| |normalise| |rotatex|
- |structuralConstants| |iisec| |modifyPoint| |transpose|
- |stronglyReduce| |quadraticNorm| |ScanArabic| |digit| |getConstant|
- |generalizedEigenvectors| |parts| |hyperelliptic| |contract| |unit?| *
- |symmetricPower| |spherical| |isList| |recip| |palgint|
- |clearDenominator| |ksec| |patternMatch| |denomRicDE|
- |semiDiscriminantEuclidean| |factorFraction| |genericLeftNorm|
- |someBasis| |d02cjf| |exprHasWeightCosWXorSinWX| |collect|
- |properties| |optimize| |bivariate?| |lex| |nor| |argscript| |extend|
- |polyred| |OMsend| |subTriSet?| |every?| |solve| |translate| |reopen!|
- |tableau| |bits| |duplicates| |goodPoint| = |f01rcf| |ldf2vmf|
- |setsubMatrix!| |complement| |s17aef| |fortranCharacter| |OMgetFloat|
- |print| |outputBinaryFile| |halfExtendedSubResultantGcd2| |inRadical?|
- |scalarMatrix| |irVar| |refine| |doubleFloatFormat| |overset?|
- |schwerpunkt| |resolve| |lyndonIfCan| |conjugates| |operation|
- |normalizedDivide| < |tValues| |doublyTransitive?| |logIfCan|
- |stFunc1| |totalfract| |outputAsTex| |c02agf| |binomial| |supRittWu?|
- |makeViewport2D| |fortranCompilerName| > |whileLoop| |setImagSteps|
- |cyclicParents| |createZechTable| |purelyAlgebraic?| |coordinates|
- |characteristicSet| |firstSubsetGray| |outlineRender| <= |trim|
- |jokerMode| |infinityNorm| |normal?| |OMputAtp| |tubeRadiusDefault|
- |identity| |eigenvectors| |iicsc| |mathieu24| |measure2Result| >=
- |hMonic| |prefixRagits| |isOp| |isPower| |balancedBinaryTree|
- |intcompBasis| |gensym| |vark| |associates?| |clearTheIFTable|
- |directSum| |e02bef| |d02ejf| |FormatRoman| |environment|
- |gramschmidt| |patternMatchTimes| |bivariatePolynomials|
- |chainSubResultants| |addPointLast| |componentUpperBound|
- |seriesToOutputForm| |subPolSet?| |integers| |charClass| |palgextint|
- |interpret| |slex| |listOfLists| |elliptic| |superscript| |truncate| +
- |enqueue!| |edf2ef| |sort!| |collectUnder| |splitDenominator| |true|
- |deleteProperty!| |fortranDoubleComplex| |unitNormalize|
- |leadingCoefficientRicDE| |chvar| - |cn| |coHeight| |perfectNthPower?|
- |OMserve| |exprHasAlgebraicWeight| |triangularSystems| |nand| |in?|
- |maxint| |mantissa| / |reducedForm| |subMatrix| |sinIfCan|
- |cardinality| |any?| |e02bdf| |constantIfCan| |members|
- |removeDuplicates!| |blankSeparate| |fortranLinkerArgs|
- |virtualDegree| |middle| |cyclicEqual?| |messagePrint| |ParCond|
- |category| |orbit| |pushucoef| |mainValue| |nil|
- |halfExtendedSubResultantGcd1| |RittWuCompare| |tRange|
- |factorSquareFreePolynomial| |scaleRoots| |stFunc2| |pushdterm|
- |s17aff| |domain| |internalLastSubResultant| |cosSinInfo| |viewport2D|
- |diagonals| |split| |e04naf| |prepareSubResAlgo| |abs| |package|
- |iiabs| |crest| |setErrorBound| |iiasin| |att2Result|
- |SturmHabichtMultiple| |definingInequation| |generalLambert| |maxdeg|
- |shift| |createMultiplicationTable| |dimension| |palgRDE|
- |quotientByP| |clipPointsDefault| |unitCanonical| |approximate|
- |solveLinearPolynomialEquationByFractions| |extractTop!|
- |linearAssociatedExp| |ocf2ocdf| |tanh2trigh| |irForm| |OMputAttr|
- |f04arf| |mainVariables| |complex| |janko2| |schema| |blue| |varList|
- |iCompose| |readInt8!| |bothWays| |palglimint| |choosemon|
- |decomposeFunc| |hostByteOrder| |order| |delta| |quatern|
- |boundOfCauchy| |xCoord| |show| |mainVariable?| |orthonormalBasis|
- |basisOfMiddleNucleus| |makeCos| |trapezoidalo|
- |indiceSubResultantEuclidean| |property| |find| |extendIfCan|
- |extendedResultant| |prologue| |alphanumeric?| |nativeModuleExtension|
- |sncndn| |padecf| |pointData| |csch2sinh| |element?|
- |partialQuotients| |useEisensteinCriterion?| |trace|
- |evenInfiniteProduct| |internalIntegrate0| |monicRightFactorIfCan|
- |kovacic| |pushuconst| |realRoots| |topFortranOutputStack| |plot|
- |increase| |conditionsForIdempotents| |d01anf| |retract| |leader|
- |mainDefiningPolynomial| |integralLastSubResultant| |leftLcm|
- |monicRightDivide| |units| |aspFilename| |leviCivitaSymbol|
- |factorPolynomial| |associative?| |patternVariable| |typeForm|
- |rightDiscriminant| |loopPoints| |cfirst| |power!| |separateFactors|
- |replace| |e04ucf| |OMread| |string?| |zag| |taylorIfCan|
- |totalDifferential| |bringDown| |routines| |exactQuotient|
- |iflist2Result| |formula| |countRealRootsMultiple| |recur|
- |RemainderList| |SFunction| |exQuo| |palgLODE| |moduloP| |Nul| |scale|
- |socf2socdf| |createNormalElement| |lambda| |rectangularMatrix|
- |reorder| |zero?| |f04asf| |removeSquaresIfCan| |modularGcdPrimitive|
- |algintegrate| |numFunEvals3D| |taylorQuoByVar| |bytes| |evenlambert|
- |uncouplingMatrices| |ParCondList| |code| |unvectorise| |hostPlatform|
- |isOr| |semiIndiceSubResultantEuclidean| |s19abf| |imagK|
- |insertBottom!| |yCoord| |s13adf| |unitsColorDefault| |basisOfNucleus|
- |makeSin| |setFormula!| |sup| |empty?| |readByte!|
- |algebraicVariables| |nrows| |epilogue| |localReal?| |point?|
- |datalist| |categoryFrame| |pade| |exptMod| |parent|
- |createNormalPoly| |partialDenominators| |useEisensteinCriterion|
- |sturmVariationsOf| |ncols| |singular?| |eulerPhi| |laplace|
- |numberOfMonomials| |leadingTerm| |leftDivide| |OMgetApp| |plus|
- |genericRightDiscriminant| |subResultantsChain| |withPredicates|
- |OMconnOutDevice| |rewriteIdealWithHeadRemainder| |mainForm|
- |toseLastSubResultant| |rightExtendedGcd| |primPartElseUnitCanonical!|
- |nthFactor| |squareFreePolynomial| |d01apf| |oddInfiniteProduct| |Ei|
- |typeList| |dom| |generalTwoFactor| |sts2stst| |exponents| |just|
- |solveRetract| |antiCommutative?| |e04ycf| |leftDiscriminant| |list?|
- |setref| |sum| |homogeneous?| |newReduc| |palgintegrate|
- |mainSquareFreePart| |shiftLeft| |polynomial| |kroneckerDelta|
- |signatureAst| |OMreadFile| |unexpand| |postfix| |point|
- |splitConstant| |modulus| |degreeSubResultant| |connect|
- |irreducible?| |times| |zeroOf| |df2fi| |const| |moebius|
- |removeZeroes| |modTree| |f04atf| |unprotectedRemoveRedundantFactors|
- |shallowCopy| |symbolTable| |groebner?| |skewSFunction|
- |setLabelValue| |ip4Address| |characteristic| |cAtan| |augment|
- |stirling2| |factorials| |top| |bubbleSort!| |rootDirectory|
- |linkToFortran| |modularGcd| |setAdaptive3D| |lp| |headAst|
- |systemCommand| |iExquo| |series| |zCoord| |oddlambert|
- |pointSizeDefault| |idealSimplify| |basisOfCenter|
- |resetAttributeButtons| |pushFortranOutputStack| |redPo| |rightDivide|
- |isAnd| |title| |comp| |s19acf| |insertTop!| |imagJ| |updatF|
- |endOfFile?| |rischNormalize| |s14aaf| |interactiveEnv|
- |listYoungTableaus| |popFortranOutputStack| |iiGamma| |meshPar2Var|
- |imagE| |splitNodeOf!| |node| |monom|
- |zeroSetSplitIntoTriangularSystems| |options| |eisensteinIrreducible?|
- |setFieldInfo| |fibonacci| |redpps| |exponentialOrder| |continue|
- |root| |sort| |generalSqFr| |primPartElseUnitCanonical|
- |outputAsFortran| |extractProperty| |createNormalPrimitivePoly|
- |normal| |partialNumerators| |setPredicates| |lazyVariations|
- |remainder| |enterPointData| |e| |logical?| |multiset| |iisqrt2|
- |overlap| |nthExpon| |singularAtInfinity?| |genericRightTraceForm|
- |d01aqf| |lazyPseudoQuotient| |min| |parametersOf| |list| |digits|
- |toseInvertible?| |palginfieldint| |rightGcd| |OMgetAtp| |common|
- |gcdPolynomial| |string| |pair?| |generalInfiniteProduct| |represents|
- |OMconnectTCP| |car| |f04axf| |clikeUniv| |gradient|
- |degreeSubResultantEuclidean| |mainVariable| |f01brf| |commutative?|
- |triangSolve| |linGenPos| |infix| |random| |cdr| |leadingBasisTerm|
- |insertionSort!| |mainPrimitivePart| |numberOfChildren| |shiftRight|
- |pop!| |edf2fi| |curry| |rightRecip| |deref| |setDifference|
- |basisOfLeftNucloid| |pmComplexintegrate|
- |setLegalFortranSourceExtensions| |region| |decimal| |rootsOf|
- |iprint| |OMreadStr| |reindex| |lastSubResultant| |setIntersection|
- |limitedint| |removeRedundantFactors| |multiEuclideanTree| |hermiteH|
- |groebnerIdeal| |getCode| |rCoord| |round| |taylorRep|
- |viewPosDefault| |setUnion| |selectPolynomials| |bumprow| |reduction|
- |meshFun2Var| |adaptive3D?| |getStream| |readIfCan!| |lambert|
- |cyclotomicDecomposition| |realElementary| |apply| |getButtonValue|
- |twoFactor| |isNot| |lazyResidueClass| |s19adf| |imagI| |bottom!|
- |tryFunctionalDecomposition?| |heap| |harmonic| |character?|
- |mergeDifference| |iisqrt3| |imagk| |remove!| |zero| |zeroSetSplit|
- |pol| |predicates| |s14abf| |headRemainder| |size| |continuedFraction|
- |toseInvertibleSet| |bitLength| |extractClosed|
- |createPrimitiveNormalPoly| |numeric| |reducedContinuedFraction|
- |d01asf| |content| |width| |B1solve| |fortranTypeOf| |f04faf|
- |weierstrass| |hcrf| |semiDegreeSubResultantEuclidean| |OMgetAttr|
- |radical| |And| |mergeFactors| |genericLeftDiscriminant|
- |lazyPseudoRemainder| |atom?| |equation| |composites| |ignore?|
- |precision| |check| |rightExactQuotient| |children| |vector|
- |makeMulti| |Or| |torsion?| |showAll?| |univariateSolve|
- |branchPoint?| |leftRecip| |basisOfRightNucloid| |first| |fracPart|
- |pmintegrate| |divergence| |differentiate| |uniform01| |Not| |f01bsf|
- |edf2df| |rightCharacteristicPolynomial| |groebgen| |vconcat| |rest|
- |getProperties| |certainlySubVariety?| |laguerreL| |mainContent|
- |tubePlot| |karatsubaDivide| |push!| |elem?| |OMlistCDs| |OMbindTCP|
- |lastSubResultantElseSplit| |substitute| |integerIfCan| |bumptab|
- |meshPar1Var| |points| |innerint| |cAcot| |makeSketch| |diag|
- |thetaCoord| |ref| |hash| |viewSizeDefault| |removeDuplicates|
- |leastAffineMultiple| |selectOrPolynomials| |complexZeros|
- |monicModulo| |ideal| |principalAncestors| |printCode| |fractionPart|
- |readLineIfCan!| |validExponential| |count| |mapDown!| |OMgetEndAtp|
- |setOrder| |iiexp| |mr| |setScreenResolution3D|
- |tryFunctionalDecomposition| |jacobi| |getRef| |super| |lagrange|
- |name| |optional| |factorSquareFree| |doubleComplex?| |squareFreePrim|
- |signAround| |bitCoef| |s20acf| |cyclotomicFactorization| |top!|
- |conjugate| |hasPredicate?| |lift| |body| |roughUnitIdeal?| |light|
- |toseSquareFreePart| |isTerm| |lastSubResultantEuclidean| |inc|
- |subNodeOf?| |gcdprim| |e02daf| |reduceByQuasiMonic| |xn| |d01bbf|
- |reduce| |empty| |f04jgf| |qqq| |imagj| |child| |nextIrreduciblePoly|
- |push| |nextColeman| |totalDegree| |null?| |isMult| |factorset|
- |computeInt| |lprop| |polyPart| |extractIndex| |OMgetBind|
- |genericLeftTraceForm| |bernoulliB| |realSolve| |s14baf| |hconcat|
- |basisOfCentroid| |infieldint| |laplacian| |legendreP| |makeTerm|
- |torsionIfCan| |expenseOfEvaluation| |showAllElements| |leftPower|
- |components| |internalIntegrate| |possiblyNewVariety?| |ptFunc|
- |primitivePart!| |normal01| |f01maf| |leftCharacteristicPolynomial|
- |notelem| |branchPointAtInfinity?| |invertibleSet|
- |selectAndPolynomials| |bumptab1| |lazyPseudoDivide| SEGMENT
- |getGraph| |nary?| |error| |OMlistSymbols| |minordet| |phiCoord|
- |port| |OMopenFile| |viewDefaults| |raisePolynomial| |any|
- |reducedQPowers| |getOrder| |mapUp!| |hitherPlane| |assert|
- |monicDivide| |tower| |curryRight| |readLine!| |rootNormalize|
- |totolex| |complex?| |OMgetEndAttr| |divisorCascade| |iilog|
- |exteriorDifferential| |unrankImproperPartitions0| |btwFact|
- |moebiusMu| |wholePart| |t| |radicalEigenvectors| |compdegd| |pastel|
- |invmod| |bitTruth| |leadingIdeal| |mapCoef| |optional?|
- |univariatePolynomial| |exportedOperators| |roughEqualIdeals?|
- |radicalOfLeftTraceForm| |loadNativeModule| |quotedOperators| |equiv|
- |semiLastSubResultantEuclidean| |screenResolution3D| |cCos| |dequeue|
- |d01fcf| |compound?| |henselFact| |imagi| |birth| |s20adf| |numerator|
- |dAndcExp| |startTable!| |rangeIsFinite| |exprToXXP| |abelianGroup|
- |constant| |fullPartialFraction| |extractPoint| |nodeOf?|
- |complexNumeric| |removeSinSq| |minimumDegree| |positiveSolve|
- |tan2trig| |gcdcofact| |rspace| |aLinear| |useNagFunctions|
- |writeBytes!| |nextPrimitivePoly| |byte| |solid| |summation|
- |predicate| |numberOfOperations| |eulerE| |rightPower| |maxrank|
- |weakBiRank| |minimumExponent| |algDsolve| |listOfMonoms| |kernels|
- |prindINFO| |s15adf| |invertible?| |principal?| |hessian|
- |lazyPremWithDefault| |c06gcf| |OMgetBVar| |e02zaf| |operator|
- |maxRowIndex| |cons| |numberOfComposites| |viewWriteDefault| |index?|
- |nextsubResultant2| |eyeDistance| |exponential1|
- |factorSquareFreeByRecursion| |setOfMinN| |cycleLength| |tanQ|
- |completeEval| |rationalPoint?| |step| |node?| |iisin| |putGraph|
- |divideExponents| |univariate| |unrankImproperPartitions1| |separant|
- |trunc| |numberOfDivisors| |cAcos| |OMopenString| |listLoops|
- |comment| |backOldPos| |qelt| |nthCoef| |problemPoints| |readUInt32!|
- |minPol| |roughSubIdeal?| |multMonom| |curveColorPalette|
- |splitLinear| |qsetelt| |setMaxPoints3D| |cSin| |primintfldpoly|
- |hdmpToP| |radicalEigenvector| |linear| |getOperands| |unparse|
- |cyclicGroup| |cAtanh| |coerce| |s21baf| |xRange| |factor|
- |quadraticForm| |characteristicPolynomial| |irreducibleFactors|
- |alphanumeric| |exprToUPS| |int| |f02bbf| |selectfirst| |cothIfCan|
- |construct| |sqrt| |yRange| |updateStatus!| |source| |removeCoshSq|
- |nextItem| |insert!| |cAsin| |aQuadratic| |romberg| |expandPower|
- |solid?| |nextNormalPoly| |zRange| |alternative?| |real|
- |musserTrials| |parameters| |midpoint| |newSubProgram|
- |definingEquations| |biRank| |readable?| |power| |map!| |OMgetError|
- |fprindINFO| |imag| |OMUnknownSymbol?| |optpair|
- |generalizedContinuumHypothesisAssumed| |minimize| |divisor| |log2|
- |rightLcm| |length| |qsetelt!| |symmetricSquare| |directProduct|
- |e04dgf| |identityMatrix| |c06gqf| |pow| |getVariableOrder| |entries|
- |e01sef| |infinite?| |scripts| |randomR| |minRowIndex| |elements|
- |cyclic| |presub| |child?| |plus!| |stoseIntegralLastSubResultant|
- |mapExpon| |brace| |target| |cycleEntry| |subresultantSequence|
- |degree| |ptree| |groebSolve| |relativeApprox| |closed?|
- |simpleBounds?| |selectFiniteRoutines| |OMputEndObject| |isobaric?|
- |binomThmExpt| |destruct| |zerosOf| |strongGenerators| |bsolve|
- |viewZoomDefault| |build| |bezoutResultant| |cross|
- |isAbsolutelyIrreducible?| |readInt32!| |cLog| |expintfldpoly|
- |nextLatticePermutation| |iiacosh| |f07fdf| |kind| |dihedralGroup|
- |var1Steps| |expandLog| |pseudoQuotient| |back| |dmpToP|
- |lazyIrreducibleFactors| |palgextint0| |polygon| |op| |f02bjf|
- |exists?| |binary| |elliptic?| |removeSinhSq| |realEigenvalues|
- |interpretString| |integral?| |partition| |tan2cot| |aCubic|
- |leftExtendedGcd| |makeprod| |mapUnivariateIfCan| |ravel|
- |denominators| |monomial| |stopMusserTrials| |upperBound|
- |variationOfParameters| |clearTheSymbolTable| |setProperties|
- |basisOfCommutingElements| |e01sff| |simpson| |s18aef| |flexible?|
- |prinpolINFO| |module| |getBadValues| |lexTriangular| |reshape|
- |arguments| |key?| |stoseLastSubResultant| |sincos| |setelt|
- |setMinPoints| |factorSFBRlcUnit| |c06gsf| |OMUnknownCD?| |An|
- |midpoints| |distance| |linearMatrix| |rationalApproximation|
- |infLex?| |e04fdf| |zeroMatrix| |replaceKthElement|
- |generalizedContinuumHypothesisAssumed?| |sub| |submod| |open?|
- |finite?| |copy| |numberOfIrreduciblePoly| |SturmHabichtSequence|
- |antisymmetric?| |quasiRegular| |rootOf| |resetVariableOrder| |union|
- |leadingIndex| |minus!| |max| |commutativeEquality| |dihedral|
- |pomopo!| |singularitiesOf| |invmultisect| |rank| |viewPhiDefault|
- |mathieu11| |bezoutDiscriminant| |selectODEIVPRoutines| |OMputInteger|
- |morphism| |cExp| |iiatanh| |monomialIntegrate| |testDim| |update|
- |f02fjf| |autoCoerce| |cos2sec| |dot| |meatAxe| |front| |weights|
- |removeIrreducibleRedundantFactors| |palglimint0| |dmp2rfi| |aQuartic|
- |var2Steps| |extension| |composite| |expandTrigProducts| |readUInt16!|
- |stripCommentsAndBlanks| |f07fef| |complete| |basisOfLeftAnnihilator|
- |packageCall| |leftGcd| |doubleResultant| |numerators|
- |numberOfFactors| |pToDmp| |closedCurve?| |showTheSymbolTable|
- |elaboration| |e02adf| |disjunction| |mapMatrixIfCan| |prinb|
- |realEigenvectors| |resetBadValues| |integralAtInfinity?|
- |rightRegularRepresentation| |symbolIfCan| |trapezoidal|
- |stoseInvertible?sqfreg| |digit?| |minPoints| |d01ajf| |charthRoot|
- |lowerBound| |lexico| |rarrow| |position| |nodes| |linearPart|
- |sinhcosh| |s18aff| |setButtonValue| |squareFreeLexTriangular|
- |e04gcf| |incrementKthElement| |match?| |UnVectorise| |lists|
- |setClosed| |relerror| |addmod| |setEmpty!| |SturmHabichtCoefficients|
- |rightAlternative?| |quasiRegular?| |realZeros| |allRootsOf|
- |leadingExponent| |leftScalarTimes!| |resultantEuclidean|
- |numberOfPrimitivePoly| |mapExponents| |polynomialZeros|
- |OMParseError?| |countable?| |viewThetaDefault| |mathieu12| |pureLex|
- |cosh2sech| |OMputFloat| |iiacoth| |cRationalPower| |monomialIntPoly|
- |mappingAst| |declare| |prime?| |f02wef| |shallowExpand|
- |selectPDERoutines| |leftMult| |rotate!| |normalForm| |symmetric?|
- |cap| |palgRDE0| |radicalSolve| |leftExactQuotient| |scan|
- |scanOneDimSubspaces| |fintegrate| |setPrologue!| |multisect|
- |genericPosition| |pole?| |basisOfRightAnnihilator| |space| |e02aef|
- |subResultantGcd| |convergents| |balancedFactorisation|
- |modularFactor| |se2rfi| |printTypes| |select!| |arg1| |innerSolve1|
- |stoseInvertibleSetsqfreg| |distdfact| |critpOrder|
- |differentialVariables| |hasTopPredicate?| |leftRegularRepresentation|
- |s01eaf| |nonLinearPart| |argument| |arg2| |sech| |conjunction|
- |mapBivariate| |conditionP| |readInt16!| |d01akf| |assign|
- |closedCurve| |symmetricRemainder| |rename| |csch| |rombergo|
- |parametric?| |e04jaf| |sylvesterSequence| |float?| |close|
- |integralBasisAtInfinity| |Vectorise| |asinh| |conditions| |tube|
- |semiResultantEuclidean2| |subresultantVector| |s18dcf| |SturmHabicht|
- |halfExtendedResultant2| |constant?| |belong?| |definingPolynomial|
- |constantOpIfCan| |GospersMethod| |match| |acosh| |cot2trig|
- |setStatus!| |f2df| |linearAssociatedLog| |stop| |OMmakeConn|
- |iterationVar| |display| |pointColorDefault| |bright| |complexSolve|
- |mathieu22| |deepExpand| |atanh| |numberOfNormalPoly| |cPower|
- |setAttributeButtonStep| |inverseLaplace| |iiasech|
- |mainCharacterization| |li| |f02xef| |acoth| |totalLex|
- |leftRemainder| |rightMult| |dequeue!| |leftAlternative?| |changeBase|
- |Aleph| |palgLODE0| |quadratic?| |radicalRoots| |rightScalarTimes!|
- |asech| |OMputVariable| |coefficient| |nullary| |setTex!|
- |listBranches| |sample| |basisOfLeftNucleus| |positiveRemainder|
- |selectOptimizationRoutines| |expt| |approximants|
- |useSingleFactorBound?| |OMwrite| |cup| |newTypeLists| |delete!|
- |multiple| |semiResultantEuclidean1| |graphCurves| |resultant|
- |makeCrit| |input| |topPredicate| |diagonal?| |rightTraceMatrix|
- |lfunc| |bag| |constantKernel| |box| |applyQuote| |coth2trigh|
- |separateDegrees| |library| |solveLinearPolynomialEquation| |d01alf|
- |revert| |slash| |pr2dmp| |rename!| |tubePoints|
- |clearFortranOutputStack| |fullDisplay| |e04mbf| |extractBottom!|
- |integer?| |setPoly| |s13aaf| |unitVector| |innerSolve| |leftQuotient|
- |plotPolar| |countRealRoots| |readUInt8!| |mindeg| |positive?|
- |curve?| |integerBound| |linears| |ruleset| |isEquiv| |s18def|
- |linearAssociatedOrder| |ef2edf| |sturmSequence| |ramified?|
- |lineColorDefault| |f04adf| |simpsono| |extendedSubResultantGcd|
- |setCondition!| |inputOutputBinaryFile| |halfExtendedResultant1| |set|
- |iiacsch| |OMcloseConn| |contractSolve| |changeNameToObjf|
- |primitivePart| |mkcomm| |createIrreduciblePoly| |test| |id|
- |companionBlocks| |infiniteProduct| |chineseRemainder| |Ci|
- |basisOfRightNucleus| |complexRoots| |bit?| |suchThat| |OMputString|
- |decrease| |setEpilogue!| |triangular?| |algebraicOf| |dn|
- |reverseLex| |indiceSubResultant| |sPol| |makeUnit| |ipow|
- |antiAssociative?| |useSingleFactorBound| |table| |unravel|
- |typeLists| |times!| |csc2sin| |e02dcf| |showArrayValues| |subst|
- |insert| |new| |po| |setTopPredicate| |leftTraceMatrix|
- |rationalFunction| |rootProduct| |obj| |showFortranOutputStack|
- |selectIntegrationRoutines| |discriminant| |wreath| |fixedPoint|
- |d01amf| |over| |eq| |lookupFunction| |prefix| |ddFact| |cache|
- |drawCurves| |trace2PowMod| |inHallBasis?| |square?| |symbol?| |iter|
- |exponent| |swap!| |binding| |monicLeftDivide| |relationsIdeal|
- |delete| |hasoln| |negative?| |signature| |seed| |tubeRadius|
- |exactQuotient!| |debug3D| |intersect| |upDateBranches|
- |associatedSystem| |s13acf| |normalized?| |polarCoordinates|
- |optAttributes| |makeEq| |s19aaf| |jordanAlgebra?| |monomial?| |curve|
- |axesColorDefault| |bipolar| |updatD| |algint| |isImplies| |setValue!|
- |objects| |oneDimensionalArray| |OMencodingXML| |specialTrigs|
- |ramifiedAtInfinity?| |compBound| |generators| |createPrimitivePoly|
- |directory| |base| |script| |minPoly| |lazy?| |divisors| |Si|
- |compactFraction| |adjoint| |rightFactorCandidate| |e02ddf|
- |OMputSymbol| |primextendedint| |rowEchelon| |OMconnInDevice|
- |rewriteIdealWithRemainder| |elRow1!| |f02aff| |e01baf| |retractIfCan|
- |nextPartition| |reverse!| |rewriteIdealWithQuasiMonicGenerators|
- |setrest!| |flatten| |ReduceOrder| |externalList| |exp|
- |particularSolution| |getMeasure| |prepareDecompose| |normalDeriv|
- |showScalarValues| |tex| |setprevious!| |printStats!| |left| |numer|
- |rootSimp| |outputMeasure| |mpsode| |cSec| |pseudoRemainder|
- |scalarTypeOf| |thenBranch| |/\\| |polyRDE| |returnTypeOf| |right|
- |outputList| |denom| |encodingDirectory| |clip| |complexIntegrate|
- |quasiAlgebraicSet| |tracePowMod| |unknownEndian| |Is| |laguerre|
- |irreducibleFactor| |\\/| |fill!| |increment| |atanIfCan| |setleft!|
- |saturate| |nil| |infinite| |arbitraryExponent| |approximate|
+ |Record| |Union| |leftRankPolynomial| |OMputAttr| |principal?|
+ |defineProperty| |pi| |makingStats?| |swap| |region| |charpol|
+ |sorted?| |f04arf| |nextNormalPrimitivePoly| |hessian| |infinity|
+ |elementary| |decimal| |OMencodingSGML| |polynomialZeros| |e01bff|
+ |degreePartition| |mainVariables| |functionIsOscillatory|
+ |lazyPremWithDefault| |cond| |semiResultantEuclideannaif| |rootsOf|
+ |inverseIntegralMatrixAtInfinity| |brillhartIrreducible?|
+ |OMParseError?| |c06gcf| |janko2| |antisymmetricTensors| |generate|
+ |initiallyReduce| |log10| |iprint| |setlast!| |quasiMonic?| |map|
+ |countable?| |ord| |OMgetSymbol| |schema| |complexNumericIfCan|
+ |OMgetBVar| |bitand| |kernel| |cSinh| |iifact| |OMreadStr| |bigEndian|
+ |viewThetaDefault| |previous| |isQuotient| |incrementBy| |e02zaf|
+ |blue| |low| |shade| |outerProduct| |bitior| |ReduceOrder| |draw|
+ |cAsech| |reindex| |firstDenom| |mathieu12| |wordsForStrongGenerators|
+ |iCompose| |trailingCoefficient| |maxRowIndex| |var1StepsDefault|
+ |expand| |externalList| |quartic| |squareTop| |lastSubResultant|
+ |normInvertible?| |pureLex| |currentEnv| |nonSingularModel|
+ |readInt8!| |commaSeparate| |numberOfComposites| |filterWhile|
+ |particularSolution| |goodnessOfFit| |limitedint| |trigs| |cosh2sech|
+ |addMatchRestricted| |bothWays| |nsqfree| |filterUntil| |upperCase!|
+ |viewWriteDefault| |symbol| |getMeasure| |attributeData| |airyAi|
+ |OMputObject| |removeRedundantFactors| |convert| |OMputFloat|
+ |overbar| |palglimint| |index?| |surface| |opeval| |select|
+ |expression| |prepareDecompose| |makeObject| |multiEuclideanTree|
+ |processTemplate| |iiacoth| |tanintegrate| |safeCeiling|
+ |dominantTerm| |height| |choosemon| |polyRicDE| |nextsubResultant2|
+ |numberOfFractionalTerms| |zoom| |integer| |normalDeriv| |coef|
+ |cRationalPower| |matrixConcat3D| |lazyEvaluate| |hermiteH|
+ |setStatus| |rational?| |printHeader| |badValues| |decomposeFunc|
+ |OMgetObject| |eyeDistance| |showScalarValues| |makeGraphImage|
+ |groebnerIdeal| |monomialIntPoly| |distFact| UP2UTS |tanh2coth|
+ |lowerCase?| |hostByteOrder| |polar| |exponential1| |setprevious!|
+ |getCode| |endSubProgram| |resize| ** |mappingAst| |coerceImages|
+ |numberOfComputedEntries| |order| |getIdentifier|
+ |factorSquareFreeByRecursion| |printStats!| |acschIfCan|
+ |factorGroebnerBasis| |rCoord| |prime?| |nextPrime| |quatern|
+ |transcendent?| |lintgcd| |setOfMinN| |rootSimp| |doubleRank| |f02aef|
+ |round| |f02wef| |noKaratsuba| |makeFloatFunction| |makeRecord| |lo|
+ |boundOfCauchy| |repeating?| |cycleLength| |outputMeasure|
+ |invertIfCan| |rangePascalTriangle| |taylorRep| |shallowExpand|
+ |coth2tanh| |tanQ| |changeVar| |xCoord| |incr| |nonQsign| |mpsode|
+ |acsch| |label| |coshIfCan| |conjug| |viewPosDefault|
+ |lowerPolynomial| |selectPDERoutines| |initial| |pdf2ef|
+ |mainVariable?| |completeEval| |normDeriv2| |cSec|
+ |getMultiplicationMatrix| |limit| |selectPolynomials| |leftMult|
+ |before?| |f02aaf| |orthonormalBasis| |rationalPoint?| |enterInCache|
+ |pseudoRemainder| |c06gbf|
+ |rewriteSetByReducingWithParticularGenerators| |bumprow| |rotate!|
+ |internalZeroSetSplit| |basisOfMiddleNucleus| |swapRows!| |iitan|
+ |node?| |scalarTypeOf| |coerceP| |minColIndex| |reduction| |nullity|
+ |normalForm| Y |makeCos| |d02kef| |iisin| |indicialEquations|
+ |thenBranch| |traceMatrix| |iiacsc| |meshFun2Var| |exprex|
+ |symmetric?| |trapezoidalo| |rightFactorIfCan| |factor1| |putGraph|
+ |polyRDE| |wrregime| |reduceLODE| |adaptive3D?| |iipow| |cap|
+ |leftOne| |indiceSubResultantEuclidean| |rightTrace| |divideExponents|
+ |returnTypeOf| |outputArgs| |tail| |finiteBasis| |getStream|
+ |coerceListOfPairs| |setProperty| |palgRDE0| |find| |rules|
+ |constructor| |ridHack1| |rootBound| |unrankImproperPartitions1|
+ |encodingDirectory| |lifting1| |sec2cos| |csubst| |readIfCan!|
+ |radicalSolve| |initials| |nothing| |rischDE| |extendIfCan| |separant|
+ |genericRightMinimalPolynomial| |clip| |showClipRegion| |option|
+ |selectNonFiniteRoutines| |leftFactor| |lambert| |leftExactQuotient|
+ |rk4f| |showSummary| |extendedResultant| |mainCoefficients|
+ |sumOfKthPowerDivisors| |trunc| |complexIntegrate| |rational|
+ |simplifyExp| |cyclotomicDecomposition| |getExplanations| |scan|
+ |linSolve| |prologue| |numberOfDivisors| |minset| |quasiAlgebraicSet|
+ |primitiveElement| |duplicates?| |realElementary| |tensorProduct|
+ |scanOneDimSubspaces| |showAttributes| |alphanumeric?| |smith| |cAcos|
+ |findBinding| |tracePowMod| |unknown| |complexForm| |getMatch|
+ |getButtonValue| |setnext!| |fintegrate| |macroExpand| |OMopenString|
+ |recoverAfterFail| |nativeModuleExtension| |rightTrim|
+ |mainExpression| |unknownEndian| |cot2tan| |cycleTail| |lfintegrate|
+ |twoFactor| |setPrologue!| |insertRoot!| |sncndn|
+ |internalSubQuasiComponent?| |leftTrim| |listLoops| |Is| |part?|
+ |frobenius| |isNot| |startStats!| |multisect|
+ |combineFeatureCompatibility| |padecf| |backOldPos| |qinterval|
+ |laguerre| |preprocess| |f07adf| |baseRDE| |lazyResidueClass|
+ |genericPosition| |say| |intPatternMatch| F |pointData| |nthCoef|
+ |exponential| |irreducibleFactor| |dualSignature| |multinomial|
+ |s19adf| |associator| |pole?| |csch2sinh| |Frobenius| |problemPoints|
+ |f01qdf| |fill!| |overlabel| |hclf| |d03faf| |imagI|
+ |basisOfRightAnnihilator| |binaryTree| |element?| |readUInt32!|
+ |s17acf| |increment| |bottom!| |quasiComponent| |space| |indices|
+ |ode| |remove| |function| |multivariate| |partialQuotients|
+ |controlPanel| |minPol| |OMunhandledSymbol| |atanIfCan|
+ |fillPascalTriangle| |fortran| |hexDigit?| RF2UTS
+ |tryFunctionalDecomposition?| |e02aef| |variables| |result|
+ |useEisensteinCriterion?| |red| |quoted?| |roughSubIdeal?| |setleft!|
+ |byteBuffer| |rk4qc| |open| |OMputEndBVar| |heap| |last| |eval|
+ |subResultantGcd| |reset| |ratDenom| |evenInfiniteProduct| |multMonom|
+ |trivialIdeal?| |saturate| |assoc| |imaginary| |functorData|
+ |external?| |harmonic| |null| |convergents| |f2st|
+ |internalIntegrate0| |arbitrary| |curveColorPalette| |character?|
+ |divideIfCan!| |pattern| |enumerate| |elseBranch| |not|
+ |balancedFactorisation| |write| |monicRightFactorIfCan|
+ |fixedPointExquo| |rotatez| |splitLinear|
+ |noncommutativeJordanAlgebra?| |mergeDifference| |supersub| |and|
+ |Lazard| |modularFactor| |save| |trueEqual| |kovacic| |jacobian|
+ |setMaxPoints3D| |operations| |rquo| |iisqrt3| |mesh| |or|
+ |KrullNumber| |taylor| |se2rfi| |bfKeys| |pushuconst| |cSin|
+ |semiSubResultantGcdEuclidean1| |component| |inrootof| |extract!|
+ |imagk| |xor| |laurent| |printTypes| |cycleElt| |realRoots| |nullary?|
+ |primintfldpoly| |pointColor| |deepestInitial| |critBonD| |message|
+ |remove!| |case| |select!| |puiseux| |newLine| |topFortranOutputStack|
+ |constantLeft| |hdmpToP| |bipolarCylindrical| |setchildren!| |Zero|
+ |removeSuperfluousCases| |zeroSetSplit| |innerSolve1| |plot|
+ |interReduce| |mix| |radicalEigenvector| |hi| |measure| |pol| |One|
+ |monicCompleteDecompose| |inv| |stoseInvertibleSetsqfreg| |increase|
+ |reducedDiscriminant| |d02bbf| |getOperands| |addMatch|
+ |lazyIntegrate| |is?| |predicates| |distdfact| |ground?|
+ |conditionsForIdempotents| |squareFreePart| |unparse| |create3Space|
+ |regularRepresentation| |minGbasis| |ground| |s14abf| |fixedDivisor|
+ |critpOrder| |lcm| |zeroVector| |d01anf| |cyclicGroup| |nil?| |critT|
+ |setAdaptive| |headRemainder| |argumentListOf| |differentialVariables|
+ |leadingMonomial| |eigenvector| |cAtanh| |freeOf?| |asechIfCan|
+ |append| |continuedFraction| |clipSurface| |leadingCoefficient|
+ |hasTopPredicate?| |binaryTournament| |chvar| |zeroDimPrimary?|
+ |s21baf| |mat| |lSpaceBasis| |principalIdeal|
+ |leftRegularRepresentation| |primitiveMonomials| |toseInvertibleSet|
+ |elt| |gcd| |output| |mainMonomials| |coHeight| |cCsch|
+ |quadraticForm| |LazardQuotient| |inspect| |OMencodingUnknown|
+ |printStatement| |bitLength| |s01eaf| |false| |reductum|
+ |perfectNthPower?| |completeHermite| |characteristicPolynomial|
+ |leaf?| |finiteBound| |modifyPointData| |nonLinearPart| |OMserve|
+ |orbits| |irreducibleFactors| |makeSUP| |outputSpacing| |OMputEndBind|
+ |meshPar2Var| |extensionDegree| |argument| |exprHasAlgebraicWeight|
+ |addBadValue| |alphanumeric| |hexDigit| |tablePow| |sequence| |iiasec|
+ |imagE| |conjunction| |roman| |triangularSystems| |exprToUPS|
+ |diagonal| |c06fuf| |e01bef| |polCase| |splitNodeOf!| |mapBivariate|
+ |nand| |host| |s17def| |triangulate| |yellow|
+ |zeroSetSplitIntoTriangularSystems| |conditionP| |rightOne| |in?|
+ |moebiusMu| |diagonalProduct| |quote| |bivariateSLPEBR| |rootPower|
+ |eisensteinIrreducible?| |readInt16!| |categories| |lyndon?| |maxint|
+ |constantRight| |wholePart| |expextendedint| |cycle| |pascalTriangle|
+ |setFieldInfo| |d01akf| |reducedForm| |getPickedPoints| |generic?|
+ |radicalEigenvectors| |factorial| |explicitlyEmpty?| |fibonacci|
+ |ode2| |subMatrix| |axes| |absolutelyIrreducible?| |compdegd| |iicosh|
+ |entry?| |redpps| |monicDecomposeIfCan| |composite| |rootSplit|
+ |sinIfCan| |pastel| |roughBase?| |toScale| |f04mbf| |sayLength|
+ |exponentialOrder| |expandTrigProducts| |cardinality| |inverseColeman|
+ |localUnquote| |invmod| |plusInfinity| |cAcsch| |partialFraction|
+ |fortranReal| |root| |readUInt16!| |any?| |d02gbf| |hypergeometric0F1|
+ |bitTruth| |minusInfinity| |cyclicSubmodule| |lfinfieldint|
+ |generalSqFr| |stripCommentsAndBlanks| |e02bdf| |stFuncN|
+ |leadingIdeal| |semiSubResultantGcdEuclidean2| |exponent| |hdmpToDmp|
+ |monomRDE| |primPartElseUnitCanonical| |f07fef| |constantIfCan|
+ |redmat| |mapCoef| |graphs| |swap!| |euclideanGroebner| |member?|
+ |extractProperty| |key| |complete| |mkPrim| |members| |mkIntegral|
+ |optional?| |binding| |zeroDimensional?| |identitySquareMatrix|
+ |createNormalPrimitivePoly| |basisOfLeftAnnihilator|
+ |removeDuplicates!| |geometric| |iroot| |univariatePolynomial|
+ |monicLeftDivide| |partialNumerators| |coerceS| |curveColor|
+ |filename| |packageCall| |bfEntry| |blankSeparate| |exportedOperators|
+ |d01gbf| |type| |relationsIdeal| |e02ahf| |setPredicates| |PDESolve|
+ |leftGcd| |startPolynomial| |fortranLinkerArgs| |roughEqualIdeals?|
+ |ceiling| |hasoln| |stiffnessAndStabilityFactor| |critB|
+ |lazyVariations| |parse| |doubleResultant| |sin?| |virtualDegree|
+ |radicalOfLeftTraceForm| |OMclose| |negative?| |setvalue!|
+ |flexibleArray| |remainder| |numerators| |next| |option?| |middle|
+ |quotedOperators| |getOperator| |seed| |innerEigenvectors|
+ |makeResult| |enterPointData| |numberOfFactors| |internalInfRittWu?|
+ |cyclicEqual?| |pleskenSplit| |equiv| |tubeRadius| |sinhIfCan|
+ |capacity| |logical?| |pToDmp| |eigenvalues| |e02def| |s17agf|
+ |messagePrint| |checkPrecision| |semiLastSubResultantEuclidean|
+ |exactQuotient!| |karatsuba| |multiset| |divide| |closedCurve?|
+ |zeroDimPrime?| |ParCond| |removeRoughlyRedundantFactorsInPol|
+ |screenResolution3D| |besselY| EQ |debug3D| |npcoef| |iisqrt2|
+ |cyclePartition| |showTheSymbolTable| |orbit| |Hausdorff| |cCos|
+ |root?| |intersect| |overlap| |product| |trigs2explogs| |lhs|
+ |elaboration| |iiacos| |pushucoef| |dequeue| |generalPosition|
+ |upDateBranches| |eof?| |weighted| |nthExpon| |rhs| |e02adf|
+ |drawToScale| |mainValue| |putProperties| |d01fcf| |associatedSystem|
+ |head| |singularAtInfinity?| |d03eef| |disjunction| |hasSolution?|
+ |halfExtendedSubResultantGcd1| |exprToGenUPS| |compound?| |s13acf|
+ |stoseInvertibleSetreg| |genericRightTraceForm| |listConjugateBases|
+ |mapMatrixIfCan| FG2F |RittWuCompare| |supDimElseRittWu?| |henselFact|
+ |rule| |normalized?| |e02akf| |c06ecf| |d01aqf| |prinb| |df2st|
+ |tRange| |imagi| |multiplyCoefficients| |polarCoordinates| |index|
+ |infRittWu?| |lazyPseudoQuotient| |euler| |realEigenvectors|
+ |normalElement| |factorSquareFreePolynomial| |computeBasis| |birth|
+ |optAttributes| |primes| |symbolTableOf| |parametersOf|
+ |resetBadValues| |scaleRoots| |Beta| |discreteLog| |s20adf| |makeEq|
+ |htrigs| |center| |digits| |lighting| |integralAtInfinity?| |dioSolve|
+ |stFunc2| |extendedIntegrate| |numerator| |s19aaf|
+ |intermediateResultsIF| |commutator| |pair| |toseInvertible?|
+ |rightRegularRepresentation| |dAndcExp| |pushdterm| |tanAn|
+ |pointPlot| |value| |jordanAlgebra?| |distribute| |palginfieldint|
+ |reseed| |symbolIfCan| |unitNormal| |s17aff| |mulmod| |startTable!|
+ |monomial?| |possiblyInfinite?| |rightGcd| |firstUncouplingMatrix|
+ |trapezoidal| |rubiksGroup| |internalLastSubResultant| |rangeIsFinite|
+ |maxPoints3D| |curve| |subtractIfCan| |OMgetAtp| |subCase?|
+ |stoseInvertible?sqfreg| |green| |cosSinInfo| |drawComplex|
+ |exprToXXP| |entry| |axesColorDefault| |viewport3D| |gcdPolynomial|
+ |inconsistent?| |minPoints| |approxNthRoot| |viewport2D| |returns|
+ |abelianGroup| |bipolar| |sizeLess?| |normalizedAssociate| |pair?|
+ |d01ajf| |wholeRagits| |diagonals| |fullPartialFraction|
+ |linearlyDependentOverZ?| |updatD| |movedPoints| |difference|
+ |generalInfiniteProduct| |charthRoot| |ScanFloatIgnoreSpaces| |split|
+ |hspace| |extractPoint| |algint| |HenselLift| |computeCycleEntry|
+ |represents| |lowerBound| |sn| |createMultiplicationMatrix| |reverse|
+ |e04naf| |radicalEigenvalues| |nodeOf?| |isImplies| |e01daf| |nthFlag|
+ |OMconnectTCP| |lexico| |fortranLogical| |prepareSubResAlgo|
+ |univariatePolynomials| |removeSinSq| |setValue!| |call| |asimpson|
+ |f04axf| |lowerCase| |rarrow| |shrinkable| |abs| |minimumDegree| |bat|
+ |oneDimensionalArray| |leaves| |idealiserMatrix| |tree| |getlo|
+ |clikeUniv| |nodes| |iiabs| |showIntensityFunctions| |writeInt8!|
+ |positiveSolve| |OMencodingXML| |equality| |gradient| |reduced?|
+ |linearPart| |resultantReduit| |crest| |merge!| |tan2trig|
+ |specialTrigs| |primextintfrac| |rk4| |degreeSubResultantEuclidean|
+ |sinhcosh| |setErrorBound| |terms| |gcdcofact| |s21bbf|
+ |ramifiedAtInfinity?| |iisech| |s17akf| |mainVariable| |init| |s18aff|
+ |iiasin| |initiallyReduced?| |alphabetic| |rspace| |compBound| |more?|
+ |f01brf| |decompose| |setButtonValue| |att2Result| |qroot| |dfRange|
+ |aLinear| |generators| |cTanh| |commutative?| |mirror|
+ |squareFreeLexTriangular| |tanIfCan| |SturmHabichtMultiple|
+ |useNagFunctions| |categoryMode| |createPrimitivePoly| |generator|
+ |stoseInvertibleSet| |putColorInfo| |triangSolve| |e04gcf| |OMputBind|
+ |definingInequation| |expPot| |writeBytes!| |minPoly|
+ |alternatingGroup| |linGenPos| |bracket| |incrementKthElement|
+ |sequences| |generalLambert| |nextPrimitivePoly| |one?| |lazy?|
+ |stopTableInvSet!| |fi2df| |infix| |UnVectorise| |solid| |chebyshevT|
+ |maxdeg| |read!| |search| |divisors| |oblateSpheroidal|
+ |leadingBasisTerm| |setClosed| |stack| |summation|
+ |createMultiplicationTable| |addPoint| |rem| |largest| |Si|
+ |prinshINFO| |generateIrredPoly| |insertionSort!| |relerror|
+ |numberOfOperations| |scripted?| |dimension| |rowEch| |quo|
+ |compactFraction| |idealiser| |mainPrimitivePart| |compose| |addmod|
+ |condition| |clipParametric| |palgRDE| |eulerE| |ODESolve| |adjoint|
+ |mainKernel| |Gamma| |numberOfChildren| |setEmpty!| |rightPower| |div|
+ |extractSplittingLeaf| |rightFactorCandidate| |lieAdmissible?|
+ |setRow!| |shiftRight| |SturmHabichtCoefficients| |basis|
+ |purelyAlgebraic?| |mkAnswer| |maxrank| |exquo| |e02ddf| |dim|
+ |powerSum| |lieAlgebra?| |pop!| |rightAlternative?| |d02gaf|
+ |coordinates| |weakBiRank| ~= |fractRadix| |OMputSymbol|
+ |makeViewport3D| |edf2fi| |corrPoly| |quasiRegular?| |mapUnivariate|
+ |characteristicSet| |minimumExponent| |isPlus| |#| |primextendedint|
+ |matrix| |euclideanSize| |dec| |realZeros| |dictionary|
+ |firstSubsetGray| ~ |algDsolve| |purelyAlgebraicLeadingMonomial?|
+ |rowEchelon| |s17ajf| |initializeGroupForWordProblem|
+ |mainSquareFreePart| |concat| |allRootsOf|
+ |removeRoughlyRedundantFactorsInPols| |outlineRender| |listOfMonoms|
+ |fmecg| |OMconnInDevice| |testModulus| |c06ebf| |shiftLeft|
+ |leadingExponent| |groebner| |trim| |qfactor| |prindINFO| |printInfo|
+ |rewriteIdealWithRemainder| |outputFixed| |kroneckerDelta| |connectTo|
+ |leftScalarTimes!| |clearCache| |jokerMode| |powers| |level| |elRow1!|
+ |simplify| |figureUnits| |signatureAst| |resultantEuclidean|
+ |infinityNorm| |cAsec| |vspace| |lprop| |f02aff| |setScreenResolution|
+ |OMreadFile| |symFunc| |numberOfPrimitivePoly| |polyPart| |normal?|
+ |fractRagits| |hasHi| |substring?| |e01baf| |factorByRecursion|
+ |antiCommutator| |unexpand| |char| |mapExponents| |ScanRoman|
+ |OMputAtp| |failed| |univariate?| |extractIndex| |nextPartition|
+ |explimitedint| |postfix| |stronglyReduced?| |OMgetBind|
+ |internalSubPolSet?| |tubeRadiusDefault| |bat1| |suffix?| |reverse!|
+ |errorInfo| |splitConstant| |d03edf| |stoseLastSubResultant|
+ |coefficients| |identity| |maxPoints| |genericLeftTraceForm|
+ |maximumExponent| |rewriteIdealWithQuasiMonicGenerators| |iicoth|
+ |numericalIntegration| |modulus| |getZechTable| |sincos|
+ |eigenvectors| |compile| |leadingSupport| |bernoulliB| |traverse|
+ |prefix?| |status| |setrest!| |pointLists| |degreeSubResultant|
+ |polygamma| |normalDenom| |setMinPoints| |iicsc| |tanSum| |credPol|
+ |realSolve| |cCoth| |symmetricDifference| |connect| |close!|
+ |factorSFBRlcUnit| |mathieu24| |autoReduced?| |s14baf| |removeZero|
+ |extendedSubResultantGcd| |second| |irreducible?| |e02ajf| |anfactor|
+ |internalDecompose| |erf| |c06gsf| |float| |measure2Result| |pushup|
+ |edf2efi| |hconcat| |setCondition!| |third| |symmetricGroup| |zeroOf|
+ |primeFactor| |nextSubsetGray| |OMUnknownCD?| |vedf2vef| |hMonic|
+ |basisOfCentroid| |monomials| |inputOutputBinaryFile| |safetyMargin|
+ |df2fi| |lexGroebner| |rowEchelonLocal| |An| |void| |rroot|
+ |prefixRagits| |functionIsContinuousAtEndPoints| |infieldint|
+ |halfExtendedResultant1| |zeroDim?| |numericalOptimization| |const|
+ |lowerCase!| |dilog| |midpoints| |laplacian| |s18adf| |isOp|
+ |derivationCoordinates| |infix?| |iiacsch| |prolateSpheroidal|
+ |e02gaf| |repeatUntilLoop| |moebius| |sin| |distance| |rationalPoints|
+ |fortranComplex| |isPower| |mask| |legendreP| |OMcloseConn|
+ |setRealSteps| |s17dhf| |removeSuperfluousQuasiComponents|
+ |removeZeroes| |linearMatrix| |cos| |balancedBinaryTree| |bernoulli|
+ |write!| |makeTerm| |contractSolve| |modTree| |rationalApproximation|
+ |matrixDimensions| |gderiv| |expr| |irCtor| |tan| |intcompBasis|
+ |iFTable| |torsionIfCan| |userOrdered?| |changeNameToObjf|
+ |createLowComplexityNormalBasis|
+ |removeRoughlyRedundantFactorsInContents| |f04atf| |cot| |OMputApp|
+ |infLex?| |gensym| |subscript| |expenseOfEvaluation| |writeUInt8!|
+ |primitivePart| |associatorDependence| |showTheFTable| |e04fdf|
+ |unprotectedRemoveRedundantFactors| |sec| |purelyTranscendental?| GE
+ |parabolicCylindrical| |vark| |listRepresentation| |double|
+ |showAllElements| |mkcomm| |zeroMatrix| |psolve| |OMgetInteger|
+ |shallowCopy| |sh| |csc| |log| GT |associates?| |sin2csc| |cartesian|
+ |leftPower| |createIrreduciblePoly| |groebner?| |atanhIfCan|
+ |partitions| |variable| |diff| |replaceKthElement| |asin| LE
+ |perfectNthRoot| |clearTheIFTable| |ratpart| |components|
+ |companionBlocks| |generalizedContinuumHypothesisAssumed?|
+ |skewSFunction| |stoseInvertible?| |iterators| BY |paren| |mathieu23|
+ |acos| LT |directSum| |oddintegers| |internalIntegrate| |numericIfCan|
+ |infiniteProduct| |df2ef| |f02akf| |setLabelValue| |sub| |prem| |atan|
+ |e02bef| |subNode?| |gcdcofactprim| |possiblyNewVariety?|
+ |chineseRemainder| |rightUnits| |fractionFreeGauss!| |submod|
+ |ip4Address| |s21bdf| |acot| |d02ejf| |shufflein| |ptFunc|
+ |invertibleElseSplit?| |Ci| |sdf2lst| |odd?| |noValueMode|
+ |characteristic| |open?| |asec| |FormatRoman| |inverse| |ffactor|
+ |primitivePart!| |basisOfRightNucleus| |quickSort| |besselK| |lookup|
+ |cAtan| |finite?| |acsc| |environment| |unit| |OMgetEndBVar|
+ |normal01| |declare!| |complexRoots| |numberOfIrreduciblePoly|
+ |maxColIndex| |OMputError| |augment| |expIfCan| |sinh| |setfirst!|
+ |gramschmidt| |addPoint2| |f01maf| |denomLODE| |bit?| |stirling2|
+ |printingInfo?| |leftZero| |anticoord| |SturmHabichtSequence| |cosh|
+ |stirling1| |nextsousResultant2| |leftCharacteristicPolynomial|
+ |patternMatchTimes| |lazyPquo| NOT |OMputString| |factorials| |f04qaf|
+ |antisymmetric?| |OMencodingBinary| |tubePointsDefault| |tanh|
+ |genericRightTrace| |genericLeftMinimalPolynomial|
+ |bivariatePolynomials| |notelem| OR |decrease| |compiledFunction|
+ |resultantEuclideannaif| |c02aff| |bubbleSort!| |quasiRegular| |coth|
+ |branchPointAtInfinity?| |copyInto!| |chainSubResultants| |hue| AND
+ |setEpilogue!| |split!| |deepCopy| |rootDirectory| |rootOf|
+ |characteristicSerie| |keys| |cosIfCan| |addPointLast| |invertibleSet|
+ |findCycle| |triangular?| |simplifyPower| |linkToFortran|
+ |LyndonWordsList1| |depth| |showTheIFTable| |resetVariableOrder|
+ |primitive?| |componentUpperBound| |minrank| |selectAndPolynomials|
+ |algebraicOf| |cubic| |modularGcd| |firstNumer| |leadingIndex|
+ |drawStyle| |has?| |seriesToOutputForm| |bumptab1| |debug| |segment|
+ |viewWriteAvailable| |parents| |dn| |e01bhf| |approxSqrt|
+ |setAdaptive3D| |minus!| |minPoints3D| |c05nbf| |subPolSet?| D
+ |consnewpol| |lazyPseudoDivide| |reverseLex|
+ |selectMultiDimensionalRoutines| |headAst| |horizConcat| |max|
+ |cycleRagits| |integralDerivationMatrix| |integers|
+ |getSyntaxFormsFromFile| |getGraph| |indiceSubResultant|
+ |sizeMultiplication| |iExquo| |complexLimit| |commutativeEquality|
+ |isExpt| |charClass| |semicolonSeparate| |nary?| |noLinearFactor?|
+ |sPol| |fortranLiteralLine| |expintegrate| |zCoord| |dihedral|
+ |createThreeSpace| |critMonD1| |palgextint| |OMlistSymbols|
+ |perspective| |makeUnit| |concat!| |frst| |oddlambert| |setleaves!|
+ |pomopo!| |padicallyExpand| |slex| |chiSquare1| |minordet| |ipow|
+ |mesh?| |yCoordinates| |pointSizeDefault| |singularitiesOf|
+ |normalise| |callForm?| |parts| |makeop| |listOfLists| |phiCoord| *
+ |antiAssociative?| |argumentList!| |idealSimplify| |mainMonomial|
+ |rotatex| |invmultisect| |elliptic| |cyclicEntries| |f01qcf|
+ |OMopenFile| |useSingleFactorBound| |iidprod| |basisOfCenter|
+ |uniform| |structuralConstants| |viewPhiDefault| |properties|
+ |leftUnit| |optimize| |superscript| |leftNorm| |viewDefaults|
+ |unravel| |cCosh| |resetAttributeButtons| |f02adf| |iisec| |mathieu11|
+ |translate| |high| |truncate| |raisePolynomial| |sign| = |typeLists|
+ |rightRank| |redPo| |evaluate| |bezoutDiscriminant| |modifyPoint|
+ |binaryFunction| |enqueue!| |print| |reducedQPowers| |s15aef| |times!|
+ |startTableInvSet!| |rightDivide| |cscIfCan| |selectODEIVPRoutines|
+ |transpose| |edf2ef| |operation| |resolve| |constantCoefficientRicDE|
+ |myDegree| |getOrder| < |csc2sin| LODO2FUN |isAnd| |symmetricTensors|
+ |OMputInteger| |stronglyReduce| |sort!| |e02bcf| |mapUp!| |create|
+ |e02dcf| > |reducedSystem| |s19acf| |crushedSet| |morphism|
+ |quadraticNorm| |f01ref| |collectUnder| |iicos| |hitherPlane| <=
+ |showArrayValues| |reify| |insertTop!| |nullSpace| |cExp| |ScanArabic|
+ |shiftRoots| |splitDenominator| |bandedHessian| |monicDivide| |po| >=
+ |inverseIntegralMatrix| |reduceBasisAtInfinity|
+ |indicialEquationAtInfinity| |imagJ| |digit| |iiatanh|
+ |deleteProperty!| |swapColumns!| |unary?| |curryRight|
+ |setTopPredicate| |clearTable!| |updatF| |dimensions| |getConstant|
+ |monomialIntegrate| |exprHasLogarithmicWeights| |fortranDoubleComplex|
+ |badNum| |readLine!| |leftTraceMatrix| |returnType!| |dual|
+ |endOfFile?| |multiplyExponents| |generalizedEigenvectors| |testDim|
+ |interpret| |unitNormalize| |OMgetString| |rootNormalize|
+ |bombieriNorm| |rationalFunction| + |limitPlus| |rischNormalize|
+ |hyperelliptic| |diophantineSystem| |f02fjf| |true|
+ |leadingCoefficientRicDE| |inGroundField?| |totolex|
+ |OMsupportsSymbol?| |rootProduct| - |leftRank| |cn| |s14aaf|
+ |deleteRoutine!| |contract| |cos2sec| |showFortranOutputStack|
+ |complex?| |sumOfDivisors| |mantissa| / |e01bgf| |interactiveEnv|
+ |complexElementary| |unit?| |dot| |column| |failed?|
+ |semiDiscriminantEuclidean| |OMgetEndAttr| |numberOfComponents|
+ |selectIntegrationRoutines| UTS2UP |alphabetic?| |listYoungTableaus|
+ |symmetricPower| |meatAxe| |category| |lllp| |alternating|
+ |factorFraction| |divisorCascade| |nil| |pushNewContour|
+ |discriminant| |cTan| |iiGamma| |printInfo!| |spherical| |front|
+ |domain| |randomLC| |genericLeftNorm| |iilog| |qualifier| |wreath|
+ |OMputEndAttr| |weights| |isList| |permutation| |package| |someBasis|
+ |exteriorDifferential| |inf| |fixedPoint| |fortranLiteral| |yCoord|
+ |acotIfCan| |subQuasiComponent?| |shift|
+ |removeIrreducibleRedundantFactors| |recip| |genericLeftTrace|
+ |d02cjf| |LazardQuotient2| |unrankImproperPartitions0| |approximate|
+ |d01amf| |imports| |s13adf| |createGenericMatrix| |changeMeasure|
+ |palglimint0| |palgint| |exprHasWeightCosWXorSinWX| |writable?|
+ |complex| |btwFact| |unmakeSUP| |over| |varList| |bezoutMatrix|
+ |rightZero| |unitsColorDefault| |dmp2rfi| |clearDenominator|
+ |whatInfinity| |collect| |basisOfNucleus| |lookupFunction| |rst|
+ |ricDsolve| |delta| |show| |ksec| |aQuartic| |getMultiplicationTable|
+ |identification| |bivariate?| |thetaCoord| |property| |ddFact|
+ |iidsum| |makeSin| |unaryFunction| |var2Steps| |patternMatch|
+ |graphImage| |lex| |complexEigenvalues| |ref| |drawCurves|
+ |domainTemplate| |setFormula!| |ratDsolve| |trace| |extension|
+ |denomRicDE| |nor| |computePowers| |f01mcf| |viewSizeDefault|
+ |trace2PowMod| |style| |LyndonWordsList| |retract| |sup| |leader|
+ |leastAffineMultiple| |padicFraction| |argscript| |rightNorm| |units|
+ |inHallBasis?| |typeForm| |fixedPoints| |ldf2lst| |empty?|
+ |OMputEndObject| |currentCategoryFrame| |sech2cosh| |extend|
+ |selectOrPolynomials| |color| |square?| |solveLinear| |readByte!|
+ |f02abf| |isobaric?| |contours| |copy!| |polyred| |complexZeros|
+ |linearlyDependent?| |symbol?| |formula| |denominator| |vertConcat|
+ |algebraicVariables| |binomThmExpt| |indicialEquation| |OMsend|
+ |rightQuotient| |rootOfIrreduciblePoly| |monicModulo| |upperCase?|
+ |insertMatch| |lambda| |epilogue| |zerosOf| |nextPrimitiveNormalPoly|
+ |mapGen| |subTriSet?| |ideal| |dark| |basisOfLeftNucleus| |dmpToHdmp|
+ |localReal?| |primintegrate| |cylindrical| |strongGenerators|
+ |principalAncestors| |rightUnit| |every?| |code| |singRicDE|
+ |positiveRemainder| |nilFactor| |interpolate| |point?| |changeName|
+ |bsolve| |shuffle| |solve| |printCode| |Lazard2|
+ |selectOptimizationRoutines| |categoryFrame| |LyndonBasis|
+ |normalizeIfCan| |nrows| |singleFactorBound| |viewZoomDefault|
+ |datalist| |reopen!| |presuper| |fractionPart| |numberOfVariables|
+ |expt| |gbasis| |pade| |ncols| |leastMonomial| |build| |repeating|
+ |rdregime| |tableau| |determinant| |readLineIfCan!| |approximants|
+ |plus| |brillhartTrials| |exptMod| |whitePoint| |bezoutResultant|
+ |HermiteIntegrate| |bits| |critMTonD1| |validExponential| |curryLeft|
+ |useSingleFactorBound?| |maxIndex| |completeSmith| |parent|
+ |setColumn!| |cross| |dom| |duplicates| |e01sbf| |mapDown!|
+ |writeLine!| |OMwrite| |binarySearchTree| |solve1| |createNormalPoly|
+ |perfectSqrt| |isAbsolutelyIrreducible?| |sum| |goodPoint| |f01rdf|
+ |OMgetEndAtp| |permutationRepresentation| |cup| |polynomial|
+ |partialDenominators| |stopTableGcd!| |readInt32!|
+ |showTheRoutinesTable| |point| |changeWeightLevel| |f01rcf|
+ |selectSumOfSquaresRoutines| |coefChoose| |setOrder| |newTypeLists|
+ |times| |createRandomElement| |useEisensteinCriterion|
+ |leftFactorIfCan| |interval| |cLog| |iiexp| |ldf2vmf| |OMputEndError|
+ |OMgetEndBind| |symbolTable| |delete!| |expintfldpoly| |c06frf|
+ |sturmVariationsOf| |roughBasicSet|
+ |dimensionOfIrreducibleRepresentation| |OMgetEndApp| |neglist|
+ |BasicMethod| |top| |lyndon| |setsubMatrix!| |ran|
+ |setScreenResolution3D| |semiResultantEuclidean1| |lp| |singular?|
+ |systemCommand| |rightRankPolynomial| |normFactors|
+ |nextLatticePermutation| |transcendenceDegree| |series| |arity|
+ |droot| |pushFortranOutputStack| |complement| |c05adf|
+ |squareFreeFactors| |tryFunctionalDecomposition| |title| |comp|
+ |graphCurves| |eulerPhi| |prime| |OMputEndAtp| |rischDEsys| |iiacosh|
+ |leftTrace| |popFortranOutputStack| |complexEigenvectors| |cCsc|
+ |s17aef| |beauzamyBound| |jacobi| |resultant| |node| |monom|
+ |baseRDEsys| |options| |laplace| |viewpoint| |f07fdf| |inR?|
+ |continue| |fortranCharacter| |f02agf| |sort| |getRef| |f07aef|
+ |OMsupportsCD?| |outputAsFortran| |makeCrit| |normal| |cycles|
+ |numberOfMonomials| |BumInSepFFE| |hex| |dihedralGroup| |escape|
+ |OMgetFloat| |mvar| |e| |lagrange| |topPredicate| |ratPoly|
+ |rationalIfCan| |var1Steps| |leadingTerm| |min| |collectUpper| |list|
+ |e02bbf| |outputBinaryFile| |univcase| |factorSquareFree| |diagonal?|
+ |common| |makeVariable| |string| |leftDivide| |secIfCan| |rotatey|
+ |expandLog| |car| |halfExtendedSubResultantGcd2| |hermite|
+ |doubleComplex?| |currentScope| |rightTraceMatrix| |prevPrime|
+ |OMgetApp| |ode1| |generalizedEigenvector| |pseudoQuotient| |random|
+ |cdr| |inRadical?| |stoseInternalLastSubResultant| |graeffe|
+ |squareFreePrim| |lfunc| |karatsubaOnce| |sparsityIF|
+ |genericRightDiscriminant| |bandedJacobian| |back| |setDifference|
+ |scalarMatrix| |magnitude| |signAround| |contains?| |bag|
+ |removeCosSq| |copies| |subResultantsChain| |dmpToP|
+ |discriminantEuclidean| |setIntersection| |irVar| |areEquivalent?|
+ |bitCoef| |cAsinh| |constantKernel| |latex| |withPredicates|
+ |initTable!| |symmetricProduct| |lazyIrreducibleFactors| |setUnion|
+ |OMgetVariable| |refine| |putProperty| |s20acf| |coth2trigh|
+ |internalAugment| |setLength!| |OMconnOutDevice| |palgextint0|
+ |d02bhf| |apply| |doubleFloatFormat| |bounds|
+ |cyclotomicFactorization| |multiple?| |separateDegrees| |littleEndian|
+ |iiacot| |rewriteIdealWithHeadRemainder| |doubleDisc| |polygon|
+ |overset?| |polygon?| |top!| |floor| |solveLinearPolynomialEquation|
+ |zero| |coerceL| |numberOfHues| |mainForm| |f02bjf| |OMreceive| |size|
+ |schwerpunkt| |viewDeltaXDefault| |conjugate| |divideIfCan| |d01alf|
+ |numeric| |colorFunction| |e02agf| |exists?| |toseLastSubResultant|
+ |s17adf| |width| |knownInfBasis| |lyndonIfCan| |applyRules|
+ |hasPredicate?| |revert| |radical| |And| |zeroSquareMatrix| |basicSet|
+ |binary| |rightExtendedGcd| |equation| |buildSyntax| |powmod|
+ |precision| |conjugates| |wordInStrongGenerators| |roughUnitIdeal?|
+ |vector| |slash| |Or| |checkRur| |primPartElseUnitCanonical!|
+ |complexNormalize| |elliptic?| |primaryDecomp| |normalizedDivide|
+ |first| |pseudoDivide| |light| |rur| |differentiate| |pr2dmp| |Not|
+ |aromberg| |factorList| |nthFactor| |kmax| |removeSinhSq| |rest|
+ |factorAndSplit| |tValues| |subResultantGcdEuclidean|
+ |toseSquareFreePart| |elRow2!| |rename!| |elaborate|
+ |computeCycleLength| |squareFreePolynomial| |realEigenvalues|
+ |subResultantChain| |substitute| |doublyTransitive?| |poisson|
+ |isTerm| |cschIfCan| |tubePoints| |branchIfCan| |accuracyIF|
+ |fortranDouble| |d01apf| |hash| |outputForm| |interpretString|
+ |removeDuplicates| |iiasinh| |logIfCan| |block|
+ |lastSubResultantEuclidean| |clearFortranOutputStack| |comparison|
+ |integral?| |physicalLength| |oddInfiniteProduct| |count| |chiSquare|
+ |complementaryBasis| |d01gaf| |stFunc1| |mr| |subNodeOf?|
+ |fullDisplay| |lflimitedint| |Ei| |super| |mindegTerm| |f01qef| |name|
+ |optional| |partition| |forLoop| |totalfract| |gcdprim| |integrate|
+ |e04mbf| |derivative| |euclideanNormalForm| |twist| |typeList| |lift|
+ |body| |tan2cot| |coleman| |outputAsTex| |systemSizeIF| |e02daf|
+ |extractBottom!| |inc| |associatedEquations| |closed| |deepestTail|
+ |generalTwoFactor| |reduce| |moreAlgebraic?| |aCubic| |setClipValue|
+ |c02agf| |scopes| |reduceByQuasiMonic| |integer?|
+ |shanksDiscLogAlgorithm| |stoseInvertible?reg| |explogs2trigs|
+ |sts2stst| |universe| |leftExtendedGcd| |satisfy?| |binomial| |xn|
+ |localIntegralBasis| |setPoly| |critM| |exponents| |factorsOfDegree|
+ |nextSublist| |makeprod| |central?| |supRittWu?| |d01bbf| |implies|
+ |s13aaf| |conical| |position!| |just| |increasePrecision|
+ |mapUnivariateIfCan| |removeConstantTerm| |makeViewport2D| |internal?|
+ |empty| |unitVector| |acscIfCan| |sqfree| |solveRetract|
+ |denominators| |fixPredicate| |f04jgf| |fortranCompilerName|
+ |medialSet| SEGMENT |rationalPower| |error| |innerSolve|
+ |antiCommutative?| |powern| |stopMusserTrials| |atoms| |port|
+ |linearPolynomials| |LyndonCoordinates| |any| |whileLoop| |palgint0|
+ |mappingMode| |qqq| |assert| |leftQuotient| |tower| |e04ycf|
+ |cyclotomic| |upperBound| |graphState| |setImagSteps|
+ |wronskianMatrix| |recolor| |imagj| |plotPolar| |startTableGcd!|
+ |leftDiscriminant| |semiResultantReduitEuclidean| |t|
+ |variationOfParameters| |vectorise| |constantToUnaryFunction|
+ |cyclicParents| |stopTable!| |child| |countRealRoots| |elaborateFile|
+ |list?| |intensity| |diagonalMatrix| |clearTheSymbolTable|
+ |createZechTable| GF2FG |loadNativeModule| |logGamma|
+ |nextIrreduciblePoly| |readUInt8!| |expenseOfEvaluationIF|
+ |numberOfCycles| |setref| |setProperties| |mightHaveRoots| |push|
+ |primeFrobenius| |mindeg| |jordanAdmissible?| |homogeneous?| |randnum|
+ |basisOfCommutingElements| |solveLinearlyOverQ| |rightRemainder|
+ |constant| |limitedIntegrate| |nextColeman| |positive?|
+ |complexNumeric| |lquo| |tableForDiscreteLogarithm| |newReduc|
+ |ListOfTerms| |e01sff| |subHeight| |standardBasisOfCyclicSubmodule|
+ |octon| |totalDegree| |curve?| |byte| |ranges| |palgintegrate|
+ |predicate| |nthr| |numberOfImproperPartitions| |simpson|
+ |outputAsScript| |readBytes!| |iiperm| |null?| |integerBound|
+ |kernels| |iteratedInitials| |s18aef| |tab| |LiePolyIfCan| |isMult|
+ |nthRoot| |range| |linears| |redPol| |operator|
+ |mainDefiningPolynomial| |cons| |flexible?| |maxrow|
+ |normalizeAtInfinity| |repSq| |factorset| |isEquiv| |toroidal|
+ |perfectSquare?| |integralLastSubResultant| |rootRadius| |prinpolINFO|
+ |algebraicDecompose| |step| |mdeg| |computeInt| |squareFree| |s18def|
+ |weight| |univariate| |leftLcm| |regime| |module| |isOpen?| |mapSolve|
+ |wordInGenerators| |comment| |linearAssociatedOrder| |qelt| |nlde|
+ |iiatan| |monicRightDivide| |rootPoly| |getBadValues|
+ |pointColorPalette| |gethi| |extractClosed| |qsetelt| |ef2edf| |lepol|
+ |adaptive| |aspFilename| |eq?| |lexTriangular| |linear|
+ |createPrimitiveNormalPoly| |getCurve| |inputBinaryFile| |coerce|
+ |sturmSequence| |xRange| |leastPower| |factor| |leviCivitaSymbol|
+ |physicalLength!| |df2mf| |key?| |int| |reducedContinuedFraction|
+ |e01saf| |stiffnessAndStabilityOfODEIF| |construct| |operators|
+ |ramified?| |yRange| |sqrt| |factorPolynomial| |source| |tanNa|
+ |multiEuclidean| |separate| |c06ekf| |d01asf| |associative?| |zRange|
+ |lineColorDefault| |real| |omError| |parameters| |sinh2csch| |f02bbf|
+ |norm| |rootKerSimp| |functionIsFracPolynomial?| |normalize| |content|
+ |map!| |f04adf| |imag| |showRegion| |clipWithRanges| |patternVariable|
+ |selectfirst| |algebraicSort| |findConstructor| |listexp| |B1solve|
+ |length| |qsetelt!| |simpsono| |directProduct| |subspace|
+ |rightDiscriminant| F2FG |localAbs| |cothIfCan| |nthExponent|
+ |solveInField| |fortranTypeOf| |scripts| |permanent|
+ |minimalPolynomial| |loopPoints| |varselect| |updateStatus!|
+ |viewDeltaYDefault| |cAcosh| |f04faf| |assign| |solveid| |brace|
+ |cotIfCan| |target| |cfirst| |ptree| |calcRanges| |removeCoshSq|
+ |completeHensel| |makeSeries| |weierstrass| |closedCurve|
+ |outputGeneral| |fortranCarriageReturn| |destruct| |power!| |s17ahf|
+ |decreasePrecision| |nextItem| |e02baf| |hcrf| |complexExpand|
+ |symmetricRemainder| |fortranInteger| |irreducibleRepresentation|
+ |generalizedInverse| |separateFactors| |insert!| |graphStates| |kind|
+ |parseString| |integral| |semiDegreeSubResultantEuclidean| |rename|
+ |adaptive?| |chebyshevU| |replace| |radPoly| |cAsin| |op|
+ |stosePrepareSubResAlgo| |matrixGcd| |OMgetAttr| |rombergo|
+ |solveLinearPolynomialEquationByRecursion| |lfextendedint| |e04ucf|
+ |size?| |aQuadratic| |clipBoolean| |subscriptedVariables|
+ |mergeFactors| |appendPoint| |parametric?| |ravel| |primlimitedint|
+ |monomial| |OMread| |colorDef| |genus| |romberg| |UpTriBddDenomInv|
+ |primlimintfrac| |genericLeftDiscriminant| |prod| |e04jaf|
+ |sumSquares| |explicitEntries?| |reshape| |string?| |expandPower|
+ |quoByVar| |arguments| |lazyPseudoRemainder| |pToHdmp| |sechIfCan|
+ |setelt| |sylvesterSequence| |iitanh| |zag| |froot| |solid?|
+ |linearDependenceOverZ| |iicsch| |queue| |atom?| |float?|
+ |LagrangeInterpolation| |radix| |taylorIfCan| |nextNormalPoly|
+ |superHeight| |fglmIfCan| |rk4a| |composites| |copy|
+ |integralBasisAtInfinity| |extendedEuclidean| |totalDifferential|
+ |cyclic?| |alternative?| |linear?| |union| |stoseSquareFreePart|
+ |ignore?| |acosIfCan| |Vectorise| |bringDown| |gcdPrimitive|
+ |musserTrials| |digamma| |rank| |tab1| |sumOfSquares| |numFunEvals|
+ |check| |tube| |reciprocalPolynomial| |getDatabase| |isConnected?|
+ |routines| |midpoint| |update| |getProperty| |f02axf|
+ |rightExactQuotient| |autoCoerce| |semiResultantEuclidean2|
+ |asecIfCan| |permutations| |exactQuotient| |writeByte!|
+ |newSubProgram| |selectsecond| |children| |integralBasis|
+ |subresultantVector| |e02dff| |iflist2Result| |youngGroup| |quotient|
+ |definingEquations| |moduleSum| |makeMulti| |lifting| |s18dcf|
+ |s17dgf| |countRealRootsMultiple| |resetNew| |biRank|
+ |drawComplexVectorField| |fTable| |torsion?| |expressIdealMember|
+ |SturmHabicht| |PollardSmallFactor| |recur| |even?| |goto| |readable?|
+ |removeRedundantFactorsInPols| |showAll?| |laurentRep| |digit?|
+ |halfExtendedResultant2| |dflist| |univariatePolynomialsGcds|
+ |factorOfDegree| |RemainderList| |position| |power|
+ |explicitlyFinite?| |collectQuasiMonic| |univariateSolve| |constant?|
+ |SFunction| |splitSquarefree| |row| |match?| |headReduced?| |lists|
+ |OMgetError| |rdHack1| |branchPoint?| |addiag| |belong?| |f04mcf|
+ |exQuo| |ScanFloatIgnoreSpacesIfCan| |fprindINFO| |OMsetEncoding|
+ |seriesSolve| |leftRecip| |real?| |definingPolynomial| |cSech|
+ |createLowComplexityTable| |palgLODE| |iomode| |OMUnknownSymbol?|
+ |cAcoth| |basisOfRightNucloid| |s17dcf| |constantOpIfCan| |UP2ifCan|
+ |f02ajf| |c06eaf| |moduloP| |declare| |optpair| |atrapezoidal|
+ |checkForZero| |fracPart| |GospersMethod| |elColumn2!| |Nul|
+ |transcendentalDecompose| |generalizedContinuumHypothesisAssumed|
+ |rowEchLocal| |setMaxPoints| |pmintegrate| |infieldIntegrate|
+ |cot2trig| |LowTriBddDenomInv| |expint| |scale| |minimize|
+ |constDsolve| |powerAssociative?| |divergence| |f04maf| |setStatus!|
+ |besselI| |socf2socdf| |resultantReduitEuclidean| |divisor|
+ |setMinPoints3D| |arg1| |extractIfCan| |uniform01| |monic?| |f2df|
+ |subSet| |createNormalElement| |restorePrecision| |log2| |qPot|
+ |setPosition| |iibinom| |arg2| |f01bsf| |sech| |linearAssociatedLog|
+ |resultantnaif| |ellipticCylindrical| |rectangularMatrix| |voidMode|
+ |rightLcm| |bindings| |pdct| |edf2df| |csch| |OMmakeConn| |reorder|
+ |usingTable?| |retractable?| |close| |irDef| |symmetricSquare|
+ |rightCharacteristicPolynomial| |cAcsc| |conditions| |shellSort|
+ |asinh| |iterationVar| |cycleSplit!| |zero?| |deriv| |coord| |e04dgf|
+ |sizePascalTriangle| |match| |rewriteSetWithReduction| |groebgen|
+ |acosh| |pointColorDefault| |stop| |identityMatrix| |f04asf| |lllip|
+ |OMputBVar| |display| |algebraicCoefficients?| |bright| |atanh|
+ |tanhIfCan| |vconcat| |besselJ| |complexSolve| |acoshIfCan|
+ |leftMinimalPolynomial| |removeSquaresIfCan| |c06gqf|
+ |makeYoungTableau| |li| |getProperties| |lazyGintegrate| |extendedint|
+ |acoth| |mathieu22| |quadratic| |modularGcdPrimitive| |subset?| |pow|
+ |OMgetEndObject| |s18acf| |asech| |certainlySubVariety?|
+ |quasiMonicPolynomials| |deepExpand| |safeFloor| |sqfrFactor|
+ |algintegrate| |coordinate| |getVariableOrder| |makeFR| |laguerreL|
+ |llprop| |numberOfNormalPoly| |changeThreshhold| |numFunEvals3D|
+ |merge| |entries| |pquo| |multiple| |OMReadError?| |mainContent|
+ |move| |cPower| |highCommonTerms| |input| |taylorQuoByVar| |upperCase|
+ |e01sef| |closeComponent| |tubePlot| |box| |currentSubProgram|
+ |applyQuote| |groebnerFactorize| |setAttributeButtonStep|
+ |factorsOfCyclicGroupSize| |generic| |bytes| |library| |s21bcf|
+ |infinite?| |setVariableOrder| |genericRightNorm| |karatsubaDivide|
+ |inverseLaplace| |arrayStack| |LiePoly| |evenlambert| |randomR|
+ |wholeRadix| |parabolic| |createPrimitiveElement| |push!| |iiasech|
+ |reflect| |uncouplingMatrices| |d02raf| |eigenMatrix| |minRowIndex|
+ |elem?| |pushdown| |ruleset| |probablyZeroDim?| |mainCharacterization|
+ |integralMatrix| |pack!| |ParCondList| |isTimes| |elements| |exp1|
+ |OMlistCDs| |less?| |f02xef| |OMgetType| |set| |unvectorise| |cyclic|
+ |nthRootIfCan| |simplifyLog| |iisinh| |OMbindTCP| |cCot| |totalLex|
+ |test| |id| |hostPlatform| |algebraic?| |presub| |var2StepsDefault|
+ |integralMatrixAtInfinity| |airyBi| |suchThat|
+ |lastSubResultantElseSplit| |leftRemainder| |integralCoordinates|
+ |isOr| |algSplitSimple| |child?| |setelt!| |integerIfCan|
+ |coercePreimagesImages| |linearDependence| |rightMult| |c06fpf|
+ |table| |pile| |semiIndiceSubResultantEuclidean| |plus!|
+ |permutationGroup| |logpart| |bumptab| |sylvesterMatrix| |dequeue!|
+ |subst| |pdf2df| |insert| |s19abf| |new| |intChoose|
+ |stoseIntegralLastSubResultant| |mapdiv| |obj| |meshPar1Var|
+ |getGoodPrime| |leftAlternative?| |mapExpon| |nthFractionalTerm|
+ |imagK| |plenaryPower| |eq| |prefix| |screenResolution| |cache|
+ |delay| |points| |changeBase| |insertBottom!| |iter| |evaluateInverse|
+ |cycleEntry| |rotate| |jacobiIdentity?| |innerint| |OMputEndApp|
+ |Aleph| |delete| |subresultantSequence| |squareMatrix| |signature|
+ |removeRedundantFactorsInContents| |double?| |cAcot| |palgLODE0|
+ |paraboloidal| |quotientByP| |variable?| |degree| |constantOperator|
+ |makeSketch| |completeEchelonBasis| |untab| |quadratic?|
+ |clipPointsDefault| |mapmult| |groebSolve| |headReduce|
+ |clearTheFTable| |lfextlimint| |diag| |radicalSimplify| |radicalRoots|
+ |objects| |unitCanonical| |cyclicCopy| |FormatArabic| |relativeApprox|
+ |acothIfCan| |factors| |directory| |rightScalarTimes!| |base| |script|
+ |transform| |solveLinearPolynomialEquationByFractions| |direction|
+ |closed?| |number?| |curry| |totalGroebner| |c06fqf| |OMputVariable|
+ |extractTop!| |rightMinimalPolynomial| |simpleBounds?|
+ |commonDenominator| |sortConstraints| |rightRecip| |laurentIfCan|
+ |retractIfCan| |monomRDEsys| |coefficient| |linearAssociatedExp|
+ |c05pbf| |iicot| |flatten| |selectFiniteRoutines| |exp| |f02awf|
+ |leftUnits| |deref| |legendre| |nullary| |tex| |ocf2ocdf|
+ |integralRepresents| |left| |numer| |outputFloating|
+ |basisOfLeftNucloid| |heapSort| |asinhIfCan| |setTex!| |flagFactor|
+ |/\\| |s15adf| |tanh2trigh| |OMgetEndError| |right| |outputList|
+ |denom| |s17dlf| |pmComplexintegrate| |asinIfCan| |setright!|
+ |listBranches| |irForm| |\\/| |dimensionsOf| |lazyPrem| |invertible?|
+ |errorKind| |representationType| |setLegalFortranSourceExtensions|
+ |minIndex| |sample| |nil| |infinite| |arbitraryExponent| |approximate|
|complex| |shallowMutable| |canonical| |noetherian| |central|
|partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
|noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 45739c74..377029a4 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5369 +1,5377 @@
-(3226997 . 3479296411)
-((-2031 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-3012 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3940 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-1240 (-569)) |#2|) 44)) (-4380 (($ $) 81)) (-3596 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-4034 (((-569) (-1 (-112) |#2|) $) 27) (((-569) |#2| $) NIL) (((-569) |#2| $ (-569)) 97)) (-2880 (((-649 |#2|) $) 13)) (-2126 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3831 (($ (-1 |#2| |#2|) $) 37)) (-1344 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4294 (($ |#2| $ (-569)) NIL) (($ $ $ (-569)) 67)) (-3123 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2911 (((-112) (-1 (-112) |#2|) $) 23)) (-1866 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL) (($ $ (-1240 (-569))) 66)) (-4325 (($ $ (-569)) 76) (($ $ (-1240 (-569))) 75)) (-3558 (((-776) (-1 (-112) |#2|) $) 34) (((-776) |#2| $) NIL)) (-1938 (($ $ $ (-569)) 69)) (-3959 (($ $) 68)) (-3806 (($ (-649 |#2|)) 73)) (-2441 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-649 $)) 86)) (-3793 (((-867) $) 93)) (-3037 (((-112) (-1 (-112) |#2|) $) 22)) (-2919 (((-112) $ $) 96)) (-2942 (((-112) $ $) 100)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2919 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3012 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4380 (|#1| |#1|)) (-15 -1938 (|#1| |#1| |#1| (-569))) (-15 -2031 ((-112) |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -4034 ((-569) |#2| |#1| (-569))) (-15 -4034 ((-569) |#2| |#1|)) (-15 -4034 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -2031 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2126 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3940 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -4325 (|#1| |#1| (-1240 (-569)))) (-15 -4325 (|#1| |#1| (-569))) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2441 (|#1| (-649 |#1|))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -3123 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1866 (|#2| |#1| (-569))) (-15 -1866 (|#2| |#1| (-569) |#2|)) (-15 -3940 (|#2| |#1| (-569) |#2|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -2880 ((-649 |#2|) |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1|))) (-19 |#2|) (-1223)) (T -18))
+(3227980 . 3479376233)
+((-1317 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-2951 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3943 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-1242 (-569)) |#2|) 44)) (-2507 (($ $) 81)) (-3598 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-4036 (((-569) (-1 (-112) |#2|) $) 27) (((-569) |#2| $) NIL) (((-569) |#2| $ (-569)) 97)) (-2882 (((-649 |#2|) $) 13)) (-4198 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3834 (($ (-1 |#2| |#2|) $) 37)) (-1346 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4298 (($ |#2| $ (-569)) NIL) (($ $ $ (-569)) 67)) (-1574 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3208 (((-112) (-1 (-112) |#2|) $) 23)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL) (($ $ (-1242 (-569))) 66)) (-4328 (($ $ (-569)) 76) (($ $ (-1242 (-569))) 75)) (-3560 (((-776) (-1 (-112) |#2|) $) 34) (((-776) |#2| $) NIL)) (-2785 (($ $ $ (-569)) 69)) (-3962 (($ $) 68)) (-3809 (($ (-649 |#2|)) 73)) (-2443 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-649 $)) 86)) (-3796 (((-867) $) 93)) (-1980 (((-112) (-1 (-112) |#2|) $) 22)) (-2920 (((-112) $ $) 96)) (-2944 (((-112) $ $) 100)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -1317 ((-112) |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|))) (-19 |#2|) (-1225)) (T -18))
NIL
-(-10 -8 (-15 -2919 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3012 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4380 (|#1| |#1|)) (-15 -1938 (|#1| |#1| |#1| (-569))) (-15 -2031 ((-112) |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -4034 ((-569) |#2| |#1| (-569))) (-15 -4034 ((-569) |#2| |#1|)) (-15 -4034 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -2031 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2126 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3940 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -4325 (|#1| |#1| (-1240 (-569)))) (-15 -4325 (|#1| |#1| (-569))) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2441 (|#1| (-649 |#1|))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -3123 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1866 (|#2| |#1| (-569))) (-15 -1866 (|#2| |#1| (-569) |#2|)) (-15 -3940 (|#2| |#1| (-569) |#2|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -2880 ((-649 |#2|) |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4445))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4445))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-4380 (($ $) 91 (|has| $ (-6 -4445)))) (-2248 (($ $) 101)) (-3547 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 52)) (-4034 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3377 (($ $ $) 88 (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3969 (($ $ $) 87 (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 43 (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4420 (($ $ |#1|) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1938 (($ $ $ (-569)) 92 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 71)) (-2441 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2964 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-19 |#1|) (-140) (-1223)) (T -19))
+(-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -1317 ((-112) |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-19 |#1|) (-140) (-1225)) (T -19))
NIL
-(-13 (-377 |t#1|) (-10 -7 (-6 -4445)))
-(((-34) . T) ((-102) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T))
-((-1678 (((-3 $ "failed") $ $) 12)) (-3021 (($ $) NIL) (($ $ $) 9)) (* (($ (-927) $) NIL) (($ (-776) $) 16) (($ (-569) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -1678 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-21)) (T -20))
+(-13 (-377 |t#1|) (-10 -7 (-6 -4448)))
+(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T))
+((-2208 (((-3 $ "failed") $ $) 12)) (-3024 (($ $) NIL) (($ $ $) 9)) (* (($ (-927) $) NIL) (($ (-776) $) 16) (($ (-569) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -2208 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -1678 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24)))
+(-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -2208 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24)))
(((-21) (-140)) (T -21))
-((-3021 (*1 *1 *1) (-4 *1 (-21))) (-3021 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-131) (-651 (-569)) (-10 -8 (-15 -3021 ($ $)) (-15 -3021 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1106) . T))
-((-3192 (((-112) $) 10)) (-4188 (($) 15)) (* (($ (-927) $) 14) (($ (-776) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 -4188 (|#1|)) (-15 * (|#1| (-927) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 -4188 (|#1|)) (-15 * (|#1| (-927) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
+((-3024 (*1 *1 *1) (-4 *1 (-21))) (-3024 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-131) (-651 (-569)) (-10 -8 (-15 -3024 ($ $)) (-15 -3024 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1108) . T))
+((-4143 (((-112) $) 10)) (-4427 (($) 15)) (* (($ (-927) $) 14) (($ (-776) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 * (|#1| (-927) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
(((-23) (-140)) (T -23))
-((-1803 (*1 *1) (-4 *1 (-23))) (-4188 (*1 *1) (-4 *1 (-23))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776)))))
-(-13 (-25) (-10 -8 (-15 (-1803) ($) -3706) (-15 -4188 ($) -3706) (-15 -3192 ((-112) $)) (-15 * ($ (-776) $))))
-(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
+((-1804 (*1 *1) (-4 *1 (-23))) (-4427 (*1 *1) (-4 *1 (-23))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776)))))
+(-13 (-25) (-10 -8 (-15 (-1804) ($) -3709) (-15 -4427 ($) -3709) (-15 -4143 ((-112) $)) (-15 * ($ (-776) $))))
+(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
((* (($ (-927) $) 10)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-927) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-927) |#1|)))
-((-2415 (((-112) $ $) 7)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14)))
+((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14)))
(((-25) (-140)) (T -25))
-((-3009 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-927)))))
-(-13 (-1106) (-10 -8 (-15 -3009 ($ $ $)) (-15 * ($ (-927) $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-3879 (((-649 $) (-958 $)) 32) (((-649 $) (-1179 $)) 16) (((-649 $) (-1179 $) (-1183)) 20)) (-3288 (($ (-958 $)) 30) (($ (-1179 $)) 11) (($ (-1179 $) (-1183)) 60)) (-3421 (((-649 $) (-958 $)) 33) (((-649 $) (-1179 $)) 18) (((-649 $) (-1179 $) (-1183)) 19)) (-3964 (($ (-958 $)) 31) (($ (-1179 $)) 13) (($ (-1179 $) (-1183)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3879 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3879 ((-649 |#1|) (-1179 |#1|))) (-15 -3879 ((-649 |#1|) (-958 |#1|))) (-15 -3288 (|#1| (-1179 |#1|) (-1183))) (-15 -3288 (|#1| (-1179 |#1|))) (-15 -3288 (|#1| (-958 |#1|))) (-15 -3421 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3421 ((-649 |#1|) (-1179 |#1|))) (-15 -3421 ((-649 |#1|) (-958 |#1|))) (-15 -3964 (|#1| (-1179 |#1|) (-1183))) (-15 -3964 (|#1| (-1179 |#1|))) (-15 -3964 (|#1| (-958 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3879 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3879 ((-649 |#1|) (-1179 |#1|))) (-15 -3879 ((-649 |#1|) (-958 |#1|))) (-15 -3288 (|#1| (-1179 |#1|) (-1183))) (-15 -3288 (|#1| (-1179 |#1|))) (-15 -3288 (|#1| (-958 |#1|))) (-15 -3421 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3421 ((-649 |#1|) (-1179 |#1|))) (-15 -3421 ((-649 |#1|) (-958 |#1|))) (-15 -3964 (|#1| (-1179 |#1|) (-1183))) (-15 -3964 (|#1| (-1179 |#1|))) (-15 -3964 (|#1| (-958 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3879 (((-649 $) (-958 $)) 88) (((-649 $) (-1179 $)) 87) (((-649 $) (-1179 $) (-1183)) 86)) (-3288 (($ (-958 $)) 91) (($ (-1179 $)) 90) (($ (-1179 $) (-1183)) 89)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-3807 (($ $) 100)) (-1680 (((-112) $ $) 65)) (-4188 (($) 18 T CONST)) (-3421 (((-649 $) (-958 $)) 94) (((-649 $) (-1179 $)) 93) (((-649 $) (-1179 $) (-1183)) 92)) (-3964 (($ (-958 $)) 97) (($ (-1179 $)) 96) (($ (-1179 $) (-1183)) 95)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-4073 (((-112) $) 79)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 99)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 73)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+((-3012 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-927)))))
+(-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ (-927) $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-3194 (((-649 $) (-958 $)) 32) (((-649 $) (-1181 $)) 16) (((-649 $) (-1181 $) (-1185)) 20)) (-2565 (($ (-958 $)) 30) (($ (-1181 $)) 11) (($ (-1181 $) (-1185)) 60)) (-1333 (((-649 $) (-958 $)) 33) (((-649 $) (-1181 $)) 18) (((-649 $) (-1181 $) (-1185)) 19)) (-2793 (($ (-958 $)) 31) (($ (-1181 $)) 13) (($ (-1181 $) (-1185)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|))))
+((-2417 (((-112) $ $) 7)) (-3194 (((-649 $) (-958 $)) 88) (((-649 $) (-1181 $)) 87) (((-649 $) (-1181 $) (-1185)) 86)) (-2565 (($ (-958 $)) 91) (($ (-1181 $)) 90) (($ (-1181 $) (-1185)) 89)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 100)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-1333 (((-649 $) (-958 $)) 94) (((-649 $) (-1181 $)) 93) (((-649 $) (-1181 $) (-1185)) 92)) (-2793 (($ (-958 $)) 97) (($ (-1181 $)) 96) (($ (-1181 $) (-1185)) 95)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 99)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-27) (-140)) (T -27))
-((-3964 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27)))) (-3964 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27)))) (-3288 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27)) (-5 *2 (-649 *1)))))
-(-13 (-367) (-1008) (-10 -8 (-15 -3964 ($ (-958 $))) (-15 -3964 ($ (-1179 $))) (-15 -3964 ($ (-1179 $) (-1183))) (-15 -3421 ((-649 $) (-958 $))) (-15 -3421 ((-649 $) (-1179 $))) (-15 -3421 ((-649 $) (-1179 $) (-1183))) (-15 -3288 ($ (-958 $))) (-15 -3288 ($ (-1179 $))) (-15 -3288 ($ (-1179 $) (-1183))) (-15 -3879 ((-649 $) (-958 $))) (-15 -3879 ((-649 $) (-1179 $))) (-15 -3879 ((-649 $) (-1179 $) (-1183)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1008) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
-((-3879 (((-649 $) (-958 $)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-1179 $) (-1183)) 55) (((-649 $) $) 22) (((-649 $) $ (-1183)) 46)) (-3288 (($ (-958 $)) NIL) (($ (-1179 $)) NIL) (($ (-1179 $) (-1183)) 57) (($ $) 20) (($ $ (-1183)) 40)) (-3421 (((-649 $) (-958 $)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-1179 $) (-1183)) 53) (((-649 $) $) 18) (((-649 $) $ (-1183)) 48)) (-3964 (($ (-958 $)) NIL) (($ (-1179 $)) NIL) (($ (-1179 $) (-1183)) NIL) (($ $) 15) (($ $ (-1183)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3879 ((-649 |#1|) |#1| (-1183))) (-15 -3288 (|#1| |#1| (-1183))) (-15 -3879 ((-649 |#1|) |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -3421 ((-649 |#1|) |#1| (-1183))) (-15 -3964 (|#1| |#1| (-1183))) (-15 -3421 ((-649 |#1|) |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3879 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3879 ((-649 |#1|) (-1179 |#1|))) (-15 -3879 ((-649 |#1|) (-958 |#1|))) (-15 -3288 (|#1| (-1179 |#1|) (-1183))) (-15 -3288 (|#1| (-1179 |#1|))) (-15 -3288 (|#1| (-958 |#1|))) (-15 -3421 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3421 ((-649 |#1|) (-1179 |#1|))) (-15 -3421 ((-649 |#1|) (-958 |#1|))) (-15 -3964 (|#1| (-1179 |#1|) (-1183))) (-15 -3964 (|#1| (-1179 |#1|))) (-15 -3964 (|#1| (-958 |#1|)))) (-29 |#2|) (-561)) (T -28))
-NIL
-(-10 -8 (-15 -3879 ((-649 |#1|) |#1| (-1183))) (-15 -3288 (|#1| |#1| (-1183))) (-15 -3879 ((-649 |#1|) |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -3421 ((-649 |#1|) |#1| (-1183))) (-15 -3964 (|#1| |#1| (-1183))) (-15 -3421 ((-649 |#1|) |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3879 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3879 ((-649 |#1|) (-1179 |#1|))) (-15 -3879 ((-649 |#1|) (-958 |#1|))) (-15 -3288 (|#1| (-1179 |#1|) (-1183))) (-15 -3288 (|#1| (-1179 |#1|))) (-15 -3288 (|#1| (-958 |#1|))) (-15 -3421 ((-649 |#1|) (-1179 |#1|) (-1183))) (-15 -3421 ((-649 |#1|) (-1179 |#1|))) (-15 -3421 ((-649 |#1|) (-958 |#1|))) (-15 -3964 (|#1| (-1179 |#1|) (-1183))) (-15 -3964 (|#1| (-1179 |#1|))) (-15 -3964 (|#1| (-958 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3879 (((-649 $) (-958 $)) 88) (((-649 $) (-1179 $)) 87) (((-649 $) (-1179 $) (-1183)) 86) (((-649 $) $) 134) (((-649 $) $ (-1183)) 132)) (-3288 (($ (-958 $)) 91) (($ (-1179 $)) 90) (($ (-1179 $) (-1183)) 89) (($ $) 135) (($ $ (-1183)) 133)) (-3192 (((-112) $) 17)) (-1710 (((-649 (-1183)) $) 203)) (-3763 (((-412 (-1179 $)) $ (-617 $)) 235 (|has| |#1| (-561)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-3660 (((-649 (-617 $)) $) 166)) (-1678 (((-3 $ "failed") $ $) 20)) (-4293 (($ $ (-649 (-617 $)) (-649 $)) 156) (($ $ (-649 (-297 $))) 155) (($ $ (-297 $)) 154)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-3807 (($ $) 100)) (-1680 (((-112) $ $) 65)) (-4188 (($) 18 T CONST)) (-3421 (((-649 $) (-958 $)) 94) (((-649 $) (-1179 $)) 93) (((-649 $) (-1179 $) (-1183)) 92) (((-649 $) $) 138) (((-649 $) $ (-1183)) 136)) (-3964 (($ (-958 $)) 97) (($ (-1179 $)) 96) (($ (-1179 $) (-1183)) 95) (($ $) 139) (($ $ (-1183)) 137)) (-4378 (((-3 (-958 |#1|) "failed") $) 253 (|has| |#1| (-1055))) (((-3 (-412 (-958 |#1|)) "failed") $) 237 (|has| |#1| (-561))) (((-3 |#1| "failed") $) 199) (((-3 (-569) "failed") $) 196 (|has| |#1| (-1044 (-569)))) (((-3 (-1183) "failed") $) 190) (((-3 (-617 $) "failed") $) 141) (((-3 (-412 (-569)) "failed") $) 130 (-2774 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-3148 (((-958 |#1|) $) 252 (|has| |#1| (-1055))) (((-412 (-958 |#1|)) $) 236 (|has| |#1| (-561))) ((|#1| $) 198) (((-569) $) 197 (|has| |#1| (-1044 (-569)))) (((-1183) $) 189) (((-617 $) $) 140) (((-412 (-569)) $) 131 (-2774 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-2366 (($ $ $) 61)) (-1630 (((-694 |#1|) (-694 $)) 243 (|has| |#1| (-1055))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 242 (|has| |#1| (-1055))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 129 (-2774 (-1756 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (-1756 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (((-694 (-569)) (-694 $)) 128 (-2774 (-1756 (|has| |#1| (-1055)) (|has| |#1| (-644 (-569)))) (-1756 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-4073 (((-112) $) 79)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 195 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 194 (|has| |#1| (-892 (-569))))) (-2223 (($ (-649 $)) 160) (($ $) 159)) (-1463 (((-649 (-114)) $) 167)) (-3743 (((-114) (-114)) 168)) (-2623 (((-112) $) 35)) (-1607 (((-112) $) 188 (|has| $ (-1044 (-569))))) (-3700 (($ $) 220 (|has| |#1| (-1055)))) (-4396 (((-1131 |#1| (-617 $)) $) 219 (|has| |#1| (-1055)))) (-2506 (($ $ (-569)) 99)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-4362 (((-1179 $) (-617 $)) 185 (|has| $ (-1055)))) (-1344 (($ (-1 $ $) (-617 $)) 174)) (-1574 (((-3 (-617 $) "failed") $) 164)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3733 (((-649 (-617 $)) $) 165)) (-1352 (($ (-114) (-649 $)) 173) (($ (-114) $) 172)) (-2753 (((-3 (-649 $) "failed") $) 214 (|has| |#1| (-1118)))) (-2980 (((-3 (-2 (|:| |val| $) (|:| -4320 (-569))) "failed") $) 223 (|has| |#1| (-1055)))) (-2633 (((-3 (-649 $) "failed") $) 216 (|has| |#1| (-25)))) (-3607 (((-3 (-2 (|:| -1433 (-569)) (|:| |var| (-617 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2865 (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-1183)) 222 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-114)) 221 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $) 215 (|has| |#1| (-1118)))) (-2374 (((-112) $ (-1183)) 171) (((-112) $ (-114)) 170)) (-1814 (($ $) 78)) (-1425 (((-776) $) 163)) (-3545 (((-1126) $) 11)) (-1824 (((-112) $) 201)) (-1833 ((|#1| $) 202)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-1335 (((-112) $ (-1183)) 176) (((-112) $ $) 175)) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2108 (((-112) $) 187 (|has| $ (-1044 (-569))))) (-1723 (($ $ (-1183) (-776) (-1 $ $)) 227 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-649 $))) 226 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 225 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) 224 (|has| |#1| (-1055))) (($ $ (-649 (-114)) (-649 $) (-1183)) 213 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1183)) 212 (|has| |#1| (-619 (-541)))) (($ $) 211 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183))) 210 (|has| |#1| (-619 (-541)))) (($ $ (-1183)) 209 (|has| |#1| (-619 (-541)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-649 $))) 183) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 182) (($ $ (-649 (-114)) (-649 (-1 $ $))) 181) (($ $ (-1183) (-1 $ $)) 180) (($ $ (-1183) (-1 $ (-649 $))) 179) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 178) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 177) (($ $ (-649 $) (-649 $)) 148) (($ $ $ $) 147) (($ $ (-297 $)) 146) (($ $ (-649 (-297 $))) 145) (($ $ (-649 (-617 $)) (-649 $)) 144) (($ $ (-617 $) $) 143)) (-1578 (((-776) $) 64)) (-1866 (($ (-114) (-649 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-1676 (($ $ $) 162) (($ $) 161)) (-3514 (($ $ (-1183)) 251 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 250 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 249 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) 248 (|has| |#1| (-1055)))) (-1528 (($ $) 230 (|has| |#1| (-561)))) (-4409 (((-1131 |#1| (-617 $)) $) 229 (|has| |#1| (-561)))) (-4143 (($ $) 186 (|has| $ (-1055)))) (-1408 (((-541) $) 257 (|has| |#1| (-619 (-541)))) (($ (-423 $)) 228 (|has| |#1| (-561))) (((-898 (-383)) $) 193 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 192 (|has| |#1| (-619 (-898 (-569)))))) (-3580 (($ $ $) 256 (|has| |#1| (-478)))) (-2292 (($ $ $) 255 (|has| |#1| (-478)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-958 |#1|)) 254 (|has| |#1| (-1055))) (($ (-412 (-958 |#1|))) 238 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 234 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 233 (|has| |#1| (-561))) (($ (-412 |#1|)) 232 (|has| |#1| (-561))) (($ (-1131 |#1| (-617 $))) 218 (|has| |#1| (-1055))) (($ |#1|) 200) (($ (-1183)) 191) (($ (-617 $)) 142)) (-4030 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-4211 (($ (-649 $)) 158) (($ $) 157)) (-4142 (((-112) (-114)) 169)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-4212 (($ (-1183) (-649 $)) 208) (($ (-1183) $ $ $ $) 207) (($ (-1183) $ $ $) 206) (($ (-1183) $ $) 205) (($ (-1183) $) 204)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-1183)) 247 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 246 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 245 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) 244 (|has| |#1| (-1055)))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 73) (($ (-1131 |#1| (-617 $)) (-1131 |#1| (-617 $))) 231 (|has| |#1| (-561)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-173))) (($ |#1| $) 239 (|has| |#1| (-173)))))
+((-2793 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-2793 (*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27)))) (-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-1333 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27)))) (-2565 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27)) (-5 *2 (-649 *1)))))
+(-13 (-367) (-1010) (-10 -8 (-15 -2793 ($ (-958 $))) (-15 -2793 ($ (-1181 $))) (-15 -2793 ($ (-1181 $) (-1185))) (-15 -1333 ((-649 $) (-958 $))) (-15 -1333 ((-649 $) (-1181 $))) (-15 -1333 ((-649 $) (-1181 $) (-1185))) (-15 -2565 ($ (-958 $))) (-15 -2565 ($ (-1181 $))) (-15 -2565 ($ (-1181 $) (-1185))) (-15 -3194 ((-649 $) (-958 $))) (-15 -3194 ((-649 $) (-1181 $))) (-15 -3194 ((-649 $) (-1181 $) (-1185)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1010) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T))
+((-3194 (((-649 $) (-958 $)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-1181 $) (-1185)) 55) (((-649 $) $) 22) (((-649 $) $ (-1185)) 46)) (-2565 (($ (-958 $)) NIL) (($ (-1181 $)) NIL) (($ (-1181 $) (-1185)) 57) (($ $) 20) (($ $ (-1185)) 40)) (-1333 (((-649 $) (-958 $)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-1181 $) (-1185)) 53) (((-649 $) $) 18) (((-649 $) $ (-1185)) 48)) (-2793 (($ (-958 $)) NIL) (($ (-1181 $)) NIL) (($ (-1181 $) (-1185)) NIL) (($ $) 15) (($ $ (-1185)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3194 ((-649 |#1|) |#1| (-1185))) (-15 -2565 (|#1| |#1| (-1185))) (-15 -3194 ((-649 |#1|) |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -1333 ((-649 |#1|) |#1| (-1185))) (-15 -2793 (|#1| |#1| (-1185))) (-15 -1333 ((-649 |#1|) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|)))) (-29 |#2|) (-561)) (T -28))
+NIL
+(-10 -8 (-15 -3194 ((-649 |#1|) |#1| (-1185))) (-15 -2565 (|#1| |#1| (-1185))) (-15 -3194 ((-649 |#1|) |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -1333 ((-649 |#1|) |#1| (-1185))) (-15 -2793 (|#1| |#1| (-1185))) (-15 -1333 ((-649 |#1|) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|))))
+((-2417 (((-112) $ $) 7)) (-3194 (((-649 $) (-958 $)) 88) (((-649 $) (-1181 $)) 87) (((-649 $) (-1181 $) (-1185)) 86) (((-649 $) $) 134) (((-649 $) $ (-1185)) 132)) (-2565 (($ (-958 $)) 91) (($ (-1181 $)) 90) (($ (-1181 $) (-1185)) 89) (($ $) 135) (($ $ (-1185)) 133)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1185)) $) 203)) (-3767 (((-412 (-1181 $)) $ (-617 $)) 235 (|has| |#1| (-561)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-3663 (((-649 (-617 $)) $) 166)) (-2208 (((-3 $ "failed") $ $) 20)) (-4296 (($ $ (-649 (-617 $)) (-649 $)) 156) (($ $ (-649 (-297 $))) 155) (($ $ (-297 $)) 154)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 100)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-1333 (((-649 $) (-958 $)) 94) (((-649 $) (-1181 $)) 93) (((-649 $) (-1181 $) (-1185)) 92) (((-649 $) $) 138) (((-649 $) $ (-1185)) 136)) (-2793 (($ (-958 $)) 97) (($ (-1181 $)) 96) (($ (-1181 $) (-1185)) 95) (($ $) 139) (($ $ (-1185)) 137)) (-4381 (((-3 (-958 |#1|) "failed") $) 253 (|has| |#1| (-1057))) (((-3 (-412 (-958 |#1|)) "failed") $) 237 (|has| |#1| (-561))) (((-3 |#1| "failed") $) 199) (((-3 (-569) "failed") $) 196 (|has| |#1| (-1046 (-569)))) (((-3 (-1185) "failed") $) 190) (((-3 (-617 $) "failed") $) 141) (((-3 (-412 (-569)) "failed") $) 130 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 (((-958 |#1|) $) 252 (|has| |#1| (-1057))) (((-412 (-958 |#1|)) $) 236 (|has| |#1| (-561))) ((|#1| $) 198) (((-569) $) 197 (|has| |#1| (-1046 (-569)))) (((-1185) $) 189) (((-617 $) $) 140) (((-412 (-569)) $) 131 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-2368 (($ $ $) 61)) (-2957 (((-694 |#1|) (-694 $)) 243 (|has| |#1| (-1057))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 242 (|has| |#1| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 129 (-2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (((-694 (-569)) (-694 $)) 128 (-2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 195 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 194 (|has| |#1| (-892 (-569))))) (-2687 (($ (-649 $)) 160) (($ $) 159)) (-3810 (((-649 (-114)) $) 167)) (-3746 (((-114) (-114)) 168)) (-2349 (((-112) $) 35)) (-2719 (((-112) $) 188 (|has| $ (-1046 (-569))))) (-2177 (($ $) 220 (|has| |#1| (-1057)))) (-4399 (((-1133 |#1| (-617 $)) $) 219 (|has| |#1| (-1057)))) (-3742 (($ $ (-569)) 99)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2341 (((-1181 $) (-617 $)) 185 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 174)) (-2391 (((-3 (-617 $) "failed") $) 164)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3736 (((-649 (-617 $)) $) 165)) (-1354 (($ (-114) (-649 $)) 173) (($ (-114) $) 172)) (-4250 (((-3 (-649 $) "failed") $) 214 (|has| |#1| (-1120)))) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) 223 (|has| |#1| (-1057)))) (-2427 (((-3 (-649 $) "failed") $) 216 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) 222 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) 221 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) 215 (|has| |#1| (-1120)))) (-1825 (((-112) $ (-1185)) 171) (((-112) $ (-114)) 170)) (-1817 (($ $) 78)) (-1427 (((-776) $) 163)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 201)) (-1835 ((|#1| $) 202)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-1852 (((-112) $ (-1185)) 176) (((-112) $ $) 175)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4024 (((-112) $) 187 (|has| $ (-1046 (-569))))) (-1725 (($ $ (-1185) (-776) (-1 $ $)) 227 (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ (-649 $))) 226 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 225 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) 224 (|has| |#1| (-1057))) (($ $ (-649 (-114)) (-649 $) (-1185)) 213 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1185)) 212 (|has| |#1| (-619 (-541)))) (($ $) 211 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185))) 210 (|has| |#1| (-619 (-541)))) (($ $ (-1185)) 209 (|has| |#1| (-619 (-541)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-649 $))) 183) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 182) (($ $ (-649 (-114)) (-649 (-1 $ $))) 181) (($ $ (-1185) (-1 $ $)) 180) (($ $ (-1185) (-1 $ (-649 $))) 179) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 178) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 177) (($ $ (-649 $) (-649 $)) 148) (($ $ $ $) 147) (($ $ (-297 $)) 146) (($ $ (-649 (-297 $))) 145) (($ $ (-649 (-617 $)) (-649 $)) 144) (($ $ (-617 $) $) 143)) (-2431 (((-776) $) 64)) (-1869 (($ (-114) (-649 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2190 (($ $ $) 162) (($ $) 161)) (-3517 (($ $ (-1185)) 251 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 250 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 249 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) 248 (|has| |#1| (-1057)))) (-3181 (($ $) 230 (|has| |#1| (-561)))) (-4412 (((-1133 |#1| (-617 $)) $) 229 (|has| |#1| (-561)))) (-4061 (($ $) 186 (|has| $ (-1057)))) (-1410 (((-541) $) 257 (|has| |#1| (-619 (-541)))) (($ (-423 $)) 228 (|has| |#1| (-561))) (((-898 (-383)) $) 193 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 192 (|has| |#1| (-619 (-898 (-569)))))) (-3476 (($ $ $) 256 (|has| |#1| (-478)))) (-2180 (($ $ $) 255 (|has| |#1| (-478)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-958 |#1|)) 254 (|has| |#1| (-1057))) (($ (-412 (-958 |#1|))) 238 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 234 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 233 (|has| |#1| (-561))) (($ (-412 |#1|)) 232 (|has| |#1| (-561))) (($ (-1133 |#1| (-617 $))) 218 (|has| |#1| (-1057))) (($ |#1|) 200) (($ (-1185)) 191) (($ (-617 $)) 142)) (-2239 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-4213 (($ (-649 $)) 158) (($ $) 157)) (-4052 (((-112) (-114)) 169)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-4215 (($ (-1185) (-649 $)) 208) (($ (-1185) $ $ $ $) 207) (($ (-1185) $ $ $) 206) (($ (-1185) $ $) 205) (($ (-1185) $) 204)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1185)) 247 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 246 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 245 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) 244 (|has| |#1| (-1057)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73) (($ (-1133 |#1| (-617 $)) (-1133 |#1| (-617 $))) 231 (|has| |#1| (-561)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-173))) (($ |#1| $) 239 (|has| |#1| (-173)))))
(((-29 |#1|) (-140) (-561)) (T -29))
-((-3964 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-3421 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4)))) (-3288 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-3879 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-3288 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-435 |t#1|) (-10 -8 (-15 -3964 ($ $)) (-15 -3421 ((-649 $) $)) (-15 -3964 ($ $ (-1183))) (-15 -3421 ((-649 $) $ (-1183))) (-15 -3288 ($ $)) (-15 -3879 ((-649 $) $)) (-15 -3288 ($ $ (-1183))) (-15 -3879 ((-649 $) $ (-1183)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) . T) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1055)) ((-621 #4=(-1183)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) . T) ((-293) . T) ((-310) . T) ((-312 $) . T) ((-305) . T) ((-367) . T) ((-381 |#1|) |has| |#1| (-1055)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-435 |#1|) . T) ((-457) . T) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) . T) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) ((-644 |#1|) |has| |#1| (-1055)) ((-722 #0#) . T) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-1055)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) . T) ((-1008) . T) ((-1044 (-412 (-569))) -2774 (|has| |#1| (-1044 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) ((-1044 #1#) |has| |#1| (-561)) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #2#) . T) ((-1044 #3#) |has| |#1| (-1055)) ((-1044 #4#) . T) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) |has| |#1| (-173)) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) |has| |#1| (-173)) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1223) . T) ((-1227) . T))
-((-3808 (((-1100 (-226)) $) NIL)) (-3795 (((-1100 (-226)) $) NIL)) (-2933 (($ $ (-226)) 164)) (-3541 (($ (-958 (-569)) (-1183) (-1183) (-1100 (-412 (-569))) (-1100 (-412 (-569)))) 104)) (-4187 (((-649 (-649 (-949 (-226)))) $) 180)) (-3793 (((-867) $) 194)))
-(((-30) (-13 (-961) (-10 -8 (-15 -3541 ($ (-958 (-569)) (-1183) (-1183) (-1100 (-412 (-569))) (-1100 (-412 (-569))))) (-15 -2933 ($ $ (-226)))))) (T -30))
-((-3541 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1183)) (-5 *4 (-1100 (-412 (-569)))) (-5 *1 (-30)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30)))))
-(-13 (-961) (-10 -8 (-15 -3541 ($ (-958 (-569)) (-1183) (-1183) (-1100 (-412 (-569))) (-1100 (-412 (-569))))) (-15 -2933 ($ $ (-226)))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-1141) $) 11)) (-1441 (((-112) $ $) NIL)) (-4360 (((-1141) $) 9)) (-2919 (((-112) $ $) NIL)))
-(((-31) (-13 (-1089) (-10 -8 (-15 -4360 ((-1141) $)) (-15 -3583 ((-1141) $))))) (T -31))
-((-4360 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31)))))
-(-13 (-1089) (-10 -8 (-15 -4360 ((-1141) $)) (-15 -3583 ((-1141) $))))
-((-3964 ((|#2| (-1179 |#2|) (-1183)) 41)) (-3743 (((-114) (-114)) 55)) (-4362 (((-1179 |#2|) (-617 |#2|)) 149 (|has| |#1| (-1044 (-569))))) (-2583 ((|#2| |#1| (-569)) 137 (|has| |#1| (-1044 (-569))))) (-2369 ((|#2| (-1179 |#2|) |#2|) 29)) (-2467 (((-867) (-649 |#2|)) 86)) (-4143 ((|#2| |#2|) 144 (|has| |#1| (-1044 (-569))))) (-4142 (((-112) (-114)) 17)) (** ((|#2| |#2| (-412 (-569))) 103 (|has| |#1| (-1044 (-569))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3964 (|#2| (-1179 |#2|) (-1183))) (-15 -3743 ((-114) (-114))) (-15 -4142 ((-112) (-114))) (-15 -2369 (|#2| (-1179 |#2|) |#2|)) (-15 -2467 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1044 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -4362 ((-1179 |#2|) (-617 |#2|))) (-15 -4143 (|#2| |#2|)) (-15 -2583 (|#2| |#1| (-569)))) |%noBranch|)) (-561) (-435 |#1|)) (T -32))
-((-2583 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1044 *4)) (-4 *3 (-561)))) (-4143 (*1 *2 *2) (-12 (-4 *3 (-1044 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2)) (-4 *2 (-435 *3)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1044 (-569))) (-4 *4 (-561)) (-5 *2 (-1179 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1044 (-569))) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561)) (-5 *2 (-867)) (-5 *1 (-32 *4 *5)))) (-2369 (*1 *2 *3 *2) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-435 *4)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *2)) (-5 *4 (-1183)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-561)))))
-(-10 -7 (-15 -3964 (|#2| (-1179 |#2|) (-1183))) (-15 -3743 ((-114) (-114))) (-15 -4142 ((-112) (-114))) (-15 -2369 (|#2| (-1179 |#2|) |#2|)) (-15 -2467 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1044 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -4362 ((-1179 |#2|) (-617 |#2|))) (-15 -4143 (|#2| |#2|)) (-15 -2583 (|#2| |#1| (-569)))) |%noBranch|))
-((-2716 (((-112) $ (-776)) 20)) (-4188 (($) 10)) (-1689 (((-112) $ (-776)) 19)) (-2433 (((-112) $ (-776)) 17)) (-2834 (((-112) $ $) 8)) (-3218 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -4188 (|#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776))) (-15 -3218 ((-112) |#1|)) (-15 -2834 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -4188 (|#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776))) (-15 -3218 ((-112) |#1|)) (-15 -2834 ((-112) |#1| |#1|)))
-((-2716 (((-112) $ (-776)) 8)) (-4188 (($) 7 T CONST)) (-1689 (((-112) $ (-776)) 9)) (-2433 (((-112) $ (-776)) 10)) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-3959 (($ $) 13)) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
+((-2793 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-1333 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4)))) (-2565 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-3194 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-2565 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-3194 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-435 |t#1|) (-10 -8 (-15 -2793 ($ $)) (-15 -1333 ((-649 $) $)) (-15 -2793 ($ $ (-1185))) (-15 -1333 ((-649 $) $ (-1185))) (-15 -2565 ($ $)) (-15 -3194 ((-649 $) $)) (-15 -2565 ($ $ (-1185))) (-15 -3194 ((-649 $) $ (-1185)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) . T) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1057)) ((-621 #4=(-1185)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) . T) ((-293) . T) ((-310) . T) ((-312 $) . T) ((-305) . T) ((-367) . T) ((-381 |#1|) |has| |#1| (-1057)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-435 |#1|) . T) ((-457) . T) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) . T) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) ((-644 |#1|) |has| |#1| (-1057)) ((-722 #0#) . T) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) . T) ((-731) . T) ((-906 (-1185)) |has| |#1| (-1057)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) . T) ((-1010) . T) ((-1046 (-412 (-569))) -2776 (|has| |#1| (-1046 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) ((-1046 #1#) |has| |#1| (-561)) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #2#) . T) ((-1046 #3#) |has| |#1| (-1057)) ((-1046 #4#) . T) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) |has| |#1| (-173)) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) |has| |#1| (-173)) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1225) . T) ((-1229) . T))
+((-3812 (((-1102 (-226)) $) NIL)) (-3798 (((-1102 (-226)) $) NIL)) (-3442 (($ $ (-226)) 164)) (-4341 (($ (-958 (-569)) (-1185) (-1185) (-1102 (-412 (-569))) (-1102 (-412 (-569)))) 104)) (-4417 (((-649 (-649 (-949 (-226)))) $) 180)) (-3796 (((-867) $) 194)))
+(((-30) (-13 (-961) (-10 -8 (-15 -4341 ($ (-958 (-569)) (-1185) (-1185) (-1102 (-412 (-569))) (-1102 (-412 (-569))))) (-15 -3442 ($ $ (-226)))))) (T -30))
+((-4341 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1185)) (-5 *4 (-1102 (-412 (-569)))) (-5 *1 (-30)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30)))))
+(-13 (-961) (-10 -8 (-15 -4341 ($ (-958 (-569)) (-1185) (-1185) (-1102 (-412 (-569))) (-1102 (-412 (-569))))) (-15 -3442 ($ $ (-226)))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 11)) (-1520 (((-112) $ $) NIL)) (-4363 (((-1143) $) 9)) (-2920 (((-112) $ $) NIL)))
+(((-31) (-13 (-1091) (-10 -8 (-15 -4363 ((-1143) $)) (-15 -3586 ((-1143) $))))) (T -31))
+((-4363 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31)))))
+(-13 (-1091) (-10 -8 (-15 -4363 ((-1143) $)) (-15 -3586 ((-1143) $))))
+((-2793 ((|#2| (-1181 |#2|) (-1185)) 41)) (-3746 (((-114) (-114)) 55)) (-2341 (((-1181 |#2|) (-617 |#2|)) 149 (|has| |#1| (-1046 (-569))))) (-2019 ((|#2| |#1| (-569)) 137 (|has| |#1| (-1046 (-569))))) (-1780 ((|#2| (-1181 |#2|) |#2|) 29)) (-3325 (((-867) (-649 |#2|)) 86)) (-4061 ((|#2| |#2|) 144 (|has| |#1| (-1046 (-569))))) (-4052 (((-112) (-114)) 17)) (** ((|#2| |#2| (-412 (-569))) 103 (|has| |#1| (-1046 (-569))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -2793 (|#2| (-1181 |#2|) (-1185))) (-15 -3746 ((-114) (-114))) (-15 -4052 ((-112) (-114))) (-15 -1780 (|#2| (-1181 |#2|) |#2|)) (-15 -3325 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1046 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -2341 ((-1181 |#2|) (-617 |#2|))) (-15 -4061 (|#2| |#2|)) (-15 -2019 (|#2| |#1| (-569)))) |%noBranch|)) (-561) (-435 |#1|)) (T -32))
+((-2019 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1046 *4)) (-4 *3 (-561)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-1046 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2)) (-4 *2 (-435 *3)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1046 (-569))) (-4 *4 (-561)) (-5 *2 (-1181 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1046 (-569))) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) (-3325 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561)) (-5 *2 (-867)) (-5 *1 (-32 *4 *5)))) (-1780 (*1 *2 *3 *2) (-12 (-5 *3 (-1181 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-435 *4)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *2)) (-5 *4 (-1185)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-561)))))
+(-10 -7 (-15 -2793 (|#2| (-1181 |#2|) (-1185))) (-15 -3746 ((-114) (-114))) (-15 -4052 ((-112) (-114))) (-15 -1780 (|#2| (-1181 |#2|) |#2|)) (-15 -3325 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1046 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -2341 ((-1181 |#2|) (-617 |#2|))) (-15 -4061 (|#2| |#2|)) (-15 -2019 (|#2| |#1| (-569)))) |%noBranch|))
+((-3914 (((-112) $ (-776)) 20)) (-4427 (($) 10)) (-2314 (((-112) $ (-776)) 19)) (-4254 (((-112) $ (-776)) 17)) (-3790 (((-112) $ $) 8)) (-3162 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -4427 (|#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3162 ((-112) |#1|)) (-15 -3790 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -4427 (|#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3162 ((-112) |#1|)) (-15 -3790 ((-112) |#1| |#1|)))
+((-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2314 (((-112) $ (-776)) 9)) (-4254 (((-112) $ (-776)) 10)) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3962 (($ $) 13)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
(((-34) (-140)) (T -34))
-((-2834 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3959 (*1 *1 *1) (-4 *1 (-34))) (-3597 (*1 *1) (-4 *1 (-34))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2433 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-1689 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-2716 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-4188 (*1 *1) (-4 *1 (-34))) (-2426 (*1 *2 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-34)) (-5 *2 (-776)))))
-(-13 (-1223) (-10 -8 (-15 -2834 ((-112) $ $)) (-15 -3959 ($ $)) (-15 -3597 ($)) (-15 -3218 ((-112) $)) (-15 -2433 ((-112) $ (-776))) (-15 -1689 ((-112) $ (-776))) (-15 -2716 ((-112) $ (-776))) (-15 -4188 ($) -3706) (IF (|has| $ (-6 -4444)) (-15 -2426 ((-776) $)) |%noBranch|)))
-(((-1223) . T))
-((-4161 (($ $) 11)) (-4133 (($ $) 10)) (-4182 (($ $) 9)) (-1501 (($ $) 8)) (-4170 (($ $) 7)) (-4147 (($ $) 6)))
+((-3790 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3962 (*1 *1 *1) (-4 *1 (-34))) (-3635 (*1 *1) (-4 *1 (-34))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4254 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-2314 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-3914 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-4427 (*1 *1) (-4 *1 (-34))) (-2428 (*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-34)) (-5 *2 (-776)))))
+(-13 (-1225) (-10 -8 (-15 -3790 ((-112) $ $)) (-15 -3962 ($ $)) (-15 -3635 ($)) (-15 -3162 ((-112) $)) (-15 -4254 ((-112) $ (-776))) (-15 -2314 ((-112) $ (-776))) (-15 -3914 ((-112) $ (-776))) (-15 -4427 ($) -3709) (IF (|has| $ (-6 -4447)) (-15 -2428 ((-776) $)) |%noBranch|)))
+(((-1225) . T))
+((-4161 (($ $) 11)) (-4140 (($ $) 10)) (-4183 (($ $) 9)) (-1503 (($ $) 8)) (-4175 (($ $) 7)) (-4151 (($ $) 6)))
(((-35) (-140)) (T -35))
-((-4161 (*1 *1 *1) (-4 *1 (-35))) (-4133 (*1 *1 *1) (-4 *1 (-35))) (-4182 (*1 *1 *1) (-4 *1 (-35))) (-1501 (*1 *1 *1) (-4 *1 (-35))) (-4170 (*1 *1 *1) (-4 *1 (-35))) (-4147 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -4147 ($ $)) (-15 -4170 ($ $)) (-15 -1501 ($ $)) (-15 -4182 ($ $)) (-15 -4133 ($ $)) (-15 -4161 ($ $))))
-((-2415 (((-112) $ $) 19 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-2185 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 126)) (-2561 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 149)) (-1566 (($ $) 147)) (-4286 (($) 73) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 72)) (-4321 (((-1278) $ |#1| |#1|) 100 (|has| $ (-6 -4445))) (((-1278) $ (-569) (-569)) 179 (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) 160 (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-3012 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 201 (|has| $ (-6 -4445))) (($ $) 200 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)) (|has| $ (-6 -4445))))) (-3355 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2716 (((-112) $ (-776)) 8)) (-1660 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 135 (|has| $ (-6 -4445)))) (-4382 (($ $ $) 156 (|has| $ (-6 -4445)))) (-1716 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 158 (|has| $ (-6 -4445)))) (-1376 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 154 (|has| $ (-6 -4445)))) (-3940 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 190 (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-1240 (-569)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 161 (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "last" (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 159 (|has| $ (-6 -4445))) (($ $ "rest" $) 157 (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "first" (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 155 (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "value" (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 134 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 133 (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 46 (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 217)) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 56 (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 176 (|has| $ (-6 -4444)))) (-2548 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 148)) (-2356 (((-3 |#2| "failed") |#1| $) 62)) (-4188 (($) 7 T CONST)) (-4380 (($ $) 202 (|has| $ (-6 -4445)))) (-2248 (($ $) 212)) (-3522 (($ $ (-776)) 143) (($ $) 141)) (-3041 (($ $) 215 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-3547 (($ $) 59 (-2774 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444))) (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 47 (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 221) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 216 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 55 (|has| $ (-6 -4444))) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 178 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 175 (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 57 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 54 (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 53 (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 177 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 174 (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 173 (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 191 (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) 89) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) 189)) (-1677 (((-112) $) 193)) (-4034 (((-569) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 209) (((-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 208 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) (((-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) 207 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 31 (|has| $ (-6 -4444))) (((-649 |#2|) $) 80 (|has| $ (-6 -4444))) (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 115 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 124)) (-3759 (((-112) $ $) 132 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-4295 (($ (-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 170)) (-1689 (((-112) $ (-776)) 9)) (-1420 ((|#1| $) 97 (|has| |#1| (-855))) (((-569) $) 181 (|has| (-569) (-855)))) (-3377 (($ $ $) 199 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2616 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2126 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 30 (|has| $ (-6 -4444))) (((-649 |#2|) $) 81 (|has| $ (-6 -4444))) (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 116 (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444)))) (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444))))) (-1535 ((|#1| $) 96 (|has| |#1| (-855))) (((-569) $) 182 (|has| (-569) (-855)))) (-3969 (($ $ $) 198 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 35 (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4445))) (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 111 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 110)) (-3379 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 226)) (-2433 (((-112) $ (-776)) 10)) (-2273 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 129)) (-2703 (((-112) $) 125)) (-1550 (((-1165) $) 22 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-1722 (($ $ (-776)) 146) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 144)) (-2796 (((-649 |#1|) $) 64)) (-3937 (((-112) |#1| $) 65)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 40)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 41) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) 220) (($ $ $ (-569)) 219)) (-4294 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) 163) (($ $ $ (-569)) 162)) (-1755 (((-649 |#1|) $) 94) (((-649 (-569)) $) 184)) (-3748 (((-112) |#1| $) 93) (((-112) (-569) $) 185)) (-3545 (((-1126) $) 21 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3510 ((|#2| $) 98 (|has| |#1| (-855))) (($ $ (-776)) 140) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 138)) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 52) (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 172)) (-4420 (($ $ |#2|) 99 (|has| $ (-6 -4445))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 180 (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 42)) (-1807 (((-112) $) 192)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 33 (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 113 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) 27 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 26 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 25 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 24 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 122 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 121 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 120 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) 119 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 183 (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3851 (((-649 |#2|) $) 92) (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 186)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 188) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) 187) (($ $ (-1240 (-569))) 166) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "first") 139) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "value") 127)) (-3947 (((-569) $ $) 130)) (-1906 (($) 50) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 49)) (-4198 (($ $ (-569)) 223) (($ $ (-1240 (-569))) 222)) (-4325 (($ $ (-569)) 165) (($ $ (-1240 (-569))) 164)) (-2102 (((-112) $) 128)) (-1750 (($ $) 152)) (-1497 (($ $) 153 (|has| $ (-6 -4445)))) (-3754 (((-776) $) 151)) (-3866 (($ $) 150)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 32 (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 114 (|has| $ (-6 -4444)))) (-1938 (($ $ $ (-569)) 203 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541)))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 51) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 171)) (-1621 (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 225) (($ $ $) 224)) (-2441 (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 169) (($ (-649 $)) 168) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 137) (($ $ $) 136)) (-3793 (((-867) $) 18 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867)))))) (-3500 (((-649 $) $) 123)) (-3860 (((-112) $ $) 131 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-1441 (((-112) $ $) 23 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 43)) (-1730 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") |#1| $) 109)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 34 (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 112 (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) 196 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2954 (((-112) $ $) 195 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2919 (((-112) $ $) 20 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-2964 (((-112) $ $) 197 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2942 (((-112) $ $) 194 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-36 |#1| |#2|) (-140) (-1106) (-1106)) (T -36))
-((-1730 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| -2003 *3) (|:| -2214 *4))))))
-(-13 (-1199 |t#1| |t#2|) (-671 (-2 (|:| -2003 |t#1|) (|:| -2214 |t#2|))) (-10 -8 (-15 -1730 ((-3 (-2 (|:| -2003 |t#1|) (|:| -2214 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((-102) -2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855))) ((-618 (-867)) -2774 (|has| |#2| (-1106)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867)))) ((-151 #1=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((-619 (-541)) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 #2=(-569) #1#) . T) ((-289 |#1| |#2|) . T) ((-291 #2# #1#) . T) ((-291 |#1| |#2|) . T) ((-312 #1#) -12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-285 #1#) . T) ((-377 #1#) . T) ((-494 #1#) . T) ((-494 |#2|) . T) ((-609 #2# #1#) . T) ((-609 |#1| |#2|) . T) ((-519 #1# #1#) -12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-615 |#1| |#2|) . T) ((-656 #1#) . T) ((-671 #1#) . T) ((-855) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)) ((-1016 #1#) . T) ((-1106) -2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855))) ((-1155 #1#) . T) ((-1199 |#1| |#2|) . T) ((-1223) . T) ((-1261 #1#) . T))
-((-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-38 |#2|) (-173)) (T -37))
-NIL
-(-10 -8 (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-4161 (*1 *1 *1) (-4 *1 (-35))) (-4140 (*1 *1 *1) (-4 *1 (-35))) (-4183 (*1 *1 *1) (-4 *1 (-35))) (-1503 (*1 *1 *1) (-4 *1 (-35))) (-4175 (*1 *1 *1) (-4 *1 (-35))) (-4151 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -4151 ($ $)) (-15 -4175 ($ $)) (-15 -1503 ($ $)) (-15 -4183 ($ $)) (-15 -4140 ($ $)) (-15 -4161 ($ $))))
+((-2417 (((-112) $ $) 19 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2188 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 126)) (-2563 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 149)) (-1568 (($ $) 147)) (-4287 (($) 73) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 72)) (-2002 (((-1280) $ |#1| |#1|) 100 (|has| $ (-6 -4448))) (((-1280) $ (-569) (-569)) 179 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 160 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2951 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 201 (|has| $ (-6 -4448))) (($ $) 200 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3914 (((-112) $ (-776)) 8)) (-2052 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 135 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 156 (|has| $ (-6 -4448)))) (-1344 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 158 (|has| $ (-6 -4448)))) (-2747 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 154 (|has| $ (-6 -4448)))) (-3943 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 190 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-1242 (-569)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 161 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 159 (|has| $ (-6 -4448))) (($ $ "rest" $) 157 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 155 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 134 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 133 (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 46 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 217)) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 56 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 176 (|has| $ (-6 -4447)))) (-2550 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 148)) (-2359 (((-3 |#2| "failed") |#1| $) 62)) (-4427 (($) 7 T CONST)) (-2507 (($ $) 202 (|has| $ (-6 -4448)))) (-2251 (($ $) 212)) (-3525 (($ $ (-776)) 143) (($ $) 141)) (-2017 (($ $) 215 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3550 (($ $) 59 (-2776 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))) (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 47 (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 221) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 216 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 55 (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 178 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 175 (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 57 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 54 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 53 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 177 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 174 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 173 (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 191 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 89) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 189)) (-2199 (((-112) $) 193)) (-4036 (((-569) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 209) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 208 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 207 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 31 (|has| $ (-6 -4447))) (((-649 |#2|) $) 80 (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 115 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 124)) (-1534 (((-112) $ $) 132 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-4300 (($ (-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 170)) (-2314 (((-112) $ (-776)) 9)) (-4426 ((|#1| $) 97 (|has| |#1| (-855))) (((-569) $) 181 (|has| (-569) (-855)))) (-3380 (($ $ $) 199 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2292 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-4198 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 30 (|has| $ (-6 -4447))) (((-649 |#2|) $) 81 (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 116 (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-3256 ((|#1| $) 96 (|has| |#1| (-855))) (((-569) $) 182 (|has| (-569) (-855)))) (-2839 (($ $ $) 198 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 35 (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4448))) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 111 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 110)) (-3382 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 226)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 129)) (-1887 (((-112) $) 125)) (-3435 (((-1167) $) 22 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1724 (($ $ (-776)) 146) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 144)) (-2795 (((-649 |#1|) $) 64)) (-3804 (((-112) |#1| $) 65)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 40)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 41) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 220) (($ $ $ (-569)) 219)) (-4298 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 163) (($ $ $ (-569)) 162)) (-1696 (((-649 |#1|) $) 94) (((-649 (-569)) $) 184)) (-1414 (((-112) |#1| $) 93) (((-112) (-569) $) 185)) (-3547 (((-1128) $) 21 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3513 ((|#2| $) 98 (|has| |#1| (-855))) (($ $ (-776)) 140) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 138)) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 52) (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 172)) (-1682 (($ $ |#2|) 99 (|has| $ (-6 -4448))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 180 (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 42)) (-4038 (((-112) $) 192)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 33 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 113 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 27 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 26 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 25 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 24 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 122 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 121 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 120 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 119 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 183 (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-4199 (((-649 |#2|) $) 92) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 186)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 188) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 187) (($ $ (-1242 (-569))) 166) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first") 139) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value") 127)) (-2602 (((-569) $ $) 130)) (-2434 (($) 50) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 49)) (-3301 (($ $ (-569)) 223) (($ $ (-1242 (-569))) 222)) (-4328 (($ $ (-569)) 165) (($ $ (-1242 (-569))) 164)) (-3966 (((-112) $) 128)) (-1641 (($ $) 152)) (-4142 (($ $) 153 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 151)) (-4322 (($ $) 150)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 32 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 114 (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) 203 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541)))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 51) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 171)) (-2866 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 225) (($ $ $) 224)) (-2443 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 169) (($ (-649 $)) 168) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 137) (($ $ $) 136)) (-3796 (((-867) $) 18 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))))) (-4001 (((-649 $) $) 123)) (-4280 (((-112) $ $) 131 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1520 (((-112) $ $) 23 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 43)) (-1733 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") |#1| $) 109)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 34 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 112 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 196 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2956 (((-112) $ $) 195 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2920 (((-112) $ $) 20 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2966 (((-112) $ $) 197 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2944 (((-112) $ $) 194 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-36 |#1| |#2|) (-140) (-1108) (-1108)) (T -36))
+((-1733 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| -2006 *3) (|:| -2216 *4))))))
+(-13 (-1201 |t#1| |t#2|) (-671 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|))) (-10 -8 (-15 -1733 ((-3 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-102) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855))) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))) ((-151 #1=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-619 (-541)) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 #2=(-569) #1#) . T) ((-289 |#1| |#2|) . T) ((-291 #2# #1#) . T) ((-291 |#1| |#2|) . T) ((-312 #1#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-285 #1#) . T) ((-377 #1#) . T) ((-494 #1#) . T) ((-494 |#2|) . T) ((-609 #2# #1#) . T) ((-609 |#1| |#2|) . T) ((-519 #1# #1#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-615 |#1| |#2|) . T) ((-656 #1#) . T) ((-671 #1#) . T) ((-855) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)) ((-1018 #1#) . T) ((-1108) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855))) ((-1157 #1#) . T) ((-1201 |#1| |#2|) . T) ((-1225) . T) ((-1263 #1#) . T))
+((-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-38 |#2|) (-173)) (T -37))
+NIL
+(-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-140) (-173)) (T -38))
NIL
-(-13 (-1055) (-722 |t#1|) (-621 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-3067 (((-423 |#1|) |#1|) 41)) (-3796 (((-423 |#1|) |#1|) 30) (((-423 |#1|) |#1| (-649 (-48))) 33)) (-2944 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -3796 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3067 ((-423 |#1|) |#1|)) (-15 -2944 ((-112) |#1|))) (-1249 (-48))) (T -39))
-((-2944 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))) (-3067 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))))
-(-10 -7 (-15 -3796 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3067 ((-423 |#1|) |#1|)) (-15 -2944 ((-112) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-2240 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-3087 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2883 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1739 (((-694 (-412 |#2|)) (-1273 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3136 (((-412 |#2|) $) NIL)) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2508 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1680 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3470 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-3373 (((-112)) NIL)) (-3235 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-3390 (($ (-1273 (-412 |#2|)) (-1273 $)) NIL) (($ (-1273 (-412 |#2|))) 61) (($ (-1273 |#2|) |#2|) 134)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2366 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1635 (((-694 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-412 |#2|))) (|:| |vec| (-1273 (-412 |#2|)))) (-694 $) (-1273 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-1633 (((-1273 $) (-1273 $)) NIL)) (-3596 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-2888 (((-3 $ "failed") $) NIL)) (-2521 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-3757 (((-112) |#1| |#1|) NIL)) (-3975 (((-927)) NIL)) (-3403 (($) NIL (|has| (-412 |#2|) (-372)))) (-4355 (((-112)) NIL)) (-4247 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2373 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-4260 (($ $) NIL)) (-1312 (($) NIL (|has| (-412 |#2|) (-353)))) (-1940 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-2501 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-4073 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-3110 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2623 (((-112) $) NIL)) (-2566 (((-776)) NIL)) (-1774 (((-1273 $) (-1273 $)) 109)) (-2707 (((-412 |#2|) $) NIL)) (-2648 (((-649 (-958 |#1|)) (-1183)) NIL (|has| |#1| (-367)))) (-3812 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2091 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2855 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3582 ((|#3| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1550 (((-1165) $) NIL)) (-1885 (((-1278) (-776)) 87)) (-2327 (((-694 (-412 |#2|))) 56)) (-1374 (((-694 (-412 |#2|))) 49)) (-1814 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2026 (($ (-1273 |#2|) |#2|) 135)) (-2435 (((-694 (-412 |#2|))) 50)) (-1511 (((-694 (-412 |#2|))) 48)) (-1943 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-2134 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 68)) (-4131 (((-1273 $)) 47)) (-2402 (((-1273 $)) 46)) (-4022 (((-112) $) NIL)) (-3911 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2305 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-2881 (((-3 |#2| "failed")) NIL)) (-3545 (((-1126) $) NIL)) (-2717 (((-776)) NIL)) (-2330 (($) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| (-412 |#2|) (-367)))) (-1864 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3796 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2405 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1578 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1866 ((|#1| $ |#1| |#1|) NIL)) (-3006 (((-3 |#2| "failed")) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4304 (((-412 |#2|) (-1273 $)) NIL) (((-412 |#2|)) 44)) (-2601 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3514 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2520 (((-694 (-412 |#2|)) (-1273 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-4143 ((|#3|) 55)) (-2430 (($) NIL (|has| (-412 |#2|) (-353)))) (-2960 (((-1273 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) (-1273 $) (-1273 $)) NIL) (((-1273 (-412 |#2|)) $) 62) (((-694 (-412 |#2|)) (-1273 $)) 110)) (-1408 (((-1273 (-412 |#2|)) $) NIL) (($ (-1273 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-1891 (((-1273 $) (-1273 $)) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2774 (|has| (-412 |#2|) (-1044 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4030 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-3798 ((|#3| $) NIL)) (-3302 (((-776)) NIL T CONST)) (-3637 (((-112)) 42)) (-3507 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL)) (-2985 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2575 (((-112)) NIL)) (-1803 (($) 17 T CONST)) (-1813 (($) 27 T CONST)) (-2830 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-1278) (-776))))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) |#3|) (T -40))
-((-1885 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *2 (-1278)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1249 (-412 *5))) (-14 *7 *6))))
-(-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-1278) (-776)))))
-((-1972 ((|#2| |#2|) 47)) (-4397 ((|#2| |#2|) 139 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-4300 ((|#2| |#2|) 100 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-2263 ((|#2| |#2|) 101 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-1392 ((|#2| (-114) |#2| (-776)) 135 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1044 (-569))))))) (-2166 (((-1179 |#2|) |#2|) 44)) (-2068 ((|#2| |#2| (-649 (-617 |#2|))) 18) ((|#2| |#2| (-649 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1972 (|#2| |#2|)) (-15 -2068 (|#2| |#2|)) (-15 -2068 (|#2| |#2| |#2|)) (-15 -2068 (|#2| |#2| (-649 |#2|))) (-15 -2068 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -2166 ((-1179 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1044 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -2263 (|#2| |#2|)) (-15 -4300 (|#2| |#2|)) (-15 -4397 (|#2| |#2|)) (-15 -1392 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|)) (-561) (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 |#1| (-617 $)) $)) (-15 -4409 ((-1131 |#1| (-617 $)) $)) (-15 -3793 ($ (-1131 |#1| (-617 $))))))) (T -41))
-((-1392 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-569)))) (-4 *5 (-561)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *5 (-617 $)) $)) (-15 -4409 ((-1131 *5 (-617 $)) $)) (-15 -3793 ($ (-1131 *5 (-617 $))))))))) (-4397 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $)) (-15 -4409 ((-1131 *3 (-617 $)) $)) (-15 -3793 ($ (-1131 *3 (-617 $))))))))) (-4300 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $)) (-15 -4409 ((-1131 *3 (-617 $)) $)) (-15 -3793 ($ (-1131 *3 (-617 $))))))))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $)) (-15 -4409 ((-1131 *3 (-617 $)) $)) (-15 -3793 ($ (-1131 *3 (-617 $))))))))) (-2166 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1179 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *4 (-617 $)) $)) (-15 -4409 ((-1131 *4 (-617 $)) $)) (-15 -3793 ($ (-1131 *4 (-617 $))))))))) (-2068 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-617 *2))) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *4 (-617 $)) $)) (-15 -4409 ((-1131 *4 (-617 $)) $)) (-15 -3793 ($ (-1131 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-2068 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *4 (-617 $)) $)) (-15 -4409 ((-1131 *4 (-617 $)) $)) (-15 -3793 ($ (-1131 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-2068 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $)) (-15 -4409 ((-1131 *3 (-617 $)) $)) (-15 -3793 ($ (-1131 *3 (-617 $))))))))) (-2068 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $)) (-15 -4409 ((-1131 *3 (-617 $)) $)) (-15 -3793 ($ (-1131 *3 (-617 $))))))))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $)) (-15 -4409 ((-1131 *3 (-617 $)) $)) (-15 -3793 ($ (-1131 *3 (-617 $))))))))))
-(-10 -7 (-15 -1972 (|#2| |#2|)) (-15 -2068 (|#2| |#2|)) (-15 -2068 (|#2| |#2| |#2|)) (-15 -2068 (|#2| |#2| (-649 |#2|))) (-15 -2068 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -2166 ((-1179 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1044 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -2263 (|#2| |#2|)) (-15 -4300 (|#2| |#2|)) (-15 -4397 (|#2| |#2|)) (-15 -1392 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|))
-((-3796 (((-423 (-1179 |#3|)) (-1179 |#3|) (-649 (-48))) 23) (((-423 |#3|) |#3| (-649 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3796 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3796 ((-423 (-1179 |#3|)) (-1179 |#3|) (-649 (-48))))) (-855) (-798) (-955 (-48) |#2| |#1|)) (T -42))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-955 (-48) *6 *5)))))
-(-10 -7 (-15 -3796 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3796 ((-423 (-1179 |#3|)) (-1179 |#3|) (-649 (-48)))))
-((-3729 (((-776) |#2|) 72)) (-1627 (((-776) |#2|) 76)) (-3686 (((-649 |#2|)) 39)) (-1514 (((-776) |#2|) 75)) (-1732 (((-776) |#2|) 71)) (-3828 (((-776) |#2|) 74)) (-3509 (((-649 (-694 |#1|))) 67)) (-4269 (((-649 |#2|)) 62)) (-4092 (((-649 |#2|) |#2|) 50)) (-3214 (((-649 |#2|)) 64)) (-3118 (((-649 |#2|)) 63)) (-3416 (((-649 (-694 |#1|))) 55)) (-4189 (((-649 |#2|)) 61)) (-4006 (((-649 |#2|) |#2|) 49)) (-3926 (((-649 |#2|)) 57)) (-3619 (((-649 (-694 |#1|))) 68)) (-3322 (((-649 |#2|)) 66)) (-1903 (((-1273 |#2|) (-1273 |#2|)) 101 (|has| |#1| (-310)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1514 ((-776) |#2|)) (-15 -1627 ((-776) |#2|)) (-15 -1732 ((-776) |#2|)) (-15 -3729 ((-776) |#2|)) (-15 -3828 ((-776) |#2|)) (-15 -3926 ((-649 |#2|))) (-15 -4006 ((-649 |#2|) |#2|)) (-15 -4092 ((-649 |#2|) |#2|)) (-15 -4189 ((-649 |#2|))) (-15 -4269 ((-649 |#2|))) (-15 -3118 ((-649 |#2|))) (-15 -3214 ((-649 |#2|))) (-15 -3322 ((-649 |#2|))) (-15 -3416 ((-649 (-694 |#1|)))) (-15 -3509 ((-649 (-694 |#1|)))) (-15 -3619 ((-649 (-694 |#1|)))) (-15 -3686 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -1903 ((-1273 |#2|) (-1273 |#2|))) |%noBranch|)) (-561) (-422 |#1|)) (T -43))
-((-1903 (*1 *2 *2) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-43 *3 *4)))) (-3686 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3619 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3509 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3416 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3322 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3214 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3118 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4269 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4189 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-3926 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1732 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1627 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1514 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))))
-(-10 -7 (-15 -1514 ((-776) |#2|)) (-15 -1627 ((-776) |#2|)) (-15 -1732 ((-776) |#2|)) (-15 -3729 ((-776) |#2|)) (-15 -3828 ((-776) |#2|)) (-15 -3926 ((-649 |#2|))) (-15 -4006 ((-649 |#2|) |#2|)) (-15 -4092 ((-649 |#2|) |#2|)) (-15 -4189 ((-649 |#2|))) (-15 -4269 ((-649 |#2|))) (-15 -3118 ((-649 |#2|))) (-15 -3214 ((-649 |#2|))) (-15 -3322 ((-649 |#2|))) (-15 -3416 ((-649 (-694 |#1|)))) (-15 -3509 ((-649 (-694 |#1|)))) (-15 -3619 ((-649 (-694 |#1|)))) (-15 -3686 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -1903 ((-1273 |#2|) (-1273 |#2|))) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1934 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2870 (((-1273 (-694 |#1|)) (-1273 $)) NIL) (((-1273 (-694 |#1|))) 24)) (-2897 (((-1273 $)) 55)) (-4188 (($) NIL T CONST)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-1856 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-4207 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) NIL)) (-2667 ((|#1| $) NIL)) (-4023 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-3413 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-2788 (((-1179 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-3727 (($ $ (-927)) NIL)) (-2449 ((|#1| $) NIL)) (-2024 (((-1179 |#1|) $) NIL (|has| |#1| (-561)))) (-3161 ((|#1| (-1273 $)) NIL) ((|#1|) NIL)) (-3519 (((-1179 |#1|) $) NIL)) (-4051 (((-112)) 101)) (-3390 (($ (-1273 |#1|) (-1273 $)) NIL) (($ (-1273 |#1|)) NIL)) (-2888 (((-3 $ "failed") $) 14 (|has| |#1| (-561)))) (-3975 (((-927)) 56)) (-1816 (((-112)) NIL)) (-2760 (($ $ (-927)) NIL)) (-1325 (((-112)) NIL)) (-2317 (((-112)) NIL)) (-1575 (((-112)) 103)) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-1949 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-4298 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) NIL)) (-2789 ((|#1| $) NIL)) (-4109 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-3508 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-2030 (((-1179 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-3627 (($ $ (-927)) NIL)) (-2551 ((|#1| $) NIL)) (-2123 (((-1179 |#1|) $) NIL (|has| |#1| (-561)))) (-3266 ((|#1| (-1273 $)) NIL) ((|#1|) NIL)) (-3635 (((-1179 |#1|) $) NIL)) (-4175 (((-112)) 100)) (-1550 (((-1165) $) NIL)) (-4342 (((-112)) 108)) (-1452 (((-112)) 107)) (-1699 (((-112)) 109)) (-3545 (((-1126) $) NIL)) (-3930 (((-112)) 102)) (-1866 ((|#1| $ (-569)) 58)) (-2960 (((-1273 |#1|) $ (-1273 $)) 52) (((-694 |#1|) (-1273 $) (-1273 $)) NIL) (((-1273 |#1|) $) 28) (((-694 |#1|) (-1273 $)) NIL)) (-1408 (((-1273 |#1|) $) NIL) (($ (-1273 |#1|)) NIL)) (-3146 (((-649 (-958 |#1|)) (-1273 $)) NIL) (((-649 (-958 |#1|))) NIL)) (-2292 (($ $ $) NIL)) (-3399 (((-112)) 97)) (-3793 (((-867) $) 74) (($ (-1273 |#1|)) 22)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) 54)) (-2220 (((-649 (-1273 |#1|))) NIL (|has| |#1| (-561)))) (-2358 (($ $ $ $) NIL)) (-3158 (((-112)) 93)) (-3448 (($ (-694 |#1|) $) 18)) (-2205 (($ $ $) NIL)) (-3264 (((-112)) 99)) (-4284 (((-112)) 94)) (-3821 (((-112)) 92)) (-1803 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1148 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-422 |#1|) (-653 (-1148 |#2| |#1|)) (-10 -8 (-15 -3793 ($ (-1273 |#1|))))) (-367) (-927) (-649 (-1183)) (-1273 (-694 |#1|))) (T -44))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-14 *6 (-1273 (-694 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))))))
-(-13 (-422 |#1|) (-653 (-1148 |#2| |#1|)) (-10 -8 (-15 -3793 ($ (-1273 |#1|)))))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2185 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2561 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1566 (($ $) NIL)) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4321 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4445))) (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-3012 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855))))) (-3355 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-1660 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445)))) (-4382 (($ $ $) 33 (|has| $ (-6 -4445)))) (-1716 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445)))) (-1376 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 35 (|has| $ (-6 -4445)))) (-3940 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-1240 (-569)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "last" (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445))) (($ $ "rest" $) NIL (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "first" (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "value" (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2548 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2356 (((-3 |#2| "failed") |#1| $) 43)) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3522 (($ $ (-776)) NIL) (($ $) 29)) (-3041 (($ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4445))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) NIL)) (-1677 (((-112) $) NIL)) (-4034 (((-569) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (((-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) (((-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 20 (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444))) (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 20 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-4295 (($ (-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 38 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2616 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2126 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444))) (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-1535 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 40 (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445))) (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-3379 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-2273 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-2703 (((-112) $) NIL)) (-1550 (((-1165) $) 49 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-1722 (($ $ (-776)) NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2796 (((-649 |#1|) $) 22)) (-3937 (((-112) |#1| $) NIL)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-4294 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 |#1|) $) NIL) (((-649 (-569)) $) NIL)) (-3748 (((-112) |#1| $) NIL) (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#2| $) NIL (|has| |#1| (-855))) (($ $ (-776)) NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 27)) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1807 (((-112) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3851 (((-649 |#2|) $) NIL) (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 19)) (-3218 (((-112) $) 18)) (-3597 (($) 14)) (-1866 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ (-569)) NIL) (($ $ (-1240 (-569))) NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "first") NIL) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $ "value") NIL)) (-3947 (((-569) $ $) NIL)) (-1906 (($) 13) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4198 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-2102 (((-112) $) NIL)) (-1750 (($ $) NIL)) (-1497 (($ $) NIL (|has| $ (-6 -4445)))) (-3754 (((-776) $) NIL)) (-3866 (($ $) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-1621 (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL) (($ $ $) NIL)) (-2441 (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL) (($ (-649 $)) NIL) (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 31) (($ $ $) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-1730 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") |#1| $) 51)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2964 (((-112) $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-855)))) (-2426 (((-776) $) 25 (|has| $ (-6 -4444)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1106) (-1106)) (T -45))
+(-13 (-1057) (-722 |t#1|) (-621 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2241 (((-423 |#1|) |#1|) 41)) (-3800 (((-423 |#1|) |#1|) 30) (((-423 |#1|) |#1| (-649 (-48))) 33)) (-3538 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2241 ((-423 |#1|) |#1|)) (-15 -3538 ((-112) |#1|))) (-1251 (-48))) (T -39))
+((-3538 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) (-2241 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))))
+(-10 -7 (-15 -3800 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2241 ((-423 |#1|) |#1|)) (-15 -3538 ((-112) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2877 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-4355 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3039 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1547 (((-694 (-412 |#2|)) (-1275 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3140 (((-412 |#2|) $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3764 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2227 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3473 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-2123 (((-112)) NIL)) (-3317 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-2247 (($ (-1275 (-412 |#2|)) (-1275 $)) NIL) (($ (-1275 (-412 |#2|))) 61) (($ (-1275 |#2|) |#2|) 134)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2368 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1833 (((-694 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-412 |#2|))) (|:| |vec| (-1275 (-412 |#2|)))) (-694 $) (-1275 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-2980 (((-1275 $) (-1275 $)) NIL)) (-3598 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-2603 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-1523 (((-112) |#1| |#1|) NIL)) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| (-412 |#2|) (-372)))) (-2303 (((-112)) NIL)) (-3811 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2379 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-2642 (($ $) NIL)) (-1616 (($) NIL (|has| (-412 |#2|) (-353)))) (-2807 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-3701 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-1473 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1466 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2349 (((-112) $) NIL)) (-3045 (((-776)) NIL)) (-3751 (((-1275 $) (-1275 $)) 109)) (-3829 (((-412 |#2|) $) NIL)) (-1388 (((-649 (-958 |#1|)) (-1185)) NIL (|has| |#1| (-367)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3859 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2731 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3585 ((|#3| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3435 (((-1167) $) NIL)) (-3486 (((-1280) (-776)) 87)) (-1334 (((-694 (-412 |#2|))) 56)) (-2979 (((-694 (-412 |#2|))) 49)) (-1817 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4397 (($ (-1275 |#2|) |#2|) 135)) (-4272 (((-694 (-412 |#2|))) 50)) (-4247 (((-694 (-412 |#2|))) 48)) (-2841 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-4277 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 68)) (-3963 (((-1275 $)) 47)) (-4002 (((-1275 $)) 46)) (-2173 (((-112) $) NIL)) (-3557 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2307 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-3015 (((-3 |#2| "failed")) NIL)) (-3547 (((-1128) $) NIL)) (-3926 (((-776)) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| (-412 |#2|) (-367)))) (-1870 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3800 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2431 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1869 ((|#1| $ |#1| |#1|) NIL)) (-2893 (((-3 |#2| "failed")) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3059 (((-412 |#2|) (-1275 $)) NIL) (((-412 |#2|)) 44)) (-2166 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3517 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2594 (((-694 (-412 |#2|)) (-1275 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-4061 ((|#3|) 55)) (-4234 (($) NIL (|has| (-412 |#2|) (-353)))) (-2415 (((-1275 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) (-1275 $) (-1275 $)) NIL) (((-1275 (-412 |#2|)) $) 62) (((-694 (-412 |#2|)) (-1275 $)) 110)) (-1410 (((-1275 (-412 |#2|)) $) NIL) (($ (-1275 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-3562 (((-1275 $) (-1275 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| (-412 |#2|) (-1046 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2239 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-1886 ((|#3| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-2784 (((-112)) 42)) (-4050 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-2664 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4279 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1954 (((-112)) NIL)) (-1804 (($) 17 T CONST)) (-1815 (($) 27 T CONST)) (-2832 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -3486 ((-1280) (-776))))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) |#3|) (T -40))
+((-3486 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *2 (-1280)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1251 (-412 *5))) (-14 *7 *6))))
+(-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -3486 ((-1280) (-776)))))
+((-1961 ((|#2| |#2|) 47)) (-1479 ((|#2| |#2|) 139 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-3023 ((|#2| |#2|) 100 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-1931 ((|#2| |#2|) 101 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-3830 ((|#2| (-114) |#2| (-776)) 135 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-3376 (((-1181 |#2|) |#2|) 44)) (-1728 ((|#2| |#2| (-649 (-617 |#2|))) 18) ((|#2| |#2| (-649 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1728 (|#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| (-649 |#2|))) (-15 -1728 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -3376 ((-1181 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1046 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1931 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -3830 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|)) (-561) (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 |#1| (-617 $)) $)) (-15 -4412 ((-1133 |#1| (-617 $)) $)) (-15 -3796 ($ (-1133 |#1| (-617 $))))))) (T -41))
+((-3830 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1046 (-569)))) (-4 *5 (-561)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *5 (-617 $)) $)) (-15 -4412 ((-1133 *5 (-617 $)) $)) (-15 -3796 ($ (-1133 *5 (-617 $))))))))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-1931 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-3376 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1181 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) (-15 -4412 ((-1133 *4 (-617 $)) $)) (-15 -3796 ($ (-1133 *4 (-617 $))))))))) (-1728 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-617 *2))) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) (-15 -4412 ((-1133 *4 (-617 $)) $)) (-15 -3796 ($ (-1133 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1728 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) (-15 -4412 ((-1133 *4 (-617 $)) $)) (-15 -3796 ($ (-1133 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1728 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-1728 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))))
+(-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1728 (|#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| (-649 |#2|))) (-15 -1728 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -3376 ((-1181 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1046 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1931 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -3830 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|))
+((-3800 (((-423 (-1181 |#3|)) (-1181 |#3|) (-649 (-48))) 23) (((-423 |#3|) |#3| (-649 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3800 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3800 ((-423 (-1181 |#3|)) (-1181 |#3|) (-649 (-48))))) (-855) (-798) (-955 (-48) |#2| |#1|)) (T -42))
+((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-955 (-48) *6 *5)))))
+(-10 -7 (-15 -3800 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3800 ((-423 (-1181 |#3|)) (-1181 |#3|) (-649 (-48)))))
+((-2416 (((-776) |#2|) 72)) (-2922 (((-776) |#2|) 76)) (-2049 (((-649 |#2|)) 39)) (-3025 (((-776) |#2|) 75)) (-1480 (((-776) |#2|) 71)) (-4016 (((-776) |#2|) 74)) (-4068 (((-649 (-694 |#1|))) 67)) (-2728 (((-649 |#2|)) 62)) (-1687 (((-649 |#2|) |#2|) 50)) (-3113 (((-649 |#2|)) 64)) (-1531 (((-649 |#2|)) 63)) (-4401 (((-649 (-694 |#1|))) 55)) (-3200 (((-649 |#2|)) 61)) (-2016 (((-649 |#2|) |#2|) 49)) (-3706 (((-649 |#2|)) 57)) (-2571 (((-649 (-694 |#1|))) 68)) (-2899 (((-649 |#2|)) 66)) (-2403 (((-1275 |#2|) (-1275 |#2|)) 101 (|has| |#1| (-310)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -3025 ((-776) |#2|)) (-15 -2922 ((-776) |#2|)) (-15 -1480 ((-776) |#2|)) (-15 -2416 ((-776) |#2|)) (-15 -4016 ((-776) |#2|)) (-15 -3706 ((-649 |#2|))) (-15 -2016 ((-649 |#2|) |#2|)) (-15 -1687 ((-649 |#2|) |#2|)) (-15 -3200 ((-649 |#2|))) (-15 -2728 ((-649 |#2|))) (-15 -1531 ((-649 |#2|))) (-15 -3113 ((-649 |#2|))) (-15 -2899 ((-649 |#2|))) (-15 -4401 ((-649 (-694 |#1|)))) (-15 -4068 ((-649 (-694 |#1|)))) (-15 -2571 ((-649 (-694 |#1|)))) (-15 -2049 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -2403 ((-1275 |#2|) (-1275 |#2|))) |%noBranch|)) (-561) (-422 |#1|)) (T -43))
+((-2403 (*1 *2 *2) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-43 *3 *4)))) (-2049 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-2571 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4068 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4401 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-2899 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3113 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1531 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-2728 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3200 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1687 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-3706 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4016 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))))
+(-10 -7 (-15 -3025 ((-776) |#2|)) (-15 -2922 ((-776) |#2|)) (-15 -1480 ((-776) |#2|)) (-15 -2416 ((-776) |#2|)) (-15 -4016 ((-776) |#2|)) (-15 -3706 ((-649 |#2|))) (-15 -2016 ((-649 |#2|) |#2|)) (-15 -1687 ((-649 |#2|) |#2|)) (-15 -3200 ((-649 |#2|))) (-15 -2728 ((-649 |#2|))) (-15 -1531 ((-649 |#2|))) (-15 -3113 ((-649 |#2|))) (-15 -2899 ((-649 |#2|))) (-15 -4401 ((-649 (-694 |#1|)))) (-15 -4068 ((-649 (-694 |#1|)))) (-15 -2571 ((-649 (-694 |#1|)))) (-15 -2049 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -2403 ((-1275 |#2|) (-1275 |#2|))) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#1|)) (-1275 $)) NIL) (((-1275 (-694 |#1|))) 24)) (-3076 (((-1275 $)) 55)) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-3207 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-3400 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) NIL)) (-1564 ((|#1| $) NIL)) (-2183 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-4379 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-3319 (((-1181 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#1| $) NIL)) (-4375 (((-1181 |#1|) $) NIL (|has| |#1| (-561)))) (-3850 ((|#1| (-1275 $)) NIL) ((|#1|) NIL)) (-4136 (((-1181 |#1|) $) NIL)) (-2413 (((-112)) 101)) (-2247 (($ (-1275 |#1|) (-1275 $)) NIL) (($ (-1275 |#1|)) NIL)) (-3086 (((-3 $ "failed") $) 14 (|has| |#1| (-561)))) (-3978 (((-927)) 56)) (-4095 (((-112)) NIL)) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL)) (-2411 (((-112)) NIL)) (-2399 (((-112)) 103)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-2904 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-2999 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) NIL)) (-3339 ((|#1| $) NIL)) (-1866 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-4059 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-1308 (((-1181 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#1| $) NIL)) (-4167 (((-1181 |#1|) $) NIL (|has| |#1| (-561)))) (-3674 ((|#1| (-1275 $)) NIL) ((|#1|) NIL)) (-2761 (((-1181 |#1|) $) NIL)) (-4307 (((-112)) 100)) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) 108)) (-3703 (((-112)) 107)) (-4324 (((-112)) 109)) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) 102)) (-1869 ((|#1| $ (-569)) 58)) (-2415 (((-1275 |#1|) $ (-1275 $)) 52) (((-694 |#1|) (-1275 $) (-1275 $)) NIL) (((-1275 |#1|) $) 28) (((-694 |#1|) (-1275 $)) NIL)) (-1410 (((-1275 |#1|) $) NIL) (($ (-1275 |#1|)) NIL)) (-1829 (((-649 (-958 |#1|)) (-1275 $)) NIL) (((-649 (-958 |#1|))) NIL)) (-2180 (($ $ $) NIL)) (-2324 (((-112)) 97)) (-3796 (((-867) $) 74) (($ (-1275 |#1|)) 22)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 54)) (-2643 (((-649 (-1275 |#1|))) NIL (|has| |#1| (-561)))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) 93)) (-3451 (($ (-694 |#1|) $) 18)) (-2489 (($ $ $) NIL)) (-3649 (((-112)) 99)) (-2887 (((-112)) 94)) (-3967 (((-112)) 92)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1150 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-422 |#1|) (-653 (-1150 |#2| |#1|)) (-10 -8 (-15 -3796 ($ (-1275 |#1|))))) (-367) (-927) (-649 (-1185)) (-1275 (-694 |#1|))) (T -44))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-14 *6 (-1275 (-694 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))))))
+(-13 (-422 |#1|) (-653 (-1150 |#2| |#1|)) (-10 -8 (-15 -3796 ($ (-1275 |#1|)))))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2188 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-2563 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1568 (($ $) NIL)) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448))) (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2951 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855))))) (-3358 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-2052 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) 33 (|has| $ (-6 -4448)))) (-1344 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-2747 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 35 (|has| $ (-6 -4448)))) (-3943 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-1242 (-569)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (($ $ "rest" $) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2550 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-2359 (((-3 |#2| "failed") |#1| $) 43)) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3525 (($ $ (-776)) NIL) (($ $) 29)) (-2017 (($ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 20 (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 20 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-4300 (($ (-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 38 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2292 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-4198 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 40 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-3382 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) 49 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-1724 (($ $ (-776)) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-2795 (((-649 |#1|) $) 22)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-4298 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 |#1|) $) NIL) (((-649 (-569)) $) NIL)) (-1414 (((-112) |#1| $) NIL) (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855))) (($ $ (-776)) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 27)) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-4199 (((-649 |#2|) $) NIL) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 19)) (-3162 (((-112) $) 18)) (-3635 (($) 14)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL) (($ $ (-1242 (-569))) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first") NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value") NIL)) (-2602 (((-569) $ $) NIL)) (-2434 (($) 13) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3301 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3966 (((-112) $) NIL)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2866 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL) (($ $ $) NIL)) (-2443 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL) (($ (-649 $)) NIL) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 31) (($ $ $) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1733 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") |#1| $) 51)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2966 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2428 (((-776) $) 25 (|has| $ (-6 -4447)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1108) (-1108)) (T -45))
NIL
(-36 |#1| |#2|)
-((-4343 (((-112) $) 12)) (-1344 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-412 (-569)) $) 25) (($ $ (-412 (-569))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -4343 ((-112) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-47 |#2| |#3|) (-1055) (-797)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -4343 ((-112) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-4343 (((-112) $) 74)) (-3920 (($ |#1| |#2|) 73)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3868 ((|#2| $) 76)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4184 ((|#1| $ |#2|) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-47 |#1| |#2|) (-140) (-1055) (-797)) (T -47))
-((-1855 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-1846 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112)))) (-3920 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-4184 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-367)))))
-(-13 (-1055) (-111 |t#1| |t#1|) (-10 -8 (-15 -1855 (|t#1| $)) (-15 -1846 ($ $)) (-15 -3868 (|t#2| $)) (-15 -1344 ($ (-1 |t#1| |t#1|) $)) (-15 -4343 ((-112) $)) (-15 -3920 ($ |t#1| |t#2|)) (-15 -1879 ($ $)) (-15 -4184 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-367)) (-15 -3032 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-6 (-173)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-561)) (-6 (-561)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-6 (-38 (-412 (-569)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3879 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-3288 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-3192 (((-112) $) 9)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-3660 (((-649 (-617 $)) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4293 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-3807 (($ $) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-3421 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-3964 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-4378 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3148 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2366 (($ $ $) NIL)) (-1630 (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-412 (-569)))) (|:| |vec| (-1273 (-412 (-569))))) (-694 $) (-1273 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3596 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2223 (($ $) NIL) (($ (-649 $)) NIL)) (-1463 (((-649 (-114)) $) NIL)) (-3743 (((-114) (-114)) NIL)) (-2623 (((-112) $) 11)) (-1607 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-4396 (((-1131 (-569) (-617 $)) $) NIL)) (-2506 (($ $ (-569)) NIL)) (-2707 (((-1179 $) (-1179 $) (-617 $)) NIL) (((-1179 $) (-1179 $) (-649 (-617 $))) NIL) (($ $ (-617 $)) NIL) (($ $ (-649 (-617 $))) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4362 (((-1179 $) (-617 $)) NIL (|has| $ (-1055)))) (-1344 (($ (-1 $ $) (-617 $)) NIL)) (-1574 (((-3 (-617 $) "failed") $) NIL)) (-1835 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3733 (((-649 (-617 $)) $) NIL)) (-1352 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-2374 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) NIL)) (-1814 (($ $) NIL)) (-1425 (((-776) $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1335 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2108 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1723 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1578 (((-776) $) NIL)) (-1866 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-1676 (($ $) NIL) (($ $ $) NIL)) (-3514 (($ $ (-776)) NIL) (($ $) NIL)) (-4409 (((-1131 (-569) (-617 $)) $) NIL)) (-4143 (($ $) NIL (|has| $ (-1055)))) (-1408 (((-383) $) NIL) (((-226) $) NIL) (((-170 (-383)) $) NIL)) (-3793 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1131 (-569) (-617 $))) NIL)) (-3302 (((-776)) NIL T CONST)) (-4211 (($ $) NIL) (($ (-649 $)) NIL)) (-4142 (((-112) (-114)) NIL)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) 6 T CONST)) (-1813 (($) 10 T CONST)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2919 (((-112) $ $) 13)) (-3032 (($ $ $) NIL)) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) NIL) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
-(((-48) (-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3793 ($ (-1131 (-569) (-617 $)))) (-15 -4396 ((-1131 (-569) (-617 $)) $)) (-15 -4409 ((-1131 (-569) (-617 $)) $)) (-15 -3596 ($ $)) (-15 -2707 ((-1179 $) (-1179 $) (-617 $))) (-15 -2707 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -2707 ($ $ (-617 $))) (-15 -2707 ($ $ (-649 (-617 $))))))) (T -48))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-3596 (*1 *1 *1) (-5 *1 (-48))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48)))))
-(-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3793 ($ (-1131 (-569) (-617 $)))) (-15 -4396 ((-1131 (-569) (-617 $)) $)) (-15 -4409 ((-1131 (-569) (-617 $)) $)) (-15 -3596 ($ $)) (-15 -2707 ((-1179 $) (-1179 $) (-617 $))) (-15 -2707 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -2707 ($ $ (-617 $))) (-15 -2707 ($ $ (-649 (-617 $))))))
-((-2415 (((-112) $ $) NIL)) (-3824 (((-649 (-511)) $) 17)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 7)) (-3583 (((-1188) $) 18)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-49) (-13 (-1106) (-10 -8 (-15 -3824 ((-649 (-511)) $)) (-15 -3583 ((-1188) $))))) (T -49))
-((-3824 (*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-49)))))
-(-13 (-1106) (-10 -8 (-15 -3824 ((-649 (-511)) $)) (-15 -3583 ((-1188) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 87)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-2120 (((-112) $) 30)) (-4378 (((-3 |#1| "failed") $) 33)) (-3148 ((|#1| $) 34)) (-1879 (($ $) 40)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1855 ((|#1| $) 31)) (-3405 (($ $) 76)) (-1550 (((-1165) $) NIL)) (-3270 (((-112) $) 43)) (-3545 (((-1126) $) NIL)) (-2330 (($ (-776)) 74)) (-4386 (($ (-649 (-569))) 75)) (-3868 (((-776) $) 44)) (-3793 (((-867) $) 93) (($ (-569)) 71) (($ |#1|) 69)) (-4184 ((|#1| $ $) 28)) (-3302 (((-776)) 73 T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 45 T CONST)) (-1813 (($) 17 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
-(((-50 |#1| |#2|) (-13 (-625 |#1|) (-1044 |#1|) (-10 -8 (-15 -1855 (|#1| $)) (-15 -3405 ($ $)) (-15 -1879 ($ $)) (-15 -4184 (|#1| $ $)) (-15 -2330 ($ (-776))) (-15 -4386 ($ (-649 (-569)))) (-15 -3270 ((-112) $)) (-15 -2120 ((-112) $)) (-15 -3868 ((-776) $)) (-15 -1344 ($ (-1 |#1| |#1|) $)))) (-1055) (-649 (-1183))) (T -50))
-((-1855 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183))))) (-3405 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183))))) (-1879 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183))))) (-4184 (*1 *2 *1 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183))))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-4386 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055)) (-14 *4 (-649 (-1183))))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-50 *3 *4)) (-14 *4 (-649 (-1183))))))
-(-13 (-625 |#1|) (-1044 |#1|) (-10 -8 (-15 -1855 (|#1| $)) (-15 -3405 ($ $)) (-15 -1879 ($ $)) (-15 -4184 (|#1| $ $)) (-15 -2330 ($ (-776))) (-15 -4386 ($ (-649 (-569)))) (-15 -3270 ((-112) $)) (-15 -2120 ((-112) $)) (-15 -3868 ((-776) $)) (-15 -1344 ($ (-1 |#1| |#1|) $))))
-((-2120 (((-112) (-52)) 18)) (-4378 (((-3 |#1| "failed") (-52)) 20)) (-3148 ((|#1| (-52)) 21)) (-3793 (((-52) |#1|) 14)))
-(((-51 |#1|) (-10 -7 (-15 -3793 ((-52) |#1|)) (-15 -4378 ((-3 |#1| "failed") (-52))) (-15 -2120 ((-112) (-52))) (-15 -3148 (|#1| (-52)))) (-1223)) (T -51))
-((-3148 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1223)))) (-4378 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1223)))))
-(-10 -7 (-15 -3793 ((-52) |#1|)) (-15 -4378 ((-3 |#1| "failed") (-52))) (-15 -2120 ((-112) (-52))) (-15 -3148 (|#1| (-52))))
-((-2415 (((-112) $ $) NIL)) (-4301 (((-779) $) 8)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3258 (((-1110) $) 10)) (-3793 (((-867) $) 15)) (-1441 (((-112) $ $) NIL)) (-3653 (($ (-1110) (-779)) 16)) (-2919 (((-112) $ $) 12)))
-(((-52) (-13 (-1106) (-10 -8 (-15 -3653 ($ (-1110) (-779))) (-15 -3258 ((-1110) $)) (-15 -4301 ((-779) $))))) (T -52))
-((-3653 (*1 *1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *3 (-779)) (-5 *1 (-52)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-52)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-52)))))
-(-13 (-1106) (-10 -8 (-15 -3653 ($ (-1110) (-779))) (-15 -3258 ((-1110) $)) (-15 -4301 ((-779) $))))
-((-3448 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3448 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1055) (-653 |#1|) (-857 |#1|)) (T -53))
-((-3448 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1055)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5)))))
-(-10 -7 (-15 -3448 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2578 ((|#3| |#3| (-649 (-1183))) 46)) (-2480 ((|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3| (-927)) 32) ((|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2480 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3|)) (-15 -2480 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3| (-927))) (-15 -2578 (|#3| |#3| (-649 (-1183))))) (-1106) (-13 (-1055) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -54))
-((-2578 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-2480 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 (-1082 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1106)) (-4 *6 (-13 (-1055) (-892 *5) (-619 (-898 *5)))) (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2480 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-1082 *4 *5 *2))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -2480 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3|)) (-15 -2480 (|#3| (-649 (-1082 |#1| |#2| |#3|)) |#3| (-927))) (-15 -2578 (|#3| |#3| (-649 (-1183)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 14)) (-4378 (((-3 (-776) "failed") $) 34)) (-3148 (((-776) $) NIL)) (-2623 (((-112) $) 16)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) 18)) (-3793 (((-867) $) 23) (($ (-776)) 29)) (-1441 (((-112) $ $) NIL)) (-2689 (($) 11 T CONST)) (-2919 (((-112) $ $) 20)))
-(((-55) (-13 (-1106) (-1044 (-776)) (-10 -8 (-15 -2689 ($) -3706) (-15 -3192 ((-112) $)) (-15 -2623 ((-112) $))))) (T -55))
-((-2689 (*1 *1) (-5 *1 (-55))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1106) (-1044 (-776)) (-10 -8 (-15 -2689 ($) -3706) (-15 -3192 ((-112) $)) (-15 -2623 ((-112) $))))
-((-2716 (((-112) $ (-776)) 27)) (-2316 (($ $ (-569) |#3|) 66)) (-2782 (($ $ (-569) |#4|) 70)) (-1486 ((|#3| $ (-569)) 79)) (-2880 (((-649 |#2|) $) 47)) (-1689 (((-112) $ (-776)) 31)) (-1655 (((-112) |#2| $) 74)) (-3831 (($ (-1 |#2| |#2|) $) 55)) (-1344 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2433 (((-112) $ (-776)) 29)) (-4420 (($ $ |#2|) 52)) (-2911 (((-112) (-1 (-112) |#2|) $) 21)) (-1866 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) 35)) (-3558 (((-776) (-1 (-112) |#2|) $) 41) (((-776) |#2| $) 76)) (-3959 (($ $) 51)) (-1363 ((|#4| $ (-569)) 82)) (-3793 (((-867) $) 88)) (-3037 (((-112) (-1 (-112) |#2|) $) 20)) (-2919 (((-112) $ $) 73)) (-2426 (((-776) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2782 (|#1| |#1| (-569) |#4|)) (-15 -2316 (|#1| |#1| (-569) |#3|)) (-15 -2880 ((-649 |#2|) |#1|)) (-15 -1363 (|#4| |#1| (-569))) (-15 -1486 (|#3| |#1| (-569))) (-15 -1866 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) (-569))) (-15 -4420 (|#1| |#1| |#2|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -1655 ((-112) |#2| |#1|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776))) (-15 -3959 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1223) (-377 |#2|) (-377 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2782 (|#1| |#1| (-569) |#4|)) (-15 -2316 (|#1| |#1| (-569) |#3|)) (-15 -2880 ((-649 |#2|) |#1|)) (-15 -1363 (|#4| |#1| (-569))) (-15 -1486 (|#3| |#1| (-569))) (-15 -1866 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) (-569))) (-15 -4420 (|#1| |#1| |#2|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -1655 ((-112) |#2| |#1|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776))) (-15 -3959 (|#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#1| $ (-569) (-569) |#1|) 45)) (-2316 (($ $ (-569) |#2|) 43)) (-2782 (($ $ (-569) |#3|) 42)) (-4188 (($) 7 T CONST)) (-1486 ((|#2| $ (-569)) 47)) (-3843 ((|#1| $ (-569) (-569) |#1|) 44)) (-3773 ((|#1| $ (-569) (-569)) 49)) (-2880 (((-649 |#1|) $) 31)) (-3221 (((-776) $) 52)) (-4295 (($ (-776) (-776) |#1|) 58)) (-3234 (((-776) $) 51)) (-1689 (((-112) $ (-776)) 9)) (-3856 (((-569) $) 56)) (-1738 (((-569) $) 54)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3744 (((-569) $) 55)) (-1609 (((-569) $) 53)) (-3831 (($ (-1 |#1| |#1|) $) 35)) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) 57)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1363 ((|#3| $ (-569)) 46)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-57 |#1| |#2| |#3|) (-140) (-1223) (-377 |t#1|) (-377 |t#1|)) (T -57))
-((-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-4295 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1223)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-4420 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3856 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-1866 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1223)))) (-3773 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1223)))) (-1866 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-1486 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1223)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-1363 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1223)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 *3)))) (-3940 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-3843 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-2316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-377 *4)) (-4 *5 (-377 *4)))) (-2782 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1223)) (-4 *5 (-377 *4)) (-4 *3 (-377 *4)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1344 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1344 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
-(-13 (-494 |t#1|) (-10 -8 (-6 -4445) (-6 -4444) (-15 -4295 ($ (-776) (-776) |t#1|)) (-15 -4420 ($ $ |t#1|)) (-15 -3856 ((-569) $)) (-15 -3744 ((-569) $)) (-15 -1738 ((-569) $)) (-15 -1609 ((-569) $)) (-15 -3221 ((-776) $)) (-15 -3234 ((-776) $)) (-15 -1866 (|t#1| $ (-569) (-569))) (-15 -3773 (|t#1| $ (-569) (-569))) (-15 -1866 (|t#1| $ (-569) (-569) |t#1|)) (-15 -1486 (|t#2| $ (-569))) (-15 -1363 (|t#3| $ (-569))) (-15 -2880 ((-649 |t#1|) $)) (-15 -3940 (|t#1| $ (-569) (-569) |t#1|)) (-15 -3843 (|t#1| $ (-569) (-569) |t#1|)) (-15 -2316 ($ $ (-569) |t#2|)) (-15 -2782 ($ $ (-569) |t#3|)) (-15 -1344 ($ (-1 |t#1| |t#1|) $)) (-15 -3831 ($ (-1 |t#1| |t#1|) $)) (-15 -1344 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1344 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-4085 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3596 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1344 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -4085 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1344 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1223) (-1223)) (T -58))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-58 *5 *2)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -4085 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1344 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4352 (($ (-649 |#1|)) 11) (($ (-776) |#1|) 14)) (-4295 (($ (-776) |#1|) 13)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 10)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4352 ($ (-649 |#1|))) (-15 -4352 ($ (-776) |#1|)))) (-1223)) (T -59))
-((-4352 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-59 *3)))) (-4352 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1223)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -4352 ($ (-649 |#1|))) (-15 -4352 ($ (-776) |#1|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2316 (($ $ (-569) (-59 |#1|)) NIL)) (-2782 (($ $ (-569) (-59 |#1|)) NIL)) (-4188 (($) NIL T CONST)) (-1486 (((-59 |#1|) $ (-569)) NIL)) (-3843 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3773 ((|#1| $ (-569) (-569)) NIL)) (-2880 (((-649 |#1|) $) NIL)) (-3221 (((-776) $) NIL)) (-4295 (($ (-776) (-776) |#1|) NIL)) (-3234 (((-776) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3856 (((-569) $) NIL)) (-1738 (((-569) $) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3744 (((-569) $) NIL)) (-1609 (((-569) $) NIL)) (-3831 (($ (-1 |#1| |#1|) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-1363 (((-59 |#1|) $ (-569)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4445))) (-1223)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4445)))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 74) (((-3 $ "failed") (-1273 (-319 (-569)))) 63) (((-3 $ "failed") (-1273 (-958 (-383)))) 94) (((-3 $ "failed") (-1273 (-958 (-569)))) 84) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 52) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 39)) (-3148 (($ (-1273 (-319 (-383)))) 70) (($ (-1273 (-319 (-569)))) 59) (($ (-1273 (-958 (-383)))) 90) (($ (-1273 (-958 (-569)))) 80) (($ (-1273 (-412 (-958 (-383))))) 48) (($ (-1273 (-412 (-958 (-569))))) 32)) (-3358 (((-1278) $) 124)) (-3793 (((-867) $) 118) (($ (-649 (-333))) 103) (($ (-333)) 97) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 101) (($ (-1273 (-343 (-3806 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3806) (-704)))) 31)))
-(((-61 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3806) (-704))))))) (-1183)) (T -61))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3806) (-704)))) (-5 *1 (-61 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3806) (-704)))))))
-((-3358 (((-1278) $) 54) (((-1278)) 55)) (-3793 (((-867) $) 51)))
-(((-62 |#1|) (-13 (-400) (-10 -7 (-15 -3358 ((-1278))))) (-1183)) (T -62))
-((-3358 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-62 *3)) (-14 *3 (-1183)))))
-(-13 (-400) (-10 -7 (-15 -3358 ((-1278)))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 153) (((-3 $ "failed") (-1273 (-319 (-569)))) 143) (((-3 $ "failed") (-1273 (-958 (-383)))) 173) (((-3 $ "failed") (-1273 (-958 (-569)))) 163) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 132) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 120)) (-3148 (($ (-1273 (-319 (-383)))) 149) (($ (-1273 (-319 (-569)))) 139) (($ (-1273 (-958 (-383)))) 169) (($ (-1273 (-958 (-569)))) 159) (($ (-1273 (-412 (-958 (-383))))) 128) (($ (-1273 (-412 (-958 (-569))))) 113)) (-3358 (((-1278) $) 106)) (-3793 (((-867) $) 100) (($ (-649 (-333))) 30) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 33) (($ (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704)))) 98)))
-(((-63 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704))))))) (-1183)) (T -63))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704)))) (-5 *1 (-63 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704)))))))
-((-4378 (((-3 $ "failed") (-319 (-383))) 41) (((-3 $ "failed") (-319 (-569))) 46) (((-3 $ "failed") (-958 (-383))) 50) (((-3 $ "failed") (-958 (-569))) 54) (((-3 $ "failed") (-412 (-958 (-383)))) 36) (((-3 $ "failed") (-412 (-958 (-569)))) 29)) (-3148 (($ (-319 (-383))) 39) (($ (-319 (-569))) 44) (($ (-958 (-383))) 48) (($ (-958 (-569))) 52) (($ (-412 (-958 (-383)))) 34) (($ (-412 (-958 (-569)))) 26)) (-3358 (((-1278) $) 76)) (-3793 (((-867) $) 69) (($ (-649 (-333))) 61) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 64) (($ (-343 (-3806 (QUOTE X)) (-3806) (-704))) 25)))
-(((-64 |#1|) (-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806 (QUOTE X)) (-3806) (-704)))))) (-1183)) (T -64))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-343 (-3806 (QUOTE X)) (-3806) (-704))) (-5 *1 (-64 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806 (QUOTE X)) (-3806) (-704))))))
-((-4378 (((-3 $ "failed") (-694 (-319 (-383)))) 114) (((-3 $ "failed") (-694 (-319 (-569)))) 102) (((-3 $ "failed") (-694 (-958 (-383)))) 136) (((-3 $ "failed") (-694 (-958 (-569)))) 125) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 90) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 76)) (-3148 (($ (-694 (-319 (-383)))) 110) (($ (-694 (-319 (-569)))) 98) (($ (-694 (-958 (-383)))) 132) (($ (-694 (-958 (-569)))) 121) (($ (-694 (-412 (-958 (-383))))) 86) (($ (-694 (-412 (-958 (-569))))) 69)) (-3358 (((-1278) $) 144)) (-3793 (((-867) $) 138) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 32) (($ (-694 (-343 (-3806) (-3806 (QUOTE X) (QUOTE HESS)) (-704)))) 59)))
-(((-65 |#1|) (-13 (-388) (-621 (-694 (-343 (-3806) (-3806 (QUOTE X) (QUOTE HESS)) (-704))))) (-1183)) (T -65))
-NIL
-(-13 (-388) (-621 (-694 (-343 (-3806) (-3806 (QUOTE X) (QUOTE HESS)) (-704)))))
-((-4378 (((-3 $ "failed") (-319 (-383))) 60) (((-3 $ "failed") (-319 (-569))) 65) (((-3 $ "failed") (-958 (-383))) 69) (((-3 $ "failed") (-958 (-569))) 73) (((-3 $ "failed") (-412 (-958 (-383)))) 55) (((-3 $ "failed") (-412 (-958 (-569)))) 48)) (-3148 (($ (-319 (-383))) 58) (($ (-319 (-569))) 63) (($ (-958 (-383))) 67) (($ (-958 (-569))) 71) (($ (-412 (-958 (-383)))) 53) (($ (-412 (-958 (-569)))) 45)) (-3358 (((-1278) $) 82)) (-3793 (((-867) $) 76) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 32) (($ (-343 (-3806) (-3806 (QUOTE XC)) (-704))) 40)))
-(((-66 |#1|) (-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806) (-3806 (QUOTE XC)) (-704)))))) (-1183)) (T -66))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-343 (-3806) (-3806 (QUOTE XC)) (-704))) (-5 *1 (-66 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806) (-3806 (QUOTE XC)) (-704))))))
-((-3358 (((-1278) $) 68)) (-3793 (((-867) $) 62) (($ (-694 (-704))) 54) (($ (-649 (-333))) 53) (($ (-333)) 60) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 58)))
-(((-67 |#1|) (-387) (-1183)) (T -67))
+((-2198 (((-112) $) 12)) (-1346 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-412 (-569)) $) 25) (($ $ (-412 (-569))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2198 ((-112) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-47 |#2| |#3|) (-1057) (-797)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2198 ((-112) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4339 ((|#2| $) 76)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-47 |#1| |#2|) (-140) (-1057) (-797)) (T -47))
+((-1857 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-1849 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-112)))) (-3923 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-4383 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *2 (-367)))))
+(-13 (-1057) (-111 |t#1| |t#1|) (-10 -8 (-15 -1857 (|t#1| $)) (-15 -1849 ($ $)) (-15 -4339 (|t#2| $)) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -2198 ((-112) $)) (-15 -3923 ($ |t#1| |t#2|)) (-15 -1883 ($ $)) (-15 -4383 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-367)) (-15 -3035 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-6 (-173)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-561)) (-6 (-561)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-6 (-38 (-412 (-569)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3194 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2565 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4143 (((-112) $) 9)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3663 (((-649 (-617 $)) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1333 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2793 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-412 (-569)))) (|:| |vec| (-1275 (-412 (-569))))) (-694 $) (-1275 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3598 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) NIL)) (-2349 (((-112) $) 11)) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-4399 (((-1133 (-569) (-617 $)) $) NIL)) (-3742 (($ $ (-569)) NIL)) (-3829 (((-1181 $) (-1181 $) (-617 $)) NIL) (((-1181 $) (-1181 $) (-649 (-617 $))) NIL) (($ $ (-617 $)) NIL) (($ $ (-649 (-617 $))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2341 (((-1181 $) (-617 $)) NIL (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) NIL)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) NIL)) (-1354 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) NIL)) (-1817 (($ $) NIL)) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2431 (((-776) $) NIL)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-4412 (((-1133 (-569) (-617 $)) $) NIL)) (-4061 (($ $) NIL (|has| $ (-1057)))) (-1410 (((-383) $) NIL) (((-226) $) NIL) (((-170 (-383)) $) NIL)) (-3796 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1133 (-569) (-617 $))) NIL)) (-2721 (((-776)) NIL T CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-4052 (((-112) (-114)) NIL)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 6 T CONST)) (-1815 (($) 10 T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) 13)) (-3035 (($ $ $) NIL)) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) NIL) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-48) (-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $))))))) (T -48))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-3598 (*1 *1 *1) (-5 *1 (-48))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48)))))
+(-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $))))))
+((-2417 (((-112) $ $) NIL)) (-3826 (((-649 (-511)) $) 17)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 7)) (-3586 (((-1190) $) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-49) (-13 (-1108) (-10 -8 (-15 -3826 ((-649 (-511)) $)) (-15 -3586 ((-1190) $))))) (T -49))
+((-3826 (*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-49)))))
+(-13 (-1108) (-10 -8 (-15 -3826 ((-649 (-511)) $)) (-15 -3586 ((-1190) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 87)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4132 (((-112) $) 30)) (-4381 (((-3 |#1| "failed") $) 33)) (-3150 ((|#1| $) 34)) (-1883 (($ $) 40)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1857 ((|#1| $) 31)) (-2362 (($ $) 76)) (-3435 (((-1167) $) NIL)) (-3704 (((-112) $) 43)) (-3547 (((-1128) $) NIL)) (-2332 (($ (-776)) 74)) (-4389 (($ (-649 (-569))) 75)) (-4339 (((-776) $) 44)) (-3796 (((-867) $) 93) (($ (-569)) 71) (($ |#1|) 69)) (-4383 ((|#1| $ $) 28)) (-2721 (((-776)) 73 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 45 T CONST)) (-1815 (($) 17 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
+(((-50 |#1| |#2|) (-13 (-625 |#1|) (-1046 |#1|) (-10 -8 (-15 -1857 (|#1| $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 (|#1| $ $)) (-15 -2332 ($ (-776))) (-15 -4389 ($ (-649 (-569)))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-776) $)) (-15 -1346 ($ (-1 |#1| |#1|) $)))) (-1057) (-649 (-1185))) (T -50))
+((-1857 (*1 *2 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185))))) (-2362 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))))) (-4383 (*1 *2 *1 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185))))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-4389 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-50 *3 *4)) (-14 *4 (-649 (-1185))))))
+(-13 (-625 |#1|) (-1046 |#1|) (-10 -8 (-15 -1857 (|#1| $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 (|#1| $ $)) (-15 -2332 ($ (-776))) (-15 -4389 ($ (-649 (-569)))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-776) $)) (-15 -1346 ($ (-1 |#1| |#1|) $))))
+((-4132 (((-112) (-52)) 18)) (-4381 (((-3 |#1| "failed") (-52)) 20)) (-3150 ((|#1| (-52)) 21)) (-3796 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -3796 ((-52) |#1|)) (-15 -4381 ((-3 |#1| "failed") (-52))) (-15 -4132 ((-112) (-52))) (-15 -3150 (|#1| (-52)))) (-1225)) (T -51))
+((-3150 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1225)))) (-4381 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1225)))))
+(-10 -7 (-15 -3796 ((-52) |#1|)) (-15 -4381 ((-3 |#1| "failed") (-52))) (-15 -4132 ((-112) (-52))) (-15 -3150 (|#1| (-52))))
+((-2417 (((-112) $ $) NIL)) (-4304 (((-779) $) 8)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3261 (((-1112) $) 10)) (-3796 (((-867) $) 15)) (-1520 (((-112) $ $) NIL)) (-3656 (($ (-1112) (-779)) 16)) (-2920 (((-112) $ $) 12)))
+(((-52) (-13 (-1108) (-10 -8 (-15 -3656 ($ (-1112) (-779))) (-15 -3261 ((-1112) $)) (-15 -4304 ((-779) $))))) (T -52))
+((-3656 (*1 *1 *2 *3) (-12 (-5 *2 (-1112)) (-5 *3 (-779)) (-5 *1 (-52)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-52)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-52)))))
+(-13 (-1108) (-10 -8 (-15 -3656 ($ (-1112) (-779))) (-15 -3261 ((-1112) $)) (-15 -4304 ((-779) $))))
+((-3451 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3451 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1057) (-653 |#1|) (-857 |#1|)) (T -53))
+((-3451 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1057)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5)))))
+(-10 -7 (-15 -3451 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1972 ((|#3| |#3| (-649 (-1185))) 46)) (-3488 ((|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3| (-927)) 32) ((|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3|)) (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3| (-927))) (-15 -1972 (|#3| |#3| (-649 (-1185))))) (-1108) (-13 (-1057) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -54))
+((-1972 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-3488 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 (-1084 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1108)) (-4 *6 (-13 (-1057) (-892 *5) (-619 (-898 *5)))) (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3488 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-1084 *4 *5 *2))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3|)) (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3| (-927))) (-15 -1972 (|#3| |#3| (-649 (-1185)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 14)) (-4381 (((-3 (-776) "failed") $) 34)) (-3150 (((-776) $) NIL)) (-2349 (((-112) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) 18)) (-3796 (((-867) $) 23) (($ (-776)) 29)) (-1520 (((-112) $ $) NIL)) (-1742 (($) 11 T CONST)) (-2920 (((-112) $ $) 20)))
+(((-55) (-13 (-1108) (-1046 (-776)) (-10 -8 (-15 -1742 ($) -3709) (-15 -4143 ((-112) $)) (-15 -2349 ((-112) $))))) (T -55))
+((-1742 (*1 *1) (-5 *1 (-55))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1108) (-1046 (-776)) (-10 -8 (-15 -1742 ($) -3709) (-15 -4143 ((-112) $)) (-15 -2349 ((-112) $))))
+((-3914 (((-112) $ (-776)) 27)) (-2400 (($ $ (-569) |#3|) 66)) (-3259 (($ $ (-569) |#4|) 70)) (-4044 ((|#3| $ (-569)) 79)) (-2882 (((-649 |#2|) $) 47)) (-2314 (((-112) $ (-776)) 31)) (-2004 (((-112) |#2| $) 74)) (-3834 (($ (-1 |#2| |#2|) $) 55)) (-1346 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4254 (((-112) $ (-776)) 29)) (-1682 (($ $ |#2|) 52)) (-3208 (((-112) (-1 (-112) |#2|) $) 21)) (-1869 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) 35)) (-3560 (((-776) (-1 (-112) |#2|) $) 41) (((-776) |#2| $) 76)) (-3962 (($ $) 51)) (-3041 ((|#4| $ (-569)) 82)) (-3796 (((-867) $) 88)) (-1980 (((-112) (-1 (-112) |#2|) $) 20)) (-2920 (((-112) $ $) 73)) (-2428 (((-776) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3259 (|#1| |#1| (-569) |#4|)) (-15 -2400 (|#1| |#1| (-569) |#3|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3041 (|#4| |#1| (-569))) (-15 -4044 (|#3| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3962 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1225) (-377 |#2|) (-377 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3259 (|#1| |#1| (-569) |#4|)) (-15 -2400 (|#1| |#1| (-569) |#3|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3041 (|#4| |#1| (-569))) (-15 -4044 (|#3| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3962 (|#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) (-569) |#1|) 45)) (-2400 (($ $ (-569) |#2|) 43)) (-3259 (($ $ (-569) |#3|) 42)) (-4427 (($) 7 T CONST)) (-4044 ((|#2| $ (-569)) 47)) (-3846 ((|#1| $ (-569) (-569) |#1|) 44)) (-3776 ((|#1| $ (-569) (-569)) 49)) (-2882 (((-649 |#1|) $) 31)) (-3225 (((-776) $) 52)) (-4300 (($ (-776) (-776) |#1|) 58)) (-3236 (((-776) $) 51)) (-2314 (((-112) $ (-776)) 9)) (-4241 (((-569) $) 56)) (-1537 (((-569) $) 54)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 55)) (-2742 (((-569) $) 53)) (-3834 (($ (-1 |#1| |#1|) $) 35)) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) 57)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3041 ((|#3| $ (-569)) 46)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-57 |#1| |#2| |#3|) (-140) (-1225) (-377 |t#1|) (-377 |t#1|)) (T -57))
+((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-4300 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1225)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-1869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1225)))) (-3776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-4044 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1225)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-3041 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1225)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 *3)))) (-3943 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-3846 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-2400 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-377 *4)) (-4 *5 (-377 *4)))) (-3259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1225)) (-4 *5 (-377 *4)) (-4 *3 (-377 *4)))) (-3834 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1346 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(-13 (-494 |t#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -4300 ($ (-776) (-776) |t#1|)) (-15 -1682 ($ $ |t#1|)) (-15 -4241 ((-569) $)) (-15 -1378 ((-569) $)) (-15 -1537 ((-569) $)) (-15 -2742 ((-569) $)) (-15 -3225 ((-776) $)) (-15 -3236 ((-776) $)) (-15 -1869 (|t#1| $ (-569) (-569))) (-15 -3776 (|t#1| $ (-569) (-569))) (-15 -1869 (|t#1| $ (-569) (-569) |t#1|)) (-15 -4044 (|t#2| $ (-569))) (-15 -3041 (|t#3| $ (-569))) (-15 -2882 ((-649 |t#1|) $)) (-15 -3943 (|t#1| $ (-569) (-569) |t#1|)) (-15 -3846 (|t#1| $ (-569) (-569) |t#1|)) (-15 -2400 ($ $ (-569) |t#2|)) (-15 -3259 ($ $ (-569) |t#3|)) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -3834 ($ (-1 |t#1| |t#1|) $)) (-15 -1346 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1346 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-1610 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1346 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -1610 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1346 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1225) (-1225)) (T -58))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-58 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -1610 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1346 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2274 (($ (-649 |#1|)) 11) (($ (-776) |#1|) 14)) (-4300 (($ (-776) |#1|) 13)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 10)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2274 ($ (-649 |#1|))) (-15 -2274 ($ (-776) |#1|)))) (-1225)) (T -59))
+((-2274 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-59 *3)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1225)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2274 ($ (-649 |#1|))) (-15 -2274 ($ (-776) |#1|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2400 (($ $ (-569) (-59 |#1|)) NIL)) (-3259 (($ $ (-569) (-59 |#1|)) NIL)) (-4427 (($) NIL T CONST)) (-4044 (((-59 |#1|) $ (-569)) NIL)) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-59 |#1|) $ (-569)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4448))) (-1225)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4448)))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 74) (((-3 $ "failed") (-1275 (-319 (-569)))) 63) (((-3 $ "failed") (-1275 (-958 (-383)))) 94) (((-3 $ "failed") (-1275 (-958 (-569)))) 84) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 52) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 39)) (-3150 (($ (-1275 (-319 (-383)))) 70) (($ (-1275 (-319 (-569)))) 59) (($ (-1275 (-958 (-383)))) 90) (($ (-1275 (-958 (-569)))) 80) (($ (-1275 (-412 (-958 (-383))))) 48) (($ (-1275 (-412 (-958 (-569))))) 32)) (-3362 (((-1280) $) 124)) (-3796 (((-867) $) 118) (($ (-649 (-333))) 103) (($ (-333)) 97) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 101) (($ (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704)))) 31)))
+(((-61 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704))))))) (-1185)) (T -61))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704)))) (-5 *1 (-61 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704)))))))
+((-3362 (((-1280) $) 54) (((-1280)) 55)) (-3796 (((-867) $) 51)))
+(((-62 |#1|) (-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) (-1185)) (T -62))
+((-3362 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-62 *3)) (-14 *3 (-1185)))))
+(-13 (-400) (-10 -7 (-15 -3362 ((-1280)))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 153) (((-3 $ "failed") (-1275 (-319 (-569)))) 143) (((-3 $ "failed") (-1275 (-958 (-383)))) 173) (((-3 $ "failed") (-1275 (-958 (-569)))) 163) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 132) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 120)) (-3150 (($ (-1275 (-319 (-383)))) 149) (($ (-1275 (-319 (-569)))) 139) (($ (-1275 (-958 (-383)))) 169) (($ (-1275 (-958 (-569)))) 159) (($ (-1275 (-412 (-958 (-383))))) 128) (($ (-1275 (-412 (-958 (-569))))) 113)) (-3362 (((-1280) $) 106)) (-3796 (((-867) $) 100) (($ (-649 (-333))) 30) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 33) (($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) 98)))
+(((-63 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704))))))) (-1185)) (T -63))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) (-5 *1 (-63 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))))))
+((-4381 (((-3 $ "failed") (-319 (-383))) 41) (((-3 $ "failed") (-319 (-569))) 46) (((-3 $ "failed") (-958 (-383))) 50) (((-3 $ "failed") (-958 (-569))) 54) (((-3 $ "failed") (-412 (-958 (-383)))) 36) (((-3 $ "failed") (-412 (-958 (-569)))) 29)) (-3150 (($ (-319 (-383))) 39) (($ (-319 (-569))) 44) (($ (-958 (-383))) 48) (($ (-958 (-569))) 52) (($ (-412 (-958 (-383)))) 34) (($ (-412 (-958 (-569)))) 26)) (-3362 (((-1280) $) 76)) (-3796 (((-867) $) 69) (($ (-649 (-333))) 61) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 64) (($ (-343 (-3809 (QUOTE X)) (-3809) (-704))) 25)))
+(((-64 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809) (-704)))))) (-1185)) (T -64))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809 (QUOTE X)) (-3809) (-704))) (-5 *1 (-64 *3)) (-14 *3 (-1185)))))
+(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809) (-704))))))
+((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 114) (((-3 $ "failed") (-694 (-319 (-569)))) 102) (((-3 $ "failed") (-694 (-958 (-383)))) 136) (((-3 $ "failed") (-694 (-958 (-569)))) 125) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 90) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 76)) (-3150 (($ (-694 (-319 (-383)))) 110) (($ (-694 (-319 (-569)))) 98) (($ (-694 (-958 (-383)))) 132) (($ (-694 (-958 (-569)))) 121) (($ (-694 (-412 (-958 (-383))))) 86) (($ (-694 (-412 (-958 (-569))))) 69)) (-3362 (((-1280) $) 144)) (-3796 (((-867) $) 138) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 32) (($ (-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704)))) 59)))
+(((-65 |#1|) (-13 (-388) (-621 (-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704))))) (-1185)) (T -65))
+NIL
+(-13 (-388) (-621 (-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704)))))
+((-4381 (((-3 $ "failed") (-319 (-383))) 60) (((-3 $ "failed") (-319 (-569))) 65) (((-3 $ "failed") (-958 (-383))) 69) (((-3 $ "failed") (-958 (-569))) 73) (((-3 $ "failed") (-412 (-958 (-383)))) 55) (((-3 $ "failed") (-412 (-958 (-569)))) 48)) (-3150 (($ (-319 (-383))) 58) (($ (-319 (-569))) 63) (($ (-958 (-383))) 67) (($ (-958 (-569))) 71) (($ (-412 (-958 (-383)))) 53) (($ (-412 (-958 (-569)))) 45)) (-3362 (((-1280) $) 82)) (-3796 (((-867) $) 76) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 32) (($ (-343 (-3809) (-3809 (QUOTE XC)) (-704))) 40)))
+(((-66 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE XC)) (-704)))))) (-1185)) (T -66))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809) (-3809 (QUOTE XC)) (-704))) (-5 *1 (-66 *3)) (-14 *3 (-1185)))))
+(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE XC)) (-704))))))
+((-3362 (((-1280) $) 68)) (-3796 (((-867) $) 62) (($ (-694 (-704))) 54) (($ (-649 (-333))) 53) (($ (-333)) 60) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 58)))
+(((-67 |#1|) (-387) (-1185)) (T -67))
NIL
(-387)
-((-3358 (((-1278) $) 69)) (-3793 (((-867) $) 63) (($ (-694 (-704))) 55) (($ (-649 (-333))) 54) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 60)))
-(((-68 |#1|) (-387) (-1183)) (T -68))
+((-3362 (((-1280) $) 69)) (-3796 (((-867) $) 63) (($ (-694 (-704))) 55) (($ (-649 (-333))) 54) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 60)))
+(((-68 |#1|) (-387) (-1185)) (T -68))
NIL
(-387)
-((-3358 (((-1278) $) NIL) (((-1278)) 33)) (-3793 (((-867) $) NIL)))
-(((-69 |#1|) (-13 (-400) (-10 -7 (-15 -3358 ((-1278))))) (-1183)) (T -69))
-((-3358 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-69 *3)) (-14 *3 (-1183)))))
-(-13 (-400) (-10 -7 (-15 -3358 ((-1278)))))
-((-3358 (((-1278) $) 75)) (-3793 (((-867) $) 69) (($ (-694 (-704))) 61) (($ (-649 (-333))) 63) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 60)))
-(((-70 |#1|) (-387) (-1183)) (T -70))
+((-3362 (((-1280) $) NIL) (((-1280)) 33)) (-3796 (((-867) $) NIL)))
+(((-69 |#1|) (-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) (-1185)) (T -69))
+((-3362 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-69 *3)) (-14 *3 (-1185)))))
+(-13 (-400) (-10 -7 (-15 -3362 ((-1280)))))
+((-3362 (((-1280) $) 75)) (-3796 (((-867) $) 69) (($ (-694 (-704))) 61) (($ (-649 (-333))) 63) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 60)))
+(((-70 |#1|) (-387) (-1185)) (T -70))
NIL
(-387)
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 111) (((-3 $ "failed") (-1273 (-319 (-569)))) 100) (((-3 $ "failed") (-1273 (-958 (-383)))) 131) (((-3 $ "failed") (-1273 (-958 (-569)))) 121) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 76)) (-3148 (($ (-1273 (-319 (-383)))) 107) (($ (-1273 (-319 (-569)))) 96) (($ (-1273 (-958 (-383)))) 127) (($ (-1273 (-958 (-569)))) 117) (($ (-1273 (-412 (-958 (-383))))) 85) (($ (-1273 (-412 (-958 (-569))))) 69)) (-3358 (((-1278) $) 144)) (-3793 (((-867) $) 138) (($ (-649 (-333))) 133) (($ (-333)) 136) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 61) (($ (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704)))) 62)))
-(((-71 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704))))))) (-1183)) (T -71))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704)))) (-5 *1 (-71 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704)))))))
-((-3358 (((-1278) $) 33) (((-1278)) 32)) (-3793 (((-867) $) 36)))
-(((-72 |#1|) (-13 (-400) (-10 -7 (-15 -3358 ((-1278))))) (-1183)) (T -72))
-((-3358 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-72 *3)) (-14 *3 (-1183)))))
-(-13 (-400) (-10 -7 (-15 -3358 ((-1278)))))
-((-3358 (((-1278) $) 65)) (-3793 (((-867) $) 59) (($ (-694 (-704))) 51) (($ (-649 (-333))) 53) (($ (-333)) 56) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 50)))
-(((-73 |#1|) (-387) (-1183)) (T -73))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 111) (((-3 $ "failed") (-1275 (-319 (-569)))) 100) (((-3 $ "failed") (-1275 (-958 (-383)))) 131) (((-3 $ "failed") (-1275 (-958 (-569)))) 121) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 76)) (-3150 (($ (-1275 (-319 (-383)))) 107) (($ (-1275 (-319 (-569)))) 96) (($ (-1275 (-958 (-383)))) 127) (($ (-1275 (-958 (-569)))) 117) (($ (-1275 (-412 (-958 (-383))))) 85) (($ (-1275 (-412 (-958 (-569))))) 69)) (-3362 (((-1280) $) 144)) (-3796 (((-867) $) 138) (($ (-649 (-333))) 133) (($ (-333)) 136) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 61) (($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) 62)))
+(((-71 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))))))) (-1185)) (T -71))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) (-5 *1 (-71 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))))))
+((-3362 (((-1280) $) 33) (((-1280)) 32)) (-3796 (((-867) $) 36)))
+(((-72 |#1|) (-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) (-1185)) (T -72))
+((-3362 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-72 *3)) (-14 *3 (-1185)))))
+(-13 (-400) (-10 -7 (-15 -3362 ((-1280)))))
+((-3362 (((-1280) $) 65)) (-3796 (((-867) $) 59) (($ (-694 (-704))) 51) (($ (-649 (-333))) 53) (($ (-333)) 56) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 50)))
+(((-73 |#1|) (-387) (-1185)) (T -73))
NIL
(-387)
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 130) (((-3 $ "failed") (-1273 (-319 (-569)))) 120) (((-3 $ "failed") (-1273 (-958 (-383)))) 150) (((-3 $ "failed") (-1273 (-958 (-569)))) 140) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 110) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 98)) (-3148 (($ (-1273 (-319 (-383)))) 126) (($ (-1273 (-319 (-569)))) 116) (($ (-1273 (-958 (-383)))) 146) (($ (-1273 (-958 (-569)))) 136) (($ (-1273 (-412 (-958 (-383))))) 106) (($ (-1273 (-412 (-958 (-569))))) 91)) (-3358 (((-1278) $) 83)) (-3793 (((-867) $) 28) (($ (-649 (-333))) 73) (($ (-333)) 69) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 76) (($ (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))) 70)))
-(((-74 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704))))))) (-1183)) (T -74))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))) (-5 *1 (-74 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 135) (((-3 $ "failed") (-1273 (-319 (-569)))) 124) (((-3 $ "failed") (-1273 (-958 (-383)))) 155) (((-3 $ "failed") (-1273 (-958 (-569)))) 145) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 113) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 100)) (-3148 (($ (-1273 (-319 (-383)))) 131) (($ (-1273 (-319 (-569)))) 120) (($ (-1273 (-958 (-383)))) 151) (($ (-1273 (-958 (-569)))) 141) (($ (-1273 (-412 (-958 (-383))))) 109) (($ (-1273 (-412 (-958 (-569))))) 93)) (-3358 (((-1278) $) 85)) (-3793 (((-867) $) 77) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) NIL) (($ (-1273 (-343 (-3806 (QUOTE X) (QUOTE EPS)) (-3806 (QUOTE -1539)) (-704)))) 72)))
-(((-75 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X) (QUOTE EPS)) (-3806 (QUOTE -1539)) (-704))))))) (-1183) (-1183) (-1183)) (T -75))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806 (QUOTE X) (QUOTE EPS)) (-3806 (QUOTE -1539)) (-704)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X) (QUOTE EPS)) (-3806 (QUOTE -1539)) (-704)))))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 141) (((-3 $ "failed") (-1273 (-319 (-569)))) 130) (((-3 $ "failed") (-1273 (-958 (-383)))) 161) (((-3 $ "failed") (-1273 (-958 (-569)))) 151) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 119) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 106)) (-3148 (($ (-1273 (-319 (-383)))) 137) (($ (-1273 (-319 (-569)))) 126) (($ (-1273 (-958 (-383)))) 157) (($ (-1273 (-958 (-569)))) 147) (($ (-1273 (-412 (-958 (-383))))) 115) (($ (-1273 (-412 (-958 (-569))))) 99)) (-3358 (((-1278) $) 91)) (-3793 (((-867) $) 83) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) NIL) (($ (-1273 (-343 (-3806 (QUOTE EPS)) (-3806 (QUOTE YA) (QUOTE YB)) (-704)))) 78)))
-(((-76 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE EPS)) (-3806 (QUOTE YA) (QUOTE YB)) (-704))))))) (-1183) (-1183) (-1183)) (T -76))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806 (QUOTE EPS)) (-3806 (QUOTE YA) (QUOTE YB)) (-704)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183)) (-14 *5 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE EPS)) (-3806 (QUOTE YA) (QUOTE YB)) (-704)))))))
-((-4378 (((-3 $ "failed") (-319 (-383))) 83) (((-3 $ "failed") (-319 (-569))) 88) (((-3 $ "failed") (-958 (-383))) 92) (((-3 $ "failed") (-958 (-569))) 96) (((-3 $ "failed") (-412 (-958 (-383)))) 78) (((-3 $ "failed") (-412 (-958 (-569)))) 71)) (-3148 (($ (-319 (-383))) 81) (($ (-319 (-569))) 86) (($ (-958 (-383))) 90) (($ (-958 (-569))) 94) (($ (-412 (-958 (-383)))) 76) (($ (-412 (-958 (-569)))) 68)) (-3358 (((-1278) $) 63)) (-3793 (((-867) $) 51) (($ (-649 (-333))) 47) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 55) (($ (-343 (-3806) (-3806 (QUOTE X)) (-704))) 48)))
-(((-77 |#1|) (-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806) (-3806 (QUOTE X)) (-704)))))) (-1183)) (T -77))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-343 (-3806) (-3806 (QUOTE X)) (-704))) (-5 *1 (-77 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806) (-3806 (QUOTE X)) (-704))))))
-((-4378 (((-3 $ "failed") (-319 (-383))) 47) (((-3 $ "failed") (-319 (-569))) 52) (((-3 $ "failed") (-958 (-383))) 56) (((-3 $ "failed") (-958 (-569))) 60) (((-3 $ "failed") (-412 (-958 (-383)))) 42) (((-3 $ "failed") (-412 (-958 (-569)))) 35)) (-3148 (($ (-319 (-383))) 45) (($ (-319 (-569))) 50) (($ (-958 (-383))) 54) (($ (-958 (-569))) 58) (($ (-412 (-958 (-383)))) 40) (($ (-412 (-958 (-569)))) 32)) (-3358 (((-1278) $) 81)) (-3793 (((-867) $) 75) (($ (-649 (-333))) 67) (($ (-333)) 72) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 70) (($ (-343 (-3806) (-3806 (QUOTE X)) (-704))) 31)))
-(((-78 |#1|) (-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806) (-3806 (QUOTE X)) (-704)))))) (-1183)) (T -78))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-343 (-3806) (-3806 (QUOTE X)) (-704))) (-5 *1 (-78 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806) (-3806 (QUOTE X)) (-704))))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 90) (((-3 $ "failed") (-1273 (-319 (-569)))) 79) (((-3 $ "failed") (-1273 (-958 (-383)))) 110) (((-3 $ "failed") (-1273 (-958 (-569)))) 100) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 68) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 55)) (-3148 (($ (-1273 (-319 (-383)))) 86) (($ (-1273 (-319 (-569)))) 75) (($ (-1273 (-958 (-383)))) 106) (($ (-1273 (-958 (-569)))) 96) (($ (-1273 (-412 (-958 (-383))))) 64) (($ (-1273 (-412 (-958 (-569))))) 48)) (-3358 (((-1278) $) 126)) (-3793 (((-867) $) 120) (($ (-649 (-333))) 113) (($ (-333)) 38) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 116) (($ (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704)))) 39)))
-(((-79 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704))))))) (-1183)) (T -79))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704)))) (-5 *1 (-79 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE XC)) (-704)))))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 154) (((-3 $ "failed") (-1273 (-319 (-569)))) 144) (((-3 $ "failed") (-1273 (-958 (-383)))) 174) (((-3 $ "failed") (-1273 (-958 (-569)))) 164) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 134) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 122)) (-3148 (($ (-1273 (-319 (-383)))) 150) (($ (-1273 (-319 (-569)))) 140) (($ (-1273 (-958 (-383)))) 170) (($ (-1273 (-958 (-569)))) 160) (($ (-1273 (-412 (-958 (-383))))) 130) (($ (-1273 (-412 (-958 (-569))))) 115)) (-3358 (((-1278) $) 108)) (-3793 (((-867) $) 102) (($ (-649 (-333))) 93) (($ (-333)) 100) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 98) (($ (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))) 94)))
-(((-80 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704))))))) (-1183)) (T -80))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))) (-5 *1 (-80 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 79) (((-3 $ "failed") (-1273 (-319 (-569)))) 68) (((-3 $ "failed") (-1273 (-958 (-383)))) 99) (((-3 $ "failed") (-1273 (-958 (-569)))) 89) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 57) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 44)) (-3148 (($ (-1273 (-319 (-383)))) 75) (($ (-1273 (-319 (-569)))) 64) (($ (-1273 (-958 (-383)))) 95) (($ (-1273 (-958 (-569)))) 85) (($ (-1273 (-412 (-958 (-383))))) 53) (($ (-1273 (-412 (-958 (-569))))) 37)) (-3358 (((-1278) $) 125)) (-3793 (((-867) $) 119) (($ (-649 (-333))) 110) (($ (-333)) 116) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 114) (($ (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))) 36)))
-(((-81 |#1|) (-13 (-446) (-621 (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704))))) (-1183)) (T -81))
-NIL
-(-13 (-446) (-621 (-1273 (-343 (-3806) (-3806 (QUOTE X)) (-704)))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 98) (((-3 $ "failed") (-1273 (-319 (-569)))) 87) (((-3 $ "failed") (-1273 (-958 (-383)))) 118) (((-3 $ "failed") (-1273 (-958 (-569)))) 108) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 76) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 63)) (-3148 (($ (-1273 (-319 (-383)))) 94) (($ (-1273 (-319 (-569)))) 83) (($ (-1273 (-958 (-383)))) 114) (($ (-1273 (-958 (-569)))) 104) (($ (-1273 (-412 (-958 (-383))))) 72) (($ (-1273 (-412 (-958 (-569))))) 56)) (-3358 (((-1278) $) 48)) (-3793 (((-867) $) 42) (($ (-649 (-333))) 32) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 38) (($ (-1273 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704)))) 33)))
-(((-82 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704))))))) (-1183)) (T -82))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704)))) (-5 *1 (-82 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704)))))))
-((-4378 (((-3 $ "failed") (-694 (-319 (-383)))) 118) (((-3 $ "failed") (-694 (-319 (-569)))) 107) (((-3 $ "failed") (-694 (-958 (-383)))) 140) (((-3 $ "failed") (-694 (-958 (-569)))) 129) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 96) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 83)) (-3148 (($ (-694 (-319 (-383)))) 114) (($ (-694 (-319 (-569)))) 103) (($ (-694 (-958 (-383)))) 136) (($ (-694 (-958 (-569)))) 125) (($ (-694 (-412 (-958 (-383))))) 92) (($ (-694 (-412 (-958 (-569))))) 76)) (-3358 (((-1278) $) 66)) (-3793 (((-867) $) 53) (($ (-649 (-333))) 60) (($ (-333)) 49) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 58) (($ (-694 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704)))) 50)))
-(((-83 |#1|) (-13 (-388) (-10 -8 (-15 -3793 ($ (-694 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704))))))) (-1183)) (T -83))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704)))) (-5 *1 (-83 *3)) (-14 *3 (-1183)))))
-(-13 (-388) (-10 -8 (-15 -3793 ($ (-694 (-343 (-3806 (QUOTE X) (QUOTE -1539)) (-3806) (-704)))))))
-((-4378 (((-3 $ "failed") (-694 (-319 (-383)))) 113) (((-3 $ "failed") (-694 (-319 (-569)))) 101) (((-3 $ "failed") (-694 (-958 (-383)))) 135) (((-3 $ "failed") (-694 (-958 (-569)))) 124) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 75)) (-3148 (($ (-694 (-319 (-383)))) 109) (($ (-694 (-319 (-569)))) 97) (($ (-694 (-958 (-383)))) 131) (($ (-694 (-958 (-569)))) 120) (($ (-694 (-412 (-958 (-383))))) 85) (($ (-694 (-412 (-958 (-569))))) 68)) (-3358 (((-1278) $) 60)) (-3793 (((-867) $) 54) (($ (-649 (-333))) 48) (($ (-333)) 51) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 45) (($ (-694 (-343 (-3806 (QUOTE X)) (-3806) (-704)))) 46)))
-(((-84 |#1|) (-13 (-388) (-10 -8 (-15 -3793 ($ (-694 (-343 (-3806 (QUOTE X)) (-3806) (-704))))))) (-1183)) (T -84))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3806 (QUOTE X)) (-3806) (-704)))) (-5 *1 (-84 *3)) (-14 *3 (-1183)))))
-(-13 (-388) (-10 -8 (-15 -3793 ($ (-694 (-343 (-3806 (QUOTE X)) (-3806) (-704)))))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 105) (((-3 $ "failed") (-1273 (-319 (-569)))) 94) (((-3 $ "failed") (-1273 (-958 (-383)))) 125) (((-3 $ "failed") (-1273 (-958 (-569)))) 115) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 83) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 70)) (-3148 (($ (-1273 (-319 (-383)))) 101) (($ (-1273 (-319 (-569)))) 90) (($ (-1273 (-958 (-383)))) 121) (($ (-1273 (-958 (-569)))) 111) (($ (-1273 (-412 (-958 (-383))))) 79) (($ (-1273 (-412 (-958 (-569))))) 63)) (-3358 (((-1278) $) 47)) (-3793 (((-867) $) 41) (($ (-649 (-333))) 50) (($ (-333)) 37) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 53) (($ (-1273 (-343 (-3806 (QUOTE X)) (-3806) (-704)))) 38)))
-(((-85 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X)) (-3806) (-704))))))) (-1183)) (T -85))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806 (QUOTE X)) (-3806) (-704)))) (-5 *1 (-85 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X)) (-3806) (-704)))))))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 80) (((-3 $ "failed") (-1273 (-319 (-569)))) 69) (((-3 $ "failed") (-1273 (-958 (-383)))) 100) (((-3 $ "failed") (-1273 (-958 (-569)))) 90) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 58) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 45)) (-3148 (($ (-1273 (-319 (-383)))) 76) (($ (-1273 (-319 (-569)))) 65) (($ (-1273 (-958 (-383)))) 96) (($ (-1273 (-958 (-569)))) 86) (($ (-1273 (-412 (-958 (-383))))) 54) (($ (-1273 (-412 (-958 (-569))))) 38)) (-3358 (((-1278) $) 126)) (-3793 (((-867) $) 120) (($ (-649 (-333))) 111) (($ (-333)) 117) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 115) (($ (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704)))) 37)))
-(((-86 |#1|) (-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704))))))) (-1183)) (T -86))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704)))) (-5 *1 (-86 *3)) (-14 *3 (-1183)))))
-(-13 (-446) (-10 -8 (-15 -3793 ($ (-1273 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704)))))))
-((-4378 (((-3 $ "failed") (-694 (-319 (-383)))) 117) (((-3 $ "failed") (-694 (-319 (-569)))) 105) (((-3 $ "failed") (-694 (-958 (-383)))) 139) (((-3 $ "failed") (-694 (-958 (-569)))) 128) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 93) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 79)) (-3148 (($ (-694 (-319 (-383)))) 113) (($ (-694 (-319 (-569)))) 101) (($ (-694 (-958 (-383)))) 135) (($ (-694 (-958 (-569)))) 124) (($ (-694 (-412 (-958 (-383))))) 89) (($ (-694 (-412 (-958 (-569))))) 72)) (-3358 (((-1278) $) 63)) (-3793 (((-867) $) 57) (($ (-649 (-333))) 47) (($ (-333)) 54) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 52) (($ (-694 (-343 (-3806 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3806) (-704)))) 48)))
-(((-87 |#1|) (-13 (-388) (-10 -8 (-15 -3793 ($ (-694 (-343 (-3806 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3806) (-704))))))) (-1183)) (T -87))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3806 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3806) (-704)))) (-5 *1 (-87 *3)) (-14 *3 (-1183)))))
-(-13 (-388) (-10 -8 (-15 -3793 ($ (-694 (-343 (-3806 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3806) (-704)))))))
-((-3358 (((-1278) $) 45)) (-3793 (((-867) $) 39) (($ (-1273 (-704))) 100) (($ (-649 (-333))) 31) (($ (-333)) 36) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 34)))
-(((-88 |#1|) (-445) (-1183)) (T -88))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 130) (((-3 $ "failed") (-1275 (-319 (-569)))) 120) (((-3 $ "failed") (-1275 (-958 (-383)))) 150) (((-3 $ "failed") (-1275 (-958 (-569)))) 140) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 110) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 98)) (-3150 (($ (-1275 (-319 (-383)))) 126) (($ (-1275 (-319 (-569)))) 116) (($ (-1275 (-958 (-383)))) 146) (($ (-1275 (-958 (-569)))) 136) (($ (-1275 (-412 (-958 (-383))))) 106) (($ (-1275 (-412 (-958 (-569))))) 91)) (-3362 (((-1280) $) 83)) (-3796 (((-867) $) 28) (($ (-649 (-333))) 73) (($ (-333)) 69) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 76) (($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) 70)))
+(((-74 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))))) (-1185)) (T -74))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) (-5 *1 (-74 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 135) (((-3 $ "failed") (-1275 (-319 (-569)))) 124) (((-3 $ "failed") (-1275 (-958 (-383)))) 155) (((-3 $ "failed") (-1275 (-958 (-569)))) 145) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 113) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 100)) (-3150 (($ (-1275 (-319 (-383)))) 131) (($ (-1275 (-319 (-569)))) 120) (($ (-1275 (-958 (-383)))) 151) (($ (-1275 (-958 (-569)))) 141) (($ (-1275 (-412 (-958 (-383))))) 109) (($ (-1275 (-412 (-958 (-569))))) 93)) (-3362 (((-1280) $) 85)) (-3796 (((-867) $) 77) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) NIL) (($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704)))) 72)))
+(((-75 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704))))))) (-1185) (-1185) (-1185)) (T -75))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185)) (-14 *5 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704)))))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 141) (((-3 $ "failed") (-1275 (-319 (-569)))) 130) (((-3 $ "failed") (-1275 (-958 (-383)))) 161) (((-3 $ "failed") (-1275 (-958 (-569)))) 151) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 119) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 106)) (-3150 (($ (-1275 (-319 (-383)))) 137) (($ (-1275 (-319 (-569)))) 126) (($ (-1275 (-958 (-383)))) 157) (($ (-1275 (-958 (-569)))) 147) (($ (-1275 (-412 (-958 (-383))))) 115) (($ (-1275 (-412 (-958 (-569))))) 99)) (-3362 (((-1280) $) 91)) (-3796 (((-867) $) 83) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) NIL) (($ (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704)))) 78)))
+(((-76 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704))))))) (-1185) (-1185) (-1185)) (T -76))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185)) (-14 *5 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704)))))))
+((-4381 (((-3 $ "failed") (-319 (-383))) 83) (((-3 $ "failed") (-319 (-569))) 88) (((-3 $ "failed") (-958 (-383))) 92) (((-3 $ "failed") (-958 (-569))) 96) (((-3 $ "failed") (-412 (-958 (-383)))) 78) (((-3 $ "failed") (-412 (-958 (-569)))) 71)) (-3150 (($ (-319 (-383))) 81) (($ (-319 (-569))) 86) (($ (-958 (-383))) 90) (($ (-958 (-569))) 94) (($ (-412 (-958 (-383)))) 76) (($ (-412 (-958 (-569)))) 68)) (-3362 (((-1280) $) 63)) (-3796 (((-867) $) 51) (($ (-649 (-333))) 47) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 55) (($ (-343 (-3809) (-3809 (QUOTE X)) (-704))) 48)))
+(((-77 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704)))))) (-1185)) (T -77))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809) (-3809 (QUOTE X)) (-704))) (-5 *1 (-77 *3)) (-14 *3 (-1185)))))
+(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704))))))
+((-4381 (((-3 $ "failed") (-319 (-383))) 47) (((-3 $ "failed") (-319 (-569))) 52) (((-3 $ "failed") (-958 (-383))) 56) (((-3 $ "failed") (-958 (-569))) 60) (((-3 $ "failed") (-412 (-958 (-383)))) 42) (((-3 $ "failed") (-412 (-958 (-569)))) 35)) (-3150 (($ (-319 (-383))) 45) (($ (-319 (-569))) 50) (($ (-958 (-383))) 54) (($ (-958 (-569))) 58) (($ (-412 (-958 (-383)))) 40) (($ (-412 (-958 (-569)))) 32)) (-3362 (((-1280) $) 81)) (-3796 (((-867) $) 75) (($ (-649 (-333))) 67) (($ (-333)) 72) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 70) (($ (-343 (-3809) (-3809 (QUOTE X)) (-704))) 31)))
+(((-78 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704)))))) (-1185)) (T -78))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809) (-3809 (QUOTE X)) (-704))) (-5 *1 (-78 *3)) (-14 *3 (-1185)))))
+(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704))))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 90) (((-3 $ "failed") (-1275 (-319 (-569)))) 79) (((-3 $ "failed") (-1275 (-958 (-383)))) 110) (((-3 $ "failed") (-1275 (-958 (-569)))) 100) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 68) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 55)) (-3150 (($ (-1275 (-319 (-383)))) 86) (($ (-1275 (-319 (-569)))) 75) (($ (-1275 (-958 (-383)))) 106) (($ (-1275 (-958 (-569)))) 96) (($ (-1275 (-412 (-958 (-383))))) 64) (($ (-1275 (-412 (-958 (-569))))) 48)) (-3362 (((-1280) $) 126)) (-3796 (((-867) $) 120) (($ (-649 (-333))) 113) (($ (-333)) 38) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 116) (($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) 39)))
+(((-79 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704))))))) (-1185)) (T -79))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) (-5 *1 (-79 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 154) (((-3 $ "failed") (-1275 (-319 (-569)))) 144) (((-3 $ "failed") (-1275 (-958 (-383)))) 174) (((-3 $ "failed") (-1275 (-958 (-569)))) 164) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 134) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 122)) (-3150 (($ (-1275 (-319 (-383)))) 150) (($ (-1275 (-319 (-569)))) 140) (($ (-1275 (-958 (-383)))) 170) (($ (-1275 (-958 (-569)))) 160) (($ (-1275 (-412 (-958 (-383))))) 130) (($ (-1275 (-412 (-958 (-569))))) 115)) (-3362 (((-1280) $) 108)) (-3796 (((-867) $) 102) (($ (-649 (-333))) 93) (($ (-333)) 100) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 98) (($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) 94)))
+(((-80 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))))) (-1185)) (T -80))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) (-5 *1 (-80 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 79) (((-3 $ "failed") (-1275 (-319 (-569)))) 68) (((-3 $ "failed") (-1275 (-958 (-383)))) 99) (((-3 $ "failed") (-1275 (-958 (-569)))) 89) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 57) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 44)) (-3150 (($ (-1275 (-319 (-383)))) 75) (($ (-1275 (-319 (-569)))) 64) (($ (-1275 (-958 (-383)))) 95) (($ (-1275 (-958 (-569)))) 85) (($ (-1275 (-412 (-958 (-383))))) 53) (($ (-1275 (-412 (-958 (-569))))) 37)) (-3362 (((-1280) $) 125)) (-3796 (((-867) $) 119) (($ (-649 (-333))) 110) (($ (-333)) 116) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 114) (($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) 36)))
+(((-81 |#1|) (-13 (-446) (-621 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))) (-1185)) (T -81))
+NIL
+(-13 (-446) (-621 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 98) (((-3 $ "failed") (-1275 (-319 (-569)))) 87) (((-3 $ "failed") (-1275 (-958 (-383)))) 118) (((-3 $ "failed") (-1275 (-958 (-569)))) 108) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 76) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 63)) (-3150 (($ (-1275 (-319 (-383)))) 94) (($ (-1275 (-319 (-569)))) 83) (($ (-1275 (-958 (-383)))) 114) (($ (-1275 (-958 (-569)))) 104) (($ (-1275 (-412 (-958 (-383))))) 72) (($ (-1275 (-412 (-958 (-569))))) 56)) (-3362 (((-1280) $) 48)) (-3796 (((-867) $) 42) (($ (-649 (-333))) 32) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 38) (($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) 33)))
+(((-82 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704))))))) (-1185)) (T -82))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) (-5 *1 (-82 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))))))
+((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 118) (((-3 $ "failed") (-694 (-319 (-569)))) 107) (((-3 $ "failed") (-694 (-958 (-383)))) 140) (((-3 $ "failed") (-694 (-958 (-569)))) 129) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 96) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 83)) (-3150 (($ (-694 (-319 (-383)))) 114) (($ (-694 (-319 (-569)))) 103) (($ (-694 (-958 (-383)))) 136) (($ (-694 (-958 (-569)))) 125) (($ (-694 (-412 (-958 (-383))))) 92) (($ (-694 (-412 (-958 (-569))))) 76)) (-3362 (((-1280) $) 66)) (-3796 (((-867) $) 53) (($ (-649 (-333))) 60) (($ (-333)) 49) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 58) (($ (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) 50)))
+(((-83 |#1|) (-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704))))))) (-1185)) (T -83))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) (-5 *1 (-83 *3)) (-14 *3 (-1185)))))
+(-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))))))
+((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 113) (((-3 $ "failed") (-694 (-319 (-569)))) 101) (((-3 $ "failed") (-694 (-958 (-383)))) 135) (((-3 $ "failed") (-694 (-958 (-569)))) 124) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 75)) (-3150 (($ (-694 (-319 (-383)))) 109) (($ (-694 (-319 (-569)))) 97) (($ (-694 (-958 (-383)))) 131) (($ (-694 (-958 (-569)))) 120) (($ (-694 (-412 (-958 (-383))))) 85) (($ (-694 (-412 (-958 (-569))))) 68)) (-3362 (((-1280) $) 60)) (-3796 (((-867) $) 54) (($ (-649 (-333))) 48) (($ (-333)) 51) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 45) (($ (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) 46)))
+(((-84 |#1|) (-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704))))))) (-1185)) (T -84))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) (-5 *1 (-84 *3)) (-14 *3 (-1185)))))
+(-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704)))))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 105) (((-3 $ "failed") (-1275 (-319 (-569)))) 94) (((-3 $ "failed") (-1275 (-958 (-383)))) 125) (((-3 $ "failed") (-1275 (-958 (-569)))) 115) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 83) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 70)) (-3150 (($ (-1275 (-319 (-383)))) 101) (($ (-1275 (-319 (-569)))) 90) (($ (-1275 (-958 (-383)))) 121) (($ (-1275 (-958 (-569)))) 111) (($ (-1275 (-412 (-958 (-383))))) 79) (($ (-1275 (-412 (-958 (-569))))) 63)) (-3362 (((-1280) $) 47)) (-3796 (((-867) $) 41) (($ (-649 (-333))) 50) (($ (-333)) 37) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 53) (($ (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) 38)))
+(((-85 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704))))))) (-1185)) (T -85))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) (-5 *1 (-85 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704)))))))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 80) (((-3 $ "failed") (-1275 (-319 (-569)))) 69) (((-3 $ "failed") (-1275 (-958 (-383)))) 100) (((-3 $ "failed") (-1275 (-958 (-569)))) 90) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 58) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 45)) (-3150 (($ (-1275 (-319 (-383)))) 76) (($ (-1275 (-319 (-569)))) 65) (($ (-1275 (-958 (-383)))) 96) (($ (-1275 (-958 (-569)))) 86) (($ (-1275 (-412 (-958 (-383))))) 54) (($ (-1275 (-412 (-958 (-569))))) 38)) (-3362 (((-1280) $) 126)) (-3796 (((-867) $) 120) (($ (-649 (-333))) 111) (($ (-333)) 117) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 115) (($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) 37)))
+(((-86 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))))))) (-1185)) (T -86))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) (-5 *1 (-86 *3)) (-14 *3 (-1185)))))
+(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))))))
+((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 117) (((-3 $ "failed") (-694 (-319 (-569)))) 105) (((-3 $ "failed") (-694 (-958 (-383)))) 139) (((-3 $ "failed") (-694 (-958 (-569)))) 128) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 93) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 79)) (-3150 (($ (-694 (-319 (-383)))) 113) (($ (-694 (-319 (-569)))) 101) (($ (-694 (-958 (-383)))) 135) (($ (-694 (-958 (-569)))) 124) (($ (-694 (-412 (-958 (-383))))) 89) (($ (-694 (-412 (-958 (-569))))) 72)) (-3362 (((-1280) $) 63)) (-3796 (((-867) $) 57) (($ (-649 (-333))) 47) (($ (-333)) 54) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 52) (($ (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704)))) 48)))
+(((-87 |#1|) (-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704))))))) (-1185)) (T -87))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704)))) (-5 *1 (-87 *3)) (-14 *3 (-1185)))))
+(-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704)))))))
+((-3362 (((-1280) $) 45)) (-3796 (((-867) $) 39) (($ (-1275 (-704))) 100) (($ (-649 (-333))) 31) (($ (-333)) 36) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 34)))
+(((-88 |#1|) (-445) (-1185)) (T -88))
NIL
(-445)
-((-4378 (((-3 $ "failed") (-319 (-383))) 48) (((-3 $ "failed") (-319 (-569))) 53) (((-3 $ "failed") (-958 (-383))) 57) (((-3 $ "failed") (-958 (-569))) 61) (((-3 $ "failed") (-412 (-958 (-383)))) 43) (((-3 $ "failed") (-412 (-958 (-569)))) 36)) (-3148 (($ (-319 (-383))) 46) (($ (-319 (-569))) 51) (($ (-958 (-383))) 55) (($ (-958 (-569))) 59) (($ (-412 (-958 (-383)))) 41) (($ (-412 (-958 (-569)))) 33)) (-3358 (((-1278) $) 91)) (-3793 (((-867) $) 85) (($ (-649 (-333))) 79) (($ (-333)) 82) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 77) (($ (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704))) 32)))
-(((-89 |#1|) (-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704)))))) (-1183)) (T -89))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704))) (-5 *1 (-89 *3)) (-14 *3 (-1183)))))
-(-13 (-401) (-10 -8 (-15 -3793 ($ (-343 (-3806 (QUOTE X)) (-3806 (QUOTE -1539)) (-704))))))
-((-3201 (((-1273 (-694 |#1|)) (-694 |#1|)) 64)) (-4335 (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 (-649 (-927))))) |#2| (-927)) 54)) (-1385 (((-2 (|:| |minor| (-649 (-927))) (|:| -4309 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927)) 75 (|has| |#1| (-367)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -4335 ((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 (-649 (-927))))) |#2| (-927))) (-15 -3201 ((-1273 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -1385 ((-2 (|:| |minor| (-649 (-927))) (|:| -4309 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|)) (-561) (-661 |#1|)) (T -90))
-((-1385 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |minor| (-649 (-927))) (|:| -4309 *3) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-694 *4)) (-4 *5 (-661 *4)))) (-4335 (*1 *2 *3 *4) (-12 (-4 *5 (-561)) (-5 *2 (-2 (|:| -2378 (-694 *5)) (|:| |vec| (-1273 (-649 (-927)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
-(-10 -7 (-15 -4335 ((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 (-649 (-927))))) |#2| (-927))) (-15 -3201 ((-1273 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -1385 ((-2 (|:| |minor| (-649 (-927))) (|:| -4309 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3307 ((|#1| $) 42)) (-2716 (((-112) $ (-776)) NIL)) (-4188 (($) NIL T CONST)) (-3529 ((|#1| |#1| $) 37)) (-3410 ((|#1| $) 35)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1640 ((|#1| $) NIL)) (-3813 (($ |#1| $) 38)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1764 ((|#1| $) 36)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 18)) (-3597 (($) 46)) (-2802 (((-776) $) 33)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 17)) (-3793 (((-867) $) 32 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) NIL)) (-1509 (($ (-649 |#1|)) 44)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 15 (|has| |#1| (-1106)))) (-2426 (((-776) $) 12 (|has| $ (-6 -4444)))))
-(((-91 |#1|) (-13 (-1127 |#1|) (-10 -8 (-15 -1509 ($ (-649 |#1|))))) (-1106)) (T -91))
-((-1509 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-91 *3)))))
-(-13 (-1127 |#1|) (-10 -8 (-15 -1509 ($ (-649 |#1|)))))
-((-3793 (((-867) $) 13) (($ (-1188)) 9) (((-1188) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -3793 ((-1188) |#1|)) (-15 -3793 (|#1| (-1188))) (-15 -3793 ((-867) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -3793 ((-1188) |#1|)) (-15 -3793 (|#1| (-1188))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
+((-4381 (((-3 $ "failed") (-319 (-383))) 48) (((-3 $ "failed") (-319 (-569))) 53) (((-3 $ "failed") (-958 (-383))) 57) (((-3 $ "failed") (-958 (-569))) 61) (((-3 $ "failed") (-412 (-958 (-383)))) 43) (((-3 $ "failed") (-412 (-958 (-569)))) 36)) (-3150 (($ (-319 (-383))) 46) (($ (-319 (-569))) 51) (($ (-958 (-383))) 55) (($ (-958 (-569))) 59) (($ (-412 (-958 (-383)))) 41) (($ (-412 (-958 (-569)))) 33)) (-3362 (((-1280) $) 91)) (-3796 (((-867) $) 85) (($ (-649 (-333))) 79) (($ (-333)) 82) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 77) (($ (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))) 32)))
+(((-89 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))))) (-1185)) (T -89))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))) (-5 *1 (-89 *3)) (-14 *3 (-1185)))))
+(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))))))
+((-4238 (((-1275 (-694 |#1|)) (-694 |#1|)) 64)) (-2121 (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 (-649 (-927))))) |#2| (-927)) 54)) (-3594 (((-2 (|:| |minor| (-649 (-927))) (|:| -4312 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927)) 75 (|has| |#1| (-367)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -2121 ((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 (-649 (-927))))) |#2| (-927))) (-15 -4238 ((-1275 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -3594 ((-2 (|:| |minor| (-649 (-927))) (|:| -4312 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|)) (-561) (-661 |#1|)) (T -90))
+((-3594 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |minor| (-649 (-927))) (|:| -4312 *3) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-694 *4)) (-4 *5 (-661 *4)))) (-2121 (*1 *2 *3 *4) (-12 (-4 *5 (-561)) (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 (-649 (-927)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
+(-10 -7 (-15 -2121 ((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 (-649 (-927))))) |#2| (-927))) (-15 -4238 ((-1275 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -3594 ((-2 (|:| |minor| (-649 (-927))) (|:| -4312 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3310 ((|#1| $) 42)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-4235 ((|#1| |#1| $) 37)) (-2412 ((|#1| $) 35)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) NIL)) (-3894 (($ |#1| $) 38)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1781 ((|#1| $) 36)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 18)) (-3635 (($) 46)) (-2804 (((-776) $) 33)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 17)) (-3796 (((-867) $) 32 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-4228 (($ (-649 |#1|)) 44)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 15 (|has| |#1| (-1108)))) (-2428 (((-776) $) 12 (|has| $ (-6 -4447)))))
+(((-91 |#1|) (-13 (-1129 |#1|) (-10 -8 (-15 -4228 ($ (-649 |#1|))))) (-1108)) (T -91))
+((-4228 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-91 *3)))))
+(-13 (-1129 |#1|) (-10 -8 (-15 -4228 ($ (-649 |#1|)))))
+((-3796 (((-867) $) 13) (($ (-1190)) 9) (((-1190) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -3796 ((-1190) |#1|)) (-15 -3796 (|#1| (-1190))) (-15 -3796 ((-867) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -3796 ((-1190) |#1|)) (-15 -3796 (|#1| (-1190))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-1190)) 17) (((-1190) $) 16)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
(((-93) (-140)) (T -93))
NIL
-(-13 (-1106) (-495 (-1188)))
-(((-102) . T) ((-621 #0=(-1188)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T))
-((-2721 (($ $) 10)) (-2732 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -2732 (|#1| |#1|)) (-15 -2721 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1108) (-495 (-1190)))
+(((-102) . T) ((-621 #0=(-1190)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T))
+((-2723 (($ $) 10)) (-2734 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -2732 (|#1| |#1|)) (-15 -2721 (|#1| |#1|)))
-((-2699 (($ $) 11)) (-2673 (($ $) 10)) (-2721 (($ $) 9)) (-2732 (($ $) 8)) (-2710 (($ $) 7)) (-2687 (($ $) 6)))
+(-10 -8 (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|)))
+((-2701 (($ $) 11)) (-2675 (($ $) 10)) (-2723 (($ $) 9)) (-2734 (($ $) 8)) (-2712 (($ $) 7)) (-2689 (($ $) 6)))
(((-95) (-140)) (T -95))
-((-2699 (*1 *1 *1) (-4 *1 (-95))) (-2673 (*1 *1 *1) (-4 *1 (-95))) (-2721 (*1 *1 *1) (-4 *1 (-95))) (-2732 (*1 *1 *1) (-4 *1 (-95))) (-2710 (*1 *1 *1) (-4 *1 (-95))) (-2687 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -2687 ($ $)) (-15 -2710 ($ $)) (-15 -2732 ($ $)) (-15 -2721 ($ $)) (-15 -2673 ($ $)) (-15 -2699 ($ $))))
-((-2415 (((-112) $ $) NIL)) (-3570 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-96) (-13 (-1089) (-10 -8 (-15 -3570 ((-1141) $))))) (T -96))
-((-3570 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-96)))))
-(-13 (-1089) (-10 -8 (-15 -3570 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-4039 (((-383) (-1165) (-383)) 46) (((-383) (-1165) (-1165) (-383)) 44)) (-4164 (((-383) (-383)) 35)) (-3323 (((-1278)) 37)) (-1550 (((-1165) $) NIL)) (-3145 (((-383) (-1165) (-1165)) 50) (((-383) (-1165)) 52)) (-3545 (((-1126) $) NIL)) (-3449 (((-383) (-1165) (-1165)) 51)) (-4274 (((-383) (-1165) (-1165)) 53) (((-383) (-1165)) 54)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-97) (-13 (-1106) (-10 -7 (-15 -3145 ((-383) (-1165) (-1165))) (-15 -3145 ((-383) (-1165))) (-15 -4274 ((-383) (-1165) (-1165))) (-15 -4274 ((-383) (-1165))) (-15 -3449 ((-383) (-1165) (-1165))) (-15 -3323 ((-1278))) (-15 -4164 ((-383) (-383))) (-15 -4039 ((-383) (-1165) (-383))) (-15 -4039 ((-383) (-1165) (-1165) (-383))) (-6 -4444)))) (T -97))
-((-3145 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-4274 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-4274 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-3449 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))) (-3323 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-97)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97)))) (-4039 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97)))) (-4039 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97)))))
-(-13 (-1106) (-10 -7 (-15 -3145 ((-383) (-1165) (-1165))) (-15 -3145 ((-383) (-1165))) (-15 -4274 ((-383) (-1165) (-1165))) (-15 -4274 ((-383) (-1165))) (-15 -3449 ((-383) (-1165) (-1165))) (-15 -3323 ((-1278))) (-15 -4164 ((-383) (-383))) (-15 -4039 ((-383) (-1165) (-383))) (-15 -4039 ((-383) (-1165) (-1165) (-383))) (-6 -4444)))
+((-2701 (*1 *1 *1) (-4 *1 (-95))) (-2675 (*1 *1 *1) (-4 *1 (-95))) (-2723 (*1 *1 *1) (-4 *1 (-95))) (-2734 (*1 *1 *1) (-4 *1 (-95))) (-2712 (*1 *1 *1) (-4 *1 (-95))) (-2689 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -2689 ($ $)) (-15 -2712 ($ $)) (-15 -2734 ($ $)) (-15 -2723 ($ $)) (-15 -2675 ($ $)) (-15 -2701 ($ $))))
+((-2417 (((-112) $ $) NIL)) (-3573 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-96) (-13 (-1091) (-10 -8 (-15 -3573 ((-1143) $))))) (T -96))
+((-3573 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-96)))))
+(-13 (-1091) (-10 -8 (-15 -3573 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-2317 (((-383) (-1167) (-383)) 46) (((-383) (-1167) (-1167) (-383)) 44)) (-4217 (((-383) (-383)) 35)) (-2911 (((-1280)) 37)) (-3435 (((-1167) $) NIL)) (-1819 (((-383) (-1167) (-1167)) 50) (((-383) (-1167)) 52)) (-3547 (((-1128) $) NIL)) (-1630 (((-383) (-1167) (-1167)) 51)) (-2777 (((-383) (-1167) (-1167)) 53) (((-383) (-1167)) 54)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-97) (-13 (-1108) (-10 -7 (-15 -1819 ((-383) (-1167) (-1167))) (-15 -1819 ((-383) (-1167))) (-15 -2777 ((-383) (-1167) (-1167))) (-15 -2777 ((-383) (-1167))) (-15 -1630 ((-383) (-1167) (-1167))) (-15 -2911 ((-1280))) (-15 -4217 ((-383) (-383))) (-15 -2317 ((-383) (-1167) (-383))) (-15 -2317 ((-383) (-1167) (-1167) (-383))) (-6 -4447)))) (T -97))
+((-1819 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2777 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-1630 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2911 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-97)))) (-4217 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97)))) (-2317 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97)))) (-2317 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97)))))
+(-13 (-1108) (-10 -7 (-15 -1819 ((-383) (-1167) (-1167))) (-15 -1819 ((-383) (-1167))) (-15 -2777 ((-383) (-1167) (-1167))) (-15 -2777 ((-383) (-1167))) (-15 -1630 ((-383) (-1167) (-1167))) (-15 -2911 ((-1280))) (-15 -4217 ((-383) (-383))) (-15 -2317 ((-383) (-1167) (-383))) (-15 -2317 ((-383) (-1167) (-1167) (-383))) (-6 -4447)))
NIL
(((-98) (-140)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4444) (-6 (-4446 "*")) (-6 -4445) (-6 -4441) (-6 -4439) (-6 -4438) (-6 -4437) (-6 -4442) (-6 -4436) (-6 -4435) (-6 -4434) (-6 -4433) (-6 -4432) (-6 -4440) (-6 -4443) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4431)))
-((-2415 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-3981 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-569))) 24)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 16)) (-3545 (((-1126) $) NIL)) (-1866 ((|#1| $ |#1|) 13)) (-3580 (($ $ $) NIL)) (-2292 (($ $ $) NIL)) (-3793 (((-867) $) 22)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 8 T CONST)) (-2919 (((-112) $ $) 10)) (-3032 (($ $ $) NIL)) (** (($ $ (-927)) 34) (($ $ (-776)) NIL) (($ $ (-569)) 18)) (* (($ $ $) 35)))
-(((-99 |#1|) (-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -3981 ($ (-1 |#1| |#1|))) (-15 -3981 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3981 ($ (-1 |#1| |#1| (-569)))))) (-1055)) (T -99))
-((-3981 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))) (-3981 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))) (-3981 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-99 *3)))))
-(-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -3981 ($ (-1 |#1| |#1|))) (-15 -3981 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3981 ($ (-1 |#1| |#1| (-569))))))
-((-4097 (((-423 |#2|) |#2| (-649 |#2|)) 10) (((-423 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -4097 ((-423 |#2|) |#2| |#2|)) (-15 -4097 ((-423 |#2|) |#2| (-649 |#2|)))) (-13 (-457) (-147)) (-1249 |#1|)) (T -100))
-((-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3)))) (-4097 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -4097 ((-423 |#2|) |#2| |#2|)) (-15 -4097 ((-423 |#2|) |#2| (-649 |#2|))))
-((-2415 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -2415 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2415 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-2919 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4447) (-6 (-4449 "*")) (-6 -4448) (-6 -4444) (-6 -4442) (-6 -4441) (-6 -4440) (-6 -4445) (-6 -4439) (-6 -4438) (-6 -4437) (-6 -4436) (-6 -4435) (-6 -4443) (-6 -4446) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4434)))
+((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-2960 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-569))) 24)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 16)) (-3547 (((-1128) $) NIL)) (-1869 ((|#1| $ |#1|) 13)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 22)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 8 T CONST)) (-2920 (((-112) $ $) 10)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) 34) (($ $ (-776)) NIL) (($ $ (-569)) 18)) (* (($ $ $) 35)))
+(((-99 |#1|) (-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -2960 ($ (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1| (-569)))))) (-1057)) (T -99))
+((-2960 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3)))) (-2960 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-99 *3)))))
+(-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -2960 ($ (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1| (-569))))))
+((-1750 (((-423 |#2|) |#2| (-649 |#2|)) 10) (((-423 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -1750 ((-423 |#2|) |#2| |#2|)) (-15 -1750 ((-423 |#2|) |#2| (-649 |#2|)))) (-13 (-457) (-147)) (-1251 |#1|)) (T -100))
+((-1750 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3)))) (-1750 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -1750 ((-423 |#2|) |#2| |#2|)) (-15 -1750 ((-423 |#2|) |#2| (-649 |#2|))))
+((-2417 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2417 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2417 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-2920 (((-112) $ $) 6)))
(((-102) (-140)) (T -102))
-((-2415 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2919 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2919 ((-112) $ $)) (-15 -2415 ((-112) $ $))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) 24 (|has| $ (-6 -4445)))) (-1419 (($ $ $) NIL (|has| $ (-6 -4445)))) (-4423 (($ $ $) NIL (|has| $ (-6 -4445)))) (-2867 (($ $ (-649 |#1|)) 34)) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) (($ $ "left" $) NIL (|has| $ (-6 -4445))) (($ $ "right" $) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4407 (($ $) 12)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3344 (($ $ |#1| $) 36)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3656 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3559 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|)) 53)) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-4395 (($ $) 11)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) 13)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 9)) (-3597 (($) 35)) (-1866 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3947 (((-569) $ $) NIL)) (-2102 (((-112) $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2981 (($ (-776) |#1|) 37)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4444) (-6 -4445) (-15 -2981 ($ (-776) |#1|)) (-15 -2867 ($ $ (-649 |#1|))) (-15 -3656 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3656 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3559 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3559 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|))))) (-1106)) (T -103))
-((-2981 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1106)))) (-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1106)))) (-3656 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3)))) (-3559 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (-5 *1 (-103 *2)))) (-3559 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1106)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4444) (-6 -4445) (-15 -2981 ($ (-776) |#1|)) (-15 -2867 ($ $ (-649 |#1|))) (-15 -3656 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3656 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3559 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3559 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|)))))
-((-1397 ((|#3| |#2| |#2|) 36)) (-3884 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4446 "*"))))) (-1521 ((|#3| |#2| |#2|) 38)) (-3978 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4446 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1397 (|#3| |#2| |#2|)) (-15 -1521 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4446 "*"))) (PROGN (-15 -3884 (|#1| |#2| |#2|)) (-15 -3978 (|#1| |#2|))) |%noBranch|)) (-1055) (-1249 |#1|) (-692 |#1| |#4| |#5|) (-377 |#1|) (-377 |#1|)) (T -104))
-((-3978 (*1 *2 *3) (-12 (|has| *2 (-6 (-4446 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2)) (-4 *4 (-692 *2 *5 *6)))) (-3884 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4446 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2)) (-4 *4 (-692 *2 *5 *6)))) (-1521 (*1 *2 *3 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)))) (-1397 (*1 *2 *3 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)))))
-(-10 -7 (-15 -1397 (|#3| |#2| |#2|)) (-15 -1521 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4446 "*"))) (PROGN (-15 -3884 (|#1| |#2| |#2|)) (-15 -3978 (|#1| |#2|))) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-2072 (((-649 (-1183))) 37)) (-1979 (((-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226)))) (-1183)) 39)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-105) (-13 (-1106) (-10 -7 (-15 -2072 ((-649 (-1183)))) (-15 -1979 ((-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226)))) (-1183))) (-6 -4444)))) (T -105))
-((-2072 (*1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-105)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226))))) (-5 *1 (-105)))))
-(-13 (-1106) (-10 -7 (-15 -2072 ((-649 (-1183)))) (-15 -1979 ((-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226))) (|:| |singularities| (-1163 (-226)))) (-1183))) (-6 -4444)))
-((-4209 (($ (-649 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -4209 (|#1| (-649 |#2|)))) (-107 |#2|) (-1223)) (T -106))
-NIL
-(-10 -8 (-15 -4209 (|#1| (-649 |#2|))))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4188 (($) 7 T CONST)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-107 |#1|) (-140) (-1223)) (T -107))
-((-4209 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-107 *3)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))) (-3813 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))))
-(-13 (-494 |t#1|) (-10 -8 (-6 -4445) (-15 -4209 ($ (-649 |t#1|))) (-15 -1764 (|t#1| $)) (-15 -3813 ($ |t#1| $)) (-15 -1640 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 (((-569) $) NIL (|has| (-569) (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| (-569) (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1044 (-569))))) (-3148 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-569) (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| (-569) (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 (((-569) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-4327 (((-112) $) NIL (|has| (-569) (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-569) (-855)))) (-1344 (($ (-1 (-569) (-569)) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-569) (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-2478 (((-569) $) NIL (|has| (-569) (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-1578 (((-776) $) NIL)) (-1866 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1528 (($ $) NIL)) (-4409 (((-569) $) NIL)) (-1408 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL) (((-1010 2) $) 10)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3302 (((-776)) NIL T CONST)) (-2586 (((-569) $) NIL (|has| (-569) (-550)))) (-3906 (($ (-412 (-569))) 9)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| (-569) (-825)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2976 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3032 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
-(((-108) (-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 2)) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -3906 ($ (-412 (-569))))))) (T -108))
-((-3555 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))) (-3906 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))))
-(-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 2)) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -3906 ($ (-412 (-569))))))
-((-2901 (((-649 (-971)) $) 13)) (-3570 (((-511) $) 9)) (-3793 (((-867) $) 20)) (-4322 (($ (-511) (-649 (-971))) 15)))
-(((-109) (-13 (-618 (-867)) (-10 -8 (-15 -3570 ((-511) $)) (-15 -2901 ((-649 (-971)) $)) (-15 -4322 ($ (-511) (-649 (-971))))))) (T -109))
-((-3570 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-649 (-971))) (-5 *1 (-109)))) (-4322 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3570 ((-511) $)) (-15 -2901 ((-649 (-971)) $)) (-15 -4322 ($ (-511) (-649 (-971))))))
-((-2415 (((-112) $ $) NIL)) (-2436 (($ $) NIL)) (-1780 (($ $ $) NIL)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3012 (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4445)))) (-3355 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-3940 (((-112) $ (-1240 (-569)) (-112)) NIL (|has| $ (-6 -4445))) (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-1696 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-3596 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-3843 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4445)))) (-3773 (((-112) $ (-569)) NIL)) (-4034 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1106))) (((-569) (-112) $) NIL (|has| (-112) (-1106))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2880 (((-649 (-112)) $) NIL (|has| $ (-6 -4444)))) (-1769 (($ $ $) NIL)) (-1745 (($ $) NIL)) (-2905 (($ $ $) NIL)) (-4295 (($ (-776) (-112)) 10)) (-3028 (($ $ $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL)) (-2126 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3040 (((-649 (-112)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL)) (-3831 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-4294 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-112) $) NIL (|has| (-569) (-855)))) (-3123 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4420 (($ $ (-112)) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-3851 (((-649 (-112)) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 (($ $ (-1240 (-569))) NIL) (((-112) $ (-569)) NIL) (((-112) $ (-569) (-112)) NIL)) (-4325 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-3558 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3806 (($ (-649 (-112))) NIL)) (-2441 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3793 (((-867) $) NIL)) (-2916 (($ (-776) (-112)) 11)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1756 (($ $ $) NIL)) (-4419 (($ $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-4404 (($ $ $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -2916 ($ (-776) (-112)))))) (T -110))
-((-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -2916 ($ (-776) (-112)))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
-(((-111 |#1| |#2|) (-140) (-1055) (-1055)) (T -111))
-NIL
-(-13 (-653 |t#1|) (-1062 |t#2|) (-10 -7 (-6 -4439) (-6 -4438)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-2436 (($ $) 10)) (-1780 (($ $ $) 15)) (-3015 (($) 7 T CONST)) (-4263 (($ $) 6)) (-3470 (((-776)) 24)) (-3403 (($) 32)) (-1769 (($ $ $) 13)) (-1745 (($ $) 9)) (-2905 (($ $ $) 16)) (-3028 (($ $ $) 17)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) 30)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) 28)) (-2494 (($ $ $) 20)) (-3545 (((-1126) $) NIL)) (-1876 (($) 8 T CONST)) (-3689 (($ $ $) 21)) (-1408 (((-541) $) 34)) (-3793 (((-867) $) 36)) (-1441 (((-112) $ $) NIL)) (-1756 (($ $ $) 11)) (-4419 (($ $ $) 14)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 19)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 22)) (-4404 (($ $ $) 12)))
-(((-112) (-13 (-849) (-666) (-973) (-619 (-541)) (-10 -8 (-15 -1780 ($ $ $)) (-15 -3028 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -4263 ($ $))))) (T -112))
-((-1780 (*1 *1 *1 *1) (-5 *1 (-112))) (-3028 (*1 *1 *1 *1) (-5 *1 (-112))) (-2905 (*1 *1 *1 *1) (-5 *1 (-112))) (-4263 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-849) (-666) (-973) (-619 (-541)) (-10 -8 (-15 -1780 ($ $ $)) (-15 -3028 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -4263 ($ $))))
-((-2244 (((-3 (-1 |#1| (-649 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-649 |#1|))) 11) (((-3 |#1| "failed") (-114) (-649 |#1|)) 25)) (-1562 (((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-649 (-1 |#1| (-649 |#1|)))) 30)) (-1701 (((-114) |#1|) 63)) (-4144 (((-3 |#1| "failed") (-114)) 58)))
-(((-113 |#1|) (-10 -7 (-15 -2244 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -2244 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -2244 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2244 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -1562 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1562 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1562 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -1701 ((-114) |#1|)) (-15 -4144 ((-3 |#1| "failed") (-114)))) (-1106)) (T -113))
-((-4144 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1106)))) (-1701 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1106)))) (-1562 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1106)))) (-1562 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-1562 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-2244 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1106)))) (-2244 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-2244 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1106)) (-5 *1 (-113 *4)))) (-2244 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1106)))))
-(-10 -7 (-15 -2244 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -2244 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -2244 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2244 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -1562 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1562 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1562 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -1701 ((-114) |#1|)) (-15 -4144 ((-3 |#1| "failed") (-114))))
-((-2415 (((-112) $ $) NIL)) (-1458 (((-776) $) 91) (($ $ (-776)) 37)) (-2560 (((-112) $) 41)) (-1446 (($ $ (-1165) (-779)) 58) (($ $ (-511) (-779)) 33)) (-3925 (($ $ (-45 (-1165) (-779))) 16)) (-3122 (((-3 (-779) "failed") $ (-1165)) 27) (((-696 (-779)) $ (-511)) 32)) (-2901 (((-45 (-1165) (-779)) $) 15)) (-3743 (($ (-1183)) 20) (($ (-1183) (-776)) 23) (($ (-1183) (-55)) 24)) (-2693 (((-112) $) 39)) (-3644 (((-112) $) 43)) (-3570 (((-1183) $) 8)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-2374 (((-112) $ (-1183)) 11)) (-4204 (($ $ (-1 (-541) (-649 (-541)))) 64) (((-3 (-1 (-541) (-649 (-541))) "failed") $) 71)) (-3545 (((-1126) $) NIL)) (-1941 (((-112) $ (-511)) 36)) (-1686 (($ $ (-1 (-112) $ $)) 45)) (-4155 (((-3 (-1 (-867) (-649 (-867))) "failed") $) 69) (($ $ (-1 (-867) (-649 (-867)))) 51) (($ $ (-1 (-867) (-867))) 53)) (-3016 (($ $ (-1165)) 55) (($ $ (-511)) 56)) (-3959 (($ $) 77)) (-1560 (($ $ (-1 (-112) $ $)) 46)) (-3793 (((-867) $) 60)) (-1441 (((-112) $ $) NIL)) (-3658 (($ $ (-511)) 34)) (-1371 (((-55) $) 72)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 89)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 103)))
-(((-114) (-13 (-855) (-840 (-1183)) (-10 -8 (-15 -2901 ((-45 (-1165) (-779)) $)) (-15 -3959 ($ $)) (-15 -3743 ($ (-1183))) (-15 -3743 ($ (-1183) (-776))) (-15 -3743 ($ (-1183) (-55))) (-15 -2693 ((-112) $)) (-15 -2560 ((-112) $)) (-15 -3644 ((-112) $)) (-15 -1458 ((-776) $)) (-15 -1458 ($ $ (-776))) (-15 -1686 ($ $ (-1 (-112) $ $))) (-15 -1560 ($ $ (-1 (-112) $ $))) (-15 -4155 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4155 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4155 ($ $ (-1 (-867) (-867)))) (-15 -4204 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4204 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -1941 ((-112) $ (-511))) (-15 -3658 ($ $ (-511))) (-15 -3016 ($ $ (-1165))) (-15 -3016 ($ $ (-511))) (-15 -3122 ((-3 (-779) "failed") $ (-1165))) (-15 -3122 ((-696 (-779)) $ (-511))) (-15 -1446 ($ $ (-1165) (-779))) (-15 -1446 ($ $ (-511) (-779))) (-15 -3925 ($ $ (-45 (-1165) (-779))))))) (T -114))
-((-2901 (*1 *2 *1) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))) (-3959 (*1 *1 *1) (-5 *1 (-114))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-114)))) (-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *1 (-114)))) (-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-55)) (-5 *1 (-114)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-1458 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-1686 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4155 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-867))) (-5 *1 (-114)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-4204 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-1941 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3658 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-3016 (*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-114)))) (-3016 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-3122 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-779)) (-5 *1 (-114)))) (-3122 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114)))) (-1446 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-779)) (-5 *1 (-114)))) (-1446 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))))
-(-13 (-855) (-840 (-1183)) (-10 -8 (-15 -2901 ((-45 (-1165) (-779)) $)) (-15 -3959 ($ $)) (-15 -3743 ($ (-1183))) (-15 -3743 ($ (-1183) (-776))) (-15 -3743 ($ (-1183) (-55))) (-15 -2693 ((-112) $)) (-15 -2560 ((-112) $)) (-15 -3644 ((-112) $)) (-15 -1458 ((-776) $)) (-15 -1458 ($ $ (-776))) (-15 -1686 ($ $ (-1 (-112) $ $))) (-15 -1560 ($ $ (-1 (-112) $ $))) (-15 -4155 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4155 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4155 ($ $ (-1 (-867) (-867)))) (-15 -4204 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4204 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -1941 ((-112) $ (-511))) (-15 -3658 ($ $ (-511))) (-15 -3016 ($ $ (-1165))) (-15 -3016 ($ $ (-511))) (-15 -3122 ((-3 (-779) "failed") $ (-1165))) (-15 -3122 ((-696 (-779)) $ (-511))) (-15 -1446 ($ $ (-1165) (-779))) (-15 -1446 ($ $ (-511) (-779))) (-15 -3925 ($ $ (-45 (-1165) (-779))))))
-((-4239 (((-569) |#2|) 41)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -4239 ((-569) |#2|))) (-13 (-367) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -115))
-((-4239 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-1044 (-412 *2)))) (-5 *2 (-569)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -4239 ((-569) |#2|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $ (-569)) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-3354 (($ (-1179 (-569)) (-569)) NIL)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3085 (($ $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-3110 (((-776) $) NIL)) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3283 (((-569)) NIL)) (-3184 (((-569) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2907 (($ $ (-569)) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3380 (((-1163 (-569)) $) NIL)) (-4005 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3088 (((-569) $ (-569)) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+((-2417 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2920 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -2920 ((-112) $ $)) (-15 -2417 ((-112) $ $))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) 24 (|has| $ (-6 -4448)))) (-4416 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1718 (($ $ $) NIL (|has| $ (-6 -4448)))) (-2869 (($ $ (-649 |#1|)) 34)) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 12)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 36)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2953 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3264 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|)) 53)) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 11)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) 13)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 9)) (-3635 (($) 35)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2615 (($ (-776) |#1|) 37)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2615 ($ (-776) |#1|)) (-15 -2869 ($ $ (-649 |#1|))) (-15 -2953 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2953 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|))))) (-1108)) (T -103))
+((-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1108)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3)))) (-2953 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1108)))) (-2953 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3)))) (-3264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (-5 *1 (-103 *2)))) (-3264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1108)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2615 ($ (-776) |#1|)) (-15 -2869 ($ $ (-649 |#1|))) (-15 -2953 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2953 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|)))))
+((-4294 ((|#3| |#2| |#2|) 36)) (-3249 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4449 "*"))))) (-3106 ((|#3| |#2| |#2|) 38)) (-2925 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4449 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4294 (|#3| |#2| |#2|)) (-15 -3106 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4449 "*"))) (PROGN (-15 -3249 (|#1| |#2| |#2|)) (-15 -2925 (|#1| |#2|))) |%noBranch|)) (-1057) (-1251 |#1|) (-692 |#1| |#4| |#5|) (-377 |#1|) (-377 |#1|)) (T -104))
+((-2925 (*1 *2 *3) (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2)) (-4 *4 (-692 *2 *5 *6)))) (-3249 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2)) (-4 *4 (-692 *2 *5 *6)))) (-3106 (*1 *2 *3 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)))) (-4294 (*1 *2 *3 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)))))
+(-10 -7 (-15 -4294 (|#3| |#2| |#2|)) (-15 -3106 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4449 "*"))) (PROGN (-15 -3249 (|#1| |#2| |#2|)) (-15 -2925 (|#1| |#2|))) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1775 (((-649 (-1185))) 37)) (-2027 (((-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226)))) (-1185)) 39)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-105) (-13 (-1108) (-10 -7 (-15 -1775 ((-649 (-1185)))) (-15 -2027 ((-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226)))) (-1185))) (-6 -4447)))) (T -105))
+((-1775 (*1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-105)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226))))) (-5 *1 (-105)))))
+(-13 (-1108) (-10 -7 (-15 -1775 ((-649 (-1185)))) (-15 -2027 ((-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226)))) (-1185))) (-6 -4447)))
+((-3423 (($ (-649 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3423 (|#1| (-649 |#2|)))) (-107 |#2|) (-1225)) (T -106))
+NIL
+(-10 -8 (-15 -3423 (|#1| (-649 |#2|))))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-107 |#1|) (-140) (-1225)) (T -107))
+((-3423 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-107 *3)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))) (-3894 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))))
+(-13 (-494 |t#1|) (-10 -8 (-6 -4448) (-15 -3423 ($ (-649 |t#1|))) (-15 -1781 (|t#1| $)) (-15 -3894 ($ |t#1| $)) (-15 -1877 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-569) $) NIL (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3465 (((-569) $) NIL (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL) (((-1012 2) $) 10)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-569) $) NIL (|has| (-569) (-550)))) (-3495 (($ (-412 (-569))) 9)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3035 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
+(((-108) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 2)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3495 ($ (-412 (-569))))))) (T -108))
+((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))))
+(-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 2)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3495 ($ (-412 (-569))))))
+((-2903 (((-649 (-971)) $) 13)) (-3573 (((-511) $) 9)) (-3796 (((-867) $) 20)) (-2012 (($ (-511) (-649 (-971))) 15)))
+(((-109) (-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2903 ((-649 (-971)) $)) (-15 -2012 ($ (-511) (-649 (-971))))))) (T -109))
+((-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-649 (-971))) (-5 *1 (-109)))) (-2012 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2903 ((-649 (-971)) $)) (-15 -2012 ($ (-511) (-649 (-971))))))
+((-2417 (((-112) $ $) NIL)) (-2436 (($ $) NIL)) (-1783 (($ $ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-112) $ (-1242 (-569)) (-112)) NIL (|has| $ (-6 -4448))) (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-1698 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3598 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3846 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4448)))) (-3776 (((-112) $ (-569)) NIL)) (-4036 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1108))) (((-569) (-112) $) NIL (|has| (-112) (-1108))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2882 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-1771 (($ $ $) NIL)) (-1749 (($ $) NIL)) (-3143 (($ $ $) NIL)) (-4300 (($ (-776) (-112)) 10)) (-1918 (($ $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL)) (-4198 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2009 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL)) (-3834 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-112) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1682 (($ $ (-112)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-4199 (((-649 (-112)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (($ $ (-1242 (-569))) NIL) (((-112) $ (-569)) NIL) (((-112) $ (-569) (-112)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3560 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3809 (($ (-649 (-112))) NIL)) (-2443 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3796 (((-867) $) NIL)) (-3251 (($ (-776) (-112)) 11)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1759 (($ $ $) NIL)) (-4419 (($ $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-4406 (($ $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -3251 ($ (-776) (-112)))))) (T -110))
+((-3251 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -3251 ($ (-776) (-112)))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+(((-111 |#1| |#2|) (-140) (-1057) (-1057)) (T -111))
+NIL
+(-13 (-653 |t#1|) (-1064 |t#2|) (-10 -7 (-6 -4442) (-6 -4441)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-2436 (($ $) 10)) (-1783 (($ $ $) 15)) (-3018 (($) 7 T CONST)) (-4266 (($ $) 6)) (-3473 (((-776)) 24)) (-3406 (($) 32)) (-1771 (($ $ $) 13)) (-1749 (($ $) 9)) (-3143 (($ $ $) 16)) (-1918 (($ $ $) 17)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) 30)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 28)) (-3625 (($ $ $) 20)) (-3547 (((-1128) $) NIL)) (-1882 (($) 8 T CONST)) (-2069 (($ $ $) 21)) (-1410 (((-541) $) 34)) (-3796 (((-867) $) 36)) (-1520 (((-112) $ $) NIL)) (-1759 (($ $ $) 11)) (-4419 (($ $ $) 14)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 19)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 22)) (-4406 (($ $ $) 12)))
+(((-112) (-13 (-849) (-666) (-975) (-619 (-541)) (-10 -8 (-15 -1783 ($ $ $)) (-15 -1918 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -4266 ($ $))))) (T -112))
+((-1783 (*1 *1 *1 *1) (-5 *1 (-112))) (-1918 (*1 *1 *1 *1) (-5 *1 (-112))) (-3143 (*1 *1 *1 *1) (-5 *1 (-112))) (-4266 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-849) (-666) (-975) (-619 (-541)) (-10 -8 (-15 -1783 ($ $ $)) (-15 -1918 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -4266 ($ $))))
+((-2924 (((-3 (-1 |#1| (-649 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-649 |#1|))) 11) (((-3 |#1| "failed") (-114) (-649 |#1|)) 25)) (-3581 (((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-649 (-1 |#1| (-649 |#1|)))) 30)) (-4340 (((-114) |#1|) 63)) (-4070 (((-3 |#1| "failed") (-114)) 58)))
+(((-113 |#1|) (-10 -7 (-15 -2924 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -2924 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -2924 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2924 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -3581 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -3581 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3581 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -4340 ((-114) |#1|)) (-15 -4070 ((-3 |#1| "failed") (-114)))) (-1108)) (T -113))
+((-4070 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1108)))) (-4340 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1108)))) (-3581 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1108)))) (-3581 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-3581 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-2924 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1108)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-2924 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1108)))))
+(-10 -7 (-15 -2924 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -2924 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -2924 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2924 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -3581 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -3581 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3581 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -4340 ((-114) |#1|)) (-15 -4070 ((-3 |#1| "failed") (-114))))
+((-2417 (((-112) $ $) NIL)) (-3766 (((-776) $) 91) (($ $ (-776)) 37)) (-2987 (((-112) $) 41)) (-1572 (($ $ (-1167) (-779)) 58) (($ $ (-511) (-779)) 33)) (-3698 (($ $ (-45 (-1167) (-779))) 16)) (-3125 (((-3 (-779) "failed") $ (-1167)) 27) (((-696 (-779)) $ (-511)) 32)) (-2903 (((-45 (-1167) (-779)) $) 15)) (-3746 (($ (-1185)) 20) (($ (-1185) (-776)) 23) (($ (-1185) (-55)) 24)) (-1788 (((-112) $) 39)) (-2853 (((-112) $) 43)) (-3573 (((-1185) $) 8)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1825 (((-112) $ (-1185)) 11)) (-4207 (($ $ (-1 (-541) (-649 (-541)))) 64) (((-3 (-1 (-541) (-649 (-541))) "failed") $) 71)) (-3547 (((-1128) $) NIL)) (-2817 (((-112) $ (-511)) 36)) (-2286 (($ $ (-1 (-112) $ $)) 45)) (-4158 (((-3 (-1 (-867) (-649 (-867))) "failed") $) 69) (($ $ (-1 (-867) (-649 (-867)))) 51) (($ $ (-1 (-867) (-867))) 53)) (-2985 (($ $ (-1167)) 55) (($ $ (-511)) 56)) (-3962 (($ $) 77)) (-3556 (($ $ (-1 (-112) $ $)) 46)) (-3796 (((-867) $) 60)) (-1520 (((-112) $ $) NIL)) (-3661 (($ $ (-511)) 34)) (-3324 (((-55) $) 72)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 89)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 103)))
+(((-114) (-13 (-855) (-840 (-1185)) (-10 -8 (-15 -2903 ((-45 (-1167) (-779)) $)) (-15 -3962 ($ $)) (-15 -3746 ($ (-1185))) (-15 -3746 ($ (-1185) (-776))) (-15 -3746 ($ (-1185) (-55))) (-15 -1788 ((-112) $)) (-15 -2987 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -3766 ((-776) $)) (-15 -3766 ($ $ (-776))) (-15 -2286 ($ $ (-1 (-112) $ $))) (-15 -3556 ($ $ (-1 (-112) $ $))) (-15 -4158 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4158 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4158 ($ $ (-1 (-867) (-867)))) (-15 -4207 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4207 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -2817 ((-112) $ (-511))) (-15 -3661 ($ $ (-511))) (-15 -2985 ($ $ (-1167))) (-15 -2985 ($ $ (-511))) (-15 -3125 ((-3 (-779) "failed") $ (-1167))) (-15 -3125 ((-696 (-779)) $ (-511))) (-15 -1572 ($ $ (-1167) (-779))) (-15 -1572 ($ $ (-511) (-779))) (-15 -3698 ($ $ (-45 (-1167) (-779))))))) (T -114))
+((-2903 (*1 *2 *1) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114)))) (-3962 (*1 *1 *1) (-5 *1 (-114))) (-3746 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-114)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *1 (-114)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-55)) (-5 *1 (-114)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3556 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4158 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-867))) (-5 *1 (-114)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-4207 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3661 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-2985 (*1 *1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-114)))) (-2985 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-3125 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-779)) (-5 *1 (-114)))) (-3125 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114)))) (-1572 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-779)) (-5 *1 (-114)))) (-1572 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114)))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114)))))
+(-13 (-855) (-840 (-1185)) (-10 -8 (-15 -2903 ((-45 (-1167) (-779)) $)) (-15 -3962 ($ $)) (-15 -3746 ($ (-1185))) (-15 -3746 ($ (-1185) (-776))) (-15 -3746 ($ (-1185) (-55))) (-15 -1788 ((-112) $)) (-15 -2987 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -3766 ((-776) $)) (-15 -3766 ($ $ (-776))) (-15 -2286 ($ $ (-1 (-112) $ $))) (-15 -3556 ($ $ (-1 (-112) $ $))) (-15 -4158 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4158 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4158 ($ $ (-1 (-867) (-867)))) (-15 -4207 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4207 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -2817 ((-112) $ (-511))) (-15 -3661 ($ $ (-511))) (-15 -2985 ($ $ (-1167))) (-15 -2985 ($ $ (-511))) (-15 -3125 ((-3 (-779) "failed") $ (-1167))) (-15 -3125 ((-696 (-779)) $ (-511))) (-15 -1572 ($ $ (-1167) (-779))) (-15 -1572 ($ $ (-511) (-779))) (-15 -3698 ($ $ (-45 (-1167) (-779))))))
+((-3735 (((-569) |#2|) 41)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -3735 ((-569) |#2|))) (-13 (-367) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -115))
+((-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-1046 (-412 *2)))) (-5 *2 (-569)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -3735 ((-569) |#2|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ (-569)) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1978 (($ (-1181 (-569)) (-569)) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-4337 (($ $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1466 (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 (((-569)) NIL)) (-4074 (((-569) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3166 (($ $ (-569)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-1165 (-569)) $) NIL)) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-569) $ (-569)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
(((-116 |#1|) (-874 |#1|) (-569)) (T -116))
NIL
(-874 |#1|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| (-116 |#1|) (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-116 |#1|) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-116 |#1|) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-116 |#1|) (-1044 (-569))))) (-3148 (((-116 |#1|) $) NIL) (((-1183) $) NIL (|has| (-116 |#1|) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-116 |#1|) (-1044 (-569)))) (((-569) $) NIL (|has| (-116 |#1|) (-1044 (-569))))) (-3292 (($ $) NIL) (($ (-569) $) NIL)) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-116 |#1|))) (|:| |vec| (-1273 (-116 |#1|)))) (-694 $) (-1273 $)) NIL) (((-694 (-116 |#1|)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-116 |#1|) (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-116 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-116 |#1|) (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 (((-116 |#1|) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1158)))) (-4327 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-3969 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-1344 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-116 |#1|) (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| (-116 |#1|) (-310)))) (-2478 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-116 |#1|) (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 (-116 |#1|)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-297 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-297 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-1183)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-519 (-1183) (-116 |#1|)))) (($ $ (-1183) (-116 |#1|)) NIL (|has| (-116 |#1|) (-519 (-1183) (-116 |#1|))))) (-1578 (((-776) $) NIL)) (-1866 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-289 (-116 |#1|) (-116 |#1|))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1528 (($ $) NIL)) (-4409 (((-116 |#1|) $) NIL)) (-1408 (((-898 (-569)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-116 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-116 |#1|) (-1028))) (((-226) $) NIL (|has| (-116 |#1|) (-1028)))) (-3471 (((-175 (-412 (-569))) $) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-116 |#1|)) NIL) (($ (-1183)) NIL (|has| (-116 |#1|) (-1044 (-1183))))) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))) (|has| (-116 |#1|) (-145))))) (-3302 (((-776)) NIL T CONST)) (-2586 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3088 (((-412 (-569)) $ (-569)) NIL)) (-3070 (($ $) NIL (|has| (-116 |#1|) (-825)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1183)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2976 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-3032 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-998 (-116 |#1|)) (-10 -8 (-15 -3088 ((-412 (-569)) $ (-569))) (-15 -3471 ((-175 (-412 (-569))) $)) (-15 -3292 ($ $)) (-15 -3292 ($ (-569) $)))) (-569)) (T -117))
-((-3088 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569)))) (-3292 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569)))) (-3292 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-998 (-116 |#1|)) (-10 -8 (-15 -3088 ((-412 (-569)) $ (-569))) (-15 -3471 ((-175 (-412 (-569))) $)) (-15 -3292 ($ $)) (-15 -3292 ($ (-569) $))))
-((-3940 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-4035 (((-649 $) $) 31)) (-3759 (((-112) $ $) 36)) (-1655 (((-112) |#2| $) 40)) (-2273 (((-649 |#2|) $) 25)) (-2703 (((-112) $) 18)) (-1866 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2102 (((-112) $) 57)) (-3793 (((-867) $) 47)) (-3500 (((-649 $) $) 32)) (-2919 (((-112) $ $) 38)) (-2426 (((-776) $) 50)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -3940 (|#1| |#1| "right" |#1|)) (-15 -3940 (|#1| |#1| "left" |#1|)) (-15 -1866 (|#1| |#1| "right")) (-15 -1866 (|#1| |#1| "left")) (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -3759 ((-112) |#1| |#1|)) (-15 -2273 ((-649 |#2|) |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1866 (|#2| |#1| "value")) (-15 -2703 ((-112) |#1|)) (-15 -4035 ((-649 |#1|) |#1|)) (-15 -3500 ((-649 |#1|) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -1655 ((-112) |#2| |#1|)) (-15 -2426 ((-776) |#1|))) (-119 |#2|) (-1223)) (T -118))
-NIL
-(-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -3940 (|#1| |#1| "right" |#1|)) (-15 -3940 (|#1| |#1| "left" |#1|)) (-15 -1866 (|#1| |#1| "right")) (-15 -1866 (|#1| |#1| "left")) (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -3759 ((-112) |#1| |#1|)) (-15 -2273 ((-649 |#2|) |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1866 (|#2| |#1| "value")) (-15 -2703 ((-112) |#1|)) (-15 -4035 ((-649 |#1|) |#1|)) (-15 -3500 ((-649 |#1|) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -1655 ((-112) |#2| |#1|)) (-15 -2426 ((-776) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-1419 (($ $ $) 53 (|has| $ (-6 -4445)))) (-4423 (($ $ $) 55 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445))) (($ $ "left" $) 56 (|has| $ (-6 -4445))) (($ $ "right" $) 54 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-4188 (($) 7 T CONST)) (-4407 (($ $) 58)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-4395 (($ $) 60)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3947 (((-569) $ $) 45)) (-2102 (((-112) $) 47)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-119 |#1|) (-140) (-1223)) (T -119))
-((-4395 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-4407 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-3940 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4445)) (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-4423 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))) (-3940 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4445)) (-4 *1 (-119 *3)) (-4 *3 (-1223)))) (-1419 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))))
-(-13 (-1016 |t#1|) (-10 -8 (-15 -4395 ($ $)) (-15 -1866 ($ $ "left")) (-15 -4407 ($ $)) (-15 -1866 ($ $ "right")) (IF (|has| $ (-6 -4445)) (PROGN (-15 -3940 ($ $ "left" $)) (-15 -4423 ($ $ $)) (-15 -3940 ($ $ "right" $)) (-15 -1419 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-2545 (((-112) |#1|) 29)) (-1534 (((-776) (-776)) 28) (((-776)) 27)) (-1423 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-120 |#1|) (-10 -7 (-15 -1423 ((-112) |#1|)) (-15 -1423 ((-112) |#1| (-112))) (-15 -1534 ((-776))) (-15 -1534 ((-776) (-776))) (-15 -2545 ((-112) |#1|))) (-1249 (-569))) (T -120))
-((-2545 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1534 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1423 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))) (-1423 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
-(-10 -7 (-15 -1423 ((-112) |#1|)) (-15 -1423 ((-112) |#1| (-112))) (-15 -1534 ((-776))) (-15 -1534 ((-776) (-776))) (-15 -2545 ((-112) |#1|)))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) 18)) (-3067 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-1419 (($ $ $) 21 (|has| $ (-6 -4445)))) (-4423 (($ $ $) 23 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) (($ $ "left" $) NIL (|has| $ (-6 -4445))) (($ $ "right" $) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4407 (($ $) 20)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3344 (($ $ |#1| $) 27)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-4395 (($ $) 22)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-2677 (($ |#1| $) 28)) (-3813 (($ |#1| $) 15)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 17)) (-3597 (($) 11)) (-1866 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3947 (((-569) $ $) NIL)) (-2102 (((-112) $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2783 (($ (-649 |#1|)) 16)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4445) (-6 -4444) (-15 -2783 ($ (-649 |#1|))) (-15 -3813 ($ |#1| $)) (-15 -2677 ($ |#1| $)) (-15 -3067 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-855)) (T -121))
-((-2783 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-2677 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-3067 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-855)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4445) (-6 -4444) (-15 -2783 ($ (-649 |#1|))) (-15 -3813 ($ |#1| $)) (-15 -2677 ($ |#1| $)) (-15 -3067 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2436 (($ $) 13)) (-1745 (($ $) 11)) (-2905 (($ $ $) 23)) (-3028 (($ $ $) 21)) (-4419 (($ $ $) 19)) (-4404 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4419 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4419 (|#1| |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-2436 (($ $) 104)) (-1780 (($ $ $) 26)) (-4321 (((-1278) $ (-569) (-569)) 67 (|has| $ (-6 -4445)))) (-2031 (((-112) $) 99 (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3012 (($ $) 103 (-12 (|has| (-112) (-855)) (|has| $ (-6 -4445)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4445)))) (-3355 (($ $) 98 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-2716 (((-112) $ (-776)) 38)) (-3940 (((-112) $ (-1240 (-569)) (-112)) 89 (|has| $ (-6 -4445))) (((-112) $ (-569) (-112)) 55 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4444)))) (-4188 (($) 39 T CONST)) (-4380 (($ $) 101 (|has| $ (-6 -4445)))) (-2248 (($ $) 91)) (-3547 (($ $) 69 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4444))) (($ (-112) $) 70 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4444))))) (-3596 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4444))))) (-3843 (((-112) $ (-569) (-112)) 54 (|has| $ (-6 -4445)))) (-3773 (((-112) $ (-569)) 56)) (-4034 (((-569) (-112) $ (-569)) 96 (|has| (-112) (-1106))) (((-569) (-112) $) 95 (|has| (-112) (-1106))) (((-569) (-1 (-112) (-112)) $) 94)) (-2880 (((-649 (-112)) $) 46 (|has| $ (-6 -4444)))) (-1769 (($ $ $) 27)) (-1745 (($ $) 31)) (-2905 (($ $ $) 29)) (-4295 (($ (-776) (-112)) 78)) (-3028 (($ $ $) 30)) (-1689 (((-112) $ (-776)) 37)) (-1420 (((-569) $) 64 (|has| (-569) (-855)))) (-3377 (($ $ $) 14)) (-2126 (($ $ $) 97 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3040 (((-649 (-112)) $) 47 (|has| $ (-6 -4444)))) (-1655 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 63 (|has| (-569) (-855)))) (-3969 (($ $ $) 15)) (-3831 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-2433 (((-112) $ (-776)) 36)) (-1550 (((-1165) $) 10)) (-4294 (($ $ $ (-569)) 88) (($ (-112) $ (-569)) 87)) (-1755 (((-649 (-569)) $) 61)) (-3748 (((-112) (-569) $) 60)) (-3545 (((-1126) $) 11)) (-3510 (((-112) $) 65 (|has| (-569) (-855)))) (-3123 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-4420 (($ $ (-112)) 66 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-112)) (-649 (-112))) 53 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-297 (-112))) 51 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-649 (-297 (-112)))) 50 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))))) (-2834 (((-112) $ $) 32)) (-1650 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-3851 (((-649 (-112)) $) 59)) (-3218 (((-112) $) 35)) (-3597 (($) 34)) (-1866 (($ $ (-1240 (-569))) 84) (((-112) $ (-569)) 58) (((-112) $ (-569) (-112)) 57)) (-4325 (($ $ (-1240 (-569))) 86) (($ $ (-569)) 85)) (-3558 (((-776) (-112) $) 48 (-12 (|has| (-112) (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4444)))) (-1938 (($ $ $ (-569)) 100 (|has| $ (-6 -4445)))) (-3959 (($ $) 33)) (-1408 (((-541) $) 68 (|has| (-112) (-619 (-541))))) (-3806 (($ (-649 (-112))) 77)) (-2441 (($ (-649 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-3037 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4444)))) (-1756 (($ $ $) 28)) (-4419 (($ $ $) 106)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (-4404 (($ $ $) 105)) (-2426 (((-776) $) 40 (|has| $ (-6 -4444)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-116 |#1|) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-116 |#1|) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-116 |#1|) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-116 |#1|) (-1046 (-569))))) (-3150 (((-116 |#1|) $) NIL) (((-1185) $) NIL (|has| (-116 |#1|) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-116 |#1|) (-1046 (-569)))) (((-569) $) NIL (|has| (-116 |#1|) (-1046 (-569))))) (-2612 (($ $) NIL) (($ (-569) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-116 |#1|))) (|:| |vec| (-1275 (-116 |#1|)))) (-694 $) (-1275 $)) NIL) (((-694 (-116 |#1|)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-116 |#1|) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-116 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-116 |#1|) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-116 |#1|) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1160)))) (-2051 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-2839 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-1346 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-116 |#1|) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-116 |#1|) (-310)))) (-3465 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-116 |#1|)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-297 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-297 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-1185)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-519 (-1185) (-116 |#1|)))) (($ $ (-1185) (-116 |#1|)) NIL (|has| (-116 |#1|) (-519 (-1185) (-116 |#1|))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-289 (-116 |#1|) (-116 |#1|))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-116 |#1|) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-116 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-116 |#1|) (-1030))) (((-226) $) NIL (|has| (-116 |#1|) (-1030)))) (-1855 (((-175 (-412 (-569))) $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-116 |#1|)) NIL) (($ (-1185)) NIL (|has| (-116 |#1|) (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))) (|has| (-116 |#1|) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ (-569)) NIL)) (-2271 (($ $) NIL (|has| (-116 |#1|) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-3035 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-1000 (-116 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) (-569)) (T -117))
+((-3091 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569)))) (-2612 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-1000 (-116 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $))))
+((-3943 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2280 (((-649 $) $) 31)) (-1534 (((-112) $ $) 36)) (-2004 (((-112) |#2| $) 40)) (-2275 (((-649 |#2|) $) 25)) (-1887 (((-112) $) 18)) (-1869 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3966 (((-112) $) 57)) (-3796 (((-867) $) 47)) (-4001 (((-649 $) $) 32)) (-2920 (((-112) $ $) 38)) (-2428 (((-776) $) 50)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -3943 (|#1| |#1| "right" |#1|)) (-15 -3943 (|#1| |#1| "left" |#1|)) (-15 -1869 (|#1| |#1| "right")) (-15 -1869 (|#1| |#1| "left")) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -2275 ((-649 |#2|) |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -2428 ((-776) |#1|))) (-119 |#2|) (-1225)) (T -118))
+NIL
+(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -3943 (|#1| |#1| "right" |#1|)) (-15 -3943 (|#1| |#1| "left" |#1|)) (-15 -1869 (|#1| |#1| "right")) (-15 -1869 (|#1| |#1| "left")) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -2275 ((-649 |#2|) |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -2428 ((-776) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 53 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 55 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) (($ $ "left" $) 56 (|has| $ (-6 -4448))) (($ $ "right" $) 54 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-4410 (($ $) 58)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-4398 (($ $) 60)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-119 |#1|) (-140) (-1225)) (T -119))
+((-4398 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-4410 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-3943 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-1718 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225)))) (-3943 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-4416 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225)))))
+(-13 (-1018 |t#1|) (-10 -8 (-15 -4398 ($ $)) (-15 -1869 ($ $ "left")) (-15 -4410 ($ $)) (-15 -1869 ($ $ "right")) (IF (|has| $ (-6 -4448)) (PROGN (-15 -3943 ($ $ "left" $)) (-15 -1718 ($ $ $)) (-15 -3943 ($ $ "right" $)) (-15 -4416 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-2854 (((-112) |#1|) 29)) (-3246 (((-776) (-776)) 28) (((-776)) 27)) (-1335 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-120 |#1|) (-10 -7 (-15 -1335 ((-112) |#1|)) (-15 -1335 ((-112) |#1| (-112))) (-15 -3246 ((-776))) (-15 -3246 ((-776) (-776))) (-15 -2854 ((-112) |#1|))) (-1251 (-569))) (T -120))
+((-2854 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-3246 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-3246 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-1335 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-1335 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))))
+(-10 -7 (-15 -1335 ((-112) |#1|)) (-15 -1335 ((-112) |#1| (-112))) (-15 -3246 ((-776))) (-15 -3246 ((-776) (-776))) (-15 -2854 ((-112) |#1|)))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 18)) (-2241 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-4416 (($ $ $) 21 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 23 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 20)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 27)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 22)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1645 (($ |#1| $) 28)) (-3894 (($ |#1| $) 15)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 11)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3267 (($ (-649 |#1|)) 16)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3267 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $)) (-15 -1645 ($ |#1| $)) (-15 -2241 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-855)) (T -121))
+((-3267 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))) (-3894 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-1645 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-2241 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-855)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3267 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $)) (-15 -1645 ($ |#1| $)) (-15 -2241 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2436 (($ $) 13)) (-1749 (($ $) 11)) (-3143 (($ $ $) 23)) (-1918 (($ $ $) 21)) (-4419 (($ $ $) 19)) (-4406 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -3143 (|#1| |#1| |#1|)) (-15 -1918 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -4406 (|#1| |#1| |#1|)) (-15 -4419 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -3143 (|#1| |#1| |#1|)) (-15 -1918 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -4406 (|#1| |#1| |#1|)) (-15 -4419 (|#1| |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-2436 (($ $) 104)) (-1783 (($ $ $) 26)) (-2002 (((-1280) $ (-569) (-569)) 67 (|has| $ (-6 -4448)))) (-1317 (((-112) $) 99 (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-2951 (($ $) 103 (-12 (|has| (-112) (-855)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4448)))) (-3358 (($ $) 98 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3914 (((-112) $ (-776)) 38)) (-3943 (((-112) $ (-1242 (-569)) (-112)) 89 (|has| $ (-6 -4448))) (((-112) $ (-569) (-112)) 55 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4447)))) (-4427 (($) 39 T CONST)) (-2507 (($ $) 101 (|has| $ (-6 -4448)))) (-2251 (($ $) 91)) (-3550 (($ $) 69 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4447))) (($ (-112) $) 70 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-3598 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-3846 (((-112) $ (-569) (-112)) 54 (|has| $ (-6 -4448)))) (-3776 (((-112) $ (-569)) 56)) (-4036 (((-569) (-112) $ (-569)) 96 (|has| (-112) (-1108))) (((-569) (-112) $) 95 (|has| (-112) (-1108))) (((-569) (-1 (-112) (-112)) $) 94)) (-2882 (((-649 (-112)) $) 46 (|has| $ (-6 -4447)))) (-1771 (($ $ $) 27)) (-1749 (($ $) 31)) (-3143 (($ $ $) 29)) (-4300 (($ (-776) (-112)) 78)) (-1918 (($ $ $) 30)) (-2314 (((-112) $ (-776)) 37)) (-4426 (((-569) $) 64 (|has| (-569) (-855)))) (-3380 (($ $ $) 14)) (-4198 (($ $ $) 97 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2009 (((-649 (-112)) $) 47 (|has| $ (-6 -4447)))) (-2004 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 63 (|has| (-569) (-855)))) (-2839 (($ $ $) 15)) (-3834 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4254 (((-112) $ (-776)) 36)) (-3435 (((-1167) $) 10)) (-4298 (($ $ $ (-569)) 88) (($ (-112) $ (-569)) 87)) (-1696 (((-649 (-569)) $) 61)) (-1414 (((-112) (-569) $) 60)) (-3547 (((-1128) $) 11)) (-3513 (((-112) $) 65 (|has| (-569) (-855)))) (-1574 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-1682 (($ $ (-112)) 66 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-112)) (-649 (-112))) 53 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-297 (-112))) 51 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-649 (-297 (-112)))) 50 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))))) (-3790 (((-112) $ $) 32)) (-1957 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-4199 (((-649 (-112)) $) 59)) (-3162 (((-112) $) 35)) (-3635 (($) 34)) (-1869 (($ $ (-1242 (-569))) 84) (((-112) $ (-569)) 58) (((-112) $ (-569) (-112)) 57)) (-4328 (($ $ (-1242 (-569))) 86) (($ $ (-569)) 85)) (-3560 (((-776) (-112) $) 48 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) 100 (|has| $ (-6 -4448)))) (-3962 (($ $) 33)) (-1410 (((-541) $) 68 (|has| (-112) (-619 (-541))))) (-3809 (($ (-649 (-112))) 77)) (-2443 (($ (-649 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4447)))) (-1759 (($ $ $) 28)) (-4419 (($ $ $) 106)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-4406 (($ $ $) 105)) (-2428 (((-776) $) 40 (|has| $ (-6 -4447)))))
(((-123) (-140)) (T -123))
-((-1745 (*1 *1 *1) (-4 *1 (-123))) (-3028 (*1 *1 *1 *1) (-4 *1 (-123))) (-2905 (*1 *1 *1 *1) (-4 *1 (-123))) (-1756 (*1 *1 *1 *1) (-4 *1 (-123))) (-1769 (*1 *1 *1 *1) (-4 *1 (-123))) (-1780 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-855) (-666) (-19 (-112)) (-10 -8 (-15 -1745 ($ $)) (-15 -3028 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -1780 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-112)) . T) ((-619 (-541)) |has| (-112) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))) ((-656 #0#) . T) ((-666) . T) ((-19 #0#) . T) ((-855) . T) ((-1106) . T) ((-1223) . T))
-((-3831 (($ (-1 |#2| |#2|) $) 22)) (-3959 (($ $) 16)) (-2426 (((-776) $) 25)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -3959 (|#1| |#1|))) (-125 |#2|) (-1106)) (T -124))
-NIL
-(-10 -8 (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -3959 (|#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-1419 (($ $ $) 53 (|has| $ (-6 -4445)))) (-4423 (($ $ $) 55 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445))) (($ $ "left" $) 56 (|has| $ (-6 -4445))) (($ $ "right" $) 54 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-4188 (($) 7 T CONST)) (-4407 (($ $) 58)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-3344 (($ $ |#1| $) 61)) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-4395 (($ $) 60)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3947 (((-569) $ $) 45)) (-2102 (((-112) $) 47)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-125 |#1|) (-140) (-1106)) (T -125))
-((-3344 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1106)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4445) (-6 -4444) (-15 -3344 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-119 |#1|) . T) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) 18)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) 22 (|has| $ (-6 -4445)))) (-1419 (($ $ $) 23 (|has| $ (-6 -4445)))) (-4423 (($ $ $) 21 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) (($ $ "left" $) NIL (|has| $ (-6 -4445))) (($ $ "right" $) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4407 (($ $) 24)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3344 (($ $ |#1| $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-4395 (($ $) NIL)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3813 (($ |#1| $) 15)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 17)) (-3597 (($) 11)) (-1866 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3947 (((-569) $ $) NIL)) (-2102 (((-112) $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 20)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1960 (($ (-649 |#1|)) 16)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4445) (-15 -1960 ($ (-649 |#1|))) (-15 -3813 ($ |#1| $)))) (-855)) (T -126))
-((-1960 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4445) (-15 -1960 ($ (-649 |#1|))) (-15 -3813 ($ |#1| $))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) 30)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) 32 (|has| $ (-6 -4445)))) (-1419 (($ $ $) 36 (|has| $ (-6 -4445)))) (-4423 (($ $ $) 34 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) (($ $ "left" $) NIL (|has| $ (-6 -4445))) (($ $ "right" $) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4407 (($ $) 23)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3344 (($ $ |#1| $) 16)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-4395 (($ $) 22)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) 25)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 20)) (-3597 (($) 11)) (-1866 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3947 (((-569) $ $) NIL)) (-2102 (((-112) $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2065 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 10 (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2065 ($ |#1|)) (-15 -2065 ($ $ |#1| $)))) (-1106)) (T -127))
-((-2065 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106)))) (-2065 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -2065 ($ |#1|)) (-15 -2065 ($ $ |#1| $))))
-((-2415 (((-112) $ $) NIL (|has| (-129) (-1106)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-855)))) (-3012 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| (-129) (-855))))) (-3355 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 (((-129) $ (-569) (-129)) 26 (|has| $ (-6 -4445))) (((-129) $ (-1240 (-569)) (-129)) NIL (|has| $ (-6 -4445)))) (-2173 (((-776) $ (-776)) 34)) (-1415 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-129) (-1106))))) (-1696 (($ (-129) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-129) (-1106)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4444)) (|has| (-129) (-1106)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4444))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4444)))) (-3843 (((-129) $ (-569) (-129)) 25 (|has| $ (-6 -4445)))) (-3773 (((-129) $ (-569)) 20)) (-4034 (((-569) (-1 (-112) (-129)) $) NIL) (((-569) (-129) $) NIL (|has| (-129) (-1106))) (((-569) (-129) $ (-569)) NIL (|has| (-129) (-1106)))) (-2880 (((-649 (-129)) $) NIL (|has| $ (-6 -4444)))) (-4295 (($ (-776) (-129)) 14)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 27 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| (-129) (-855)))) (-2126 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-855)))) (-3040 (((-649 (-129)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-129) (-1106))))) (-1535 (((-569) $) 30 (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-129) (-855)))) (-3831 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| (-129) (-1106)))) (-4294 (($ (-129) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| (-129) (-1106)))) (-3510 (((-129) $) NIL (|has| (-569) (-855)))) (-3123 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-4420 (($ $ (-129)) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-129)))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106)))) (($ $ (-297 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106)))) (($ $ (-649 (-129)) (-649 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-129) (-1106))))) (-3851 (((-649 (-129)) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 12)) (-1866 (((-129) $ (-569) (-129)) NIL) (((-129) $ (-569)) 23) (($ $ (-1240 (-569))) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4444))) (((-776) (-129) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-129) (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-129) (-619 (-541))))) (-3806 (($ (-649 (-129))) 47)) (-2441 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-649 $)) NIL)) (-3793 (((-964 (-129)) $) 35) (((-1165) $) 44) (((-867) $) NIL (|has| (-129) (-618 (-867))))) (-2281 (((-776) $) 18)) (-2363 (($ (-776)) 8)) (-1441 (((-112) $ $) NIL (|has| (-129) (-1106)))) (-3037 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2919 (((-112) $ $) 32 (|has| (-129) (-1106)))) (-2964 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2426 (((-776) $) 15 (|has| $ (-6 -4444)))))
-(((-128) (-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1165)) (-10 -8 (-15 -2363 ($ (-776))) (-15 -2281 ((-776) $)) (-15 -2173 ((-776) $ (-776))) (-6 -4444)))) (T -128))
-((-2363 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-2173 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1165)) (-10 -8 (-15 -2363 ($ (-776))) (-15 -2281 ((-776) $)) (-15 -2173 ((-776) $ (-776))) (-6 -4444)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) 26)) (-4188 (($) NIL T CONST)) (-3403 (($) 35)) (-3377 (($ $ $) NIL) (($) 24 T CONST)) (-3969 (($ $ $) NIL) (($) 25 T CONST)) (-2855 (((-927) $) 33)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) 31)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-3721 (($ (-776)) 8)) (-1367 (($ $ $) 37)) (-1351 (($ $ $) 36)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) 22)) (-2954 (((-112) $ $) 20)) (-2919 (((-112) $ $) 18)) (-2964 (((-112) $ $) 21)) (-2942 (((-112) $ $) 19)))
-(((-129) (-13 (-849) (-495 (-144)) (-10 -8 (-15 -3721 ($ (-776))) (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))) (T -129))
-((-3721 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))) (-1351 (*1 *1 *1 *1) (-5 *1 (-129))) (-1367 (*1 *1 *1 *1) (-5 *1 (-129))) (-4188 (*1 *1) (-5 *1 (-129))))
-(-13 (-849) (-495 (-144)) (-10 -8 (-15 -3721 ($ (-776))) (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))
+((-1749 (*1 *1 *1) (-4 *1 (-123))) (-1918 (*1 *1 *1 *1) (-4 *1 (-123))) (-3143 (*1 *1 *1 *1) (-4 *1 (-123))) (-1759 (*1 *1 *1 *1) (-4 *1 (-123))) (-1771 (*1 *1 *1 *1) (-4 *1 (-123))) (-1783 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-855) (-666) (-19 (-112)) (-10 -8 (-15 -1749 ($ $)) (-15 -1918 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-112)) . T) ((-619 (-541)) |has| (-112) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))) ((-656 #0#) . T) ((-666) . T) ((-19 #0#) . T) ((-855) . T) ((-1108) . T) ((-1225) . T))
+((-3834 (($ (-1 |#2| |#2|) $) 22)) (-3962 (($ $) 16)) (-2428 (((-776) $) 25)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3962 (|#1| |#1|))) (-125 |#2|) (-1108)) (T -124))
+NIL
+(-10 -8 (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3962 (|#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 53 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 55 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) (($ $ "left" $) 56 (|has| $ (-6 -4448))) (($ $ "right" $) 54 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-4410 (($ $) 58)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 61)) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-4398 (($ $) 60)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-125 |#1|) (-140) (-1108)) (T -125))
+((-3347 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1108)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3347 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-119 |#1|) . T) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 18)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) 22 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 23 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 21 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 24)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3894 (($ |#1| $) 15)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 11)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 20)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1859 (($ (-649 |#1|)) 16)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4448) (-15 -1859 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $)))) (-855)) (T -126))
+((-1859 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))) (-3894 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4448) (-15 -1859 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 30)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) 32 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 36 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 34 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 23)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 16)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 22)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) 25)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 20)) (-3635 (($) 11)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1688 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 10 (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1688 ($ |#1|)) (-15 -1688 ($ $ |#1| $)))) (-1108)) (T -127))
+((-1688 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108)))) (-1688 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -1688 ($ |#1|)) (-15 -1688 ($ $ |#1| $))))
+((-2417 (((-112) $ $) NIL (|has| (-129) (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-855)))) (-2951 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-129) (-855))))) (-3358 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-129) $ (-569) (-129)) 26 (|has| $ (-6 -4448))) (((-129) $ (-1242 (-569)) (-129)) NIL (|has| $ (-6 -4448)))) (-3447 (((-776) $ (-776)) 34)) (-1417 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-1698 (($ (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4447))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-129) $ (-569) (-129)) 25 (|has| $ (-6 -4448)))) (-3776 (((-129) $ (-569)) 20)) (-4036 (((-569) (-1 (-112) (-129)) $) NIL) (((-569) (-129) $) NIL (|has| (-129) (-1108))) (((-569) (-129) $ (-569)) NIL (|has| (-129) (-1108)))) (-2882 (((-649 (-129)) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-129)) 14)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 27 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-129) (-855)))) (-4198 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-855)))) (-2009 (((-649 (-129)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-3256 (((-569) $) 30 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-129) (-855)))) (-3834 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| (-129) (-1108)))) (-4298 (($ (-129) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| (-129) (-1108)))) (-3513 (((-129) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-1682 (($ $ (-129)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-129)))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108)))) (($ $ (-297 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108)))) (($ $ (-649 (-129)) (-649 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-4199 (((-649 (-129)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 12)) (-1869 (((-129) $ (-569) (-129)) NIL) (((-129) $ (-569)) 23) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447))) (((-776) (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-129) (-619 (-541))))) (-3809 (($ (-649 (-129))) 47)) (-2443 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-649 $)) NIL)) (-3796 (((-964 (-129)) $) 35) (((-1167) $) 44) (((-867) $) NIL (|has| (-129) (-618 (-867))))) (-2072 (((-776) $) 18)) (-1719 (($ (-776)) 8)) (-1520 (((-112) $ $) NIL (|has| (-129) (-1108)))) (-1980 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2920 (((-112) $ $) 32 (|has| (-129) (-1108)))) (-2966 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2428 (((-776) $) 15 (|has| $ (-6 -4447)))))
+(((-128) (-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1167)) (-10 -8 (-15 -1719 ($ (-776))) (-15 -2072 ((-776) $)) (-15 -3447 ((-776) $ (-776))) (-6 -4447)))) (T -128))
+((-1719 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-3447 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1167)) (-10 -8 (-15 -1719 ($ (-776))) (-15 -2072 ((-776) $)) (-15 -3447 ((-776) $ (-776))) (-6 -4447)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) 26)) (-4427 (($) NIL T CONST)) (-3406 (($) 35)) (-3380 (($ $ $) NIL) (($) 24 T CONST)) (-2839 (($ $ $) NIL) (($) 25 T CONST)) (-2731 (((-927) $) 33)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 31)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-3724 (($ (-776)) 8)) (-1368 (($ $ $) 37)) (-1353 (($ $ $) 36)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 22)) (-2956 (((-112) $ $) 20)) (-2920 (((-112) $ $) 18)) (-2966 (((-112) $ $) 21)) (-2944 (((-112) $ $) 19)))
+(((-129) (-13 (-849) (-495 (-144)) (-10 -8 (-15 -3724 ($ (-776))) (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -129))
+((-3724 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))) (-1353 (*1 *1 *1 *1) (-5 *1 (-129))) (-1368 (*1 *1 *1 *1) (-5 *1 (-129))) (-4427 (*1 *1) (-5 *1 (-129))))
+(-13 (-849) (-495 (-144)) (-10 -8 (-15 -3724 ($ (-776))) (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))
((|NonNegativeInteger|) (< |#1| 256))
-((-2415 (((-112) $ $) NIL)) (-4415 (($) 6 T CONST)) (-1552 (($) 7 T CONST)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 14)) (-1426 (($) 8 T CONST)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 10)))
-(((-130) (-13 (-1106) (-10 -8 (-15 -1552 ($) -3706) (-15 -1426 ($) -3706) (-15 -4415 ($) -3706)))) (T -130))
-((-1552 (*1 *1) (-5 *1 (-130))) (-1426 (*1 *1) (-5 *1 (-130))) (-4415 (*1 *1) (-5 *1 (-130))))
-(-13 (-1106) (-10 -8 (-15 -1552 ($) -3706) (-15 -1426 ($) -3706) (-15 -4415 ($) -3706)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
+((-2417 (((-112) $ $) NIL)) (-1639 (($) 6 T CONST)) (-3457 (($) 7 T CONST)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 14)) (-1358 (($) 8 T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 10)))
+(((-130) (-13 (-1108) (-10 -8 (-15 -3457 ($) -3709) (-15 -1358 ($) -3709) (-15 -1639 ($) -3709)))) (T -130))
+((-3457 (*1 *1) (-5 *1 (-130))) (-1358 (*1 *1) (-5 *1 (-130))) (-1639 (*1 *1) (-5 *1 (-130))))
+(-13 (-1108) (-10 -8 (-15 -3457 ($) -3709) (-15 -1358 ($) -3709) (-15 -1639 ($) -3709)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
(((-131) (-140)) (T -131))
-((-1678 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(-13 (-23) (-10 -8 (-15 -1678 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-1818 (((-1278) $ (-776)) 14)) (-4034 (((-776) $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
+((-2208 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(-13 (-23) (-10 -8 (-15 -2208 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-4114 (((-1280) $ (-776)) 14)) (-4036 (((-776) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
(((-132) (-140)) (T -132))
-((-4034 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776)))) (-1818 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1278)))))
-(-13 (-1106) (-10 -8 (-15 -4034 ((-776) $)) (-15 -1818 ((-1278) $ (-776)))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-649 (-1141)) $) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-133) (-13 (-1089) (-10 -8 (-15 -3583 ((-649 (-1141)) $))))) (T -133))
-((-3583 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-133)))))
-(-13 (-1089) (-10 -8 (-15 -3583 ((-649 (-1141)) $))))
-((-2415 (((-112) $ $) 49)) (-3192 (((-112) $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-776) "failed") $) 58)) (-3148 (((-776) $) 56)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) 37)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3954 (((-112)) 59)) (-3837 (((-112) (-112)) 61)) (-3958 (((-112) $) 30)) (-4062 (((-112) $) 55)) (-3793 (((-867) $) 28) (($ (-776)) 20)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 18 T CONST)) (-1813 (($) 19 T CONST)) (-4177 (($ (-776)) 21)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 40)) (-2919 (((-112) $ $) 32)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 35)) (-3021 (((-3 $ "failed") $ $) 42)) (-3009 (($ $ $) 38)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ $) 54)) (* (($ (-776) $) 48) (($ (-927) $) NIL) (($ $ $) 45)))
-(((-134) (-13 (-855) (-23) (-731) (-1044 (-776)) (-10 -8 (-6 (-4446 "*")) (-15 -3021 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4177 ($ (-776))) (-15 -3958 ((-112) $)) (-15 -4062 ((-112) $)) (-15 -3954 ((-112))) (-15 -3837 ((-112) (-112)))))) (T -134))
-((-3021 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-4177 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3954 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(-13 (-855) (-23) (-731) (-1044 (-776)) (-10 -8 (-6 (-4446 "*")) (-15 -3021 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4177 ($ (-776))) (-15 -3958 ((-112) $)) (-15 -4062 ((-112) $)) (-15 -3954 ((-112))) (-15 -3837 ((-112) (-112)))))
-((-3935 (((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-1344 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
-(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3935 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1344 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-569) (-776) (-173) (-173)) (T -135))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3935 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1344 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
-((-2415 (((-112) $ $) NIL)) (-4287 (($ (-649 |#3|)) 64)) (-2873 (($ $) 126) (($ $ (-569) (-569)) 125)) (-4188 (($) 20)) (-4378 (((-3 |#3| "failed") $) 86)) (-3148 ((|#3| $) NIL)) (-3424 (($ $ (-649 (-569))) 127)) (-3918 (((-649 |#3|) $) 59)) (-3975 (((-776) $) 69)) (-1667 (($ $ $) 120)) (-3156 (($) 68)) (-1550 (((-1165) $) NIL)) (-3276 (($) 19)) (-3545 (((-1126) $) NIL)) (-1866 ((|#3| $) 71) ((|#3| $ (-569)) 72) ((|#3| $ (-569) (-569)) 73) ((|#3| $ (-569) (-569) (-569)) 74) ((|#3| $ (-569) (-569) (-569) (-569)) 75) ((|#3| $ (-649 (-569))) 76)) (-3868 (((-776) $) 70)) (-2882 (($ $ (-569) $ (-569)) 121) (($ $ (-569) (-569)) 123)) (-3793 (((-867) $) 94) (($ |#3|) 95) (($ (-241 |#2| |#3|)) 102) (($ (-1148 |#2| |#3|)) 105) (($ (-649 |#3|)) 77) (($ (-649 $)) 83)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 96 T CONST)) (-1813 (($) 97 T CONST)) (-2919 (((-112) $ $) 107)) (-3021 (($ $) 113) (($ $ $) 111)) (-3009 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-569)) 116) (($ (-569) $) 115) (($ $ $) 122)))
-(((-136 |#1| |#2| |#3|) (-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -3793 ($ (-241 |#2| |#3|))) (-15 -3793 ($ (-1148 |#2| |#3|))) (-15 -3793 ($ (-649 |#3|))) (-15 -3793 ($ (-649 $))) (-15 -3975 ((-776) $)) (-15 -1866 (|#3| $)) (-15 -1866 (|#3| $ (-569))) (-15 -1866 (|#3| $ (-569) (-569))) (-15 -1866 (|#3| $ (-569) (-569) (-569))) (-15 -1866 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1866 (|#3| $ (-649 (-569)))) (-15 -1667 ($ $ $)) (-15 * ($ $ $)) (-15 -2882 ($ $ (-569) $ (-569))) (-15 -2882 ($ $ (-569) (-569))) (-15 -2873 ($ $)) (-15 -2873 ($ $ (-569) (-569))) (-15 -3424 ($ $ (-649 (-569)))) (-15 -3276 ($)) (-15 -3156 ($)) (-15 -3918 ((-649 |#3|) $)) (-15 -4287 ($ (-649 |#3|))) (-15 -4188 ($)))) (-569) (-776) (-173)) (T -136))
-((-1667 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-241 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 *2) (-4 *5 (-173)))) (-1866 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-569)) (-14 *4 (-776)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1866 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1866 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1866 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-569))) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-569)) (-14 *5 (-776)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-2882 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-2882 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-2873 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-2873 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-3424 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3276 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3156 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-649 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-4188 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))))
-(-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -3793 ($ (-241 |#2| |#3|))) (-15 -3793 ($ (-1148 |#2| |#3|))) (-15 -3793 ($ (-649 |#3|))) (-15 -3793 ($ (-649 $))) (-15 -3975 ((-776) $)) (-15 -1866 (|#3| $)) (-15 -1866 (|#3| $ (-569))) (-15 -1866 (|#3| $ (-569) (-569))) (-15 -1866 (|#3| $ (-569) (-569) (-569))) (-15 -1866 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1866 (|#3| $ (-649 (-569)))) (-15 -1667 ($ $ $)) (-15 * ($ $ $)) (-15 -2882 ($ $ (-569) $ (-569))) (-15 -2882 ($ $ (-569) (-569))) (-15 -2873 ($ $)) (-15 -2873 ($ $ (-569) (-569))) (-15 -3424 ($ $ (-649 (-569)))) (-15 -3276 ($)) (-15 -3156 ($)) (-15 -3918 ((-649 |#3|) $)) (-15 -4287 ($ (-649 |#3|))) (-15 -4188 ($))))
-((-2415 (((-112) $ $) NIL)) (-2112 (((-1141) $) 11)) (-2101 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-137) (-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))) (T -137))
-((-2101 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137)))))
-(-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3893 (((-187) $) 10)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-649 (-1141)) $) 13)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-138) (-13 (-1089) (-10 -8 (-15 -3893 ((-187) $)) (-15 -3583 ((-649 (-1141)) $))))) (T -138))
-((-3893 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-138)))))
-(-13 (-1089) (-10 -8 (-15 -3893 ((-187) $)) (-15 -3583 ((-649 (-1141)) $))))
-((-2415 (((-112) $ $) NIL)) (-1766 (((-649 (-870)) $) NIL)) (-3570 (((-511) $) NIL)) (-1550 (((-1165) $) NIL)) (-3893 (((-187) $) NIL)) (-2374 (((-112) $ (-511)) NIL)) (-3545 (((-1126) $) NIL)) (-1317 (((-649 (-112)) $) NIL)) (-3793 (((-867) $) NIL) (((-188) $) 6)) (-1441 (((-112) $ $) NIL)) (-1371 (((-55) $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-4036 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776)))) (-4114 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1280)))))
+(-13 (-1108) (-10 -8 (-15 -4036 ((-776) $)) (-15 -4114 ((-1280) $ (-776)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-133) (-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $))))) (T -133))
+((-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-133)))))
+(-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $))))
+((-2417 (((-112) $ $) 49)) (-4143 (((-112) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-776) "failed") $) 58)) (-3150 (((-776) $) 56)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) 37)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2682 (((-112)) 59)) (-4084 (((-112) (-112)) 61)) (-2733 (((-112) $) 30)) (-1347 (((-112) $) 55)) (-3796 (((-867) $) 28) (($ (-776)) 20)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 18 T CONST)) (-1815 (($) 19 T CONST)) (-4327 (($ (-776)) 21)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) 40)) (-2920 (((-112) $ $) 32)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 35)) (-3024 (((-3 $ "failed") $ $) 42)) (-3012 (($ $ $) 38)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ $) 54)) (* (($ (-776) $) 48) (($ (-927) $) NIL) (($ $ $) 45)))
+(((-134) (-13 (-855) (-23) (-731) (-1046 (-776)) (-10 -8 (-6 (-4449 "*")) (-15 -3024 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4327 ($ (-776))) (-15 -2733 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -2682 ((-112))) (-15 -4084 ((-112) (-112)))))) (T -134))
+((-3024 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-4327 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2682 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(-13 (-855) (-23) (-731) (-1046 (-776)) (-10 -8 (-6 (-4449 "*")) (-15 -3024 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4327 ($ (-776))) (-15 -2733 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -2682 ((-112))) (-15 -4084 ((-112) (-112)))))
+((-3935 (((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-1346 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3935 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1346 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-569) (-776) (-173) (-173)) (T -135))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3935 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1346 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
+((-2417 (((-112) $ $) NIL)) (-2909 (($ (-649 |#3|)) 64)) (-2937 (($ $) 126) (($ $ (-569) (-569)) 125)) (-4427 (($) 20)) (-4381 (((-3 |#3| "failed") $) 86)) (-3150 ((|#3| $) NIL)) (-1372 (($ $ (-649 (-569))) 127)) (-3921 (((-649 |#3|) $) 59)) (-3978 (((-776) $) 69)) (-2103 (($ $ $) 120)) (-3801 (($) 68)) (-3435 (((-1167) $) NIL)) (-2461 (($) 19)) (-3547 (((-1128) $) NIL)) (-1869 ((|#3| $) 71) ((|#3| $ (-569)) 72) ((|#3| $ (-569) (-569)) 73) ((|#3| $ (-569) (-569) (-569)) 74) ((|#3| $ (-569) (-569) (-569) (-569)) 75) ((|#3| $ (-649 (-569))) 76)) (-4339 (((-776) $) 70)) (-3029 (($ $ (-569) $ (-569)) 121) (($ $ (-569) (-569)) 123)) (-3796 (((-867) $) 94) (($ |#3|) 95) (($ (-241 |#2| |#3|)) 102) (($ (-1150 |#2| |#3|)) 105) (($ (-649 |#3|)) 77) (($ (-649 $)) 83)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 96 T CONST)) (-1815 (($) 97 T CONST)) (-2920 (((-112) $ $) 107)) (-3024 (($ $) 113) (($ $ $) 111)) (-3012 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-569)) 116) (($ (-569) $) 115) (($ $ $) 122)))
+(((-136 |#1| |#2| |#3|) (-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -3796 ($ (-241 |#2| |#3|))) (-15 -3796 ($ (-1150 |#2| |#3|))) (-15 -3796 ($ (-649 |#3|))) (-15 -3796 ($ (-649 $))) (-15 -3978 ((-776) $)) (-15 -1869 (|#3| $)) (-15 -1869 (|#3| $ (-569))) (-15 -1869 (|#3| $ (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-649 (-569)))) (-15 -2103 ($ $ $)) (-15 * ($ $ $)) (-15 -3029 ($ $ (-569) $ (-569))) (-15 -3029 ($ $ (-569) (-569))) (-15 -2937 ($ $)) (-15 -2937 ($ $ (-569) (-569))) (-15 -1372 ($ $ (-649 (-569)))) (-15 -2461 ($)) (-15 -3801 ($)) (-15 -3921 ((-649 |#3|) $)) (-15 -2909 ($ (-649 |#3|))) (-15 -4427 ($)))) (-569) (-776) (-173)) (T -136))
+((-2103 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-241 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 *2) (-4 *5 (-173)))) (-1869 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-569)) (-14 *4 (-776)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-569))) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-569)) (-14 *5 (-776)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3029 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-3029 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-2937 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-2937 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2461 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3801 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-649 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-4427 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))))
+(-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -3796 ($ (-241 |#2| |#3|))) (-15 -3796 ($ (-1150 |#2| |#3|))) (-15 -3796 ($ (-649 |#3|))) (-15 -3796 ($ (-649 $))) (-15 -3978 ((-776) $)) (-15 -1869 (|#3| $)) (-15 -1869 (|#3| $ (-569))) (-15 -1869 (|#3| $ (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-649 (-569)))) (-15 -2103 ($ $ $)) (-15 * ($ $ $)) (-15 -3029 ($ $ (-569) $ (-569))) (-15 -3029 ($ $ (-569) (-569))) (-15 -2937 ($ $)) (-15 -2937 ($ $ (-569) (-569))) (-15 -1372 ($ $ (-649 (-569)))) (-15 -2461 ($)) (-15 -3801 ($)) (-15 -3921 ((-649 |#3|) $)) (-15 -2909 ($ (-649 |#3|))) (-15 -4427 ($))))
+((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-137) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -137))
+((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137)))))
+(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) 10)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 13)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-138) (-13 (-1091) (-10 -8 (-15 -3896 ((-187) $)) (-15 -3586 ((-649 (-1143)) $))))) (T -138))
+((-3896 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-138)))))
+(-13 (-1091) (-10 -8 (-15 -3896 ((-187) $)) (-15 -3586 ((-649 (-1143)) $))))
+((-2417 (((-112) $ $) NIL)) (-1767 (((-649 (-870)) $) NIL)) (-3573 (((-511) $) NIL)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) NIL)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-1673 (((-649 (-112)) $) NIL)) (-3796 (((-867) $) NIL) (((-188) $) 6)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-139) (-13 (-186) (-618 (-188)))) (T -139))
NIL
(-13 (-186) (-618 (-188)))
-((-3553 (((-649 (-184 (-139))) $) 13)) (-2821 (((-649 (-184 (-139))) $) 14)) (-3684 (((-649 (-843)) $) 10)) (-1572 (((-139) $) 7)) (-3793 (((-867) $) 16)))
-(((-140) (-13 (-618 (-867)) (-10 -8 (-15 -1572 ((-139) $)) (-15 -3684 ((-649 (-843)) $)) (-15 -3553 ((-649 (-184 (-139))) $)) (-15 -2821 ((-649 (-184 (-139))) $))))) (T -140))
-((-1572 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -1572 ((-139) $)) (-15 -3684 ((-649 (-843)) $)) (-15 -3553 ((-649 (-184 (-139))) $)) (-15 -2821 ((-649 (-184 (-139))) $))))
-((-2415 (((-112) $ $) NIL)) (-2127 (($) 17 T CONST)) (-2813 (($) NIL (|has| (-144) (-372)))) (-3966 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2210 (($ $ $) NIL)) (-2124 (((-112) $ $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-3470 (((-776)) NIL (|has| (-144) (-372)))) (-4255 (($) NIL) (($ (-649 (-144))) NIL)) (-4101 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3463 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444))) (($ (-144) $) 61 (|has| $ (-6 -4444)))) (-1696 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3596 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4444))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4444))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3403 (($) NIL (|has| (-144) (-372)))) (-2880 (((-649 (-144)) $) 70 (|has| $ (-6 -4444)))) (-1315 (((-112) $ $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3377 (((-144) $) NIL (|has| (-144) (-855)))) (-3040 (((-649 (-144)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3969 (((-144) $) NIL (|has| (-144) (-855)))) (-3831 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-144) (-144)) $) 65)) (-2301 (($) 18 T CONST)) (-2855 (((-927) $) NIL (|has| (-144) (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-4333 (($ $ $) 30)) (-1640 (((-144) $) 62)) (-3813 (($ (-144) $) 60)) (-2150 (($ (-927)) NIL (|has| (-144) (-372)))) (-2705 (($) 16 T CONST)) (-3545 (((-1126) $) NIL)) (-3123 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1764 (((-144) $) 63)) (-2911 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 58)) (-2877 (($) 15 T CONST)) (-2298 (($ $ $) 32) (($ $ (-144)) NIL)) (-1906 (($ (-649 (-144))) NIL) (($) NIL)) (-3558 (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106)))) (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-1165) $) 37) (((-541) $) NIL (|has| (-144) (-619 (-541)))) (((-649 (-144)) $) 35)) (-3806 (($ (-649 (-144))) NIL)) (-2923 (($ $) 33 (|has| (-144) (-372)))) (-3793 (((-867) $) 55)) (-3001 (($ (-1165)) 14) (($ (-649 (-144))) 52)) (-3036 (((-776) $) NIL)) (-3864 (($) 59) (($ (-649 (-144))) NIL)) (-1441 (((-112) $ $) NIL)) (-4209 (($ (-649 (-144))) NIL)) (-3037 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-3800 (($) 21 T CONST)) (-2618 (($) 20 T CONST)) (-2919 (((-112) $ $) 24)) (-2426 (((-776) $) 57 (|has| $ (-6 -4444)))))
-(((-141) (-13 (-1106) (-619 (-1165)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -3001 ($ (-1165))) (-15 -3001 ($ (-649 (-144)))) (-15 -2877 ($) -3706) (-15 -2705 ($) -3706) (-15 -2127 ($) -3706) (-15 -2301 ($) -3706) (-15 -2618 ($) -3706) (-15 -3800 ($) -3706)))) (T -141))
-((-3001 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-141)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141)))) (-2877 (*1 *1) (-5 *1 (-141))) (-2705 (*1 *1) (-5 *1 (-141))) (-2127 (*1 *1) (-5 *1 (-141))) (-2301 (*1 *1) (-5 *1 (-141))) (-2618 (*1 *1) (-5 *1 (-141))) (-3800 (*1 *1) (-5 *1 (-141))))
-(-13 (-1106) (-619 (-1165)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -3001 ($ (-1165))) (-15 -3001 ($ (-649 (-144)))) (-15 -2877 ($) -3706) (-15 -2705 ($) -3706) (-15 -2127 ($) -3706) (-15 -2301 ($) -3706) (-15 -2618 ($) -3706) (-15 -3800 ($) -3706)))
-((-3014 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2768 ((|#1| |#3|) 9)) (-2890 ((|#3| |#3|) 15)))
-(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -2768 (|#1| |#3|)) (-15 -2890 (|#3| |#3|)) (-15 -3014 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-998 |#1|) (-377 |#2|)) (T -142))
-((-3014 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-377 *5)))) (-2890 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-377 *4)))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-377 *4)))))
-(-10 -7 (-15 -2768 (|#1| |#3|)) (-15 -2890 (|#3| |#3|)) (-15 -3014 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1841 (($ $ $) 8)) (-1649 (($ $) 7)) (-2950 (($ $ $) 6)))
+((-3206 (((-649 (-184 (-139))) $) 13)) (-2823 (((-649 (-184 (-139))) $) 14)) (-2029 (((-649 (-843)) $) 10)) (-1576 (((-139) $) 7)) (-3796 (((-867) $) 16)))
+(((-140) (-13 (-618 (-867)) (-10 -8 (-15 -1576 ((-139) $)) (-15 -2029 ((-649 (-843)) $)) (-15 -3206 ((-649 (-184 (-139))) $)) (-15 -2823 ((-649 (-184 (-139))) $))))) (T -140))
+((-1576 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -1576 ((-139) $)) (-15 -2029 ((-649 (-843)) $)) (-15 -3206 ((-649 (-184 (-139))) $)) (-15 -2823 ((-649 (-184 (-139))) $))))
+((-2417 (((-112) $ $) NIL)) (-4209 (($) 17 T CONST)) (-3610 (($) NIL (|has| (-144) (-372)))) (-3969 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2541 (($ $ $) NIL)) (-4179 (((-112) $ $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| (-144) (-372)))) (-4257 (($) NIL) (($ (-649 (-144))) NIL)) (-1796 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-1794 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (($ (-144) $) 61 (|has| $ (-6 -4447)))) (-1698 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3406 (($) NIL (|has| (-144) (-372)))) (-2882 (((-649 (-144)) $) 70 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-3380 (((-144) $) NIL (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-2839 (((-144) $) NIL (|has| (-144) (-855)))) (-3834 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) 65)) (-2268 (($) 18 T CONST)) (-2731 (((-927) $) NIL (|has| (-144) (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 30)) (-1877 (((-144) $) 62)) (-3894 (($ (-144) $) 60)) (-2150 (($ (-927)) NIL (|has| (-144) (-372)))) (-1903 (($) 16 T CONST)) (-3547 (((-1128) $) NIL)) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1781 (((-144) $) 63)) (-3208 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 58)) (-2983 (($) 15 T CONST)) (-2237 (($ $ $) 32) (($ $ (-144)) NIL)) (-2434 (($ (-649 (-144))) NIL) (($) NIL)) (-3560 (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-1167) $) 37) (((-541) $) NIL (|has| (-144) (-619 (-541)))) (((-649 (-144)) $) 35)) (-3809 (($ (-649 (-144))) NIL)) (-3327 (($ $) 33 (|has| (-144) (-372)))) (-3796 (((-867) $) 55)) (-2851 (($ (-1167)) 14) (($ (-649 (-144))) 52)) (-1970 (((-776) $) NIL)) (-3868 (($) 59) (($ (-649 (-144))) NIL)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 (-144))) NIL)) (-1980 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1902 (($) 21 T CONST)) (-2311 (($) 20 T CONST)) (-2920 (((-112) $ $) 24)) (-2428 (((-776) $) 57 (|has| $ (-6 -4447)))))
+(((-141) (-13 (-1108) (-619 (-1167)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -2851 ($ (-1167))) (-15 -2851 ($ (-649 (-144)))) (-15 -2983 ($) -3709) (-15 -1903 ($) -3709) (-15 -4209 ($) -3709) (-15 -2268 ($) -3709) (-15 -2311 ($) -3709) (-15 -1902 ($) -3709)))) (T -141))
+((-2851 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-141)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141)))) (-2983 (*1 *1) (-5 *1 (-141))) (-1903 (*1 *1) (-5 *1 (-141))) (-4209 (*1 *1) (-5 *1 (-141))) (-2268 (*1 *1) (-5 *1 (-141))) (-2311 (*1 *1) (-5 *1 (-141))) (-1902 (*1 *1) (-5 *1 (-141))))
+(-13 (-1108) (-619 (-1167)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -2851 ($ (-1167))) (-15 -2851 ($ (-649 (-144)))) (-15 -2983 ($) -3709) (-15 -1903 ($) -3709) (-15 -4209 ($) -3709) (-15 -2268 ($) -3709) (-15 -2311 ($) -3709) (-15 -1902 ($) -3709)))
+((-2974 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4377 ((|#1| |#3|) 9)) (-3110 ((|#3| |#3|) 15)))
+(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-1000 |#1|) (-377 |#2|)) (T -142))
+((-2974 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-377 *5)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-377 *4)))) (-4377 (*1 *2 *3) (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-377 *4)))))
+(-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3074 (($ $ $) 8)) (-1948 (($ $) 7)) (-3613 (($ $ $) 6)))
(((-143) (-140)) (T -143))
-((-1841 (*1 *1 *1 *1) (-4 *1 (-143))) (-1649 (*1 *1 *1) (-4 *1 (-143))) (-2950 (*1 *1 *1 *1) (-4 *1 (-143))))
-(-13 (-10 -8 (-15 -2950 ($ $ $)) (-15 -1649 ($ $)) (-15 -1841 ($ $ $))))
-((-2415 (((-112) $ $) NIL)) (-2151 (((-112) $) 39)) (-2127 (($ $) 55)) (-4093 (($) 26 T CONST)) (-3470 (((-776)) 13)) (-3403 (($) 25)) (-1646 (($) 27 T CONST)) (-1424 (((-776) $) 21)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2043 (((-112) $) 41)) (-2301 (($ $) 56)) (-2855 (((-927) $) 23)) (-1550 (((-1165) $) 49)) (-2150 (($ (-927)) 20)) (-2361 (((-112) $) 37)) (-3545 (((-1126) $) NIL)) (-2470 (($) 28 T CONST)) (-4027 (((-112) $) 35)) (-3793 (((-867) $) 30)) (-2489 (($ (-776)) 19) (($ (-1165)) 54)) (-1441 (((-112) $ $) NIL)) (-3127 (((-112) $) 45)) (-2257 (((-112) $) 43)) (-2976 (((-112) $ $) 11)) (-2954 (((-112) $ $) 9)) (-2919 (((-112) $ $) 7)) (-2964 (((-112) $ $) 10)) (-2942 (((-112) $ $) 8)))
-(((-144) (-13 (-849) (-10 -8 (-15 -1424 ((-776) $)) (-15 -2489 ($ (-776))) (-15 -2489 ($ (-1165))) (-15 -4093 ($) -3706) (-15 -1646 ($) -3706) (-15 -2470 ($) -3706) (-15 -2127 ($ $)) (-15 -2301 ($ $)) (-15 -4027 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -2257 ((-112) $)) (-15 -2151 ((-112) $)) (-15 -2043 ((-112) $)) (-15 -3127 ((-112) $))))) (T -144))
-((-1424 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-144)))) (-4093 (*1 *1) (-5 *1 (-144))) (-1646 (*1 *1) (-5 *1 (-144))) (-2470 (*1 *1) (-5 *1 (-144))) (-2127 (*1 *1 *1) (-5 *1 (-144))) (-2301 (*1 *1 *1) (-5 *1 (-144))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2257 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(-13 (-849) (-10 -8 (-15 -1424 ((-776) $)) (-15 -2489 ($ (-776))) (-15 -2489 ($ (-1165))) (-15 -4093 ($) -3706) (-15 -1646 ($) -3706) (-15 -2470 ($) -3706) (-15 -2127 ($ $)) (-15 -2301 ($ $)) (-15 -4027 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -2257 ((-112) $)) (-15 -2151 ((-112) $)) (-15 -2043 ((-112) $)) (-15 -3127 ((-112) $))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-4030 (((-3 $ "failed") $) 39)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-3074 (*1 *1 *1 *1) (-4 *1 (-143))) (-1948 (*1 *1 *1) (-4 *1 (-143))) (-3613 (*1 *1 *1 *1) (-4 *1 (-143))))
+(-13 (-10 -8 (-15 -3613 ($ $ $)) (-15 -1948 ($ $)) (-15 -3074 ($ $ $))))
+((-2417 (((-112) $ $) NIL)) (-3190 (((-112) $) 39)) (-4209 (($ $) 55)) (-1695 (($) 26 T CONST)) (-3473 (((-776)) 13)) (-3406 (($) 25)) (-1929 (($) 27 T CONST)) (-1348 (((-776) $) 21)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-1454 (((-112) $) 41)) (-2268 (($ $) 56)) (-2731 (((-927) $) 23)) (-3435 (((-1167) $) 49)) (-2150 (($ (-927)) 20)) (-1708 (((-112) $) 37)) (-3547 (((-1128) $) NIL)) (-3370 (($) 28 T CONST)) (-4030 (((-112) $) 35)) (-3796 (((-867) $) 30)) (-2491 (($ (-776)) 19) (($ (-1167)) 54)) (-1520 (((-112) $ $) NIL)) (-1622 (((-112) $) 45)) (-3048 (((-112) $) 43)) (-2978 (((-112) $ $) 11)) (-2956 (((-112) $ $) 9)) (-2920 (((-112) $ $) 7)) (-2966 (((-112) $ $) 10)) (-2944 (((-112) $ $) 8)))
+(((-144) (-13 (-849) (-10 -8 (-15 -1348 ((-776) $)) (-15 -2491 ($ (-776))) (-15 -2491 ($ (-1167))) (-15 -1695 ($) -3709) (-15 -1929 ($) -3709) (-15 -3370 ($) -3709) (-15 -4209 ($ $)) (-15 -2268 ($ $)) (-15 -4030 ((-112) $)) (-15 -1708 ((-112) $)) (-15 -3048 ((-112) $)) (-15 -3190 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -1622 ((-112) $))))) (T -144))
+((-1348 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2491 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2491 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-144)))) (-1695 (*1 *1) (-5 *1 (-144))) (-1929 (*1 *1) (-5 *1 (-144))) (-3370 (*1 *1) (-5 *1 (-144))) (-4209 (*1 *1 *1) (-5 *1 (-144))) (-2268 (*1 *1 *1) (-5 *1 (-144))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(-13 (-849) (-10 -8 (-15 -1348 ((-776) $)) (-15 -2491 ($ (-776))) (-15 -2491 ($ (-1167))) (-15 -1695 ($) -3709) (-15 -1929 ($) -3709) (-15 -3370 ($) -3709) (-15 -4209 ($ $)) (-15 -2268 ($ $)) (-15 -4030 ((-112) $)) (-15 -1708 ((-112) $)) (-15 -3048 ((-112) $)) (-15 -3190 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -1622 ((-112) $))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2239 (((-3 $ "failed") $) 39)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-145) (-140)) (T -145))
-((-4030 (*1 *1 *1) (|partial| -4 *1 (-145))))
-(-13 (-1055) (-10 -8 (-15 -4030 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-3798 ((|#1| (-694 |#1|) |#1|) 23)))
-(((-146 |#1|) (-10 -7 (-15 -3798 (|#1| (-694 |#1|) |#1|))) (-173)) (T -146))
-((-3798 (*1 *2 *3 *2) (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2)))))
-(-10 -7 (-15 -3798 (|#1| (-694 |#1|) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-2239 (*1 *1 *1) (|partial| -4 *1 (-145))))
+(-13 (-1057) (-10 -8 (-15 -2239 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-1886 ((|#1| (-694 |#1|) |#1|) 23)))
+(((-146 |#1|) (-10 -7 (-15 -1886 (|#1| (-694 |#1|) |#1|))) (-173)) (T -146))
+((-1886 (*1 *2 *3 *2) (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2)))))
+(-10 -7 (-15 -1886 (|#1| (-694 |#1|) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-147) (-140)) (T -147))
NIL
-(-13 (-1055))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2833 (((-2 (|:| -4320 (-776)) (|:| -1433 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776)) 76)) (-2715 (((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|) 56)) (-2582 (((-2 (|:| -1433 (-412 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2918 ((|#1| |#3| |#3|) 44)) (-1723 ((|#3| |#3| (-412 |#2|) (-412 |#2|)) 20)) (-3020 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|) 53)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2582 ((-2 (|:| -1433 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2715 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -2833 ((-2 (|:| -4320 (-776)) (|:| -1433 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -2918 (|#1| |#3| |#3|)) (-15 -1723 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -3020 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|))) (-1227) (-1249 |#1|) (-1249 (-412 |#2|))) (T -148))
-((-3020 (*1 *2 *3 *3) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5)) (|:| |c2| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))) (-1723 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1249 *3)))) (-2918 (*1 *2 *3 *3) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-1227)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1249 (-412 *4))))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *6)) (-4 *5 (-1227)) (-4 *6 (-1249 *5)) (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1249 *3)))) (-2715 (*1 *2 *3) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))) (-2582 (*1 *2 *3) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -1433 (-412 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
-(-10 -7 (-15 -2582 ((-2 (|:| -1433 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2715 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -2833 ((-2 (|:| -4320 (-776)) (|:| -1433 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -2918 (|#1| |#3| |#3|)) (-15 -1723 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -3020 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|)))
-((-4216 (((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|)) 35)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -4216 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|)))) (-550) (-166 |#1|)) (T -149))
-((-4216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5)) (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5)))))
-(-10 -7 (-15 -4216 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|))))
-((-1415 (($ (-1 (-112) |#2|) $) 35)) (-3547 (($ $) 42)) (-1696 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3596 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3123 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2911 (((-112) (-1 (-112) |#2|) $) 22)) (-3558 (((-776) (-1 (-112) |#2|) $) 18) (((-776) |#2| $) NIL)) (-3037 (((-112) (-1 (-112) |#2|) $) 21)) (-2426 (((-776) $) 12)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -3547 (|#1| |#1|)) (-15 -1696 (|#1| |#2| |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1696 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3123 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2426 ((-776) |#1|))) (-151 |#2|) (-1223)) (T -150))
-NIL
-(-10 -8 (-15 -3547 (|#1| |#1|)) (-15 -1696 (|#1| |#2| |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1696 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3123 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2426 ((-776) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-1415 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3547 (($ $) 42 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4444))) (($ |#1| $) 43 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 41 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 50)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-151 |#1|) (-140) (-1223)) (T -151))
-((-3806 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-151 *3)))) (-3123 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-3596 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-1696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *3)) (-4 *3 (-1223)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *3)) (-4 *3 (-1223)))) (-3596 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *2)) (-4 *2 (-1223)))) (-1696 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-151 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))) (-3547 (*1 *1 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-151 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))))
-(-13 (-494 |t#1|) (-10 -8 (-15 -3806 ($ (-649 |t#1|))) (-15 -3123 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3596 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3596 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1696 ($ (-1 (-112) |t#1|) $)) (-15 -1415 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -3596 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1696 ($ |t#1| $)) (-15 -3547 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) 113)) (-2623 (((-112) $) NIL)) (-3920 (($ |#2| (-649 (-927))) 73)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3367 (($ (-927)) 60)) (-3083 (((-134)) 26)) (-3793 (((-867) $) 88) (($ (-569)) 56) (($ |#2|) 57)) (-4184 ((|#2| $ (-649 (-927))) 76)) (-3302 (((-776)) 23 T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 51 T CONST)) (-1813 (($) 54 T CONST)) (-2919 (((-112) $ $) 37)) (-3032 (($ $ |#2|) NIL)) (-3021 (($ $) 46) (($ $ $) 44)) (-3009 (($ $ $) 42)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL)))
-(((-152 |#1| |#2| |#3|) (-13 (-1055) (-38 |#2|) (-1280 |#2|) (-10 -8 (-15 -3367 ($ (-927))) (-15 -3920 ($ |#2| (-649 (-927)))) (-15 -4184 (|#2| $ (-649 (-927)))) (-15 -2888 ((-3 $ "failed") $)))) (-927) (-367) (-999 |#1| |#2|)) (T -152))
-((-2888 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367)) (-14 *4 (-999 *2 *3)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-367)) (-14 *5 (-999 *3 *4)))) (-3920 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-4 *2 (-367)) (-14 *5 (-999 *4 *2)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-14 *5 (-999 *4 *2)))))
-(-13 (-1055) (-38 |#2|) (-1280 |#2|) (-10 -8 (-15 -3367 ($ (-927))) (-15 -3920 ($ |#2| (-649 (-927)))) (-15 -4184 (|#2| $ (-649 (-927)))) (-15 -2888 ((-3 $ "failed") $))))
-((-2089 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226)) 62)) (-2018 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 99) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933)) 100)) (-4411 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226))))) 103) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-949 (-226)))) 102) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 94) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933)) 95)))
-(((-153) (-10 -7 (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2018 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -2018 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2089 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-949 (-226))))) (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))))))) (T -153))
-((-4411 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226))))))) (-4411 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226)))))) (-2089 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-226)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 *4)))) (|:| |xValues| (-1100 *4)) (|:| |yValues| (-1100 *4)))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4)))))) (-2018 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))) (-4411 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))) (-4411 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226))))) (-5 *1 (-153)))))
-(-10 -7 (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2018 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933))) (-15 -2018 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2089 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-949 (-226))))) (-15 -4411 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))) (-649 (-649 (-949 (-226)))))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-2682 (((-649 (-1141)) $) 20)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 27) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-1141) $) 9)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-154) (-13 (-1089) (-10 -8 (-15 -2682 ((-649 (-1141)) $)) (-15 -3583 ((-1141) $))))) (T -154))
-((-2682 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-154)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-154)))))
-(-13 (-1089) (-10 -8 (-15 -2682 ((-649 (-1141)) $)) (-15 -3583 ((-1141) $))))
-((-3550 (((-649 (-170 |#2|)) |#1| |#2|) 50)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -3550 ((-649 (-170 |#2|)) |#1| |#2|))) (-1249 (-170 (-569))) (-13 (-367) (-853))) (T -155))
-((-3550 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1249 (-170 (-569)))) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -3550 ((-649 (-170 |#2|)) |#1| |#2|)))
-((-2415 (((-112) $ $) NIL)) (-2112 (((-1222) $) 12)) (-2101 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-156) (-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1222) $))))) (T -156))
-((-2101 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-156)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-156)))))
-(-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1222) $))))
-((-2415 (((-112) $ $) NIL)) (-2262 (($) 41)) (-2067 (($) 40)) (-2175 (((-927)) 46)) (-1550 (((-1165) $) NIL)) (-2539 (((-569) $) 44)) (-3545 (((-1126) $) NIL)) (-1999 (($) 42)) (-2450 (($ (-569)) 47)) (-3793 (((-867) $) 53)) (-3101 (($) 43)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 38)) (-3009 (($ $ $) 35)) (* (($ (-927) $) 45) (($ (-226) $) 11)))
-(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -3009 ($ $ $)) (-15 -2067 ($)) (-15 -2262 ($)) (-15 -1999 ($)) (-15 -3101 ($)) (-15 -2539 ((-569) $)) (-15 -2175 ((-927))) (-15 -2450 ($ (-569)))))) (T -157))
-((-3009 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) (-2067 (*1 *1) (-5 *1 (-157))) (-2262 (*1 *1) (-5 *1 (-157))) (-1999 (*1 *1) (-5 *1 (-157))) (-3101 (*1 *1) (-5 *1 (-157))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157)))) (-2175 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -3009 ($ $ $)) (-15 -2067 ($)) (-15 -2262 ($)) (-15 -1999 ($)) (-15 -3101 ($)) (-15 -2539 ((-569) $)) (-15 -2175 ((-927))) (-15 -2450 ($ (-569)))))
-((-3723 ((|#2| |#2| (-1098 |#2|)) 98) ((|#2| |#2| (-1183)) 75)) (-1667 ((|#2| |#2| (-1098 |#2|)) 97) ((|#2| |#2| (-1183)) 74)) (-1841 ((|#2| |#2| |#2|) 25)) (-3743 (((-114) (-114)) 111)) (-4283 ((|#2| (-649 |#2|)) 130)) (-1445 ((|#2| (-649 |#2|)) 152)) (-2505 ((|#2| (-649 |#2|)) 138)) (-2329 ((|#2| |#2|) 136)) (-1523 ((|#2| (-649 |#2|)) 124)) (-1624 ((|#2| (-649 |#2|)) 125)) (-2417 ((|#2| (-649 |#2|)) 150)) (-3306 ((|#2| |#2| (-1183)) 63) ((|#2| |#2|) 62)) (-1649 ((|#2| |#2|) 21)) (-2950 ((|#2| |#2| |#2|) 24)) (-4142 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2950 (|#2| |#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3306 (|#2| |#2| (-1183))) (-15 -3723 (|#2| |#2| (-1183))) (-15 -3723 (|#2| |#2| (-1098 |#2|))) (-15 -1667 (|#2| |#2| (-1183))) (-15 -1667 (|#2| |#2| (-1098 |#2|))) (-15 -2329 (|#2| |#2|)) (-15 -2417 (|#2| (-649 |#2|))) (-15 -2505 (|#2| (-649 |#2|))) (-15 -1445 (|#2| (-649 |#2|))) (-15 -1523 (|#2| (-649 |#2|))) (-15 -1624 (|#2| (-649 |#2|))) (-15 -4283 (|#2| (-649 |#2|)))) (-561) (-435 |#1|)) (T -158))
-((-4283 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-3723 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-3723 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-3306 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-1841 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-2950 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4)) (-4 *4 (-435 *3)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4)))))
-(-10 -7 (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2950 (|#2| |#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3306 (|#2| |#2| (-1183))) (-15 -3723 (|#2| |#2| (-1183))) (-15 -3723 (|#2| |#2| (-1098 |#2|))) (-15 -1667 (|#2| |#2| (-1183))) (-15 -1667 (|#2| |#2| (-1098 |#2|))) (-15 -2329 (|#2| |#2|)) (-15 -2417 (|#2| (-649 |#2|))) (-15 -2505 (|#2| (-649 |#2|))) (-15 -1445 (|#2| (-649 |#2|))) (-15 -1523 (|#2| (-649 |#2|))) (-15 -1624 (|#2| (-649 |#2|))) (-15 -4283 (|#2| (-649 |#2|))))
-((-3305 ((|#1| |#1| |#1|) 67)) (-1936 ((|#1| |#1| |#1|) 64)) (-1841 ((|#1| |#1| |#1|) 58)) (-3912 ((|#1| |#1|) 45)) (-1753 ((|#1| |#1| (-649 |#1|)) 55)) (-1649 ((|#1| |#1|) 48)) (-2950 ((|#1| |#1| |#1|) 51)))
-(((-159 |#1|) (-10 -7 (-15 -2950 (|#1| |#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1753 (|#1| |#1| (-649 |#1|))) (-15 -3912 (|#1| |#1|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -1936 (|#1| |#1| |#1|)) (-15 -3305 (|#1| |#1| |#1|))) (-550)) (T -159))
-((-3305 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1936 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1841 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3912 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1753 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))) (-1649 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-2950 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(-10 -7 (-15 -2950 (|#1| |#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -1753 (|#1| |#1| (-649 |#1|))) (-15 -3912 (|#1| |#1|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -1936 (|#1| |#1| |#1|)) (-15 -3305 (|#1| |#1| |#1|)))
-((-3723 (($ $ (-1183)) 12) (($ $ (-1098 $)) 11)) (-1667 (($ $ (-1183)) 10) (($ $ (-1098 $)) 9)) (-1841 (($ $ $) 8)) (-3306 (($ $) 14) (($ $ (-1183)) 13)) (-1649 (($ $) 7)) (-2950 (($ $ $) 6)))
+(-13 (-1057))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3780 (((-2 (|:| -1993 (-776)) (|:| -1435 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776)) 76)) (-3904 (((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|) 56)) (-2010 (((-2 (|:| -1435 (-412 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3273 ((|#1| |#3| |#3|) 44)) (-1725 ((|#3| |#3| (-412 |#2|) (-412 |#2|)) 20)) (-1860 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|) 53)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2010 ((-2 (|:| -1435 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3904 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -3780 ((-2 (|:| -1993 (-776)) (|:| -1435 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -3273 (|#1| |#3| |#3|)) (-15 -1725 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -1860 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|))) (-1229) (-1251 |#1|) (-1251 (-412 |#2|))) (T -148))
+((-1860 (*1 *2 *3 *3) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5)) (|:| |c2| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))) (-1725 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1251 *3)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1229)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1251 (-412 *4))))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *6)) (-4 *5 (-1229)) (-4 *6 (-1251 *5)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1251 *3)))) (-3904 (*1 *2 *3) (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))) (-2010 (*1 *2 *3) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -1435 (-412 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))))
+(-10 -7 (-15 -2010 ((-2 (|:| -1435 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3904 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -3780 ((-2 (|:| -1993 (-776)) (|:| -1435 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -3273 (|#1| |#3| |#3|)) (-15 -1725 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -1860 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|)))
+((-3466 (((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|)) 35)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -3466 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|)))) (-550) (-166 |#1|)) (T -149))
+((-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5)) (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5)))))
+(-10 -7 (-15 -3466 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|))))
+((-1417 (($ (-1 (-112) |#2|) $) 35)) (-3550 (($ $) 42)) (-1698 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3598 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-1574 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3208 (((-112) (-1 (-112) |#2|) $) 22)) (-3560 (((-776) (-1 (-112) |#2|) $) 18) (((-776) |#2| $) NIL)) (-1980 (((-112) (-1 (-112) |#2|) $) 21)) (-2428 (((-776) $) 12)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -3550 (|#1| |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|))) (-151 |#2|) (-1225)) (T -150))
+NIL
+(-10 -8 (-15 -3550 (|#1| |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1417 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 42 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447))) (($ |#1| $) 43 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 41 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 50)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-151 |#1|) (-140) (-1225)) (T -151))
+((-3809 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-151 *3)))) (-1574 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-3598 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-3598 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3)) (-4 *3 (-1225)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3)) (-4 *3 (-1225)))) (-3598 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-1698 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) (-3550 (*1 *1 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))))
+(-13 (-494 |t#1|) (-10 -8 (-15 -3809 ($ (-649 |t#1|))) (-15 -1574 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4447)) (PROGN (-15 -3598 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3598 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1698 ($ (-1 (-112) |t#1|) $)) (-15 -1417 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -3598 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1698 ($ |t#1| $)) (-15 -3550 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) 113)) (-2349 (((-112) $) NIL)) (-3923 (($ |#2| (-649 (-927))) 73)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3373 (($ (-927)) 60)) (-2377 (((-134)) 26)) (-3796 (((-867) $) 88) (($ (-569)) 56) (($ |#2|) 57)) (-4383 ((|#2| $ (-649 (-927))) 76)) (-2721 (((-776)) 23 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 51 T CONST)) (-1815 (($) 54 T CONST)) (-2920 (((-112) $ $) 37)) (-3035 (($ $ |#2|) NIL)) (-3024 (($ $) 46) (($ $ $) 44)) (-3012 (($ $ $) 42)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL)))
+(((-152 |#1| |#2| |#3|) (-13 (-1057) (-38 |#2|) (-1282 |#2|) (-10 -8 (-15 -3373 ($ (-927))) (-15 -3923 ($ |#2| (-649 (-927)))) (-15 -4383 (|#2| $ (-649 (-927)))) (-15 -3086 ((-3 $ "failed") $)))) (-927) (-367) (-1001 |#1| |#2|)) (T -152))
+((-3086 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367)) (-14 *4 (-1001 *2 *3)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-367)) (-14 *5 (-1001 *3 *4)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-4 *2 (-367)) (-14 *5 (-1001 *4 *2)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-14 *5 (-1001 *4 *2)))))
+(-13 (-1057) (-38 |#2|) (-1282 |#2|) (-10 -8 (-15 -3373 ($ (-927))) (-15 -3923 ($ |#2| (-649 (-927)))) (-15 -4383 (|#2| $ (-649 (-927)))) (-15 -3086 ((-3 $ "failed") $))))
+((-3838 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226)) 62)) (-2386 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 99) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933)) 100)) (-1592 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226))))) 103) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-949 (-226)))) 102) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 94) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933)) 95)))
+(((-153) (-10 -7 (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -3838 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-949 (-226))))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))))))) (T -153))
+((-1592 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226))))))) (-1592 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226)))))) (-3838 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-226)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 *4)))) (|:| |xValues| (-1102 *4)) (|:| |yValues| (-1102 *4)))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4)))))) (-2386 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)))) (-1592 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)))))
+(-10 -7 (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -3838 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-949 (-226))))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2685 (((-649 (-1143)) $) 20)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-154) (-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $))))) (T -154))
+((-2685 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-154)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-154)))))
+(-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $))))
+((-3177 (((-649 (-170 |#2|)) |#1| |#2|) 50)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -3177 ((-649 (-170 |#2|)) |#1| |#2|))) (-1251 (-170 (-569))) (-13 (-367) (-853))) (T -155))
+((-3177 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1251 (-170 (-569)))) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -3177 ((-649 (-170 |#2|)) |#1| |#2|)))
+((-2417 (((-112) $ $) NIL)) (-2115 (((-1224) $) 12)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-156) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1224) $))))) (T -156))
+((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-156)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-156)))))
+(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1224) $))))
+((-2417 (((-112) $ $) NIL)) (-1922 (($) 41)) (-1715 (($) 40)) (-3469 (((-927)) 46)) (-3435 (((-1167) $) NIL)) (-2787 (((-569) $) 44)) (-3547 (((-1128) $) NIL)) (-2212 (($) 42)) (-3168 (($ (-569)) 47)) (-3796 (((-867) $) 53)) (-1364 (($) 43)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 38)) (-3012 (($ $ $) 35)) (* (($ (-927) $) 45) (($ (-226) $) 11)))
+(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -3012 ($ $ $)) (-15 -1715 ($)) (-15 -1922 ($)) (-15 -2212 ($)) (-15 -1364 ($)) (-15 -2787 ((-569) $)) (-15 -3469 ((-927))) (-15 -3168 ($ (-569)))))) (T -157))
+((-3012 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) (-1715 (*1 *1) (-5 *1 (-157))) (-1922 (*1 *1) (-5 *1 (-157))) (-2212 (*1 *1) (-5 *1 (-157))) (-1364 (*1 *1) (-5 *1 (-157))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157)))) (-3469 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -3012 ($ $ $)) (-15 -1715 ($)) (-15 -1922 ($)) (-15 -2212 ($)) (-15 -1364 ($)) (-15 -2787 ((-569) $)) (-15 -3469 ((-927))) (-15 -3168 ($ (-569)))))
+((-2365 ((|#2| |#2| (-1100 |#2|)) 98) ((|#2| |#2| (-1185)) 75)) (-2103 ((|#2| |#2| (-1100 |#2|)) 97) ((|#2| |#2| (-1185)) 74)) (-3074 ((|#2| |#2| |#2|) 25)) (-3746 (((-114) (-114)) 111)) (-2875 ((|#2| (-649 |#2|)) 130)) (-1560 ((|#2| (-649 |#2|)) 152)) (-3733 ((|#2| (-649 |#2|)) 138)) (-1356 ((|#2| |#2|) 136)) (-3127 ((|#2| (-649 |#2|)) 124)) (-2898 ((|#2| (-649 |#2|)) 125)) (-4115 ((|#2| (-649 |#2|)) 150)) (-2766 ((|#2| |#2| (-1185)) 63) ((|#2| |#2|) 62)) (-1948 ((|#2| |#2|) 21)) (-3613 ((|#2| |#2| |#2|) 24)) (-4052 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3613 (|#2| |#2| |#2|)) (-15 -3074 (|#2| |#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -2766 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1100 |#2|))) (-15 -2103 (|#2| |#2| (-1185))) (-15 -2103 (|#2| |#2| (-1100 |#2|))) (-15 -1356 (|#2| |#2|)) (-15 -4115 (|#2| (-649 |#2|))) (-15 -3733 (|#2| (-649 |#2|))) (-15 -1560 (|#2| (-649 |#2|))) (-15 -3127 (|#2| (-649 |#2|))) (-15 -2898 (|#2| (-649 |#2|))) (-15 -2875 (|#2| (-649 |#2|)))) (-561) (-435 |#1|)) (T -158))
+((-2875 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-2766 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3074 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3613 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4)) (-4 *4 (-435 *3)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4)))))
+(-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3613 (|#2| |#2| |#2|)) (-15 -3074 (|#2| |#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -2766 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1100 |#2|))) (-15 -2103 (|#2| |#2| (-1185))) (-15 -2103 (|#2| |#2| (-1100 |#2|))) (-15 -1356 (|#2| |#2|)) (-15 -4115 (|#2| (-649 |#2|))) (-15 -3733 (|#2| (-649 |#2|))) (-15 -1560 (|#2| (-649 |#2|))) (-15 -3127 (|#2| (-649 |#2|))) (-15 -2898 (|#2| (-649 |#2|))) (-15 -2875 (|#2| (-649 |#2|))))
+((-2753 ((|#1| |#1| |#1|) 67)) (-2759 ((|#1| |#1| |#1|) 64)) (-3074 ((|#1| |#1| |#1|) 58)) (-3575 ((|#1| |#1|) 45)) (-1674 ((|#1| |#1| (-649 |#1|)) 55)) (-1948 ((|#1| |#1|) 48)) (-3613 ((|#1| |#1| |#1|) 51)))
+(((-159 |#1|) (-10 -7 (-15 -3613 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -1674 (|#1| |#1| (-649 |#1|))) (-15 -3575 (|#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2759 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|))) (-550)) (T -159))
+((-2753 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-2759 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3575 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1674 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))) (-1948 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3613 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
+(-10 -7 (-15 -3613 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -1674 (|#1| |#1| (-649 |#1|))) (-15 -3575 (|#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2759 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)))
+((-2365 (($ $ (-1185)) 12) (($ $ (-1100 $)) 11)) (-2103 (($ $ (-1185)) 10) (($ $ (-1100 $)) 9)) (-3074 (($ $ $) 8)) (-2766 (($ $) 14) (($ $ (-1185)) 13)) (-1948 (($ $) 7)) (-3613 (($ $ $) 6)))
(((-160) (-140)) (T -160))
-((-3306 (*1 *1 *1) (-4 *1 (-160))) (-3306 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-3723 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-3723 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160)))))
-(-13 (-143) (-10 -8 (-15 -3306 ($ $)) (-15 -3306 ($ $ (-1183))) (-15 -3723 ($ $ (-1183))) (-15 -3723 ($ $ (-1098 $))) (-15 -1667 ($ $ (-1183))) (-15 -1667 ($ $ (-1098 $)))))
+((-2766 (*1 *1 *1) (-4 *1 (-160))) (-2766 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) (-2365 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) (-2365 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160)))) (-2103 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160)))))
+(-13 (-143) (-10 -8 (-15 -2766 ($ $)) (-15 -2766 ($ $ (-1185))) (-15 -2365 ($ $ (-1185))) (-15 -2365 ($ $ (-1100 $))) (-15 -2103 ($ $ (-1185))) (-15 -2103 ($ $ (-1100 $)))))
(((-143) . T))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-649 (-1141)) $) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-161) (-13 (-1089) (-10 -8 (-15 -3583 ((-649 (-1141)) $))))) (T -161))
-((-3583 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-161)))))
-(-13 (-1089) (-10 -8 (-15 -3583 ((-649 (-1141)) $))))
-((-2415 (((-112) $ $) NIL)) (-4261 (($ (-569)) 14) (($ $ $) 15)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 18)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 9)))
-(((-162) (-13 (-1106) (-10 -8 (-15 -4261 ($ (-569))) (-15 -4261 ($ $ $))))) (T -162))
-((-4261 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162)))) (-4261 (*1 *1 *1 *1) (-5 *1 (-162))))
-(-13 (-1106) (-10 -8 (-15 -4261 ($ (-569))) (-15 -4261 ($ $ $))))
-((-3743 (((-114) (-1183)) 102)))
-(((-163) (-10 -7 (-15 -3743 ((-114) (-1183))))) (T -163))
-((-3743 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-114)) (-5 *1 (-163)))))
-(-10 -7 (-15 -3743 ((-114) (-1183))))
-((-2325 ((|#3| |#3|) 19)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2325 (|#3| |#3|))) (-1055) (-1249 |#1|) (-1249 |#2|)) (T -164))
-((-2325 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-4 *4 (-1249 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1249 *4)))))
-(-10 -7 (-15 -2325 (|#3| |#3|)))
-((-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 223)) (-3136 ((|#2| $) 102)) (-2769 (($ $) 256)) (-2624 (($ $) 250)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 47)) (-2744 (($ $) 254)) (-2600 (($ $) 248)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-3148 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 144)) (-2366 (($ $ $) 229)) (-1630 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 160) (((-694 |#2|) (-694 $)) 154)) (-3596 (($ (-1179 |#2|)) 125) (((-3 $ "failed") (-412 (-1179 |#2|))) NIL)) (-2888 (((-3 $ "failed") $) 214)) (-1545 (((-3 (-412 (-569)) "failed") $) 204)) (-1434 (((-112) $) 199)) (-1311 (((-412 (-569)) $) 202)) (-3975 (((-927)) 96)) (-2373 (($ $ $) 231)) (-4338 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1310 (($) 245)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 193) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 198)) (-2707 ((|#2| $) 100)) (-2091 (((-1179 |#2|) $) 127)) (-1344 (($ (-1 |#2| |#2|) $) 108)) (-2660 (($ $) 247)) (-3582 (((-1179 |#2|) $) 126)) (-1814 (($ $) 207)) (-1323 (($) 103)) (-3057 (((-423 (-1179 $)) (-1179 $)) 95)) (-3157 (((-423 (-1179 $)) (-1179 $)) 64)) (-2405 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4386 (($ $) 246)) (-1578 (((-776) $) 226)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 236)) (-4304 ((|#2| (-1273 $)) NIL) ((|#2|) 98)) (-3514 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-4143 (((-1179 |#2|)) 120)) (-2756 (($ $) 255)) (-2609 (($ $) 249)) (-2960 (((-1273 |#2|) $ (-1273 $)) 136) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $) 116) (((-694 |#2|) (-1273 $)) NIL)) (-1408 (((-1273 |#2|) $) NIL) (($ (-1273 |#2|)) NIL) (((-1179 |#2|) $) NIL) (($ (-1179 |#2|)) NIL) (((-898 (-569)) $) 184) (((-898 (-383)) $) 188) (((-170 (-383)) $) 172) (((-170 (-226)) $) 167) (((-541) $) 180)) (-3580 (($ $) 104)) (-3793 (((-867) $) 143) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-412 (-569))) NIL) (($ $) NIL)) (-3798 (((-1179 |#2|) $) 32)) (-3302 (((-776)) 106)) (-1441 (((-112) $ $) 13)) (-4161 (($ $) 259)) (-2699 (($ $) 253)) (-4133 (($ $) 257)) (-2673 (($ $) 251)) (-4112 ((|#2| $) 242)) (-4147 (($ $) 258)) (-2687 (($ $) 252)) (-3070 (($ $) 162)) (-2919 (((-112) $ $) 110)) (-3021 (($ $) 112) (($ $ $) NIL)) (-3009 (($ $ $) 111)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) 276) (($ $ $) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL)))
-(((-165 |#1| |#2|) (-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3793 (|#1| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1997 ((-2 (|:| -1934 |#1|) (|:| -4431 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -1578 ((-776) |#1|)) (-15 -2282 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -1408 ((-541) |#1|)) (-15 -1408 ((-170 (-226)) |#1|)) (-15 -1408 ((-170 (-383)) |#1|)) (-15 -2624 (|#1| |#1|)) (-15 -2600 (|#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2699 (|#1| |#1|)) (-15 -2756 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2769 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -4386 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1310 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3157 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3057 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -4338 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4112 (|#2| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3580 (|#1| |#1|)) (-15 -1323 (|#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3596 ((-3 |#1| "failed") (-412 (-1179 |#2|)))) (-15 -3582 ((-1179 |#2|) |#1|)) (-15 -1408 (|#1| (-1179 |#2|))) (-15 -3596 (|#1| (-1179 |#2|))) (-15 -4143 ((-1179 |#2|))) (-15 -1630 ((-694 |#2|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -1408 ((-1179 |#2|) |#1|)) (-15 -4304 (|#2|)) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -2091 ((-1179 |#2|) |#1|)) (-15 -3798 ((-1179 |#2|) |#1|)) (-15 -4304 (|#2| (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2707 (|#2| |#1|)) (-15 -3136 (|#2| |#1|)) (-15 -3975 ((-927))) (-15 -3793 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|))) (-166 |#2|) (-173)) (T -165))
-((-3302 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3975 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-927)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4304 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-4143 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1179 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
-(-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3793 (|#1| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1997 ((-2 (|:| -1934 |#1|) (|:| -4431 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -1578 ((-776) |#1|)) (-15 -2282 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -1408 ((-541) |#1|)) (-15 -1408 ((-170 (-226)) |#1|)) (-15 -1408 ((-170 (-383)) |#1|)) (-15 -2624 (|#1| |#1|)) (-15 -2600 (|#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2699 (|#1| |#1|)) (-15 -2756 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2769 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -4386 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1310 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3157 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3057 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -4338 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4112 (|#2| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3580 (|#1| |#1|)) (-15 -1323 (|#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3596 ((-3 |#1| "failed") (-412 (-1179 |#2|)))) (-15 -3582 ((-1179 |#2|) |#1|)) (-15 -1408 (|#1| (-1179 |#2|))) (-15 -3596 (|#1| (-1179 |#2|))) (-15 -4143 ((-1179 |#2|))) (-15 -1630 ((-694 |#2|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -1408 ((-1179 |#2|) |#1|)) (-15 -4304 (|#2|)) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -2091 ((-1179 |#2|) |#1|)) (-15 -3798 ((-1179 |#2|) |#1|)) (-15 -4304 (|#2| (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2707 (|#2| |#1|)) (-15 -3136 (|#2| |#1|)) (-15 -3975 ((-927))) (-15 -3793 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 102 (-2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-3087 (($ $) 103 (-2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2883 (((-112) $) 105 (-2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1739 (((-694 |#1|) (-1273 $)) 53) (((-694 |#1|)) 68)) (-3136 ((|#1| $) 59)) (-2769 (($ $) 229 (|has| |#1| (-1208)))) (-2624 (($ $) 212 (|has| |#1| (-1208)))) (-1372 (((-1196 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-1678 (((-3 $ "failed") $ $) 20)) (-3253 (((-423 (-1179 $)) (-1179 $)) 243 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-2078 (($ $) 122 (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2508 (((-423 $) $) 123 (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3807 (($ $) 242 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 246 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1680 (((-112) $ $) 113 (|has| |#1| (-310)))) (-3470 (((-776)) 96 (|has| |#1| (-372)))) (-2744 (($ $) 228 (|has| |#1| (-1208)))) (-2600 (($ $) 213 (|has| |#1| (-1208)))) (-4114 (($ $) 227 (|has| |#1| (-1208)))) (-2645 (($ $) 214 (|has| |#1| (-1208)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3148 (((-569) $) 177 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 174)) (-3390 (($ (-1273 |#1|) (-1273 $)) 55) (($ (-1273 |#1|)) 71)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2366 (($ $ $) 117 (|has| |#1| (-310)))) (-1635 (((-694 |#1|) $ (-1273 $)) 60) (((-694 |#1|) $) 66)) (-1630 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3596 (($ (-1179 |#1|)) 166) (((-3 $ "failed") (-412 (-1179 |#1|))) 163 (|has| |#1| (-367)))) (-2888 (((-3 $ "failed") $) 37)) (-3822 ((|#1| $) 254)) (-1545 (((-3 (-412 (-569)) "failed") $) 247 (|has| |#1| (-550)))) (-1434 (((-112) $) 249 (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) 248 (|has| |#1| (-550)))) (-3975 (((-927)) 61)) (-3403 (($) 99 (|has| |#1| (-372)))) (-2373 (($ $ $) 116 (|has| |#1| (-310)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 111 (|has| |#1| (-310)))) (-1312 (($) 157 (|has| |#1| (-353)))) (-1940 (((-112) $) 158 (|has| |#1| (-353)))) (-2501 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-4073 (((-112) $) 124 (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-4338 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1208))))) (-1310 (($) 239 (|has| |#1| (-1208)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 262 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 261 (|has| |#1| (-892 (-383))))) (-3110 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 241 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-2707 ((|#1| $) 58)) (-3812 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-310)))) (-2091 (((-1179 |#1|) $) 51 (|has| |#1| (-367)))) (-1344 (($ (-1 |#1| |#1|) $) 263)) (-2855 (((-927) $) 98 (|has| |#1| (-372)))) (-2660 (($ $) 236 (|has| |#1| (-1208)))) (-3582 (((-1179 |#1|) $) 164)) (-1835 (($ (-649 $)) 109 (-2774 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 108 (-2774 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1550 (((-1165) $) 10)) (-1814 (($ $) 125 (|has| |#1| (-367)))) (-2305 (($) 151 (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| |#1| (-372)))) (-1323 (($) 258)) (-3834 ((|#1| $) 255)) (-3545 (((-1126) $) 11)) (-2330 (($) 168)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 110 (-2774 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1864 (($ (-649 $)) 107 (-2774 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 106 (-2774 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 154 (|has| |#1| (-353)))) (-3057 (((-423 (-1179 $)) (-1179 $)) 245 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3157 (((-423 (-1179 $)) (-1179 $)) 244 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3796 (((-423 $) $) 121 (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 118 (|has| |#1| (-310)))) (-2405 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 101 (-2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-310)))) (-4386 (($ $) 237 (|has| |#1| (-1208)))) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) 269 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 267 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 266 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 265 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 264 (|has| |#1| (-519 (-1183) |#1|)))) (-1578 (((-776) $) 114 (|has| |#1| (-310)))) (-1866 (($ $ |#1|) 270 (|has| |#1| (-289 |#1| |#1|)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 115 (|has| |#1| (-310)))) (-4304 ((|#1| (-1273 $)) 54) ((|#1|) 67)) (-2601 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3514 (($ $ (-1 |#1| |#1|) (-776)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-649 (-1183)) (-649 (-776))) 138 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 139 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 140 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 141 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 143 (-2774 (-1756 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1756 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 145 (-2774 (-1756 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1756 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2520 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-4143 (((-1179 |#1|)) 167)) (-4124 (($ $) 226 (|has| |#1| (-1208)))) (-2659 (($ $) 215 (|has| |#1| (-1208)))) (-2430 (($) 156 (|has| |#1| (-353)))) (-2781 (($ $) 225 (|has| |#1| (-1208)))) (-2632 (($ $) 216 (|has| |#1| (-1208)))) (-2756 (($ $) 224 (|has| |#1| (-1208)))) (-2609 (($ $) 217 (|has| |#1| (-1208)))) (-2960 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56) (((-1273 |#1|) $) 73) (((-694 |#1|) (-1273 $)) 72)) (-1408 (((-1273 |#1|) $) 70) (($ (-1273 |#1|)) 69) (((-1179 |#1|) $) 179) (($ (-1179 |#1|)) 165) (((-898 (-569)) $) 260 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 259 (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) 211 (|has| |#1| (-1028))) (((-170 (-226)) $) 210 (|has| |#1| (-1028))) (((-541) $) 209 (|has| |#1| (-619 (-541))))) (-3580 (($ $) 257)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 153 (-2774 (-1756 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-353))))) (-3098 (($ |#1| |#1|) 256)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 95 (-2774 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) 100 (-2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4030 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (-2774 (-1756 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-145))))) (-3798 (((-1179 |#1|) $) 52)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1903 (((-1273 $)) 74)) (-4161 (($ $) 235 (|has| |#1| (-1208)))) (-2699 (($ $) 223 (|has| |#1| (-1208)))) (-2985 (((-112) $ $) 104 (-2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4133 (($ $) 234 (|has| |#1| (-1208)))) (-2673 (($ $) 222 (|has| |#1| (-1208)))) (-4182 (($ $) 233 (|has| |#1| (-1208)))) (-2721 (($ $) 221 (|has| |#1| (-1208)))) (-4112 ((|#1| $) 251 (|has| |#1| (-1208)))) (-1501 (($ $) 232 (|has| |#1| (-1208)))) (-2732 (($ $) 220 (|has| |#1| (-1208)))) (-4170 (($ $) 231 (|has| |#1| (-1208)))) (-2710 (($ $) 219 (|has| |#1| (-1208)))) (-4147 (($ $) 230 (|has| |#1| (-1208)))) (-2687 (($ $) 218 (|has| |#1| (-1208)))) (-3070 (($ $) 252 (|has| |#1| (-1066)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-1 |#1| |#1|) (-776)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-649 (-1183)) (-649 (-776))) 134 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 135 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 136 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 137 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 142 (-2774 (-1756 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1756 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 144 (-2774 (-1756 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1756 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 129 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-412 (-569))) 240 (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))) (($ $ $) 238 (|has| |#1| (-1208))) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367)))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-161) (-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $))))) (T -161))
+((-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-161)))))
+(-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $))))
+((-2417 (((-112) $ $) NIL)) (-2655 (($ (-569)) 14) (($ $ $) 15)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)))
+(((-162) (-13 (-1108) (-10 -8 (-15 -2655 ($ (-569))) (-15 -2655 ($ $ $))))) (T -162))
+((-2655 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162)))) (-2655 (*1 *1 *1 *1) (-5 *1 (-162))))
+(-13 (-1108) (-10 -8 (-15 -2655 ($ (-569))) (-15 -2655 ($ $ $))))
+((-3746 (((-114) (-1185)) 102)))
+(((-163) (-10 -7 (-15 -3746 ((-114) (-1185))))) (T -163))
+((-3746 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-114)) (-5 *1 (-163)))))
+(-10 -7 (-15 -3746 ((-114) (-1185))))
+((-1314 ((|#3| |#3|) 19)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1314 (|#3| |#3|))) (-1057) (-1251 |#1|) (-1251 |#2|)) (T -164))
+((-1314 (*1 *2 *2) (-12 (-4 *3 (-1057)) (-4 *4 (-1251 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1251 *4)))))
+(-10 -7 (-15 -1314 (|#3| |#3|)))
+((-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 223)) (-3140 ((|#2| $) 102)) (-2771 (($ $) 256)) (-2626 (($ $) 250)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 47)) (-2746 (($ $) 254)) (-2601 (($ $) 248)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 144)) (-2368 (($ $ $) 229)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 160) (((-694 |#2|) (-694 $)) 154)) (-3598 (($ (-1181 |#2|)) 125) (((-3 $ "failed") (-412 (-1181 |#2|))) NIL)) (-3086 (((-3 $ "failed") $) 214)) (-3377 (((-3 (-412 (-569)) "failed") $) 204)) (-1441 (((-112) $) 199)) (-1606 (((-412 (-569)) $) 202)) (-3978 (((-927)) 96)) (-2379 (($ $ $) 231)) (-2149 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1312 (($) 245)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 193) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 198)) (-3829 ((|#2| $) 100)) (-3859 (((-1181 |#2|) $) 127)) (-1346 (($ (-1 |#2| |#2|) $) 108)) (-2662 (($ $) 247)) (-3585 (((-1181 |#2|) $) 126)) (-1817 (($ $) 207)) (-1734 (($) 103)) (-2156 (((-423 (-1181 $)) (-1181 $)) 95)) (-3814 (((-423 (-1181 $)) (-1181 $)) 64)) (-2407 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4389 (($ $) 246)) (-2431 (((-776) $) 226)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 236)) (-3059 ((|#2| (-1275 $)) NIL) ((|#2|) 98)) (-3517 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-4061 (((-1181 |#2|)) 120)) (-2758 (($ $) 255)) (-2614 (($ $) 249)) (-2415 (((-1275 |#2|) $ (-1275 $)) 136) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $) 116) (((-694 |#2|) (-1275 $)) NIL)) (-1410 (((-1275 |#2|) $) NIL) (($ (-1275 |#2|)) NIL) (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) (((-898 (-569)) $) 184) (((-898 (-383)) $) 188) (((-170 (-383)) $) 172) (((-170 (-226)) $) 167) (((-541) $) 180)) (-3476 (($ $) 104)) (-3796 (((-867) $) 143) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-412 (-569))) NIL) (($ $) NIL)) (-1886 (((-1181 |#2|) $) 32)) (-2721 (((-776)) 106)) (-1520 (((-112) $ $) 13)) (-4161 (($ $) 259)) (-2701 (($ $) 253)) (-4140 (($ $) 257)) (-2675 (($ $) 251)) (-1899 ((|#2| $) 242)) (-4151 (($ $) 258)) (-2689 (($ $) 252)) (-2271 (($ $) 162)) (-2920 (((-112) $ $) 110)) (-3024 (($ $) 112) (($ $ $) NIL)) (-3012 (($ $ $) 111)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) 276) (($ $ $) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL)))
+(((-165 |#1| |#2|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3796 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-170 (-226)) |#1|)) (-15 -1410 ((-170 (-383)) |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1312 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2149 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3476 (|#1| |#1|)) (-15 -1734 (|#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3598 ((-3 |#1| "failed") (-412 (-1181 |#2|)))) (-15 -3585 ((-1181 |#2|) |#1|)) (-15 -1410 (|#1| (-1181 |#2|))) (-15 -3598 (|#1| (-1181 |#2|))) (-15 -4061 ((-1181 |#2|))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -1886 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3829 (|#2| |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3978 ((-927))) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-166 |#2|) (-173)) (T -165))
+((-2721 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3978 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-927)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3059 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-4061 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1181 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
+(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3796 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-170 (-226)) |#1|)) (-15 -1410 ((-170 (-383)) |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1312 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2149 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3476 (|#1| |#1|)) (-15 -1734 (|#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3598 ((-3 |#1| "failed") (-412 (-1181 |#2|)))) (-15 -3585 ((-1181 |#2|) |#1|)) (-15 -1410 (|#1| (-1181 |#2|))) (-15 -3598 (|#1| (-1181 |#2|))) (-15 -4061 ((-1181 |#2|))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -1886 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3829 (|#2| |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3978 ((-927))) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4355 (($ $) 103 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-3039 (((-112) $) 105 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1547 (((-694 |#1|) (-1275 $)) 53) (((-694 |#1|)) 68)) (-3140 ((|#1| $) 59)) (-2771 (($ $) 229 (|has| |#1| (-1210)))) (-2626 (($ $) 212 (|has| |#1| (-1210)))) (-3715 (((-1198 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 243 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1830 (($ $) 122 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3764 (((-423 $) $) 123 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3813 (($ $) 242 (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 246 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-2227 (((-112) $ $) 113 (|has| |#1| (-310)))) (-3473 (((-776)) 96 (|has| |#1| (-372)))) (-2746 (($ $) 228 (|has| |#1| (-1210)))) (-2601 (($ $) 213 (|has| |#1| (-1210)))) (-4118 (($ $) 227 (|has| |#1| (-1210)))) (-2647 (($ $) 214 (|has| |#1| (-1210)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3150 (((-569) $) 177 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 174)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55) (($ (-1275 |#1|)) 71)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2368 (($ $ $) 117 (|has| |#1| (-310)))) (-1833 (((-694 |#1|) $ (-1275 $)) 60) (((-694 |#1|) $) 66)) (-2957 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3598 (($ (-1181 |#1|)) 166) (((-3 $ "failed") (-412 (-1181 |#1|))) 163 (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) 37)) (-3824 ((|#1| $) 254)) (-3377 (((-3 (-412 (-569)) "failed") $) 247 (|has| |#1| (-550)))) (-1441 (((-112) $) 249 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 248 (|has| |#1| (-550)))) (-3978 (((-927)) 61)) (-3406 (($) 99 (|has| |#1| (-372)))) (-2379 (($ $ $) 116 (|has| |#1| (-310)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111 (|has| |#1| (-310)))) (-1616 (($) 157 (|has| |#1| (-353)))) (-2807 (((-112) $) 158 (|has| |#1| (-353)))) (-3701 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-1473 (((-112) $) 124 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2149 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1210))))) (-1312 (($) 239 (|has| |#1| (-1210)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 262 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 261 (|has| |#1| (-892 (-383))))) (-1466 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 241 (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3829 ((|#1| $) 58)) (-3885 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-310)))) (-3859 (((-1181 |#1|) $) 51 (|has| |#1| (-367)))) (-1346 (($ (-1 |#1| |#1|) $) 263)) (-2731 (((-927) $) 98 (|has| |#1| (-372)))) (-2662 (($ $) 236 (|has| |#1| (-1210)))) (-3585 (((-1181 |#1|) $) 164)) (-1839 (($ (-649 $)) 109 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 108 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 125 (|has| |#1| (-367)))) (-2307 (($) 151 (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| |#1| (-372)))) (-1734 (($) 258)) (-3836 ((|#1| $) 255)) (-3547 (((-1128) $) 11)) (-2332 (($) 168)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1870 (($ (-649 $)) 107 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 106 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 154 (|has| |#1| (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 245 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3814 (((-423 (-1181 $)) (-1181 $)) 244 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3800 (((-423 $) $) 121 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118 (|has| |#1| (-310)))) (-2407 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 101 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-310)))) (-4389 (($ $) 237 (|has| |#1| (-1210)))) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 269 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 267 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 266 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 265 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 264 (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) 114 (|has| |#1| (-310)))) (-1869 (($ $ |#1|) 270 (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115 (|has| |#1| (-310)))) (-3059 ((|#1| (-1275 $)) 54) ((|#1|) 67)) (-2166 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3517 (($ $ (-1 |#1| |#1|) (-776)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-649 (-1185)) (-649 (-776))) 138 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 139 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 140 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 141 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 143 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 145 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-4061 (((-1181 |#1|)) 167)) (-4128 (($ $) 226 (|has| |#1| (-1210)))) (-2661 (($ $) 215 (|has| |#1| (-1210)))) (-4234 (($) 156 (|has| |#1| (-353)))) (-2783 (($ $) 225 (|has| |#1| (-1210)))) (-2635 (($ $) 216 (|has| |#1| (-1210)))) (-2758 (($ $) 224 (|has| |#1| (-1210)))) (-2614 (($ $) 217 (|has| |#1| (-1210)))) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56) (((-1275 |#1|) $) 73) (((-694 |#1|) (-1275 $)) 72)) (-1410 (((-1275 |#1|) $) 70) (($ (-1275 |#1|)) 69) (((-1181 |#1|) $) 179) (($ (-1181 |#1|)) 165) (((-898 (-569)) $) 260 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 259 (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) 211 (|has| |#1| (-1030))) (((-170 (-226)) $) 210 (|has| |#1| (-1030))) (((-541) $) 209 (|has| |#1| (-619 (-541))))) (-3476 (($ $) 257)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 153 (-2776 (-1759 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-353))))) (-3101 (($ |#1| |#1|) 256)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 95 (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) 100 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2239 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (-2776 (-1759 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-145))))) (-1886 (((-1181 |#1|) $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-4161 (($ $) 235 (|has| |#1| (-1210)))) (-2701 (($ $) 223 (|has| |#1| (-1210)))) (-2664 (((-112) $ $) 104 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4140 (($ $) 234 (|has| |#1| (-1210)))) (-2675 (($ $) 222 (|has| |#1| (-1210)))) (-4183 (($ $) 233 (|has| |#1| (-1210)))) (-2723 (($ $) 221 (|has| |#1| (-1210)))) (-1899 ((|#1| $) 251 (|has| |#1| (-1210)))) (-1503 (($ $) 232 (|has| |#1| (-1210)))) (-2734 (($ $) 220 (|has| |#1| (-1210)))) (-4175 (($ $) 231 (|has| |#1| (-1210)))) (-2712 (($ $) 219 (|has| |#1| (-1210)))) (-4151 (($ $) 230 (|has| |#1| (-1210)))) (-2689 (($ $) 218 (|has| |#1| (-1210)))) (-2271 (($ $) 252 (|has| |#1| (-1068)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#1| |#1|) (-776)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-649 (-1185)) (-649 (-776))) 134 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 135 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 136 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 137 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 142 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 144 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 129 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-412 (-569))) 240 (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210)))) (($ $ $) 238 (|has| |#1| (-1210))) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367)))))
(((-166 |#1|) (-140) (-173)) (T -166))
-((-2707 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1323 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3580 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3098 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-2405 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-3070 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1208)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1066)) (-4 *3 (-1208)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1545 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))))
-(-13 (-729 |t#1| (-1179 |t#1|)) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-405 |t#1|) (-890 |t#1|) (-381 |t#1|) (-173) (-10 -8 (-6 -3098) (-15 -1323 ($)) (-15 -3580 ($ $)) (-15 -3098 ($ |t#1| |t#1|)) (-15 -3834 (|t#1| $)) (-15 -3822 (|t#1| $)) (-15 -2707 (|t#1| $)) (IF (|has| |t#1| (-561)) (PROGN (-6 (-561)) (-15 -2405 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-310)) (-6 (-310)) |%noBranch|) (IF (|has| |t#1| (-6 -4443)) (-6 -4443) |%noBranch|) (IF (|has| |t#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-6 (-619 (-170 (-226)))) (-6 (-619 (-170 (-383))))) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3070 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1208)) (PROGN (-6 (-1208)) (-15 -4112 (|t#1| $)) (IF (|has| |t#1| (-1008)) (-6 (-1008)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -4338 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-310)) (-6 (-915)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-35) |has| |#1| (-1208)) ((-95) |has| |#1| (-1208)) ((-102) . T) ((-111 #0# #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2774 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-618 (-867)) . T) ((-173) . T) ((-619 (-170 (-226))) |has| |#1| (-1028)) ((-619 (-170 (-383))) |has| |#1| (-1028)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-619 #1=(-1179 |#1|)) . T) ((-232 |#1|) . T) ((-234) -2774 (|has| |#1| (-353)) (|has| |#1| (-234))) ((-244) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-287) |has| |#1| (-1208)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2774 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-310) -2774 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2774 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| #1#) . T) ((-414 |#1| #1#) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) -2774 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-498) |has| |#1| (-1208)) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) -2774 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-651 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-729 |#1| #1#) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) -12 (|has| |#1| (-310)) (|has| |#1| (-915))) ((-926) -2774 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-1008) -12 (|has| |#1| (-1008)) (|has| |#1| (-1208))) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-353)) ((-1208) |has| |#1| (-1208)) ((-1211) |has| |#1| (-1208)) ((-1223) . T) ((-1227) -2774 (|has| |#1| (-353)) (|has| |#1| (-367)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))
-((-3796 (((-423 |#2|) |#2|) 69)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -3796 ((-423 |#2|) |#2|))) (-310) (-1249 (-170 |#1|))) (T -167))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
-(-10 -7 (-15 -3796 ((-423 |#2|) |#2|)))
-((-1631 (((-1141) (-1141) (-294)) 8)) (-1450 (((-649 (-696 (-283))) (-1165)) 81)) (-1558 (((-696 (-283)) (-1141)) 76)))
-(((-168) (-13 (-1223) (-10 -7 (-15 -1631 ((-1141) (-1141) (-294))) (-15 -1558 ((-696 (-283)) (-1141))) (-15 -1450 ((-649 (-696 (-283))) (-1165)))))) (T -168))
-((-1631 (*1 *2 *2 *3) (-12 (-5 *2 (-1141)) (-5 *3 (-294)) (-5 *1 (-168)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-1141)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168)))))
-(-13 (-1223) (-10 -7 (-15 -1631 ((-1141) (-1141) (-294))) (-15 -1558 ((-696 (-283)) (-1141))) (-15 -1450 ((-649 (-696 (-283))) (-1165)))))
-((-1344 (((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)) 14)))
-(((-169 |#1| |#2|) (-10 -7 (-15 -1344 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)))) (-173) (-173)) (T -169))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-170 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-5 *2 (-170 *6)) (-5 *1 (-169 *5 *6)))))
-(-10 -7 (-15 -1344 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 34)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-3087 (($ $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-2883 (((-112) $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-1739 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) NIL)) (-3136 ((|#1| $) NIL)) (-2769 (($ $) NIL (|has| |#1| (-1208)))) (-2624 (($ $) NIL (|has| |#1| (-1208)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-2078 (($ $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2508 (((-423 $) $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3807 (($ $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-310)))) (-3470 (((-776)) NIL (|has| |#1| (-372)))) (-2744 (($ $) NIL (|has| |#1| (-1208)))) (-2600 (($ $) NIL (|has| |#1| (-1208)))) (-4114 (($ $) NIL (|has| |#1| (-1208)))) (-2645 (($ $) NIL (|has| |#1| (-1208)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-3390 (($ (-1273 |#1|) (-1273 $)) NIL) (($ (-1273 |#1|)) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2366 (($ $ $) NIL (|has| |#1| (-310)))) (-1635 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3596 (($ (-1179 |#1|)) NIL) (((-3 $ "failed") (-412 (-1179 |#1|))) NIL (|has| |#1| (-367)))) (-2888 (((-3 $ "failed") $) NIL)) (-3822 ((|#1| $) 13)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1434 (((-112) $) NIL (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3975 (((-927)) NIL)) (-3403 (($) NIL (|has| |#1| (-372)))) (-2373 (($ $ $) NIL (|has| |#1| (-310)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-310)))) (-1312 (($) NIL (|has| |#1| (-353)))) (-1940 (((-112) $) NIL (|has| |#1| (-353)))) (-2501 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-4073 (((-112) $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-4338 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1066)) (|has| |#1| (-1208))))) (-1310 (($) NIL (|has| |#1| (-1208)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-3110 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2623 (((-112) $) 36)) (-2506 (($ $ (-569)) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208))))) (-2707 ((|#1| $) 47)) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-2091 (((-1179 |#1|) $) NIL (|has| |#1| (-367)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2855 (((-927) $) NIL (|has| |#1| (-372)))) (-2660 (($ $) NIL (|has| |#1| (-1208)))) (-3582 (((-1179 |#1|) $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2305 (($) NIL (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1323 (($) NIL)) (-3834 ((|#1| $) 15)) (-3545 (((-1126) $) NIL)) (-2330 (($) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-310)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| |#1| (-353)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3796 (((-423 $) $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-310)))) (-2405 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 48 (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-4386 (($ $) NIL (|has| |#1| (-1208)))) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1578 (((-776) $) NIL (|has| |#1| (-310)))) (-1866 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-310)))) (-4304 ((|#1| (-1273 $)) NIL) ((|#1|) NIL)) (-2601 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3514 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2520 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-4143 (((-1179 |#1|)) NIL)) (-4124 (($ $) NIL (|has| |#1| (-1208)))) (-2659 (($ $) NIL (|has| |#1| (-1208)))) (-2430 (($) NIL (|has| |#1| (-353)))) (-2781 (($ $) NIL (|has| |#1| (-1208)))) (-2632 (($ $) NIL (|has| |#1| (-1208)))) (-2756 (($ $) NIL (|has| |#1| (-1208)))) (-2609 (($ $) NIL (|has| |#1| (-1208)))) (-2960 (((-1273 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) (-1273 $) (-1273 $)) NIL) (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-1408 (((-1273 |#1|) $) NIL) (($ (-1273 |#1|)) NIL) (((-1179 |#1|) $) NIL) (($ (-1179 |#1|)) NIL) (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) NIL (|has| |#1| (-1028))) (((-170 (-226)) $) NIL (|has| |#1| (-1028))) (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3580 (($ $) 46)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-353))))) (-3098 (($ |#1| |#1|) 38)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 37) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4030 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3798 (((-1179 |#1|) $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL)) (-4161 (($ $) NIL (|has| |#1| (-1208)))) (-2699 (($ $) NIL (|has| |#1| (-1208)))) (-2985 (((-112) $ $) NIL (-2774 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4133 (($ $) NIL (|has| |#1| (-1208)))) (-2673 (($ $) NIL (|has| |#1| (-1208)))) (-4182 (($ $) NIL (|has| |#1| (-1208)))) (-2721 (($ $) NIL (|has| |#1| (-1208)))) (-4112 ((|#1| $) NIL (|has| |#1| (-1208)))) (-1501 (($ $) NIL (|has| |#1| (-1208)))) (-2732 (($ $) NIL (|has| |#1| (-1208)))) (-4170 (($ $) NIL (|has| |#1| (-1208)))) (-2710 (($ $) NIL (|has| |#1| (-1208)))) (-4147 (($ $) NIL (|has| |#1| (-1208)))) (-2687 (($ $) NIL (|has| |#1| (-1208)))) (-3070 (($ $) NIL (|has| |#1| (-1066)))) (-1803 (($) 28 T CONST)) (-1813 (($) 30 T CONST)) (-4195 (((-1165) $) 23 (|has| |#1| (-833))) (((-1165) $ (-112)) 25 (|has| |#1| (-833))) (((-1278) (-827) $) 26 (|has| |#1| (-833))) (((-1278) (-827) $ (-112)) 27 (|has| |#1| (-833)))) (-2830 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 40)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1208)))) (($ $ $) NIL (|has| |#1| (-1208))) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367)))))
+((-3829 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1734 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3476 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3101 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2271 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1210)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1068)) (-4 *3 (-1210)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))))
+(-13 (-729 |t#1| (-1181 |t#1|)) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-405 |t#1|) (-890 |t#1|) (-381 |t#1|) (-173) (-10 -8 (-6 -3101) (-15 -1734 ($)) (-15 -3476 ($ $)) (-15 -3101 ($ |t#1| |t#1|)) (-15 -3836 (|t#1| $)) (-15 -3824 (|t#1| $)) (-15 -3829 (|t#1| $)) (IF (|has| |t#1| (-561)) (PROGN (-6 (-561)) (-15 -2407 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-310)) (-6 (-310)) |%noBranch|) (IF (|has| |t#1| (-6 -4446)) (-6 -4446) |%noBranch|) (IF (|has| |t#1| (-6 -4443)) (-6 -4443) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1030)) (PROGN (-6 (-619 (-170 (-226)))) (-6 (-619 (-170 (-383))))) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2271 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1210)) (PROGN (-6 (-1210)) (-15 -1899 (|t#1| $)) (IF (|has| |t#1| (-1010)) (-6 (-1010)) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2149 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-310)) (-6 (-915)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-35) |has| |#1| (-1210)) ((-95) |has| |#1| (-1210)) ((-102) . T) ((-111 #0# #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-618 (-867)) . T) ((-173) . T) ((-619 (-170 (-226))) |has| |#1| (-1030)) ((-619 (-170 (-383))) |has| |#1| (-1030)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-619 #1=(-1181 |#1|)) . T) ((-232 |#1|) . T) ((-234) -2776 (|has| |#1| (-353)) (|has| |#1| (-234))) ((-244) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-287) |has| |#1| (-1210)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-310) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2776 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| #1#) . T) ((-414 |#1| #1#) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-498) |has| |#1| (-1210)) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-651 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-729 |#1| #1#) . T) ((-731) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) -12 (|has| |#1| (-310)) (|has| |#1| (-915))) ((-926) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-1010) -12 (|has| |#1| (-1010)) (|has| |#1| (-1210))) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-353)) ((-1210) |has| |#1| (-1210)) ((-1213) |has| |#1| (-1210)) ((-1225) . T) ((-1229) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))
+((-3800 (((-423 |#2|) |#2|) 69)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -3800 ((-423 |#2|) |#2|))) (-310) (-1251 (-170 |#1|))) (T -167))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1251 (-170 *4))))))
+(-10 -7 (-15 -3800 ((-423 |#2|) |#2|)))
+((-1633 (((-1143) (-1143) (-294)) 8)) (-3684 (((-649 (-696 (-283))) (-1167)) 81)) (-3532 (((-696 (-283)) (-1143)) 76)))
+(((-168) (-13 (-1225) (-10 -7 (-15 -1633 ((-1143) (-1143) (-294))) (-15 -3532 ((-696 (-283)) (-1143))) (-15 -3684 ((-649 (-696 (-283))) (-1167)))))) (T -168))
+((-1633 (*1 *2 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-294)) (-5 *1 (-168)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168)))))
+(-13 (-1225) (-10 -7 (-15 -1633 ((-1143) (-1143) (-294))) (-15 -3532 ((-696 (-283)) (-1143))) (-15 -3684 ((-649 (-696 (-283))) (-1167)))))
+((-1346 (((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)) 14)))
+(((-169 |#1| |#2|) (-10 -7 (-15 -1346 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)))) (-173) (-173)) (T -169))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-170 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-5 *2 (-170 *6)) (-5 *1 (-169 *5 *6)))))
+(-10 -7 (-15 -1346 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 34)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4355 (($ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-3039 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-1547 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) NIL)) (-3140 ((|#1| $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-1210)))) (-2626 (($ $) NIL (|has| |#1| (-1210)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1830 (($ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3764 (((-423 $) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3813 (($ $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-310)))) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-2746 (($ $) NIL (|has| |#1| (-1210)))) (-2601 (($ $) NIL (|has| |#1| (-1210)))) (-4118 (($ $) NIL (|has| |#1| (-1210)))) (-2647 (($ $) NIL (|has| |#1| (-1210)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|) (-1275 $)) NIL) (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2368 (($ $ $) NIL (|has| |#1| (-310)))) (-1833 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3598 (($ (-1181 |#1|)) NIL) (((-3 $ "failed") (-412 (-1181 |#1|))) NIL (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-3824 ((|#1| $) 13)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1441 (((-112) $) NIL (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL (|has| |#1| (-310)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-310)))) (-1616 (($) NIL (|has| |#1| (-353)))) (-2807 (((-112) $) NIL (|has| |#1| (-353)))) (-3701 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-1473 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2149 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1068)) (|has| |#1| (-1210))))) (-1312 (($) NIL (|has| |#1| (-1210)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-1466 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2349 (((-112) $) 36)) (-3742 (($ $ (-569)) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3829 ((|#1| $) 47)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-3859 (((-1181 |#1|) $) NIL (|has| |#1| (-367)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-2662 (($ $) NIL (|has| |#1| (-1210)))) (-3585 (((-1181 |#1|) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-2307 (($) NIL (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1734 (($) NIL)) (-3836 ((|#1| $) 15)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-310)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3800 (((-423 $) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-310)))) (-2407 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 48 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-4389 (($ $) NIL (|has| |#1| (-1210)))) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) NIL (|has| |#1| (-310)))) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-310)))) (-3059 ((|#1| (-1275 $)) NIL) ((|#1|) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3517 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-4061 (((-1181 |#1|)) NIL)) (-4128 (($ $) NIL (|has| |#1| (-1210)))) (-2661 (($ $) NIL (|has| |#1| (-1210)))) (-4234 (($) NIL (|has| |#1| (-353)))) (-2783 (($ $) NIL (|has| |#1| (-1210)))) (-2635 (($ $) NIL (|has| |#1| (-1210)))) (-2758 (($ $) NIL (|has| |#1| (-1210)))) (-2614 (($ $) NIL (|has| |#1| (-1210)))) (-2415 (((-1275 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) (-1275 $) (-1275 $)) NIL) (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1410 (((-1275 |#1|) $) NIL) (($ (-1275 |#1|)) NIL) (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) NIL (|has| |#1| (-1030))) (((-170 (-226)) $) NIL (|has| |#1| (-1030))) (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3476 (($ $) 46)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-353))))) (-3101 (($ |#1| |#1|) 38)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 37) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-2239 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-1886 (((-1181 |#1|) $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-4161 (($ $) NIL (|has| |#1| (-1210)))) (-2701 (($ $) NIL (|has| |#1| (-1210)))) (-2664 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4140 (($ $) NIL (|has| |#1| (-1210)))) (-2675 (($ $) NIL (|has| |#1| (-1210)))) (-4183 (($ $) NIL (|has| |#1| (-1210)))) (-2723 (($ $) NIL (|has| |#1| (-1210)))) (-1899 ((|#1| $) NIL (|has| |#1| (-1210)))) (-1503 (($ $) NIL (|has| |#1| (-1210)))) (-2734 (($ $) NIL (|has| |#1| (-1210)))) (-4175 (($ $) NIL (|has| |#1| (-1210)))) (-2712 (($ $) NIL (|has| |#1| (-1210)))) (-4151 (($ $) NIL (|has| |#1| (-1210)))) (-2689 (($ $) NIL (|has| |#1| (-1210)))) (-2271 (($ $) NIL (|has| |#1| (-1068)))) (-1804 (($) 28 T CONST)) (-1815 (($) 30 T CONST)) (-3266 (((-1167) $) 23 (|has| |#1| (-833))) (((-1167) $ (-112)) 25 (|has| |#1| (-833))) (((-1280) (-827) $) 26 (|has| |#1| (-833))) (((-1280) (-827) $ (-112)) 27 (|has| |#1| (-833)))) (-2832 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 40)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210)))) (($ $ $) NIL (|has| |#1| (-1210))) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367)))))
(((-170 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-173)) (T -170))
NIL
(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|)))
-((-1408 (((-898 |#1|) |#3|) 22)))
-(((-171 |#1| |#2| |#3|) (-10 -7 (-15 -1408 ((-898 |#1|) |#3|))) (-1106) (-13 (-619 (-898 |#1|)) (-173)) (-166 |#2|)) (T -171))
-((-1408 (*1 *2 *3) (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-898 *4)) (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1106)) (-4 *3 (-166 *5)))))
-(-10 -7 (-15 -1408 ((-898 |#1|) |#3|)))
-((-2415 (((-112) $ $) NIL)) (-3818 (((-112) $) 9)) (-3722 (((-112) $ (-112)) 11)) (-4295 (($) 13)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3959 (($ $) 14)) (-3793 (((-867) $) 18)) (-3872 (((-112) $) 8)) (-4130 (((-112) $ (-112)) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-172) (-13 (-1106) (-10 -8 (-15 -4295 ($)) (-15 -3872 ((-112) $)) (-15 -3818 ((-112) $)) (-15 -4130 ((-112) $ (-112))) (-15 -3722 ((-112) $ (-112))) (-15 -3959 ($ $))))) (T -172))
-((-4295 (*1 *1) (-5 *1 (-172))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-4130 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3722 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3959 (*1 *1 *1) (-5 *1 (-172))))
-(-13 (-1106) (-10 -8 (-15 -4295 ($)) (-15 -3872 ((-112) $)) (-15 -3818 ((-112) $)) (-15 -4130 ((-112) $ (-112))) (-15 -3722 ((-112) $ (-112))) (-15 -3959 ($ $))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-1410 (((-898 |#1|) |#3|) 22)))
+(((-171 |#1| |#2| |#3|) (-10 -7 (-15 -1410 ((-898 |#1|) |#3|))) (-1108) (-13 (-619 (-898 |#1|)) (-173)) (-166 |#2|)) (T -171))
+((-1410 (*1 *2 *3) (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-898 *4)) (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1108)) (-4 *3 (-166 *5)))))
+(-10 -7 (-15 -1410 ((-898 |#1|) |#3|)))
+((-2417 (((-112) $ $) NIL)) (-3948 (((-112) $) 9)) (-2355 (((-112) $ (-112)) 11)) (-4300 (($) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3962 (($ $) 14)) (-3796 (((-867) $) 18)) (-4368 (((-112) $) 8)) (-4133 (((-112) $ (-112)) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-172) (-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -4368 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4133 ((-112) $ (-112))) (-15 -2355 ((-112) $ (-112))) (-15 -3962 ($ $))))) (T -172))
+((-4300 (*1 *1) (-5 *1 (-172))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-4133 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-2355 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3962 (*1 *1 *1) (-5 *1 (-172))))
+(-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -4368 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4133 ((-112) $ (-112))) (-15 -2355 ((-112) $ (-112))) (-15 -3962 ($ $))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-173) (-140)) (T -173))
NIL
-(-13 (-1055) (-111 $ $) (-10 -7 (-6 (-4446 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2839 (($ $) 6)))
+(-13 (-1057) (-111 $ $) (-10 -7 (-6 (-4449 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2543 (($ $) 6)))
(((-174) (-140)) (T -174))
-((-2839 (*1 *1 *1) (-4 *1 (-174))))
-(-13 (-10 -8 (-15 -2839 ($ $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 ((|#1| $) 81)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) NIL)) (-3033 (($ $) 21)) (-3477 (($ |#1| (-1163 |#1|)) 50)) (-2888 (((-3 $ "failed") $) 123)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-3134 (((-1163 |#1|) $) 88)) (-3362 (((-1163 |#1|) $) 85)) (-3231 (((-1163 |#1|) $) 86)) (-2623 (((-112) $) NIL)) (-4010 (((-1163 |#1|) $) 94)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1835 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL)) (-2907 (($ $ (-569)) 97)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3919 (((-1163 |#1|) $) 95)) (-4096 (((-1163 (-412 |#1|)) $) 14)) (-3471 (($ (-412 |#1|)) 17) (($ |#1| (-1163 |#1|) (-1163 |#1|)) 40)) (-4005 (($ $) 99)) (-3793 (((-867) $) 140) (($ (-569)) 53) (($ |#1|) 54) (($ (-412 |#1|)) 38) (($ (-412 (-569))) NIL) (($ $) NIL)) (-3302 (((-776)) 69 T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-4193 (((-1163 (-412 |#1|)) $) 20)) (-1803 (($) 27 T CONST)) (-1813 (($) 30 T CONST)) (-2919 (((-112) $ $) 37)) (-3032 (($ $ $) 121)) (-3021 (($ $) 112) (($ $ $) 109)) (-3009 (($ $ $) 107)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-412 |#1|) $) 117) (($ $ (-412 |#1|)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL)))
-(((-175 |#1|) (-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -3471 ($ (-412 |#1|))) (-15 -3471 ($ |#1| (-1163 |#1|) (-1163 |#1|))) (-15 -3477 ($ |#1| (-1163 |#1|))) (-15 -3362 ((-1163 |#1|) $)) (-15 -3231 ((-1163 |#1|) $)) (-15 -3134 ((-1163 |#1|) $)) (-15 -3673 (|#1| $)) (-15 -3033 ($ $)) (-15 -4193 ((-1163 (-412 |#1|)) $)) (-15 -4096 ((-1163 (-412 |#1|)) $)) (-15 -4010 ((-1163 |#1|) $)) (-15 -3919 ((-1163 |#1|) $)) (-15 -2907 ($ $ (-569))) (-15 -4005 ($ $)))) (-310)) (T -175))
-((-3471 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3)))) (-3471 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3134 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3673 (*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-3033 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-2907 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-4005 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
-(-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -3471 ($ (-412 |#1|))) (-15 -3471 ($ |#1| (-1163 |#1|) (-1163 |#1|))) (-15 -3477 ($ |#1| (-1163 |#1|))) (-15 -3362 ((-1163 |#1|) $)) (-15 -3231 ((-1163 |#1|) $)) (-15 -3134 ((-1163 |#1|) $)) (-15 -3673 (|#1| $)) (-15 -3033 ($ $)) (-15 -4193 ((-1163 (-412 |#1|)) $)) (-15 -4096 ((-1163 (-412 |#1|)) $)) (-15 -4010 ((-1163 |#1|) $)) (-15 -3919 ((-1163 |#1|) $)) (-15 -2907 ($ $ (-569))) (-15 -4005 ($ $))))
-((-3603 (($ (-109) $) 15)) (-2675 (((-696 (-109)) (-511) $) 14)) (-3793 (((-867) $) 18)) (-2418 (((-649 (-109)) $) 8)))
-(((-176) (-13 (-618 (-867)) (-10 -8 (-15 -2418 ((-649 (-109)) $)) (-15 -3603 ($ (-109) $)) (-15 -2675 ((-696 (-109)) (-511) $))))) (T -176))
-((-2418 (*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))) (-2675 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -2418 ((-649 (-109)) $)) (-15 -3603 ($ (-109) $)) (-15 -2675 ((-696 (-109)) (-511) $))))
-((-1457 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 38)) (-2886 (((-949 |#1|) (-949 |#1|)) 22)) (-2216 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 34)) (-2654 (((-949 |#1|) (-949 |#1|)) 20)) (-2019 (((-949 |#1|) (-949 |#1|)) 28)) (-1926 (((-949 |#1|) (-949 |#1|)) 27)) (-1830 (((-949 |#1|) (-949 |#1|)) 26)) (-2312 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 35)) (-2119 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 33)) (-3006 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 32)) (-2776 (((-949 |#1|) (-949 |#1|)) 21)) (-1567 (((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|) 41)) (-2529 (((-949 |#1|) (-949 |#1|)) 8)) (-1330 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 37)) (-4346 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 36)))
-(((-177 |#1|) (-10 -7 (-15 -2529 ((-949 |#1|) (-949 |#1|))) (-15 -2654 ((-949 |#1|) (-949 |#1|))) (-15 -2776 ((-949 |#1|) (-949 |#1|))) (-15 -2886 ((-949 |#1|) (-949 |#1|))) (-15 -1830 ((-949 |#1|) (-949 |#1|))) (-15 -1926 ((-949 |#1|) (-949 |#1|))) (-15 -2019 ((-949 |#1|) (-949 |#1|))) (-15 -3006 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2119 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2216 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2312 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -4346 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1330 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1457 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1567 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|))) (-13 (-367) (-1208) (-1008))) (T -177))
-((-1567 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-1330 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-4346 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-2312 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-2216 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-2119 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))))) (-2019 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008))) (-5 *1 (-177 *3)))))
-(-10 -7 (-15 -2529 ((-949 |#1|) (-949 |#1|))) (-15 -2654 ((-949 |#1|) (-949 |#1|))) (-15 -2776 ((-949 |#1|) (-949 |#1|))) (-15 -2886 ((-949 |#1|) (-949 |#1|))) (-15 -1830 ((-949 |#1|) (-949 |#1|))) (-15 -1926 ((-949 |#1|) (-949 |#1|))) (-15 -2019 ((-949 |#1|) (-949 |#1|))) (-15 -3006 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2119 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2216 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2312 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -4346 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1330 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1457 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1567 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|)))
-((-3798 ((|#2| |#3|) 28)))
-(((-178 |#1| |#2| |#3|) (-10 -7 (-15 -3798 (|#2| |#3|))) (-173) (-1249 |#1|) (-729 |#1| |#2|)) (T -178))
-((-3798 (*1 *2 *3) (-12 (-4 *4 (-173)) (-4 *2 (-1249 *4)) (-5 *1 (-178 *4 *2 *3)) (-4 *3 (-729 *4 *2)))))
-(-10 -7 (-15 -3798 (|#2| |#3|)))
-((-2892 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 44 (|has| (-958 |#2|) (-892 |#1|)))))
-(((-179 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -2892 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|)) (-1106) (-13 (-892 |#1|) (-173)) (-166 |#2|)) (T -179))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5)) (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -2892 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|))
-((-3429 (((-649 |#1|) (-649 |#1|) |#1|) 41)) (-3293 (((-649 |#1|) |#1| (-649 |#1|)) 20)) (-4267 (((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|)) 36) ((|#1| (-649 |#1|) (-649 |#1|)) 32)))
-(((-180 |#1|) (-10 -7 (-15 -3293 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -4267 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -4267 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -3429 ((-649 |#1|) (-649 |#1|) |#1|))) (-310)) (T -180))
-((-3429 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))) (-4267 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310)) (-5 *1 (-180 *4)))) (-4267 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310)))) (-3293 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
-(-10 -7 (-15 -3293 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -4267 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -4267 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -3429 ((-649 |#1|) (-649 |#1|) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3865 (((-1222) $) 13)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1416 (((-1141) $) 10)) (-3793 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-181) (-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -3865 ((-1222) $))))) (T -181))
-((-1416 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-181)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-181)))))
-(-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -3865 ((-1222) $))))
-((-1980 (((-2 (|:| |start| |#2|) (|:| -1411 (-423 |#2|))) |#2|) 66)) (-3074 ((|#1| |#1|) 58)) (-2936 (((-170 |#1|) |#2|) 93)) (-2831 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-2724 ((|#2| |#2|) 91)) (-2589 (((-423 |#2|) |#2| |#1|) 121) (((-423 |#2|) |#2| |#1| (-112)) 88)) (-2707 ((|#1| |#2|) 120)) (-2473 ((|#2| |#2|) 135)) (-3796 (((-423 |#2|) |#2|) 158) (((-423 |#2|) |#2| |#1|) 33) (((-423 |#2|) |#2| |#1| (-112)) 157)) (-3667 (((-649 (-2 (|:| -1411 (-649 |#2|)) (|:| -3645 |#1|))) |#2| |#2|) 156) (((-649 (-2 (|:| -1411 (-649 |#2|)) (|:| -3645 |#1|))) |#2| |#2| (-112)) 81)) (-3550 (((-649 (-170 |#1|)) |#2| |#1|) 42) (((-649 (-170 |#1|)) |#2|) 43)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -3550 ((-649 (-170 |#1|)) |#2|)) (-15 -3550 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3667 ((-649 (-2 (|:| -1411 (-649 |#2|)) (|:| -3645 |#1|))) |#2| |#2| (-112))) (-15 -3667 ((-649 (-2 (|:| -1411 (-649 |#2|)) (|:| -3645 |#1|))) |#2| |#2|)) (-15 -3796 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3796 ((-423 |#2|) |#2| |#1|)) (-15 -3796 ((-423 |#2|) |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2707 (|#1| |#2|)) (-15 -2589 ((-423 |#2|) |#2| |#1| (-112))) (-15 -2589 ((-423 |#2|) |#2| |#1|)) (-15 -2724 (|#2| |#2|)) (-15 -2831 (|#1| |#2| |#1|)) (-15 -2831 (|#1| |#2|)) (-15 -2936 ((-170 |#1|) |#2|)) (-15 -3074 (|#1| |#1|)) (-15 -1980 ((-2 (|:| |start| |#2|) (|:| -1411 (-423 |#2|))) |#2|))) (-13 (-367) (-853)) (-1249 (-170 |#1|))) (T -182))
-((-1980 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-2 (|:| |start| *3) (|:| -1411 (-423 *3)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3074 (*1 *2 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-2936 (*1 *2 *3) (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1249 *2)))) (-2831 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-2831 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1249 (-170 *3))))) (-2589 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-2589 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-2707 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1249 (-170 *2))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1249 (-170 *3))))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3796 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3667 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -1411 (-649 *3)) (|:| -3645 *4)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3667 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -1411 (-649 *3)) (|:| -3645 *5)))) (-5 *1 (-182 *5 *3)) (-4 *3 (-1249 (-170 *5))))) (-3550 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
-(-10 -7 (-15 -3550 ((-649 (-170 |#1|)) |#2|)) (-15 -3550 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3667 ((-649 (-2 (|:| -1411 (-649 |#2|)) (|:| -3645 |#1|))) |#2| |#2| (-112))) (-15 -3667 ((-649 (-2 (|:| -1411 (-649 |#2|)) (|:| -3645 |#1|))) |#2| |#2|)) (-15 -3796 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3796 ((-423 |#2|) |#2| |#1|)) (-15 -3796 ((-423 |#2|) |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2707 (|#1| |#2|)) (-15 -2589 ((-423 |#2|) |#2| |#1| (-112))) (-15 -2589 ((-423 |#2|) |#2| |#1|)) (-15 -2724 (|#2| |#2|)) (-15 -2831 (|#1| |#2| |#1|)) (-15 -2831 (|#1| |#2|)) (-15 -2936 ((-170 |#1|) |#2|)) (-15 -3074 (|#1| |#1|)) (-15 -1980 ((-2 (|:| |start| |#2|) (|:| -1411 (-423 |#2|))) |#2|)))
-((-2073 (((-3 |#2| "failed") |#2|) 20)) (-2181 (((-776) |#2|) 23)) (-2299 ((|#2| |#2| |#2|) 25)))
-(((-183 |#1| |#2|) (-10 -7 (-15 -2073 ((-3 |#2| "failed") |#2|)) (-15 -2181 ((-776) |#2|)) (-15 -2299 (|#2| |#2| |#2|))) (-1223) (-679 |#1|)) (T -183))
-((-2299 (*1 *2 *2 *2) (-12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))) (-2181 (*1 *2 *3) (-12 (-4 *4 (-1223)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3)) (-4 *3 (-679 *4)))) (-2073 (*1 *2 *2) (|partial| -12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
-(-10 -7 (-15 -2073 ((-3 |#2| "failed") |#2|)) (-15 -2181 ((-776) |#2|)) (-15 -2299 (|#2| |#2| |#2|)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1572 ((|#1| $) 7)) (-3793 (((-867) $) 14)) (-1441 (((-112) $ $) NIL)) (-3936 (((-649 (-1188)) $) 10)) (-2919 (((-112) $ $) 12)))
-(((-184 |#1|) (-13 (-1106) (-10 -8 (-15 -1572 (|#1| $)) (-15 -3936 ((-649 (-1188)) $)))) (-186)) (T -184))
-((-1572 (*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-184 *3)) (-4 *3 (-186)))))
-(-13 (-1106) (-10 -8 (-15 -1572 (|#1| $)) (-15 -3936 ((-649 (-1188)) $))))
-((-1766 (((-649 (-870)) $) 16)) (-3893 (((-187) $) 8)) (-1317 (((-649 (-112)) $) 13)) (-1371 (((-55) $) 10)))
-(((-185 |#1|) (-10 -8 (-15 -1766 ((-649 (-870)) |#1|)) (-15 -1317 ((-649 (-112)) |#1|)) (-15 -3893 ((-187) |#1|)) (-15 -1371 ((-55) |#1|))) (-186)) (T -185))
-NIL
-(-10 -8 (-15 -1766 ((-649 (-870)) |#1|)) (-15 -1317 ((-649 (-112)) |#1|)) (-15 -3893 ((-187) |#1|)) (-15 -1371 ((-55) |#1|)))
-((-2415 (((-112) $ $) 7)) (-1766 (((-649 (-870)) $) 19)) (-3570 (((-511) $) 16)) (-1550 (((-1165) $) 10)) (-3893 (((-187) $) 21)) (-2374 (((-112) $ (-511)) 14)) (-3545 (((-1126) $) 11)) (-1317 (((-649 (-112)) $) 20)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1371 (((-55) $) 15)) (-2919 (((-112) $ $) 6)))
+((-2543 (*1 *1 *1) (-4 *1 (-174))))
+(-13 (-10 -8 (-15 -2543 ($ $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 ((|#1| $) 81)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-1944 (($ $) 21)) (-3806 (($ |#1| (-1165 |#1|)) 50)) (-3086 (((-3 $ "failed") $) 123)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-1701 (((-1165 |#1|) $) 88)) (-2022 (((-1165 |#1|) $) 85)) (-3279 (((-1165 |#1|) $) 86)) (-2349 (((-112) $) NIL)) (-2055 (((-1165 |#1|) $) 94)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-3166 (($ $ (-569)) 97)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3640 (((-1165 |#1|) $) 95)) (-1739 (((-1165 (-412 |#1|)) $) 14)) (-1855 (($ (-412 |#1|)) 17) (($ |#1| (-1165 |#1|) (-1165 |#1|)) 40)) (-2007 (($ $) 99)) (-3796 (((-867) $) 140) (($ (-569)) 53) (($ |#1|) 54) (($ (-412 |#1|)) 38) (($ (-412 (-569))) NIL) (($ $) NIL)) (-2721 (((-776)) 69 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3244 (((-1165 (-412 |#1|)) $) 20)) (-1804 (($) 27 T CONST)) (-1815 (($) 30 T CONST)) (-2920 (((-112) $ $) 37)) (-3035 (($ $ $) 121)) (-3024 (($ $) 112) (($ $ $) 109)) (-3012 (($ $ $) 107)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-412 |#1|) $) 117) (($ $ (-412 |#1|)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL)))
+(((-175 |#1|) (-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -1855 ($ (-412 |#1|))) (-15 -1855 ($ |#1| (-1165 |#1|) (-1165 |#1|))) (-15 -3806 ($ |#1| (-1165 |#1|))) (-15 -2022 ((-1165 |#1|) $)) (-15 -3279 ((-1165 |#1|) $)) (-15 -1701 ((-1165 |#1|) $)) (-15 -1938 (|#1| $)) (-15 -1944 ($ $)) (-15 -3244 ((-1165 (-412 |#1|)) $)) (-15 -1739 ((-1165 (-412 |#1|)) $)) (-15 -2055 ((-1165 |#1|) $)) (-15 -3640 ((-1165 |#1|) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $)))) (-310)) (T -175))
+((-1855 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3)))) (-1855 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1938 (*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-1944 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-2007 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
+(-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -1855 ($ (-412 |#1|))) (-15 -1855 ($ |#1| (-1165 |#1|) (-1165 |#1|))) (-15 -3806 ($ |#1| (-1165 |#1|))) (-15 -2022 ((-1165 |#1|) $)) (-15 -3279 ((-1165 |#1|) $)) (-15 -1701 ((-1165 |#1|) $)) (-15 -1938 (|#1| $)) (-15 -1944 ($ $)) (-15 -3244 ((-1165 (-412 |#1|)) $)) (-15 -1739 ((-1165 (-412 |#1|)) $)) (-15 -2055 ((-1165 |#1|) $)) (-15 -3640 ((-1165 |#1|) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $))))
+((-3700 (($ (-109) $) 15)) (-1625 (((-696 (-109)) (-511) $) 14)) (-3796 (((-867) $) 18)) (-4125 (((-649 (-109)) $) 8)))
+(((-176) (-13 (-618 (-867)) (-10 -8 (-15 -4125 ((-649 (-109)) $)) (-15 -3700 ($ (-109) $)) (-15 -1625 ((-696 (-109)) (-511) $))))) (T -176))
+((-4125 (*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176)))) (-3700 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))) (-1625 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -4125 ((-649 (-109)) $)) (-15 -3700 ($ (-109) $)) (-15 -1625 ((-696 (-109)) (-511) $))))
+((-3755 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 38)) (-3063 (((-949 |#1|) (-949 |#1|)) 22)) (-2597 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 34)) (-1456 (((-949 |#1|) (-949 |#1|)) 20)) (-4336 (((-949 |#1|) (-949 |#1|)) 28)) (-2650 (((-949 |#1|) (-949 |#1|)) 27)) (-4233 (((-949 |#1|) (-949 |#1|)) 26)) (-2361 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 35)) (-4121 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 33)) (-2893 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 32)) (-3204 (((-949 |#1|) (-949 |#1|)) 21)) (-3627 (((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|) 41)) (-2666 (((-949 |#1|) (-949 |#1|)) 8)) (-1802 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 37)) (-2226 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 36)))
+(((-177 |#1|) (-10 -7 (-15 -2666 ((-949 |#1|) (-949 |#1|))) (-15 -1456 ((-949 |#1|) (-949 |#1|))) (-15 -3204 ((-949 |#1|) (-949 |#1|))) (-15 -3063 ((-949 |#1|) (-949 |#1|))) (-15 -4233 ((-949 |#1|) (-949 |#1|))) (-15 -2650 ((-949 |#1|) (-949 |#1|))) (-15 -4336 ((-949 |#1|) (-949 |#1|))) (-15 -2893 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -4121 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2597 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2361 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2226 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1802 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3755 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3627 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|))) (-13 (-367) (-1210) (-1010))) (T -177))
+((-3627 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-1802 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2226 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2361 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2597 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-4121 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2893 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-2650 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-4233 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))))
+(-10 -7 (-15 -2666 ((-949 |#1|) (-949 |#1|))) (-15 -1456 ((-949 |#1|) (-949 |#1|))) (-15 -3204 ((-949 |#1|) (-949 |#1|))) (-15 -3063 ((-949 |#1|) (-949 |#1|))) (-15 -4233 ((-949 |#1|) (-949 |#1|))) (-15 -2650 ((-949 |#1|) (-949 |#1|))) (-15 -4336 ((-949 |#1|) (-949 |#1|))) (-15 -2893 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -4121 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2597 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2361 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2226 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1802 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3755 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3627 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|)))
+((-1886 ((|#2| |#3|) 28)))
+(((-178 |#1| |#2| |#3|) (-10 -7 (-15 -1886 (|#2| |#3|))) (-173) (-1251 |#1|) (-729 |#1| |#2|)) (T -178))
+((-1886 (*1 *2 *3) (-12 (-4 *4 (-173)) (-4 *2 (-1251 *4)) (-5 *1 (-178 *4 *2 *3)) (-4 *3 (-729 *4 *2)))))
+(-10 -7 (-15 -1886 (|#2| |#3|)))
+((-3131 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 44 (|has| (-958 |#2|) (-892 |#1|)))))
+(((-179 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|)) (-1108) (-13 (-892 |#1|) (-173)) (-166 |#2|)) (T -179))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5)) (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|))
+((-1421 (((-649 |#1|) (-649 |#1|) |#1|) 41)) (-2620 (((-649 |#1|) |#1| (-649 |#1|)) 20)) (-2706 (((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|)) 36) ((|#1| (-649 |#1|) (-649 |#1|)) 32)))
+(((-180 |#1|) (-10 -7 (-15 -2620 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -2706 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -2706 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -1421 ((-649 |#1|) (-649 |#1|) |#1|))) (-310)) (T -180))
+((-1421 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))) (-2706 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310)) (-5 *1 (-180 *4)))) (-2706 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310)))) (-2620 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
+(-10 -7 (-15 -2620 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -2706 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -2706 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -1421 ((-649 |#1|) (-649 |#1|) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 10)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-181) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))) (T -181))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-181)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-181)))))
+(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))
+((-2037 (((-2 (|:| |start| |#2|) (|:| -4360 (-423 |#2|))) |#2|) 66)) (-2299 ((|#1| |#1|) 58)) (-3474 (((-170 |#1|) |#2|) 93)) (-3758 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-3984 ((|#2| |#2|) 91)) (-2068 (((-423 |#2|) |#2| |#1|) 121) (((-423 |#2|) |#2| |#1| (-112)) 88)) (-3829 ((|#1| |#2|) 120)) (-3410 ((|#2| |#2|) 135)) (-3800 (((-423 |#2|) |#2|) 158) (((-423 |#2|) |#2| |#1|) 33) (((-423 |#2|) |#2| |#1| (-112)) 157)) (-3056 (((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2|) 156) (((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2| (-112)) 81)) (-3177 (((-649 (-170 |#1|)) |#2| |#1|) 42) (((-649 (-170 |#1|)) |#2|) 43)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3177 ((-649 (-170 |#1|)) |#2|)) (-15 -3177 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2| (-112))) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2|)) (-15 -3800 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3800 ((-423 |#2|) |#2| |#1|)) (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3410 (|#2| |#2|)) (-15 -3829 (|#1| |#2|)) (-15 -2068 ((-423 |#2|) |#2| |#1| (-112))) (-15 -2068 ((-423 |#2|) |#2| |#1|)) (-15 -3984 (|#2| |#2|)) (-15 -3758 (|#1| |#2| |#1|)) (-15 -3758 (|#1| |#2|)) (-15 -3474 ((-170 |#1|) |#2|)) (-15 -2299 (|#1| |#1|)) (-15 -2037 ((-2 (|:| |start| |#2|) (|:| -4360 (-423 |#2|))) |#2|))) (-13 (-367) (-853)) (-1251 (-170 |#1|))) (T -182))
+((-2037 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-2 (|:| |start| *3) (|:| -4360 (-423 *3)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-2299 (*1 *2 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1251 *2)))) (-3758 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3758 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1251 (-170 *3))))) (-2068 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-2068 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3829 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3410 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1251 (-170 *3))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3800 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3056 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *4)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3056 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *5)))) (-5 *1 (-182 *5 *3)) (-4 *3 (-1251 (-170 *5))))) (-3177 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))))
+(-10 -7 (-15 -3177 ((-649 (-170 |#1|)) |#2|)) (-15 -3177 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2| (-112))) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2|)) (-15 -3800 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3800 ((-423 |#2|) |#2| |#1|)) (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3410 (|#2| |#2|)) (-15 -3829 (|#1| |#2|)) (-15 -2068 ((-423 |#2|) |#2| |#1| (-112))) (-15 -2068 ((-423 |#2|) |#2| |#1|)) (-15 -3984 (|#2| |#2|)) (-15 -3758 (|#1| |#2| |#1|)) (-15 -3758 (|#1| |#2|)) (-15 -3474 ((-170 |#1|) |#2|)) (-15 -2299 (|#1| |#1|)) (-15 -2037 ((-2 (|:| |start| |#2|) (|:| -4360 (-423 |#2|))) |#2|)))
+((-1786 (((-3 |#2| "failed") |#2|) 20)) (-3533 (((-776) |#2|) 23)) (-2246 ((|#2| |#2| |#2|) 25)))
+(((-183 |#1| |#2|) (-10 -7 (-15 -1786 ((-3 |#2| "failed") |#2|)) (-15 -3533 ((-776) |#2|)) (-15 -2246 (|#2| |#2| |#2|))) (-1225) (-679 |#1|)) (T -183))
+((-2246 (*1 *2 *2 *2) (-12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))) (-3533 (*1 *2 *3) (-12 (-4 *4 (-1225)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3)) (-4 *3 (-679 *4)))) (-1786 (*1 *2 *2) (|partial| -12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
+(-10 -7 (-15 -1786 ((-3 |#2| "failed") |#2|)) (-15 -3533 ((-776) |#2|)) (-15 -2246 (|#2| |#2| |#2|)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1576 ((|#1| $) 7)) (-3796 (((-867) $) 14)) (-1520 (((-112) $ $) NIL)) (-3939 (((-649 (-1190)) $) 10)) (-2920 (((-112) $ $) 12)))
+(((-184 |#1|) (-13 (-1108) (-10 -8 (-15 -1576 (|#1| $)) (-15 -3939 ((-649 (-1190)) $)))) (-186)) (T -184))
+((-1576 (*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-184 *3)) (-4 *3 (-186)))))
+(-13 (-1108) (-10 -8 (-15 -1576 (|#1| $)) (-15 -3939 ((-649 (-1190)) $))))
+((-1767 (((-649 (-870)) $) 16)) (-3896 (((-187) $) 8)) (-1673 (((-649 (-112)) $) 13)) (-3324 (((-55) $) 10)))
+(((-185 |#1|) (-10 -8 (-15 -1767 ((-649 (-870)) |#1|)) (-15 -1673 ((-649 (-112)) |#1|)) (-15 -3896 ((-187) |#1|)) (-15 -3324 ((-55) |#1|))) (-186)) (T -185))
+NIL
+(-10 -8 (-15 -1767 ((-649 (-870)) |#1|)) (-15 -1673 ((-649 (-112)) |#1|)) (-15 -3896 ((-187) |#1|)) (-15 -3324 ((-55) |#1|)))
+((-2417 (((-112) $ $) 7)) (-1767 (((-649 (-870)) $) 19)) (-3573 (((-511) $) 16)) (-3435 (((-1167) $) 10)) (-3896 (((-187) $) 21)) (-1825 (((-112) $ (-511)) 14)) (-3547 (((-1128) $) 11)) (-1673 (((-649 (-112)) $) 20)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-3324 (((-55) $) 15)) (-2920 (((-112) $ $) 6)))
(((-186) (-140)) (T -186))
-((-3893 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112))))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870))))))
-(-13 (-840 (-511)) (-10 -8 (-15 -3893 ((-187) $)) (-15 -1317 ((-649 (-112)) $)) (-15 -1766 ((-649 (-870)) $))))
-(((-102) . T) ((-618 (-867)) . T) ((-840 (-511)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-8 (($) 7 T CONST)) (-3793 (((-867) $) 12)) (-9 (($) 6 T CONST)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 10)))
-(((-187) (-13 (-1106) (-10 -8 (-15 -9 ($) -3706) (-15 -8 ($) -3706) (-15 -7 ($) -3706)))) (T -187))
+((-3896 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112))))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870))))))
+(-13 (-840 (-511)) (-10 -8 (-15 -3896 ((-187) $)) (-15 -1673 ((-649 (-112)) $)) (-15 -1767 ((-649 (-870)) $))))
+(((-102) . T) ((-618 (-867)) . T) ((-840 (-511)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-8 (($) 7 T CONST)) (-3796 (((-867) $) 12)) (-9 (($) 6 T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 10)))
+(((-187) (-13 (-1108) (-10 -8 (-15 -9 ($) -3709) (-15 -8 ($) -3709) (-15 -7 ($) -3709)))) (T -187))
((-9 (*1 *1) (-5 *1 (-187))) (-8 (*1 *1) (-5 *1 (-187))) (-7 (*1 *1) (-5 *1 (-187))))
-(-13 (-1106) (-10 -8 (-15 -9 ($) -3706) (-15 -8 ($) -3706) (-15 -7 ($) -3706)))
-((-2415 (((-112) $ $) NIL)) (-1766 (((-649 (-870)) $) NIL)) (-3570 (((-511) $) 8)) (-1550 (((-1165) $) NIL)) (-3893 (((-187) $) 10)) (-2374 (((-112) $ (-511)) NIL)) (-3545 (((-1126) $) NIL)) (-2386 (((-696 $) (-511)) 17)) (-1317 (((-649 (-112)) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1371 (((-55) $) 12)) (-2919 (((-112) $ $) NIL)))
-(((-188) (-13 (-186) (-10 -8 (-15 -2386 ((-696 $) (-511)))))) (T -188))
-((-2386 (*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188)))))
-(-13 (-186) (-10 -8 (-15 -2386 ((-696 $) (-511)))))
-((-2333 ((|#2| |#2|) 28)) (-2410 (((-112) |#2|) 19)) (-3822 (((-319 |#1|) |#2|) 12)) (-3834 (((-319 |#1|) |#2|) 14)) (-2179 ((|#2| |#2| (-1183)) 69) ((|#2| |#2|) 70)) (-1313 (((-170 (-319 |#1|)) |#2|) 10)) (-2256 ((|#2| |#2| (-1183)) 66) ((|#2| |#2|) 60)))
-(((-189 |#1| |#2|) (-10 -7 (-15 -2179 (|#2| |#2|)) (-15 -2179 (|#2| |#2| (-1183))) (-15 -2256 (|#2| |#2|)) (-15 -2256 (|#2| |#2| (-1183))) (-15 -3822 ((-319 |#1|) |#2|)) (-15 -3834 ((-319 |#1|) |#2|)) (-15 -2410 ((-112) |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -1313 ((-170 (-319 |#1|)) |#2|))) (-13 (-561) (-1044 (-569))) (-13 (-27) (-1208) (-435 (-170 |#1|)))) (T -189))
-((-1313 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-170 (-319 *4))) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3)))))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-3822 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3)))))) (-2179 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4)))))) (-2179 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3)))))))
-(-10 -7 (-15 -2179 (|#2| |#2|)) (-15 -2179 (|#2| |#2| (-1183))) (-15 -2256 (|#2| |#2|)) (-15 -2256 (|#2| |#2| (-1183))) (-15 -3822 ((-319 |#1|) |#2|)) (-15 -3834 ((-319 |#1|) |#2|)) (-15 -2410 ((-112) |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -1313 ((-170 (-319 |#1|)) |#2|)))
-((-1443 (((-1273 (-694 (-958 |#1|))) (-1273 (-694 |#1|))) 26)) (-3793 (((-1273 (-694 (-412 (-958 |#1|)))) (-1273 (-694 |#1|))) 37)))
-(((-190 |#1|) (-10 -7 (-15 -1443 ((-1273 (-694 (-958 |#1|))) (-1273 (-694 |#1|)))) (-15 -3793 ((-1273 (-694 (-412 (-958 |#1|)))) (-1273 (-694 |#1|))))) (-173)) (T -190))
-((-3793 (*1 *2 *3) (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1273 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1273 (-694 (-958 *4)))) (-5 *1 (-190 *4)))))
-(-10 -7 (-15 -1443 ((-1273 (-694 (-958 |#1|))) (-1273 (-694 |#1|)))) (-15 -3793 ((-1273 (-694 (-412 (-958 |#1|)))) (-1273 (-694 |#1|)))))
-((-4305 (((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569)))) 88)) (-3299 (((-1185 (-412 (-569))) (-649 (-569)) (-649 (-569))) 99)) (-1576 (((-1185 (-412 (-569))) (-569)) 55)) (-2581 (((-1185 (-412 (-569))) (-569)) 74)) (-1723 (((-412 (-569)) (-1185 (-412 (-569)))) 84)) (-1714 (((-1185 (-412 (-569))) (-569)) 37)) (-3971 (((-1185 (-412 (-569))) (-569)) 67)) (-3858 (((-1185 (-412 (-569))) (-569)) 61)) (-4196 (((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569)))) 82)) (-4005 (((-1185 (-412 (-569))) (-569)) 29)) (-4081 (((-412 (-569)) (-1185 (-412 (-569))) (-1185 (-412 (-569)))) 86)) (-1839 (((-1185 (-412 (-569))) (-569)) 35)) (-3181 (((-1185 (-412 (-569))) (-649 (-569))) 95)))
-(((-191) (-10 -7 (-15 -4005 ((-1185 (-412 (-569))) (-569))) (-15 -1576 ((-1185 (-412 (-569))) (-569))) (-15 -1714 ((-1185 (-412 (-569))) (-569))) (-15 -1839 ((-1185 (-412 (-569))) (-569))) (-15 -3858 ((-1185 (-412 (-569))) (-569))) (-15 -3971 ((-1185 (-412 (-569))) (-569))) (-15 -2581 ((-1185 (-412 (-569))) (-569))) (-15 -4081 ((-412 (-569)) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -4196 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -1723 ((-412 (-569)) (-1185 (-412 (-569))))) (-15 -4305 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -3181 ((-1185 (-412 (-569))) (-649 (-569)))) (-15 -3299 ((-1185 (-412 (-569))) (-649 (-569)) (-649 (-569)))))) (T -191))
-((-3299 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-4305 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-4196 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))) (-4081 (*1 *2 *3 *3) (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-2581 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3971 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3858 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-1714 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-1576 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-4005 (*1 *2 *3) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
-(-10 -7 (-15 -4005 ((-1185 (-412 (-569))) (-569))) (-15 -1576 ((-1185 (-412 (-569))) (-569))) (-15 -1714 ((-1185 (-412 (-569))) (-569))) (-15 -1839 ((-1185 (-412 (-569))) (-569))) (-15 -3858 ((-1185 (-412 (-569))) (-569))) (-15 -3971 ((-1185 (-412 (-569))) (-569))) (-15 -2581 ((-1185 (-412 (-569))) (-569))) (-15 -4081 ((-412 (-569)) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -4196 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -1723 ((-412 (-569)) (-1185 (-412 (-569))))) (-15 -4305 ((-1185 (-412 (-569))) (-1185 (-412 (-569))) (-1185 (-412 (-569))))) (-15 -3181 ((-1185 (-412 (-569))) (-649 (-569)))) (-15 -3299 ((-1185 (-412 (-569))) (-649 (-569)) (-649 (-569)))))
-((-3578 (((-423 (-1179 (-569))) (-569)) 38)) (-3446 (((-649 (-1179 (-569))) (-569)) 33)) (-2193 (((-1179 (-569)) (-569)) 28)))
-(((-192) (-10 -7 (-15 -3446 ((-649 (-1179 (-569))) (-569))) (-15 -2193 ((-1179 (-569)) (-569))) (-15 -3578 ((-423 (-1179 (-569))) (-569))))) (T -192))
-((-3578 (*1 *2 *3) (-12 (-5 *2 (-423 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))) (-2193 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-192)) (-5 *3 (-569)))) (-3446 (*1 *2 *3) (-12 (-5 *2 (-649 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
-(-10 -7 (-15 -3446 ((-649 (-1179 (-569))) (-569))) (-15 -2193 ((-1179 (-569)) (-569))) (-15 -3578 ((-423 (-1179 (-569))) (-569))))
-((-3973 (((-1163 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 132)) (-2226 (((-649 (-1165)) (-1163 (-226))) NIL)) (-3703 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 108)) (-3775 (((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226)))) NIL)) (-2147 (((-649 (-1165)) (-649 (-226))) NIL)) (-2302 (((-226) (-1100 (-848 (-226)))) 31)) (-2380 (((-226) (-1100 (-848 (-226)))) 32)) (-2641 (((-383) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 126)) (-2519 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 68)) (-1992 (((-1165) (-226)) NIL)) (-2037 (((-1165) (-649 (-1165))) 27)) (-2777 (((-1041) (-1183) (-1183) (-1041)) 13)))
-(((-193) (-10 -7 (-15 -3703 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2519 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2302 ((-226) (-1100 (-848 (-226))))) (-15 -2380 ((-226) (-1100 (-848 (-226))))) (-15 -2641 ((-383) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3775 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -3973 ((-1163 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1992 ((-1165) (-226))) (-15 -2147 ((-649 (-1165)) (-649 (-226)))) (-15 -2226 ((-649 (-1165)) (-1163 (-226)))) (-15 -2037 ((-1165) (-649 (-1165)))) (-15 -2777 ((-1041) (-1183) (-1183) (-1041))))) (T -193))
-((-2777 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-193)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-193)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-193)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-193)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183)) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-193)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-193)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-193)))))
-(-10 -7 (-15 -3703 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2519 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2302 ((-226) (-1100 (-848 (-226))))) (-15 -2380 ((-226) (-1100 (-848 (-226))))) (-15 -2641 ((-383) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3775 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -3973 ((-1163 (-226)) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1992 ((-1165) (-226))) (-15 -2147 ((-649 (-1165)) (-649 (-226)))) (-15 -2226 ((-649 (-1165)) (-1163 (-226)))) (-15 -2037 ((-1165) (-649 (-1165)))) (-15 -2777 ((-1041) (-1183) (-1183) (-1041))))
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 61) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 33) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+(-13 (-1108) (-10 -8 (-15 -9 ($) -3709) (-15 -8 ($) -3709) (-15 -7 ($) -3709)))
+((-2417 (((-112) $ $) NIL)) (-1767 (((-649 (-870)) $) NIL)) (-3573 (((-511) $) 8)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) 10)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-3842 (((-696 $) (-511)) 17)) (-1673 (((-649 (-112)) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) 12)) (-2920 (((-112) $ $) NIL)))
+(((-188) (-13 (-186) (-10 -8 (-15 -3842 ((-696 $) (-511)))))) (T -188))
+((-3842 (*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188)))))
+(-13 (-186) (-10 -8 (-15 -3842 ((-696 $) (-511)))))
+((-1396 ((|#2| |#2|) 28)) (-4060 (((-112) |#2|) 19)) (-3824 (((-319 |#1|) |#2|) 12)) (-3836 (((-319 |#1|) |#2|) 14)) (-3509 ((|#2| |#2| (-1185)) 69) ((|#2| |#2|) 70)) (-1628 (((-170 (-319 |#1|)) |#2|) 10)) (-3038 ((|#2| |#2| (-1185)) 66) ((|#2| |#2|) 60)))
+(((-189 |#1| |#2|) (-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -3824 ((-319 |#1|) |#2|)) (-15 -3836 ((-319 |#1|) |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -1628 ((-170 (-319 |#1|)) |#2|))) (-13 (-561) (-1046 (-569))) (-13 (-27) (-1210) (-435 (-170 |#1|)))) (T -189))
+((-1628 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-170 (-319 *4))) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-1396 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3038 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3038 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))) (-3509 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))))
+(-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -3824 ((-319 |#1|) |#2|)) (-15 -3836 ((-319 |#1|) |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -1628 ((-170 (-319 |#1|)) |#2|)))
+((-1536 (((-1275 (-694 (-958 |#1|))) (-1275 (-694 |#1|))) 26)) (-3796 (((-1275 (-694 (-412 (-958 |#1|)))) (-1275 (-694 |#1|))) 37)))
+(((-190 |#1|) (-10 -7 (-15 -1536 ((-1275 (-694 (-958 |#1|))) (-1275 (-694 |#1|)))) (-15 -3796 ((-1275 (-694 (-412 (-958 |#1|)))) (-1275 (-694 |#1|))))) (-173)) (T -190))
+((-3796 (*1 *2 *3) (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1275 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1275 (-694 (-958 *4)))) (-5 *1 (-190 *4)))))
+(-10 -7 (-15 -1536 ((-1275 (-694 (-958 |#1|))) (-1275 (-694 |#1|)))) (-15 -3796 ((-1275 (-694 (-412 (-958 |#1|)))) (-1275 (-694 |#1|)))))
+((-3070 (((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569)))) 88)) (-2683 (((-1187 (-412 (-569))) (-649 (-569)) (-649 (-569))) 99)) (-2410 (((-1187 (-412 (-569))) (-569)) 55)) (-2001 (((-1187 (-412 (-569))) (-569)) 74)) (-1725 (((-412 (-569)) (-1187 (-412 (-569)))) 84)) (-1322 (((-1187 (-412 (-569))) (-569)) 37)) (-2859 (((-1187 (-412 (-569))) (-569)) 67)) (-4259 (((-1187 (-412 (-569))) (-569)) 61)) (-3277 (((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569)))) 82)) (-2007 (((-1187 (-412 (-569))) (-569)) 29)) (-1561 (((-412 (-569)) (-1187 (-412 (-569))) (-1187 (-412 (-569)))) 86)) (-3054 (((-1187 (-412 (-569))) (-569)) 35)) (-4042 (((-1187 (-412 (-569))) (-649 (-569))) 95)))
+(((-191) (-10 -7 (-15 -2007 ((-1187 (-412 (-569))) (-569))) (-15 -2410 ((-1187 (-412 (-569))) (-569))) (-15 -1322 ((-1187 (-412 (-569))) (-569))) (-15 -3054 ((-1187 (-412 (-569))) (-569))) (-15 -4259 ((-1187 (-412 (-569))) (-569))) (-15 -2859 ((-1187 (-412 (-569))) (-569))) (-15 -2001 ((-1187 (-412 (-569))) (-569))) (-15 -1561 ((-412 (-569)) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -3277 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -1725 ((-412 (-569)) (-1187 (-412 (-569))))) (-15 -3070 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -4042 ((-1187 (-412 (-569))) (-649 (-569)))) (-15 -2683 ((-1187 (-412 (-569))) (-649 (-569)) (-649 (-569)))))) (T -191))
+((-2683 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-3277 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-1561 (*1 *2 *3 *3) (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-2001 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-2859 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-4259 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3054 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-1322 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-2007 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(-10 -7 (-15 -2007 ((-1187 (-412 (-569))) (-569))) (-15 -2410 ((-1187 (-412 (-569))) (-569))) (-15 -1322 ((-1187 (-412 (-569))) (-569))) (-15 -3054 ((-1187 (-412 (-569))) (-569))) (-15 -4259 ((-1187 (-412 (-569))) (-569))) (-15 -2859 ((-1187 (-412 (-569))) (-569))) (-15 -2001 ((-1187 (-412 (-569))) (-569))) (-15 -1561 ((-412 (-569)) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -3277 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -1725 ((-412 (-569)) (-1187 (-412 (-569))))) (-15 -3070 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -4042 ((-1187 (-412 (-569))) (-649 (-569)))) (-15 -2683 ((-1187 (-412 (-569))) (-649 (-569)) (-649 (-569)))))
+((-3454 (((-423 (-1181 (-569))) (-569)) 38)) (-1608 (((-649 (-1181 (-569))) (-569)) 33)) (-3665 (((-1181 (-569)) (-569)) 28)))
+(((-192) (-10 -7 (-15 -1608 ((-649 (-1181 (-569))) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -3454 ((-423 (-1181 (-569))) (-569))))) (T -192))
+((-3454 (*1 *2 *3) (-12 (-5 *2 (-423 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))) (-3665 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-192)) (-5 *3 (-569)))) (-1608 (*1 *2 *3) (-12 (-5 *2 (-649 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
+(-10 -7 (-15 -1608 ((-649 (-1181 (-569))) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -3454 ((-423 (-1181 (-569))) (-569))))
+((-2879 (((-1165 (-226)) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 132)) (-2718 (((-649 (-1167)) (-1165 (-226))) NIL)) (-2205 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 108)) (-1680 (((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226)))) NIL)) (-3161 (((-649 (-1167)) (-649 (-226))) NIL)) (-2278 (((-226) (-1102 (-848 (-226)))) 31)) (-3783 (((-226) (-1102 (-848 (-226)))) 32)) (-1329 (((-383) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 126)) (-2582 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 68)) (-2145 (((-1167) (-226)) NIL)) (-1390 (((-1167) (-649 (-1167))) 27)) (-3215 (((-1043) (-1185) (-1185) (-1043)) 13)))
+(((-193) (-10 -7 (-15 -2205 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2582 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -1329 ((-383) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -1390 ((-1167) (-649 (-1167)))) (-15 -3215 ((-1043) (-1185) (-1185) (-1043))))) (T -193))
+((-3215 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-193)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-193)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-193)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-193)))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185)) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-193)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-193)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-193)))))
+(-10 -7 (-15 -2205 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2582 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -1329 ((-383) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -1390 ((-1167) (-649 (-1167)))) (-15 -3215 ((-1043) (-1185) (-1185) (-1043))))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 61) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 33) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-194) (-792)) (T -194))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 66) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 66) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-195) (-792)) (T -195))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 81) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 46) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 81) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 46) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-196) (-792)) (T -196))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 63) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 36) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 63) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 36) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-197) (-792)) (T -197))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 75) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 75) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-198) (-792)) (T -198))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 90) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 90) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-199) (-792)) (T -199))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 90) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 51) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 90) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 51) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-200) (-792)) (T -200))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 77) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 42) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 77) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 42) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-201) (-792)) (T -201))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 78)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 78)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-202) (-792)) (T -202))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 79)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 79)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-203) (-792)) (T -203))
NIL
(-792)
-((-2415 (((-112) $ $) NIL)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 105) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 86) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 105) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 86) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-204) (-792)) (T -204))
NIL
(-792)
-((-2899 (((-3 (-2 (|:| -3903 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 110)) (-1957 (((-569) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 60)) (-3026 (((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 91)))
-(((-205) (-10 -7 (-15 -2899 ((-3 (-2 (|:| -3903 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3026 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1957 ((-569) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -205))
-((-1957 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-569)) (-5 *1 (-205)))) (-3026 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-205)))) (-2899 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3903 (-114)) (|:| |w| (-226)))) (-5 *1 (-205)))))
-(-10 -7 (-15 -2899 ((-3 (-2 (|:| -3903 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3026 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1957 ((-569) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-2490 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49)) (-2382 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 160)) (-2278 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226)))) 112)) (-2170 (((-383) (-694 (-319 (-226)))) 140)) (-2691 (((-694 (-319 (-226))) (-1273 (-319 (-226))) (-649 (-1183))) 136)) (-1675 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 37)) (-1451 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 53)) (-1723 (((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1183)) (-1273 (-319 (-226)))) 125)) (-2062 (((-383) (-383) (-649 (-383))) 133) (((-383) (-383) (-383)) 128)) (-1559 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 45)))
-(((-206) (-10 -7 (-15 -2062 ((-383) (-383) (-383))) (-15 -2062 ((-383) (-383) (-649 (-383)))) (-15 -2170 ((-383) (-694 (-319 (-226))))) (-15 -2691 ((-694 (-319 (-226))) (-1273 (-319 (-226))) (-649 (-1183)))) (-15 -1723 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1183)) (-1273 (-319 (-226))))) (-15 -2278 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -2382 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2490 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1451 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1559 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1675 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -206))
-((-1675 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-1723 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1183))) (-5 *4 (-1273 (-319 (-226)))) (-5 *1 (-206)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183))) (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-2062 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206)))) (-2062 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206)))))
-(-10 -7 (-15 -2062 ((-383) (-383) (-383))) (-15 -2062 ((-383) (-383) (-649 (-383)))) (-15 -2170 ((-383) (-694 (-319 (-226))))) (-15 -2691 ((-694 (-319 (-226))) (-1273 (-319 (-226))) (-649 (-1183)))) (-15 -1723 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1183)) (-1273 (-319 (-226))))) (-15 -2278 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -2382 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2490 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1451 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1559 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1675 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-2415 (((-112) $ $) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2628 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 75)) (-2919 (((-112) $ $) NIL)))
+((-3099 (((-3 (-2 (|:| -3906 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 110)) (-2995 (((-569) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 60)) (-1900 (((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 91)))
+(((-205) (-10 -7 (-15 -3099 ((-3 (-2 (|:| -3906 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1900 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2995 ((-569) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -205))
+((-2995 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-569)) (-5 *1 (-205)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-205)))) (-3099 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3906 (-114)) (|:| |w| (-226)))) (-5 *1 (-205)))))
+(-10 -7 (-15 -3099 ((-3 (-2 (|:| -3906 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1900 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2995 ((-569) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-3590 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49)) (-3808 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 160)) (-2042 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226)))) 112)) (-3414 (((-383) (-694 (-319 (-226)))) 140)) (-1765 (((-694 (-319 (-226))) (-1275 (-319 (-226))) (-649 (-1185))) 136)) (-2179 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 37)) (-3695 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 53)) (-1725 (((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1185)) (-1275 (-319 (-226)))) 125)) (-1656 (((-383) (-383) (-649 (-383))) 133) (((-383) (-383) (-383)) 128)) (-3544 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 45)))
+(((-206) (-10 -7 (-15 -1656 ((-383) (-383) (-383))) (-15 -1656 ((-383) (-383) (-649 (-383)))) (-15 -3414 ((-383) (-694 (-319 (-226))))) (-15 -1765 ((-694 (-319 (-226))) (-1275 (-319 (-226))) (-649 (-1185)))) (-15 -1725 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1185)) (-1275 (-319 (-226))))) (-15 -2042 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3590 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3695 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3544 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2179 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -206))
+((-2179 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-1725 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1185))) (-5 *4 (-1275 (-319 (-226)))) (-5 *1 (-206)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185))) (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206)))) (-1656 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206)))))
+(-10 -7 (-15 -1656 ((-383) (-383) (-383))) (-15 -1656 ((-383) (-383) (-649 (-383)))) (-15 -3414 ((-383) (-694 (-319 (-226))))) (-15 -1765 ((-694 (-319 (-226))) (-1275 (-319 (-226))) (-649 (-1185)))) (-15 -1725 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1185)) (-1275 (-319 (-226))))) (-15 -2042 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3590 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3695 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3544 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2179 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 75)) (-2920 (((-112) $ $) NIL)))
(((-207) (-805)) (T -207))
NIL
(-805)
-((-2415 (((-112) $ $) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2628 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 73)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 73)) (-2920 (((-112) $ $) NIL)))
(((-208) (-805)) (T -208))
NIL
(-805)
-((-2415 (((-112) $ $) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2628 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 76)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 76)) (-2920 (((-112) $ $) NIL)))
(((-209) (-805)) (T -209))
NIL
(-805)
-((-2415 (((-112) $ $) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 48)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2628 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 88)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 48)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 88)) (-2920 (((-112) $ $) NIL)))
(((-210) (-805)) (T -210))
NIL
(-805)
-((-3102 (((-649 (-1183)) (-1183) (-776)) 26)) (-1793 (((-319 (-226)) (-319 (-226))) 35)) (-3907 (((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 87)) (-1896 (((-112) (-226) (-226) (-649 (-319 (-226)))) 47)))
-(((-211) (-10 -7 (-15 -3102 ((-649 (-1183)) (-1183) (-776))) (-15 -1793 ((-319 (-226)) (-319 (-226)))) (-15 -1896 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -3907 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))))) (T -211))
-((-3907 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-112)) (-5 *1 (-211)))) (-1896 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-211)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1183))) (-5 *1 (-211)) (-5 *3 (-1183)))))
-(-10 -7 (-15 -3102 ((-649 (-1183)) (-1183) (-776))) (-15 -1793 ((-319 (-226)) (-319 (-226)))) (-15 -1896 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -3907 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))))
-((-2415 (((-112) $ $) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 28)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2277 (((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 70)) (-2919 (((-112) $ $) NIL)))
+((-3105 (((-649 (-1185)) (-1185) (-776)) 26)) (-3917 (((-319 (-226)) (-319 (-226))) 35)) (-3510 (((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 87)) (-3622 (((-112) (-226) (-226) (-649 (-319 (-226)))) 47)))
+(((-211) (-10 -7 (-15 -3105 ((-649 (-1185)) (-1185) (-776))) (-15 -3917 ((-319 (-226)) (-319 (-226)))) (-15 -3622 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -3510 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))))) (T -211))
+((-3510 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *2 (-112)) (-5 *1 (-211)))) (-3622 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-211)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1185))) (-5 *1 (-211)) (-5 *3 (-1185)))))
+(-10 -7 (-15 -3105 ((-649 (-1185)) (-1185) (-776))) (-15 -3917 ((-319 (-226)) (-319 (-226)))) (-15 -3622 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -3510 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))))
+((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 28)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2035 (((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 70)) (-2920 (((-112) $ $) NIL)))
(((-212) (-901)) (T -212))
NIL
(-901)
-((-2415 (((-112) $ $) NIL)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 24)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2277 (((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 24)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2035 (((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) NIL)) (-2920 (((-112) $ $) NIL)))
(((-213) (-901)) (T -213))
NIL
(-901)
-((-2415 (((-112) $ $) NIL)) (-3782 ((|#2| $ (-776) |#2|) 11)) (-3773 ((|#2| $ (-776)) 10)) (-4295 (($) 8)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 26)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 13)))
-(((-214 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -4295 ($)) (-15 -3773 (|#2| $ (-776))) (-15 -3782 (|#2| $ (-776) |#2|)))) (-927) (-1106)) (T -214))
-((-4295 (*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1106)))) (-3773 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-1106)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)) (-4 *2 (-1106)))))
-(-13 (-1106) (-10 -8 (-15 -4295 ($)) (-15 -3773 (|#2| $ (-776))) (-15 -3782 (|#2| $ (-776) |#2|))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-4224 (((-1278) $) 37) (((-1278) $ (-927) (-927)) 44)) (-1866 (($ $ (-995)) 19) (((-246 (-1165)) $ (-1183)) 15)) (-4155 (((-1278) $) 35)) (-3793 (((-867) $) 32) (($ (-649 |#1|)) 8)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $ $) 27)) (-3009 (($ $ $) 22)))
-(((-215 |#1|) (-13 (-1106) (-621 (-649 |#1|)) (-10 -8 (-15 -1866 ($ $ (-995))) (-15 -1866 ((-246 (-1165)) $ (-1183))) (-15 -3009 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $)) (-15 -4224 ((-1278) $ (-927) (-927))))) (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $))))) (T -215))
-((-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-995)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $))))))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-246 (-1165))) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ *3)) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $))))))) (-3009 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $))))))) (-3021 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $))))))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 (*2 $)) (-15 -4224 (*2 $))))))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 (*2 $)) (-15 -4224 (*2 $))))))) (-4224 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 (*2 $)) (-15 -4224 (*2 $))))))))
-(-13 (-1106) (-621 (-649 |#1|)) (-10 -8 (-15 -1866 ($ $ (-995))) (-15 -1866 ((-246 (-1165)) $ (-1183))) (-15 -3009 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $)) (-15 -4224 ((-1278) $ (-927) (-927)))))
-((-4009 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4009 (|#2| |#4| (-1 |#2| |#2|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -216))
-((-4009 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1249 (-412 *2))) (-4 *2 (-1249 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-346 *5 *2 *6)))))
-(-10 -7 (-15 -4009 (|#2| |#4| (-1 |#2| |#2|))))
-((-4414 ((|#2| |#2| (-776) |#2|) 58)) (-4315 ((|#2| |#2| (-776) |#2|) 54)) (-3165 (((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -2395 |#2|)))) 82)) (-4214 (((-649 (-2 (|:| |deg| (-776)) (|:| -2395 |#2|))) |#2|) 76)) (-3286 (((-112) |#2|) 74)) (-3572 (((-423 |#2|) |#2|) 94)) (-3796 (((-423 |#2|) |#2|) 93)) (-3228 ((|#2| |#2| (-776) |#2|) 52)) (-4105 (((-2 (|:| |cont| |#1|) (|:| -1411 (-649 (-2 (|:| |irr| |#2|) (|:| -3849 (-569)))))) |#2| (-112)) 88)))
-(((-217 |#1| |#2|) (-10 -7 (-15 -3796 ((-423 |#2|) |#2|)) (-15 -3572 ((-423 |#2|) |#2|)) (-15 -4105 ((-2 (|:| |cont| |#1|) (|:| -1411 (-649 (-2 (|:| |irr| |#2|) (|:| -3849 (-569)))))) |#2| (-112))) (-15 -4214 ((-649 (-2 (|:| |deg| (-776)) (|:| -2395 |#2|))) |#2|)) (-15 -3165 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -2395 |#2|))))) (-15 -3228 (|#2| |#2| (-776) |#2|)) (-15 -4315 (|#2| |#2| (-776) |#2|)) (-15 -4414 (|#2| |#2| (-776) |#2|)) (-15 -3286 ((-112) |#2|))) (-353) (-1249 |#1|)) (T -217))
-((-3286 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))) (-4414 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1249 *4)))) (-4315 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1249 *4)))) (-3228 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1249 *4)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -2395 *5)))) (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5)) (-5 *1 (-217 *4 *5)))) (-4214 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -2395 *3)))) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-353)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569))))))) (-5 *1 (-217 *5 *3)) (-4 *3 (-1249 *5)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -3796 ((-423 |#2|) |#2|)) (-15 -3572 ((-423 |#2|) |#2|)) (-15 -4105 ((-2 (|:| |cont| |#1|) (|:| -1411 (-649 (-2 (|:| |irr| |#2|) (|:| -3849 (-569)))))) |#2| (-112))) (-15 -4214 ((-649 (-2 (|:| |deg| (-776)) (|:| -2395 |#2|))) |#2|)) (-15 -3165 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -2395 |#2|))))) (-15 -3228 (|#2| |#2| (-776) |#2|)) (-15 -4315 (|#2| |#2| (-776) |#2|)) (-15 -4414 (|#2| |#2| (-776) |#2|)) (-15 -3286 ((-112) |#2|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 (((-569) $) NIL (|has| (-569) (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| (-569) (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1044 (-569))))) (-3148 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-569) (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| (-569) (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 (((-569) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-4327 (((-112) $) NIL (|has| (-569) (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-569) (-855)))) (-1344 (($ (-1 (-569) (-569)) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-569) (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-2478 (((-569) $) NIL (|has| (-569) (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-1578 (((-776) $) NIL)) (-1866 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1528 (($ $) NIL)) (-4409 (((-569) $) NIL)) (-3420 (($ (-412 (-569))) 9)) (-1408 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL) (((-1010 10) $) 10)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3302 (((-776)) NIL T CONST)) (-2586 (((-569) $) NIL (|has| (-569) (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| (-569) (-825)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2976 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3032 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
-(((-218) (-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 10)) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -3420 ($ (-412 (-569))))))) (T -218))
-((-3555 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))))
-(-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 10)) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -3420 ($ (-412 (-569))))))
-((-2415 (((-112) $ $) NIL)) (-4328 (((-1124) $) 13)) (-1550 (((-1165) $) NIL)) (-1669 (((-488) $) 10)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 23) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-1141) $) 15)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-219) (-13 (-1089) (-10 -8 (-15 -1669 ((-488) $)) (-15 -4328 ((-1124) $)) (-15 -3583 ((-1141) $))))) (T -219))
-((-1669 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-219)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-219)))))
-(-13 (-1089) (-10 -8 (-15 -1669 ((-488) $)) (-15 -4328 ((-1124) $)) (-15 -3583 ((-1141) $))))
-((-2488 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)) (-1165)) 29) (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|))) 25)) (-3539 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1183) (-848 |#2|) (-848 |#2|) (-112)) 17)))
-(((-220 |#1| |#2|) (-10 -7 (-15 -2488 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)))) (-15 -2488 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)) (-1165))) (-15 -3539 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1183) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-29 |#1|))) (T -220))
-((-3539 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1183)) (-5 *6 (-112)) (-4 *7 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-4 *3 (-13 (-1208) (-965) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3)))) (-2488 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-848 *3))) (-5 *5 (-1165)) (-4 *3 (-13 (-1208) (-965) (-29 *6))) (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6 *3)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-848 *3))) (-4 *3 (-13 (-1208) (-965) (-29 *5))) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5 *3)))))
-(-10 -7 (-15 -2488 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)))) (-15 -2488 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1098 (-848 |#2|)) (-1165))) (-15 -3539 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1183) (-848 |#2|) (-848 |#2|) (-112))))
-((-2488 (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))) (-1165)) 49) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|))))) 46) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))) (-1165)) 50) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|)))) 22)))
-(((-221 |#1|) (-10 -7 (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))))) (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))) (-1165))) (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))))) (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))) (-1165)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (T -221))
-((-2488 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-848 (-412 (-958 *6))))) (-5 *5 (-1165)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5)))) (-2488 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1098 (-848 (-319 *6)))) (-5 *5 (-1165)) (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1098 (-848 (-319 *5)))) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5)))))
-(-10 -7 (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))))) (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-319 |#1|))) (-1165))) (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))))) (-15 -2488 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1098 (-848 (-412 (-958 |#1|)))) (-1165))))
-((-3596 (((-2 (|:| -3466 (-1179 |#1|)) (|:| |deg| (-927))) (-1179 |#1|)) 26)) (-1378 (((-649 (-319 |#2|)) (-319 |#2|) (-927)) 54)))
-(((-222 |#1| |#2|) (-10 -7 (-15 -3596 ((-2 (|:| -3466 (-1179 |#1|)) (|:| |deg| (-927))) (-1179 |#1|))) (-15 -1378 ((-649 (-319 |#2|)) (-319 |#2|) (-927)))) (-1055) (-561)) (T -222))
-((-1378 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *6 (-561)) (-5 *2 (-649 (-319 *6))) (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1055)))) (-3596 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-2 (|:| -3466 (-1179 *4)) (|:| |deg| (-927)))) (-5 *1 (-222 *4 *5)) (-5 *3 (-1179 *4)) (-4 *5 (-561)))))
-(-10 -7 (-15 -3596 ((-2 (|:| -3466 (-1179 |#1|)) (|:| |deg| (-927))) (-1179 |#1|))) (-15 -1378 ((-649 (-319 |#2|)) (-319 |#2|) (-927))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3579 ((|#1| $) NIL)) (-3307 ((|#1| $) 30)) (-2716 (((-112) $ (-776)) NIL)) (-4188 (($) NIL T CONST)) (-4078 (($ $) NIL)) (-4380 (($ $) 39)) (-3529 ((|#1| |#1| $) NIL)) (-3410 ((|#1| $) NIL)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-3842 (((-776) $) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1640 ((|#1| $) NIL)) (-3331 ((|#1| |#1| $) 35)) (-3210 ((|#1| |#1| $) 37)) (-3813 (($ |#1| $) NIL)) (-1425 (((-776) $) 33)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3992 ((|#1| $) NIL)) (-3090 ((|#1| $) 31)) (-4226 ((|#1| $) 29)) (-1764 ((|#1| $) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3010 ((|#1| |#1| $) NIL)) (-3218 (((-112) $) 9)) (-3597 (($) NIL)) (-4174 ((|#1| $) NIL)) (-3693 (($) NIL) (($ (-649 |#1|)) 16)) (-2802 (((-776) $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-3455 ((|#1| $) 13)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) NIL)) (-3898 ((|#1| $) NIL)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-223 |#1|) (-13 (-256 |#1|) (-10 -8 (-15 -3693 ($ (-649 |#1|))))) (-1106)) (T -223))
-((-3693 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-223 *3)))))
-(-13 (-256 |#1|) (-10 -8 (-15 -3693 ($ (-649 |#1|)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3172 (($ (-319 |#1|)) 27)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-2120 (((-112) $) NIL)) (-4378 (((-3 (-319 |#1|) "failed") $) NIL)) (-3148 (((-319 |#1|) $) NIL)) (-1879 (($ $) 35)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-1344 (($ (-1 (-319 |#1|) (-319 |#1|)) $) NIL)) (-1855 (((-319 |#1|) $) NIL)) (-3405 (($ $) 34)) (-1550 (((-1165) $) NIL)) (-3270 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-2330 (($ (-776)) NIL)) (-3669 (($ $) 36)) (-3868 (((-569) $) NIL)) (-3793 (((-867) $) 68) (($ (-569)) NIL) (($ (-319 |#1|)) NIL)) (-4184 (((-319 |#1|) $ $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 29 T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) 32)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 28) (($ (-319 |#1|) $) 22)))
-(((-224 |#1| |#2|) (-13 (-625 (-319 |#1|)) (-1044 (-319 |#1|)) (-10 -8 (-15 -1855 ((-319 |#1|) $)) (-15 -3405 ($ $)) (-15 -1879 ($ $)) (-15 -4184 ((-319 |#1|) $ $)) (-15 -2330 ($ (-776))) (-15 -3270 ((-112) $)) (-15 -2120 ((-112) $)) (-15 -3868 ((-569) $)) (-15 -1344 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -3172 ($ (-319 |#1|))) (-15 -3669 ($ $)))) (-13 (-1055) (-855)) (-649 (-1183))) (T -224))
-((-1855 (*1 *2 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-3405 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-649 (-1183))))) (-1879 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-649 (-1183))))) (-4184 (*1 *2 *1 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183))))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1055) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183))))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1055) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183))))) (-3669 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855))) (-14 *3 (-649 (-1183))))))
-(-13 (-625 (-319 |#1|)) (-1044 (-319 |#1|)) (-10 -8 (-15 -1855 ((-319 |#1|) $)) (-15 -3405 ($ $)) (-15 -1879 ($ $)) (-15 -4184 ((-319 |#1|) $ $)) (-15 -2330 ($ (-776))) (-15 -3270 ((-112) $)) (-15 -2120 ((-112) $)) (-15 -3868 ((-569) $)) (-15 -1344 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -3172 ($ (-319 |#1|))) (-15 -3669 ($ $))))
-((-3496 (((-112) (-1165)) 26)) (-3609 (((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112)) 35)) (-2412 (((-3 (-112) "failed") (-1179 |#2|) (-848 |#2|) (-848 |#2|) (-112)) 84) (((-3 (-112) "failed") (-958 |#1|) (-1183) (-848 |#2|) (-848 |#2|) (-112)) 85)))
-(((-225 |#1| |#2|) (-10 -7 (-15 -3496 ((-112) (-1165))) (-15 -3609 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -2412 ((-3 (-112) "failed") (-958 |#1|) (-1183) (-848 |#2|) (-848 |#2|) (-112))) (-15 -2412 ((-3 (-112) "failed") (-1179 |#2|) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-29 |#1|))) (T -225))
-((-2412 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1179 *6)) (-5 *4 (-848 *6)) (-4 *6 (-13 (-1208) (-29 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-225 *5 *6)))) (-2412 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1183)) (-5 *5 (-848 *7)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *7 (-13 (-1208) (-29 *6))) (-5 *1 (-225 *6 *7)))) (-3609 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1208) (-29 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-225 *6 *4)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1208) (-29 *4))))))
-(-10 -7 (-15 -3496 ((-112) (-1165))) (-15 -3609 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -2412 ((-3 (-112) "failed") (-958 |#1|) (-1183) (-848 |#2|) (-848 |#2|) (-112))) (-15 -2412 ((-3 (-112) "failed") (-1179 |#2|) (-848 |#2|) (-848 |#2|) (-112))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 99)) (-3673 (((-569) $) 35)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-3008 (($ $) NIL)) (-2769 (($ $) 88)) (-2624 (($ $) 76)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-3807 (($ $) 67)) (-1680 (((-112) $ $) NIL)) (-2744 (($ $) 86)) (-2600 (($ $) 74)) (-2552 (((-569) $) 129)) (-4114 (($ $) 91)) (-2645 (($ $) 78)) (-4188 (($) NIL T CONST)) (-3434 (($ $) NIL)) (-4378 (((-3 (-569) "failed") $) 128) (((-3 (-412 (-569)) "failed") $) 125)) (-3148 (((-569) $) 126) (((-412 (-569)) $) 123)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) 104)) (-3949 (((-412 (-569)) $ (-776)) 118) (((-412 (-569)) $ (-776) (-776)) 117)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-3497 (((-927)) 29) (((-927) (-927)) NIL (|has| $ (-6 -4435)))) (-4237 (((-112) $) NIL)) (-1310 (($) 46)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-3110 (((-569) $) 42)) (-2623 (((-112) $) 100)) (-2506 (($ $ (-569)) NIL)) (-2707 (($ $) NIL)) (-4327 (((-112) $) 98)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) 64) (($) 38 (-12 (-1745 (|has| $ (-6 -4427))) (-1745 (|has| $ (-6 -4435)))))) (-3969 (($ $ $) 63) (($) 37 (-12 (-1745 (|has| $ (-6 -4427))) (-1745 (|has| $ (-6 -4435)))))) (-3031 (((-569) $) 27)) (-3840 (($ $) 33)) (-1340 (($ $) 68)) (-2660 (($ $) 73)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2815 (((-927) (-569)) NIL (|has| $ (-6 -4435)))) (-3545 (((-1126) $) 102)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL)) (-2478 (($ $) NIL)) (-2555 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) 111)) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4320 (((-569) $) 28)) (-1832 (($) 45)) (-4386 (($ $) 72)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3380 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4435)))) (-3514 (($ $ (-776)) NIL) (($ $) 105)) (-2713 (((-927) (-569)) NIL (|has| $ (-6 -4435)))) (-4124 (($ $) 89)) (-2659 (($ $) 79)) (-2781 (($ $) 90)) (-2632 (($ $) 77)) (-2756 (($ $) 87)) (-2609 (($ $) 75)) (-1408 (((-383) $) 114) (((-226) $) 14) (((-898 (-383)) $) NIL) (((-541) $) 52)) (-3793 (((-867) $) 49) (($ (-569)) 71) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 71) (($ (-412 (-569))) NIL)) (-3302 (((-776)) NIL T CONST)) (-2586 (($ $) NIL)) (-2916 (((-927)) 36) (((-927) (-927)) NIL (|has| $ (-6 -4435)))) (-1441 (((-112) $ $) NIL)) (-4360 (((-927)) 25)) (-4161 (($ $) 94)) (-2699 (($ $) 82) (($ $ $) 121)) (-2985 (((-112) $ $) NIL)) (-4133 (($ $) 92)) (-2673 (($ $) 80)) (-4182 (($ $) 97)) (-2721 (($ $) 85)) (-1501 (($ $) 95)) (-2732 (($ $) 83)) (-4170 (($ $) 96)) (-2710 (($ $) 84)) (-4147 (($ $) 93)) (-2687 (($ $) 81)) (-3070 (($ $) 120)) (-1803 (($) 23 T CONST)) (-1813 (($) 43 T CONST)) (-4195 (((-1165) $) 18) (((-1165) $ (-112)) 20) (((-1278) (-827) $) 21) (((-1278) (-827) $ (-112)) 22)) (-2315 (($ $) 108)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-1994 (($ $ $) 110)) (-2976 (((-112) $ $) 57)) (-2954 (((-112) $ $) 54)) (-2919 (((-112) $ $) 65)) (-2964 (((-112) $ $) 56)) (-2942 (((-112) $ $) 53)) (-3032 (($ $ $) 44) (($ $ (-569)) 66)) (-3021 (($ $) 58) (($ $ $) 60)) (-3009 (($ $ $) 59)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 69) (($ $ (-412 (-569))) 153) (($ $ $) 70)) (* (($ (-927) $) 34) (($ (-776) $) NIL) (($ (-569) $) 62) (($ $ $) 61) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
-(((-226) (-13 (-409) (-234) (-833) (-1208) (-619 (-541)) (-10 -8 (-15 -3032 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -1832 ($)) (-15 -3840 ($ $)) (-15 -1340 ($ $)) (-15 -2699 ($ $ $)) (-15 -2315 ($ $)) (-15 -1994 ($ $ $)) (-15 -3949 ((-412 (-569)) $ (-776))) (-15 -3949 ((-412 (-569)) $ (-776) (-776)))))) (T -226))
-((** (*1 *1 *1 *1) (-5 *1 (-226))) (-3032 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-226)))) (-1832 (*1 *1) (-5 *1 (-226))) (-3840 (*1 *1 *1) (-5 *1 (-226))) (-1340 (*1 *1 *1) (-5 *1 (-226))) (-2699 (*1 *1 *1 *1) (-5 *1 (-226))) (-2315 (*1 *1 *1) (-5 *1 (-226))) (-1994 (*1 *1 *1 *1) (-5 *1 (-226))) (-3949 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))) (-3949 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))))
-(-13 (-409) (-234) (-833) (-1208) (-619 (-541)) (-10 -8 (-15 -3032 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -1832 ($)) (-15 -3840 ($ $)) (-15 -1340 ($ $)) (-15 -2699 ($ $ $)) (-15 -2315 ($ $)) (-15 -1994 ($ $ $)) (-15 -3949 ((-412 (-569)) $ (-776))) (-15 -3949 ((-412 (-569)) $ (-776) (-776)))))
-((-2209 (((-170 (-226)) (-776) (-170 (-226))) 11) (((-226) (-776) (-226)) 12)) (-2500 (((-170 (-226)) (-170 (-226))) 13) (((-226) (-226)) 14)) (-2579 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 19) (((-226) (-226) (-226)) 22)) (-2103 (((-170 (-226)) (-170 (-226))) 27) (((-226) (-226)) 26)) (-1357 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 57) (((-226) (-226) (-226)) 49)) (-1608 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 62) (((-226) (-226) (-226)) 60)) (-2421 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 15) (((-226) (-226) (-226)) 16)) (-1493 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 17) (((-226) (-226) (-226)) 18)) (-1836 (((-170 (-226)) (-170 (-226))) 74) (((-226) (-226)) 73)) (-1724 (((-226) (-226)) 68) (((-170 (-226)) (-170 (-226))) 72)) (-2315 (((-170 (-226)) (-170 (-226))) 8) (((-226) (-226)) 9)) (-1994 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 35) (((-226) (-226) (-226)) 31)))
-(((-227) (-10 -7 (-15 -2315 ((-226) (-226))) (-15 -2315 ((-170 (-226)) (-170 (-226)))) (-15 -1994 ((-226) (-226) (-226))) (-15 -1994 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2500 ((-226) (-226))) (-15 -2500 ((-170 (-226)) (-170 (-226)))) (-15 -2103 ((-226) (-226))) (-15 -2103 ((-170 (-226)) (-170 (-226)))) (-15 -2209 ((-226) (-776) (-226))) (-15 -2209 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -2421 ((-226) (-226) (-226))) (-15 -2421 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1357 ((-226) (-226) (-226))) (-15 -1357 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1493 ((-226) (-226) (-226))) (-15 -1493 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1608 ((-226) (-226) (-226))) (-15 -1608 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1724 ((-170 (-226)) (-170 (-226)))) (-15 -1724 ((-226) (-226))) (-15 -1836 ((-226) (-226))) (-15 -1836 ((-170 (-226)) (-170 (-226)))) (-15 -2579 ((-226) (-226) (-226))) (-15 -2579 ((-170 (-226)) (-170 (-226)) (-170 (-226)))))) (T -227))
-((-2579 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2579 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1608 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1608 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1493 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1493 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1357 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1357 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2421 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2421 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2209 (*1 *2 *3 *2) (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227)))) (-2209 (*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227)))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2500 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2500 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1994 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1994 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))))
-(-10 -7 (-15 -2315 ((-226) (-226))) (-15 -2315 ((-170 (-226)) (-170 (-226)))) (-15 -1994 ((-226) (-226) (-226))) (-15 -1994 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2500 ((-226) (-226))) (-15 -2500 ((-170 (-226)) (-170 (-226)))) (-15 -2103 ((-226) (-226))) (-15 -2103 ((-170 (-226)) (-170 (-226)))) (-15 -2209 ((-226) (-776) (-226))) (-15 -2209 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -2421 ((-226) (-226) (-226))) (-15 -2421 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1357 ((-226) (-226) (-226))) (-15 -1357 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1493 ((-226) (-226) (-226))) (-15 -1493 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1608 ((-226) (-226) (-226))) (-15 -1608 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1724 ((-170 (-226)) (-170 (-226)))) (-15 -1724 ((-226) (-226))) (-15 -1836 ((-226) (-226))) (-15 -1836 ((-170 (-226)) (-170 (-226)))) (-15 -2579 ((-226) (-226) (-226))) (-15 -2579 ((-170 (-226)) (-170 (-226)) (-170 (-226)))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3464 (($ (-776) (-776)) NIL)) (-2149 (($ $ $) NIL)) (-2873 (($ (-1273 |#1|)) NIL) (($ $) NIL)) (-2913 (($ |#1| |#1| |#1|) 33)) (-4080 (((-112) $) NIL)) (-2050 (($ $ (-569) (-569)) NIL)) (-1956 (($ $ (-569) (-569)) NIL)) (-3034 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-2332 (($ $) NIL)) (-4317 (((-112) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-2922 (($ $ (-569) (-569) $) NIL)) (-3940 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2316 (($ $ (-569) (-1273 |#1|)) NIL)) (-2782 (($ $ (-569) (-1273 |#1|)) NIL)) (-3186 (($ |#1| |#1| |#1|) 32)) (-2931 (($ (-776) |#1|) NIL)) (-4188 (($) NIL T CONST)) (-4372 (($ $) NIL (|has| |#1| (-310)))) (-1486 (((-1273 |#1|) $ (-569)) NIL)) (-2690 (($ |#1|) 31)) (-2793 (($ |#1|) 30)) (-2869 (($ |#1|) 29)) (-3975 (((-776) $) NIL (|has| |#1| (-561)))) (-3843 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3773 ((|#1| $ (-569) (-569)) NIL)) (-2880 (((-649 |#1|) $) NIL)) (-2345 (((-776) $) NIL (|has| |#1| (-561)))) (-2250 (((-649 (-1273 |#1|)) $) NIL (|has| |#1| (-561)))) (-3221 (((-776) $) NIL)) (-4295 (($ (-776) (-776) |#1|) NIL)) (-3234 (((-776) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3647 ((|#1| $) NIL (|has| |#1| (-6 (-4446 "*"))))) (-3856 (((-569) $) NIL)) (-1738 (((-569) $) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3744 (((-569) $) NIL)) (-1609 (((-569) $) NIL)) (-2428 (($ (-649 (-649 |#1|))) 11)) (-3831 (($ (-1 |#1| |#1|) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3005 (((-649 (-649 |#1|)) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1933 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2971 (($) 12)) (-2236 (($ $ $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) NIL)) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-2823 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-4206 (((-112) $) NIL)) (-2458 ((|#1| $) NIL (|has| |#1| (-6 (-4446 "*"))))) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-1363 (((-1273 |#1|) $ (-569)) NIL)) (-3793 (($ (-1273 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3962 (((-112) $) NIL)) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1273 |#1|) $ (-1273 |#1|)) 15) (((-1273 |#1|) (-1273 |#1|) $) NIL) (((-949 |#1|) $ (-949 |#1|)) 21)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-228 |#1|) (-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -2971 ($)) (-15 -2869 ($ |#1|)) (-15 -2793 ($ |#1|)) (-15 -2690 ($ |#1|)) (-15 -3186 ($ |#1| |#1| |#1|)) (-15 -2913 ($ |#1| |#1| |#1|)))) (-13 (-367) (-1208))) (T -228))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208))) (-5 *1 (-228 *3)))) (-2971 (*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-2869 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-2793 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-2690 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-3186 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))) (-2913 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -2971 ($)) (-15 -2869 ($ |#1|)) (-15 -2793 ($ |#1|)) (-15 -2690 ($ |#1|)) (-15 -3186 ($ |#1| |#1| |#1|)) (-15 -2913 ($ |#1| |#1| |#1|))))
-((-4101 (($ (-1 (-112) |#2|) $) 16)) (-3463 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1906 (($) NIL) (($ (-649 |#2|)) 11)) (-2919 (((-112) $ $) 25)))
-(((-229 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3463 (|#1| |#2| |#1|)) (-15 -1906 (|#1| (-649 |#2|))) (-15 -1906 (|#1|)) (-15 -2919 ((-112) |#1| |#1|))) (-230 |#2|) (-1106)) (T -229))
-NIL
-(-10 -8 (-15 -4101 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3463 (|#1| |#2| |#1|)) (-15 -1906 (|#1| (-649 |#2|))) (-15 -1906 (|#1|)) (-15 -2919 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4101 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3547 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ |#1| $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1906 (($) 50) (($ (-649 |#1|)) 49)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 51)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-230 |#1|) (-140) (-1106)) (T -230))
+((-2417 (((-112) $ $) NIL)) (-3785 ((|#2| $ (-776) |#2|) 11)) (-3776 ((|#2| $ (-776)) 10)) (-4300 (($) 8)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 26)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 13)))
+(((-214 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -3776 (|#2| $ (-776))) (-15 -3785 (|#2| $ (-776) |#2|)))) (-927) (-1108)) (T -214))
+((-4300 (*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1108)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-1108)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)))) (-3785 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)) (-4 *2 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -3776 (|#2| $ (-776))) (-15 -3785 (|#2| $ (-776) |#2|))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3567 (((-1280) $) 37) (((-1280) $ (-927) (-927)) 44)) (-1869 (($ $ (-997)) 19) (((-246 (-1167)) $ (-1185)) 15)) (-4158 (((-1280) $) 35)) (-3796 (((-867) $) 32) (($ (-649 |#1|)) 8)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $ $) 27)) (-3012 (($ $ $) 22)))
+(((-215 |#1|) (-13 (-1108) (-621 (-649 |#1|)) (-10 -8 (-15 -1869 ($ $ (-997))) (-15 -1869 ((-246 (-1167)) $ (-1185))) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3567 ((-1280) $ (-927) (-927))))) (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))) (T -215))
+((-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-997)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-246 (-1167))) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ *3)) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-3012 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-3024 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) (-15 -3567 (*2 $))))))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) (-15 -3567 (*2 $))))))) (-3567 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) (-15 -3567 (*2 $))))))))
+(-13 (-1108) (-621 (-649 |#1|)) (-10 -8 (-15 -1869 ($ $ (-997))) (-15 -1869 ((-246 (-1167)) $ (-1185))) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3567 ((-1280) $ (-927) (-927)))))
+((-2046 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2046 (|#2| |#4| (-1 |#2| |#2|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -216))
+((-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1251 (-412 *2))) (-4 *2 (-1251 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-346 *5 *2 *6)))))
+(-10 -7 (-15 -2046 (|#2| |#4| (-1 |#2| |#2|))))
+((-1626 ((|#2| |#2| (-776) |#2|) 58)) (-3147 ((|#2| |#2| (-776) |#2|) 54)) (-3893 (((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|)))) 82)) (-3456 (((-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))) |#2|) 76)) (-2551 (((-112) |#2|) 74)) (-3386 (((-423 |#2|) |#2|) 94)) (-3800 (((-423 |#2|) |#2|) 93)) (-3247 ((|#2| |#2| (-776) |#2|) 52)) (-1827 (((-2 (|:| |cont| |#1|) (|:| -4360 (-649 (-2 (|:| |irr| |#2|) (|:| -4180 (-569)))))) |#2| (-112)) 88)))
+(((-217 |#1| |#2|) (-10 -7 (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3386 ((-423 |#2|) |#2|)) (-15 -1827 ((-2 (|:| |cont| |#1|) (|:| -4360 (-649 (-2 (|:| |irr| |#2|) (|:| -4180 (-569)))))) |#2| (-112))) (-15 -3456 ((-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))) |#2|)) (-15 -3893 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))))) (-15 -3247 (|#2| |#2| (-776) |#2|)) (-15 -3147 (|#2| |#2| (-776) |#2|)) (-15 -1626 (|#2| |#2| (-776) |#2|)) (-15 -2551 ((-112) |#2|))) (-353) (-1251 |#1|)) (T -217))
+((-2551 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))) (-1626 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1251 *4)))) (-3147 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1251 *4)))) (-3247 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1251 *4)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *5)))) (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5)) (-5 *1 (-217 *4 *5)))) (-3456 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *3)))) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-353)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-217 *5 *3)) (-4 *3 (-1251 *5)))) (-3386 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3386 ((-423 |#2|) |#2|)) (-15 -1827 ((-2 (|:| |cont| |#1|) (|:| -4360 (-649 (-2 (|:| |irr| |#2|) (|:| -4180 (-569)))))) |#2| (-112))) (-15 -3456 ((-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))) |#2|)) (-15 -3893 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))))) (-15 -3247 (|#2| |#2| (-776) |#2|)) (-15 -3147 (|#2| |#2| (-776) |#2|)) (-15 -1626 (|#2| |#2| (-776) |#2|)) (-15 -2551 ((-112) |#2|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-569) $) NIL (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3465 (((-569) $) NIL (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) NIL)) (-1323 (($ (-412 (-569))) 9)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL) (((-1012 10) $) 10)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-569) $) NIL (|has| (-569) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3035 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
+(((-218) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 10)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -1323 ($ (-412 (-569))))))) (T -218))
+((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))) (-1323 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))))
+(-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 10)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -1323 ($ (-412 (-569))))))
+((-2417 (((-112) $ $) NIL)) (-4331 (((-1126) $) 13)) (-3435 (((-1167) $) NIL)) (-2122 (((-488) $) 10)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 23) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 15)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-219) (-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -4331 ((-1126) $)) (-15 -3586 ((-1143) $))))) (T -219))
+((-2122 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-219)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-219)))))
+(-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -4331 ((-1126) $)) (-15 -3586 ((-1143) $))))
+((-3579 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)) (-1167)) 29) (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|))) 25)) (-4325 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1185) (-848 |#2|) (-848 |#2|) (-112)) 17)))
+(((-220 |#1| |#2|) (-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)))) (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)) (-1167))) (-15 -4325 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1185) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-29 |#1|))) (T -220))
+((-4325 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1185)) (-5 *6 (-112)) (-4 *7 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-4 *3 (-13 (-1210) (-965) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1100 (-848 *3))) (-5 *5 (-1167)) (-4 *3 (-13 (-1210) (-965) (-29 *6))) (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6 *3)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-848 *3))) (-4 *3 (-13 (-1210) (-965) (-29 *5))) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5 *3)))))
+(-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)))) (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)) (-1167))) (-15 -4325 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1185) (-848 |#2|) (-848 |#2|) (-112))))
+((-3579 (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))) (-1167)) 49) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|))))) 46) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))) (-1167)) 50) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|)))) 22)))
+(((-221 |#1|) (-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))) (-1167))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))) (-1167)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (T -221))
+((-3579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1100 (-848 (-412 (-958 *6))))) (-5 *5 (-1167)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1100 (-848 (-319 *6)))) (-5 *5 (-1167)) (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1100 (-848 (-319 *5)))) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5)))))
+(-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))) (-1167))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))) (-1167))))
+((-3598 (((-2 (|:| -1814 (-1181 |#1|)) (|:| |deg| (-927))) (-1181 |#1|)) 26)) (-1380 (((-649 (-319 |#2|)) (-319 |#2|) (-927)) 54)))
+(((-222 |#1| |#2|) (-10 -7 (-15 -3598 ((-2 (|:| -1814 (-1181 |#1|)) (|:| |deg| (-927))) (-1181 |#1|))) (-15 -1380 ((-649 (-319 |#2|)) (-319 |#2|) (-927)))) (-1057) (-561)) (T -222))
+((-1380 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *6 (-561)) (-5 *2 (-649 (-319 *6))) (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1057)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-2 (|:| -1814 (-1181 *4)) (|:| |deg| (-927)))) (-5 *1 (-222 *4 *5)) (-5 *3 (-1181 *4)) (-4 *5 (-561)))))
+(-10 -7 (-15 -3598 ((-2 (|:| -1814 (-1181 |#1|)) (|:| |deg| (-927))) (-1181 |#1|))) (-15 -1380 ((-649 (-319 |#2|)) (-319 |#2|) (-927))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3464 ((|#1| $) NIL)) (-3310 ((|#1| $) 30)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-1529 (($ $) NIL)) (-2507 (($ $) 39)) (-4235 ((|#1| |#1| $) NIL)) (-2412 ((|#1| $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3845 (((-776) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) NIL)) (-2969 ((|#1| |#1| $) 35)) (-4319 ((|#1| |#1| $) 37)) (-3894 (($ |#1| $) NIL)) (-1427 (((-776) $) 33)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3064 ((|#1| $) NIL)) (-4374 ((|#1| $) 31)) (-3592 ((|#1| $) 29)) (-1781 ((|#1| $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-2928 ((|#1| |#1| $) NIL)) (-3162 (((-112) $) 9)) (-3635 (($) NIL)) (-4295 ((|#1| $) NIL)) (-2109 (($) NIL) (($ (-649 |#1|)) 16)) (-2804 (((-776) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1693 ((|#1| $) 13)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-3417 ((|#1| $) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-223 |#1|) (-13 (-256 |#1|) (-10 -8 (-15 -2109 ($ (-649 |#1|))))) (-1108)) (T -223))
+((-2109 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-223 *3)))))
+(-13 (-256 |#1|) (-10 -8 (-15 -2109 ($ (-649 |#1|)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3965 (($ (-319 |#1|)) 27)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4132 (((-112) $) NIL)) (-4381 (((-3 (-319 |#1|) "failed") $) NIL)) (-3150 (((-319 |#1|) $) NIL)) (-1883 (($ $) 35)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-1346 (($ (-1 (-319 |#1|) (-319 |#1|)) $) NIL)) (-1857 (((-319 |#1|) $) NIL)) (-2362 (($ $) 34)) (-3435 (((-1167) $) NIL)) (-3704 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($ (-776)) NIL)) (-3077 (($ $) 36)) (-4339 (((-569) $) NIL)) (-3796 (((-867) $) 68) (($ (-569)) NIL) (($ (-319 |#1|)) NIL)) (-4383 (((-319 |#1|) $ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 29 T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) 32)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 28) (($ (-319 |#1|) $) 22)))
+(((-224 |#1| |#2|) (-13 (-625 (-319 |#1|)) (-1046 (-319 |#1|)) (-10 -8 (-15 -1857 ((-319 |#1|) $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 ((-319 |#1|) $ $)) (-15 -2332 ($ (-776))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1346 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -3965 ($ (-319 |#1|))) (-15 -3077 ($ $)))) (-13 (-1057) (-855)) (-649 (-1185))) (T -224))
+((-1857 (*1 *2 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-2362 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) (-14 *3 (-649 (-1185))))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) (-14 *3 (-649 (-1185))))) (-4383 (*1 *2 *1 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1057) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185))))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1057) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185))))) (-3077 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) (-14 *3 (-649 (-1185))))))
+(-13 (-625 (-319 |#1|)) (-1046 (-319 |#1|)) (-10 -8 (-15 -1857 ((-319 |#1|) $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 ((-319 |#1|) $ $)) (-15 -2332 ($ (-776))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1346 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -3965 ($ (-319 |#1|))) (-15 -3077 ($ $))))
+((-3971 (((-112) (-1167)) 26)) (-3763 (((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112)) 35)) (-4078 (((-3 (-112) "failed") (-1181 |#2|) (-848 |#2|) (-848 |#2|) (-112)) 84) (((-3 (-112) "failed") (-958 |#1|) (-1185) (-848 |#2|) (-848 |#2|) (-112)) 85)))
+(((-225 |#1| |#2|) (-10 -7 (-15 -3971 ((-112) (-1167))) (-15 -3763 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-958 |#1|) (-1185) (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-1181 |#2|) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-29 |#1|))) (T -225))
+((-4078 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1181 *6)) (-5 *4 (-848 *6)) (-4 *6 (-13 (-1210) (-29 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-225 *5 *6)))) (-4078 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1185)) (-5 *5 (-848 *7)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *7 (-13 (-1210) (-29 *6))) (-5 *1 (-225 *6 *7)))) (-3763 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1210) (-29 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-225 *6 *4)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1210) (-29 *4))))))
+(-10 -7 (-15 -3971 ((-112) (-1167))) (-15 -3763 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-958 |#1|) (-1185) (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-1181 |#2|) (-848 |#2|) (-848 |#2|) (-112))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 99)) (-1938 (((-569) $) 35)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2917 (($ $) NIL)) (-2771 (($ $) 88)) (-2626 (($ $) 76)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) 67)) (-2227 (((-112) $ $) NIL)) (-2746 (($ $) 86)) (-2601 (($ $) 74)) (-2919 (((-569) $) 129)) (-4118 (($ $) 91)) (-2647 (($ $) 78)) (-4427 (($) NIL T CONST)) (-1482 (($ $) NIL)) (-4381 (((-3 (-569) "failed") $) 128) (((-3 (-412 (-569)) "failed") $) 125)) (-3150 (((-569) $) 126) (((-412 (-569)) $) 123)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 104)) (-2621 (((-412 (-569)) $ (-776)) 118) (((-412 (-569)) $ (-776) (-776)) 117)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3500 (((-927)) 29) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-3712 (((-112) $) NIL)) (-1312 (($) 46)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-1466 (((-569) $) 42)) (-2349 (((-112) $) 100)) (-3742 (($ $ (-569)) NIL)) (-3829 (($ $) NIL)) (-2051 (((-112) $) 98)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) 64) (($) 38 (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-2839 (($ $ $) 63) (($) 37 (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-3034 (((-569) $) 27)) (-4112 (($ $) 33)) (-1342 (($ $) 68)) (-2662 (($ $) 73)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3630 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-3547 (((-1128) $) 102)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL)) (-3465 (($ $) NIL)) (-2557 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) 111)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1993 (((-569) $) 28)) (-4252 (($) 45)) (-4389 (($ $) 72)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-3517 (($ $ (-776)) NIL) (($ $) 105)) (-3884 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-4128 (($ $) 89)) (-2661 (($ $) 79)) (-2783 (($ $) 90)) (-2635 (($ $) 77)) (-2758 (($ $) 87)) (-2614 (($ $) 75)) (-1410 (((-383) $) 114) (((-226) $) 14) (((-898 (-383)) $) NIL) (((-541) $) 52)) (-3796 (((-867) $) 49) (($ (-569)) 71) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 71) (($ (-412 (-569))) NIL)) (-2721 (((-776)) NIL T CONST)) (-2040 (($ $) NIL)) (-3251 (((-927)) 36) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) NIL)) (-4363 (((-927)) 25)) (-4161 (($ $) 94)) (-2701 (($ $) 82) (($ $ $) 121)) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) 92)) (-2675 (($ $) 80)) (-4183 (($ $) 97)) (-2723 (($ $) 85)) (-1503 (($ $) 95)) (-2734 (($ $) 83)) (-4175 (($ $) 96)) (-2712 (($ $) 84)) (-4151 (($ $) 93)) (-2689 (($ $) 81)) (-2271 (($ $) 120)) (-1804 (($) 23 T CONST)) (-1815 (($) 43 T CONST)) (-3266 (((-1167) $) 18) (((-1167) $ (-112)) 20) (((-1280) (-827) $) 21) (((-1280) (-827) $ (-112)) 22)) (-2392 (($ $) 108)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2165 (($ $ $) 110)) (-2978 (((-112) $ $) 57)) (-2956 (((-112) $ $) 54)) (-2920 (((-112) $ $) 65)) (-2966 (((-112) $ $) 56)) (-2944 (((-112) $ $) 53)) (-3035 (($ $ $) 44) (($ $ (-569)) 66)) (-3024 (($ $) 58) (($ $ $) 60)) (-3012 (($ $ $) 59)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 69) (($ $ (-412 (-569))) 153) (($ $ $) 70)) (* (($ (-927) $) 34) (($ (-776) $) NIL) (($ (-569) $) 62) (($ $ $) 61) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-226) (-13 (-409) (-234) (-833) (-1210) (-619 (-541)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -4252 ($)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -2701 ($ $ $)) (-15 -2392 ($ $)) (-15 -2165 ($ $ $)) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776)))))) (T -226))
+((** (*1 *1 *1 *1) (-5 *1 (-226))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-226)))) (-4252 (*1 *1) (-5 *1 (-226))) (-4112 (*1 *1 *1) (-5 *1 (-226))) (-1342 (*1 *1 *1) (-5 *1 (-226))) (-2701 (*1 *1 *1 *1) (-5 *1 (-226))) (-2392 (*1 *1 *1) (-5 *1 (-226))) (-2165 (*1 *1 *1 *1) (-5 *1 (-226))) (-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))) (-2621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))))
+(-13 (-409) (-234) (-833) (-1210) (-619 (-541)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -4252 ($)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -2701 ($ $ $)) (-15 -2392 ($ $)) (-15 -2165 ($ $ $)) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776)))))
+((-2533 (((-170 (-226)) (-776) (-170 (-226))) 11) (((-226) (-776) (-226)) 12)) (-3692 (((-170 (-226)) (-170 (-226))) 13) (((-226) (-226)) 14)) (-1982 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 19) (((-226) (-226) (-226)) 22)) (-3977 (((-170 (-226)) (-170 (-226))) 27) (((-226) (-226)) 26)) (-2090 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 57) (((-226) (-226) (-226)) 49)) (-2730 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 62) (((-226) (-226) (-226)) 60)) (-4164 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 15) (((-226) (-226) (-226)) 16)) (-4099 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 17) (((-226) (-226) (-226)) 18)) (-4273 (((-170 (-226)) (-170 (-226))) 74) (((-226) (-226)) 73)) (-1407 (((-226) (-226)) 68) (((-170 (-226)) (-170 (-226))) 72)) (-2392 (((-170 (-226)) (-170 (-226))) 8) (((-226) (-226)) 9)) (-2165 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 35) (((-226) (-226) (-226)) 31)))
+(((-227) (-10 -7 (-15 -2392 ((-226) (-226))) (-15 -2392 ((-170 (-226)) (-170 (-226)))) (-15 -2165 ((-226) (-226) (-226))) (-15 -2165 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -3692 ((-226) (-226))) (-15 -3692 ((-170 (-226)) (-170 (-226)))) (-15 -3977 ((-226) (-226))) (-15 -3977 ((-170 (-226)) (-170 (-226)))) (-15 -2533 ((-226) (-776) (-226))) (-15 -2533 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -4164 ((-226) (-226) (-226))) (-15 -4164 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2090 ((-226) (-226) (-226))) (-15 -2090 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4099 ((-226) (-226) (-226))) (-15 -4099 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2730 ((-226) (-226) (-226))) (-15 -2730 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1407 ((-170 (-226)) (-170 (-226)))) (-15 -1407 ((-226) (-226))) (-15 -4273 ((-226) (-226))) (-15 -4273 ((-170 (-226)) (-170 (-226)))) (-15 -1982 ((-226) (-226) (-226))) (-15 -1982 ((-170 (-226)) (-170 (-226)) (-170 (-226)))))) (T -227))
+((-1982 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1982 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4273 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4273 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2090 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2090 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4164 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4164 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))))
+(-10 -7 (-15 -2392 ((-226) (-226))) (-15 -2392 ((-170 (-226)) (-170 (-226)))) (-15 -2165 ((-226) (-226) (-226))) (-15 -2165 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -3692 ((-226) (-226))) (-15 -3692 ((-170 (-226)) (-170 (-226)))) (-15 -3977 ((-226) (-226))) (-15 -3977 ((-170 (-226)) (-170 (-226)))) (-15 -2533 ((-226) (-776) (-226))) (-15 -2533 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -4164 ((-226) (-226) (-226))) (-15 -4164 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2090 ((-226) (-226) (-226))) (-15 -2090 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4099 ((-226) (-226) (-226))) (-15 -4099 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2730 ((-226) (-226) (-226))) (-15 -2730 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1407 ((-170 (-226)) (-170 (-226)))) (-15 -1407 ((-226) (-226))) (-15 -4273 ((-226) (-226))) (-15 -4273 ((-170 (-226)) (-170 (-226)))) (-15 -1982 ((-226) (-226) (-226))) (-15 -1982 ((-170 (-226)) (-170 (-226)) (-170 (-226)))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) NIL)) (-3182 (($ $ $) NIL)) (-2937 (($ (-1275 |#1|)) NIL) (($ $) NIL)) (-2915 (($ |#1| |#1| |#1|) 33)) (-1551 (((-112) $) NIL)) (-1532 (($ $ (-569) (-569)) NIL)) (-2986 (($ $ (-569) (-569)) NIL)) (-1952 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-1383 (($ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3312 (($ $ (-569) (-569) $) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2400 (($ $ (-569) (-1275 |#1|)) NIL)) (-3259 (($ $ (-569) (-1275 |#1|)) NIL)) (-4092 (($ |#1| |#1| |#1|) 32)) (-3419 (($ (-776) |#1|) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) NIL (|has| |#1| (-310)))) (-4044 (((-1275 |#1|) $ (-569)) NIL)) (-1754 (($ |#1|) 31)) (-3393 (($ |#1|) 30)) (-2891 (($ |#1|) 29)) (-3978 (((-776) $) NIL (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-1539 (((-776) $) NIL (|has| |#1| (-561)))) (-2970 (((-649 (-1275 |#1|)) $) NIL (|has| |#1| (-561)))) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#1| $) NIL (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#1|))) 11)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2884 (((-649 (-649 |#1|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2513 (($) 12)) (-2838 (($ $ $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-3687 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-3387 (((-112) $) NIL)) (-3242 ((|#1| $) NIL (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-1275 |#1|) $ (-569)) NIL)) (-3796 (($ (-1275 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1275 |#1|) $ (-1275 |#1|)) 15) (((-1275 |#1|) (-1275 |#1|) $) NIL) (((-949 |#1|) $ (-949 |#1|)) 21)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-228 |#1|) (-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -2513 ($)) (-15 -2891 ($ |#1|)) (-15 -3393 ($ |#1|)) (-15 -1754 ($ |#1|)) (-15 -4092 ($ |#1| |#1| |#1|)) (-15 -2915 ($ |#1| |#1| |#1|)))) (-13 (-367) (-1210))) (T -228))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210))) (-5 *1 (-228 *3)))) (-2513 (*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-2891 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-3393 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-1754 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-4092 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-2915 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))))
+(-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -2513 ($)) (-15 -2891 ($ |#1|)) (-15 -3393 ($ |#1|)) (-15 -1754 ($ |#1|)) (-15 -4092 ($ |#1| |#1| |#1|)) (-15 -2915 ($ |#1| |#1| |#1|))))
+((-1796 (($ (-1 (-112) |#2|) $) 16)) (-1794 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2434 (($) NIL) (($ (-649 |#2|)) 11)) (-2920 (((-112) $ $) 25)))
+(((-229 |#1| |#2|) (-10 -8 (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-230 |#2|) (-1108)) (T -229))
+NIL
+(-10 -8 (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -2920 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-230 |#1|) (-140) (-1108)) (T -230))
NIL
(-13 (-236 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-3514 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) 14) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) 22) (($ $ (-776)) NIL) (($ $) 19)) (-2830 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-776)) 17) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)))
-(((-231 |#1| |#2|) (-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -2830 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2830 (|#1| |#1| (-1183))) (-15 -2830 (|#1| |#1| (-649 (-1183)))) (-15 -2830 (|#1| |#1| (-1183) (-776))) (-15 -2830 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2830 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2830 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|)))) (-232 |#2|) (-1055)) (T -231))
-NIL
-(-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -2830 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2830 (|#1| |#1| (-1183))) (-15 -2830 (|#1| |#1| (-649 (-1183)))) (-15 -2830 (|#1| |#1| (-1183) (-776))) (-15 -2830 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2830 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2830 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3514 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-776)) 55) (($ $ (-649 (-1183)) (-649 (-776))) 48 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 47 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 46 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 45 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 43 (|has| |#1| (-234))) (($ $) 41 (|has| |#1| (-234)))) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-776)) 53) (($ $ (-649 (-1183)) (-649 (-776))) 52 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 51 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 50 (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 49 (|has| |#1| (-906 (-1183)))) (($ $ (-776)) 44 (|has| |#1| (-234))) (($ $) 42 (|has| |#1| (-234)))) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-232 |#1|) (-140) (-1055)) (T -232))
-((-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055)))) (-2830 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1055)))))
-(-13 (-1055) (-10 -8 (-15 -3514 ($ $ (-1 |t#1| |t#1|))) (-15 -3514 ($ $ (-1 |t#1| |t#1|) (-776))) (-15 -2830 ($ $ (-1 |t#1| |t#1|))) (-15 -2830 ($ $ (-1 |t#1| |t#1|) (-776))) (IF (|has| |t#1| (-234)) (-6 (-234)) |%noBranch|) (IF (|has| |t#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-234) |has| |#1| (-234)) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-3514 (($ $) NIL) (($ $ (-776)) 13)) (-2830 (($ $) 8) (($ $ (-776)) 15)))
-(((-233 |#1|) (-10 -8 (-15 -2830 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-776))) (-15 -2830 (|#1| |#1|)) (-15 -3514 (|#1| |#1|))) (-234)) (T -233))
-NIL
-(-10 -8 (-15 -2830 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-776))) (-15 -2830 (|#1| |#1|)) (-15 -3514 (|#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3514 (($ $) 42) (($ $ (-776)) 40)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $) 41) (($ $ (-776)) 39)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-3517 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) 14) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) 22) (($ $ (-776)) NIL) (($ $) 19)) (-2832 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-776)) 17) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)))
+(((-231 |#1| |#2|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1185))) (-15 -2832 (|#1| |#1| (-649 (-1185)))) (-15 -2832 (|#1| |#1| (-1185) (-776))) (-15 -2832 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|)))) (-232 |#2|) (-1057)) (T -231))
+NIL
+(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1185))) (-15 -2832 (|#1| |#1| (-649 (-1185)))) (-15 -2832 (|#1| |#1| (-1185) (-776))) (-15 -2832 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-776)) 55) (($ $ (-649 (-1185)) (-649 (-776))) 48 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 47 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 46 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 45 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 43 (|has| |#1| (-234))) (($ $) 41 (|has| |#1| (-234)))) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-776)) 53) (($ $ (-649 (-1185)) (-649 (-776))) 52 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 51 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 50 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 49 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 44 (|has| |#1| (-234))) (($ $) 42 (|has| |#1| (-234)))) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-232 |#1|) (-140) (-1057)) (T -232))
+((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1057)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057)))) (-2832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1057)))))
+(-13 (-1057) (-10 -8 (-15 -3517 ($ $ (-1 |t#1| |t#1|))) (-15 -3517 ($ $ (-1 |t#1| |t#1|) (-776))) (-15 -2832 ($ $ (-1 |t#1| |t#1|))) (-15 -2832 ($ $ (-1 |t#1| |t#1|) (-776))) (IF (|has| |t#1| (-234)) (-6 (-234)) |%noBranch|) (IF (|has| |t#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-234) |has| |#1| (-234)) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3517 (($ $) NIL) (($ $ (-776)) 13)) (-2832 (($ $) 8) (($ $ (-776)) 15)))
+(((-233 |#1|) (-10 -8 (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1|))) (-234)) (T -233))
+NIL
+(-10 -8 (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $) 42) (($ $ (-776)) 40)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 41) (($ $ (-776)) 39)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-234) (-140)) (T -234))
-((-3514 (*1 *1 *1) (-4 *1 (-234))) (-2830 (*1 *1 *1) (-4 *1 (-234))) (-3514 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))) (-2830 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))))
-(-13 (-1055) (-10 -8 (-15 -3514 ($ $)) (-15 -2830 ($ $)) (-15 -3514 ($ $ (-776))) (-15 -2830 ($ $ (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-1906 (($) 12) (($ (-649 |#2|)) NIL)) (-3959 (($ $) 14)) (-3806 (($ (-649 |#2|)) 10)) (-3793 (((-867) $) 21)))
-(((-235 |#1| |#2|) (-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -1906 (|#1| (-649 |#2|))) (-15 -1906 (|#1|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -3959 (|#1| |#1|))) (-236 |#2|) (-1106)) (T -235))
-NIL
-(-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -1906 (|#1| (-649 |#2|))) (-15 -1906 (|#1|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -3959 (|#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4101 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3547 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ |#1| $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1906 (($) 50) (($ (-649 |#1|)) 49)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 51)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-236 |#1|) (-140) (-1106)) (T -236))
-((-1906 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1106)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-236 *3)))) (-3463 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-236 *2)) (-4 *2 (-1106)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-236 *3)) (-4 *3 (-1106)))) (-4101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-236 *3)) (-4 *3 (-1106)))))
-(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1906 ($)) (-15 -1906 ($ (-649 |t#1|))) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3463 ($ |t#1| $)) (-15 -3463 ($ (-1 (-112) |t#1|) $)) (-15 -4101 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-1995 (((-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776))))) (-297 (-958 (-569)))) 42)))
-(((-237) (-10 -7 (-15 -1995 ((-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776))))) (-297 (-958 (-569))))))) (T -237))
-((-1995 (*1 *2 *3) (-12 (-5 *3 (-297 (-958 (-569)))) (-5 *2 (-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776)))))) (-5 *1 (-237)))))
-(-10 -7 (-15 -1995 ((-2 (|:| |varOrder| (-649 (-1183))) (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed")) (|:| |hom| (-649 (-1273 (-776))))) (-297 (-958 (-569))))))
-((-3470 (((-776)) 56)) (-1630 (((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) 53) (((-694 |#3|) (-694 $)) 44) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3083 (((-134)) 62)) (-3514 (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3793 (((-1273 |#3|) $) NIL) (($ |#3|) NIL) (((-867) $) NIL) (($ (-569)) 12) (($ (-412 (-569))) NIL)) (-3302 (((-776)) 15)) (-3032 (($ $ |#3|) 59)))
-(((-238 |#1| |#2| |#3|) (-10 -8 (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)) (-15 -3302 ((-776))) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -3793 (|#1| |#3|)) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -1630 ((-694 |#3|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -3470 ((-776))) (-15 -3032 (|#1| |#1| |#3|)) (-15 -3083 ((-134))) (-15 -3793 ((-1273 |#3|) |#1|))) (-239 |#2| |#3|) (-776) (-1223)) (T -238))
-((-3083 (*1 *2) (-12 (-14 *4 (-776)) (-4 *5 (-1223)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3470 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3302 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))))
-(-10 -8 (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)) (-15 -3302 ((-776))) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -3793 (|#1| |#3|)) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -1630 ((-694 |#3|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -3470 ((-776))) (-15 -3032 (|#1| |#1| |#3|)) (-15 -3083 ((-134))) (-15 -3793 ((-1273 |#3|) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#2| (-1106)))) (-3192 (((-112) $) 73 (|has| |#2| (-131)))) (-4230 (($ (-927)) 126 (|has| |#2| (-1055)))) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-3217 (($ $ $) 122 (|has| |#2| (-798)))) (-1678 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-2716 (((-112) $ (-776)) 8)) (-3470 (((-776)) 108 (|has| |#2| (-372)))) (-2552 (((-569) $) 120 (|has| |#2| (-853)))) (-3940 ((|#2| $ (-569) |#2|) 53 (|has| $ (-6 -4445)))) (-4188 (($) 7 T CONST)) (-4378 (((-3 (-569) "failed") $) 68 (-1756 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) 65 (-1756 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1106)))) (-3148 (((-569) $) 67 (-1756 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) 64 (-1756 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) 63 (|has| |#2| (-1106)))) (-1630 (((-694 (-569)) (-694 $)) 107 (-1756 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 106 (-1756 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 105 (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) 104 (|has| |#2| (-1055)))) (-2888 (((-3 $ "failed") $) 80 (|has| |#2| (-731)))) (-3403 (($) 111 (|has| |#2| (-372)))) (-3843 ((|#2| $ (-569) |#2|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#2| $ (-569)) 52)) (-4237 (((-112) $) 118 (|has| |#2| (-853)))) (-2880 (((-649 |#2|) $) 31 (|has| $ (-6 -4444)))) (-2623 (((-112) $) 82 (|has| |#2| (-731)))) (-4327 (((-112) $) 119 (|has| |#2| (-853)))) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3377 (($ $ $) 117 (-2774 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3040 (((-649 |#2|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3969 (($ $ $) 116 (-2774 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3831 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2|) $) 36)) (-2855 (((-927) $) 110 (|has| |#2| (-372)))) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#2| (-1106)))) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-2150 (($ (-927)) 109 (|has| |#2| (-372)))) (-3545 (((-1126) $) 21 (|has| |#2| (-1106)))) (-3510 ((|#2| $) 43 (|has| (-569) (-855)))) (-4420 (($ $ |#2|) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#2| $ (-569) |#2|) 51) ((|#2| $ (-569)) 50)) (-3990 ((|#2| $ $) 125 (|has| |#2| (-1055)))) (-3845 (($ (-1273 |#2|)) 127)) (-3083 (((-134)) 124 (|has| |#2| (-367)))) (-3514 (($ $) 99 (-1756 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) 97 (-1756 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) 95 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) 94 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) 93 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) 92 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) 85 (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1055)))) (-3558 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4444))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-1273 |#2|) $) 128) (($ (-569)) 69 (-2774 (-1756 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) 66 (-1756 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) 61 (|has| |#2| (-1106))) (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-3302 (((-776)) 103 (|has| |#2| (-1055)) CONST)) (-1441 (((-112) $ $) 23 (|has| |#2| (-1106)))) (-3037 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4444)))) (-3070 (($ $) 121 (|has| |#2| (-853)))) (-1803 (($) 72 (|has| |#2| (-131)) CONST)) (-1813 (($) 83 (|has| |#2| (-731)) CONST)) (-2830 (($ $) 98 (-1756 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) 96 (-1756 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) 91 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) 90 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) 89 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) 88 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) 87 (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1055)))) (-2976 (((-112) $ $) 114 (-2774 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2954 (((-112) $ $) 113 (-2774 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2919 (((-112) $ $) 20 (|has| |#2| (-1106)))) (-2964 (((-112) $ $) 115 (-2774 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2942 (((-112) $ $) 112 (-2774 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3032 (($ $ |#2|) 123 (|has| |#2| (-367)))) (-3021 (($ $ $) 102 (|has| |#2| (-1055))) (($ $) 101 (|has| |#2| (-1055)))) (-3009 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-776)) 81 (|has| |#2| (-731))) (($ $ (-927)) 78 (|has| |#2| (-731)))) (* (($ (-569) $) 100 (|has| |#2| (-1055))) (($ $ $) 79 (|has| |#2| (-731))) (($ $ |#2|) 77 (|has| |#2| (-731))) (($ |#2| $) 76 (|has| |#2| (-731))) (($ (-776) $) 74 (|has| |#2| (-131))) (($ (-927) $) 71 (|has| |#2| (-25)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-239 |#1| |#2|) (-140) (-776) (-1223)) (T -239))
-((-3845 (*1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1223)) (-4 *1 (-239 *3 *4)))) (-4230 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1055)) (-4 *4 (-1223)))) (-3990 (*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))))
-(-13 (-609 (-569) |t#2|) (-618 (-1273 |t#2|)) (-10 -8 (-6 -4444) (-15 -3845 ($ (-1273 |t#2|))) (IF (|has| |t#2| (-1106)) (-6 (-416 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1055)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-381 |t#2|)) (-15 -4230 ($ (-927))) (-15 -3990 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-731)) (PROGN (-6 (-731)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#2| (-173)) (PROGN (-6 (-38 |t#2|)) (-6 (-173))) |%noBranch|) (IF (|has| |t#2| (-6 -4441)) (-6 -4441) |%noBranch|) (IF (|has| |t#2| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#2| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-1280 |t#2|)) |%noBranch|)))
-(((-21) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-23) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-25) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) -2774 (|has| |#2| (-1106)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2774 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-111 $ $) |has| |#2| (-173)) ((-131) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-621 #0=(-412 (-569))) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))) ((-621 (-569)) -2774 (|has| |#2| (-1055)) (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-621 |#2|) -2774 (|has| |#2| (-1106)) (|has| |#2| (-173))) ((-618 (-867)) -2774 (|has| |#2| (-1106)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-618 (-867))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-618 (-1273 |#2|)) . T) ((-173) |has| |#2| (-173)) ((-232 |#2|) |has| |#2| (-1055)) ((-234) -12 (|has| |#2| (-234)) (|has| |#2| (-1055))) ((-289 #1=(-569) |#2|) . T) ((-291 #1# |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-372) |has| |#2| (-372)) ((-381 |#2|) |has| |#2| (-1055)) ((-416 |#2|) |has| |#2| (-1106)) ((-494 |#2|) . T) ((-609 #1# |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-651 (-569)) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 |#2|) -2774 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 $) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-653 |#2|) -2774 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-653 $) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-645 |#2|) -2774 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-644 (-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055))) ((-644 |#2|) |has| |#2| (-1055)) ((-722 |#2|) -2774 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-731) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-796) |has| |#2| (-853)) ((-797) -2774 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-798) |has| |#2| (-798)) ((-799) -2774 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-800) -2774 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-853) |has| |#2| (-853)) ((-855) -2774 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-906 (-1183)) -12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055))) ((-1044 #0#) -12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106))) ((-1044 (-569)) -12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) ((-1044 |#2|) |has| |#2| (-1106)) ((-1057 |#2|) -2774 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1057 $) |has| |#2| (-173)) ((-1062 |#2|) -2774 (|has| |#2| (-1055)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1062 $) |has| |#2| (-173)) ((-1055) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1064) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1118) -2774 (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-1106) -2774 (|has| |#2| (-1106)) (|has| |#2| (-1055)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1223) . T) ((-1280 |#2|) |has| |#2| (-367)))
-((-4085 (((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 21)) (-3596 ((|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 23)) (-1344 (((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)) 18)))
-(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -4085 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3596 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1344 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)))) (-776) (-1223) (-1223)) (T -240))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-5 *2 (-241 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) (-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1223)) (-4 *2 (-1223)) (-5 *1 (-240 *5 *6 *2)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776)) (-4 *7 (-1223)) (-4 *5 (-1223)) (-5 *2 (-241 *6 *5)) (-5 *1 (-240 *6 *7 *5)))))
-(-10 -7 (-15 -4085 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3596 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1344 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|))))
-((-2415 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3192 (((-112) $) NIL (|has| |#2| (-131)))) (-4230 (($ (-927)) 65 (|has| |#2| (-1055)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-3217 (($ $ $) 70 (|has| |#2| (-798)))) (-1678 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-2716 (((-112) $ (-776)) 17)) (-3470 (((-776)) NIL (|has| |#2| (-372)))) (-2552 (((-569) $) NIL (|has| |#2| (-853)))) (-3940 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1106)))) (-3148 (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) 32 (|has| |#2| (-1106)))) (-1630 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-2888 (((-3 $ "failed") $) 61 (|has| |#2| (-731)))) (-3403 (($) NIL (|has| |#2| (-372)))) (-3843 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ (-569)) 59)) (-4237 (((-112) $) NIL (|has| |#2| (-853)))) (-2880 (((-649 |#2|) $) 15 (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL (|has| |#2| (-731)))) (-4327 (((-112) $) NIL (|has| |#2| (-853)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 20 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3040 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 (((-569) $) 58 (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3831 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2|) $) 47)) (-2855 (((-927) $) NIL (|has| |#2| (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#2| (-1106)))) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3545 (((-1126) $) NIL (|has| |#2| (-1106)))) (-3510 ((|#2| $) NIL (|has| (-569) (-855)))) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) 21)) (-3990 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-3845 (($ (-1273 |#2|)) 18)) (-3083 (((-134)) NIL (|has| |#2| (-367)))) (-3514 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-3558 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-1273 |#2|) $) 10) (($ (-569)) NIL (-2774 (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) 13 (|has| |#2| (-1106))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-3302 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-1441 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3037 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3070 (($ $) NIL (|has| |#2| (-853)))) (-1803 (($) 40 (|has| |#2| (-131)) CONST)) (-1813 (($) 44 (|has| |#2| (-731)) CONST)) (-2830 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2976 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2954 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2919 (((-112) $ $) 31 (|has| |#2| (-1106)))) (-2964 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2942 (((-112) $ $) 68 (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-3009 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1055))) (($ $ $) 50 (|has| |#2| (-731))) (($ $ |#2|) 48 (|has| |#2| (-731))) (($ |#2| $) 49 (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-241 |#1| |#2|) (-239 |#1| |#2|) (-776) (-1223)) (T -241))
+((-3517 (*1 *1 *1) (-4 *1 (-234))) (-2832 (*1 *1 *1) (-4 *1 (-234))) (-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))))
+(-13 (-1057) (-10 -8 (-15 -3517 ($ $)) (-15 -2832 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -2832 ($ $ (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2434 (($) 12) (($ (-649 |#2|)) NIL)) (-3962 (($ $) 14)) (-3809 (($ (-649 |#2|)) 10)) (-3796 (((-867) $) 21)))
+(((-235 |#1| |#2|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3962 (|#1| |#1|))) (-236 |#2|) (-1108)) (T -235))
+NIL
+(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3962 (|#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-236 |#1|) (-140) (-1108)) (T -236))
+((-2434 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1108)))) (-2434 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-236 *3)))) (-1794 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-236 *2)) (-4 *2 (-1108)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3)) (-4 *3 (-1108)))) (-1796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3)) (-4 *3 (-1108)))))
+(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2434 ($)) (-15 -2434 ($ (-649 |t#1|))) (IF (|has| $ (-6 -4447)) (PROGN (-15 -1794 ($ |t#1| $)) (-15 -1794 ($ (-1 (-112) |t#1|) $)) (-15 -1796 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-2174 (((-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776))))) (-297 (-958 (-569)))) 42)))
+(((-237) (-10 -7 (-15 -2174 ((-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776))))) (-297 (-958 (-569))))))) (T -237))
+((-2174 (*1 *2 *3) (-12 (-5 *3 (-297 (-958 (-569)))) (-5 *2 (-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776)))))) (-5 *1 (-237)))))
+(-10 -7 (-15 -2174 ((-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776))))) (-297 (-958 (-569))))))
+((-3473 (((-776)) 56)) (-2957 (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) 53) (((-694 |#3|) (-694 $)) 44) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2377 (((-134)) 62)) (-3517 (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3796 (((-1275 |#3|) $) NIL) (($ |#3|) NIL) (((-867) $) NIL) (($ (-569)) 12) (($ (-412 (-569))) NIL)) (-2721 (((-776)) 15)) (-3035 (($ $ |#3|) 59)))
+(((-238 |#1| |#2| |#3|) (-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)) (-15 -2721 ((-776))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -3473 ((-776))) (-15 -3035 (|#1| |#1| |#3|)) (-15 -2377 ((-134))) (-15 -3796 ((-1275 |#3|) |#1|))) (-239 |#2| |#3|) (-776) (-1225)) (T -238))
+((-2377 (*1 *2) (-12 (-14 *4 (-776)) (-4 *5 (-1225)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3473 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-2721 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))))
+(-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)) (-15 -2721 ((-776))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -3473 ((-776))) (-15 -3035 (|#1| |#1| |#3|)) (-15 -2377 ((-134))) (-15 -3796 ((-1275 |#3|) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#2| (-1108)))) (-4143 (((-112) $) 73 (|has| |#2| (-131)))) (-3636 (($ (-927)) 126 (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-3151 (($ $ $) 122 (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) 8)) (-3473 (((-776)) 108 (|has| |#2| (-372)))) (-2919 (((-569) $) 120 (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) 53 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-4381 (((-3 (-569) "failed") $) 68 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) 65 (-1759 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1108)))) (-3150 (((-569) $) 67 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) 64 (-1759 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) 63 (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) 107 (-1759 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 106 (-1759 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 105 (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) 104 (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) 80 (|has| |#2| (-731)))) (-3406 (($) 111 (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) 52)) (-3712 (((-112) $) 118 (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) 31 (|has| $ (-6 -4447)))) (-2349 (((-112) $) 82 (|has| |#2| (-731)))) (-2051 (((-112) $) 119 (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 117 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2009 (((-649 |#2|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 116 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3834 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) 36)) (-2731 (((-927) $) 110 (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-2150 (($ (-927)) 109 (|has| |#2| (-372)))) (-3547 (((-1128) $) 21 (|has| |#2| (-1108)))) (-3513 ((|#2| $) 43 (|has| (-569) (-855)))) (-1682 (($ $ |#2|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ (-569) |#2|) 51) ((|#2| $ (-569)) 50)) (-3040 ((|#2| $ $) 125 (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) 127)) (-2377 (((-134)) 124 (|has| |#2| (-367)))) (-3517 (($ $) 99 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) 97 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) 95 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) 94 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) 93 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) 92 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) 85 (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4447))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-1275 |#2|) $) 128) (($ (-569)) 69 (-2776 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) 66 (-1759 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) 61 (|has| |#2| (-1108))) (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-2721 (((-776)) 103 (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) 23 (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4447)))) (-2271 (($ $) 121 (|has| |#2| (-853)))) (-1804 (($) 72 (|has| |#2| (-131)) CONST)) (-1815 (($) 83 (|has| |#2| (-731)) CONST)) (-2832 (($ $) 98 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) 96 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) 91 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) 90 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) 89 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) 88 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) 87 (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1057)))) (-2978 (((-112) $ $) 114 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2956 (((-112) $ $) 113 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2920 (((-112) $ $) 20 (|has| |#2| (-1108)))) (-2966 (((-112) $ $) 115 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2944 (((-112) $ $) 112 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3035 (($ $ |#2|) 123 (|has| |#2| (-367)))) (-3024 (($ $ $) 102 (|has| |#2| (-1057))) (($ $) 101 (|has| |#2| (-1057)))) (-3012 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-776)) 81 (|has| |#2| (-731))) (($ $ (-927)) 78 (|has| |#2| (-731)))) (* (($ (-569) $) 100 (|has| |#2| (-1057))) (($ $ $) 79 (|has| |#2| (-731))) (($ $ |#2|) 77 (|has| |#2| (-731))) (($ |#2| $) 76 (|has| |#2| (-731))) (($ (-776) $) 74 (|has| |#2| (-131))) (($ (-927) $) 71 (|has| |#2| (-25)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-239 |#1| |#2|) (-140) (-776) (-1225)) (T -239))
+((-3848 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1225)) (-4 *1 (-239 *3 *4)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1057)) (-4 *4 (-1225)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))))
+(-13 (-609 (-569) |t#2|) (-618 (-1275 |t#2|)) (-10 -8 (-6 -4447) (-15 -3848 ($ (-1275 |t#2|))) (IF (|has| |t#2| (-1108)) (-6 (-416 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1057)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-381 |t#2|)) (-15 -3636 ($ (-927))) (-15 -3040 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-731)) (PROGN (-6 (-731)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#2| (-173)) (PROGN (-6 (-38 |t#2|)) (-6 (-173))) |%noBranch|) (IF (|has| |t#2| (-6 -4444)) (-6 -4444) |%noBranch|) (IF (|has| |t#2| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#2| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-1282 |t#2|)) |%noBranch|)))
+(((-21) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-23) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-25) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) -2776 (|has| |#2| (-1108)) (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-111 $ $) |has| |#2| (-173)) ((-131) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-621 #0=(-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))) ((-621 (-569)) -2776 (|has| |#2| (-1057)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-621 |#2|) -2776 (|has| |#2| (-1108)) (|has| |#2| (-173))) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-618 (-867))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-618 (-1275 |#2|)) . T) ((-173) |has| |#2| (-173)) ((-232 |#2|) |has| |#2| (-1057)) ((-234) -12 (|has| |#2| (-234)) (|has| |#2| (-1057))) ((-289 #1=(-569) |#2|) . T) ((-291 #1# |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-372) |has| |#2| (-372)) ((-381 |#2|) |has| |#2| (-1057)) ((-416 |#2|) |has| |#2| (-1108)) ((-494 |#2|) . T) ((-609 #1# |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-651 (-569)) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 $) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-653 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-653 $) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-645 |#2|) -2776 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-644 (-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057))) ((-644 |#2|) |has| |#2| (-1057)) ((-722 |#2|) -2776 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-731) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-796) |has| |#2| (-853)) ((-797) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-798) |has| |#2| (-798)) ((-799) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-800) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-853) |has| |#2| (-853)) ((-855) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-906 (-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057))) ((-1046 #0#) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))) ((-1046 (-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) ((-1046 |#2|) |has| |#2| (-1108)) ((-1059 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1059 $) |has| |#2| (-173)) ((-1064 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1064 $) |has| |#2| (-173)) ((-1057) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1066) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1120) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-1108) -2776 (|has| |#2| (-1108)) (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1225) . T) ((-1282 |#2|) |has| |#2| (-367)))
+((-1610 (((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 21)) (-3598 ((|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 23)) (-1346 (((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)) 18)))
+(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -1610 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3598 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1346 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)))) (-776) (-1225) (-1225)) (T -240))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-5 *2 (-241 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1225)) (-4 *2 (-1225)) (-5 *1 (-240 *5 *6 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776)) (-4 *7 (-1225)) (-4 *5 (-1225)) (-5 *2 (-241 *6 *5)) (-5 *1 (-240 *6 *7 *5)))))
+(-10 -7 (-15 -1610 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3598 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1346 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|))))
+((-2417 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-4143 (((-112) $) NIL (|has| |#2| (-131)))) (-3636 (($ (-927)) 65 (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) 70 (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) 17)) (-3473 (((-776)) NIL (|has| |#2| (-372)))) (-2919 (((-569) $) NIL (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) 32 (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) 61 (|has| |#2| (-731)))) (-3406 (($) NIL (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) 59)) (-3712 (((-112) $) NIL (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) 15 (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#2| (-731)))) (-2051 (((-112) $) NIL (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 20 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 (((-569) $) 58 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) 47)) (-2731 (((-927) $) NIL (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3547 (((-1128) $) NIL (|has| |#2| (-1108)))) (-3513 ((|#2| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) 21)) (-3040 ((|#2| $ $) NIL (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) 18)) (-2377 (((-134)) NIL (|has| |#2| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#2|) $) 10) (($ (-569)) NIL (-2776 (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) 13 (|has| |#2| (-1108))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#2| (-853)))) (-1804 (($) 40 (|has| |#2| (-131)) CONST)) (-1815 (($) 44 (|has| |#2| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2920 (((-112) $ $) 31 (|has| |#2| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2944 (((-112) $ $) 68 (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $ $) NIL (|has| |#2| (-1057))) (($ $) NIL (|has| |#2| (-1057)))) (-3012 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1057))) (($ $ $) 50 (|has| |#2| (-731))) (($ $ |#2|) 48 (|has| |#2| (-731))) (($ |#2| $) 49 (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-241 |#1| |#2|) (-239 |#1| |#2|) (-776) (-1225)) (T -241))
NIL
(-239 |#1| |#2|)
-((-2268 (((-569) (-649 (-1165))) 36) (((-569) (-1165)) 29)) (-1664 (((-1278) (-649 (-1165))) 40) (((-1278) (-1165)) 39)) (-2074 (((-1165)) 16)) (-2171 (((-1165) (-569) (-1165)) 23)) (-2167 (((-649 (-1165)) (-649 (-1165)) (-569) (-1165)) 37) (((-1165) (-1165) (-569) (-1165)) 35)) (-4157 (((-649 (-1165)) (-649 (-1165))) 15) (((-649 (-1165)) (-1165)) 11)))
-(((-242) (-10 -7 (-15 -4157 ((-649 (-1165)) (-1165))) (-15 -4157 ((-649 (-1165)) (-649 (-1165)))) (-15 -2074 ((-1165))) (-15 -2171 ((-1165) (-569) (-1165))) (-15 -2167 ((-1165) (-1165) (-569) (-1165))) (-15 -2167 ((-649 (-1165)) (-649 (-1165)) (-569) (-1165))) (-15 -1664 ((-1278) (-1165))) (-15 -1664 ((-1278) (-649 (-1165)))) (-15 -2268 ((-569) (-1165))) (-15 -2268 ((-569) (-649 (-1165)))))) (T -242))
-((-2268 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-569)) (-5 *1 (-242)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-242)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1278)) (-5 *1 (-242)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-242)))) (-2167 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 (-1165))) (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *1 (-242)))) (-2167 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242)))) (-2171 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242)))) (-2074 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-242)))) (-4157 (*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242)))) (-4157 (*1 *2 *3) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242)) (-5 *3 (-1165)))))
-(-10 -7 (-15 -4157 ((-649 (-1165)) (-1165))) (-15 -4157 ((-649 (-1165)) (-649 (-1165)))) (-15 -2074 ((-1165))) (-15 -2171 ((-1165) (-569) (-1165))) (-15 -2167 ((-1165) (-1165) (-569) (-1165))) (-15 -2167 ((-649 (-1165)) (-649 (-1165)) (-569) (-1165))) (-15 -1664 ((-1278) (-1165))) (-15 -1664 ((-1278) (-649 (-1165)))) (-15 -2268 ((-569) (-1165))) (-15 -2268 ((-569) (-649 (-1165)))))
+((-1967 (((-569) (-649 (-1167))) 36) (((-569) (-1167)) 29)) (-1666 (((-1280) (-649 (-1167))) 40) (((-1280) (-1167)) 39)) (-1798 (((-1167)) 16)) (-3425 (((-1167) (-569) (-1167)) 23)) (-2170 (((-649 (-1167)) (-649 (-1167)) (-569) (-1167)) 37) (((-1167) (-1167) (-569) (-1167)) 35)) (-4160 (((-649 (-1167)) (-649 (-1167))) 15) (((-649 (-1167)) (-1167)) 11)))
+(((-242) (-10 -7 (-15 -4160 ((-649 (-1167)) (-1167))) (-15 -4160 ((-649 (-1167)) (-649 (-1167)))) (-15 -1798 ((-1167))) (-15 -3425 ((-1167) (-569) (-1167))) (-15 -2170 ((-1167) (-1167) (-569) (-1167))) (-15 -2170 ((-649 (-1167)) (-649 (-1167)) (-569) (-1167))) (-15 -1666 ((-1280) (-1167))) (-15 -1666 ((-1280) (-649 (-1167)))) (-15 -1967 ((-569) (-1167))) (-15 -1967 ((-569) (-649 (-1167)))))) (T -242))
+((-1967 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-569)) (-5 *1 (-242)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-242)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1280)) (-5 *1 (-242)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-242)))) (-2170 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 (-1167))) (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *1 (-242)))) (-2170 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242)))) (-1798 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-242)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242)))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242)) (-5 *3 (-1167)))))
+(-10 -7 (-15 -4160 ((-649 (-1167)) (-1167))) (-15 -4160 ((-649 (-1167)) (-649 (-1167)))) (-15 -1798 ((-1167))) (-15 -3425 ((-1167) (-569) (-1167))) (-15 -2170 ((-1167) (-1167) (-569) (-1167))) (-15 -2170 ((-649 (-1167)) (-649 (-1167)) (-569) (-1167))) (-15 -1666 ((-1280) (-1167))) (-15 -1666 ((-1280) (-649 (-1167)))) (-15 -1967 ((-569) (-1167))) (-15 -1967 ((-569) (-649 (-1167)))))
((** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 20)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ (-412 (-569)) $) 27) (($ $ (-412 (-569))) NIL)))
(((-243 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-244)) (T -243))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 47)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 51)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 48)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 50) (($ $ (-412 (-569))) 49)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 47)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 51)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 48)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 50) (($ $ (-412 (-569))) 49)))
(((-244) (-140)) (T -244))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-569)))) (-1814 (*1 *1 *1) (-4 *1 (-244))))
-(-13 (-293) (-38 (-412 (-569))) (-10 -8 (-15 ** ($ $ (-569))) (-15 -1814 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-293) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-722 #0#) . T) ((-731) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-1566 (($ $) 58)) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-4393 (($ $ $) 54 (|has| $ (-6 -4445)))) (-2353 (($ $ $) 53 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-4188 (($) 7 T CONST)) (-1358 (($ $) 57)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-2052 (($ $) 56)) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1722 ((|#1| $) 60)) (-1669 (($ $) 59)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48)) (-3947 (((-569) $ $) 45)) (-2102 (((-112) $) 47)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1621 (($ $ $) 55 (|has| $ (-6 -4445)))) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-245 |#1|) (-140) (-1223)) (T -245))
-((-1722 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-1669 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-1566 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-1358 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-2052 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-1621 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-4393 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))) (-2353 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
-(-13 (-1016 |t#1|) (-10 -8 (-15 -1722 (|t#1| $)) (-15 -1669 ($ $)) (-15 -1566 ($ $)) (-15 -1358 ($ $)) (-15 -2052 ($ $)) (IF (|has| $ (-6 -4445)) (PROGN (-15 -1621 ($ $ $)) (-15 -4393 ($ $ $)) (-15 -2353 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) NIL)) (-2561 ((|#1| $) NIL)) (-1566 (($ $) NIL)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3012 (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-3355 (($ $) 10 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-4382 (($ $ $) NIL (|has| $ (-6 -4445)))) (-1716 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4445))) (($ $ "rest" $) NIL (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2548 ((|#1| $) NIL)) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3522 (($ $) NIL) (($ $ (-776)) NIL)) (-3041 (($ $) NIL (|has| |#1| (-1106)))) (-3547 (($ $) 7 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1696 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-1677 (((-112) $) NIL)) (-4034 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106))) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2616 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2126 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3379 (($ |#1|) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1722 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3813 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4294 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-1807 (((-112) $) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-776) $ "count") 16)) (-3947 (((-569) $ $) NIL)) (-4198 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4325 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-3225 (($ (-649 |#1|)) 22)) (-2102 (((-112) $) NIL)) (-1750 (($ $) NIL)) (-1497 (($ $) NIL (|has| $ (-6 -4445)))) (-3754 (((-776) $) NIL)) (-3866 (($ $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) NIL)) (-1621 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2441 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3793 (($ (-649 |#1|)) 17) (((-649 |#1|) $) 18) (((-867) $) 21 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) 14 (|has| $ (-6 -4444)))))
-(((-246 |#1|) (-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3225 ($ (-649 |#1|))) (-15 -1866 ($ $ "unique")) (-15 -1866 ($ $ "sort")) (-15 -1866 ((-776) $ "count")))) (-855)) (T -246))
-((-3225 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855)))))
-(-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3225 ($ (-649 |#1|))) (-15 -1866 ($ $ "unique")) (-15 -1866 ($ $ "sort")) (-15 -1866 ((-776) $ "count"))))
-((-1387 (((-3 (-776) "failed") |#1| |#1| (-776)) 43)))
-(((-247 |#1|) (-10 -7 (-15 -1387 ((-3 (-776) "failed") |#1| |#1| (-776)))) (-13 (-731) (-372) (-10 -7 (-15 ** (|#1| |#1| (-569)))))) (T -247))
-((-1387 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-776)) (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569)))))) (-5 *1 (-247 *3)))))
-(-10 -7 (-15 -1387 ((-3 (-776) "failed") |#1| |#1| (-776))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-869 |#1|)) $) NIL)) (-3763 (((-1179 $) $ (-869 |#1|)) NIL) (((-1179 |#2|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-3087 (($ $) NIL (|has| |#2| (-561)))) (-2883 (((-112) $) NIL (|has| |#2| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-2078 (($ $) NIL (|has| |#2| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#2| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3148 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4202 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3191 (($ $ (-649 (-569))) NIL)) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#2| (-915)))) (-3972 (($ $ |#2| (-241 (-2426 |#1|) (-776)) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-1697 (($ (-1179 |#2|) (-869 |#1|)) NIL) (($ (-1179 $) (-869 |#1|)) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#2| (-241 (-2426 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-869 |#1|)) NIL)) (-3712 (((-241 (-2426 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-4059 (($ (-1 (-241 (-2426 |#1|) (-776)) (-241 (-2426 |#1|) (-776))) $) NIL)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-3397 (((-3 (-869 |#1|) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#2| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1550 (((-1165) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -4320 (-776))) "failed") $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#2| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-4304 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3514 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3868 (((-241 (-2426 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3479 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-241 (-2426 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-248 |#1| |#2|) (-13 (-955 |#2| (-241 (-2426 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3191 ($ $ (-649 (-569)))))) (-649 (-1183)) (-1055)) (T -248))
-((-3191 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4)) (-14 *3 (-649 (-1183))) (-4 *4 (-1055)))))
-(-13 (-955 |#2| (-241 (-2426 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3191 ($ $ (-649 (-569))))))
-((-2415 (((-112) $ $) NIL)) (-1598 (((-1278) $) 17)) (-1632 (((-184 (-250)) $) 11)) (-1510 (($ (-184 (-250))) 12)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1572 (((-250) $) 7)) (-3793 (((-867) $) 9)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 15)))
-(((-249) (-13 (-1106) (-10 -8 (-15 -1572 ((-250) $)) (-15 -1632 ((-184 (-250)) $)) (-15 -1510 ($ (-184 (-250)))) (-15 -1598 ((-1278) $))))) (T -249))
-((-1572 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-249)))))
-(-13 (-1106) (-10 -8 (-15 -1572 ((-250) $)) (-15 -1632 ((-184 (-250)) $)) (-15 -1510 ($ (-184 (-250)))) (-15 -1598 ((-1278) $))))
-((-2415 (((-112) $ $) NIL)) (-1766 (((-649 (-870)) $) NIL)) (-3570 (((-511) $) NIL)) (-1550 (((-1165) $) NIL)) (-3893 (((-187) $) NIL)) (-2374 (((-112) $ (-511)) NIL)) (-3545 (((-1126) $) NIL)) (-1760 (((-336) $) 7)) (-1317 (((-649 (-112)) $) NIL)) (-3793 (((-867) $) NIL) (((-188) $) 8)) (-1441 (((-112) $ $) NIL)) (-1371 (((-55) $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-250) (-13 (-186) (-618 (-188)) (-10 -8 (-15 -1760 ((-336) $))))) (T -250))
-((-1760 (*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
-(-13 (-186) (-618 (-188)) (-10 -8 (-15 -1760 ((-336) $))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1866 (((-1188) $ (-776)) 13)) (-3793 (((-867) $) 20)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 16)) (-2426 (((-776) $) 9)))
-(((-251) (-13 (-1106) (-10 -8 (-15 -2426 ((-776) $)) (-15 -1866 ((-1188) $ (-776)))))) (T -251))
-((-2426 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1188)) (-5 *1 (-251)))))
-(-13 (-1106) (-10 -8 (-15 -2426 ((-776) $)) (-15 -1866 ((-1188) $ (-776)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-4230 (($ (-927)) NIL (|has| |#4| (-1055)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-3217 (($ $ $) NIL (|has| |#4| (-798)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-3470 (((-776)) NIL (|has| |#4| (-372)))) (-2552 (((-569) $) NIL (|has| |#4| (-853)))) (-3940 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1106))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))) (-3148 ((|#4| $) NIL (|has| |#4| (-1106))) (((-569) $) NIL (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))) (-1630 (((-2 (|:| -2378 (-694 |#4|)) (|:| |vec| (-1273 |#4|))) (-694 $) (-1273 $)) NIL (|has| |#4| (-1055))) (((-694 |#4|) (-694 $)) NIL (|has| |#4| (-1055))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))))) (-2888 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-3403 (($) NIL (|has| |#4| (-372)))) (-3843 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#4| $ (-569)) NIL)) (-4237 (((-112) $) NIL (|has| |#4| (-853)))) (-2880 (((-649 |#4|) $) NIL (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL (-2774 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-4327 (((-112) $) NIL (|has| |#4| (-853)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (-2774 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3040 (((-649 |#4|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (-2774 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3831 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) NIL)) (-2855 (((-927) $) NIL (|has| |#4| (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#4| (-372)))) (-3545 (((-1126) $) NIL)) (-3510 ((|#4| $) NIL (|has| (-569) (-855)))) (-4420 (($ $ |#4|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-3851 (((-649 |#4|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#4| $ (-569) |#4|) NIL) ((|#4| $ (-569)) 16)) (-3990 ((|#4| $ $) NIL (|has| |#4| (-1055)))) (-3845 (($ (-1273 |#4|)) NIL)) (-3083 (((-134)) NIL (|has| |#4| (-367)))) (-3514 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1055))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))))) (-3558 (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444))) (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-1273 |#4|) $) NIL) (((-867) $) NIL) (($ |#4|) NIL (|has| |#4| (-1106))) (($ (-569)) NIL (-2774 (-12 (|has| |#4| (-1044 (-569))) (|has| |#4| (-1106))) (|has| |#4| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#4| (-1044 (-412 (-569)))) (|has| |#4| (-1106))))) (-3302 (((-776)) NIL (|has| |#4| (-1055)) CONST)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3070 (($ $) NIL (|has| |#4| (-853)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL (-2774 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) CONST)) (-2830 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1055))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))))) (-2976 (((-112) $ $) NIL (-2774 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2954 (((-112) $ $) NIL (-2774 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2774 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2942 (((-112) $ $) NIL (-2774 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3032 (($ $ |#4|) NIL (|has| |#4| (-367)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2774 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055))))) (($ $ (-927)) NIL (-2774 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (* (($ |#2| $) 18) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-731))) (($ |#4| $) NIL (|has| |#4| (-731))) (($ $ $) NIL (-2774 (-12 (|has| |#4| (-234)) (|has| |#4| (-1055))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1055))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1183))) (|has| |#4| (-1055)))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-252 |#1| |#2| |#3| |#4|) (-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|)) (-927) (-1055) (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-653 |#2|)) (T -252))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-569)))) (-1817 (*1 *1 *1) (-4 *1 (-244))))
+(-13 (-293) (-38 (-412 (-569))) (-10 -8 (-15 ** ($ $ (-569))) (-15 -1817 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-293) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-722 #0#) . T) ((-731) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-1568 (($ $) 58)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-1458 (($ $ $) 54 (|has| $ (-6 -4448)))) (-1631 (($ $ $) 53 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-1360 (($ $) 57)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2056 (($ $) 56)) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 60)) (-2122 (($ $) 59)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-2866 (($ $ $) 55 (|has| $ (-6 -4448)))) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-245 |#1|) (-140) (-1225)) (T -245))
+((-1724 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-2122 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1360 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-2056 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1458 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1631 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))))
+(-13 (-1018 |t#1|) (-10 -8 (-15 -1724 (|t#1| $)) (-15 -2122 ($ $)) (-15 -1568 ($ $)) (-15 -1360 ($ $)) (-15 -2056 ($ $)) (IF (|has| $ (-6 -4448)) (PROGN (-15 -2866 ($ $ $)) (-15 -1458 ($ $ $)) (-15 -1631 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) 10 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "rest" $) NIL (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3525 (($ $) NIL) (($ $ (-776)) NIL)) (-2017 (($ $) NIL (|has| |#1| (-1108)))) (-3550 (($ $) 7 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108))) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4198 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3382 (($ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-776) $ "count") 16)) (-2602 (((-569) $ $) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3228 (($ (-649 |#1|)) 22)) (-3966 (((-112) $) NIL)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2866 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2443 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3796 (($ (-649 |#1|)) 17) (((-649 |#1|) $) 18) (((-867) $) 21 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 14 (|has| $ (-6 -4447)))))
+(((-246 |#1|) (-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3228 ($ (-649 |#1|))) (-15 -1869 ($ $ "unique")) (-15 -1869 ($ $ "sort")) (-15 -1869 ((-776) $ "count")))) (-855)) (T -246))
+((-3228 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855)))))
+(-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3228 ($ (-649 |#1|))) (-15 -1869 ($ $ "unique")) (-15 -1869 ($ $ "sort")) (-15 -1869 ((-776) $ "count"))))
+((-3606 (((-3 (-776) "failed") |#1| |#1| (-776)) 43)))
+(((-247 |#1|) (-10 -7 (-15 -3606 ((-3 (-776) "failed") |#1| |#1| (-776)))) (-13 (-731) (-372) (-10 -7 (-15 ** (|#1| |#1| (-569)))))) (T -247))
+((-3606 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-776)) (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569)))))) (-5 *1 (-247 *3)))))
+(-10 -7 (-15 -3606 ((-3 (-776) "failed") |#1| |#1| (-776))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-869 |#1|)) $) NIL)) (-3767 (((-1181 $) $ (-869 |#1|)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4130 (($ $ (-649 (-569))) NIL)) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-241 (-2428 |#1|) (-776)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) NIL) (($ (-1181 $) (-869 |#1|)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-241 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 (((-241 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-2492 (($ (-1 (-241 (-2428 |#1|) (-776)) (-241 (-2428 |#1|) (-776))) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 (((-241 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-241 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-248 |#1| |#2|) (-13 (-955 |#2| (-241 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) (-649 (-1185)) (-1057)) (T -248))
+((-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4)) (-14 *3 (-649 (-1185))) (-4 *4 (-1057)))))
+(-13 (-955 |#2| (-241 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569))))))
+((-2417 (((-112) $ $) NIL)) (-1600 (((-1280) $) 17)) (-2968 (((-184 (-250)) $) 11)) (-4237 (($ (-184 (-250))) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1576 (((-250) $) 7)) (-3796 (((-867) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 15)))
+(((-249) (-13 (-1108) (-10 -8 (-15 -1576 ((-250) $)) (-15 -2968 ((-184 (-250)) $)) (-15 -4237 ($ (-184 (-250)))) (-15 -1600 ((-1280) $))))) (T -249))
+((-1576 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-249)))))
+(-13 (-1108) (-10 -8 (-15 -1576 ((-250) $)) (-15 -2968 ((-184 (-250)) $)) (-15 -4237 ($ (-184 (-250)))) (-15 -1600 ((-1280) $))))
+((-2417 (((-112) $ $) NIL)) (-1767 (((-649 (-870)) $) NIL)) (-3573 (((-511) $) NIL)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) NIL)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-1735 (((-336) $) 7)) (-1673 (((-649 (-112)) $) NIL)) (-3796 (((-867) $) NIL) (((-188) $) 8)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-250) (-13 (-186) (-618 (-188)) (-10 -8 (-15 -1735 ((-336) $))))) (T -250))
+((-1735 (*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
+(-13 (-186) (-618 (-188)) (-10 -8 (-15 -1735 ((-336) $))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 (((-1190) $ (-776)) 13)) (-3796 (((-867) $) 20)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 16)) (-2428 (((-776) $) 9)))
+(((-251) (-13 (-1108) (-10 -8 (-15 -2428 ((-776) $)) (-15 -1869 ((-1190) $ (-776)))))) (T -251))
+((-2428 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1190)) (-5 *1 (-251)))))
+(-13 (-1108) (-10 -8 (-15 -2428 ((-776) $)) (-15 -1869 ((-1190) $ (-776)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3636 (($ (-927)) NIL (|has| |#4| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#4| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#4| (-372)))) (-2919 (((-569) $) NIL (|has| |#4| (-853)))) (-3943 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1108))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))) (-3150 ((|#4| $) NIL (|has| |#4| (-1108))) (((-569) $) NIL (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))) (-2957 (((-2 (|:| -1863 (-694 |#4|)) (|:| |vec| (-1275 |#4|))) (-694 $) (-1275 $)) NIL (|has| |#4| (-1057))) (((-694 |#4|) (-694 $)) NIL (|has| |#4| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (-3406 (($) NIL (|has| |#4| (-372)))) (-3846 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#4| $ (-569)) NIL)) (-3712 (((-112) $) NIL (|has| |#4| (-853)))) (-2882 (((-649 |#4|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (-2051 (((-112) $) NIL (|has| |#4| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2009 (((-649 |#4|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3834 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#4| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#4| (-372)))) (-3547 (((-1128) $) NIL)) (-3513 ((|#4| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#4|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-4199 (((-649 |#4|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#4| $ (-569) |#4|) NIL) ((|#4| $ (-569)) 16)) (-3040 ((|#4| $ $) NIL (|has| |#4| (-1057)))) (-3848 (($ (-1275 |#4|)) NIL)) (-2377 (((-134)) NIL (|has| |#4| (-367)))) (-3517 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1057))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))))) (-3560 (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#4|) $) NIL) (((-867) $) NIL) (($ |#4|) NIL (|has| |#4| (-1108))) (($ (-569)) NIL (-2776 (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108))) (|has| |#4| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))) (-2721 (((-776)) NIL (|has| |#4| (-1057)) CONST)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#4| (-853)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) CONST)) (-2832 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1057))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2944 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3035 (($ $ |#4|) NIL (|has| |#4| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057))))) (($ $ (-927)) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (* (($ |#2| $) 18) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-731))) (($ |#4| $) NIL (|has| |#4| (-731))) (($ $ $) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-252 |#1| |#2| |#3| |#4|) (-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|)) (-927) (-1057) (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-653 |#2|)) (T -252))
NIL
(-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-4230 (($ (-927)) NIL (|has| |#3| (-1055)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-3217 (($ $ $) NIL (|has| |#3| (-798)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-3470 (((-776)) NIL (|has| |#3| (-372)))) (-2552 (((-569) $) NIL (|has| |#3| (-853)))) (-3940 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1106))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))) (-3148 ((|#3| $) NIL (|has| |#3| (-1106))) (((-569) $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))) (-1630 (((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) NIL (|has| |#3| (-1055))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1055))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))))) (-2888 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-3403 (($) NIL (|has| |#3| (-372)))) (-3843 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#3| $ (-569)) NIL)) (-4237 (((-112) $) NIL (|has| |#3| (-853)))) (-2880 (((-649 |#3|) $) NIL (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL (-2774 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-4327 (((-112) $) NIL (|has| |#3| (-853)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3040 (((-649 |#3|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3831 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#3| |#3|) $) NIL)) (-2855 (((-927) $) NIL (|has| |#3| (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#3| (-372)))) (-3545 (((-1126) $) NIL)) (-3510 ((|#3| $) NIL (|has| (-569) (-855)))) (-4420 (($ $ |#3|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106))))) (-3851 (((-649 |#3|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) 15)) (-3990 ((|#3| $ $) NIL (|has| |#3| (-1055)))) (-3845 (($ (-1273 |#3|)) NIL)) (-3083 (((-134)) NIL (|has| |#3| (-367)))) (-3514 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))))) (-3558 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-1273 |#3|) $) NIL) (((-867) $) NIL) (($ |#3|) NIL (|has| |#3| (-1106))) (($ (-569)) NIL (-2774 (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106))))) (-3302 (((-776)) NIL (|has| |#3| (-1055)) CONST)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444)))) (-3070 (($ $) NIL (|has| |#3| (-853)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL (-2774 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) CONST)) (-2830 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))))) (-2976 (((-112) $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2954 (((-112) $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2942 (((-112) $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3032 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2774 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055))))) (($ $ (-927)) NIL (-2774 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (* (($ |#2| $) 17) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ $ $) NIL (-2774 (-12 (|has| |#3| (-234)) (|has| |#3| (-1055))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-253 |#1| |#2| |#3|) (-13 (-239 |#1| |#3|) (-653 |#2|)) (-776) (-1055) (-653 |#2|)) (T -253))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3636 (($ (-927)) NIL (|has| |#3| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#3| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#3| (-372)))) (-2919 (((-569) $) NIL (|has| |#3| (-853)))) (-3943 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1108))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))) (-3150 ((|#3| $) NIL (|has| |#3| (-1108))) (((-569) $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))) (-2957 (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) NIL (|has| |#3| (-1057))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (-3406 (($) NIL (|has| |#3| (-372)))) (-3846 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#3| $ (-569)) NIL)) (-3712 (((-112) $) NIL (|has| |#3| (-853)))) (-2882 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (-2051 (((-112) $) NIL (|has| |#3| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2009 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3834 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#3| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#3| (-372)))) (-3547 (((-1128) $) NIL)) (-3513 ((|#3| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#3|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-4199 (((-649 |#3|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) 15)) (-3040 ((|#3| $ $) NIL (|has| |#3| (-1057)))) (-3848 (($ (-1275 |#3|)) NIL)) (-2377 (((-134)) NIL (|has| |#3| (-367)))) (-3517 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))))) (-3560 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#3|) $) NIL) (((-867) $) NIL) (($ |#3|) NIL (|has| |#3| (-1108))) (($ (-569)) NIL (-2776 (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))) (-2721 (((-776)) NIL (|has| |#3| (-1057)) CONST)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#3| (-853)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) CONST)) (-2832 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2944 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3035 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057))))) (($ $ (-927)) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (* (($ |#2| $) 17) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ $ $) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-253 |#1| |#2| |#3|) (-13 (-239 |#1| |#3|) (-653 |#2|)) (-776) (-1057) (-653 |#2|)) (T -253))
NIL
(-13 (-239 |#1| |#3|) (-653 |#2|))
-((-3993 (((-649 (-776)) $) 56) (((-649 (-776)) $ |#3|) 59)) (-1458 (((-776) $) 58) (((-776) $ |#3|) 61)) (-3765 (($ $) 76)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3110 (((-776) $ |#3|) 43) (((-776) $) 38)) (-1546 (((-1 $ (-776)) |#3|) 15) (((-1 $ (-776)) $) 88)) (-3149 ((|#4| $) 69)) (-3876 (((-112) $) 67)) (-1508 (($ $) 75)) (-1723 (($ $ (-649 (-297 $))) 114) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-649 |#3|) (-649 |#2|)) 100)) (-3514 (($ $ |#4|) NIL) (($ $ (-649 |#4|)) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) NIL) (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4107 (((-649 |#3|) $) 86)) (-3868 ((|#5| $) NIL) (((-776) $ |#4|) NIL) (((-649 (-776)) $ (-649 |#4|)) NIL) (((-776) $ |#3|) 49)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-412 (-569))) NIL) (($ $) NIL)))
-(((-254 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -1723 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#3| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#3| |#1|)) (-15 -1546 ((-1 |#1| (-776)) |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -3149 (|#4| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -1458 ((-776) |#1| |#3|)) (-15 -3993 ((-649 (-776)) |#1| |#3|)) (-15 -1458 ((-776) |#1|)) (-15 -3993 ((-649 (-776)) |#1|)) (-15 -3868 ((-776) |#1| |#3|)) (-15 -3110 ((-776) |#1|)) (-15 -3110 ((-776) |#1| |#3|)) (-15 -4107 ((-649 |#3|) |#1|)) (-15 -1546 ((-1 |#1| (-776)) |#3|)) (-15 -3793 (|#1| |#3|)) (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -3868 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -3868 ((-776) |#1| |#4|)) (-15 -3793 (|#1| |#4|)) (-15 -4378 ((-3 |#4| "failed") |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#4| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#4| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3868 (|#5| |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3514 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3514 (|#1| |#1| |#4| (-776))) (-15 -3514 (|#1| |#1| (-649 |#4|))) (-15 -3514 (|#1| |#1| |#4|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-255 |#2| |#3| |#4| |#5|) (-1055) (-855) (-268 |#3|) (-798)) (T -254))
-NIL
-(-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -1723 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#3| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#3| |#1|)) (-15 -1546 ((-1 |#1| (-776)) |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -3149 (|#4| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -1458 ((-776) |#1| |#3|)) (-15 -3993 ((-649 (-776)) |#1| |#3|)) (-15 -1458 ((-776) |#1|)) (-15 -3993 ((-649 (-776)) |#1|)) (-15 -3868 ((-776) |#1| |#3|)) (-15 -3110 ((-776) |#1|)) (-15 -3110 ((-776) |#1| |#3|)) (-15 -4107 ((-649 |#3|) |#1|)) (-15 -1546 ((-1 |#1| (-776)) |#3|)) (-15 -3793 (|#1| |#3|)) (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -3868 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -3868 ((-776) |#1| |#4|)) (-15 -3793 (|#1| |#4|)) (-15 -4378 ((-3 |#4| "failed") |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#4| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#4| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3868 (|#5| |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3514 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3514 (|#1| |#1| |#4| (-776))) (-15 -3514 (|#1| |#1| (-649 |#4|))) (-15 -3514 (|#1| |#1| |#4|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3993 (((-649 (-776)) $) 216) (((-649 (-776)) $ |#2|) 214)) (-1458 (((-776) $) 215) (((-776) $ |#2|) 213)) (-1710 (((-649 |#3|) $) 112)) (-3763 (((-1179 $) $ |#3|) 127) (((-1179 |#1|) $) 126)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-3087 (($ $) 90 (|has| |#1| (-561)))) (-2883 (((-112) $) 92 (|has| |#1| (-561)))) (-3605 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-1678 (((-3 $ "failed") $ $) 20)) (-3253 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-2078 (($ $) 100 (|has| |#1| (-457)))) (-2508 (((-423 $) $) 99 (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-3765 (($ $) 209)) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3148 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) ((|#3| $) 139) ((|#2| $) 224)) (-4202 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1879 (($ $) 156)) (-1630 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-2888 (((-3 $ "failed") $) 37)) (-4260 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1863 (((-649 $) $) 111)) (-4073 (((-112) $) 98 (|has| |#1| (-915)))) (-3972 (($ $ |#1| |#4| $) 174)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3110 (((-776) $ |#2|) 219) (((-776) $) 218)) (-2623 (((-112) $) 35)) (-3238 (((-776) $) 171)) (-1697 (($ (-1179 |#1|) |#3|) 119) (($ (-1179 $) |#3|) 118)) (-2518 (((-649 $) $) 128)) (-4343 (((-112) $) 154)) (-3920 (($ |#1| |#4|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |#3|) 122)) (-3712 ((|#4| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-4059 (($ (-1 |#4| |#4|) $) 173)) (-1344 (($ (-1 |#1| |#1|) $) 153)) (-1546 (((-1 $ (-776)) |#2|) 221) (((-1 $ (-776)) $) 208 (|has| |#1| (-234)))) (-3397 (((-3 |#3| "failed") $) 125)) (-1846 (($ $) 151)) (-1855 ((|#1| $) 150)) (-3149 ((|#3| $) 211)) (-1835 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-1550 (((-1165) $) 10)) (-3876 (((-112) $) 212)) (-2753 (((-3 (-649 $) "failed") $) 116)) (-2633 (((-3 (-649 $) "failed") $) 117)) (-2865 (((-3 (-2 (|:| |var| |#3|) (|:| -4320 (-776))) "failed") $) 115)) (-1508 (($ $) 210)) (-3545 (((-1126) $) 11)) (-1824 (((-112) $) 168)) (-1833 ((|#1| $) 169)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1864 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3796 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2405 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) 206 (|has| |#1| (-234))) (($ $ |#2| |#1|) 205 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) 204 (|has| |#1| (-234)))) (-4304 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3514 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43) (($ $) 240 (|has| |#1| (-234))) (($ $ (-776)) 238 (|has| |#1| (-234))) (($ $ (-1183)) 236 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 235 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 234 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 233 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4107 (((-649 |#2|) $) 220)) (-3868 ((|#4| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131) (((-776) $ |#2|) 217)) (-1408 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1756 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-412 (-569))) 80 (-2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) 170)) (-4184 ((|#1| $ |#4|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-4030 (((-3 $ "failed") $) 81 (-2774 (-1756 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) 32 T CONST)) (-3877 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39) (($ $) 239 (|has| |#1| (-234))) (($ $ (-776)) 237 (|has| |#1| (-234))) (($ $ (-1183)) 232 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 231 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 230 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 229 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-255 |#1| |#2| |#3| |#4|) (-140) (-1055) (-855) (-268 |t#2|) (-798)) (T -255))
-((-1546 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4)))) (-3110 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3868 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-1458 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-798)) (-4 *2 (-268 *4)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-3765 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-1546 (*1 *2 *1) (-12 (-4 *3 (-234)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6)))))
-(-13 (-955 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1044 |t#2|) (-10 -8 (-15 -1546 ((-1 $ (-776)) |t#2|)) (-15 -4107 ((-649 |t#2|) $)) (-15 -3110 ((-776) $ |t#2|)) (-15 -3110 ((-776) $)) (-15 -3868 ((-776) $ |t#2|)) (-15 -3993 ((-649 (-776)) $)) (-15 -1458 ((-776) $)) (-15 -3993 ((-649 (-776)) $ |t#2|)) (-15 -1458 ((-776) $ |t#2|)) (-15 -3876 ((-112) $)) (-15 -3149 (|t#3| $)) (-15 -1508 ($ $)) (-15 -3765 ($ $)) (IF (|has| |t#1| (-234)) (PROGN (-6 (-519 |t#2| |t#1|)) (-6 (-519 |t#2| $)) (-6 (-312 $)) (-15 -1546 ((-1 $ (-776)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#2|) . T) ((-621 |#3|) . T) ((-621 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-293) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#4|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2774 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#2| |#1|) |has| |#1| (-234)) ((-519 |#2| $) |has| |#1| (-234)) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#4| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1044 |#2|) . T) ((-1044 |#3|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) |has| |#1| (-915)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3579 ((|#1| $) 55)) (-3307 ((|#1| $) 45)) (-2716 (((-112) $ (-776)) 8)) (-4188 (($) 7 T CONST)) (-4078 (($ $) 61)) (-4380 (($ $) 49)) (-3529 ((|#1| |#1| $) 47)) (-3410 ((|#1| $) 46)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-3842 (((-776) $) 62)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3331 ((|#1| |#1| $) 53)) (-3210 ((|#1| |#1| $) 52)) (-3813 (($ |#1| $) 41)) (-1425 (((-776) $) 56)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3992 ((|#1| $) 63)) (-3090 ((|#1| $) 51)) (-4226 ((|#1| $) 50)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3010 ((|#1| |#1| $) 59)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-4174 ((|#1| $) 60)) (-3693 (($) 58) (($ (-649 |#1|)) 57)) (-2802 (((-776) $) 44)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3455 ((|#1| $) 54)) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3898 ((|#1| $) 64)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-256 |#1|) (-140) (-1223)) (T -256))
-((-3693 (*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-256 *3)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3331 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3210 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))) (-4380 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
-(-13 (-1127 |t#1|) (-1001 |t#1|) (-10 -8 (-15 -3693 ($)) (-15 -3693 ($ (-649 |t#1|))) (-15 -1425 ((-776) $)) (-15 -3579 (|t#1| $)) (-15 -3455 (|t#1| $)) (-15 -3331 (|t#1| |t#1| $)) (-15 -3210 (|t#1| |t#1| $)) (-15 -3090 (|t#1| $)) (-15 -4226 (|t#1| $)) (-15 -4380 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1001 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1127 |#1|) . T) ((-1223) . T))
-((-2498 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 153)) (-1418 (((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383))) 173) (((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 171) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 176) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 172) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 164) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 163) (((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383))) 145) (((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265))) 143) (((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383))) 144) (((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265))) 141)) (-1368 (((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383))) 175) (((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 174) (((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 178) (((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 177) (((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383))) 166) (((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 165) (((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383))) 151) (((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265))) 150) (((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383))) 149) (((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265))) 148) (((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383))) 113) (((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265))) 112) (((-1274) (-1 (-226) (-226)) (-1100 (-383))) 107) (((-1274) (-1 (-226) (-226)) (-1100 (-383)) (-649 (-265))) 105)))
-(((-257) (-10 -7 (-15 -1368 ((-1274) (-1 (-226) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) (-1 (-226) (-226)) (-1100 (-383)))) (-15 -1368 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1368 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1368 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1368 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -2498 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -257))
-((-2498 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *2 (-1274)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *2 (-1274)) (-5 *1 (-257)))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257)))))
-(-10 -7 (-15 -1368 ((-1274) (-1 (-226) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) (-1 (-226) (-226)) (-1100 (-383)))) (-15 -1368 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) (-883 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1368 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-885 (-1 (-226) (-226))) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226)) (-1100 (-383)))) (-15 -1368 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-383)) (-1100 (-383)))) (-15 -1368 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -1418 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1100 (-383)) (-1100 (-383)))) (-15 -2498 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
-((-1368 (((-1274) (-297 |#2|) (-1183) (-1183) (-649 (-265))) 101)))
-(((-258 |#1| |#2|) (-10 -7 (-15 -1368 ((-1274) (-297 |#2|) (-1183) (-1183) (-649 (-265))))) (-13 (-561) (-855) (-1044 (-569))) (-435 |#1|)) (T -258))
-((-1368 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-1183)) (-5 *5 (-649 (-265))) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1044 (-569)))) (-5 *2 (-1274)) (-5 *1 (-258 *6 *7)))))
-(-10 -7 (-15 -1368 ((-1274) (-297 |#2|) (-1183) (-1183) (-649 (-265)))))
-((-2845 (((-569) (-569)) 73)) (-2956 (((-569) (-569)) 74)) (-1894 (((-226) (-226)) 75)) (-2727 (((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226))) 72)) (-2607 (((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)) (-112)) 70)))
-(((-259) (-10 -7 (-15 -2607 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)) (-112))) (-15 -2727 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -2845 ((-569) (-569))) (-15 -2956 ((-569) (-569))) (-15 -1894 ((-226) (-226))))) (T -259))
-((-1894 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259)))) (-2956 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-2845 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-2727 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226))) (-5 *2 (-1275)) (-5 *1 (-259)))) (-2607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226))) (-5 *5 (-112)) (-5 *2 (-1275)) (-5 *1 (-259)))))
-(-10 -7 (-15 -2607 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)) (-112))) (-15 -2727 ((-1275) (-1 (-170 (-226)) (-170 (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -2845 ((-569) (-569))) (-15 -2956 ((-569) (-569))) (-15 -1894 ((-226) (-226))))
-((-3793 (((-1098 (-383)) (-1098 (-319 |#1|))) 16)))
-(((-260 |#1|) (-10 -7 (-15 -3793 ((-1098 (-383)) (-1098 (-319 |#1|))))) (-13 (-855) (-561) (-619 (-383)))) (T -260))
-((-3793 (*1 *2 *3) (-12 (-5 *3 (-1098 (-319 *4))) (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1098 (-383))) (-5 *1 (-260 *4)))))
-(-10 -7 (-15 -3793 ((-1098 (-383)) (-1098 (-319 |#1|)))))
-((-1418 (((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383))) 75) (((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 74) (((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383))) 65) (((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 64) (((-1139 (-226)) (-885 |#1|) (-1098 (-383))) 56) (((-1139 (-226)) (-885 |#1|) (-1098 (-383)) (-649 (-265))) 55)) (-1368 (((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383))) 78) (((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 77) (((-1275) |#1| (-1098 (-383)) (-1098 (-383))) 68) (((-1275) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265))) 67) (((-1275) (-885 |#1|) (-1098 (-383))) 60) (((-1275) (-885 |#1|) (-1098 (-383)) (-649 (-265))) 59) (((-1274) (-883 |#1|) (-1098 (-383))) 47) (((-1274) (-883 |#1|) (-1098 (-383)) (-649 (-265))) 46) (((-1274) |#1| (-1098 (-383))) 38) (((-1274) |#1| (-1098 (-383)) (-649 (-265))) 36)))
-(((-261 |#1|) (-10 -7 (-15 -1368 ((-1274) |#1| (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) |#1| (-1098 (-383)))) (-15 -1368 ((-1274) (-883 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) (-883 |#1|) (-1098 (-383)))) (-15 -1368 ((-1275) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-885 |#1|) (-1098 (-383)))) (-15 -1418 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)))) (-15 -1368 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1418 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1368 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)))) (-15 -1418 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383))))) (-13 (-619 (-541)) (-1106))) (T -261))
-((-1418 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *5)))) (-1418 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *6)))) (-1368 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *5)))) (-1368 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *6)))) (-1418 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1418 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1368 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1275)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1368 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1418 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *5)))) (-1418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *6)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *5)))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275)) (-5 *1 (-261 *6)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1098 (-383))) (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274)) (-5 *1 (-261 *5)))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274)) (-5 *1 (-261 *6)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1274)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))) (-1368 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106))))))
-(-10 -7 (-15 -1368 ((-1274) |#1| (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) |#1| (-1098 (-383)))) (-15 -1368 ((-1274) (-883 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1274) (-883 |#1|) (-1098 (-383)))) (-15 -1368 ((-1275) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-885 |#1|) (-1098 (-383)))) (-15 -1418 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-885 |#1|) (-1098 (-383)))) (-15 -1368 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1418 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) |#1| (-1098 (-383)) (-1098 (-383)))) (-15 -1368 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1368 ((-1275) (-888 |#1|) (-1098 (-383)) (-1098 (-383)))) (-15 -1418 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)) (-649 (-265)))) (-15 -1418 ((-1139 (-226)) (-888 |#1|) (-1098 (-383)) (-1098 (-383)))))
-((-1368 (((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265))) 23) (((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226))) 24) (((-1274) (-649 (-949 (-226))) (-649 (-265))) 16) (((-1274) (-649 (-949 (-226)))) 17) (((-1274) (-649 (-226)) (-649 (-226)) (-649 (-265))) 20) (((-1274) (-649 (-226)) (-649 (-226))) 21)))
-(((-262) (-10 -7 (-15 -1368 ((-1274) (-649 (-226)) (-649 (-226)))) (-15 -1368 ((-1274) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1368 ((-1274) (-649 (-949 (-226))))) (-15 -1368 ((-1274) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1368 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1368 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265)))))) (T -262))
-((-1368 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-262)))) (-1368 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275)) (-5 *1 (-262)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1368 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-262)))) (-1368 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1274)) (-5 *1 (-262)))))
-(-10 -7 (-15 -1368 ((-1274) (-649 (-226)) (-649 (-226)))) (-15 -1368 ((-1274) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1368 ((-1274) (-649 (-949 (-226))))) (-15 -1368 ((-1274) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1368 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1368 ((-1275) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265)))))
-((-2164 (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 25)) (-3998 (((-927) (-649 (-265)) (-927)) 52)) (-3895 (((-927) (-649 (-265)) (-927)) 51)) (-3154 (((-649 (-383)) (-649 (-265)) (-649 (-383))) 68)) (-4330 (((-383) (-649 (-265)) (-383)) 57)) (-4222 (((-927) (-649 (-265)) (-927)) 53)) (-1651 (((-112) (-649 (-265)) (-112)) 27)) (-3328 (((-1165) (-649 (-265)) (-1165)) 19)) (-1525 (((-1165) (-649 (-265)) (-1165)) 26)) (-4093 (((-1139 (-226)) (-649 (-265))) 46)) (-1454 (((-649 (-1100 (-383))) (-649 (-265)) (-649 (-1100 (-383)))) 40)) (-1777 (((-879) (-649 (-265)) (-879)) 32)) (-3780 (((-879) (-649 (-265)) (-879)) 33)) (-2742 (((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226)))) 63)) (-1393 (((-112) (-649 (-265)) (-112)) 14)) (-2084 (((-112) (-649 (-265)) (-112)) 13)))
-(((-263) (-10 -7 (-15 -2084 ((-112) (-649 (-265)) (-112))) (-15 -1393 ((-112) (-649 (-265)) (-112))) (-15 -2164 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3328 ((-1165) (-649 (-265)) (-1165))) (-15 -1525 ((-1165) (-649 (-265)) (-1165))) (-15 -1651 ((-112) (-649 (-265)) (-112))) (-15 -1777 ((-879) (-649 (-265)) (-879))) (-15 -3780 ((-879) (-649 (-265)) (-879))) (-15 -1454 ((-649 (-1100 (-383))) (-649 (-265)) (-649 (-1100 (-383))))) (-15 -3895 ((-927) (-649 (-265)) (-927))) (-15 -3998 ((-927) (-649 (-265)) (-927))) (-15 -4093 ((-1139 (-226)) (-649 (-265)))) (-15 -4222 ((-927) (-649 (-265)) (-927))) (-15 -4330 ((-383) (-649 (-265)) (-383))) (-15 -2742 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3154 ((-649 (-383)) (-649 (-265)) (-649 (-383)))))) (T -263))
-((-3154 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-383))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-2742 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-4330 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-4222 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-263)))) (-3998 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3895 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1454 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3780 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1777 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1651 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1525 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3328 (*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-2164 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1393 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-2084 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
-(-10 -7 (-15 -2084 ((-112) (-649 (-265)) (-112))) (-15 -1393 ((-112) (-649 (-265)) (-112))) (-15 -2164 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3328 ((-1165) (-649 (-265)) (-1165))) (-15 -1525 ((-1165) (-649 (-265)) (-1165))) (-15 -1651 ((-112) (-649 (-265)) (-112))) (-15 -1777 ((-879) (-649 (-265)) (-879))) (-15 -3780 ((-879) (-649 (-265)) (-879))) (-15 -1454 ((-649 (-1100 (-383))) (-649 (-265)) (-649 (-1100 (-383))))) (-15 -3895 ((-927) (-649 (-265)) (-927))) (-15 -3998 ((-927) (-649 (-265)) (-927))) (-15 -4093 ((-1139 (-226)) (-649 (-265)))) (-15 -4222 ((-927) (-649 (-265)) (-927))) (-15 -4330 ((-383) (-649 (-265)) (-383))) (-15 -2742 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3154 ((-649 (-383)) (-649 (-265)) (-649 (-383)))))
-((-1592 (((-3 |#1| "failed") (-649 (-265)) (-1183)) 17)))
-(((-264 |#1|) (-10 -7 (-15 -1592 ((-3 |#1| "failed") (-649 (-265)) (-1183)))) (-1223)) (T -264))
-((-1592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *1 (-264 *2)) (-4 *2 (-1223)))))
-(-10 -7 (-15 -1592 ((-3 |#1| "failed") (-649 (-265)) (-1183))))
-((-2415 (((-112) $ $) NIL)) (-2164 (($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 24)) (-3998 (($ (-927)) 81)) (-3895 (($ (-927)) 80)) (-1934 (($ (-649 (-383))) 87)) (-4330 (($ (-383)) 66)) (-4222 (($ (-927)) 82)) (-1651 (($ (-112)) 33)) (-3328 (($ (-1165)) 28)) (-1525 (($ (-1165)) 29)) (-4093 (($ (-1139 (-226))) 76)) (-1454 (($ (-649 (-1100 (-383)))) 72)) (-2080 (($ (-649 (-1100 (-383)))) 68) (($ (-649 (-1100 (-412 (-569))))) 71)) (-2370 (($ (-383)) 38) (($ (-879)) 42)) (-1983 (((-112) (-649 $) (-1183)) 100)) (-1592 (((-3 (-52) "failed") (-649 $) (-1183)) 102)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2276 (($ (-383)) 43) (($ (-879)) 44)) (-2960 (($ (-1 (-949 (-226)) (-949 (-226)))) 65)) (-2742 (($ (-1 (-949 (-226)) (-949 (-226)))) 83)) (-2176 (($ (-1 (-226) (-226))) 48) (($ (-1 (-226) (-226) (-226))) 52) (($ (-1 (-226) (-226) (-226) (-226))) 56)) (-3793 (((-867) $) 93)) (-4411 (($ (-112)) 34) (($ (-649 (-1100 (-383)))) 60)) (-1441 (((-112) $ $) NIL)) (-2084 (($ (-112)) 35)) (-2919 (((-112) $ $) 97)))
-(((-265) (-13 (-1106) (-10 -8 (-15 -2084 ($ (-112))) (-15 -4411 ($ (-112))) (-15 -2164 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3328 ($ (-1165))) (-15 -1525 ($ (-1165))) (-15 -1651 ($ (-112))) (-15 -4411 ($ (-649 (-1100 (-383))))) (-15 -2960 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2370 ($ (-383))) (-15 -2370 ($ (-879))) (-15 -2276 ($ (-383))) (-15 -2276 ($ (-879))) (-15 -2176 ($ (-1 (-226) (-226)))) (-15 -2176 ($ (-1 (-226) (-226) (-226)))) (-15 -2176 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -4330 ($ (-383))) (-15 -2080 ($ (-649 (-1100 (-383))))) (-15 -2080 ($ (-649 (-1100 (-412 (-569)))))) (-15 -1454 ($ (-649 (-1100 (-383))))) (-15 -4093 ($ (-1139 (-226)))) (-15 -3895 ($ (-927))) (-15 -3998 ($ (-927))) (-15 -4222 ($ (-927))) (-15 -2742 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1934 ($ (-649 (-383)))) (-15 -1592 ((-3 (-52) "failed") (-649 $) (-1183))) (-15 -1983 ((-112) (-649 $) (-1183)))))) (T -265))
-((-2084 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-4411 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-265)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-4411 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-412 (-569))))) (-5 *1 (-265)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-265)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3998 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-4222 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-2742 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265)))) (-1592 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-52)) (-5 *1 (-265)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-112)) (-5 *1 (-265)))))
-(-13 (-1106) (-10 -8 (-15 -2084 ($ (-112))) (-15 -4411 ($ (-112))) (-15 -2164 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3328 ($ (-1165))) (-15 -1525 ($ (-1165))) (-15 -1651 ($ (-112))) (-15 -4411 ($ (-649 (-1100 (-383))))) (-15 -2960 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2370 ($ (-383))) (-15 -2370 ($ (-879))) (-15 -2276 ($ (-383))) (-15 -2276 ($ (-879))) (-15 -2176 ($ (-1 (-226) (-226)))) (-15 -2176 ($ (-1 (-226) (-226) (-226)))) (-15 -2176 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -4330 ($ (-383))) (-15 -2080 ($ (-649 (-1100 (-383))))) (-15 -2080 ($ (-649 (-1100 (-412 (-569)))))) (-15 -1454 ($ (-649 (-1100 (-383))))) (-15 -4093 ($ (-1139 (-226)))) (-15 -3895 ($ (-927))) (-15 -3998 ($ (-927))) (-15 -4222 ($ (-927))) (-15 -2742 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1934 ($ (-649 (-383)))) (-15 -1592 ((-3 (-52) "failed") (-649 $) (-1183))) (-15 -1983 ((-112) (-649 $) (-1183)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3993 (((-649 (-776)) $) NIL) (((-649 (-776)) $ |#2|) NIL)) (-1458 (((-776) $) NIL) (((-776) $ |#2|) NIL)) (-1710 (((-649 |#3|) $) NIL)) (-3763 (((-1179 $) $ |#3|) NIL) (((-1179 |#1|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 |#3|)) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3765 (($ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1131 |#1| |#2|) "failed") $) 23)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1131 |#1| |#2|) $) NIL)) (-4202 (($ $ $ |#3|) NIL (|has| |#1| (-173)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-536 |#3|) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))))) (-3110 (((-776) $ |#2|) NIL) (((-776) $) 10)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-1697 (($ (-1179 |#1|) |#3|) NIL) (($ (-1179 $) |#3|) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |#3|) NIL)) (-3712 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL)) (-4059 (($ (-1 (-536 |#3|) (-536 |#3|)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1546 (((-1 $ (-776)) |#2|) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-3397 (((-3 |#3| "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-3149 ((|#3| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-3876 (((-112) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| |#3|) (|:| -4320 (-776))) "failed") $) NIL)) (-1508 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-649 |#3|) (-649 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) NIL (|has| |#1| (-234))) (($ $ |#2| |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-4304 (($ $ |#3|) NIL (|has| |#1| (-173)))) (-3514 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4107 (((-649 |#2|) $) NIL)) (-3868 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL) (((-776) $ |#2|) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))))) (-3479 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1131 |#1| |#2|)) 32) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-266 |#1| |#2| |#3|) (-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1044 (-1131 |#1| |#2|))) (-1055) (-855) (-268 |#2|)) (T -266))
-NIL
-(-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1044 (-1131 |#1| |#2|)))
-((-1458 (((-776) $) 37)) (-4378 (((-3 |#2| "failed") $) 22)) (-3148 ((|#2| $) 33)) (-3514 (($ $) 14) (($ $ (-776)) 18)) (-3793 (((-867) $) 32) (($ |#2|) 11)) (-2919 (((-112) $ $) 26)) (-2942 (((-112) $ $) 36)))
-(((-267 |#1| |#2|) (-10 -8 (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -1458 ((-776) |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|))) (-268 |#2|) (-855)) (T -267))
-NIL
-(-10 -8 (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -1458 ((-776) |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-1458 (((-776) $) 23)) (-2671 ((|#1| $) 24)) (-4378 (((-3 |#1| "failed") $) 28)) (-3148 ((|#1| $) 29)) (-3110 (((-776) $) 25)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1546 (($ |#1| (-776)) 26)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3514 (($ $) 22) (($ $ (-776)) 21)) (-3793 (((-867) $) 12) (($ |#1|) 27)) (-1441 (((-112) $ $) 9)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)))
+((-3072 (((-649 (-776)) $) 56) (((-649 (-776)) $ |#3|) 59)) (-3766 (((-776) $) 58) (((-776) $ |#3|) 61)) (-1590 (($ $) 76)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1466 (((-776) $ |#3|) 43) (((-776) $) 38)) (-3389 (((-1 $ (-776)) |#3|) 15) (((-1 $ (-776)) $) 88)) (-3152 ((|#4| $) 69)) (-3173 (((-112) $) 67)) (-1510 (($ $) 75)) (-1725 (($ $ (-649 (-297 $))) 114) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-649 |#3|) (-649 |#2|)) 100)) (-3517 (($ $ |#4|) NIL) (($ $ (-649 |#4|)) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) NIL) (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1848 (((-649 |#3|) $) 86)) (-4339 ((|#5| $) NIL) (((-776) $ |#4|) NIL) (((-649 (-776)) $ (-649 |#4|)) NIL) (((-776) $ |#3|) 49)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-412 (-569))) NIL) (($ $) NIL)))
+(((-254 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#3| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#3| |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#1|)) (-15 -1590 (|#1| |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -3766 ((-776) |#1| |#3|)) (-15 -3072 ((-649 (-776)) |#1| |#3|)) (-15 -3766 ((-776) |#1|)) (-15 -3072 ((-649 (-776)) |#1|)) (-15 -4339 ((-776) |#1| |#3|)) (-15 -1466 ((-776) |#1|)) (-15 -1466 ((-776) |#1| |#3|)) (-15 -1848 ((-649 |#3|) |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#3|)) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -4339 ((-776) |#1| |#4|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 (|#5| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#4| (-776))) (-15 -3517 (|#1| |#1| (-649 |#4|))) (-15 -3517 (|#1| |#1| |#4|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-255 |#2| |#3| |#4| |#5|) (-1057) (-855) (-268 |#3|) (-798)) (T -254))
+NIL
+(-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#3| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#3| |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#1|)) (-15 -1590 (|#1| |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -3766 ((-776) |#1| |#3|)) (-15 -3072 ((-649 (-776)) |#1| |#3|)) (-15 -3766 ((-776) |#1|)) (-15 -3072 ((-649 (-776)) |#1|)) (-15 -4339 ((-776) |#1| |#3|)) (-15 -1466 ((-776) |#1|)) (-15 -1466 ((-776) |#1| |#3|)) (-15 -1848 ((-649 |#3|) |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#3|)) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -4339 ((-776) |#1| |#4|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 (|#5| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#4| (-776))) (-15 -3517 (|#1| |#1| (-649 |#4|))) (-15 -3517 (|#1| |#1| |#4|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3072 (((-649 (-776)) $) 216) (((-649 (-776)) $ |#2|) 214)) (-3766 (((-776) $) 215) (((-776) $ |#2|) 213)) (-1712 (((-649 |#3|) $) 112)) (-3767 (((-1181 $) $ |#3|) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-1590 (($ $) 209)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) ((|#3| $) 139) ((|#2| $) 224)) (-3346 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1883 (($ $) 156)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-2870 (($ $ |#1| |#4| $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ |#2|) 219) (((-776) $) 218)) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-1700 (($ (-1181 |#1|) |#3|) 119) (($ (-1181 $) |#3|) 118)) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| |#4|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 122)) (-2272 ((|#4| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-2492 (($ (-1 |#4| |#4|) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-3389 (((-1 $ (-776)) |#2|) 221) (((-1 $ (-776)) $) 208 (|has| |#1| (-234)))) (-2306 (((-3 |#3| "failed") $) 125)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150)) (-3152 ((|#3| $) 211)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3435 (((-1167) $) 10)) (-3173 (((-112) $) 212)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) 115)) (-1510 (($ $) 210)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) 206 (|has| |#1| (-234))) (($ $ |#2| |#1|) 205 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) 204 (|has| |#1| (-234)))) (-3059 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3517 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43) (($ $) 240 (|has| |#1| (-234))) (($ $ (-776)) 238 (|has| |#1| (-234))) (($ $ (-1185)) 236 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 235 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 234 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 233 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1848 (((-649 |#2|) $) 220)) (-4339 ((|#4| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131) (((-776) $ |#2|) 217)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ |#4|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39) (($ $) 239 (|has| |#1| (-234))) (($ $ (-776)) 237 (|has| |#1| (-234))) (($ $ (-1185)) 232 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 231 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 230 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 229 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-255 |#1| |#2| |#3| |#4|) (-140) (-1057) (-855) (-268 |t#2|) (-798)) (T -255))
+((-3389 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4)))) (-1466 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-4339 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-798)) (-4 *2 (-268 *4)))) (-1510 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-1590 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-3389 (*1 *2 *1) (-12 (-4 *3 (-234)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6)))))
+(-13 (-955 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1046 |t#2|) (-10 -8 (-15 -3389 ((-1 $ (-776)) |t#2|)) (-15 -1848 ((-649 |t#2|) $)) (-15 -1466 ((-776) $ |t#2|)) (-15 -1466 ((-776) $)) (-15 -4339 ((-776) $ |t#2|)) (-15 -3072 ((-649 (-776)) $)) (-15 -3766 ((-776) $)) (-15 -3072 ((-649 (-776)) $ |t#2|)) (-15 -3766 ((-776) $ |t#2|)) (-15 -3173 ((-112) $)) (-15 -3152 (|t#3| $)) (-15 -1510 ($ $)) (-15 -1590 ($ $)) (IF (|has| |t#1| (-234)) (PROGN (-6 (-519 |t#2| |t#1|)) (-6 (-519 |t#2| $)) (-6 (-312 $)) (-15 -3389 ((-1 $ (-776)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#2|) . T) ((-621 |#3|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#4|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#2| |#1|) |has| |#1| (-234)) ((-519 |#2| $) |has| |#1| (-234)) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#4| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1046 |#2|) . T) ((-1046 |#3|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) |has| |#1| (-915)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3464 ((|#1| $) 55)) (-3310 ((|#1| $) 45)) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-1529 (($ $) 61)) (-2507 (($ $) 49)) (-4235 ((|#1| |#1| $) 47)) (-2412 ((|#1| $) 46)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3845 (((-776) $) 62)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-2969 ((|#1| |#1| $) 53)) (-4319 ((|#1| |#1| $) 52)) (-3894 (($ |#1| $) 41)) (-1427 (((-776) $) 56)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3064 ((|#1| $) 63)) (-4374 ((|#1| $) 51)) (-3592 ((|#1| $) 50)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-2928 ((|#1| |#1| $) 59)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-4295 ((|#1| $) 60)) (-2109 (($) 58) (($ (-649 |#1|)) 57)) (-2804 (((-776) $) 44)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1693 ((|#1| $) 54)) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-3417 ((|#1| $) 64)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-256 |#1|) (-140) (-1225)) (T -256))
+((-2109 (*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-256 *3)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-2969 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-4319 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-2507 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
+(-13 (-1129 |t#1|) (-1003 |t#1|) (-10 -8 (-15 -2109 ($)) (-15 -2109 ($ (-649 |t#1|))) (-15 -1427 ((-776) $)) (-15 -3464 (|t#1| $)) (-15 -1693 (|t#1| $)) (-15 -2969 (|t#1| |t#1| $)) (-15 -4319 (|t#1| |t#1| $)) (-15 -4374 (|t#1| $)) (-15 -3592 (|t#1| $)) (-15 -2507 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1003 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1129 |#1|) . T) ((-1225) . T))
+((-3670 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 153)) (-1420 (((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383))) 173) (((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 171) (((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 176) (((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 172) (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 164) (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 163) (((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383))) 145) (((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265))) 143) (((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383))) 144) (((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265))) 141)) (-1370 (((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383))) 175) (((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 174) (((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 178) (((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 177) (((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 166) (((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 165) (((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383))) 151) (((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265))) 150) (((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383))) 149) (((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265))) 148) (((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383))) 113) (((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265))) 112) (((-1276) (-1 (-226) (-226)) (-1102 (-383))) 107) (((-1276) (-1 (-226) (-226)) (-1102 (-383)) (-649 (-265))) 105)))
+(((-257) (-10 -7 (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -3670 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -257))
+((-3670 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1276)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1276)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257)))))
+(-10 -7 (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -3670 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
+((-1370 (((-1276) (-297 |#2|) (-1185) (-1185) (-649 (-265))) 101)))
+(((-258 |#1| |#2|) (-10 -7 (-15 -1370 ((-1276) (-297 |#2|) (-1185) (-1185) (-649 (-265))))) (-13 (-561) (-855) (-1046 (-569))) (-435 |#1|)) (T -258))
+((-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-1185)) (-5 *5 (-649 (-265))) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1046 (-569)))) (-5 *2 (-1276)) (-5 *1 (-258 *6 *7)))))
+(-10 -7 (-15 -1370 ((-1276) (-297 |#2|) (-1185) (-1185) (-649 (-265)))))
+((-2609 (((-569) (-569)) 73)) (-3668 (((-569) (-569)) 74)) (-3601 (((-226) (-226)) 75)) (-4017 (((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226))) 72)) (-2214 (((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)) (-112)) 70)))
+(((-259) (-10 -7 (-15 -2214 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)) (-112))) (-15 -4017 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -2609 ((-569) (-569))) (-15 -3668 ((-569) (-569))) (-15 -3601 ((-226) (-226))))) (T -259))
+((-3601 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259)))) (-3668 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-4017 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226))) (-5 *2 (-1277)) (-5 *1 (-259)))) (-2214 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226))) (-5 *5 (-112)) (-5 *2 (-1277)) (-5 *1 (-259)))))
+(-10 -7 (-15 -2214 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)) (-112))) (-15 -4017 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -2609 ((-569) (-569))) (-15 -3668 ((-569) (-569))) (-15 -3601 ((-226) (-226))))
+((-3796 (((-1100 (-383)) (-1100 (-319 |#1|))) 16)))
+(((-260 |#1|) (-10 -7 (-15 -3796 ((-1100 (-383)) (-1100 (-319 |#1|))))) (-13 (-855) (-561) (-619 (-383)))) (T -260))
+((-3796 (*1 *2 *3) (-12 (-5 *3 (-1100 (-319 *4))) (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1100 (-383))) (-5 *1 (-260 *4)))))
+(-10 -7 (-15 -3796 ((-1100 (-383)) (-1100 (-319 |#1|)))))
+((-1420 (((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383))) 75) (((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 74) (((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383))) 65) (((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 64) (((-1141 (-226)) (-885 |#1|) (-1100 (-383))) 56) (((-1141 (-226)) (-885 |#1|) (-1100 (-383)) (-649 (-265))) 55)) (-1370 (((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383))) 78) (((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 77) (((-1277) |#1| (-1100 (-383)) (-1100 (-383))) 68) (((-1277) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 67) (((-1277) (-885 |#1|) (-1100 (-383))) 60) (((-1277) (-885 |#1|) (-1100 (-383)) (-649 (-265))) 59) (((-1276) (-883 |#1|) (-1100 (-383))) 47) (((-1276) (-883 |#1|) (-1100 (-383)) (-649 (-265))) 46) (((-1276) |#1| (-1100 (-383))) 38) (((-1276) |#1| (-1100 (-383)) (-649 (-265))) 36)))
+(((-261 |#1|) (-10 -7 (-15 -1370 ((-1276) |#1| (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) |#1| (-1100 (-383)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383))))) (-13 (-619 (-541)) (-1108))) (T -261))
+((-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *5)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *5)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *6)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1277)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *5)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *5)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276)) (-5 *1 (-261 *5)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276)) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1276)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))))
+(-10 -7 (-15 -1370 ((-1276) |#1| (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) |#1| (-1100 (-383)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383)))))
+((-1370 (((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265))) 23) (((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226))) 24) (((-1276) (-649 (-949 (-226))) (-649 (-265))) 16) (((-1276) (-649 (-949 (-226)))) 17) (((-1276) (-649 (-226)) (-649 (-226)) (-649 (-265))) 20) (((-1276) (-649 (-226)) (-649 (-226))) 21)))
+(((-262) (-10 -7 (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1370 ((-1276) (-649 (-949 (-226))))) (-15 -1370 ((-1276) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265)))))) (T -262))
+((-1370 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1277)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1276)) (-5 *1 (-262)))))
+(-10 -7 (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1370 ((-1276) (-649 (-949 (-226))))) (-15 -1370 ((-1276) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265)))))
+((-3352 (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 25)) (-3130 (((-927) (-649 (-265)) (-927)) 52)) (-3378 (((-927) (-649 (-265)) (-927)) 51)) (-3157 (((-649 (-383)) (-649 (-265)) (-649 (-383))) 68)) (-2070 (((-383) (-649 (-265)) (-383)) 57)) (-3542 (((-927) (-649 (-265)) (-927)) 53)) (-1965 (((-112) (-649 (-265)) (-112)) 27)) (-3331 (((-1167) (-649 (-265)) (-1167)) 19)) (-3148 (((-1167) (-649 (-265)) (-1167)) 26)) (-1695 (((-1141 (-226)) (-649 (-265))) 46)) (-3725 (((-649 (-1102 (-383))) (-649 (-265)) (-649 (-1102 (-383)))) 40)) (-3782 (((-879) (-649 (-265)) (-879)) 32)) (-1743 (((-879) (-649 (-265)) (-879)) 33)) (-4145 (((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226)))) 63)) (-3916 (((-112) (-649 (-265)) (-112)) 14)) (-3788 (((-112) (-649 (-265)) (-112)) 13)))
+(((-263) (-10 -7 (-15 -3788 ((-112) (-649 (-265)) (-112))) (-15 -3916 ((-112) (-649 (-265)) (-112))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ((-1167) (-649 (-265)) (-1167))) (-15 -3148 ((-1167) (-649 (-265)) (-1167))) (-15 -1965 ((-112) (-649 (-265)) (-112))) (-15 -3782 ((-879) (-649 (-265)) (-879))) (-15 -1743 ((-879) (-649 (-265)) (-879))) (-15 -3725 ((-649 (-1102 (-383))) (-649 (-265)) (-649 (-1102 (-383))))) (-15 -3378 ((-927) (-649 (-265)) (-927))) (-15 -3130 ((-927) (-649 (-265)) (-927))) (-15 -1695 ((-1141 (-226)) (-649 (-265)))) (-15 -3542 ((-927) (-649 (-265)) (-927))) (-15 -2070 ((-383) (-649 (-265)) (-383))) (-15 -4145 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3157 ((-649 (-383)) (-649 (-265)) (-649 (-383)))))) (T -263))
+((-3157 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-383))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-4145 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-2070 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3542 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-263)))) (-3130 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3378 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3725 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1743 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1965 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3148 (*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3331 (*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3352 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3916 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3788 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
+(-10 -7 (-15 -3788 ((-112) (-649 (-265)) (-112))) (-15 -3916 ((-112) (-649 (-265)) (-112))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ((-1167) (-649 (-265)) (-1167))) (-15 -3148 ((-1167) (-649 (-265)) (-1167))) (-15 -1965 ((-112) (-649 (-265)) (-112))) (-15 -3782 ((-879) (-649 (-265)) (-879))) (-15 -1743 ((-879) (-649 (-265)) (-879))) (-15 -3725 ((-649 (-1102 (-383))) (-649 (-265)) (-649 (-1102 (-383))))) (-15 -3378 ((-927) (-649 (-265)) (-927))) (-15 -3130 ((-927) (-649 (-265)) (-927))) (-15 -1695 ((-1141 (-226)) (-649 (-265)))) (-15 -3542 ((-927) (-649 (-265)) (-927))) (-15 -2070 ((-383) (-649 (-265)) (-383))) (-15 -4145 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3157 ((-649 (-383)) (-649 (-265)) (-649 (-383)))))
+((-1594 (((-3 |#1| "failed") (-649 (-265)) (-1185)) 17)))
+(((-264 |#1|) (-10 -7 (-15 -1594 ((-3 |#1| "failed") (-649 (-265)) (-1185)))) (-1225)) (T -264))
+((-1594 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *1 (-264 *2)) (-4 *2 (-1225)))))
+(-10 -7 (-15 -1594 ((-3 |#1| "failed") (-649 (-265)) (-1185))))
+((-2417 (((-112) $ $) NIL)) (-3352 (($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 24)) (-3130 (($ (-927)) 81)) (-3378 (($ (-927)) 80)) (-2736 (($ (-649 (-383))) 87)) (-2070 (($ (-383)) 66)) (-3542 (($ (-927)) 82)) (-1965 (($ (-112)) 33)) (-3331 (($ (-1167)) 28)) (-3148 (($ (-1167)) 29)) (-1695 (($ (-1141 (-226))) 76)) (-3725 (($ (-649 (-1102 (-383)))) 72)) (-3743 (($ (-649 (-1102 (-383)))) 68) (($ (-649 (-1102 (-412 (-569))))) 71)) (-1790 (($ (-383)) 38) (($ (-879)) 42)) (-2057 (((-112) (-649 $) (-1185)) 100)) (-1594 (((-3 (-52) "failed") (-649 $) (-1185)) 102)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2024 (($ (-383)) 43) (($ (-879)) 44)) (-2415 (($ (-1 (-949 (-226)) (-949 (-226)))) 65)) (-4145 (($ (-1 (-949 (-226)) (-949 (-226)))) 83)) (-3480 (($ (-1 (-226) (-226))) 48) (($ (-1 (-226) (-226) (-226))) 52) (($ (-1 (-226) (-226) (-226) (-226))) 56)) (-3796 (((-867) $) 93)) (-1592 (($ (-112)) 34) (($ (-649 (-1102 (-383)))) 60)) (-1520 (((-112) $ $) NIL)) (-3788 (($ (-112)) 35)) (-2920 (((-112) $ $) 97)))
+(((-265) (-13 (-1108) (-10 -8 (-15 -3788 ($ (-112))) (-15 -1592 ($ (-112))) (-15 -3352 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ($ (-1167))) (-15 -3148 ($ (-1167))) (-15 -1965 ($ (-112))) (-15 -1592 ($ (-649 (-1102 (-383))))) (-15 -2415 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1790 ($ (-383))) (-15 -1790 ($ (-879))) (-15 -2024 ($ (-383))) (-15 -2024 ($ (-879))) (-15 -3480 ($ (-1 (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -2070 ($ (-383))) (-15 -3743 ($ (-649 (-1102 (-383))))) (-15 -3743 ($ (-649 (-1102 (-412 (-569)))))) (-15 -3725 ($ (-649 (-1102 (-383))))) (-15 -1695 ($ (-1141 (-226)))) (-15 -3378 ($ (-927))) (-15 -3130 ($ (-927))) (-15 -3542 ($ (-927))) (-15 -4145 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2736 ($ (-649 (-383)))) (-15 -1594 ((-3 (-52) "failed") (-649 $) (-1185))) (-15 -2057 ((-112) (-649 $) (-1185)))))) (T -265))
+((-3788 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-3352 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-265)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265)))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) (-2415 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265)))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265)))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-412 (-569))))) (-5 *1 (-265)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-265)))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3130 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-2736 (*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265)))) (-1594 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-52)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-112)) (-5 *1 (-265)))))
+(-13 (-1108) (-10 -8 (-15 -3788 ($ (-112))) (-15 -1592 ($ (-112))) (-15 -3352 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ($ (-1167))) (-15 -3148 ($ (-1167))) (-15 -1965 ($ (-112))) (-15 -1592 ($ (-649 (-1102 (-383))))) (-15 -2415 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1790 ($ (-383))) (-15 -1790 ($ (-879))) (-15 -2024 ($ (-383))) (-15 -2024 ($ (-879))) (-15 -3480 ($ (-1 (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -2070 ($ (-383))) (-15 -3743 ($ (-649 (-1102 (-383))))) (-15 -3743 ($ (-649 (-1102 (-412 (-569)))))) (-15 -3725 ($ (-649 (-1102 (-383))))) (-15 -1695 ($ (-1141 (-226)))) (-15 -3378 ($ (-927))) (-15 -3130 ($ (-927))) (-15 -3542 ($ (-927))) (-15 -4145 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2736 ($ (-649 (-383)))) (-15 -1594 ((-3 (-52) "failed") (-649 $) (-1185))) (-15 -2057 ((-112) (-649 $) (-1185)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3072 (((-649 (-776)) $) NIL) (((-649 (-776)) $ |#2|) NIL)) (-3766 (((-776) $) NIL) (((-776) $ |#2|) NIL)) (-1712 (((-649 |#3|) $) NIL)) (-3767 (((-1181 $) $ |#3|) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 |#3|)) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1590 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1133 |#1| |#2|) "failed") $) 23)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1133 |#1| |#2|) $) NIL)) (-3346 (($ $ $ |#3|) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 |#3|) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))))) (-1466 (((-776) $ |#2|) NIL) (((-776) $) 10)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) |#3|) NIL) (($ (-1181 $) |#3|) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) NIL)) (-2272 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL)) (-2492 (($ (-1 (-536 |#3|) (-536 |#3|)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3389 (((-1 $ (-776)) |#2|) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-2306 (((-3 |#3| "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3152 ((|#3| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-3173 (((-112) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) NIL)) (-1510 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-649 |#3|) (-649 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) NIL (|has| |#1| (-234))) (($ $ |#2| |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-3059 (($ $ |#3|) NIL (|has| |#1| (-173)))) (-3517 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1848 (((-649 |#2|) $) NIL)) (-4339 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL) (((-776) $ |#2|) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1133 |#1| |#2|)) 32) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-266 |#1| |#2| |#3|) (-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1046 (-1133 |#1| |#2|))) (-1057) (-855) (-268 |#2|)) (T -266))
+NIL
+(-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1046 (-1133 |#1| |#2|)))
+((-3766 (((-776) $) 37)) (-4381 (((-3 |#2| "failed") $) 22)) (-3150 ((|#2| $) 33)) (-3517 (($ $) 14) (($ $ (-776)) 18)) (-3796 (((-867) $) 32) (($ |#2|) 11)) (-2920 (((-112) $ $) 26)) (-2944 (((-112) $ $) 36)))
+(((-267 |#1| |#2|) (-10 -8 (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -3766 ((-776) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-268 |#2|) (-855)) (T -267))
+NIL
+(-10 -8 (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -3766 ((-776) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-3766 (((-776) $) 23)) (-2672 ((|#1| $) 24)) (-4381 (((-3 |#1| "failed") $) 28)) (-3150 ((|#1| $) 29)) (-1466 (((-776) $) 25)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3389 (($ |#1| (-776)) 26)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $) 22) (($ $ (-776)) 21)) (-3796 (((-867) $) 12) (($ |#1|) 27)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)))
(((-268 |#1|) (-140) (-855)) (T -268))
-((-3793 (*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-1546 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3514 (*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855)))))
-(-13 (-855) (-1044 |t#1|) (-10 -8 (-15 -1546 ($ |t#1| (-776))) (-15 -3110 ((-776) $)) (-15 -2671 (|t#1| $)) (-15 -1458 ((-776) $)) (-15 -3514 ($ $)) (-15 -3514 ($ $ (-776))) (-15 -3793 ($ |t#1|))))
-(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-855) . T) ((-1044 |#1|) . T) ((-1106) . T))
-((-1710 (((-649 (-1183)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 54)) (-3102 (((-649 (-1183)) (-319 (-226)) (-776)) 96)) (-1800 (((-3 (-319 (-226)) "failed") (-319 (-226))) 64)) (-3781 (((-319 (-226)) (-319 (-226))) 82)) (-1706 (((-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 39)) (-3873 (((-112) (-649 (-319 (-226)))) 106)) (-4179 (((-112) (-319 (-226))) 37)) (-4339 (((-649 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))))) 134)) (-4111 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 110)) (-4036 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 108)) (-3948 (((-694 (-226)) (-649 (-319 (-226))) (-776)) 122)) (-2722 (((-112) (-319 (-226))) 32) (((-112) (-649 (-319 (-226)))) 107)) (-1641 (((-649 (-226)) (-649 (-848 (-226))) (-226)) 15)) (-3625 (((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 128)) (-4259 (((-1041) (-1183) (-1041)) 47)))
-(((-269) (-10 -7 (-15 -1641 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -1706 ((-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -1800 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -3781 ((-319 (-226)) (-319 (-226)))) (-15 -3873 ((-112) (-649 (-319 (-226))))) (-15 -2722 ((-112) (-649 (-319 (-226))))) (-15 -2722 ((-112) (-319 (-226)))) (-15 -3948 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -4036 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4111 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4179 ((-112) (-319 (-226)))) (-15 -1710 ((-649 (-1183)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -3102 ((-649 (-1183)) (-319 (-226)) (-776))) (-15 -4259 ((-1041) (-1183) (-1041))) (-15 -3625 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -4339 ((-649 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))))))) (T -269))
-((-4339 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))))) (-5 *2 (-649 (-1165))) (-5 *1 (-269)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) (-5 *2 (-383)) (-5 *1 (-269)))) (-4259 (*1 *2 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-269)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1183))) (-5 *1 (-269)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) (-5 *2 (-649 (-1183))) (-5 *1 (-269)))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-4111 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-269)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-1800 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-269)))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4)) (-5 *1 (-269)))))
-(-10 -7 (-15 -1641 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -1706 ((-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -1800 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -3781 ((-319 (-226)) (-319 (-226)))) (-15 -3873 ((-112) (-649 (-319 (-226))))) (-15 -2722 ((-112) (-649 (-319 (-226))))) (-15 -2722 ((-112) (-319 (-226)))) (-15 -3948 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -4036 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4111 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4179 ((-112) (-319 (-226)))) (-15 -1710 ((-649 (-1183)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -3102 ((-649 (-1183)) (-319 (-226)) (-776))) (-15 -4259 ((-1041) (-1183) (-1041))) (-15 -3625 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -4339 ((-649 (-1165)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))))))
-((-2415 (((-112) $ $) NIL)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 56)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-3796 (*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3389 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855)))))
+(-13 (-855) (-1046 |t#1|) (-10 -8 (-15 -3389 ($ |t#1| (-776))) (-15 -1466 ((-776) $)) (-15 -2672 (|t#1| $)) (-15 -3766 ((-776) $)) (-15 -3517 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -3796 ($ |t#1|))))
+(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-855) . T) ((-1046 |#1|) . T) ((-1108) . T))
+((-1712 (((-649 (-1185)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 54)) (-3105 (((-649 (-1185)) (-319 (-226)) (-776)) 96)) (-3980 (((-3 (-319 (-226)) "failed") (-319 (-226))) 64)) (-1755 (((-319 (-226)) (-319 (-226))) 82)) (-4378 (((-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 39)) (-4376 (((-112) (-649 (-319 (-226)))) 106)) (-4344 (((-112) (-319 (-226))) 37)) (-2159 (((-649 (-1167)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) 134)) (-1890 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 110)) (-2289 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 108)) (-2613 (((-694 (-226)) (-649 (-319 (-226))) (-776)) 122)) (-3968 (((-112) (-319 (-226))) 32) (((-112) (-649 (-319 (-226)))) 107)) (-1888 (((-649 (-226)) (-649 (-848 (-226))) (-226)) 15)) (-2640 (((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 128)) (-2631 (((-1043) (-1185) (-1043)) 47)))
+(((-269) (-10 -7 (-15 -1888 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -4378 ((-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3980 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -1755 ((-319 (-226)) (-319 (-226)))) (-15 -4376 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-319 (-226)))) (-15 -2613 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -2289 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -1890 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4344 ((-112) (-319 (-226)))) (-15 -1712 ((-649 (-1185)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3105 ((-649 (-1185)) (-319 (-226)) (-776))) (-15 -2631 ((-1043) (-1185) (-1043))) (-15 -2640 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2159 ((-649 (-1167)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))))))) (T -269))
+((-2159 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) (-5 *2 (-649 (-1167))) (-5 *1 (-269)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-383)) (-5 *1 (-269)))) (-2631 (*1 *2 *3 *2) (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-269)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1185))) (-5 *1 (-269)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-649 (-1185))) (-5 *1 (-269)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-269)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1755 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-3980 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-4378 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-269)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4)) (-5 *1 (-269)))))
+(-10 -7 (-15 -1888 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -4378 ((-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3980 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -1755 ((-319 (-226)) (-319 (-226)))) (-15 -4376 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-319 (-226)))) (-15 -2613 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -2289 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -1890 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4344 ((-112) (-319 (-226)))) (-15 -1712 ((-649 (-1185)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3105 ((-649 (-1185)) (-319 (-226)) (-776))) (-15 -2631 ((-1043) (-1185) (-1043))) (-15 -2640 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2159 ((-649 (-1167)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))))))
+((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 56)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-270) (-844)) (T -270))
NIL
(-844)
-((-2415 (((-112) $ $) NIL)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 72) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 63)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 41) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 43)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 72) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 63)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 41) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 43)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-271) (-844)) (T -271))
NIL
(-844)
-((-2415 (((-112) $ $) NIL)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 90) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 85)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 52) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 65)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 90) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 85)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 52) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 65)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-272) (-844)) (T -272))
NIL
(-844)
-((-2415 (((-112) $ $) NIL)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 73)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 45) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 73)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 45) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-273) (-844)) (T -273))
NIL
(-844)
-((-2415 (((-112) $ $) NIL)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 65)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 31) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 65)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 31) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-274) (-844)) (T -274))
NIL
(-844)
-((-2415 (((-112) $ $) NIL)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 90)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 33) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 90)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 33) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-275) (-844)) (T -275))
NIL
(-844)
-((-2415 (((-112) $ $) NIL)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 87)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 87)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
(((-276) (-844)) (T -276))
NIL
(-844)
-((-2415 (((-112) $ $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3261 (((-649 (-569)) $) 29)) (-3868 (((-776) $) 27)) (-3793 (((-867) $) 36) (($ (-649 (-569))) 23)) (-1441 (((-112) $ $) NIL)) (-3185 (($ (-776)) 33)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 9)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 17)))
-(((-277) (-13 (-855) (-10 -8 (-15 -3793 ($ (-649 (-569)))) (-15 -3868 ((-776) $)) (-15 -3261 ((-649 (-569)) $)) (-15 -3185 ($ (-776)))))) (T -277))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
-(-13 (-855) (-10 -8 (-15 -3793 ($ (-649 (-569)))) (-15 -3868 ((-776) $)) (-15 -3261 ((-649 (-569)) $)) (-15 -3185 ($ (-776)))))
-((-2769 ((|#2| |#2|) 77)) (-2624 ((|#2| |#2|) 65)) (-4354 (((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2744 ((|#2| |#2|) 75)) (-2600 ((|#2| |#2|) 63)) (-4114 ((|#2| |#2|) 79)) (-2645 ((|#2| |#2|) 67)) (-1310 ((|#2|) 46)) (-3743 (((-114) (-114)) 100)) (-2660 ((|#2| |#2|) 61)) (-3223 (((-112) |#2|) 147)) (-1475 ((|#2| |#2|) 195)) (-2664 ((|#2| |#2|) 171)) (-3461 ((|#2|) 59)) (-3370 ((|#2|) 58)) (-2434 ((|#2| |#2|) 191)) (-3760 ((|#2| |#2|) 167)) (-1688 ((|#2| |#2|) 199)) (-2871 ((|#2| |#2|) 175)) (-3668 ((|#2| |#2|) 163)) (-3562 ((|#2| |#2|) 165)) (-1797 ((|#2| |#2|) 201)) (-2973 ((|#2| |#2|) 177)) (-1588 ((|#2| |#2|) 197)) (-2770 ((|#2| |#2|) 173)) (-1349 ((|#2| |#2|) 193)) (-2558 ((|#2| |#2|) 169)) (-3983 ((|#2| |#2|) 207)) (-2083 ((|#2| |#2|) 183)) (-1890 ((|#2| |#2|) 203)) (-3075 ((|#2| |#2|) 179)) (-4166 ((|#2| |#2|) 211)) (-2260 ((|#2| |#2|) 187)) (-4256 ((|#2| |#2|) 213)) (-2346 ((|#2| |#2|) 189)) (-4068 ((|#2| |#2|) 209)) (-2174 ((|#2| |#2|) 185)) (-3891 ((|#2| |#2|) 205)) (-1988 ((|#2| |#2|) 181)) (-4386 ((|#2| |#2|) 62)) (-4124 ((|#2| |#2|) 80)) (-2659 ((|#2| |#2|) 68)) (-2781 ((|#2| |#2|) 78)) (-2632 ((|#2| |#2|) 66)) (-2756 ((|#2| |#2|) 76)) (-2609 ((|#2| |#2|) 64)) (-4142 (((-112) (-114)) 98)) (-4161 ((|#2| |#2|) 83)) (-2699 ((|#2| |#2|) 71)) (-4133 ((|#2| |#2|) 81)) (-2673 ((|#2| |#2|) 69)) (-4182 ((|#2| |#2|) 85)) (-2721 ((|#2| |#2|) 73)) (-1501 ((|#2| |#2|) 86)) (-2732 ((|#2| |#2|) 74)) (-4170 ((|#2| |#2|) 84)) (-2710 ((|#2| |#2|) 72)) (-4147 ((|#2| |#2|) 82)) (-2687 ((|#2| |#2|) 70)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -4386 (|#2| |#2|)) (-15 -2660 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2624 (|#2| |#2|)) (-15 -2632 (|#2| |#2|)) (-15 -2645 (|#2| |#2|)) (-15 -2659 (|#2| |#2|)) (-15 -2673 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -2756 (|#2| |#2|)) (-15 -2769 (|#2| |#2|)) (-15 -2781 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4133 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -1501 (|#2| |#2|)) (-15 -1310 (|#2|)) (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3370 (|#2|)) (-15 -3461 (|#2|)) (-15 -3562 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -2770 (|#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -3075 (|#2| |#2|)) (-15 -1988 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1797 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -4354 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3223 ((-112) |#2|))) (-561) (-13 (-435 |#1|) (-1008))) (T -278))
-((-3223 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) (-4 *3 (-13 (-435 *4) (-1008))))) (-4354 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-435 *4) (-1008))) (-4 *4 (-561)) (-5 *1 (-278 *4 *2)))) (-4256 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-1797 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2083 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-1988 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-3075 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2973 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2871 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2770 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2558 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-3461 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-3370 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4)) (-4 *4 (-13 (-435 *3) (-1008))))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008))))) (-1310 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4133 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2781 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2756 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2721 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2673 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2659 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2645 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2600 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008))))))
-(-10 -7 (-15 -4386 (|#2| |#2|)) (-15 -2660 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2624 (|#2| |#2|)) (-15 -2632 (|#2| |#2|)) (-15 -2645 (|#2| |#2|)) (-15 -2659 (|#2| |#2|)) (-15 -2673 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -2756 (|#2| |#2|)) (-15 -2769 (|#2| |#2|)) (-15 -2781 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4133 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -1501 (|#2| |#2|)) (-15 -1310 (|#2|)) (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3370 (|#2|)) (-15 -3461 (|#2|)) (-15 -3562 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -2770 (|#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -2973 (|#2| |#2|)) (-15 -3075 (|#2| |#2|)) (-15 -1988 (|#2| |#2|)) (-15 -2083 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1797 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -4354 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3223 ((-112) |#2|)))
-((-3557 (((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1183)) 153)) (-3755 ((|#2| (-412 (-569)) |#2|) 49)) (-3663 ((|#2| |#2| (-617 |#2|)) 146)) (-3335 (((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1183)) 145)) (-3447 ((|#2| |#2| (-1183)) 20) ((|#2| |#2|) 23)) (-2385 ((|#2| |#2| (-1183)) 159) ((|#2| |#2|) 157)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -2385 (|#2| |#2|)) (-15 -2385 (|#2| |#2| (-1183))) (-15 -3335 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1183))) (-15 -3447 (|#2| |#2|)) (-15 -3447 (|#2| |#2| (-1183))) (-15 -3557 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1183))) (-15 -3663 (|#2| |#2| (-617 |#2|))) (-15 -3755 (|#2| (-412 (-569)) |#2|))) (-13 (-561) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -279))
-((-3755 (*1 *2 *3 *2) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-3663 (*1 *2 *2 *3) (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)))) (-3557 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1183)) (-4 *2 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *5 *2)))) (-3447 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-3335 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3))) (|:| |vals| (-649 *3)))) (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-2385 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
-(-10 -7 (-15 -2385 (|#2| |#2|)) (-15 -2385 (|#2| |#2| (-1183))) (-15 -3335 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1183))) (-15 -3447 (|#2| |#2|)) (-15 -3447 (|#2| |#2| (-1183))) (-15 -3557 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1183))) (-15 -3663 (|#2| |#2| (-617 |#2|))) (-15 -3755 (|#2| (-412 (-569)) |#2|)))
-((-1822 (((-3 |#3| "failed") |#3|) 120)) (-2769 ((|#3| |#3|) 142)) (-2012 (((-3 |#3| "failed") |#3|) 89)) (-2624 ((|#3| |#3|) 132)) (-1662 (((-3 |#3| "failed") |#3|) 65)) (-2744 ((|#3| |#3|) 140)) (-3035 (((-3 |#3| "failed") |#3|) 53)) (-2600 ((|#3| |#3|) 130)) (-2396 (((-3 |#3| "failed") |#3|) 122)) (-4114 ((|#3| |#3|) 144)) (-2168 (((-3 |#3| "failed") |#3|) 91)) (-2645 ((|#3| |#3|) 134)) (-2754 (((-3 |#3| "failed") |#3| (-776)) 41)) (-2945 (((-3 |#3| "failed") |#3|) 81)) (-2660 ((|#3| |#3|) 129)) (-2856 (((-3 |#3| "failed") |#3|) 51)) (-4386 ((|#3| |#3|) 128)) (-2485 (((-3 |#3| "failed") |#3|) 123)) (-4124 ((|#3| |#3|) 145)) (-2245 (((-3 |#3| "failed") |#3|) 92)) (-2659 ((|#3| |#3|) 135)) (-3805 (((-3 |#3| "failed") |#3|) 121)) (-2781 ((|#3| |#3|) 143)) (-2092 (((-3 |#3| "failed") |#3|) 90)) (-2632 ((|#3| |#3|) 133)) (-1735 (((-3 |#3| "failed") |#3|) 67)) (-2756 ((|#3| |#3|) 141)) (-1939 (((-3 |#3| "failed") |#3|) 55)) (-2609 ((|#3| |#3|) 131)) (-1603 (((-3 |#3| "failed") |#3|) 73)) (-4161 ((|#3| |#3|) 148)) (-4422 (((-3 |#3| "failed") |#3|) 114)) (-2699 ((|#3| |#3|) 152)) (-1417 (((-3 |#3| "failed") |#3|) 69)) (-4133 ((|#3| |#3|) 146)) (-2323 (((-3 |#3| "failed") |#3|) 57)) (-2673 ((|#3| |#3|) 136)) (-1638 (((-3 |#3| "failed") |#3|) 77)) (-4182 ((|#3| |#3|) 150)) (-1480 (((-3 |#3| "failed") |#3|) 61)) (-2721 ((|#3| |#3|) 138)) (-1731 (((-3 |#3| "failed") |#3|) 79)) (-1501 ((|#3| |#3|) 151)) (-1568 (((-3 |#3| "failed") |#3|) 63)) (-2732 ((|#3| |#3|) 139)) (-1703 (((-3 |#3| "failed") |#3|) 75)) (-4170 ((|#3| |#3|) 149)) (-1381 (((-3 |#3| "failed") |#3|) 117)) (-2710 ((|#3| |#3|) 153)) (-1500 (((-3 |#3| "failed") |#3|) 71)) (-4147 ((|#3| |#3|) 147)) (-2399 (((-3 |#3| "failed") |#3|) 59)) (-2687 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-412 (-569))) 47 (|has| |#1| (-367)))))
-(((-280 |#1| |#2| |#3|) (-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4386 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2600 (|#3| |#3|)) (-15 -2609 (|#3| |#3|)) (-15 -2624 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -2645 (|#3| |#3|)) (-15 -2659 (|#3| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2687 (|#3| |#3|)) (-15 -2699 (|#3| |#3|)) (-15 -2710 (|#3| |#3|)) (-15 -2721 (|#3| |#3|)) (-15 -2732 (|#3| |#3|)) (-15 -2744 (|#3| |#3|)) (-15 -2756 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2781 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4170 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)))) (-38 (-412 (-569))) (-1264 |#1|) (-1235 |#1| |#2|)) (T -280))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1264 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1235 *4 *5)))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2600 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2645 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2659 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2673 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2721 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2756 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-2781 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4133 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4)))))
-(-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4386 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2600 (|#3| |#3|)) (-15 -2609 (|#3| |#3|)) (-15 -2624 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -2645 (|#3| |#3|)) (-15 -2659 (|#3| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2687 (|#3| |#3|)) (-15 -2699 (|#3| |#3|)) (-15 -2710 (|#3| |#3|)) (-15 -2721 (|#3| |#3|)) (-15 -2732 (|#3| |#3|)) (-15 -2744 (|#3| |#3|)) (-15 -2756 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2781 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4170 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -1501 (|#3| |#3|))))
-((-1822 (((-3 |#3| "failed") |#3|) 70)) (-2769 ((|#3| |#3|) 137)) (-2012 (((-3 |#3| "failed") |#3|) 54)) (-2624 ((|#3| |#3|) 125)) (-1662 (((-3 |#3| "failed") |#3|) 66)) (-2744 ((|#3| |#3|) 135)) (-3035 (((-3 |#3| "failed") |#3|) 50)) (-2600 ((|#3| |#3|) 123)) (-2396 (((-3 |#3| "failed") |#3|) 74)) (-4114 ((|#3| |#3|) 139)) (-2168 (((-3 |#3| "failed") |#3|) 58)) (-2645 ((|#3| |#3|) 127)) (-2754 (((-3 |#3| "failed") |#3| (-776)) 38)) (-2945 (((-3 |#3| "failed") |#3|) 48)) (-2660 ((|#3| |#3|) 111)) (-2856 (((-3 |#3| "failed") |#3|) 46)) (-4386 ((|#3| |#3|) 122)) (-2485 (((-3 |#3| "failed") |#3|) 76)) (-4124 ((|#3| |#3|) 140)) (-2245 (((-3 |#3| "failed") |#3|) 60)) (-2659 ((|#3| |#3|) 128)) (-3805 (((-3 |#3| "failed") |#3|) 72)) (-2781 ((|#3| |#3|) 138)) (-2092 (((-3 |#3| "failed") |#3|) 56)) (-2632 ((|#3| |#3|) 126)) (-1735 (((-3 |#3| "failed") |#3|) 68)) (-2756 ((|#3| |#3|) 136)) (-1939 (((-3 |#3| "failed") |#3|) 52)) (-2609 ((|#3| |#3|) 124)) (-1603 (((-3 |#3| "failed") |#3|) 78)) (-4161 ((|#3| |#3|) 143)) (-4422 (((-3 |#3| "failed") |#3|) 62)) (-2699 ((|#3| |#3|) 131)) (-1417 (((-3 |#3| "failed") |#3|) 112)) (-4133 ((|#3| |#3|) 141)) (-2323 (((-3 |#3| "failed") |#3|) 100)) (-2673 ((|#3| |#3|) 129)) (-1638 (((-3 |#3| "failed") |#3|) 116)) (-4182 ((|#3| |#3|) 145)) (-1480 (((-3 |#3| "failed") |#3|) 107)) (-2721 ((|#3| |#3|) 133)) (-1731 (((-3 |#3| "failed") |#3|) 117)) (-1501 ((|#3| |#3|) 146)) (-1568 (((-3 |#3| "failed") |#3|) 109)) (-2732 ((|#3| |#3|) 134)) (-1703 (((-3 |#3| "failed") |#3|) 80)) (-4170 ((|#3| |#3|) 144)) (-1381 (((-3 |#3| "failed") |#3|) 64)) (-2710 ((|#3| |#3|) 132)) (-1500 (((-3 |#3| "failed") |#3|) 113)) (-4147 ((|#3| |#3|) 142)) (-2399 (((-3 |#3| "failed") |#3|) 103)) (-2687 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-412 (-569))) 44 (|has| |#1| (-367)))))
-(((-281 |#1| |#2| |#3| |#4|) (-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4386 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2600 (|#3| |#3|)) (-15 -2609 (|#3| |#3|)) (-15 -2624 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -2645 (|#3| |#3|)) (-15 -2659 (|#3| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2687 (|#3| |#3|)) (-15 -2699 (|#3| |#3|)) (-15 -2710 (|#3| |#3|)) (-15 -2721 (|#3| |#3|)) (-15 -2732 (|#3| |#3|)) (-15 -2744 (|#3| |#3|)) (-15 -2756 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2781 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4170 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)))) (-38 (-412 (-569))) (-1233 |#1|) (-1256 |#1| |#2|) (-989 |#2|)) (T -281))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1233 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1256 *4 *5)) (-4 *6 (-989 *5)))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2660 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2600 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2645 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2659 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2673 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2721 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2756 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-2781 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4133 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4)))))
-(-13 (-989 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4386 (|#3| |#3|)) (-15 -2660 (|#3| |#3|)) (-15 -2600 (|#3| |#3|)) (-15 -2609 (|#3| |#3|)) (-15 -2624 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -2645 (|#3| |#3|)) (-15 -2659 (|#3| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2687 (|#3| |#3|)) (-15 -2699 (|#3| |#3|)) (-15 -2710 (|#3| |#3|)) (-15 -2721 (|#3| |#3|)) (-15 -2732 (|#3| |#3|)) (-15 -2744 (|#3| |#3|)) (-15 -2756 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2781 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4170 (|#3| |#3|)) (-15 -4182 (|#3| |#3|)) (-15 -1501 (|#3| |#3|))))
-((-2764 (((-112) $) 20)) (-2028 (((-1188) $) 7)) (-2588 (((-3 (-511) "failed") $) 14)) (-3789 (((-3 (-649 $) "failed") $) NIL)) (-2655 (((-3 (-511) "failed") $) 21)) (-2878 (((-3 (-1110) "failed") $) 18)) (-4141 (((-112) $) 16)) (-3793 (((-867) $) NIL)) (-2549 (((-112) $) 9)))
-(((-282) (-13 (-618 (-867)) (-10 -8 (-15 -2028 ((-1188) $)) (-15 -4141 ((-112) $)) (-15 -2878 ((-3 (-1110) "failed") $)) (-15 -2764 ((-112) $)) (-15 -2655 ((-3 (-511) "failed") $)) (-15 -2549 ((-112) $)) (-15 -2588 ((-3 (-511) "failed") $)) (-15 -3789 ((-3 (-649 $) "failed") $))))) (T -282))
-((-2028 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-282)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2878 (*1 *2 *1) (|partial| -12 (-5 *2 (-1110)) (-5 *1 (-282)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2655 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-2549 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2588 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-3789 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -2028 ((-1188) $)) (-15 -4141 ((-112) $)) (-15 -2878 ((-3 (-1110) "failed") $)) (-15 -2764 ((-112) $)) (-15 -2655 ((-3 (-511) "failed") $)) (-15 -2549 ((-112) $)) (-15 -2588 ((-3 (-511) "failed") $)) (-15 -3789 ((-3 (-649 $) "failed") $))))
-((-3160 (((-602) $) 10)) (-3094 (((-590) $) 8)) (-2991 (((-294) $) 12)) (-4015 (($ (-590) (-602) (-294)) NIL)) (-3793 (((-867) $) 19)))
-(((-283) (-13 (-618 (-867)) (-10 -8 (-15 -4015 ($ (-590) (-602) (-294))) (-15 -3094 ((-590) $)) (-15 -3160 ((-602) $)) (-15 -2991 ((-294) $))))) (T -283))
-((-4015 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -4015 ($ (-590) (-602) (-294))) (-15 -3094 ((-590) $)) (-15 -3160 ((-602) $)) (-15 -2991 ((-294) $))))
-((-1415 (($ (-1 (-112) |#2|) $) 24)) (-3547 (($ $) 38)) (-3463 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1696 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2616 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4294 (($ |#2| $ (-569)) 20) (($ $ $ (-569)) 22)) (-4325 (($ $ (-569)) 11) (($ $ (-1240 (-569))) 14)) (-1621 (($ $ |#2|) 32) (($ $ $) NIL)) (-2441 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-649 $)) NIL)))
-(((-284 |#1| |#2|) (-10 -8 (-15 -2616 (|#1| |#1| |#1|)) (-15 -3463 (|#1| |#2| |#1|)) (-15 -2616 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1621 (|#1| |#1| |#1|)) (-15 -1621 (|#1| |#1| |#2|)) (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -4325 (|#1| |#1| (-1240 (-569)))) (-15 -4325 (|#1| |#1| (-569))) (-15 -2441 (|#1| (-649 |#1|))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1696 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1696 (|#1| |#2| |#1|)) (-15 -3547 (|#1| |#1|))) (-285 |#2|) (-1223)) (T -284))
-NIL
-(-10 -8 (-15 -2616 (|#1| |#1| |#1|)) (-15 -3463 (|#1| |#2| |#1|)) (-15 -2616 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1621 (|#1| |#1| |#1|)) (-15 -1621 (|#1| |#1| |#2|)) (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -4325 (|#1| |#1| (-1240 (-569)))) (-15 -4325 (|#1| |#1| (-569))) (-15 -2441 (|#1| (-649 |#1|))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1696 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1415 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1696 (|#1| |#2| |#1|)) (-15 -3547 (|#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) |#1|) $) 86)) (-1415 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3041 (($ $) 84 (|has| |#1| (-1106)))) (-3547 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1106)))) (-1696 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 52)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-2616 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3813 (($ |#1| $ (-569)) 89) (($ $ $ (-569)) 88)) (-4294 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 43 (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4420 (($ $ |#1|) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-4198 (($ $ (-569)) 92) (($ $ (-1240 (-569))) 91)) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 71)) (-1621 (($ $ |#1|) 94) (($ $ $) 93)) (-2441 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-285 |#1|) (-140) (-1223)) (T -285))
-((-1621 (*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)))) (-1621 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-3813 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1223)))) (-3813 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-2616 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-4101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))) (-3463 (*1 *1 *2 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106)))) (-2616 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))))
-(-13 (-656 |t#1|) (-10 -8 (-6 -4445) (-15 -1621 ($ $ |t#1|)) (-15 -1621 ($ $ $)) (-15 -4198 ($ $ (-569))) (-15 -4198 ($ $ (-1240 (-569)))) (-15 -3463 ($ (-1 (-112) |t#1|) $)) (-15 -3813 ($ |t#1| $ (-569))) (-15 -3813 ($ $ $ (-569))) (-15 -2616 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4101 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -3463 ($ |t#1| $)) (-15 -3041 ($ $))) |%noBranch|) (IF (|has| |t#1| (-855)) (-15 -2616 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
+((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3618 (((-649 (-569)) $) 29)) (-4339 (((-776) $) 27)) (-3796 (((-867) $) 36) (($ (-649 (-569))) 23)) (-1520 (((-112) $ $) NIL)) (-4082 (($ (-776)) 33)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 17)))
+(((-277) (-13 (-855) (-10 -8 (-15 -3796 ($ (-649 (-569)))) (-15 -4339 ((-776) $)) (-15 -3618 ((-649 (-569)) $)) (-15 -4082 ($ (-776)))))) (T -277))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
+(-13 (-855) (-10 -8 (-15 -3796 ($ (-649 (-569)))) (-15 -4339 ((-776) $)) (-15 -3618 ((-649 (-569)) $)) (-15 -4082 ($ (-776)))))
+((-2771 ((|#2| |#2|) 77)) (-2626 ((|#2| |#2|) 65)) (-2294 (((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2746 ((|#2| |#2|) 75)) (-2601 ((|#2| |#2|) 63)) (-4118 ((|#2| |#2|) 79)) (-2647 ((|#2| |#2|) 67)) (-1312 ((|#2|) 46)) (-3746 (((-114) (-114)) 100)) (-2662 ((|#2| |#2|) 61)) (-3202 (((-112) |#2|) 147)) (-3945 ((|#2| |#2|) 195)) (-1533 ((|#2| |#2|) 171)) (-1769 ((|#2|) 59)) (-2094 ((|#2|) 58)) (-4262 ((|#2| |#2|) 191)) (-1544 ((|#2| |#2|) 167)) (-2304 ((|#2| |#2|) 199)) (-2913 ((|#2| |#2|) 175)) (-3068 ((|#2| |#2|) 163)) (-3296 ((|#2| |#2|) 165)) (-3950 ((|#2| |#2|) 201)) (-2536 ((|#2| |#2|) 177)) (-2518 ((|#2| |#2|) 197)) (-4386 ((|#2| |#2|) 173)) (-1956 ((|#2| |#2|) 193)) (-2964 ((|#2| |#2|) 169)) (-2984 ((|#2| |#2|) 207)) (-3778 ((|#2| |#2|) 183)) (-3551 ((|#2| |#2|) 203)) (-2309 ((|#2| |#2|) 179)) (-4236 ((|#2| |#2|) 211)) (-1906 ((|#2| |#2|) 187)) (-2596 ((|#2| |#2|) 213)) (-1548 ((|#2| |#2|) 189)) (-1423 ((|#2| |#2|) 209)) (-3458 ((|#2| |#2|) 185)) (-3338 ((|#2| |#2|) 205)) (-2107 ((|#2| |#2|) 181)) (-4389 ((|#2| |#2|) 62)) (-4128 ((|#2| |#2|) 80)) (-2661 ((|#2| |#2|) 68)) (-2783 ((|#2| |#2|) 78)) (-2635 ((|#2| |#2|) 66)) (-2758 ((|#2| |#2|) 76)) (-2614 ((|#2| |#2|) 64)) (-4052 (((-112) (-114)) 98)) (-4161 ((|#2| |#2|) 83)) (-2701 ((|#2| |#2|) 71)) (-4140 ((|#2| |#2|) 81)) (-2675 ((|#2| |#2|) 69)) (-4183 ((|#2| |#2|) 85)) (-2723 ((|#2| |#2|) 73)) (-1503 ((|#2| |#2|) 86)) (-2734 ((|#2| |#2|) 74)) (-4175 ((|#2| |#2|) 84)) (-2712 ((|#2| |#2|) 72)) (-4151 ((|#2| |#2|) 82)) (-2689 ((|#2| |#2|) 70)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -4389 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2723 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1312 (|#2|)) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2094 (|#2|)) (-15 -1769 (|#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2107 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -1956 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -2294 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3202 ((-112) |#2|))) (-561) (-13 (-435 |#1|) (-1010))) (T -278))
+((-3202 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) (-4 *3 (-13 (-435 *4) (-1010))))) (-2294 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-435 *4) (-1010))) (-4 *4 (-561)) (-5 *1 (-278 *4 *2)))) (-2596 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4236 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3551 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1956 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4262 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2107 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2913 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2964 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3068 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3296 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1769 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-2094 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4)) (-4 *4 (-13 (-435 *3) (-1010))))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010))))) (-1312 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2723 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))))
+(-10 -7 (-15 -4389 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2723 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1312 (|#2|)) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2094 (|#2|)) (-15 -1769 (|#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2107 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -1956 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -2294 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3202 ((-112) |#2|)))
+((-3253 (((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1185)) 153)) (-1497 ((|#2| (-412 (-569)) |#2|) 49)) (-3009 ((|#2| |#2| (-617 |#2|)) 146)) (-3014 (((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1185)) 145)) (-1618 ((|#2| |#2| (-1185)) 20) ((|#2| |#2|) 23)) (-3832 ((|#2| |#2| (-1185)) 159) ((|#2| |#2|) 157)))
+(((-279 |#1| |#2|) (-10 -7 (-15 -3832 (|#2| |#2|)) (-15 -3832 (|#2| |#2| (-1185))) (-15 -3014 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1185))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1185))) (-15 -3253 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1185))) (-15 -3009 (|#2| |#2| (-617 |#2|))) (-15 -1497 (|#2| (-412 (-569)) |#2|))) (-13 (-561) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -279))
+((-1497 (*1 *2 *3 *2) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3009 (*1 *2 *2 *3) (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)))) (-3253 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1185)) (-4 *2 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *5 *2)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3014 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3))) (|:| |vals| (-649 *3)))) (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-3832 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))))
+(-10 -7 (-15 -3832 (|#2| |#2|)) (-15 -3832 (|#2| |#2| (-1185))) (-15 -3014 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1185))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1185))) (-15 -3253 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1185))) (-15 -3009 (|#2| |#2| (-617 |#2|))) (-15 -1497 (|#2| (-412 (-569)) |#2|)))
+((-4162 (((-3 |#3| "failed") |#3|) 120)) (-2771 ((|#3| |#3|) 142)) (-2327 (((-3 |#3| "failed") |#3|) 89)) (-2626 ((|#3| |#3|) 132)) (-2071 (((-3 |#3| "failed") |#3|) 65)) (-2746 ((|#3| |#3|) 140)) (-1962 (((-3 |#3| "failed") |#3|) 53)) (-2601 ((|#3| |#3|) 130)) (-3942 (((-3 |#3| "failed") |#3|) 122)) (-4118 ((|#3| |#3|) 144)) (-3392 (((-3 |#3| "failed") |#3|) 91)) (-2647 ((|#3| |#3|) 134)) (-4260 (((-3 |#3| "failed") |#3| (-776)) 41)) (-3552 (((-3 |#3| "failed") |#3|) 81)) (-2662 ((|#3| |#3|) 129)) (-2745 (((-3 |#3| "failed") |#3|) 51)) (-4389 ((|#3| |#3|) 128)) (-3541 (((-3 |#3| "failed") |#3|) 123)) (-4128 ((|#3| |#3|) 145)) (-2935 (((-3 |#3| "failed") |#3|) 92)) (-2661 ((|#3| |#3|) 135)) (-3853 (((-3 |#3| "failed") |#3|) 121)) (-2783 ((|#3| |#3|) 143)) (-3869 (((-3 |#3| "failed") |#3|) 90)) (-2635 ((|#3| |#3|) 133)) (-1505 (((-3 |#3| "failed") |#3|) 67)) (-2758 ((|#3| |#3|) 141)) (-2796 (((-3 |#3| "failed") |#3|) 55)) (-2614 ((|#3| |#3|) 131)) (-2670 (((-3 |#3| "failed") |#3|) 73)) (-4161 ((|#3| |#3|) 148)) (-1705 (((-3 |#3| "failed") |#3|) 114)) (-2701 ((|#3| |#3|) 152)) (-4403 (((-3 |#3| "failed") |#3|) 69)) (-4140 ((|#3| |#3|) 146)) (-4415 (((-3 |#3| "failed") |#3|) 57)) (-2675 ((|#3| |#3|) 136)) (-1853 (((-3 |#3| "failed") |#3|) 77)) (-4183 ((|#3| |#3|) 150)) (-3995 (((-3 |#3| "failed") |#3|) 61)) (-2723 ((|#3| |#3|) 138)) (-1470 (((-3 |#3| "failed") |#3|) 79)) (-1503 ((|#3| |#3|) 151)) (-3637 (((-3 |#3| "failed") |#3|) 63)) (-2734 ((|#3| |#3|) 139)) (-4359 (((-3 |#3| "failed") |#3|) 75)) (-4175 ((|#3| |#3|) 149)) (-3082 (((-3 |#3| "failed") |#3|) 117)) (-2712 ((|#3| |#3|) 153)) (-4166 (((-3 |#3| "failed") |#3|) 71)) (-4151 ((|#3| |#3|) 147)) (-3972 (((-3 |#3| "failed") |#3|) 59)) (-2689 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-412 (-569))) 47 (|has| |#1| (-367)))))
+(((-280 |#1| |#2| |#3|) (-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|)))) (-38 (-412 (-569))) (-1266 |#1|) (-1237 |#1| |#2|)) (T -280))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1266 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1237 *4 *5)))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2723 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))))
+(-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|))))
+((-4162 (((-3 |#3| "failed") |#3|) 70)) (-2771 ((|#3| |#3|) 137)) (-2327 (((-3 |#3| "failed") |#3|) 54)) (-2626 ((|#3| |#3|) 125)) (-2071 (((-3 |#3| "failed") |#3|) 66)) (-2746 ((|#3| |#3|) 135)) (-1962 (((-3 |#3| "failed") |#3|) 50)) (-2601 ((|#3| |#3|) 123)) (-3942 (((-3 |#3| "failed") |#3|) 74)) (-4118 ((|#3| |#3|) 139)) (-3392 (((-3 |#3| "failed") |#3|) 58)) (-2647 ((|#3| |#3|) 127)) (-4260 (((-3 |#3| "failed") |#3| (-776)) 38)) (-3552 (((-3 |#3| "failed") |#3|) 48)) (-2662 ((|#3| |#3|) 111)) (-2745 (((-3 |#3| "failed") |#3|) 46)) (-4389 ((|#3| |#3|) 122)) (-3541 (((-3 |#3| "failed") |#3|) 76)) (-4128 ((|#3| |#3|) 140)) (-2935 (((-3 |#3| "failed") |#3|) 60)) (-2661 ((|#3| |#3|) 128)) (-3853 (((-3 |#3| "failed") |#3|) 72)) (-2783 ((|#3| |#3|) 138)) (-3869 (((-3 |#3| "failed") |#3|) 56)) (-2635 ((|#3| |#3|) 126)) (-1505 (((-3 |#3| "failed") |#3|) 68)) (-2758 ((|#3| |#3|) 136)) (-2796 (((-3 |#3| "failed") |#3|) 52)) (-2614 ((|#3| |#3|) 124)) (-2670 (((-3 |#3| "failed") |#3|) 78)) (-4161 ((|#3| |#3|) 143)) (-1705 (((-3 |#3| "failed") |#3|) 62)) (-2701 ((|#3| |#3|) 131)) (-4403 (((-3 |#3| "failed") |#3|) 112)) (-4140 ((|#3| |#3|) 141)) (-4415 (((-3 |#3| "failed") |#3|) 100)) (-2675 ((|#3| |#3|) 129)) (-1853 (((-3 |#3| "failed") |#3|) 116)) (-4183 ((|#3| |#3|) 145)) (-3995 (((-3 |#3| "failed") |#3|) 107)) (-2723 ((|#3| |#3|) 133)) (-1470 (((-3 |#3| "failed") |#3|) 117)) (-1503 ((|#3| |#3|) 146)) (-3637 (((-3 |#3| "failed") |#3|) 109)) (-2734 ((|#3| |#3|) 134)) (-4359 (((-3 |#3| "failed") |#3|) 80)) (-4175 ((|#3| |#3|) 144)) (-3082 (((-3 |#3| "failed") |#3|) 64)) (-2712 ((|#3| |#3|) 132)) (-4166 (((-3 |#3| "failed") |#3|) 113)) (-4151 ((|#3| |#3|) 142)) (-3972 (((-3 |#3| "failed") |#3|) 103)) (-2689 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-412 (-569))) 44 (|has| |#1| (-367)))))
+(((-281 |#1| |#2| |#3| |#4|) (-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|)))) (-38 (-412 (-569))) (-1235 |#1|) (-1258 |#1| |#2|) (-991 |#2|)) (T -281))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1258 *4 *5)) (-4 *6 (-991 *5)))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2723 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))))
+(-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|))))
+((-4338 (((-112) $) 20)) (-2031 (((-1190) $) 7)) (-2060 (((-3 (-511) "failed") $) 14)) (-1822 (((-3 (-649 $) "failed") $) NIL)) (-1467 (((-3 (-511) "failed") $) 21)) (-2993 (((-3 (-1112) "failed") $) 18)) (-4041 (((-112) $) 16)) (-3796 (((-867) $) NIL)) (-2881 (((-112) $) 9)))
+(((-282) (-13 (-618 (-867)) (-10 -8 (-15 -2031 ((-1190) $)) (-15 -4041 ((-112) $)) (-15 -2993 ((-3 (-1112) "failed") $)) (-15 -4338 ((-112) $)) (-15 -1467 ((-3 (-511) "failed") $)) (-15 -2881 ((-112) $)) (-15 -2060 ((-3 (-511) "failed") $)) (-15 -1822 ((-3 (-649 $) "failed") $))))) (T -282))
+((-2031 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-282)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2993 (*1 *2 *1) (|partial| -12 (-5 *2 (-1112)) (-5 *1 (-282)))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-1467 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2060 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-1822 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2031 ((-1190) $)) (-15 -4041 ((-112) $)) (-15 -2993 ((-3 (-1112) "failed") $)) (-15 -4338 ((-112) $)) (-15 -1467 ((-3 (-511) "failed") $)) (-15 -2881 ((-112) $)) (-15 -2060 ((-3 (-511) "failed") $)) (-15 -1822 ((-3 (-649 $) "failed") $))))
+((-3159 (((-602) $) 10)) (-4418 (((-590) $) 8)) (-2735 (((-294) $) 12)) (-2106 (($ (-590) (-602) (-294)) NIL)) (-3796 (((-867) $) 19)))
+(((-283) (-13 (-618 (-867)) (-10 -8 (-15 -2106 ($ (-590) (-602) (-294))) (-15 -4418 ((-590) $)) (-15 -3159 ((-602) $)) (-15 -2735 ((-294) $))))) (T -283))
+((-2106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2106 ($ (-590) (-602) (-294))) (-15 -4418 ((-590) $)) (-15 -3159 ((-602) $)) (-15 -2735 ((-294) $))))
+((-1417 (($ (-1 (-112) |#2|) $) 24)) (-3550 (($ $) 38)) (-1794 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1698 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2292 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4298 (($ |#2| $ (-569)) 20) (($ $ $ (-569)) 22)) (-4328 (($ $ (-569)) 11) (($ $ (-1242 (-569))) 14)) (-2866 (($ $ |#2|) 32) (($ $ $) NIL)) (-2443 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-649 $)) NIL)))
+(((-284 |#1| |#2|) (-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3550 (|#1| |#1|))) (-285 |#2|) (-1225)) (T -284))
+NIL
+(-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3550 (|#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) 86)) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 84 (|has| |#1| (-1108)))) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1108)))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-2292 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3894 (($ |#1| $ (-569)) 89) (($ $ $ (-569)) 88)) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-3301 (($ $ (-569)) 92) (($ $ (-1242 (-569))) 91)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2866 (($ $ |#1|) 94) (($ $ $) 93)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-285 |#1|) (-140) (-1225)) (T -285))
+((-2866 (*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-3894 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1225)))) (-3894 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-2292 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-1796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-1794 (*1 *1 *2 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) (-2017 (*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) (-2292 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))))
+(-13 (-656 |t#1|) (-10 -8 (-6 -4448) (-15 -2866 ($ $ |t#1|)) (-15 -2866 ($ $ $)) (-15 -3301 ($ $ (-569))) (-15 -3301 ($ $ (-1242 (-569)))) (-15 -1794 ($ (-1 (-112) |t#1|) $)) (-15 -3894 ($ |t#1| $ (-569))) (-15 -3894 ($ $ $ (-569))) (-15 -2292 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1796 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -1794 ($ |t#1| $)) (-15 -2017 ($ $))) |%noBranch|) (IF (|has| |t#1| (-855)) (-15 -2292 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
((** (($ $ $) 10)))
(((-286 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-287)) (T -286))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2660 (($ $) 6)) (-4386 (($ $) 7)) (** (($ $ $) 8)))
+((-2662 (($ $) 6)) (-4389 (($ $) 7)) (** (($ $ $) 8)))
(((-287) (-140)) (T -287))
-((** (*1 *1 *1 *1) (-4 *1 (-287))) (-4386 (*1 *1 *1) (-4 *1 (-287))) (-2660 (*1 *1 *1) (-4 *1 (-287))))
-(-13 (-10 -8 (-15 -2660 ($ $)) (-15 -4386 ($ $)) (-15 ** ($ $ $))))
-((-3129 (((-649 (-1163 |#1|)) (-1163 |#1|) |#1|) 35)) (-2247 ((|#2| |#2| |#1|) 39)) (-4278 ((|#2| |#2| |#1|) 41)) (-3022 ((|#2| |#2| |#1|) 40)))
-(((-288 |#1| |#2|) (-10 -7 (-15 -2247 (|#2| |#2| |#1|)) (-15 -3022 (|#2| |#2| |#1|)) (-15 -4278 (|#2| |#2| |#1|)) (-15 -3129 ((-649 (-1163 |#1|)) (-1163 |#1|) |#1|))) (-367) (-1264 |#1|)) (T -288))
-((-3129 (*1 *2 *3 *4) (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1163 *4))) (-5 *1 (-288 *4 *5)) (-5 *3 (-1163 *4)) (-4 *5 (-1264 *4)))) (-4278 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))) (-3022 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))) (-2247 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
-(-10 -7 (-15 -2247 (|#2| |#2| |#1|)) (-15 -3022 (|#2| |#2| |#1|)) (-15 -4278 (|#2| |#2| |#1|)) (-15 -3129 ((-649 (-1163 |#1|)) (-1163 |#1|) |#1|)))
-((-1866 ((|#2| $ |#1|) 6)))
-(((-289 |#1| |#2|) (-140) (-1106) (-1223)) (T -289))
-((-1866 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))))
-(-13 (-10 -8 (-15 -1866 (|t#2| $ |t#1|))))
-((-3843 ((|#3| $ |#2| |#3|) 12)) (-3773 ((|#3| $ |#2|) 10)))
-(((-290 |#1| |#2| |#3|) (-10 -8 (-15 -3843 (|#3| |#1| |#2| |#3|)) (-15 -3773 (|#3| |#1| |#2|))) (-291 |#2| |#3|) (-1106) (-1223)) (T -290))
-NIL
-(-10 -8 (-15 -3843 (|#3| |#1| |#2| |#3|)) (-15 -3773 (|#3| |#1| |#2|)))
-((-3940 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4445)))) (-3843 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) 11)) (-1866 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-291 |#1| |#2|) (-140) (-1106) (-1223)) (T -291))
-((-1866 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-3940 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-3843 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))))
-(-13 (-289 |t#1| |t#2|) (-10 -8 (-15 -1866 (|t#2| $ |t#1| |t#2|)) (-15 -3773 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4445)) (PROGN (-15 -3940 (|t#2| $ |t#1| |t#2|)) (-15 -3843 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-287))) (-4389 (*1 *1 *1) (-4 *1 (-287))) (-2662 (*1 *1 *1) (-4 *1 (-287))))
+(-13 (-10 -8 (-15 -2662 ($ $)) (-15 -4389 ($ $)) (-15 ** ($ $ $))))
+((-1646 (((-649 (-1165 |#1|)) (-1165 |#1|) |#1|) 35)) (-2249 ((|#2| |#2| |#1|) 39)) (-2824 ((|#2| |#2| |#1|) 41)) (-3026 ((|#2| |#2| |#1|) 40)))
+(((-288 |#1| |#2|) (-10 -7 (-15 -2249 (|#2| |#2| |#1|)) (-15 -3026 (|#2| |#2| |#1|)) (-15 -2824 (|#2| |#2| |#1|)) (-15 -1646 ((-649 (-1165 |#1|)) (-1165 |#1|) |#1|))) (-367) (-1266 |#1|)) (T -288))
+((-1646 (*1 *2 *3 *4) (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1165 *4))) (-5 *1 (-288 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-1266 *4)))) (-2824 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))) (-3026 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))) (-2249 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))))
+(-10 -7 (-15 -2249 (|#2| |#2| |#1|)) (-15 -3026 (|#2| |#2| |#1|)) (-15 -2824 (|#2| |#2| |#1|)) (-15 -1646 ((-649 (-1165 |#1|)) (-1165 |#1|) |#1|)))
+((-1869 ((|#2| $ |#1|) 6)))
+(((-289 |#1| |#2|) (-140) (-1108) (-1225)) (T -289))
+((-1869 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))))
+(-13 (-10 -8 (-15 -1869 (|t#2| $ |t#1|))))
+((-3846 ((|#3| $ |#2| |#3|) 12)) (-3776 ((|#3| $ |#2|) 10)))
+(((-290 |#1| |#2| |#3|) (-10 -8 (-15 -3846 (|#3| |#1| |#2| |#3|)) (-15 -3776 (|#3| |#1| |#2|))) (-291 |#2| |#3|) (-1108) (-1225)) (T -290))
+NIL
+(-10 -8 (-15 -3846 (|#3| |#1| |#2| |#3|)) (-15 -3776 (|#3| |#1| |#2|)))
+((-3943 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4448)))) (-3846 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 11)) (-1869 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-291 |#1| |#2|) (-140) (-1108) (-1225)) (T -291))
+((-1869 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-3776 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-3846 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))))
+(-13 (-289 |t#1| |t#2|) (-10 -8 (-15 -1869 (|t#2| $ |t#1| |t#2|)) (-15 -3776 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4448)) (PROGN (-15 -3943 (|t#2| $ |t#1| |t#2|)) (-15 -3846 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-289 |#1| |#2|) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 37)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 44)) (-3087 (($ $) 41)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) 35)) (-3596 (($ |#2| |#3|) 18)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3283 ((|#3| $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 19)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3182 (((-3 $ "failed") $ $) NIL)) (-1578 (((-776) $) 36)) (-1866 ((|#2| $ |#2|) 46)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 23)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) 31 T CONST)) (-1813 (($) 39 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40)))
-(((-292 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-310) (-10 -8 (-15 -3283 (|#3| $)) (-15 -3793 (|#2| $)) (-15 -3596 ($ |#2| |#3|)) (-15 -3182 ((-3 $ "failed") $ $)) (-15 -2888 ((-3 $ "failed") $)) (-15 -1814 ($ $)) (-15 -1866 (|#2| $ |#2|)))) (-173) (-1249 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -292))
-((-2888 (*1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3283 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1249 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3793 (*1 *2 *1) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3596 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1249 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3182 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1814 (*1 *1 *1) (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1866 (*1 *2 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1249 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-310) (-10 -8 (-15 -3283 (|#3| $)) (-15 -3793 (|#2| $)) (-15 -3596 ($ |#2| |#3|)) (-15 -3182 ((-3 $ "failed") $ $)) (-15 -2888 ((-3 $ "failed") $)) (-15 -1814 ($ $)) (-15 -1866 (|#2| $ |#2|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 37)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 44)) (-4355 (($ $) 41)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) 35)) (-3598 (($ |#2| |#3|) 18)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 ((|#3| $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 19)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4054 (((-3 $ "failed") $ $) NIL)) (-2431 (((-776) $) 36)) (-1869 ((|#2| $ |#2|) 46)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 23)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 31 T CONST)) (-1815 (($) 39 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40)))
+(((-292 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-310) (-10 -8 (-15 -2520 (|#3| $)) (-15 -3796 (|#2| $)) (-15 -3598 ($ |#2| |#3|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $)) (-15 -1869 (|#2| $ |#2|)))) (-173) (-1251 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -292))
+((-3086 (*1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2520 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1251 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3598 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1251 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4054 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1817 (*1 *1 *1) (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1869 (*1 *2 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1251 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-310) (-10 -8 (-15 -2520 (|#3| $)) (-15 -3796 (|#2| $)) (-15 -3598 ($ |#2| |#3|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $)) (-15 -1869 (|#2| $ |#2|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-293) (-140)) (T -293))
NIL
-(-13 (-1055) (-111 $ $) (-10 -7 (-6 -4437)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2491 (((-649 (-1091)) $) 10)) (-2476 (($ (-511) (-511) (-1110) $) 19)) (-2595 (($ (-511) (-649 (-971)) $) 23)) (-3337 (($) 25)) (-2401 (((-696 (-1110)) (-511) (-511) $) 18)) (-3523 (((-649 (-971)) (-511) $) 22)) (-3597 (($) 7)) (-1386 (($) 24)) (-3793 (((-867) $) 29)) (-3226 (($) 26)))
-(((-294) (-13 (-618 (-867)) (-10 -8 (-15 -3597 ($)) (-15 -2491 ((-649 (-1091)) $)) (-15 -2401 ((-696 (-1110)) (-511) (-511) $)) (-15 -2476 ($ (-511) (-511) (-1110) $)) (-15 -3523 ((-649 (-971)) (-511) $)) (-15 -2595 ($ (-511) (-649 (-971)) $)) (-15 -1386 ($)) (-15 -3337 ($)) (-15 -3226 ($))))) (T -294))
-((-3597 (*1 *1) (-5 *1 (-294))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-649 (-1091))) (-5 *1 (-294)))) (-2401 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1110))) (-5 *1 (-294)))) (-2476 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-294)))) (-3523 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294)))) (-2595 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294)))) (-1386 (*1 *1) (-5 *1 (-294))) (-3337 (*1 *1) (-5 *1 (-294))) (-3226 (*1 *1) (-5 *1 (-294))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3597 ($)) (-15 -2491 ((-649 (-1091)) $)) (-15 -2401 ((-696 (-1110)) (-511) (-511) $)) (-15 -2476 ($ (-511) (-511) (-1110) $)) (-15 -3523 ((-649 (-971)) (-511) $)) (-15 -2595 ($ (-511) (-649 (-971)) $)) (-15 -1386 ($)) (-15 -3337 ($)) (-15 -3226 ($))))
-((-2879 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 104)) (-2794 (((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|)))) 99) (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776)) 41)) (-2972 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 101)) (-2700 (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|)))) 77)) (-2590 (((-649 (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (-694 (-412 (-958 |#1|)))) 76)) (-3798 (((-958 |#1|) (-694 (-412 (-958 |#1|)))) 57) (((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1183)) 58)))
-(((-295 |#1|) (-10 -7 (-15 -3798 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1183))) (-15 -3798 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -2590 ((-649 (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -2700 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -2794 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -2794 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -2879 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -2972 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))))) (-457)) (T -295))
-((-2972 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-2794 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1172 (-1183) (-958 *6)))) (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6))))) (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6)))))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-2590 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457)) (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4))))) (-5 *1 (-295 *4)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4)) (-5 *1 (-295 *4)) (-4 *4 (-457)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1183)) (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457)))))
-(-10 -7 (-15 -3798 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1183))) (-15 -3798 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -2590 ((-649 (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -2700 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -2794 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -2794 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -2879 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -2972 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1172 (-1183) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))))
-((-1344 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 14)))
-(((-296 |#1| |#2|) (-10 -7 (-15 -1344 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-1223) (-1223)) (T -296))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6)))))
-(-10 -7 (-15 -1344 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3192 (((-112) $) NIL (|has| |#1| (-21)))) (-2325 (($ $) 12)) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4293 (($ $ $) 95 (|has| |#1| (-305)))) (-4188 (($) NIL (-2774 (|has| |#1| (-21)) (|has| |#1| (-731))) CONST)) (-2142 (($ $) 51 (|has| |#1| (-21)))) (-1967 (((-3 $ "failed") $) 62 (|has| |#1| (-731)))) (-2112 ((|#1| $) 11)) (-2888 (((-3 $ "failed") $) 60 (|has| |#1| (-731)))) (-2623 (((-112) $) NIL (|has| |#1| (-731)))) (-1344 (($ (-1 |#1| |#1|) $) 14)) (-2101 ((|#1| $) 10)) (-2229 (($ $) 50 (|has| |#1| (-21)))) (-2054 (((-3 $ "failed") $) 61 (|has| |#1| (-731)))) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1814 (($ $) 64 (-2774 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1888 (((-649 $) $) 85 (|has| |#1| (-561)))) (-1723 (($ $ $) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 $)) 28 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-1183) |#1|) 17 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 21 (|has| |#1| (-519 (-1183) |#1|)))) (-3494 (($ |#1| |#1|) 9)) (-3083 (((-134)) 90 (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) 87 (|has| |#1| (-906 (-1183))))) (-3580 (($ $ $) NIL (|has| |#1| (-478)))) (-2292 (($ $ $) NIL (|has| |#1| (-478)))) (-3793 (($ (-569)) NIL (|has| |#1| (-1055))) (((-112) $) 37 (|has| |#1| (-1106))) (((-867) $) 36 (|has| |#1| (-1106)))) (-3302 (((-776)) 67 (|has| |#1| (-1055)) CONST)) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1803 (($) 47 (|has| |#1| (-21)) CONST)) (-1813 (($) 57 (|has| |#1| (-731)) CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183))))) (-2919 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1106)))) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 92 (-2774 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3021 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3009 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-569)) NIL (|has| |#1| (-478))) (($ $ (-776)) NIL (|has| |#1| (-731))) (($ $ (-927)) NIL (|has| |#1| (-1118)))) (* (($ $ |#1|) 55 (|has| |#1| (-1118))) (($ |#1| $) 54 (|has| |#1| (-1118))) (($ $ $) 53 (|has| |#1| (-1118))) (($ (-569) $) 70 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-25)))))
-(((-297 |#1|) (-13 (-1223) (-10 -8 (-15 -2919 ($ |#1| |#1|)) (-15 -3494 ($ |#1| |#1|)) (-15 -2325 ($ $)) (-15 -2101 (|#1| $)) (-15 -2112 (|#1| $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1183) |#1|)) (-6 (-519 (-1183) |#1|)) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1723 ($ $ $)) (-15 -1723 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3009 ($ |#1| $)) (-15 -3009 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2229 ($ $)) (-15 -2142 ($ $)) (-15 -3021 ($ |#1| $)) (-15 -3021 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -2054 ((-3 $ "failed") $)) (-15 -1967 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -2054 ((-3 $ "failed") $)) (-15 -1967 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -1888 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1280 |#1|)) (-15 -3032 ($ $ $)) (-15 -1814 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4293 ($ $ $)) |%noBranch|))) (-1223)) (T -297))
-((-2919 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-3494 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-2101 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-2112 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-297 *3)))) (-1723 (*1 *1 *1 *1) (-12 (-4 *2 (-312 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)) (-5 *1 (-297 *2)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1106)) (-4 *3 (-1223)) (-5 *1 (-297 *3)))) (-3009 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223)))) (-3009 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223)))) (-2229 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-2142 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-3021 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-3021 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))) (-2054 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))) (-1967 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561)) (-4 *3 (-1223)))) (-4293 (*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1223)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223)))) (-3032 (*1 *1 *1 *1) (-2774 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223))))) (-1814 (*1 *1 *1) (-2774 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223))))))
-(-13 (-1223) (-10 -8 (-15 -2919 ($ |#1| |#1|)) (-15 -3494 ($ |#1| |#1|)) (-15 -2325 ($ $)) (-15 -2101 (|#1| $)) (-15 -2112 (|#1| $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1183) |#1|)) (-6 (-519 (-1183) |#1|)) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1723 ($ $ $)) (-15 -1723 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3009 ($ |#1| $)) (-15 -3009 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2229 ($ $)) (-15 -2142 ($ $)) (-15 -3021 ($ |#1| $)) (-15 -3021 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1118)) (PROGN (-6 (-1118)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -2054 ((-3 $ "failed") $)) (-15 -1967 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -2054 ((-3 $ "failed") $)) (-15 -1967 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -1888 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1280 |#1|)) (-15 -3032 ($ $ $)) (-15 -1814 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4293 ($ $ $)) |%noBranch|)))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4321 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#2| $ |#1| |#2|) NIL)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) NIL)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) NIL)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) NIL)) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 ((|#1| $) NIL (|has| |#1| (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 ((|#1| $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2796 (((-649 |#1|) $) NIL)) (-3937 (((-112) |#1| $) NIL)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1755 (((-649 |#1|) $) NIL)) (-3748 (((-112) |#1| $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#2| $) NIL (|has| |#1| (-855)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-298 |#1| |#2|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444))) (-1106) (-1106)) (T -298))
-NIL
-(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444)))
-((-3645 (((-315) (-1165) (-649 (-1165))) 17) (((-315) (-1165) (-1165)) 16) (((-315) (-649 (-1165))) 15) (((-315) (-1165)) 14)))
-(((-299) (-10 -7 (-15 -3645 ((-315) (-1165))) (-15 -3645 ((-315) (-649 (-1165)))) (-15 -3645 ((-315) (-1165) (-1165))) (-15 -3645 ((-315) (-1165) (-649 (-1165)))))) (T -299))
-((-3645 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1165))) (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3645 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-315)) (-5 *1 (-299)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299)))))
-(-10 -7 (-15 -3645 ((-315) (-1165))) (-15 -3645 ((-315) (-649 (-1165)))) (-15 -3645 ((-315) (-1165) (-1165))) (-15 -3645 ((-315) (-1165) (-649 (-1165)))))
-((-1344 ((|#2| (-1 |#2| |#1|) (-1165) (-617 |#1|)) 18)))
-(((-300 |#1| |#2|) (-10 -7 (-15 -1344 (|#2| (-1 |#2| |#1|) (-1165) (-617 |#1|)))) (-305) (-1223)) (T -300))
-((-1344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1165)) (-5 *5 (-617 *6)) (-4 *6 (-305)) (-4 *2 (-1223)) (-5 *1 (-300 *6 *2)))))
-(-10 -7 (-15 -1344 (|#2| (-1 |#2| |#1|) (-1165) (-617 |#1|))))
-((-1344 ((|#2| (-1 |#2| |#1|) (-617 |#1|)) 17)))
-(((-301 |#1| |#2|) (-10 -7 (-15 -1344 (|#2| (-1 |#2| |#1|) (-617 |#1|)))) (-305) (-305)) (T -301))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-617 *5)) (-4 *5 (-305)) (-4 *2 (-305)) (-5 *1 (-301 *5 *2)))))
-(-10 -7 (-15 -1344 (|#2| (-1 |#2| |#1|) (-617 |#1|))))
-((-3029 (((-112) (-226)) 12)))
-(((-302 |#1| |#2|) (-10 -7 (-15 -3029 ((-112) (-226)))) (-226) (-226)) (T -302))
-((-3029 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -3029 ((-112) (-226))))
-((-3879 (((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226)))) 118)) (-3973 (((-1163 (-226)) (-1273 (-319 (-226))) (-649 (-1183)) (-1100 (-848 (-226)))) 135) (((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226)))) 72)) (-2226 (((-649 (-1165)) (-1163 (-226))) NIL)) (-3775 (((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226)))) 69)) (-4060 (((-649 (-226)) (-958 (-412 (-569))) (-1183) (-1100 (-848 (-226)))) 59)) (-2147 (((-649 (-1165)) (-649 (-226))) NIL)) (-2302 (((-226) (-1100 (-848 (-226)))) 29)) (-2380 (((-226) (-1100 (-848 (-226)))) 30)) (-1783 (((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 64)) (-1992 (((-1165) (-226)) NIL)))
-(((-303) (-10 -7 (-15 -2302 ((-226) (-1100 (-848 (-226))))) (-15 -2380 ((-226) (-1100 (-848 (-226))))) (-15 -1783 ((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3775 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -3879 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -3973 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -3973 ((-1163 (-226)) (-1273 (-319 (-226))) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -4060 ((-649 (-226)) (-958 (-412 (-569))) (-1183) (-1100 (-848 (-226))))) (-15 -1992 ((-1165) (-226))) (-15 -2147 ((-649 (-1165)) (-649 (-226)))) (-15 -2226 ((-649 (-1165)) (-1163 (-226)))))) (T -303))
-((-2226 (*1 *2 *3) (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-303)))) (-4060 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1183)) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-3973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183))) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))) (-3973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183))) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))) (-3879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183))) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183)) (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-112)) (-5 *1 (-303)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))))
-(-10 -7 (-15 -2302 ((-226) (-1100 (-848 (-226))))) (-15 -2380 ((-226) (-1100 (-848 (-226))))) (-15 -1783 ((-112) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3775 ((-649 (-226)) (-319 (-226)) (-1183) (-1100 (-848 (-226))))) (-15 -3879 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -3973 ((-1163 (-226)) (-319 (-226)) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -3973 ((-1163 (-226)) (-1273 (-319 (-226))) (-649 (-1183)) (-1100 (-848 (-226))))) (-15 -4060 ((-649 (-226)) (-958 (-412 (-569))) (-1183) (-1100 (-848 (-226))))) (-15 -1992 ((-1165) (-226))) (-15 -2147 ((-649 (-1165)) (-649 (-226)))) (-15 -2226 ((-649 (-1165)) (-1163 (-226)))))
-((-3660 (((-649 (-617 $)) $) 27)) (-4293 (($ $ (-297 $)) 78) (($ $ (-649 (-297 $))) 139) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-4378 (((-3 (-617 $) "failed") $) 127)) (-3148 (((-617 $) $) 126)) (-2223 (($ $) 17) (($ (-649 $)) 54)) (-1463 (((-649 (-114)) $) 35)) (-3743 (((-114) (-114)) 88)) (-1607 (((-112) $) 150)) (-1344 (($ (-1 $ $) (-617 $)) 86)) (-1574 (((-3 (-617 $) "failed") $) 94)) (-1352 (($ (-114) $) 59) (($ (-114) (-649 $)) 110)) (-2374 (((-112) $ (-114)) 132) (((-112) $ (-1183)) 131)) (-1425 (((-776) $) 44)) (-1335 (((-112) $ $) 57) (((-112) $ (-1183)) 49)) (-2108 (((-112) $) 148)) (-1723 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) 137) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 81) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) 67) (($ $ (-1183) (-1 $ $)) 72) (($ $ (-649 (-114)) (-649 (-1 $ $))) 80) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 82) (($ $ (-114) (-1 $ (-649 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1866 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-649 $)) 123)) (-1676 (($ $) 51) (($ $ $) 135)) (-4211 (($ $) 15) (($ (-649 $)) 53)) (-4142 (((-112) (-114)) 21)))
-(((-304 |#1|) (-10 -8 (-15 -1607 ((-112) |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -1335 ((-112) |#1| (-1183))) (-15 -1335 ((-112) |#1| |#1|)) (-15 -1344 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1352 (|#1| (-114) (-649 |#1|))) (-15 -1352 (|#1| (-114) |#1|)) (-15 -2374 ((-112) |#1| (-1183))) (-15 -2374 ((-112) |#1| (-114))) (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -1463 ((-649 (-114)) |#1|)) (-15 -3660 ((-649 (-617 |#1|)) |#1|)) (-15 -1574 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1425 ((-776) |#1|)) (-15 -1676 (|#1| |#1| |#1|)) (-15 -1676 (|#1| |#1|)) (-15 -2223 (|#1| (-649 |#1|))) (-15 -2223 (|#1| |#1|)) (-15 -4211 (|#1| (-649 |#1|))) (-15 -4211 (|#1| |#1|)) (-15 -4293 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4293 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4293 (|#1| |#1| (-297 |#1|))) (-15 -1866 (|#1| (-114) (-649 |#1|))) (-15 -1866 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1723 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4378 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3148 ((-617 |#1|) |#1|))) (-305)) (T -304))
-((-3743 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-304 *3)) (-4 *3 (-305)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305)))))
-(-10 -8 (-15 -1607 ((-112) |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -1335 ((-112) |#1| (-1183))) (-15 -1335 ((-112) |#1| |#1|)) (-15 -1344 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1352 (|#1| (-114) (-649 |#1|))) (-15 -1352 (|#1| (-114) |#1|)) (-15 -2374 ((-112) |#1| (-1183))) (-15 -2374 ((-112) |#1| (-114))) (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -1463 ((-649 (-114)) |#1|)) (-15 -3660 ((-649 (-617 |#1|)) |#1|)) (-15 -1574 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1425 ((-776) |#1|)) (-15 -1676 (|#1| |#1| |#1|)) (-15 -1676 (|#1| |#1|)) (-15 -2223 (|#1| (-649 |#1|))) (-15 -2223 (|#1| |#1|)) (-15 -4211 (|#1| (-649 |#1|))) (-15 -4211 (|#1| |#1|)) (-15 -4293 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4293 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4293 (|#1| |#1| (-297 |#1|))) (-15 -1866 (|#1| (-114) (-649 |#1|))) (-15 -1866 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1723 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4378 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3148 ((-617 |#1|) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3660 (((-649 (-617 $)) $) 39)) (-4293 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-4378 (((-3 (-617 $) "failed") $) 64)) (-3148 (((-617 $) $) 65)) (-2223 (($ $) 46) (($ (-649 $)) 45)) (-1463 (((-649 (-114)) $) 38)) (-3743 (((-114) (-114)) 37)) (-1607 (((-112) $) 17 (|has| $ (-1044 (-569))))) (-4362 (((-1179 $) (-617 $)) 20 (|has| $ (-1055)))) (-1344 (($ (-1 $ $) (-617 $)) 31)) (-1574 (((-3 (-617 $) "failed") $) 41)) (-1550 (((-1165) $) 10)) (-3733 (((-649 (-617 $)) $) 40)) (-1352 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-2374 (((-112) $ (-114)) 35) (((-112) $ (-1183)) 34)) (-1425 (((-776) $) 42)) (-3545 (((-1126) $) 11)) (-1335 (((-112) $ $) 30) (((-112) $ (-1183)) 29)) (-2108 (((-112) $) 18 (|has| $ (-1044 (-569))))) (-1723 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1183) (-1 $ (-649 $))) 26) (($ $ (-1183) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1866 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-1676 (($ $) 44) (($ $ $) 43)) (-4143 (($ $) 19 (|has| $ (-1055)))) (-3793 (((-867) $) 12) (($ (-617 $)) 63)) (-4211 (($ $) 48) (($ (-649 $)) 47)) (-4142 (((-112) (-114)) 36)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
+(-13 (-1057) (-111 $ $) (-10 -7 (-6 -4440)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3603 (((-649 (-1093)) $) 10)) (-3443 (($ (-511) (-511) (-1112) $) 19)) (-2119 (($ (-511) (-649 (-971)) $) 23)) (-3037 (($) 25)) (-3990 (((-696 (-1112)) (-511) (-511) $) 18)) (-4172 (((-649 (-971)) (-511) $) 22)) (-3635 (($) 7)) (-1387 (($) 24)) (-3796 (((-867) $) 29)) (-3222 (($) 26)))
+(((-294) (-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3603 ((-649 (-1093)) $)) (-15 -3990 ((-696 (-1112)) (-511) (-511) $)) (-15 -3443 ($ (-511) (-511) (-1112) $)) (-15 -4172 ((-649 (-971)) (-511) $)) (-15 -2119 ($ (-511) (-649 (-971)) $)) (-15 -1387 ($)) (-15 -3037 ($)) (-15 -3222 ($))))) (T -294))
+((-3635 (*1 *1) (-5 *1 (-294))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-649 (-1093))) (-5 *1 (-294)))) (-3990 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1112))) (-5 *1 (-294)))) (-3443 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-294)))) (-4172 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294)))) (-2119 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294)))) (-1387 (*1 *1) (-5 *1 (-294))) (-3037 (*1 *1) (-5 *1 (-294))) (-3222 (*1 *1) (-5 *1 (-294))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3603 ((-649 (-1093)) $)) (-15 -3990 ((-696 (-1112)) (-511) (-511) $)) (-15 -3443 ($ (-511) (-511) (-1112) $)) (-15 -4172 ((-649 (-971)) (-511) $)) (-15 -2119 ($ (-511) (-649 (-971)) $)) (-15 -1387 ($)) (-15 -3037 ($)) (-15 -3222 ($))))
+((-3004 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 104)) (-3404 (((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|)))) 99) (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776)) 41)) (-2523 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 101)) (-1850 (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|)))) 77)) (-2075 (((-649 (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (-694 (-412 (-958 |#1|)))) 76)) (-1886 (((-958 |#1|) (-694 (-412 (-958 |#1|)))) 57) (((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1185)) 58)))
+(((-295 |#1|) (-10 -7 (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1185))) (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -2075 ((-649 (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -1850 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -3004 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -2523 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))))) (-457)) (T -295))
+((-2523 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-3404 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1174 (-1185) (-958 *6)))) (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6))))) (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6)))))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457)) (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4))))) (-5 *1 (-295 *4)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4)) (-5 *1 (-295 *4)) (-4 *4 (-457)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1185)) (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457)))))
+(-10 -7 (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1185))) (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -2075 ((-649 (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -1850 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -3004 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -2523 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))))
+((-1346 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 14)))
+(((-296 |#1| |#2|) (-10 -7 (-15 -1346 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-1225) (-1225)) (T -296))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6)))))
+(-10 -7 (-15 -1346 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4143 (((-112) $) NIL (|has| |#1| (-21)))) (-1314 (($ $) 12)) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4296 (($ $ $) 95 (|has| |#1| (-305)))) (-4427 (($) NIL (-2776 (|has| |#1| (-21)) (|has| |#1| (-731))) CONST)) (-3107 (($ $) 51 (|has| |#1| (-21)))) (-1925 (((-3 $ "failed") $) 62 (|has| |#1| (-731)))) (-2115 ((|#1| $) 11)) (-3086 (((-3 $ "failed") $) 60 (|has| |#1| (-731)))) (-2349 (((-112) $) NIL (|has| |#1| (-731)))) (-1346 (($ (-1 |#1| |#1|) $) 14)) (-2105 ((|#1| $) 10)) (-2755 (($ $) 50 (|has| |#1| (-21)))) (-1562 (((-3 $ "failed") $) 61 (|has| |#1| (-731)))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1817 (($ $) 64 (-2776 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3526 (((-649 $) $) 85 (|has| |#1| (-561)))) (-1725 (($ $ $) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 $)) 28 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-1185) |#1|) 17 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 21 (|has| |#1| (-519 (-1185) |#1|)))) (-3497 (($ |#1| |#1|) 9)) (-2377 (((-134)) 90 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 87 (|has| |#1| (-906 (-1185))))) (-3476 (($ $ $) NIL (|has| |#1| (-478)))) (-2180 (($ $ $) NIL (|has| |#1| (-478)))) (-3796 (($ (-569)) NIL (|has| |#1| (-1057))) (((-112) $) 37 (|has| |#1| (-1108))) (((-867) $) 36 (|has| |#1| (-1108)))) (-2721 (((-776)) 67 (|has| |#1| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1804 (($) 47 (|has| |#1| (-21)) CONST)) (-1815 (($) 57 (|has| |#1| (-731)) CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185))))) (-2920 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 92 (-2776 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3024 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3012 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-569)) NIL (|has| |#1| (-478))) (($ $ (-776)) NIL (|has| |#1| (-731))) (($ $ (-927)) NIL (|has| |#1| (-1120)))) (* (($ $ |#1|) 55 (|has| |#1| (-1120))) (($ |#1| $) 54 (|has| |#1| (-1120))) (($ $ $) 53 (|has| |#1| (-1120))) (($ (-569) $) 70 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-25)))))
+(((-297 |#1|) (-13 (-1225) (-10 -8 (-15 -2920 ($ |#1| |#1|)) (-15 -3497 ($ |#1| |#1|)) (-15 -1314 ($ $)) (-15 -2105 (|#1| $)) (-15 -2115 (|#1| $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1185) |#1|)) (-6 (-519 (-1185) |#1|)) |%noBranch|) (IF (|has| |#1| (-1108)) (PROGN (-6 (-1108)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1725 ($ $ $)) (-15 -1725 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2755 ($ $)) (-15 -3107 ($ $)) (-15 -3024 ($ |#1| $)) (-15 -3024 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1120)) (PROGN (-6 (-1120)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -3526 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1282 |#1|)) (-15 -3035 ($ $ $)) (-15 -1817 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4296 ($ $ $)) |%noBranch|))) (-1225)) (T -297))
+((-2920 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-3497 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-2105 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-2115 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-297 *3)))) (-1725 (*1 *1 *1 *1) (-12 (-4 *2 (-312 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)) (-5 *1 (-297 *2)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1108)) (-4 *3 (-1225)) (-5 *1 (-297 *3)))) (-3012 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225)))) (-2755 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-3107 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-3024 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-3024 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-1562 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225)))) (-1925 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561)) (-4 *3 (-1225)))) (-4296 (*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1225)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225)))) (-3035 (*1 *1 *1 *1) (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225))))) (-1817 (*1 *1 *1) (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225))))))
+(-13 (-1225) (-10 -8 (-15 -2920 ($ |#1| |#1|)) (-15 -3497 ($ |#1| |#1|)) (-15 -1314 ($ $)) (-15 -2105 (|#1| $)) (-15 -2115 (|#1| $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1185) |#1|)) (-6 (-519 (-1185) |#1|)) |%noBranch|) (IF (|has| |#1| (-1108)) (PROGN (-6 (-1108)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1725 ($ $ $)) (-15 -1725 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2755 ($ $)) (-15 -3107 ($ $)) (-15 -3024 ($ |#1| $)) (-15 -3024 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1120)) (PROGN (-6 (-1120)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -3526 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1282 |#1|)) (-15 -3035 ($ $ $)) (-15 -1817 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4296 ($ $ $)) |%noBranch|)))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-298 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108)) (T -298))
+NIL
+(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447)))
+((-3647 (((-315) (-1167) (-649 (-1167))) 17) (((-315) (-1167) (-1167)) 16) (((-315) (-649 (-1167))) 15) (((-315) (-1167)) 14)))
+(((-299) (-10 -7 (-15 -3647 ((-315) (-1167))) (-15 -3647 ((-315) (-649 (-1167)))) (-15 -3647 ((-315) (-1167) (-1167))) (-15 -3647 ((-315) (-1167) (-649 (-1167)))))) (T -299))
+((-3647 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1167))) (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-315)) (-5 *1 (-299)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299)))))
+(-10 -7 (-15 -3647 ((-315) (-1167))) (-15 -3647 ((-315) (-649 (-1167)))) (-15 -3647 ((-315) (-1167) (-1167))) (-15 -3647 ((-315) (-1167) (-649 (-1167)))))
+((-1346 ((|#2| (-1 |#2| |#1|) (-1167) (-617 |#1|)) 18)))
+(((-300 |#1| |#2|) (-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-1167) (-617 |#1|)))) (-305) (-1225)) (T -300))
+((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1167)) (-5 *5 (-617 *6)) (-4 *6 (-305)) (-4 *2 (-1225)) (-5 *1 (-300 *6 *2)))))
+(-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-1167) (-617 |#1|))))
+((-1346 ((|#2| (-1 |#2| |#1|) (-617 |#1|)) 17)))
+(((-301 |#1| |#2|) (-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-617 |#1|)))) (-305) (-305)) (T -301))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-617 *5)) (-4 *5 (-305)) (-4 *2 (-305)) (-5 *1 (-301 *5 *2)))))
+(-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-617 |#1|))))
+((-1926 (((-112) (-226)) 12)))
+(((-302 |#1| |#2|) (-10 -7 (-15 -1926 ((-112) (-226)))) (-226) (-226)) (T -302))
+((-1926 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1926 ((-112) (-226))))
+((-3194 (((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226)))) 118)) (-2879 (((-1165 (-226)) (-1275 (-319 (-226))) (-649 (-1185)) (-1102 (-848 (-226)))) 135) (((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226)))) 72)) (-2718 (((-649 (-1167)) (-1165 (-226))) NIL)) (-1680 (((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226)))) 69)) (-1325 (((-649 (-226)) (-958 (-412 (-569))) (-1185) (-1102 (-848 (-226)))) 59)) (-3161 (((-649 (-1167)) (-649 (-226))) NIL)) (-2278 (((-226) (-1102 (-848 (-226)))) 29)) (-3783 (((-226) (-1102 (-848 (-226)))) 30)) (-3831 (((-112) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 64)) (-2145 (((-1167) (-226)) NIL)))
+(((-303) (-10 -7 (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -3831 ((-112) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -3194 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-1275 (-319 (-226))) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -1325 ((-649 (-226)) (-958 (-412 (-569))) (-1185) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))))) (T -303))
+((-2718 (*1 *2 *3) (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-303)))) (-1325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1185)) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185))) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185))) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))) (-3194 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185))) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185)) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-112)) (-5 *1 (-303)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))))
+(-10 -7 (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -3831 ((-112) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -3194 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-1275 (-319 (-226))) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -1325 ((-649 (-226)) (-958 (-412 (-569))) (-1185) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))))
+((-3663 (((-649 (-617 $)) $) 27)) (-4296 (($ $ (-297 $)) 78) (($ $ (-649 (-297 $))) 139) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-4381 (((-3 (-617 $) "failed") $) 127)) (-3150 (((-617 $) $) 126)) (-2687 (($ $) 17) (($ (-649 $)) 54)) (-3810 (((-649 (-114)) $) 35)) (-3746 (((-114) (-114)) 88)) (-2719 (((-112) $) 150)) (-1346 (($ (-1 $ $) (-617 $)) 86)) (-2391 (((-3 (-617 $) "failed") $) 94)) (-1354 (($ (-114) $) 59) (($ (-114) (-649 $)) 110)) (-1825 (((-112) $ (-114)) 132) (((-112) $ (-1185)) 131)) (-1427 (((-776) $) 44)) (-1852 (((-112) $ $) 57) (((-112) $ (-1185)) 49)) (-4024 (((-112) $) 148)) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) 137) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 81) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) 67) (($ $ (-1185) (-1 $ $)) 72) (($ $ (-649 (-114)) (-649 (-1 $ $))) 80) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 82) (($ $ (-114) (-1 $ (-649 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1869 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-649 $)) 123)) (-2190 (($ $) 51) (($ $ $) 135)) (-4213 (($ $) 15) (($ (-649 $)) 53)) (-4052 (((-112) (-114)) 21)))
+(((-304 |#1|) (-10 -8 (-15 -2719 ((-112) |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -1852 ((-112) |#1| (-1185))) (-15 -1852 ((-112) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1354 (|#1| (-114) (-649 |#1|))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -1825 ((-112) |#1| (-1185))) (-15 -1825 ((-112) |#1| (-114))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3810 ((-649 (-114)) |#1|)) (-15 -3663 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1427 ((-776) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -2687 (|#1| (-649 |#1|))) (-15 -2687 (|#1| |#1|)) (-15 -4213 (|#1| (-649 |#1|))) (-15 -4213 (|#1| |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|))) (-305)) (T -304))
+((-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-304 *3)) (-4 *3 (-305)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305)))))
+(-10 -8 (-15 -2719 ((-112) |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -1852 ((-112) |#1| (-1185))) (-15 -1852 ((-112) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1354 (|#1| (-114) (-649 |#1|))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -1825 ((-112) |#1| (-1185))) (-15 -1825 ((-112) |#1| (-114))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3810 ((-649 (-114)) |#1|)) (-15 -3663 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1427 ((-776) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -2687 (|#1| (-649 |#1|))) (-15 -2687 (|#1| |#1|)) (-15 -4213 (|#1| (-649 |#1|))) (-15 -4213 (|#1| |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|)))
+((-2417 (((-112) $ $) 7)) (-3663 (((-649 (-617 $)) $) 39)) (-4296 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-4381 (((-3 (-617 $) "failed") $) 64)) (-3150 (((-617 $) $) 65)) (-2687 (($ $) 46) (($ (-649 $)) 45)) (-3810 (((-649 (-114)) $) 38)) (-3746 (((-114) (-114)) 37)) (-2719 (((-112) $) 17 (|has| $ (-1046 (-569))))) (-2341 (((-1181 $) (-617 $)) 20 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 31)) (-2391 (((-3 (-617 $) "failed") $) 41)) (-3435 (((-1167) $) 10)) (-3736 (((-649 (-617 $)) $) 40)) (-1354 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-1825 (((-112) $ (-114)) 35) (((-112) $ (-1185)) 34)) (-1427 (((-776) $) 42)) (-3547 (((-1128) $) 11)) (-1852 (((-112) $ $) 30) (((-112) $ (-1185)) 29)) (-4024 (((-112) $) 18 (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1185) (-1 $ (-649 $))) 26) (($ $ (-1185) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1869 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-2190 (($ $) 44) (($ $ $) 43)) (-4061 (($ $) 19 (|has| $ (-1057)))) (-3796 (((-867) $) 12) (($ (-617 $)) 63)) (-4213 (($ $) 48) (($ (-649 $)) 47)) (-4052 (((-112) (-114)) 36)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
(((-305) (-140)) (T -305))
-((-1866 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1866 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1866 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1866 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *1)) (-4 *1 (-305)))) (-4293 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *1))) (-4 *1 (-305)))) (-4293 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-617 *1))) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4211 (*1 *1 *1) (-4 *1 (-305))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-2223 (*1 *1 *1) (-4 *1 (-305))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-1676 (*1 *1 *1) (-4 *1 (-305))) (-1676 (*1 *1 *1 *1) (-4 *1 (-305))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776)))) (-1574 (*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114))))) (-3743 (*1 *2 *2) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-4142 (*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2374 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2374 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112)))) (-1352 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1352 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-1344 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-617 *1)) (-4 *1 (-305)))) (-1335 (*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112)))) (-1335 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-1055)) (-4 *1 (-305)) (-5 *2 (-1179 *1)))) (-4143 (*1 *1 *1) (-12 (-4 *1 (-1055)) (-4 *1 (-305)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))))
-(-13 (-1106) (-1044 (-617 $)) (-519 (-617 $) $) (-312 $) (-10 -8 (-15 -1866 ($ (-114) $)) (-15 -1866 ($ (-114) $ $)) (-15 -1866 ($ (-114) $ $ $)) (-15 -1866 ($ (-114) $ $ $ $)) (-15 -1866 ($ (-114) (-649 $))) (-15 -4293 ($ $ (-297 $))) (-15 -4293 ($ $ (-649 (-297 $)))) (-15 -4293 ($ $ (-649 (-617 $)) (-649 $))) (-15 -4211 ($ $)) (-15 -4211 ($ (-649 $))) (-15 -2223 ($ $)) (-15 -2223 ($ (-649 $))) (-15 -1676 ($ $)) (-15 -1676 ($ $ $)) (-15 -1425 ((-776) $)) (-15 -1574 ((-3 (-617 $) "failed") $)) (-15 -3733 ((-649 (-617 $)) $)) (-15 -3660 ((-649 (-617 $)) $)) (-15 -1463 ((-649 (-114)) $)) (-15 -3743 ((-114) (-114))) (-15 -4142 ((-112) (-114))) (-15 -2374 ((-112) $ (-114))) (-15 -2374 ((-112) $ (-1183))) (-15 -1352 ($ (-114) $)) (-15 -1352 ($ (-114) (-649 $))) (-15 -1344 ($ (-1 $ $) (-617 $))) (-15 -1335 ((-112) $ $)) (-15 -1335 ((-112) $ (-1183))) (-15 -1723 ($ $ (-649 (-1183)) (-649 (-1 $ $)))) (-15 -1723 ($ $ (-649 (-1183)) (-649 (-1 $ (-649 $))))) (-15 -1723 ($ $ (-1183) (-1 $ (-649 $)))) (-15 -1723 ($ $ (-1183) (-1 $ $))) (-15 -1723 ($ $ (-649 (-114)) (-649 (-1 $ $)))) (-15 -1723 ($ $ (-649 (-114)) (-649 (-1 $ (-649 $))))) (-15 -1723 ($ $ (-114) (-1 $ (-649 $)))) (-15 -1723 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1055)) (PROGN (-15 -4362 ((-1179 $) (-617 $))) (-15 -4143 ($ $))) |%noBranch|) (IF (|has| $ (-1044 (-569))) (PROGN (-15 -2108 ((-112) $)) (-15 -1607 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-621 #0=(-617 $)) . T) ((-618 (-867)) . T) ((-312 $) . T) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-1044 #0#) . T) ((-1106) . T))
-((-2466 (((-649 |#1|) (-649 |#1|)) 10)))
-(((-306 |#1|) (-10 -7 (-15 -2466 ((-649 |#1|) (-649 |#1|)))) (-853)) (T -306))
-((-2466 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3)))))
-(-10 -7 (-15 -2466 ((-649 |#1|) (-649 |#1|))))
-((-1344 (((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)) 17)))
-(((-307 |#1| |#2|) (-10 -7 (-15 -1344 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)))) (-1055) (-1055)) (T -307))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6)))))
-(-10 -7 (-15 -1344 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|))))
-((-1919 (((-1273 (-319 (-383))) (-1273 (-319 (-226)))) 112)) (-3187 (((-1100 (-848 (-226))) (-1100 (-848 (-383)))) 45)) (-2226 (((-649 (-1165)) (-1163 (-226))) 94)) (-2048 (((-319 (-383)) (-958 (-226))) 55)) (-2136 (((-226) (-958 (-226))) 51)) (-4398 (((-1165) (-383)) 197)) (-3092 (((-848 (-226)) (-848 (-383))) 39)) (-3725 (((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1273 (-319 (-226)))) 165)) (-2975 (((-1041) (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) 209) (((-1041) (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) 207)) (-2378 (((-694 (-226)) (-649 (-226)) (-776)) 21)) (-2921 (((-1273 (-704)) (-649 (-226))) 101)) (-2147 (((-649 (-1165)) (-649 (-226))) 81)) (-1359 (((-3 (-319 (-226)) "failed") (-319 (-226))) 130)) (-3029 (((-112) (-226) (-1100 (-848 (-226)))) 119)) (-3176 (((-1041) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) 226)) (-2302 (((-226) (-1100 (-848 (-226)))) 114)) (-2380 (((-226) (-1100 (-848 (-226)))) 115)) (-2311 (((-226) (-412 (-569))) 33)) (-2069 (((-1165) (-383)) 79)) (-4150 (((-226) (-383)) 24)) (-3625 (((-383) (-1273 (-319 (-226)))) 179)) (-4245 (((-319 (-226)) (-319 (-383))) 30)) (-3411 (((-412 (-569)) (-319 (-226))) 58)) (-2517 (((-319 (-412 (-569))) (-319 (-226))) 75)) (-3011 (((-319 (-383)) (-319 (-226))) 105)) (-3518 (((-226) (-319 (-226))) 59)) (-2729 (((-649 (-226)) (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) 70)) (-2619 (((-1100 (-848 (-226))) (-1100 (-848 (-226)))) 67)) (-1992 (((-1165) (-226)) 78)) (-2835 (((-704) (-226)) 97)) (-3289 (((-412 (-569)) (-226)) 60)) (-2224 (((-319 (-383)) (-226)) 54)) (-1408 (((-649 (-1100 (-848 (-226)))) (-649 (-1100 (-848 (-383))))) 48)) (-2441 (((-1041) (-649 (-1041))) 193) (((-1041) (-1041) (-1041)) 187)) (-3076 (((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
-(((-308) (-10 -7 (-15 -4150 ((-226) (-383))) (-15 -4245 ((-319 (-226)) (-319 (-383)))) (-15 -3092 ((-848 (-226)) (-848 (-383)))) (-15 -3187 ((-1100 (-848 (-226))) (-1100 (-848 (-383))))) (-15 -1408 ((-649 (-1100 (-848 (-226)))) (-649 (-1100 (-848 (-383)))))) (-15 -3289 ((-412 (-569)) (-226))) (-15 -3411 ((-412 (-569)) (-319 (-226)))) (-15 -3518 ((-226) (-319 (-226)))) (-15 -1359 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -3625 ((-383) (-1273 (-319 (-226))))) (-15 -3725 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1273 (-319 (-226))))) (-15 -2517 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2619 ((-1100 (-848 (-226))) (-1100 (-848 (-226))))) (-15 -2729 ((-649 (-226)) (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))) (-15 -2835 ((-704) (-226))) (-15 -2921 ((-1273 (-704)) (-649 (-226)))) (-15 -3011 ((-319 (-383)) (-319 (-226)))) (-15 -1919 ((-1273 (-319 (-383))) (-1273 (-319 (-226))))) (-15 -3029 ((-112) (-226) (-1100 (-848 (-226))))) (-15 -1992 ((-1165) (-226))) (-15 -2069 ((-1165) (-383))) (-15 -2147 ((-649 (-1165)) (-649 (-226)))) (-15 -2226 ((-649 (-1165)) (-1163 (-226)))) (-15 -2302 ((-226) (-1100 (-848 (-226))))) (-15 -2380 ((-226) (-1100 (-848 (-226))))) (-15 -2441 ((-1041) (-1041) (-1041))) (-15 -2441 ((-1041) (-649 (-1041)))) (-15 -4398 ((-1165) (-383))) (-15 -2975 ((-1041) (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))))) (-15 -2975 ((-1041) (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))) (-15 -3076 ((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3176 ((-1041) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -2048 ((-319 (-383)) (-958 (-226)))) (-15 -2136 ((-226) (-958 (-226)))) (-15 -2224 ((-319 (-383)) (-226))) (-15 -2311 ((-226) (-412 (-569)))) (-15 -2378 ((-694 (-226)) (-649 (-226)) (-776))))) (T -308))
-((-2378 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-308)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-649 (-1041))) (-5 *2 (-1041)) (-5 *1 (-308)))) (-2441 (*1 *2 *2 *2) (-12 (-5 *2 (-1041)) (-5 *1 (-308)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-308)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-308)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-1273 (-319 (-383)))) (-5 *1 (-308)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1273 (-704))) (-5 *1 (-308)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-5 *2 (-649 (-226))) (-5 *1 (-308)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-1100 (-848 (-226)))) (-5 *1 (-308)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569)))) (-5 *1 (-308)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569)))) (-5 *1 (-308)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308)))) (-1359 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-649 (-1100 (-848 (-383))))) (-5 *2 (-649 (-1100 (-848 (-226))))) (-5 *1 (-308)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1100 (-848 (-383)))) (-5 *2 (-1100 (-848 (-226)))) (-5 *1 (-308)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308)))))
-(-10 -7 (-15 -4150 ((-226) (-383))) (-15 -4245 ((-319 (-226)) (-319 (-383)))) (-15 -3092 ((-848 (-226)) (-848 (-383)))) (-15 -3187 ((-1100 (-848 (-226))) (-1100 (-848 (-383))))) (-15 -1408 ((-649 (-1100 (-848 (-226)))) (-649 (-1100 (-848 (-383)))))) (-15 -3289 ((-412 (-569)) (-226))) (-15 -3411 ((-412 (-569)) (-319 (-226)))) (-15 -3518 ((-226) (-319 (-226)))) (-15 -1359 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -3625 ((-383) (-1273 (-319 (-226))))) (-15 -3725 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1273 (-319 (-226))))) (-15 -2517 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2619 ((-1100 (-848 (-226))) (-1100 (-848 (-226))))) (-15 -2729 ((-649 (-226)) (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))) (-15 -2835 ((-704) (-226))) (-15 -2921 ((-1273 (-704)) (-649 (-226)))) (-15 -3011 ((-319 (-383)) (-319 (-226)))) (-15 -1919 ((-1273 (-319 (-383))) (-1273 (-319 (-226))))) (-15 -3029 ((-112) (-226) (-1100 (-848 (-226))))) (-15 -1992 ((-1165) (-226))) (-15 -2069 ((-1165) (-383))) (-15 -2147 ((-649 (-1165)) (-649 (-226)))) (-15 -2226 ((-649 (-1165)) (-1163 (-226)))) (-15 -2302 ((-226) (-1100 (-848 (-226))))) (-15 -2380 ((-226) (-1100 (-848 (-226))))) (-15 -2441 ((-1041) (-1041) (-1041))) (-15 -2441 ((-1041) (-649 (-1041)))) (-15 -4398 ((-1165) (-383))) (-15 -2975 ((-1041) (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))))) (-15 -2975 ((-1041) (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))) (-15 -3076 ((-1041) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3176 ((-1041) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -2048 ((-319 (-383)) (-958 (-226)))) (-15 -2136 ((-226) (-958 (-226)))) (-15 -2224 ((-319 (-383)) (-226))) (-15 -2311 ((-226) (-412 (-569)))) (-15 -2378 ((-694 (-226)) (-649 (-226)) (-776))))
-((-1680 (((-112) $ $) 14)) (-2366 (($ $ $) 18)) (-2373 (($ $ $) 17)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 50)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 65)) (-1864 (($ $ $) 25) (($ (-649 $)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2405 (((-3 $ "failed") $ $) 21)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 53)))
-(((-309 |#1|) (-10 -8 (-15 -1391 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1477 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1477 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2330 |#1|)) |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -1680 ((-112) |#1| |#1|)) (-15 -2404 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1336 ((-2 (|:| -1433 (-649 |#1|)) (|:| -2330 |#1|)) (-649 |#1|))) (-15 -1864 (|#1| (-649 |#1|))) (-15 -1864 (|#1| |#1| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|))) (-310)) (T -309))
-NIL
-(-10 -8 (-15 -1391 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1477 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1477 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2330 |#1|)) |#1| |#1|)) (-15 -2366 (|#1| |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -1680 ((-112) |#1| |#1|)) (-15 -2404 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1336 ((-2 (|:| -1433 (-649 |#1|)) (|:| -2330 |#1|)) (-649 |#1|))) (-15 -1864 (|#1| (-649 |#1|))) (-15 -1864 (|#1| |#1| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-1680 (((-112) $ $) 65)) (-4188 (($) 18 T CONST)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-2623 (((-112) $) 35)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-1869 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *1)) (-4 *1 (-305)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *1))) (-4 *1 (-305)))) (-4296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-617 *1))) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4213 (*1 *1 *1) (-4 *1 (-305))) (-4213 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-2687 (*1 *1 *1) (-4 *1 (-305))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-2190 (*1 *1 *1) (-4 *1 (-305))) (-2190 (*1 *1 *1 *1) (-4 *1 (-305))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776)))) (-2391 (*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114))))) (-3746 (*1 *2 *2) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-4052 (*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112)))) (-1354 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1354 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-1346 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-617 *1)) (-4 *1 (-305)))) (-1852 (*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112)))) (-1852 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-1057)) (-4 *1 (-305)) (-5 *2 (-1181 *1)))) (-4061 (*1 *1 *1) (-12 (-4 *1 (-1057)) (-4 *1 (-305)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))))
+(-13 (-1108) (-1046 (-617 $)) (-519 (-617 $) $) (-312 $) (-10 -8 (-15 -1869 ($ (-114) $)) (-15 -1869 ($ (-114) $ $)) (-15 -1869 ($ (-114) $ $ $)) (-15 -1869 ($ (-114) $ $ $ $)) (-15 -1869 ($ (-114) (-649 $))) (-15 -4296 ($ $ (-297 $))) (-15 -4296 ($ $ (-649 (-297 $)))) (-15 -4296 ($ $ (-649 (-617 $)) (-649 $))) (-15 -4213 ($ $)) (-15 -4213 ($ (-649 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-649 $))) (-15 -2190 ($ $)) (-15 -2190 ($ $ $)) (-15 -1427 ((-776) $)) (-15 -2391 ((-3 (-617 $) "failed") $)) (-15 -3736 ((-649 (-617 $)) $)) (-15 -3663 ((-649 (-617 $)) $)) (-15 -3810 ((-649 (-114)) $)) (-15 -3746 ((-114) (-114))) (-15 -4052 ((-112) (-114))) (-15 -1825 ((-112) $ (-114))) (-15 -1825 ((-112) $ (-1185))) (-15 -1354 ($ (-114) $)) (-15 -1354 ($ (-114) (-649 $))) (-15 -1346 ($ (-1 $ $) (-617 $))) (-15 -1852 ((-112) $ $)) (-15 -1852 ((-112) $ (-1185))) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-1 $ $)))) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-1 $ (-649 $))))) (-15 -1725 ($ $ (-1185) (-1 $ (-649 $)))) (-15 -1725 ($ $ (-1185) (-1 $ $))) (-15 -1725 ($ $ (-649 (-114)) (-649 (-1 $ $)))) (-15 -1725 ($ $ (-649 (-114)) (-649 (-1 $ (-649 $))))) (-15 -1725 ($ $ (-114) (-1 $ (-649 $)))) (-15 -1725 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1057)) (PROGN (-15 -2341 ((-1181 $) (-617 $))) (-15 -4061 ($ $))) |%noBranch|) (IF (|has| $ (-1046 (-569))) (PROGN (-15 -4024 ((-112) $)) (-15 -2719 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-621 #0=(-617 $)) . T) ((-618 (-867)) . T) ((-312 $) . T) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-1046 #0#) . T) ((-1108) . T))
+((-3308 (((-649 |#1|) (-649 |#1|)) 10)))
+(((-306 |#1|) (-10 -7 (-15 -3308 ((-649 |#1|) (-649 |#1|)))) (-853)) (T -306))
+((-3308 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3)))))
+(-10 -7 (-15 -3308 ((-649 |#1|) (-649 |#1|))))
+((-1346 (((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)) 17)))
+(((-307 |#1| |#2|) (-10 -7 (-15 -1346 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)))) (-1057) (-1057)) (T -307))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6)))))
+(-10 -7 (-15 -1346 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|))))
+((-2569 (((-1275 (-319 (-383))) (-1275 (-319 (-226)))) 112)) (-4100 (((-1102 (-848 (-226))) (-1102 (-848 (-383)))) 45)) (-2718 (((-649 (-1167)) (-1165 (-226))) 94)) (-1511 (((-319 (-383)) (-958 (-226))) 55)) (-4297 (((-226) (-958 (-226))) 51)) (-1491 (((-1167) (-383)) 197)) (-4396 (((-848 (-226)) (-848 (-383))) 39)) (-2375 (((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1275 (-319 (-226)))) 165)) (-2558 (((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) 209) (((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) 207)) (-1863 (((-694 (-226)) (-649 (-226)) (-776)) 21)) (-3297 (((-1275 (-704)) (-649 (-226))) 101)) (-3161 (((-649 (-1167)) (-649 (-226))) 81)) (-1361 (((-3 (-319 (-226)) "failed") (-319 (-226))) 130)) (-1926 (((-112) (-226) (-1102 (-848 (-226)))) 119)) (-4005 (((-1043) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) 226)) (-2278 (((-226) (-1102 (-848 (-226)))) 114)) (-3783 (((-226) (-1102 (-848 (-226)))) 115)) (-2352 (((-226) (-412 (-569))) 33)) (-1740 (((-1167) (-383)) 79)) (-4108 (((-226) (-383)) 24)) (-2640 (((-383) (-1275 (-319 (-226)))) 179)) (-3786 (((-319 (-226)) (-319 (-383))) 30)) (-2421 (((-412 (-569)) (-319 (-226))) 58)) (-2560 (((-319 (-412 (-569))) (-319 (-226))) 75)) (-2938 (((-319 (-383)) (-319 (-226))) 105)) (-4127 (((-226) (-319 (-226))) 59)) (-4032 (((-649 (-226)) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) 70)) (-2320 (((-1102 (-848 (-226))) (-1102 (-848 (-226)))) 67)) (-2145 (((-1167) (-226)) 78)) (-3803 (((-704) (-226)) 97)) (-2575 (((-412 (-569)) (-226)) 60)) (-2696 (((-319 (-383)) (-226)) 54)) (-1410 (((-649 (-1102 (-848 (-226)))) (-649 (-1102 (-848 (-383))))) 48)) (-2443 (((-1043) (-649 (-1043))) 193) (((-1043) (-1043) (-1043)) 187)) (-2318 (((-1043) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
+(((-308) (-10 -7 (-15 -4108 ((-226) (-383))) (-15 -3786 ((-319 (-226)) (-319 (-383)))) (-15 -4396 ((-848 (-226)) (-848 (-383)))) (-15 -4100 ((-1102 (-848 (-226))) (-1102 (-848 (-383))))) (-15 -1410 ((-649 (-1102 (-848 (-226)))) (-649 (-1102 (-848 (-383)))))) (-15 -2575 ((-412 (-569)) (-226))) (-15 -2421 ((-412 (-569)) (-319 (-226)))) (-15 -4127 ((-226) (-319 (-226)))) (-15 -1361 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2640 ((-383) (-1275 (-319 (-226))))) (-15 -2375 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1275 (-319 (-226))))) (-15 -2560 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2320 ((-1102 (-848 (-226))) (-1102 (-848 (-226))))) (-15 -4032 ((-649 (-226)) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-15 -3803 ((-704) (-226))) (-15 -3297 ((-1275 (-704)) (-649 (-226)))) (-15 -2938 ((-319 (-383)) (-319 (-226)))) (-15 -2569 ((-1275 (-319 (-383))) (-1275 (-319 (-226))))) (-15 -1926 ((-112) (-226) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -1740 ((-1167) (-383))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -2443 ((-1043) (-1043) (-1043))) (-15 -2443 ((-1043) (-649 (-1043)))) (-15 -1491 ((-1167) (-383))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))))) (-15 -2318 ((-1043) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4005 ((-1043) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -1511 ((-319 (-383)) (-958 (-226)))) (-15 -4297 ((-226) (-958 (-226)))) (-15 -2696 ((-319 (-383)) (-226))) (-15 -2352 ((-226) (-412 (-569)))) (-15 -1863 ((-694 (-226)) (-649 (-226)) (-776))))) (T -308))
+((-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-308)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-4297 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-649 (-1043))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2443 (*1 *2 *2 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-308)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-308)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *4 (-1102 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-308)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-1275 (-319 (-383)))) (-5 *1 (-308)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275 (-704))) (-5 *1 (-308)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *2 (-649 (-226))) (-5 *1 (-308)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1102 (-848 (-226)))) (-5 *1 (-308)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569)))) (-5 *1 (-308)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569)))) (-5 *1 (-308)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308)))) (-1361 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-649 (-1102 (-848 (-383))))) (-5 *2 (-649 (-1102 (-848 (-226))))) (-5 *1 (-308)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-383)))) (-5 *2 (-1102 (-848 (-226)))) (-5 *1 (-308)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308)))))
+(-10 -7 (-15 -4108 ((-226) (-383))) (-15 -3786 ((-319 (-226)) (-319 (-383)))) (-15 -4396 ((-848 (-226)) (-848 (-383)))) (-15 -4100 ((-1102 (-848 (-226))) (-1102 (-848 (-383))))) (-15 -1410 ((-649 (-1102 (-848 (-226)))) (-649 (-1102 (-848 (-383)))))) (-15 -2575 ((-412 (-569)) (-226))) (-15 -2421 ((-412 (-569)) (-319 (-226)))) (-15 -4127 ((-226) (-319 (-226)))) (-15 -1361 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2640 ((-383) (-1275 (-319 (-226))))) (-15 -2375 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1275 (-319 (-226))))) (-15 -2560 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2320 ((-1102 (-848 (-226))) (-1102 (-848 (-226))))) (-15 -4032 ((-649 (-226)) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-15 -3803 ((-704) (-226))) (-15 -3297 ((-1275 (-704)) (-649 (-226)))) (-15 -2938 ((-319 (-383)) (-319 (-226)))) (-15 -2569 ((-1275 (-319 (-383))) (-1275 (-319 (-226))))) (-15 -1926 ((-112) (-226) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -1740 ((-1167) (-383))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -2443 ((-1043) (-1043) (-1043))) (-15 -2443 ((-1043) (-649 (-1043)))) (-15 -1491 ((-1167) (-383))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))))) (-15 -2318 ((-1043) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4005 ((-1043) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -1511 ((-319 (-383)) (-958 (-226)))) (-15 -4297 ((-226) (-958 (-226)))) (-15 -2696 ((-319 (-383)) (-226))) (-15 -2352 ((-226) (-412 (-569)))) (-15 -1863 ((-694 (-226)) (-649 (-226)) (-776))))
+((-2227 (((-112) $ $) 14)) (-2368 (($ $ $) 18)) (-2379 (($ $ $) 17)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 50)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 65)) (-1870 (($ $ $) 25) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2407 (((-3 $ "failed") $ $) 21)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 53)))
+(((-309 |#1|) (-10 -8 (-15 -3817 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -3964 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3964 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -4020 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1865 ((-2 (|:| -1435 (-649 |#1|)) (|:| -2332 |#1|)) (-649 |#1|))) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|))) (-310)) (T -309))
+NIL
+(-10 -8 (-15 -3817 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -3964 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3964 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -4020 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1865 ((-2 (|:| -1435 (-649 |#1|)) (|:| -2332 |#1|)) (-649 |#1|))) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-310) (-140)) (T -310))
-((-1680 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))) (-2282 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-310)))) (-2373 (*1 *1 *1 *1) (-4 *1 (-310))) (-2366 (*1 *1 *1 *1) (-4 *1 (-310))) (-1477 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2330 *1))) (-4 *1 (-310)))) (-1477 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-310)))) (-1391 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310)))))
-(-13 (-926) (-10 -8 (-15 -1680 ((-112) $ $)) (-15 -1578 ((-776) $)) (-15 -2282 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -2373 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -1477 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $)) (-15 -1477 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1391 ((-3 (-649 $) "failed") (-649 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-1723 (($ $ (-649 |#2|) (-649 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-297 |#2|)) 11) (($ $ (-649 (-297 |#2|))) NIL)))
-(((-311 |#1| |#2|) (-10 -8 (-15 -1723 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1723 (|#1| |#1| (-297 |#2|))) (-15 -1723 (|#1| |#1| |#2| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#2|)))) (-312 |#2|) (-1106)) (T -311))
-NIL
-(-10 -8 (-15 -1723 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1723 (|#1| |#1| (-297 |#2|))) (-15 -1723 (|#1| |#1| |#2| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#2|))))
-((-1723 (($ $ (-649 |#1|) (-649 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-297 |#1|)) 11) (($ $ (-649 (-297 |#1|))) 10)))
-(((-312 |#1|) (-140) (-1106)) (T -312))
-((-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1106)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1106)))))
-(-13 (-519 |t#1| |t#1|) (-10 -8 (-15 -1723 ($ $ (-297 |t#1|))) (-15 -1723 ($ $ (-649 (-297 |t#1|))))))
+((-2227 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))) (-2084 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-310)))) (-2379 (*1 *1 *1 *1) (-4 *1 (-310))) (-2368 (*1 *1 *1 *1) (-4 *1 (-310))) (-3964 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) (-4 *1 (-310)))) (-3964 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-310)))) (-3817 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310)))))
+(-13 (-926) (-10 -8 (-15 -2227 ((-112) $ $)) (-15 -2431 ((-776) $)) (-15 -2084 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2379 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -3964 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $)) (-15 -3964 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3817 ((-3 (-649 $) "failed") (-649 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-1725 (($ $ (-649 |#2|) (-649 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-297 |#2|)) 11) (($ $ (-649 (-297 |#2|))) NIL)))
+(((-311 |#1| |#2|) (-10 -8 (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|)))) (-312 |#2|) (-1108)) (T -311))
+NIL
+(-10 -8 (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))))
+((-1725 (($ $ (-649 |#1|) (-649 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-297 |#1|)) 11) (($ $ (-649 (-297 |#1|))) 10)))
+(((-312 |#1|) (-140) (-1108)) (T -312))
+((-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1108)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1108)))))
+(-13 (-519 |t#1| |t#1|) (-10 -8 (-15 -1725 ($ $ (-297 |t#1|))) (-15 -1725 ($ $ (-649 (-297 |t#1|))))))
(((-519 |#1| |#1|) . T))
-((-1723 ((|#1| (-1 |#1| (-569)) (-1185 (-412 (-569)))) 25)))
-(((-313 |#1|) (-10 -7 (-15 -1723 (|#1| (-1 |#1| (-569)) (-1185 (-412 (-569)))))) (-38 (-412 (-569)))) (T -313))
-((-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1185 (-412 (-569)))) (-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-569)))))))
-(-10 -7 (-15 -1723 (|#1| (-1 |#1| (-569)) (-1185 (-412 (-569))))))
-((-2415 (((-112) $ $) NIL)) (-2465 (((-569) $) 12)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1416 (((-1141) $) 9)) (-3793 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-314) (-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -2465 ((-569) $))))) (T -314))
-((-1416 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-314)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-314)))))
-(-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -2465 ((-569) $))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 7)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 9)))
-(((-315) (-1106)) (T -315))
-NIL
-(-1106)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 60)) (-3673 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-1259 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-3 (-1258 |#2| |#3| |#4|) "failed") $) 26)) (-3148 (((-1259 |#1| |#2| |#3| |#4|) $) NIL) (((-1183) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-569) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-569)))) (((-1258 |#2| |#3| |#4|) $) NIL)) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-1259 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1273 (-1259 |#1| |#2| |#3| |#4|)))) (-694 $) (-1273 $)) NIL) (((-694 (-1259 |#1| |#2| |#3| |#4|)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 (((-1259 |#1| |#2| |#3| |#4|) $) 22)) (-3812 (((-3 $ "failed") $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1158)))) (-4327 (((-112) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-3969 (($ $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-1344 (($ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) $) NIL)) (-1513 (((-3 (-848 |#2|) "failed") $) 80)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-310)))) (-2478 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 (-1259 |#1| |#2| |#3| |#4|)) (-649 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-297 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-297 (-1259 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-312 (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-1183)) (-649 (-1259 |#1| |#2| |#3| |#4|))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-519 (-1183) (-1259 |#1| |#2| |#3| |#4|)))) (($ $ (-1183) (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-519 (-1183) (-1259 |#1| |#2| |#3| |#4|))))) (-1578 (((-776) $) NIL)) (-1866 (($ $ (-1259 |#1| |#2| |#3| |#4|)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-289 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))) NIL)) (-1528 (($ $) NIL)) (-4409 (((-1259 |#1| |#2| |#3| |#4|) $) 19)) (-1408 (((-898 (-569)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-619 (-541)))) (((-383) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1028))) (((-226) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1028)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3| |#4|) (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-1259 |#1| |#2| |#3| |#4|)) 30) (($ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-1044 (-1183)))) (($ (-1258 |#2| |#3| |#4|)) 37)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3| |#4|) (-915))) (|has| (-1259 |#1| |#2| |#3| |#4|) (-145))))) (-3302 (((-776)) NIL T CONST)) (-2586 (((-1259 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-825)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1183)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-906 (-1183)))) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|))) NIL)) (-2976 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-1259 |#1| |#2| |#3| |#4|) (-855)))) (-3032 (($ $ $) 35) (($ (-1259 |#1| |#2| |#3| |#4|) (-1259 |#1| |#2| |#3| |#4|)) 32)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-1259 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1259 |#1| |#2| |#3| |#4|)) NIL)))
-(((-316 |#1| |#2| |#3| |#4|) (-13 (-998 (-1259 |#1| |#2| |#3| |#4|)) (-1044 (-1258 |#2| |#3| |#4|)) (-10 -8 (-15 -1513 ((-3 (-848 |#2|) "failed") $)) (-15 -3793 ($ (-1258 |#2| |#3| |#4|))))) (-13 (-1044 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1208) (-435 |#1|)) (-1183) |#2|) (T -316))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1258 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4) (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *1 (-316 *3 *4 *5 *6)))) (-1513 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4))))
-(-13 (-998 (-1259 |#1| |#2| |#3| |#4|)) (-1044 (-1258 |#2| |#3| |#4|)) (-10 -8 (-15 -1513 ((-3 (-848 |#2|) "failed") $)) (-15 -3793 ($ (-1258 |#2| |#3| |#4|)))))
-((-1344 (((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)) 13)))
-(((-317 |#1| |#2|) (-10 -7 (-15 -1344 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)))) (-1106) (-1106)) (T -317))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6)))))
-(-10 -7 (-15 -1344 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|))))
-((-1770 (((-52) |#2| (-297 |#2|) (-776)) 40) (((-52) |#2| (-297 |#2|)) 32) (((-52) |#2| (-776)) 35) (((-52) |#2|) 33) (((-52) (-1183)) 26)) (-3317 (((-52) |#2| (-297 |#2|) (-412 (-569))) 59) (((-52) |#2| (-297 |#2|)) 56) (((-52) |#2| (-412 (-569))) 58) (((-52) |#2|) 57) (((-52) (-1183)) 55)) (-1794 (((-52) |#2| (-297 |#2|) (-412 (-569))) 54) (((-52) |#2| (-297 |#2|)) 51) (((-52) |#2| (-412 (-569))) 53) (((-52) |#2|) 52) (((-52) (-1183)) 50)) (-1781 (((-52) |#2| (-297 |#2|) (-569)) 47) (((-52) |#2| (-297 |#2|)) 44) (((-52) |#2| (-569)) 46) (((-52) |#2|) 45) (((-52) (-1183)) 43)))
-(((-318 |#1| |#2|) (-10 -7 (-15 -1770 ((-52) (-1183))) (-15 -1770 ((-52) |#2|)) (-15 -1770 ((-52) |#2| (-776))) (-15 -1770 ((-52) |#2| (-297 |#2|))) (-15 -1770 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1781 ((-52) (-1183))) (-15 -1781 ((-52) |#2|)) (-15 -1781 ((-52) |#2| (-569))) (-15 -1781 ((-52) |#2| (-297 |#2|))) (-15 -1781 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1794 ((-52) (-1183))) (-15 -1794 ((-52) |#2|)) (-15 -1794 ((-52) |#2| (-412 (-569)))) (-15 -1794 ((-52) |#2| (-297 |#2|))) (-15 -1794 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -3317 ((-52) (-1183))) (-15 -3317 ((-52) |#2|)) (-15 -3317 ((-52) |#2| (-412 (-569)))) (-15 -3317 ((-52) |#2| (-297 |#2|))) (-15 -3317 ((-52) |#2| (-297 |#2|) (-412 (-569))))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -318))
-((-3317 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-3317 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))) (-1794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))) (-1781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 *5) (-644 *5))) (-5 *5 (-569)) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1781 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1781 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1044 *4) (-644 *4))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-1781 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-776)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4))))))
-(-10 -7 (-15 -1770 ((-52) (-1183))) (-15 -1770 ((-52) |#2|)) (-15 -1770 ((-52) |#2| (-776))) (-15 -1770 ((-52) |#2| (-297 |#2|))) (-15 -1770 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1781 ((-52) (-1183))) (-15 -1781 ((-52) |#2|)) (-15 -1781 ((-52) |#2| (-569))) (-15 -1781 ((-52) |#2| (-297 |#2|))) (-15 -1781 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1794 ((-52) (-1183))) (-15 -1794 ((-52) |#2|)) (-15 -1794 ((-52) |#2| (-412 (-569)))) (-15 -1794 ((-52) |#2| (-297 |#2|))) (-15 -1794 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -3317 ((-52) (-1183))) (-15 -3317 ((-52) |#2|)) (-15 -3317 ((-52) |#2| (-412 (-569)))) (-15 -3317 ((-52) |#2| (-297 |#2|))) (-15 -3317 ((-52) |#2| (-297 |#2|) (-412 (-569)))))
-((-2415 (((-112) $ $) NIL)) (-3879 (((-649 $) $ (-1183)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $) (-1183)) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-3288 (($ $ (-1183)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1179 $) (-1183)) NIL (|has| |#1| (-561))) (($ (-1179 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-3192 (((-112) $) 27 (-2774 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-1710 (((-649 (-1183)) $) 368)) (-3763 (((-412 (-1179 $)) $ (-617 $)) NIL (|has| |#1| (-561)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3660 (((-649 (-617 $)) $) NIL)) (-2769 (($ $) 171 (|has| |#1| (-561)))) (-2624 (($ $) 147 (|has| |#1| (-561)))) (-3723 (($ $ (-1098 $)) 232 (|has| |#1| (-561))) (($ $ (-1183)) 228 (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) NIL (-2774 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-4293 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) 386) (($ $ (-649 (-617 $)) (-649 $)) 430)) (-3253 (((-423 (-1179 $)) (-1179 $)) 308 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-2078 (($ $) NIL (|has| |#1| (-561)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-561)))) (-3807 (($ $) NIL (|has| |#1| (-561)))) (-1680 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2744 (($ $) 167 (|has| |#1| (-561)))) (-2600 (($ $) 143 (|has| |#1| (-561)))) (-1614 (($ $ (-569)) 73 (|has| |#1| (-561)))) (-4114 (($ $) 175 (|has| |#1| (-561)))) (-2645 (($ $) 151 (|has| |#1| (-561)))) (-4188 (($) NIL (-2774 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))) CONST)) (-3421 (((-649 $) $ (-1183)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $) (-1183)) NIL (|has| |#1| (-561))) (((-649 $) (-1179 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-3964 (($ $ (-1183)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1179 $) (-1183)) 134 (|has| |#1| (-561))) (($ (-1179 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-4378 (((-3 (-617 $) "failed") $) 18) (((-3 (-1183) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-958 |#1|)) "failed") $) NIL (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) NIL (|has| |#1| (-1055))) (((-3 (-412 (-569)) "failed") $) 46 (-2774 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3148 (((-617 $) $) 12) (((-1183) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-958 |#1|)) $) NIL (|has| |#1| (-561))) (((-958 |#1|) $) NIL (|has| |#1| (-1055))) (((-412 (-569)) $) 319 (-2774 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-2366 (($ $ $) NIL (|has| |#1| (-561)))) (-1630 (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 125 (|has| |#1| (-1055))) (((-694 |#1|) (-694 $)) 115 (|has| |#1| (-1055))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (-3596 (($ $) 96 (|has| |#1| (-561)))) (-2888 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (-2373 (($ $ $) NIL (|has| |#1| (-561)))) (-1667 (($ $ (-1098 $)) 236 (|has| |#1| (-561))) (($ $ (-1183)) 234 (|has| |#1| (-561)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-561)))) (-4073 (((-112) $) NIL (|has| |#1| (-561)))) (-2209 (($ $ $) 202 (|has| |#1| (-561)))) (-1310 (($) 137 (|has| |#1| (-561)))) (-1841 (($ $ $) 222 (|has| |#1| (-561)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 392 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 399 (|has| |#1| (-892 (-383))))) (-2223 (($ $) NIL) (($ (-649 $)) NIL)) (-1463 (((-649 (-114)) $) NIL)) (-3743 (((-114) (-114)) 276)) (-2623 (((-112) $) 25 (-2774 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (-1607 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-3700 (($ $) 72 (|has| |#1| (-1055)))) (-4396 (((-1131 |#1| (-617 $)) $) 91 (|has| |#1| (-1055)))) (-1704 (((-112) $) 62 (|has| |#1| (-561)))) (-2506 (($ $ (-569)) NIL (|has| |#1| (-561)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-4362 (((-1179 $) (-617 $)) 277 (|has| $ (-1055)))) (-1344 (($ (-1 $ $) (-617 $)) 426)) (-1574 (((-3 (-617 $) "failed") $) NIL)) (-2660 (($ $) 141 (|has| |#1| (-561)))) (-4168 (($ $) 247 (|has| |#1| (-561)))) (-1835 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1550 (((-1165) $) NIL)) (-3733 (((-649 (-617 $)) $) 49)) (-1352 (($ (-114) $) NIL) (($ (-114) (-649 $)) 431)) (-2753 (((-3 (-649 $) "failed") $) NIL (|has| |#1| (-1118)))) (-2980 (((-3 (-2 (|:| |val| $) (|:| -4320 (-569))) "failed") $) NIL (|has| |#1| (-1055)))) (-2633 (((-3 (-649 $) "failed") $) 436 (|has| |#1| (-25)))) (-3607 (((-3 (-2 (|:| -1433 (-569)) (|:| |var| (-617 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2865 (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $) NIL (|has| |#1| (-1118))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-114)) NIL (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-1183)) NIL (|has| |#1| (-1055)))) (-2374 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) 51)) (-1814 (($ $) NIL (-2774 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-2391 (($ $ (-1183)) 251 (|has| |#1| (-561))) (($ $ (-1098 $)) 253 (|has| |#1| (-561)))) (-1425 (((-776) $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) 43)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 301 (|has| |#1| (-561)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1335 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-3306 (($ $ (-1183)) 226 (|has| |#1| (-561))) (($ $) 224 (|has| |#1| (-561)))) (-1649 (($ $) 218 (|has| |#1| (-561)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 306 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-3796 (((-423 $) $) NIL (|has| |#1| (-561)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-561)))) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-4386 (($ $) 139 (|has| |#1| (-561)))) (-2108 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1723 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 425) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) 379) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1183)) NIL (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-619 (-541)))) (($ $) NIL (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1183)) 366 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1183)) 365 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) NIL (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-649 $))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ $)) NIL (|has| |#1| (-1055)))) (-1578 (((-776) $) NIL (|has| |#1| (-561)))) (-2553 (($ $) 239 (|has| |#1| (-561)))) (-1866 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-1676 (($ $) NIL) (($ $ $) NIL)) (-2584 (($ $) 249 (|has| |#1| (-561)))) (-2103 (($ $) 200 (|has| |#1| (-561)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-1055))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-1055))) (($ $ (-1183)) NIL (|has| |#1| (-1055)))) (-1528 (($ $) 74 (|has| |#1| (-561)))) (-4409 (((-1131 |#1| (-617 $)) $) 93 (|has| |#1| (-561)))) (-4143 (($ $) 317 (|has| $ (-1055)))) (-4124 (($ $) 177 (|has| |#1| (-561)))) (-2659 (($ $) 153 (|has| |#1| (-561)))) (-2781 (($ $) 173 (|has| |#1| (-561)))) (-2632 (($ $) 149 (|has| |#1| (-561)))) (-2756 (($ $) 169 (|has| |#1| (-561)))) (-2609 (($ $) 145 (|has| |#1| (-561)))) (-1408 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) NIL (|has| |#1| (-561))) (((-541) $) 363 (|has| |#1| (-619 (-541))))) (-3580 (($ $ $) NIL (|has| |#1| (-478)))) (-2292 (($ $ $) NIL (|has| |#1| (-478)))) (-3793 (((-867) $) 424) (($ (-617 $)) 415) (($ (-1183)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-561))) (($ (-48)) 312 (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) (($ (-1131 |#1| (-617 $))) 95 (|has| |#1| (-1055))) (($ (-412 |#1|)) NIL (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) NIL (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) NIL (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) NIL (|has| |#1| (-561))) (($ (-958 |#1|)) NIL (|has| |#1| (-1055))) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-561)) (|has| |#1| (-1044 (-412 (-569)))))) (($ (-569)) 34 (-2774 (|has| |#1| (-1044 (-569))) (|has| |#1| (-1055))))) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL (|has| |#1| (-1055)) CONST)) (-4211 (($ $) NIL) (($ (-649 $)) NIL)) (-2950 (($ $ $) 220 (|has| |#1| (-561)))) (-1357 (($ $ $) 206 (|has| |#1| (-561)))) (-1608 (($ $ $) 210 (|has| |#1| (-561)))) (-2421 (($ $ $) 204 (|has| |#1| (-561)))) (-1493 (($ $ $) 208 (|has| |#1| (-561)))) (-4142 (((-112) (-114)) 10)) (-1441 (((-112) $ $) 86)) (-4161 (($ $) 183 (|has| |#1| (-561)))) (-2699 (($ $) 159 (|has| |#1| (-561)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) 179 (|has| |#1| (-561)))) (-2673 (($ $) 155 (|has| |#1| (-561)))) (-4182 (($ $) 187 (|has| |#1| (-561)))) (-2721 (($ $) 163 (|has| |#1| (-561)))) (-4212 (($ (-1183) $) NIL) (($ (-1183) $ $) NIL) (($ (-1183) $ $ $) NIL) (($ (-1183) $ $ $ $) NIL) (($ (-1183) (-649 $)) NIL)) (-1836 (($ $) 214 (|has| |#1| (-561)))) (-1724 (($ $) 212 (|has| |#1| (-561)))) (-1501 (($ $) 189 (|has| |#1| (-561)))) (-2732 (($ $) 165 (|has| |#1| (-561)))) (-4170 (($ $) 185 (|has| |#1| (-561)))) (-2710 (($ $) 161 (|has| |#1| (-561)))) (-4147 (($ $) 181 (|has| |#1| (-561)))) (-2687 (($ $) 157 (|has| |#1| (-561)))) (-3070 (($ $) 192 (|has| |#1| (-561)))) (-1803 (($) 21 (-2774 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) CONST)) (-4365 (($ $) 243 (|has| |#1| (-561)))) (-1813 (($) 23 (-2774 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))) CONST)) (-2315 (($ $) 194 (|has| |#1| (-561))) (($ $ $) 196 (|has| |#1| (-561)))) (-3256 (($ $) 241 (|has| |#1| (-561)))) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-1055))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-1055))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-1055))) (($ $ (-1183)) NIL (|has| |#1| (-1055)))) (-4268 (($ $) 245 (|has| |#1| (-561)))) (-1994 (($ $ $) 198 (|has| |#1| (-561)))) (-2919 (((-112) $ $) 88)) (-3032 (($ (-1131 |#1| (-617 $)) (-1131 |#1| (-617 $))) 106 (|has| |#1| (-561))) (($ $ $) 42 (-2774 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3021 (($ $ $) 40 (-2774 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (($ $) 29 (-2774 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (-3009 (($ $ $) 38 (-2774 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))) (** (($ $ $) 64 (|has| |#1| (-561))) (($ $ (-412 (-569))) 314 (|has| |#1| (-561))) (($ $ (-569)) 80 (-2774 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 75 (-2774 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118)))) (($ $ (-927)) 84 (-2774 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118))))) (* (($ (-412 (-569)) $) NIL (|has| |#1| (-561))) (($ $ (-412 (-569))) NIL (|has| |#1| (-561))) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))) (($ $ $) 36 (-2774 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) (|has| |#1| (-1118)))) (($ (-569) $) 32 (-2774 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (($ (-776) $) NIL (-2774 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))))) (($ (-927) $) NIL (-2774 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))))))
-(((-319 |#1|) (-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1208)) (-6 (-160)) (-6 (-634)) (-6 (-1145)) (-15 -3596 ($ $)) (-15 -1704 ((-112) $)) (-15 -1614 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -3157 ((-423 (-1179 $)) (-1179 $))) (-15 -3253 ((-423 (-1179 $)) (-1179 $)))) |%noBranch|) (IF (|has| |#1| (-1044 (-569))) (-6 (-1044 (-48))) |%noBranch|)) |%noBranch|))) (-1106)) (T -319))
-((-3596 (*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1106)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))) (-3157 (*1 *2 *3) (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106)))) (-3253 (*1 *2 *3) (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106)))))
-(-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1208)) (-6 (-160)) (-6 (-634)) (-6 (-1145)) (-15 -3596 ($ $)) (-15 -1704 ((-112) $)) (-15 -1614 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -3157 ((-423 (-1179 $)) (-1179 $))) (-15 -3253 ((-423 (-1179 $)) (-1179 $)))) |%noBranch|) (IF (|has| |#1| (-1044 (-569))) (-6 (-1044 (-48))) |%noBranch|)) |%noBranch|)))
-((-1810 (((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)) 89) (((-52) |#2| (-114) (-297 |#2|) (-297 |#2|)) 85) (((-52) |#2| (-114) (-297 |#2|) |#2|) 87) (((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|) 88) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 81) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 83) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 84) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 82) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 90) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|)) 86)))
-(((-320 |#1| |#2|) (-10 -7 (-15 -1810 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -1810 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -1810 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1810 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1810 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1810 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1810 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -1810 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -1810 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -1810 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-561) (-619 (-541))) (-435 |#1|)) (T -320))
-((-1810 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3)) (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *3)))) (-1810 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-1810 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-1810 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *5)))) (-1810 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8))) (-4 *8 (-435 *7)) (-5 *5 (-297 *8)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-1810 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-1810 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8)) (-5 *6 (-649 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-1810 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-1810 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-1810 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5)) (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *5 *6)))))
-(-10 -7 (-15 -1810 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -1810 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -1810 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1810 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1810 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -1810 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -1810 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -1810 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -1810 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -1810 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|))))
-((-3527 (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569) (-1165)) 67) (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569)) 68) (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569) (-1165)) 64) (((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569)) 65)) (-1901 (((-1 (-226) (-226)) (-226)) 66)))
-(((-321) (-10 -7 (-15 -1901 ((-1 (-226) (-226)) (-226))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569) (-1165))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569) (-1165))))) (T -321))
-((-3527 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1165)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-3527 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-3527 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *7 (-1165)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-3527 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *2 (-1218 (-932))) (-5 *1 (-321)))) (-1901 (*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
-(-10 -7 (-15 -1901 ((-1 (-226) (-226)) (-226))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-1 (-226) (-226)) (-569) (-1165))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569))) (-15 -3527 ((-1218 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-226) (-569) (-1165))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 26)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2009 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 20)) (-2769 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) 36)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) 16)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-412 (-569))) NIL) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2660 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2488 (($ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208)))))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-412 (-569))) NIL)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-3352 (((-412 (-569)) $) 17)) (-2679 (($ (-1258 |#1| |#2| |#3|)) 11)) (-4320 (((-1258 |#1| |#2| |#3|) $) 12)) (-4386 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-3868 (((-412 (-569)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 10)) (-3793 (((-867) $) 42) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4184 ((|#1| $ (-412 (-569))) 34)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) NIL)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 28)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 37)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-322 |#1| |#2| |#3|) (-13 (-1254 |#1|) (-797) (-10 -8 (-15 -2679 ($ (-1258 |#1| |#2| |#3|))) (-15 -4320 ((-1258 |#1| |#2| |#3|) $)) (-15 -3352 ((-412 (-569)) $)))) (-367) (-1183) |#1|) (T -322))
-((-2679 (*1 *1 *2) (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-322 *3 *4 *5)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-1258 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183)) (-14 *5 *3))))
-(-13 (-1254 |#1|) (-797) (-10 -8 (-15 -2679 ($ (-1258 |#1| |#2| |#3|))) (-15 -4320 ((-1258 |#1| |#2| |#3|) $)) (-15 -3352 ((-412 (-569)) $))))
-((-2506 (((-2 (|:| -4320 (-776)) (|:| -1433 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776)) 35)) (-2660 (((-649 (-2 (|:| -1433 (-776)) (|:| |logand| |#1|))) (-423 |#1|)) 40)))
-(((-323 |#1|) (-10 -7 (-15 -2506 ((-2 (|:| -4320 (-776)) (|:| -1433 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2660 ((-649 (-2 (|:| -1433 (-776)) (|:| |logand| |#1|))) (-423 |#1|)))) (-561)) (T -323))
-((-2660 (*1 *2 *3) (-12 (-5 *3 (-423 *4)) (-4 *4 (-561)) (-5 *2 (-649 (-2 (|:| -1433 (-776)) (|:| |logand| *4)))) (-5 *1 (-323 *4)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-423 *5)) (-4 *5 (-561)) (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *5) (|:| |radicand| (-649 *5)))) (-5 *1 (-323 *5)) (-5 *4 (-776)))))
-(-10 -7 (-15 -2506 ((-2 (|:| -4320 (-776)) (|:| -1433 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2660 ((-649 (-2 (|:| -1433 (-776)) (|:| |logand| |#1|))) (-423 |#1|))))
-((-1710 (((-649 |#2|) (-1179 |#4|)) 44)) (-1383 ((|#3| (-569)) 47)) (-3652 (((-1179 |#4|) (-1179 |#3|)) 30)) (-4390 (((-1179 |#4|) (-1179 |#4|) (-569)) 66)) (-1440 (((-1179 |#3|) (-1179 |#4|)) 21)) (-3868 (((-649 (-776)) (-1179 |#4|) (-649 |#2|)) 41)) (-3756 (((-1179 |#3|) (-1179 |#4|) (-649 |#2|) (-649 |#3|)) 35)))
-(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3756 ((-1179 |#3|) (-1179 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -3868 ((-649 (-776)) (-1179 |#4|) (-649 |#2|))) (-15 -1710 ((-649 |#2|) (-1179 |#4|))) (-15 -1440 ((-1179 |#3|) (-1179 |#4|))) (-15 -3652 ((-1179 |#4|) (-1179 |#3|))) (-15 -4390 ((-1179 |#4|) (-1179 |#4|) (-569))) (-15 -1383 (|#3| (-569)))) (-798) (-855) (-1055) (-955 |#3| |#1| |#2|)) (T -324))
-((-1383 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1055)) (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5)))) (-4390 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *1 (-324 *4 *5 *6 *7)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-1179 *6)) (-4 *6 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1179 *7)) (-5 *1 (-324 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-1179 *6)) (-5 *1 (-324 *4 *5 *6 *7)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-649 *5)) (-5 *1 (-324 *4 *5 *6 *7)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855)) (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1055)) (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8)))) (-3756 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8)) (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-1179 *8)) (-5 *1 (-324 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3756 ((-1179 |#3|) (-1179 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -3868 ((-649 (-776)) (-1179 |#4|) (-649 |#2|))) (-15 -1710 ((-649 |#2|) (-1179 |#4|))) (-15 -1440 ((-1179 |#3|) (-1179 |#4|))) (-15 -3652 ((-1179 |#4|) (-1179 |#3|))) (-15 -4390 ((-1179 |#4|) (-1179 |#4|) (-569))) (-15 -1383 (|#3| (-569))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 19)) (-2009 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-569)))) $) 21)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3470 (((-776) $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3252 ((|#1| $ (-569)) NIL)) (-3774 (((-569) $ (-569)) NIL)) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-1854 (($ (-1 |#1| |#1|) $) NIL)) (-3681 (($ (-1 (-569) (-569)) $) 11)) (-1550 (((-1165) $) NIL)) (-1506 (($ $ $) NIL (|has| (-569) (-797)))) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ |#1|) NIL)) (-4184 (((-569) |#1| $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) 29 (|has| |#1| (-855)))) (-3021 (($ $) 12) (($ $ $) 28)) (-3009 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL) (($ (-569) |#1|) 27)))
-(((-325 |#1|) (-13 (-21) (-722 (-569)) (-326 |#1| (-569)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|))) (-1106)) (T -325))
+((-1725 ((|#1| (-1 |#1| (-569)) (-1187 (-412 (-569)))) 25)))
+(((-313 |#1|) (-10 -7 (-15 -1725 (|#1| (-1 |#1| (-569)) (-1187 (-412 (-569)))))) (-38 (-412 (-569)))) (T -313))
+((-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1187 (-412 (-569)))) (-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-569)))))))
+(-10 -7 (-15 -1725 (|#1| (-1 |#1| (-569)) (-1187 (-412 (-569))))))
+((-2417 (((-112) $ $) NIL)) (-2467 (((-569) $) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 9)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-314) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -2467 ((-569) $))))) (T -314))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-314)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-314)))))
+(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -2467 ((-569) $))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 7)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)))
+(((-315) (-1108)) (T -315))
+NIL
+(-1108)
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 60)) (-1938 (((-1261 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1261 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-3 (-1260 |#2| |#3| |#4|) "failed") $) 26)) (-3150 (((-1261 |#1| |#2| |#3| |#4|) $) NIL) (((-1185) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-569) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-1260 |#2| |#3| |#4|) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-1261 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1275 (-1261 |#1| |#2| |#3| |#4|)))) (-694 $) (-1275 $)) NIL) (((-694 (-1261 |#1| |#2| |#3| |#4|)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-1261 |#1| |#2| |#3| |#4|) $) 22)) (-3885 (((-3 $ "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1160)))) (-2051 (((-112) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2839 (($ $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-1346 (($ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) $) NIL)) (-3013 (((-3 (-848 |#2|) "failed") $) 80)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-310)))) (-3465 (((-1261 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-1261 |#1| |#2| |#3| |#4|)) (-649 (-1261 |#1| |#2| |#3| |#4|))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-297 (-1261 |#1| |#2| |#3| |#4|))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-297 (-1261 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-1185)) (-649 (-1261 |#1| |#2| |#3| |#4|))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-519 (-1185) (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-1185) (-1261 |#1| |#2| |#3| |#4|)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-519 (-1185) (-1261 |#1| |#2| |#3| |#4|))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-1261 |#1| |#2| |#3| |#4|)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-289 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1185)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-1261 |#1| |#2| |#3| |#4|) $) 19)) (-1410 (((-898 (-569)) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-619 (-541)))) (((-383) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1030))) (((-226) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3| |#4|) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-1261 |#1| |#2| |#3| |#4|)) 30) (($ (-1185)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-1185)))) (($ (-1260 |#2| |#3| |#4|)) 37)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3| |#4|) (-915))) (|has| (-1261 |#1| |#2| |#3| |#4|) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-1261 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1185)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-3035 (($ $ $) 35) (($ (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) 32)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-1261 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1261 |#1| |#2| |#3| |#4|)) NIL)))
+(((-316 |#1| |#2| |#3| |#4|) (-13 (-1000 (-1261 |#1| |#2| |#3| |#4|)) (-1046 (-1260 |#2| |#3| |#4|)) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -3796 ($ (-1260 |#2| |#3| |#4|))))) (-13 (-1046 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1210) (-435 |#1|)) (-1185) |#2|) (T -316))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4) (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *1 (-316 *3 *4 *5 *6)))) (-3013 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4))))
+(-13 (-1000 (-1261 |#1| |#2| |#3| |#4|)) (-1046 (-1260 |#2| |#3| |#4|)) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -3796 ($ (-1260 |#2| |#3| |#4|)))))
+((-1346 (((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)) 13)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -1346 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)))) (-1108) (-1108)) (T -317))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6)))))
+(-10 -7 (-15 -1346 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|))))
+((-1773 (((-52) |#2| (-297 |#2|) (-776)) 40) (((-52) |#2| (-297 |#2|)) 32) (((-52) |#2| (-776)) 35) (((-52) |#2|) 33) (((-52) (-1185)) 26)) (-3323 (((-52) |#2| (-297 |#2|) (-412 (-569))) 59) (((-52) |#2| (-297 |#2|)) 56) (((-52) |#2| (-412 (-569))) 58) (((-52) |#2|) 57) (((-52) (-1185)) 55)) (-1797 (((-52) |#2| (-297 |#2|) (-412 (-569))) 54) (((-52) |#2| (-297 |#2|)) 51) (((-52) |#2| (-412 (-569))) 53) (((-52) |#2|) 52) (((-52) (-1185)) 50)) (-1784 (((-52) |#2| (-297 |#2|) (-569)) 47) (((-52) |#2| (-297 |#2|)) 44) (((-52) |#2| (-569)) 46) (((-52) |#2|) 45) (((-52) (-1185)) 43)))
+(((-318 |#1| |#2|) (-10 -7 (-15 -1773 ((-52) (-1185))) (-15 -1773 ((-52) |#2|)) (-15 -1773 ((-52) |#2| (-776))) (-15 -1773 ((-52) |#2| (-297 |#2|))) (-15 -1773 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1784 ((-52) (-1185))) (-15 -1784 ((-52) |#2|)) (-15 -1784 ((-52) |#2| (-569))) (-15 -1784 ((-52) |#2| (-297 |#2|))) (-15 -1784 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1797 ((-52) (-1185))) (-15 -1797 ((-52) |#2|)) (-15 -1797 ((-52) |#2| (-412 (-569)))) (-15 -1797 ((-52) |#2| (-297 |#2|))) (-15 -1797 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -3323 ((-52) (-1185))) (-15 -3323 ((-52) |#2|)) (-15 -3323 ((-52) |#2| (-412 (-569)))) (-15 -3323 ((-52) |#2| (-297 |#2|))) (-15 -3323 ((-52) |#2| (-297 |#2|) (-412 (-569))))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -318))
+((-3323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1797 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 *5) (-644 *5))) (-5 *5 (-569)) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1046 *4) (-644 *4))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1784 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-776)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1773 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))))
+(-10 -7 (-15 -1773 ((-52) (-1185))) (-15 -1773 ((-52) |#2|)) (-15 -1773 ((-52) |#2| (-776))) (-15 -1773 ((-52) |#2| (-297 |#2|))) (-15 -1773 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1784 ((-52) (-1185))) (-15 -1784 ((-52) |#2|)) (-15 -1784 ((-52) |#2| (-569))) (-15 -1784 ((-52) |#2| (-297 |#2|))) (-15 -1784 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1797 ((-52) (-1185))) (-15 -1797 ((-52) |#2|)) (-15 -1797 ((-52) |#2| (-412 (-569)))) (-15 -1797 ((-52) |#2| (-297 |#2|))) (-15 -1797 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -3323 ((-52) (-1185))) (-15 -3323 ((-52) |#2|)) (-15 -3323 ((-52) |#2| (-412 (-569)))) (-15 -3323 ((-52) |#2| (-297 |#2|))) (-15 -3323 ((-52) |#2| (-297 |#2|) (-412 (-569)))))
+((-2417 (((-112) $ $) NIL)) (-3194 (((-649 $) $ (-1185)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $) (-1185)) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-2565 (($ $ (-1185)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1181 $) (-1185)) NIL (|has| |#1| (-561))) (($ (-1181 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-4143 (((-112) $) 27 (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-1712 (((-649 (-1185)) $) 368)) (-3767 (((-412 (-1181 $)) $ (-617 $)) NIL (|has| |#1| (-561)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3663 (((-649 (-617 $)) $) NIL)) (-2771 (($ $) 171 (|has| |#1| (-561)))) (-2626 (($ $) 147 (|has| |#1| (-561)))) (-2365 (($ $ (-1100 $)) 232 (|has| |#1| (-561))) (($ $ (-1185)) 228 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) 386) (($ $ (-649 (-617 $)) (-649 $)) 430)) (-3534 (((-423 (-1181 $)) (-1181 $)) 308 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-1830 (($ $) NIL (|has| |#1| (-561)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-561)))) (-3813 (($ $) NIL (|has| |#1| (-561)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2746 (($ $) 167 (|has| |#1| (-561)))) (-2601 (($ $) 143 (|has| |#1| (-561)))) (-2801 (($ $ (-569)) 73 (|has| |#1| (-561)))) (-4118 (($ $) 175 (|has| |#1| (-561)))) (-2647 (($ $) 151 (|has| |#1| (-561)))) (-4427 (($) NIL (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))) CONST)) (-1333 (((-649 $) $ (-1185)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $) (-1185)) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-2793 (($ $ (-1185)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1181 $) (-1185)) 134 (|has| |#1| (-561))) (($ (-1181 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-4381 (((-3 (-617 $) "failed") $) 18) (((-3 (-1185) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-958 |#1|)) "failed") $) NIL (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) NIL (|has| |#1| (-1057))) (((-3 (-412 (-569)) "failed") $) 46 (-2776 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 (((-617 $) $) 12) (((-1185) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-958 |#1|)) $) NIL (|has| |#1| (-561))) (((-958 |#1|) $) NIL (|has| |#1| (-1057))) (((-412 (-569)) $) 319 (-2776 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2368 (($ $ $) NIL (|has| |#1| (-561)))) (-2957 (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 125 (|has| |#1| (-1057))) (((-694 |#1|) (-694 $)) 115 (|has| |#1| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (-3598 (($ $) 96 (|has| |#1| (-561)))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))))) (-2379 (($ $ $) NIL (|has| |#1| (-561)))) (-2103 (($ $ (-1100 $)) 236 (|has| |#1| (-561))) (($ $ (-1185)) 234 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-561)))) (-1473 (((-112) $) NIL (|has| |#1| (-561)))) (-2533 (($ $ $) 202 (|has| |#1| (-561)))) (-1312 (($) 137 (|has| |#1| (-561)))) (-3074 (($ $ $) 222 (|has| |#1| (-561)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 392 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 399 (|has| |#1| (-892 (-383))))) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) 276)) (-2349 (((-112) $) 25 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))))) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-2177 (($ $) 72 (|has| |#1| (-1057)))) (-4399 (((-1133 |#1| (-617 $)) $) 91 (|has| |#1| (-1057)))) (-4369 (((-112) $) 62 (|has| |#1| (-561)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-561)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-2341 (((-1181 $) (-617 $)) 277 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 426)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-2662 (($ $) 141 (|has| |#1| (-561)))) (-4171 (($ $) 247 (|has| |#1| (-561)))) (-1839 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) 49)) (-1354 (($ (-114) $) NIL) (($ (-114) (-649 $)) 431)) (-4250 (((-3 (-649 $) "failed") $) NIL (|has| |#1| (-1120)))) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) NIL (|has| |#1| (-1057)))) (-2427 (((-3 (-649 $) "failed") $) 436 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) NIL (|has| |#1| (-1120))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) NIL (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) NIL (|has| |#1| (-1057)))) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) 51)) (-1817 (($ $) NIL (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3898 (($ $ (-1185)) 251 (|has| |#1| (-561))) (($ $ (-1100 $)) 253 (|has| |#1| (-561)))) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 43)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 301 (|has| |#1| (-561)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-2766 (($ $ (-1185)) 226 (|has| |#1| (-561))) (($ $) 224 (|has| |#1| (-561)))) (-1948 (($ $) 218 (|has| |#1| (-561)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 306 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-561)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-4389 (($ $) 139 (|has| |#1| (-561)))) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 425) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) 379) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1185)) NIL (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-619 (-541)))) (($ $) NIL (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1185)) 366 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1185)) 365 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) NIL (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ (-649 $))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ $)) NIL (|has| |#1| (-1057)))) (-2431 (((-776) $) NIL (|has| |#1| (-561)))) (-2555 (($ $) 239 (|has| |#1| (-561)))) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2190 (($ $) NIL) (($ $ $) NIL)) (-2589 (($ $) 249 (|has| |#1| (-561)))) (-3977 (($ $) 200 (|has| |#1| (-561)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-1057))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-1057))) (($ $ (-1185)) NIL (|has| |#1| (-1057)))) (-3181 (($ $) 74 (|has| |#1| (-561)))) (-4412 (((-1133 |#1| (-617 $)) $) 93 (|has| |#1| (-561)))) (-4061 (($ $) 317 (|has| $ (-1057)))) (-4128 (($ $) 177 (|has| |#1| (-561)))) (-2661 (($ $) 153 (|has| |#1| (-561)))) (-2783 (($ $) 173 (|has| |#1| (-561)))) (-2635 (($ $) 149 (|has| |#1| (-561)))) (-2758 (($ $) 169 (|has| |#1| (-561)))) (-2614 (($ $) 145 (|has| |#1| (-561)))) (-1410 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) NIL (|has| |#1| (-561))) (((-541) $) 363 (|has| |#1| (-619 (-541))))) (-3476 (($ $ $) NIL (|has| |#1| (-478)))) (-2180 (($ $ $) NIL (|has| |#1| (-478)))) (-3796 (((-867) $) 424) (($ (-617 $)) 415) (($ (-1185)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-561))) (($ (-48)) 312 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) (($ (-1133 |#1| (-617 $))) 95 (|has| |#1| (-1057))) (($ (-412 |#1|)) NIL (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) NIL (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) NIL (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) NIL (|has| |#1| (-561))) (($ (-958 |#1|)) NIL (|has| |#1| (-1057))) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-561)) (|has| |#1| (-1046 (-412 (-569)))))) (($ (-569)) 34 (-2776 (|has| |#1| (-1046 (-569))) (|has| |#1| (-1057))))) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL (|has| |#1| (-1057)) CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-3613 (($ $ $) 220 (|has| |#1| (-561)))) (-2090 (($ $ $) 206 (|has| |#1| (-561)))) (-2730 (($ $ $) 210 (|has| |#1| (-561)))) (-4164 (($ $ $) 204 (|has| |#1| (-561)))) (-4099 (($ $ $) 208 (|has| |#1| (-561)))) (-4052 (((-112) (-114)) 10)) (-1520 (((-112) $ $) 86)) (-4161 (($ $) 183 (|has| |#1| (-561)))) (-2701 (($ $) 159 (|has| |#1| (-561)))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 179 (|has| |#1| (-561)))) (-2675 (($ $) 155 (|has| |#1| (-561)))) (-4183 (($ $) 187 (|has| |#1| (-561)))) (-2723 (($ $) 163 (|has| |#1| (-561)))) (-4215 (($ (-1185) $) NIL) (($ (-1185) $ $) NIL) (($ (-1185) $ $ $) NIL) (($ (-1185) $ $ $ $) NIL) (($ (-1185) (-649 $)) NIL)) (-4273 (($ $) 214 (|has| |#1| (-561)))) (-1407 (($ $) 212 (|has| |#1| (-561)))) (-1503 (($ $) 189 (|has| |#1| (-561)))) (-2734 (($ $) 165 (|has| |#1| (-561)))) (-4175 (($ $) 185 (|has| |#1| (-561)))) (-2712 (($ $) 161 (|has| |#1| (-561)))) (-4151 (($ $) 181 (|has| |#1| (-561)))) (-2689 (($ $) 157 (|has| |#1| (-561)))) (-2271 (($ $) 192 (|has| |#1| (-561)))) (-1804 (($) 21 (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) CONST)) (-2370 (($ $) 243 (|has| |#1| (-561)))) (-1815 (($) 23 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))) CONST)) (-2392 (($ $) 194 (|has| |#1| (-561))) (($ $ $) 196 (|has| |#1| (-561)))) (-3569 (($ $) 241 (|has| |#1| (-561)))) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-1057))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-1057))) (($ $ (-1185)) NIL (|has| |#1| (-1057)))) (-2717 (($ $) 245 (|has| |#1| (-561)))) (-2165 (($ $ $) 198 (|has| |#1| (-561)))) (-2920 (((-112) $ $) 88)) (-3035 (($ (-1133 |#1| (-617 $)) (-1133 |#1| (-617 $))) 106 (|has| |#1| (-561))) (($ $ $) 42 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3024 (($ $ $) 40 (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (($ $) 29 (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-3012 (($ $ $) 38 (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (** (($ $ $) 64 (|has| |#1| (-561))) (($ $ (-412 (-569))) 314 (|has| |#1| (-561))) (($ $ (-569)) 80 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 75 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120)))) (($ $ (-927)) 84 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))))) (* (($ (-412 (-569)) $) NIL (|has| |#1| (-561))) (($ $ (-412 (-569))) NIL (|has| |#1| (-561))) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))) (($ $ $) 36 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120)))) (($ (-569) $) 32 (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (($ (-776) $) NIL (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (($ (-927) $) NIL (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))))
+(((-319 |#1|) (-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1210)) (-6 (-160)) (-6 (-634)) (-6 (-1147)) (-15 -3598 ($ $)) (-15 -4369 ((-112) $)) (-15 -2801 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -3814 ((-423 (-1181 $)) (-1181 $))) (-15 -3534 ((-423 (-1181 $)) (-1181 $)))) |%noBranch|) (IF (|has| |#1| (-1046 (-569))) (-6 (-1046 (-48))) |%noBranch|)) |%noBranch|))) (-1108)) (T -319))
+((-3598 (*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1108)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))) (-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))) (-3814 (*1 *2 *3) (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108)))) (-3534 (*1 *2 *3) (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108)))))
+(-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1210)) (-6 (-160)) (-6 (-634)) (-6 (-1147)) (-15 -3598 ($ $)) (-15 -4369 ((-112) $)) (-15 -2801 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -3814 ((-423 (-1181 $)) (-1181 $))) (-15 -3534 ((-423 (-1181 $)) (-1181 $)))) |%noBranch|) (IF (|has| |#1| (-1046 (-569))) (-6 (-1046 (-48))) |%noBranch|)) |%noBranch|)))
+((-4058 (((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)) 89) (((-52) |#2| (-114) (-297 |#2|) (-297 |#2|)) 85) (((-52) |#2| (-114) (-297 |#2|) |#2|) 87) (((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|) 88) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 81) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 83) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 84) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 82) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 90) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|)) 86)))
+(((-320 |#1| |#2|) (-10 -7 (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-561) (-619 (-541))) (-435 |#1|)) (T -320))
+((-4058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3)) (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *3)))) (-4058 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-4058 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-4058 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *5)))) (-4058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8))) (-4 *8 (-435 *7)) (-5 *5 (-297 *8)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-4058 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-4058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8)) (-5 *6 (-649 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-4058 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-4058 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-4058 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5)) (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *5 *6)))))
+(-10 -7 (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|))))
+((-4212 (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569) (-1167)) 67) (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569)) 68) (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569) (-1167)) 64) (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569)) 65)) (-3679 (((-1 (-226) (-226)) (-226)) 66)))
+(((-321) (-10 -7 (-15 -3679 ((-1 (-226) (-226)) (-226))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569) (-1167))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569) (-1167))))) (T -321))
+((-4212 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1167)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-4212 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-4212 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *7 (-1167)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-4212 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-3679 (*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
+(-10 -7 (-15 -3679 ((-1 (-226) (-226)) (-226))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569) (-1167))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569) (-1167))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 26)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 20)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 36)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) 16)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) NIL) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1968 (((-412 (-569)) $) 17)) (-1671 (($ (-1260 |#1| |#2| |#3|)) 11)) (-1993 (((-1260 |#1| |#2| |#3|) $) 12)) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 10)) (-3796 (((-867) $) 42) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 34)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) NIL)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 28)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 37)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-322 |#1| |#2| |#3|) (-13 (-1256 |#1|) (-797) (-10 -8 (-15 -1671 ($ (-1260 |#1| |#2| |#3|))) (-15 -1993 ((-1260 |#1| |#2| |#3|) $)) (-15 -1968 ((-412 (-569)) $)))) (-367) (-1185) |#1|) (T -322))
+((-1671 (*1 *1 *2) (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-322 *3 *4 *5)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1260 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185)) (-14 *5 *3))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185)) (-14 *5 *3))))
+(-13 (-1256 |#1|) (-797) (-10 -8 (-15 -1671 ($ (-1260 |#1| |#2| |#3|))) (-15 -1993 ((-1260 |#1| |#2| |#3|) $)) (-15 -1968 ((-412 (-569)) $))))
+((-3742 (((-2 (|:| -1993 (-776)) (|:| -1435 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776)) 35)) (-2662 (((-649 (-2 (|:| -1435 (-776)) (|:| |logand| |#1|))) (-423 |#1|)) 40)))
+(((-323 |#1|) (-10 -7 (-15 -3742 ((-2 (|:| -1993 (-776)) (|:| -1435 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2662 ((-649 (-2 (|:| -1435 (-776)) (|:| |logand| |#1|))) (-423 |#1|)))) (-561)) (T -323))
+((-2662 (*1 *2 *3) (-12 (-5 *3 (-423 *4)) (-4 *4 (-561)) (-5 *2 (-649 (-2 (|:| -1435 (-776)) (|:| |logand| *4)))) (-5 *1 (-323 *4)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-423 *5)) (-4 *5 (-561)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *5) (|:| |radicand| (-649 *5)))) (-5 *1 (-323 *5)) (-5 *4 (-776)))))
+(-10 -7 (-15 -3742 ((-2 (|:| -1993 (-776)) (|:| -1435 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2662 ((-649 (-2 (|:| -1435 (-776)) (|:| |logand| |#1|))) (-423 |#1|))))
+((-1712 (((-649 |#2|) (-1181 |#4|)) 44)) (-3313 ((|#3| (-569)) 47)) (-2918 (((-1181 |#4|) (-1181 |#3|)) 30)) (-1434 (((-1181 |#4|) (-1181 |#4|) (-569)) 66)) (-1508 (((-1181 |#3|) (-1181 |#4|)) 21)) (-4339 (((-649 (-776)) (-1181 |#4|) (-649 |#2|)) 41)) (-1513 (((-1181 |#3|) (-1181 |#4|) (-649 |#2|) (-649 |#3|)) 35)))
+(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1513 ((-1181 |#3|) (-1181 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -4339 ((-649 (-776)) (-1181 |#4|) (-649 |#2|))) (-15 -1712 ((-649 |#2|) (-1181 |#4|))) (-15 -1508 ((-1181 |#3|) (-1181 |#4|))) (-15 -2918 ((-1181 |#4|) (-1181 |#3|))) (-15 -1434 ((-1181 |#4|) (-1181 |#4|) (-569))) (-15 -3313 (|#3| (-569)))) (-798) (-855) (-1057) (-955 |#3| |#1| |#2|)) (T -324))
+((-3313 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1057)) (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *1 (-324 *4 *5 *6 *7)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-1181 *6)) (-4 *6 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1181 *7)) (-5 *1 (-324 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-1181 *6)) (-5 *1 (-324 *4 *5 *6 *7)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-649 *5)) (-5 *1 (-324 *4 *5 *6 *7)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855)) (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1057)) (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8)))) (-1513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8)) (-4 *7 (-855)) (-4 *8 (-1057)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-1181 *8)) (-5 *1 (-324 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1513 ((-1181 |#3|) (-1181 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -4339 ((-649 (-776)) (-1181 |#4|) (-649 |#2|))) (-15 -1712 ((-649 |#2|) (-1181 |#4|))) (-15 -1508 ((-1181 |#3|) (-1181 |#4|))) (-15 -2918 ((-1181 |#4|) (-1181 |#3|))) (-15 -1434 ((-1181 |#4|) (-1181 |#4|) (-569))) (-15 -3313 (|#3| (-569))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 19)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $) 21)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3522 ((|#1| $ (-569)) NIL)) (-1670 (((-569) $ (-569)) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3196 (($ (-1 |#1| |#1|) $) NIL)) (-2000 (($ (-1 (-569) (-569)) $) 11)) (-3435 (((-1167) $) NIL)) (-4206 (($ $ $) NIL (|has| (-569) (-797)))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-4383 (((-569) |#1| $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) 29 (|has| |#1| (-855)))) (-3024 (($ $) 12) (($ $ $) 28)) (-3012 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL) (($ (-569) |#1|) 27)))
+(((-325 |#1|) (-13 (-21) (-722 (-569)) (-326 |#1| (-569)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|))) (-1108)) (T -325))
NIL
(-13 (-21) (-722 (-569)) (-326 |#1| (-569)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-2009 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|))) $) 28)) (-1678 (((-3 $ "failed") $ $) 20)) (-3470 (((-776) $) 29)) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 33)) (-3148 ((|#1| $) 34)) (-3252 ((|#1| $ (-569)) 26)) (-3774 ((|#2| $ (-569)) 27)) (-1854 (($ (-1 |#1| |#1|) $) 23)) (-3681 (($ (-1 |#2| |#2|) $) 24)) (-1550 (((-1165) $) 10)) (-1506 (($ $ $) 22 (|has| |#2| (-797)))) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ |#1|) 32)) (-4184 ((|#2| |#1| $) 25)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3009 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ |#2| |#1|) 30)))
-(((-326 |#1| |#2|) (-140) (-1106) (-131)) (T -326))
-((-3009 (*1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)) (-5 *2 (-776)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 *4)))))) (-3774 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1106)) (-4 *2 (-131)))) (-3252 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1106)))) (-4184 (*1 *2 *3 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131)))) (-3681 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)))) (-1854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131)))) (-1506 (*1 *1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131)) (-4 *3 (-797)))))
-(-13 (-131) (-1044 |t#1|) (-10 -8 (-15 -3009 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3470 ((-776) $)) (-15 -2009 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4386 |t#2|))) $)) (-15 -3774 (|t#2| $ (-569))) (-15 -3252 (|t#1| $ (-569))) (-15 -4184 (|t#2| |t#1| $)) (-15 -3681 ($ (-1 |t#2| |t#2|) $)) (-15 -1854 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-797)) (-15 -1506 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-1044 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-2009 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-776)))) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3470 (((-776) $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3252 ((|#1| $ (-569)) NIL)) (-3774 (((-776) $ (-569)) NIL)) (-1854 (($ (-1 |#1| |#1|) $) NIL)) (-3681 (($ (-1 (-776) (-776)) $) NIL)) (-1550 (((-1165) $) NIL)) (-1506 (($ $ $) NIL (|has| (-776) (-797)))) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ |#1|) NIL)) (-4184 (((-776) |#1| $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3009 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-776) |#1|) NIL)))
-(((-327 |#1|) (-326 |#1| (-776)) (-1106)) (T -327))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $) 28)) (-2208 (((-3 $ "failed") $ $) 20)) (-3473 (((-776) $) 29)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 33)) (-3150 ((|#1| $) 34)) (-3522 ((|#1| $ (-569)) 26)) (-1670 ((|#2| $ (-569)) 27)) (-3196 (($ (-1 |#1| |#1|) $) 23)) (-2000 (($ (-1 |#2| |#2|) $) 24)) (-3435 (((-1167) $) 10)) (-4206 (($ $ $) 22 (|has| |#2| (-797)))) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ |#1|) 32)) (-4383 ((|#2| |#1| $) 25)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ |#2| |#1|) 30)))
+(((-326 |#1| |#2|) (-140) (-1108) (-131)) (T -326))
+((-3012 (*1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)) (-5 *2 (-776)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))))) (-1670 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1108)) (-4 *2 (-131)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1108)))) (-4383 (*1 *2 *3 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131)))) (-2000 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)))) (-4206 (*1 *1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131)) (-4 *3 (-797)))))
+(-13 (-131) (-1046 |t#1|) (-10 -8 (-15 -3012 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3473 ((-776) $)) (-15 -2300 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4389 |t#2|))) $)) (-15 -1670 (|t#2| $ (-569))) (-15 -3522 (|t#1| $ (-569))) (-15 -4383 (|t#2| |t#1| $)) (-15 -2000 ($ (-1 |t#2| |t#2|) $)) (-15 -3196 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-797)) (-15 -4206 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-1046 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3522 ((|#1| $ (-569)) NIL)) (-1670 (((-776) $ (-569)) NIL)) (-3196 (($ (-1 |#1| |#1|) $) NIL)) (-2000 (($ (-1 (-776) (-776)) $) NIL)) (-3435 (((-1167) $) NIL)) (-4206 (($ $ $) NIL (|has| (-776) (-797)))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-4383 (((-776) |#1| $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-776) |#1|) NIL)))
+(((-327 |#1|) (-326 |#1| (-776)) (-1108)) (T -327))
NIL
(-326 |#1| (-776))
-((-4260 (($ $) 72)) (-3972 (($ $ |#2| |#3| $) 14)) (-4059 (($ (-1 |#3| |#3|) $) 51)) (-1824 (((-112) $) 42)) (-1833 ((|#2| $) 44)) (-2405 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3479 ((|#2| $) 68)) (-2836 (((-649 |#2|) $) 56)) (-3877 (($ $ $ (-776)) 37)) (-3032 (($ $ |#2|) 60)))
-(((-328 |#1| |#2| |#3|) (-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3877 (|#1| |#1| |#1| (-776))) (-15 -3972 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4059 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2836 ((-649 |#2|) |#1|)) (-15 -1833 (|#2| |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3032 (|#1| |#1| |#2|))) (-329 |#2| |#3|) (-1055) (-797)) (T -328))
-NIL
-(-10 -8 (-15 -4260 (|#1| |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3877 (|#1| |#1| |#1| (-776))) (-15 -3972 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4059 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2836 ((-649 |#2|) |#1|)) (-15 -1833 (|#2| |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3032 (|#1| |#1| |#2|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 98 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 95)) (-3148 (((-569) $) 99 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 97 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 96)) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-4260 (($ $) 84 (|has| |#1| (-457)))) (-3972 (($ $ |#1| |#2| $) 88)) (-2623 (((-112) $) 35)) (-3238 (((-776) $) 91)) (-4343 (((-112) $) 74)) (-3920 (($ |#1| |#2|) 73)) (-3712 ((|#2| $) 90)) (-4059 (($ (-1 |#2| |#2|) $) 89)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-1824 (((-112) $) 94)) (-1833 ((|#1| $) 93)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-561)))) (-3868 ((|#2| $) 76)) (-3479 ((|#1| $) 85 (|has| |#1| (-457)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59) (($ (-412 (-569))) 69 (-2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-2836 (((-649 |#1|) $) 92)) (-4184 ((|#1| $ |#2|) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-3877 (($ $ $ (-776)) 87 (|has| |#1| (-173)))) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-329 |#1| |#2|) (-140) (-1055) (-797)) (T -329))
-((-1824 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-112)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-649 *3)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-776)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-4059 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-3972 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))) (-3877 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *3 (-173)))) (-2405 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-561)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-4260 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *2 (-457)))))
-(-13 (-47 |t#1| |t#2|) (-416 |t#1|) (-10 -8 (-15 -1824 ((-112) $)) (-15 -1833 (|t#1| $)) (-15 -2836 ((-649 |t#1|) $)) (-15 -3238 ((-776) $)) (-15 -3712 (|t#2| $)) (-15 -4059 ($ (-1 |t#2| |t#2|) $)) (-15 -3972 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-173)) (-15 -3877 ($ $ $ (-776))) |%noBranch|) (IF (|has| |t#1| (-561)) (-15 -2405 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3479 (|t#1| $)) (-15 -4260 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-416 |#1|) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-2006 (((-112) (-112)) NIL)) (-3940 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3041 (($ $) NIL (|has| |#1| (-1106)))) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2085 (($ $ (-569)) NIL)) (-2183 (((-776) $) NIL)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2616 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3813 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2279 (($ (-649 |#1|)) NIL)) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-4198 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) NIL)) (-1621 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-330 |#1|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2279 ($ (-649 |#1|))) (-15 -2183 ((-776) $)) (-15 -2085 ($ $ (-569))) (-15 -2006 ((-112) (-112))))) (-1223)) (T -330))
-((-2279 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-330 *3)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1223)))) (-2085 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1223)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1223)))))
-(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2279 ($ (-649 |#1|))) (-15 -2183 ((-776) $)) (-15 -2085 ($ $ (-569))) (-15 -2006 ((-112) (-112)))))
-((-2045 (((-112) $) 50)) (-2162 (((-776)) 26)) (-3136 ((|#2| $) 54) (($ $ (-927)) 124)) (-3470 (((-776)) 125)) (-3390 (($ (-1273 |#2|)) 23)) (-2968 (((-112) $) 138)) (-2707 ((|#2| $) 56) (($ $ (-927)) 121)) (-2091 (((-1179 |#2|) $) NIL) (((-1179 $) $ (-927)) 112)) (-4244 (((-1179 |#2|) $) 98)) (-4151 (((-1179 |#2|) $) 94) (((-3 (-1179 |#2|) "failed") $ $) 91)) (-3091 (($ $ (-1179 |#2|)) 62)) (-2259 (((-838 (-927))) 33) (((-927)) 51)) (-3083 (((-134)) 30)) (-3868 (((-838 (-927)) $) 35) (((-927) $) 141)) (-3188 (($) 131)) (-2960 (((-1273 |#2|) $) NIL) (((-694 |#2|) (-1273 $)) 45)) (-4030 (($ $) NIL) (((-3 $ "failed") $) 101)) (-2133 (((-112) $) 48)))
-(((-331 |#1| |#2|) (-10 -8 (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -3470 ((-776))) (-15 -4030 (|#1| |#1|)) (-15 -4151 ((-3 (-1179 |#2|) "failed") |#1| |#1|)) (-15 -4151 ((-1179 |#2|) |#1|)) (-15 -4244 ((-1179 |#2|) |#1|)) (-15 -3091 (|#1| |#1| (-1179 |#2|))) (-15 -2968 ((-112) |#1|)) (-15 -3188 (|#1|)) (-15 -3136 (|#1| |#1| (-927))) (-15 -2707 (|#1| |#1| (-927))) (-15 -2091 ((-1179 |#1|) |#1| (-927))) (-15 -3136 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3868 ((-927) |#1|)) (-15 -2259 ((-927))) (-15 -2091 ((-1179 |#2|) |#1|)) (-15 -3390 (|#1| (-1273 |#2|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -2162 ((-776))) (-15 -2259 ((-838 (-927)))) (-15 -3868 ((-838 (-927)) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -3083 ((-134)))) (-332 |#2|) (-367)) (T -331))
-((-3083 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-2259 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-2162 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-2259 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3470 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))))
-(-10 -8 (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -3470 ((-776))) (-15 -4030 (|#1| |#1|)) (-15 -4151 ((-3 (-1179 |#2|) "failed") |#1| |#1|)) (-15 -4151 ((-1179 |#2|) |#1|)) (-15 -4244 ((-1179 |#2|) |#1|)) (-15 -3091 (|#1| |#1| (-1179 |#2|))) (-15 -2968 ((-112) |#1|)) (-15 -3188 (|#1|)) (-15 -3136 (|#1| |#1| (-927))) (-15 -2707 (|#1| |#1| (-927))) (-15 -2091 ((-1179 |#1|) |#1| (-927))) (-15 -3136 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3868 ((-927) |#1|)) (-15 -2259 ((-927))) (-15 -2091 ((-1179 |#2|) |#1|)) (-15 -3390 (|#1| (-1273 |#2|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -2162 ((-776))) (-15 -2259 ((-838 (-927)))) (-15 -3868 ((-838 (-927)) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -3083 ((-134))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-2045 (((-112) $) 104)) (-2162 (((-776)) 100)) (-3136 ((|#1| $) 150) (($ $ (-927)) 147 (|has| |#1| (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-1680 (((-112) $ $) 65)) (-3470 (((-776)) 122 (|has| |#1| (-372)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 111)) (-3148 ((|#1| $) 112)) (-3390 (($ (-1273 |#1|)) 156)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-372)))) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-3403 (($) 119 (|has| |#1| (-372)))) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-1312 (($) 134 (|has| |#1| (-372)))) (-1940 (((-112) $) 135 (|has| |#1| (-372)))) (-2501 (($ $ (-776)) 97 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) 79)) (-3110 (((-927) $) 137 (|has| |#1| (-372))) (((-838 (-927)) $) 94 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) 35)) (-1993 (($) 145 (|has| |#1| (-372)))) (-2968 (((-112) $) 144 (|has| |#1| (-372)))) (-2707 ((|#1| $) 151) (($ $ (-927)) 148 (|has| |#1| (-372)))) (-3812 (((-3 $ "failed") $) 123 (|has| |#1| (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2091 (((-1179 |#1|) $) 155) (((-1179 $) $ (-927)) 149 (|has| |#1| (-372)))) (-2855 (((-927) $) 120 (|has| |#1| (-372)))) (-4244 (((-1179 |#1|) $) 141 (|has| |#1| (-372)))) (-4151 (((-1179 |#1|) $) 140 (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) 139 (|has| |#1| (-372)))) (-3091 (($ $ (-1179 |#1|)) 142 (|has| |#1| (-372)))) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-2305 (($) 124 (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 121 (|has| |#1| (-372)))) (-1959 (((-112) $) 103)) (-3545 (((-1126) $) 11)) (-2330 (($) 143 (|has| |#1| (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 131 (|has| |#1| (-372)))) (-3796 (((-423 $) $) 82)) (-2259 (((-838 (-927))) 101) (((-927)) 153)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-2601 (((-776) $) 136 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 95 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) 109)) (-3514 (($ $) 128 (|has| |#1| (-372))) (($ $ (-776)) 126 (|has| |#1| (-372)))) (-3868 (((-838 (-927)) $) 102) (((-927) $) 152)) (-4143 (((-1179 |#1|)) 154)) (-2430 (($) 133 (|has| |#1| (-372)))) (-3188 (($) 146 (|has| |#1| (-372)))) (-2960 (((-1273 |#1|) $) 158) (((-694 |#1|) (-1273 $)) 157)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 130 (|has| |#1| (-372)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-4030 (($ $) 129 (|has| |#1| (-372))) (((-3 $ "failed") $) 93 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1903 (((-1273 $)) 160) (((-1273 $) (-927)) 159)) (-2985 (((-112) $ $) 45)) (-2133 (((-112) $) 105)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2064 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2830 (($ $) 127 (|has| |#1| (-372))) (($ $ (-776)) 125 (|has| |#1| (-372)))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 73) (($ $ |#1|) 108)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+((-2642 (($ $) 72)) (-2870 (($ $ |#2| |#3| $) 14)) (-2492 (($ (-1 |#3| |#3|) $) 51)) (-1828 (((-112) $) 42)) (-1835 ((|#2| $) 44)) (-2407 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3833 ((|#2| $) 68)) (-2512 (((-649 |#2|) $) 56)) (-3184 (($ $ $ (-776)) 37)) (-3035 (($ $ |#2|) 60)))
+(((-328 |#1| |#2| |#3|) (-10 -8 (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3184 (|#1| |#1| |#1| (-776))) (-15 -2870 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2492 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3035 (|#1| |#1| |#2|))) (-329 |#2| |#3|) (-1057) (-797)) (T -328))
+NIL
+(-10 -8 (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3184 (|#1| |#1| |#1| (-776))) (-15 -2870 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2492 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3035 (|#1| |#1| |#2|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 98 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 95)) (-3150 (((-569) $) 99 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 97 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 96)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 84 (|has| |#1| (-457)))) (-2870 (($ $ |#1| |#2| $) 88)) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 91)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73)) (-2272 ((|#2| $) 90)) (-2492 (($ (-1 |#2| |#2|) $) 89)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 94)) (-1835 ((|#1| $) 93)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-561)))) (-4339 ((|#2| $) 76)) (-3833 ((|#1| $) 85 (|has| |#1| (-457)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59) (($ (-412 (-569))) 69 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-2512 (((-649 |#1|) $) 92)) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 87 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-329 |#1| |#2|) (-140) (-1057) (-797)) (T -329))
+((-1828 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-112)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-649 *3)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-776)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-2492 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)))) (-2870 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-3184 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-4 *3 (-173)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *2 (-561)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)) (-4 *2 (-457)))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *2 (-457)))))
+(-13 (-47 |t#1| |t#2|) (-416 |t#1|) (-10 -8 (-15 -1828 ((-112) $)) (-15 -1835 (|t#1| $)) (-15 -2512 ((-649 |t#1|) $)) (-15 -3366 ((-776) $)) (-15 -2272 (|t#2| $)) (-15 -2492 ($ (-1 |t#2| |t#2|) $)) (-15 -2870 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-173)) (-15 -3184 ($ $ $ (-776))) |%noBranch|) (IF (|has| |t#1| (-561)) (-15 -2407 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3833 (|t#1| $)) (-15 -2642 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-416 |#1|) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-2270 (((-112) (-112)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-2017 (($ $) NIL (|has| |#1| (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-3802 (($ $ (-569)) NIL)) (-3558 (((-776) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-2053 (($ (-649 |#1|)) NIL)) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2866 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-330 |#1|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112))))) (-1225)) (T -330))
+((-2053 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-330 *3)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))))
+(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112)))))
+((-1476 (((-112) $) 50)) (-3322 (((-776)) 26)) (-3140 ((|#2| $) 54) (($ $ (-927)) 124)) (-3473 (((-776)) 125)) (-2247 (($ (-1275 |#2|)) 23)) (-2483 (((-112) $) 138)) (-3829 ((|#2| $) 56) (($ $ (-927)) 121)) (-3859 (((-1181 |#2|) $) NIL) (((-1181 $) $ (-927)) 112)) (-3775 (((-1181 |#2|) $) 98)) (-4119 (((-1181 |#2|) $) 94) (((-3 (-1181 |#2|) "failed") $ $) 91)) (-4384 (($ $ (-1181 |#2|)) 62)) (-1898 (((-838 (-927))) 33) (((-927)) 51)) (-2377 (((-134)) 30)) (-4339 (((-838 (-927)) $) 35) (((-927) $) 141)) (-4110 (($) 131)) (-2415 (((-1275 |#2|) $) NIL) (((-694 |#2|) (-1275 $)) 45)) (-2239 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4269 (((-112) $) 48)))
+(((-331 |#1| |#2|) (-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3473 ((-776))) (-15 -2239 (|#1| |#1|)) (-15 -4119 ((-3 (-1181 |#2|) "failed") |#1| |#1|)) (-15 -4119 ((-1181 |#2|) |#1|)) (-15 -3775 ((-1181 |#2|) |#1|)) (-15 -4384 (|#1| |#1| (-1181 |#2|))) (-15 -2483 ((-112) |#1|)) (-15 -4110 (|#1|)) (-15 -3140 (|#1| |#1| (-927))) (-15 -3829 (|#1| |#1| (-927))) (-15 -3859 ((-1181 |#1|) |#1| (-927))) (-15 -3140 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -4339 ((-927) |#1|)) (-15 -1898 ((-927))) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3322 ((-776))) (-15 -1898 ((-838 (-927)))) (-15 -4339 ((-838 (-927)) |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|)) (-15 -2377 ((-134)))) (-332 |#2|) (-367)) (T -331))
+((-2377 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3322 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3473 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))))
+(-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3473 ((-776))) (-15 -2239 (|#1| |#1|)) (-15 -4119 ((-3 (-1181 |#2|) "failed") |#1| |#1|)) (-15 -4119 ((-1181 |#2|) |#1|)) (-15 -3775 ((-1181 |#2|) |#1|)) (-15 -4384 (|#1| |#1| (-1181 |#2|))) (-15 -2483 ((-112) |#1|)) (-15 -4110 (|#1|)) (-15 -3140 (|#1| |#1| (-927))) (-15 -3829 (|#1| |#1| (-927))) (-15 -3859 ((-1181 |#1|) |#1| (-927))) (-15 -3140 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -4339 ((-927) |#1|)) (-15 -1898 ((-927))) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3322 ((-776))) (-15 -1898 ((-838 (-927)))) (-15 -4339 ((-838 (-927)) |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|)) (-15 -2377 ((-134))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-1476 (((-112) $) 104)) (-3322 (((-776)) 100)) (-3140 ((|#1| $) 150) (($ $ (-927)) 147 (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-3473 (((-776)) 122 (|has| |#1| (-372)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 111)) (-3150 ((|#1| $) 112)) (-2247 (($ (-1275 |#1|)) 156)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-372)))) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-3406 (($) 119 (|has| |#1| (-372)))) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1616 (($) 134 (|has| |#1| (-372)))) (-2807 (((-112) $) 135 (|has| |#1| (-372)))) (-3701 (($ $ (-776)) 97 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) 79)) (-1466 (((-927) $) 137 (|has| |#1| (-372))) (((-838 (-927)) $) 94 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) 35)) (-2155 (($) 145 (|has| |#1| (-372)))) (-2483 (((-112) $) 144 (|has| |#1| (-372)))) (-3829 ((|#1| $) 151) (($ $ (-927)) 148 (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) 123 (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3859 (((-1181 |#1|) $) 155) (((-1181 $) $ (-927)) 149 (|has| |#1| (-372)))) (-2731 (((-927) $) 120 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) 141 (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) 140 (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) 139 (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) 142 (|has| |#1| (-372)))) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-2307 (($) 124 (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 121 (|has| |#1| (-372)))) (-3020 (((-112) $) 103)) (-3547 (((-1128) $) 11)) (-2332 (($) 143 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 131 (|has| |#1| (-372)))) (-3800 (((-423 $) $) 82)) (-1898 (((-838 (-927))) 101) (((-927)) 153)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-776) $) 136 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 95 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) 109)) (-3517 (($ $) 128 (|has| |#1| (-372))) (($ $ (-776)) 126 (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) 102) (((-927) $) 152)) (-4061 (((-1181 |#1|)) 154)) (-4234 (($) 133 (|has| |#1| (-372)))) (-4110 (($) 146 (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 158) (((-694 |#1|) (-1275 $)) 157)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 130 (|has| |#1| (-372)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-2239 (($ $) 129 (|has| |#1| (-372))) (((-3 $ "failed") $) 93 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 160) (((-1275 $) (-927)) 159)) (-2664 (((-112) $ $) 45)) (-4269 (((-112) $) 105)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-1679 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2832 (($ $) 127 (|has| |#1| (-372))) (($ $ (-776)) 125 (|has| |#1| (-372)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73) (($ $ |#1|) 108)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
(((-332 |#1|) (-140) (-367)) (T -332))
-((-1903 (*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1273 *1)) (-4 *1 (-332 *3)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1273 *1)) (-4 *1 (-332 *4)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1273 *3)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3)))) (-4143 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3)))) (-2259 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-2091 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1179 *1)) (-4 *1 (-332 *4)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-3188 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-1993 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112)))) (-2330 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-3091 (*1 *1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3)) (-4 *3 (-367)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1179 *3)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1179 *3)))) (-4151 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1179 *3)))))
-(-13 (-1292 |t#1|) (-1044 |t#1|) (-10 -8 (-15 -1903 ((-1273 $))) (-15 -1903 ((-1273 $) (-927))) (-15 -2960 ((-1273 |t#1|) $)) (-15 -2960 ((-694 |t#1|) (-1273 $))) (-15 -3390 ($ (-1273 |t#1|))) (-15 -2091 ((-1179 |t#1|) $)) (-15 -4143 ((-1179 |t#1|))) (-15 -2259 ((-927))) (-15 -3868 ((-927) $)) (-15 -2707 (|t#1| $)) (-15 -3136 (|t#1| $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-353)) (-15 -2091 ((-1179 $) $ (-927))) (-15 -2707 ($ $ (-927))) (-15 -3136 ($ $ (-927))) (-15 -3188 ($)) (-15 -1993 ($)) (-15 -2968 ((-112) $)) (-15 -2330 ($)) (-15 -3091 ($ $ (-1179 |t#1|))) (-15 -4244 ((-1179 |t#1|) $)) (-15 -4151 ((-1179 |t#1|) $)) (-15 -4151 ((-3 (-1179 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2774 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) |has| |#1| (-372)) ((-244) . T) ((-293) . T) ((-310) . T) ((-1292 |#1|) . T) ((-367) . T) ((-407) -2774 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-372) |has| |#1| (-372)) ((-353) |has| |#1| (-372)) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-372)) ((-1227) . T) ((-1280 |#1|) . T))
-((-2415 (((-112) $ $) NIL)) (-2955 (($ (-1182) $) 100)) (-4152 (($) 89)) (-3300 (((-1126) (-1126)) 9)) (-1759 (($) 90)) (-2608 (($) 104) (($ (-319 (-704))) 112) (($ (-319 (-706))) 108) (($ (-319 (-699))) 116) (($ (-319 (-383))) 123) (($ (-319 (-569))) 119) (($ (-319 (-170 (-383)))) 127)) (-2844 (($ (-1182) $) 101)) (-2379 (($ (-649 (-867))) 91)) (-3554 (((-1278) $) 87)) (-2940 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2728 (($ (-1126)) 58)) (-3432 (((-1110) $) 30)) (-1892 (($ (-1098 (-958 (-569))) $) 97) (($ (-1098 (-958 (-569))) (-958 (-569)) $) 98)) (-3353 (($ (-1126)) 99)) (-1329 (($ (-1182) $) 129) (($ (-1182) $ $) 130)) (-3385 (($ (-1183) (-649 (-1183))) 88)) (-3771 (($ (-1165)) 94) (($ (-649 (-1165))) 92)) (-3793 (((-867) $) 132)) (-3203 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3218 (-112)) (|:| -2185 (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -2080 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3583 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3583 $))) (|:| |commonBranch| (-2 (|:| -3570 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867)))) $) 50)) (-2264 (($ (-1165)) 202)) (-2486 (($ (-649 $)) 128)) (-1441 (((-112) $ $) NIL)) (-4120 (($ (-1183) (-1165)) 135) (($ (-1183) (-319 (-706))) 175) (($ (-1183) (-319 (-704))) 176) (($ (-1183) (-319 (-699))) 177) (($ (-1183) (-694 (-706))) 138) (($ (-1183) (-694 (-704))) 141) (($ (-1183) (-694 (-699))) 144) (($ (-1183) (-1273 (-706))) 147) (($ (-1183) (-1273 (-704))) 150) (($ (-1183) (-1273 (-699))) 153) (($ (-1183) (-694 (-319 (-706)))) 156) (($ (-1183) (-694 (-319 (-704)))) 159) (($ (-1183) (-694 (-319 (-699)))) 162) (($ (-1183) (-1273 (-319 (-706)))) 165) (($ (-1183) (-1273 (-319 (-704)))) 168) (($ (-1183) (-1273 (-319 (-699)))) 171) (($ (-1183) (-649 (-958 (-569))) (-319 (-706))) 172) (($ (-1183) (-649 (-958 (-569))) (-319 (-704))) 173) (($ (-1183) (-649 (-958 (-569))) (-319 (-699))) 174) (($ (-1183) (-319 (-569))) 199) (($ (-1183) (-319 (-383))) 200) (($ (-1183) (-319 (-170 (-383)))) 201) (($ (-1183) (-694 (-319 (-569)))) 180) (($ (-1183) (-694 (-319 (-383)))) 183) (($ (-1183) (-694 (-319 (-170 (-383))))) 186) (($ (-1183) (-1273 (-319 (-569)))) 189) (($ (-1183) (-1273 (-319 (-383)))) 192) (($ (-1183) (-1273 (-319 (-170 (-383))))) 195) (($ (-1183) (-649 (-958 (-569))) (-319 (-569))) 196) (($ (-1183) (-649 (-958 (-569))) (-319 (-383))) 197) (($ (-1183) (-649 (-958 (-569))) (-319 (-170 (-383)))) 198)) (-2919 (((-112) $ $) NIL)))
-(((-333) (-13 (-1106) (-10 -8 (-15 -1892 ($ (-1098 (-958 (-569))) $)) (-15 -1892 ($ (-1098 (-958 (-569))) (-958 (-569)) $)) (-15 -2955 ($ (-1182) $)) (-15 -2844 ($ (-1182) $)) (-15 -2728 ($ (-1126))) (-15 -3353 ($ (-1126))) (-15 -3771 ($ (-1165))) (-15 -3771 ($ (-649 (-1165)))) (-15 -2264 ($ (-1165))) (-15 -2608 ($)) (-15 -2608 ($ (-319 (-704)))) (-15 -2608 ($ (-319 (-706)))) (-15 -2608 ($ (-319 (-699)))) (-15 -2608 ($ (-319 (-383)))) (-15 -2608 ($ (-319 (-569)))) (-15 -2608 ($ (-319 (-170 (-383))))) (-15 -1329 ($ (-1182) $)) (-15 -1329 ($ (-1182) $ $)) (-15 -4120 ($ (-1183) (-1165))) (-15 -4120 ($ (-1183) (-319 (-706)))) (-15 -4120 ($ (-1183) (-319 (-704)))) (-15 -4120 ($ (-1183) (-319 (-699)))) (-15 -4120 ($ (-1183) (-694 (-706)))) (-15 -4120 ($ (-1183) (-694 (-704)))) (-15 -4120 ($ (-1183) (-694 (-699)))) (-15 -4120 ($ (-1183) (-1273 (-706)))) (-15 -4120 ($ (-1183) (-1273 (-704)))) (-15 -4120 ($ (-1183) (-1273 (-699)))) (-15 -4120 ($ (-1183) (-694 (-319 (-706))))) (-15 -4120 ($ (-1183) (-694 (-319 (-704))))) (-15 -4120 ($ (-1183) (-694 (-319 (-699))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-706))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-704))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-699))))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-706)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-704)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-699)))) (-15 -4120 ($ (-1183) (-319 (-569)))) (-15 -4120 ($ (-1183) (-319 (-383)))) (-15 -4120 ($ (-1183) (-319 (-170 (-383))))) (-15 -4120 ($ (-1183) (-694 (-319 (-569))))) (-15 -4120 ($ (-1183) (-694 (-319 (-383))))) (-15 -4120 ($ (-1183) (-694 (-319 (-170 (-383)))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-569))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-383))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-170 (-383)))))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-569)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-383)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -2486 ($ (-649 $))) (-15 -4152 ($)) (-15 -1759 ($)) (-15 -2379 ($ (-649 (-867)))) (-15 -3385 ($ (-1183) (-649 (-1183)))) (-15 -2940 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3203 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3218 (-112)) (|:| -2185 (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -2080 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3583 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3583 $))) (|:| |commonBranch| (-2 (|:| -3570 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -3554 ((-1278) $)) (-15 -3432 ((-1110) $)) (-15 -3300 ((-1126) (-1126)))))) (T -333))
-((-1892 (*1 *1 *2 *1) (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *1 (-333)))) (-1892 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *3 (-958 (-569))) (-5 *1 (-333)))) (-2955 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-2844 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-2728 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-333)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))) (-2608 (*1 *1) (-5 *1 (-333))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-1329 (*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-1329 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-706))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-704))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-699))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-706))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-704))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-699))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-706))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-704))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-699))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-706)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-704)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-699)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-706))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-704))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-699))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-569))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-383))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-569)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-383)))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-569))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-383))) (-5 *1 (-333)))) (-4120 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333)))) (-4152 (*1 *1) (-5 *1 (-333))) (-1759 (*1 *1) (-5 *1 (-333))) (-2379 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333)))) (-3385 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-333)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-333)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| (-333)) (|:| |elseClause| (-333)))) (|:| |returnBranch| (-2 (|:| -3218 (-112)) (|:| -2185 (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |blockBranch| (-649 (-333))) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -2080 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3583 (-333)))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3583 (-333)))) (|:| |commonBranch| (-2 (|:| -3570 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867))))) (-5 *1 (-333)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-333)))) (-3432 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-333)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(-13 (-1106) (-10 -8 (-15 -1892 ($ (-1098 (-958 (-569))) $)) (-15 -1892 ($ (-1098 (-958 (-569))) (-958 (-569)) $)) (-15 -2955 ($ (-1182) $)) (-15 -2844 ($ (-1182) $)) (-15 -2728 ($ (-1126))) (-15 -3353 ($ (-1126))) (-15 -3771 ($ (-1165))) (-15 -3771 ($ (-649 (-1165)))) (-15 -2264 ($ (-1165))) (-15 -2608 ($)) (-15 -2608 ($ (-319 (-704)))) (-15 -2608 ($ (-319 (-706)))) (-15 -2608 ($ (-319 (-699)))) (-15 -2608 ($ (-319 (-383)))) (-15 -2608 ($ (-319 (-569)))) (-15 -2608 ($ (-319 (-170 (-383))))) (-15 -1329 ($ (-1182) $)) (-15 -1329 ($ (-1182) $ $)) (-15 -4120 ($ (-1183) (-1165))) (-15 -4120 ($ (-1183) (-319 (-706)))) (-15 -4120 ($ (-1183) (-319 (-704)))) (-15 -4120 ($ (-1183) (-319 (-699)))) (-15 -4120 ($ (-1183) (-694 (-706)))) (-15 -4120 ($ (-1183) (-694 (-704)))) (-15 -4120 ($ (-1183) (-694 (-699)))) (-15 -4120 ($ (-1183) (-1273 (-706)))) (-15 -4120 ($ (-1183) (-1273 (-704)))) (-15 -4120 ($ (-1183) (-1273 (-699)))) (-15 -4120 ($ (-1183) (-694 (-319 (-706))))) (-15 -4120 ($ (-1183) (-694 (-319 (-704))))) (-15 -4120 ($ (-1183) (-694 (-319 (-699))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-706))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-704))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-699))))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-706)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-704)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-699)))) (-15 -4120 ($ (-1183) (-319 (-569)))) (-15 -4120 ($ (-1183) (-319 (-383)))) (-15 -4120 ($ (-1183) (-319 (-170 (-383))))) (-15 -4120 ($ (-1183) (-694 (-319 (-569))))) (-15 -4120 ($ (-1183) (-694 (-319 (-383))))) (-15 -4120 ($ (-1183) (-694 (-319 (-170 (-383)))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-569))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-383))))) (-15 -4120 ($ (-1183) (-1273 (-319 (-170 (-383)))))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-569)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-383)))) (-15 -4120 ($ (-1183) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -2486 ($ (-649 $))) (-15 -4152 ($)) (-15 -1759 ($)) (-15 -2379 ($ (-649 (-867)))) (-15 -3385 ($ (-1183) (-649 (-1183)))) (-15 -2940 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3203 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1183)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1183)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1182)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3218 (-112)) (|:| -2185 (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165)) (|:| |forBranch| (-2 (|:| -2080 (-1098 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3583 $))) (|:| |labelBranch| (-1126)) (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3583 $))) (|:| |commonBranch| (-2 (|:| -3570 (-1183)) (|:| |contents| (-649 (-1183))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -3554 ((-1278) $)) (-15 -3432 ((-1110) $)) (-15 -3300 ((-1126) (-1126)))))
-((-2415 (((-112) $ $) NIL)) (-1982 (((-112) $) 13)) (-2600 (($ |#1|) 10)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2609 (($ |#1|) 12)) (-3793 (((-867) $) 19)) (-1441 (((-112) $ $) NIL)) (-4112 ((|#1| $) 14)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 21)))
-(((-334 |#1|) (-13 (-855) (-10 -8 (-15 -2600 ($ |#1|)) (-15 -2609 ($ |#1|)) (-15 -1982 ((-112) $)) (-15 -4112 (|#1| $)))) (-855)) (T -334))
-((-2600 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-2609 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))) (-4112 (*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))))
-(-13 (-855) (-10 -8 (-15 -2600 ($ |#1|)) (-15 -2609 ($ |#1|)) (-15 -1982 ((-112) $)) (-15 -4112 (|#1| $))))
-((-2079 (((-333) (-1183) (-958 (-569))) 23)) (-2177 (((-333) (-1183) (-958 (-569))) 27)) (-3952 (((-333) (-1183) (-1098 (-958 (-569))) (-1098 (-958 (-569)))) 26) (((-333) (-1183) (-958 (-569)) (-958 (-569))) 24)) (-2274 (((-333) (-1183) (-958 (-569))) 31)))
-(((-335) (-10 -7 (-15 -2079 ((-333) (-1183) (-958 (-569)))) (-15 -3952 ((-333) (-1183) (-958 (-569)) (-958 (-569)))) (-15 -3952 ((-333) (-1183) (-1098 (-958 (-569))) (-1098 (-958 (-569))))) (-15 -2177 ((-333) (-1183) (-958 (-569)))) (-15 -2274 ((-333) (-1183) (-958 (-569)))))) (T -335))
-((-2274 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-3952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1098 (-958 (-569)))) (-5 *2 (-333)) (-5 *1 (-335)))) (-3952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))))
-(-10 -7 (-15 -2079 ((-333) (-1183) (-958 (-569)))) (-15 -3952 ((-333) (-1183) (-958 (-569)) (-958 (-569)))) (-15 -3952 ((-333) (-1183) (-1098 (-958 (-569))) (-1098 (-958 (-569))))) (-15 -2177 ((-333) (-1183) (-958 (-569)))) (-15 -2274 ((-333) (-1183) (-958 (-569)))))
-((-2415 (((-112) $ $) NIL)) (-4310 (((-511) $) 20)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-4410 (((-964 (-776)) $) 18)) (-1524 (((-251) $) 7)) (-3793 (((-867) $) 26)) (-1930 (((-964 (-184 (-139))) $) 16)) (-1441 (((-112) $ $) NIL)) (-1404 (((-649 (-878 (-1188) (-776))) $) 12)) (-2919 (((-112) $ $) 22)))
-(((-336) (-13 (-1106) (-10 -8 (-15 -1524 ((-251) $)) (-15 -1404 ((-649 (-878 (-1188) (-776))) $)) (-15 -4410 ((-964 (-776)) $)) (-15 -1930 ((-964 (-184 (-139))) $)) (-15 -4310 ((-511) $))))) (T -336))
-((-1524 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1188) (-776)))) (-5 *1 (-336)))) (-4410 (*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-964 (-184 (-139)))) (-5 *1 (-336)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
-(-13 (-1106) (-10 -8 (-15 -1524 ((-251) $)) (-15 -1404 ((-649 (-878 (-1188) (-776))) $)) (-15 -4410 ((-964 (-776)) $)) (-15 -1930 ((-964 (-184 (-139))) $)) (-15 -4310 ((-511) $))))
-((-1344 (((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)) 33)))
-(((-337 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1344 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-367) (-1249 |#5|) (-1249 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -337))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-340 *5 *6 *7 *8)) (-4 *5 (-367)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *9 (-367)) (-4 *10 (-1249 *9)) (-4 *11 (-1249 (-412 *10))) (-5 *2 (-340 *9 *10 *11 *12)) (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-346 *9 *10 *11)))))
-(-10 -7 (-15 -1344 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|))))
-((-3737 (((-112) $) 14)))
-(((-338 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3737 ((-112) |#1|))) (-339 |#2| |#3| |#4| |#5|) (-367) (-1249 |#2|) (-1249 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -338))
-NIL
-(-10 -8 (-15 -3737 ((-112) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-3596 (($ $) 29)) (-3737 (((-112) $) 28)) (-1550 (((-1165) $) 10)) (-3552 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 35)) (-3545 (((-1126) $) 11)) (-2330 (((-3 |#4| "failed") $) 27)) (-3839 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-569)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2307 (((-2 (|:| -4264 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24)))
-(((-339 |#1| |#2| |#3| |#4|) (-140) (-367) (-1249 |t#1|) (-1249 (-412 |t#2|)) (-346 |t#1| |t#2| |t#3|)) (T -339))
-((-3552 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-418 *4 (-412 *4) *5 *6)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367)) (-4 *1 (-339 *3 *4 *5 *6)))) (-3839 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5)))) (-3839 (*1 *1 *2 *2) (-12 (-4 *2 (-367)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))) (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4)))) (-3839 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1249 *2)) (-4 *5 (-1249 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6)) (-4 *6 (-346 *2 *4 *5)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-2 (|:| -4264 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6))))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))) (-4 *5 (-346 *2 *3 *4)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))) (-2330 (*1 *2 *1) (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *2 (-346 *3 *4 *5)))) (-3839 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-367)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3552 ((-418 |t#2| (-412 |t#2|) |t#3| |t#4|) $)) (-15 -3839 ($ (-418 |t#2| (-412 |t#2|) |t#3| |t#4|))) (-15 -3839 ($ |t#4|)) (-15 -3839 ($ |t#1| |t#1|)) (-15 -3839 ($ |t#1| |t#1| (-569))) (-15 -2307 ((-2 (|:| -4264 (-418 |t#2| (-412 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3596 ($ $)) (-15 -3737 ((-112) $)) (-15 -2330 ((-3 |t#4| "failed") $)) (-15 -3839 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-3596 (($ $) 33)) (-3737 (((-112) $) NIL)) (-1550 (((-1165) $) NIL)) (-1639 (((-1273 |#4|) $) 134)) (-3552 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 31)) (-3545 (((-1126) $) NIL)) (-2330 (((-3 |#4| "failed") $) 36)) (-1741 (((-1273 |#4|) $) 126)) (-3839 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-569)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2307 (((-2 (|:| -4264 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3793 (((-867) $) 17)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 14 T CONST)) (-2919 (((-112) $ $) 20)) (-3021 (($ $) 27) (($ $ $) NIL)) (-3009 (($ $ $) 25)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 23)))
-(((-340 |#1| |#2| |#3| |#4|) (-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1741 ((-1273 |#4|) $)) (-15 -1639 ((-1273 |#4|) $)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -340))
-((-1741 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))) (-1639 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))))
-(-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1741 ((-1273 |#4|) $)) (-15 -1639 ((-1273 |#4|) $))))
-((-1723 (($ $ (-1183) |#2|) NIL) (($ $ (-649 (-1183)) (-649 |#2|)) 20) (($ $ (-649 (-297 |#2|))) 15) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-1866 (($ $ |#2|) 11)))
-(((-341 |#1| |#2|) (-10 -8 (-15 -1866 (|#1| |#1| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#2| |#2|)) (-15 -1723 (|#1| |#1| (-297 |#2|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 |#2|))) (-15 -1723 (|#1| |#1| (-1183) |#2|))) (-342 |#2|) (-1106)) (T -341))
-NIL
-(-10 -8 (-15 -1866 (|#1| |#1| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#2| |#2|)) (-15 -1723 (|#1| |#1| (-297 |#2|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 |#2|))) (-15 -1723 (|#1| |#1| (-1183) |#2|)))
-((-1344 (($ (-1 |#1| |#1|) $) 6)) (-1723 (($ $ (-1183) |#1|) 17 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 16 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-649 (-297 |#1|))) 15 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 14 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-312 |#1|))) (($ $ (-649 |#1|) (-649 |#1|)) 12 (|has| |#1| (-312 |#1|)))) (-1866 (($ $ |#1|) 11 (|has| |#1| (-289 |#1| |#1|)))))
-(((-342 |#1|) (-140) (-1106)) (T -342))
-((-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1106)))))
-(-13 (-10 -8 (-15 -1344 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-289 |t#1| |t#1|)) (-6 (-289 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-519 (-1183) |t#1|)) (-6 (-519 (-1183) |t#1|)) |%noBranch|)))
-(((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1183)) $) NIL)) (-3718 (((-112)) 96) (((-112) (-112)) 97)) (-3660 (((-649 (-617 $)) $) NIL)) (-2769 (($ $) NIL)) (-2624 (($ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4293 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-3807 (($ $) NIL)) (-2744 (($ $) NIL)) (-2600 (($ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-617 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-319 |#3|)) 76) (((-3 $ "failed") (-1183)) 103) (((-3 $ "failed") (-319 (-569))) 64 (|has| |#3| (-1044 (-569)))) (((-3 $ "failed") (-412 (-958 (-569)))) 70 (|has| |#3| (-1044 (-569)))) (((-3 $ "failed") (-958 (-569))) 65 (|has| |#3| (-1044 (-569)))) (((-3 $ "failed") (-319 (-383))) 94 (|has| |#3| (-1044 (-383)))) (((-3 $ "failed") (-412 (-958 (-383)))) 88 (|has| |#3| (-1044 (-383)))) (((-3 $ "failed") (-958 (-383))) 83 (|has| |#3| (-1044 (-383))))) (-3148 (((-617 $) $) NIL) ((|#3| $) NIL) (($ (-319 |#3|)) 77) (($ (-1183)) 104) (($ (-319 (-569))) 66 (|has| |#3| (-1044 (-569)))) (($ (-412 (-958 (-569)))) 71 (|has| |#3| (-1044 (-569)))) (($ (-958 (-569))) 67 (|has| |#3| (-1044 (-569)))) (($ (-319 (-383))) 95 (|has| |#3| (-1044 (-383)))) (($ (-412 (-958 (-383)))) 89 (|has| |#3| (-1044 (-383)))) (($ (-958 (-383))) 85 (|has| |#3| (-1044 (-383))))) (-2888 (((-3 $ "failed") $) NIL)) (-1310 (($) 101)) (-2223 (($ $) NIL) (($ (-649 $)) NIL)) (-1463 (((-649 (-114)) $) NIL)) (-3743 (((-114) (-114)) NIL)) (-2623 (((-112) $) NIL)) (-1607 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-4362 (((-1179 $) (-617 $)) NIL (|has| $ (-1055)))) (-1344 (($ (-1 $ $) (-617 $)) NIL)) (-1574 (((-3 (-617 $) "failed") $) NIL)) (-1340 (($ $) 99)) (-2660 (($ $) NIL)) (-1550 (((-1165) $) NIL)) (-3733 (((-649 (-617 $)) $) NIL)) (-1352 (($ (-114) $) 98) (($ (-114) (-649 $)) NIL)) (-2374 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) NIL)) (-1425 (((-776) $) NIL)) (-3545 (((-1126) $) NIL)) (-1335 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-4386 (($ $) NIL)) (-2108 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1723 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1866 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-1676 (($ $) NIL) (($ $ $) NIL)) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL)) (-4143 (($ $) NIL (|has| $ (-1055)))) (-2756 (($ $) NIL)) (-2609 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-617 $)) NIL) (($ |#3|) NIL) (($ (-569)) NIL) (((-319 |#3|) $) 102)) (-3302 (((-776)) NIL T CONST)) (-4211 (($ $) NIL) (($ (-649 $)) NIL)) (-4142 (((-112) (-114)) NIL)) (-1441 (((-112) $ $) NIL)) (-2699 (($ $) NIL)) (-2673 (($ $) NIL)) (-2687 (($ $) NIL)) (-3070 (($ $) NIL)) (-1803 (($) 100 T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
-(((-343 |#1| |#2| |#3|) (-13 (-305) (-38 |#3|) (-1044 |#3|) (-906 (-1183)) (-10 -8 (-15 -3148 ($ (-319 |#3|))) (-15 -4378 ((-3 $ "failed") (-319 |#3|))) (-15 -3148 ($ (-1183))) (-15 -4378 ((-3 $ "failed") (-1183))) (-15 -3793 ((-319 |#3|) $)) (IF (|has| |#3| (-1044 (-569))) (PROGN (-15 -3148 ($ (-319 (-569)))) (-15 -4378 ((-3 $ "failed") (-319 (-569)))) (-15 -3148 ($ (-412 (-958 (-569))))) (-15 -4378 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3148 ($ (-958 (-569)))) (-15 -4378 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1044 (-383))) (PROGN (-15 -3148 ($ (-319 (-383)))) (-15 -4378 ((-3 $ "failed") (-319 (-383)))) (-15 -3148 ($ (-412 (-958 (-383))))) (-15 -4378 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3148 ($ (-958 (-383)))) (-15 -4378 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -3070 ($ $)) (-15 -3807 ($ $)) (-15 -4386 ($ $)) (-15 -2660 ($ $)) (-15 -1340 ($ $)) (-15 -2600 ($ $)) (-15 -2609 ($ $)) (-15 -2624 ($ $)) (-15 -2673 ($ $)) (-15 -2687 ($ $)) (-15 -2699 ($ $)) (-15 -2744 ($ $)) (-15 -2756 ($ $)) (-15 -2769 ($ $)) (-15 -1310 ($)) (-15 -1710 ((-649 (-1183)) $)) (-15 -3718 ((-112))) (-15 -3718 ((-112) (-112))))) (-649 (-1183)) (-649 (-1183)) (-392)) (T -343))
-((-3148 (*1 *1 *2) (-12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-319 *5)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3070 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-4386 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2660 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-1340 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2600 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2609 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2624 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2673 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2687 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2699 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2744 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2756 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-1310 (*1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183))) (-14 *3 (-649 (-1183))) (-4 *4 (-392)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-392)))) (-3718 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))) (-3718 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392)))))
-(-13 (-305) (-38 |#3|) (-1044 |#3|) (-906 (-1183)) (-10 -8 (-15 -3148 ($ (-319 |#3|))) (-15 -4378 ((-3 $ "failed") (-319 |#3|))) (-15 -3148 ($ (-1183))) (-15 -4378 ((-3 $ "failed") (-1183))) (-15 -3793 ((-319 |#3|) $)) (IF (|has| |#3| (-1044 (-569))) (PROGN (-15 -3148 ($ (-319 (-569)))) (-15 -4378 ((-3 $ "failed") (-319 (-569)))) (-15 -3148 ($ (-412 (-958 (-569))))) (-15 -4378 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3148 ($ (-958 (-569)))) (-15 -4378 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1044 (-383))) (PROGN (-15 -3148 ($ (-319 (-383)))) (-15 -4378 ((-3 $ "failed") (-319 (-383)))) (-15 -3148 ($ (-412 (-958 (-383))))) (-15 -4378 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3148 ($ (-958 (-383)))) (-15 -4378 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -3070 ($ $)) (-15 -3807 ($ $)) (-15 -4386 ($ $)) (-15 -2660 ($ $)) (-15 -1340 ($ $)) (-15 -2600 ($ $)) (-15 -2609 ($ $)) (-15 -2624 ($ $)) (-15 -2673 ($ $)) (-15 -2687 ($ $)) (-15 -2699 ($ $)) (-15 -2744 ($ $)) (-15 -2756 ($ $)) (-15 -2769 ($ $)) (-15 -1310 ($)) (-15 -1710 ((-649 (-1183)) $)) (-15 -3718 ((-112))) (-15 -3718 ((-112) (-112)))))
-((-1344 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1344 (|#8| (-1 |#5| |#1|) |#4|))) (-1227) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-1227) (-1249 |#5|) (-1249 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -344))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1227)) (-4 *8 (-1227)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *9 (-1249 *8)) (-4 *2 (-346 *8 *9 *10)) (-5 *1 (-344 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1249 (-412 *9))))))
-(-10 -7 (-15 -1344 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2240 (((-2 (|:| |num| (-1273 |#3|)) (|:| |den| |#3|)) $) 39)) (-3390 (($ (-1273 (-412 |#3|)) (-1273 $)) NIL) (($ (-1273 (-412 |#3|))) NIL) (($ (-1273 |#3|) |#3|) 177)) (-1633 (((-1273 $) (-1273 $)) 160)) (-2521 (((-649 (-649 |#2|))) 129)) (-3757 (((-112) |#2| |#2|) 76)) (-4260 (($ $) 151)) (-2566 (((-776)) 176)) (-1774 (((-1273 $) (-1273 $)) 222)) (-2648 (((-649 (-958 |#2|)) (-1183)) 118)) (-4022 (((-112) $) 173)) (-3911 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-2881 (((-3 |#3| "failed")) 52)) (-2717 (((-776)) 188)) (-1866 ((|#2| $ |#2| |#2|) 143)) (-3006 (((-3 |#3| "failed")) 71)) (-3514 (($ $ (-1 (-412 |#3|) (-412 |#3|)) (-776)) NIL) (($ $ (-1 (-412 |#3|) (-412 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-1891 (((-1273 $) (-1273 $)) 166)) (-2757 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2575 (((-112)) 34)))
-(((-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2521 ((-649 (-649 |#2|)))) (-15 -2648 ((-649 (-958 |#2|)) (-1183))) (-15 -2757 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2881 ((-3 |#3| "failed"))) (-15 -3006 ((-3 |#3| "failed"))) (-15 -1866 (|#2| |#1| |#2| |#2|)) (-15 -4260 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3911 ((-112) |#1| |#3|)) (-15 -3911 ((-112) |#1| |#2|)) (-15 -3390 (|#1| (-1273 |#3|) |#3|)) (-15 -2240 ((-2 (|:| |num| (-1273 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1633 ((-1273 |#1|) (-1273 |#1|))) (-15 -1774 ((-1273 |#1|) (-1273 |#1|))) (-15 -1891 ((-1273 |#1|) (-1273 |#1|))) (-15 -3911 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -3757 ((-112) |#2| |#2|)) (-15 -2575 ((-112))) (-15 -2717 ((-776))) (-15 -2566 ((-776))) (-15 -3514 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3514 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -3390 (|#1| (-1273 (-412 |#3|)))) (-15 -3390 (|#1| (-1273 (-412 |#3|)) (-1273 |#1|)))) (-346 |#2| |#3| |#4|) (-1227) (-1249 |#2|) (-1249 (-412 |#3|))) (T -345))
-((-2566 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-2717 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-2575 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-3757 (*1 *2 *3 *3) (-12 (-4 *3 (-1227)) (-4 *5 (-1249 *3)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6)))) (-3006 (*1 *2) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-2881 (*1 *2) (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *5 (-1227)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-5 *2 (-649 (-958 *5))) (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7)))) (-2521 (*1 *2) (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))))
-(-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -2521 ((-649 (-649 |#2|)))) (-15 -2648 ((-649 (-958 |#2|)) (-1183))) (-15 -2757 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2881 ((-3 |#3| "failed"))) (-15 -3006 ((-3 |#3| "failed"))) (-15 -1866 (|#2| |#1| |#2| |#2|)) (-15 -4260 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3911 ((-112) |#1| |#3|)) (-15 -3911 ((-112) |#1| |#2|)) (-15 -3390 (|#1| (-1273 |#3|) |#3|)) (-15 -2240 ((-2 (|:| |num| (-1273 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1633 ((-1273 |#1|) (-1273 |#1|))) (-15 -1774 ((-1273 |#1|) (-1273 |#1|))) (-15 -1891 ((-1273 |#1|) (-1273 |#1|))) (-15 -3911 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -3757 ((-112) |#2| |#2|)) (-15 -2575 ((-112))) (-15 -2717 ((-776))) (-15 -2566 ((-776))) (-15 -3514 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3514 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -3390 (|#1| (-1273 (-412 |#3|)))) (-15 -3390 (|#1| (-1273 (-412 |#3|)) (-1273 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-2240 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 204)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 102 (|has| (-412 |#2|) (-367)))) (-3087 (($ $) 103 (|has| (-412 |#2|) (-367)))) (-2883 (((-112) $) 105 (|has| (-412 |#2|) (-367)))) (-1739 (((-694 (-412 |#2|)) (-1273 $)) 53) (((-694 (-412 |#2|))) 68)) (-3136 (((-412 |#2|) $) 59)) (-1372 (((-1196 (-927) (-776)) (-569)) 155 (|has| (-412 |#2|) (-353)))) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 122 (|has| (-412 |#2|) (-367)))) (-2508 (((-423 $) $) 123 (|has| (-412 |#2|) (-367)))) (-1680 (((-112) $ $) 113 (|has| (-412 |#2|) (-367)))) (-3470 (((-776)) 96 (|has| (-412 |#2|) (-372)))) (-3373 (((-112)) 221)) (-3235 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 178 (|has| (-412 |#2|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) 173)) (-3148 (((-569) $) 177 (|has| (-412 |#2|) (-1044 (-569)))) (((-412 (-569)) $) 175 (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-412 |#2|) $) 174)) (-3390 (($ (-1273 (-412 |#2|)) (-1273 $)) 55) (($ (-1273 (-412 |#2|))) 71) (($ (-1273 |#2|) |#2|) 203)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-412 |#2|) (-353)))) (-2366 (($ $ $) 117 (|has| (-412 |#2|) (-367)))) (-1635 (((-694 (-412 |#2|)) $ (-1273 $)) 60) (((-694 (-412 |#2|)) $) 66)) (-1630 (((-694 (-569)) (-694 $)) 172 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 171 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-412 |#2|))) (|:| |vec| (-1273 (-412 |#2|)))) (-694 $) (-1273 $)) 170) (((-694 (-412 |#2|)) (-694 $)) 169)) (-1633 (((-1273 $) (-1273 $)) 209)) (-3596 (($ |#3|) 166) (((-3 $ "failed") (-412 |#3|)) 163 (|has| (-412 |#2|) (-367)))) (-2888 (((-3 $ "failed") $) 37)) (-2521 (((-649 (-649 |#1|))) 190 (|has| |#1| (-372)))) (-3757 (((-112) |#1| |#1|) 225)) (-3975 (((-927)) 61)) (-3403 (($) 99 (|has| (-412 |#2|) (-372)))) (-4355 (((-112)) 218)) (-4247 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2373 (($ $ $) 116 (|has| (-412 |#2|) (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 111 (|has| (-412 |#2|) (-367)))) (-4260 (($ $) 196)) (-1312 (($) 157 (|has| (-412 |#2|) (-353)))) (-1940 (((-112) $) 158 (|has| (-412 |#2|) (-353)))) (-2501 (($ $ (-776)) 149 (|has| (-412 |#2|) (-353))) (($ $) 148 (|has| (-412 |#2|) (-353)))) (-4073 (((-112) $) 124 (|has| (-412 |#2|) (-367)))) (-3110 (((-927) $) 160 (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) 146 (|has| (-412 |#2|) (-353)))) (-2623 (((-112) $) 35)) (-2566 (((-776)) 228)) (-1774 (((-1273 $) (-1273 $)) 210)) (-2707 (((-412 |#2|) $) 58)) (-2648 (((-649 (-958 |#1|)) (-1183)) 191 (|has| |#1| (-367)))) (-3812 (((-3 $ "failed") $) 150 (|has| (-412 |#2|) (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| (-412 |#2|) (-367)))) (-2091 ((|#3| $) 51 (|has| (-412 |#2|) (-367)))) (-2855 (((-927) $) 98 (|has| (-412 |#2|) (-372)))) (-3582 ((|#3| $) 164)) (-1835 (($ (-649 $)) 109 (|has| (-412 |#2|) (-367))) (($ $ $) 108 (|has| (-412 |#2|) (-367)))) (-1550 (((-1165) $) 10)) (-2327 (((-694 (-412 |#2|))) 205)) (-1374 (((-694 (-412 |#2|))) 207)) (-1814 (($ $) 125 (|has| (-412 |#2|) (-367)))) (-2026 (($ (-1273 |#2|) |#2|) 201)) (-2435 (((-694 (-412 |#2|))) 206)) (-1511 (((-694 (-412 |#2|))) 208)) (-1943 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-2134 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 202)) (-4131 (((-1273 $)) 214)) (-2402 (((-1273 $)) 215)) (-4022 (((-112) $) 213)) (-3911 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2305 (($) 151 (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| (-412 |#2|) (-372)))) (-2881 (((-3 |#2| "failed")) 193)) (-3545 (((-1126) $) 11)) (-2717 (((-776)) 227)) (-2330 (($) 168)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 110 (|has| (-412 |#2|) (-367)))) (-1864 (($ (-649 $)) 107 (|has| (-412 |#2|) (-367))) (($ $ $) 106 (|has| (-412 |#2|) (-367)))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 154 (|has| (-412 |#2|) (-353)))) (-3796 (((-423 $) $) 121 (|has| (-412 |#2|) (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 118 (|has| (-412 |#2|) (-367)))) (-2405 (((-3 $ "failed") $ $) 101 (|has| (-412 |#2|) (-367)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| (-412 |#2|) (-367)))) (-1578 (((-776) $) 114 (|has| (-412 |#2|) (-367)))) (-1866 ((|#1| $ |#1| |#1|) 195)) (-3006 (((-3 |#2| "failed")) 194)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 115 (|has| (-412 |#2|) (-367)))) (-4304 (((-412 |#2|) (-1273 $)) 54) (((-412 |#2|)) 67)) (-2601 (((-776) $) 159 (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) 147 (|has| (-412 |#2|) (-353)))) (-3514 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 131 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 130 (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-649 (-1183)) (-649 (-776))) 138 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183) (-776)) 139 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1183))) 140 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183)) 141 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 143 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1756 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 145 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1756 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2520 (((-694 (-412 |#2|)) (-1273 $) (-1 (-412 |#2|) (-412 |#2|))) 162 (|has| (-412 |#2|) (-367)))) (-4143 ((|#3|) 167)) (-2430 (($) 156 (|has| (-412 |#2|) (-353)))) (-2960 (((-1273 (-412 |#2|)) $ (-1273 $)) 57) (((-694 (-412 |#2|)) (-1273 $) (-1273 $)) 56) (((-1273 (-412 |#2|)) $) 73) (((-694 (-412 |#2|)) (-1273 $)) 72)) (-1408 (((-1273 (-412 |#2|)) $) 70) (($ (-1273 (-412 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 153 (|has| (-412 |#2|) (-353)))) (-1891 (((-1273 $) (-1273 $)) 211)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 |#2|)) 44) (($ (-412 (-569))) 95 (-2774 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-1044 (-412 (-569)))))) (($ $) 100 (|has| (-412 |#2|) (-367)))) (-4030 (($ $) 152 (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) 50 (|has| (-412 |#2|) (-145)))) (-3798 ((|#3| $) 52)) (-3302 (((-776)) 32 T CONST)) (-3637 (((-112)) 224)) (-3507 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1441 (((-112) $ $) 9)) (-1903 (((-1273 $)) 74)) (-2985 (((-112) $ $) 104 (|has| (-412 |#2|) (-367)))) (-2757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-2575 (((-112)) 226)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 133 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 132 (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1183)) (-649 (-776))) 134 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183) (-776)) 135 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1183))) 136 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-1183)) 137 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) (-1756 (|has| (-412 |#2|) (-906 (-1183))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 142 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1756 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 144 (-2774 (-1756 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1756 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 129 (|has| (-412 |#2|) (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 |#2|)) 46) (($ (-412 |#2|) $) 45) (($ (-412 (-569)) $) 128 (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) 127 (|has| (-412 |#2|) (-367)))))
-(((-346 |#1| |#2| |#3|) (-140) (-1227) (-1249 |t#1|) (-1249 (-412 |t#2|))) (T -346))
-((-2566 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776)))) (-2717 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776)))) (-2575 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3757 (*1 *2 *3 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3637 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3507 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3507 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-3373 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3235 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3235 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-4355 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-4247 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-4247 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-2402 (*1 *2) (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)))) (-4131 (*1 *2) (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-1891 (*1 *2 *2) (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-1511 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-1374 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-2435 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-2327 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))) (-3390 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3))))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))) (-2026 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3))))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))) (-3911 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))) (-3911 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))) (-4260 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))))) (-1866 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3))))) (-3006 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227)) (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))) (-2881 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227)) (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))) (-2757 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1227)) (-4 *6 (-1249 (-412 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-346 *4 *5 *6)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *4 (-367)) (-5 *2 (-649 (-958 *4))))) (-2521 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3))))))
-(-13 (-729 (-412 |t#2|) |t#3|) (-10 -8 (-15 -2566 ((-776))) (-15 -2717 ((-776))) (-15 -2575 ((-112))) (-15 -3757 ((-112) |t#1| |t#1|)) (-15 -3637 ((-112))) (-15 -3507 ((-112) |t#1|)) (-15 -3507 ((-112) |t#2|)) (-15 -3373 ((-112))) (-15 -3235 ((-112) |t#1|)) (-15 -3235 ((-112) |t#2|)) (-15 -4355 ((-112))) (-15 -4247 ((-112) |t#1|)) (-15 -4247 ((-112) |t#2|)) (-15 -2402 ((-1273 $))) (-15 -4131 ((-1273 $))) (-15 -4022 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -1891 ((-1273 $) (-1273 $))) (-15 -1774 ((-1273 $) (-1273 $))) (-15 -1633 ((-1273 $) (-1273 $))) (-15 -1511 ((-694 (-412 |t#2|)))) (-15 -1374 ((-694 (-412 |t#2|)))) (-15 -2435 ((-694 (-412 |t#2|)))) (-15 -2327 ((-694 (-412 |t#2|)))) (-15 -2240 ((-2 (|:| |num| (-1273 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3390 ($ (-1273 |t#2|) |t#2|)) (-15 -2134 ((-2 (|:| |num| (-1273 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2026 ($ (-1273 |t#2|) |t#2|)) (-15 -1943 ((-2 (|:| |num| (-694 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3911 ((-112) $ |t#1|)) (-15 -3911 ((-112) $ |t#2|)) (-15 -3514 ($ $ (-1 |t#2| |t#2|))) (-15 -4260 ($ $)) (-15 -1866 (|t#1| $ |t#1| |t#1|)) (-15 -3006 ((-3 |t#2| "failed"))) (-15 -2881 ((-3 |t#2| "failed"))) (-15 -2757 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-367)) (-15 -2648 ((-649 (-958 |t#1|)) (-1183))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -2521 ((-649 (-649 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-38 #1=(-412 |#2|)) . T) ((-38 $) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-102) . T) ((-111 #0# #0#) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-145))) ((-147) |has| (-412 |#2|) (-147)) ((-621 #0#) -2774 (|has| (-412 |#2|) (-1044 (-412 (-569)))) (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-621 #1#) . T) ((-621 (-569)) . T) ((-621 $) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#3|) . T) ((-232 #1#) |has| (-412 |#2|) (-367)) ((-234) -2774 (|has| (-412 |#2|) (-353)) (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367)))) ((-244) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-293) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-310) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-367) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-407) |has| (-412 |#2|) (-353)) ((-372) -2774 (|has| (-412 |#2|) (-372)) (|has| (-412 |#2|) (-353))) ((-353) |has| (-412 |#2|) (-353)) ((-374 #1# |#3|) . T) ((-414 #1# |#3|) . T) ((-381 #1#) . T) ((-416 #1#) . T) ((-457) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-561) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #0#) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #1#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-645 #1#) . T) ((-645 $) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-644 #1#) . T) ((-644 (-569)) |has| (-412 |#2|) (-644 (-569))) ((-722 #0#) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-722 #1#) . T) ((-722 $) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-729 #1# |#3|) . T) ((-731) . T) ((-906 (-1183)) -12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183)))) ((-926) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1044 (-412 (-569))) |has| (-412 |#2|) (-1044 (-412 (-569)))) ((-1044 #1#) . T) ((-1044 (-569)) |has| (-412 |#2|) (-1044 (-569))) ((-1057 #0#) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #0#) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| (-412 |#2|) (-353)) ((-1227) -2774 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-916 |#1|) "failed") $) NIL)) (-3148 (((-916 |#1|) $) NIL)) (-3390 (($ (-1273 (-916 |#1|))) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-916 |#1|) (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL (|has| (-916 |#1|) (-372)))) (-1940 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| (-916 |#1|) (-372)))) (-2968 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2707 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 (-916 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2855 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-4244 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4151 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1179 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-3091 (($ $ (-1179 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-2837 (((-964 (-1126))) NIL)) (-2330 (($) NIL (|has| (-916 |#1|) (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 (-916 |#1|))) NIL)) (-2430 (($) NIL (|has| (-916 |#1|) (-372)))) (-3188 (($) NIL (|has| (-916 |#1|) (-372)))) (-2960 (((-1273 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-4030 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2830 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
-(((-347 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -2837 ((-964 (-1126)))))) (-927) (-927)) (T -347))
-((-2837 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))))
-(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -2837 ((-964 (-1126))))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 58)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) 56 (|has| |#1| (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 142)) (-3148 ((|#1| $) 113)) (-3390 (($ (-1273 |#1|)) 130)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) 124 (|has| |#1| (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) 160 (|has| |#1| (-372)))) (-1940 (((-112) $) 66 (|has| |#1| (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) 60 (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) 62)) (-1993 (($) 162 (|has| |#1| (-372)))) (-2968 (((-112) $) NIL (|has| |#1| (-372)))) (-2707 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 |#1|) $) 117) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2855 (((-927) $) 171 (|has| |#1| (-372)))) (-4244 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-4151 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-3091 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 178)) (-2305 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 96 (|has| |#1| (-372)))) (-1959 (((-112) $) 147)) (-3545 (((-1126) $) NIL)) (-2837 (((-964 (-1126))) 57)) (-2330 (($) 158 (|has| |#1| (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 119 (|has| |#1| (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) 90) (((-927)) 91)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) 161 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 154 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 |#1|)) 122)) (-2430 (($) 159 (|has| |#1| (-372)))) (-3188 (($) 167 (|has| |#1| (-372)))) (-2960 (((-1273 |#1|) $) 77) (((-694 |#1|) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3793 (((-867) $) 174) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-4030 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) 155 T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) 144) (((-1273 $) (-927)) 98)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) 67 T CONST)) (-1813 (($) 103 T CONST)) (-2064 (($ $) 107 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2830 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2919 (((-112) $ $) 65)) (-3032 (($ $ $) 176) (($ $ |#1|) 177)) (-3021 (($ $) 157) (($ $ $) NIL)) (-3009 (($ $ $) 86)) (** (($ $ (-927)) 180) (($ $ (-776)) 181) (($ $ (-569)) 179)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 102) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
-(((-348 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -2837 ((-964 (-1126)))))) (-353) (-1179 |#1|)) (T -348))
-((-2837 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353)) (-14 *4 (-1179 *3)))))
-(-13 (-332 |#1|) (-10 -7 (-15 -2837 ((-964 (-1126))))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3390 (($ (-1273 |#1|)) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| |#1| (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL (|has| |#1| (-372)))) (-1940 (((-112) $) NIL (|has| |#1| (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| |#1| (-372)))) (-2968 (((-112) $) NIL (|has| |#1| (-372)))) (-2707 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 |#1|) $) NIL) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2855 (((-927) $) NIL (|has| |#1| (-372)))) (-4244 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-4151 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-3091 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-2837 (((-964 (-1126))) NIL)) (-2330 (($) NIL (|has| |#1| (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| |#1| (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 |#1|)) NIL)) (-2430 (($) NIL (|has| |#1| (-372)))) (-3188 (($) NIL (|has| |#1| (-372)))) (-2960 (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-4030 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2830 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-349 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -2837 ((-964 (-1126)))))) (-353) (-927)) (T -349))
-((-2837 (*1 *2) (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
-(-13 (-332 |#1|) (-10 -7 (-15 -2837 ((-964 (-1126))))))
-((-1618 (((-776) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126)))))) 61)) (-2958 (((-964 (-1126)) (-1179 |#1|)) 111)) (-3082 (((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) (-1179 |#1|)) 102)) (-2004 (((-694 |#1|) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126)))))) 113)) (-2113 (((-3 (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) "failed") (-927)) 13)) (-2219 (((-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126)))))) (-927)) 18)))
-(((-350 |#1|) (-10 -7 (-15 -2958 ((-964 (-1126)) (-1179 |#1|))) (-15 -3082 ((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) (-1179 |#1|))) (-15 -2004 ((-694 |#1|) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -1618 ((-776) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -2113 ((-3 (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) "failed") (-927))) (-15 -2219 ((-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126)))))) (-927)))) (-353)) (T -350))
-((-2219 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-3 (-1179 *4) (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126))))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-2113 (*1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-5 *2 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126)))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126)))))) (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126)))))) (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126)))))) (-5 *1 (-350 *4)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1126))) (-5 *1 (-350 *4)))))
-(-10 -7 (-15 -2958 ((-964 (-1126)) (-1179 |#1|))) (-15 -3082 ((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) (-1179 |#1|))) (-15 -2004 ((-694 |#1|) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -1618 ((-776) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -2113 ((-3 (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) "failed") (-927))) (-15 -2219 ((-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126)))))) (-927))))
-((-3793 ((|#1| |#3|) 106) ((|#3| |#1|) 89)))
-(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3793 (|#3| |#1|)) (-15 -3793 (|#1| |#3|))) (-332 |#2|) (-353) (-332 |#2|)) (T -351))
-((-3793 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *2 *4 *3)) (-4 *3 (-332 *4)))) (-3793 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *3 *4 *2)) (-4 *3 (-332 *4)))))
-(-10 -7 (-15 -3793 (|#3| |#1|)) (-15 -3793 (|#1| |#3|)))
-((-1940 (((-112) $) 60)) (-3110 (((-838 (-927)) $) 23) (((-927) $) 66)) (-3812 (((-3 $ "failed") $) 18)) (-2305 (($) 9)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 116)) (-2601 (((-3 (-776) "failed") $ $) 94) (((-776) $) 81)) (-3514 (($ $ (-776)) NIL) (($ $) 8)) (-2430 (($) 53)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 38)) (-4030 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-352 |#1|) (-10 -8 (-15 -3110 ((-927) |#1|)) (-15 -2601 ((-776) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -2430 (|#1|)) (-15 -4117 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -4030 (|#1| |#1|)) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-3 (-776) "failed") |#1| |#1|)) (-15 -3110 ((-838 (-927)) |#1|)) (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)))) (-353)) (T -352))
-NIL
-(-10 -8 (-15 -3110 ((-927) |#1|)) (-15 -2601 ((-776) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -2430 (|#1|)) (-15 -4117 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -4030 (|#1| |#1|)) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-3 (-776) "failed") |#1| |#1|)) (-15 -3110 ((-838 (-927)) |#1|)) (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1372 (((-1196 (-927) (-776)) (-569)) 101)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-1680 (((-112) $ $) 65)) (-3470 (((-776)) 111)) (-4188 (($) 18 T CONST)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-3403 (($) 114)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-1312 (($) 99)) (-1940 (((-112) $) 98)) (-2501 (($ $) 87) (($ $ (-776)) 86)) (-4073 (((-112) $) 79)) (-3110 (((-838 (-927)) $) 89) (((-927) $) 96)) (-2623 (((-112) $) 35)) (-3812 (((-3 $ "failed") $) 110)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2855 (((-927) $) 113)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-2305 (($) 109 T CONST)) (-2150 (($ (-927)) 112)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 102)) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-2601 (((-3 (-776) "failed") $ $) 88) (((-776) $) 97)) (-3514 (($ $ (-776)) 107) (($ $) 105)) (-2430 (($) 100)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 103)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-4030 (((-3 $ "failed") $) 90) (($ $) 104)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-776)) 108) (($ $) 106)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 73)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+((-2403 (*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1275 *1)) (-4 *1 (-332 *3)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1275 *1)) (-4 *1 (-332 *4)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1275 *3)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3)))) (-4061 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3)))) (-1898 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1181 *1)) (-4 *1 (-332 *4)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-4110 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-2155 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112)))) (-2332 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-4384 (*1 *1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3)) (-4 *3 (-367)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1181 *3)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1181 *3)))) (-4119 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1181 *3)))))
+(-13 (-1294 |t#1|) (-1046 |t#1|) (-10 -8 (-15 -2403 ((-1275 $))) (-15 -2403 ((-1275 $) (-927))) (-15 -2415 ((-1275 |t#1|) $)) (-15 -2415 ((-694 |t#1|) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|))) (-15 -3859 ((-1181 |t#1|) $)) (-15 -4061 ((-1181 |t#1|))) (-15 -1898 ((-927))) (-15 -4339 ((-927) $)) (-15 -3829 (|t#1| $)) (-15 -3140 (|t#1| $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-353)) (-15 -3859 ((-1181 $) $ (-927))) (-15 -3829 ($ $ (-927))) (-15 -3140 ($ $ (-927))) (-15 -4110 ($)) (-15 -2155 ($)) (-15 -2483 ((-112) $)) (-15 -2332 ($)) (-15 -4384 ($ $ (-1181 |t#1|))) (-15 -3775 ((-1181 |t#1|) $)) (-15 -4119 ((-1181 |t#1|) $)) (-15 -4119 ((-3 (-1181 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) |has| |#1| (-372)) ((-244) . T) ((-293) . T) ((-310) . T) ((-1294 |#1|) . T) ((-367) . T) ((-407) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-372) |has| |#1| (-372)) ((-353) |has| |#1| (-372)) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-372)) ((-1229) . T) ((-1282 |#1|) . T))
+((-2417 (((-112) $ $) NIL)) (-3657 (($ (-1184) $) 100)) (-4153 (($) 89)) (-2698 (((-1128) (-1128)) 9)) (-1762 (($) 90)) (-2224 (($) 104) (($ (-319 (-704))) 112) (($ (-319 (-706))) 108) (($ (-319 (-699))) 116) (($ (-319 (-383))) 123) (($ (-319 (-569))) 119) (($ (-319 (-170 (-383)))) 127)) (-2599 (($ (-1184) $) 101)) (-1879 (($ (-649 (-867))) 91)) (-3219 (((-1280) $) 87)) (-2939 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4025 (($ (-1128)) 58)) (-1459 (((-1112) $) 30)) (-3576 (($ (-1100 (-958 (-569))) $) 97) (($ (-1100 (-958 (-569))) (-958 (-569)) $) 98)) (-3355 (($ (-1128)) 99)) (-1331 (($ (-1184) $) 129) (($ (-1184) $ $) 130)) (-3388 (($ (-1185) (-649 (-1185))) 88)) (-3774 (($ (-1167)) 94) (($ (-649 (-1167))) 92)) (-3796 (((-867) $) 132)) (-3209 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 $))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 $))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867)))) $) 50)) (-2265 (($ (-1167)) 202)) (-3553 (($ (-649 $)) 128)) (-1520 (((-112) $ $) NIL)) (-3866 (($ (-1185) (-1167)) 135) (($ (-1185) (-319 (-706))) 175) (($ (-1185) (-319 (-704))) 176) (($ (-1185) (-319 (-699))) 177) (($ (-1185) (-694 (-706))) 138) (($ (-1185) (-694 (-704))) 141) (($ (-1185) (-694 (-699))) 144) (($ (-1185) (-1275 (-706))) 147) (($ (-1185) (-1275 (-704))) 150) (($ (-1185) (-1275 (-699))) 153) (($ (-1185) (-694 (-319 (-706)))) 156) (($ (-1185) (-694 (-319 (-704)))) 159) (($ (-1185) (-694 (-319 (-699)))) 162) (($ (-1185) (-1275 (-319 (-706)))) 165) (($ (-1185) (-1275 (-319 (-704)))) 168) (($ (-1185) (-1275 (-319 (-699)))) 171) (($ (-1185) (-649 (-958 (-569))) (-319 (-706))) 172) (($ (-1185) (-649 (-958 (-569))) (-319 (-704))) 173) (($ (-1185) (-649 (-958 (-569))) (-319 (-699))) 174) (($ (-1185) (-319 (-569))) 199) (($ (-1185) (-319 (-383))) 200) (($ (-1185) (-319 (-170 (-383)))) 201) (($ (-1185) (-694 (-319 (-569)))) 180) (($ (-1185) (-694 (-319 (-383)))) 183) (($ (-1185) (-694 (-319 (-170 (-383))))) 186) (($ (-1185) (-1275 (-319 (-569)))) 189) (($ (-1185) (-1275 (-319 (-383)))) 192) (($ (-1185) (-1275 (-319 (-170 (-383))))) 195) (($ (-1185) (-649 (-958 (-569))) (-319 (-569))) 196) (($ (-1185) (-649 (-958 (-569))) (-319 (-383))) 197) (($ (-1185) (-649 (-958 (-569))) (-319 (-170 (-383)))) 198)) (-2920 (((-112) $ $) NIL)))
+(((-333) (-13 (-1108) (-10 -8 (-15 -3576 ($ (-1100 (-958 (-569))) $)) (-15 -3576 ($ (-1100 (-958 (-569))) (-958 (-569)) $)) (-15 -3657 ($ (-1184) $)) (-15 -2599 ($ (-1184) $)) (-15 -4025 ($ (-1128))) (-15 -3355 ($ (-1128))) (-15 -3774 ($ (-1167))) (-15 -3774 ($ (-649 (-1167)))) (-15 -2265 ($ (-1167))) (-15 -2224 ($)) (-15 -2224 ($ (-319 (-704)))) (-15 -2224 ($ (-319 (-706)))) (-15 -2224 ($ (-319 (-699)))) (-15 -2224 ($ (-319 (-383)))) (-15 -2224 ($ (-319 (-569)))) (-15 -2224 ($ (-319 (-170 (-383))))) (-15 -1331 ($ (-1184) $)) (-15 -1331 ($ (-1184) $ $)) (-15 -3866 ($ (-1185) (-1167))) (-15 -3866 ($ (-1185) (-319 (-706)))) (-15 -3866 ($ (-1185) (-319 (-704)))) (-15 -3866 ($ (-1185) (-319 (-699)))) (-15 -3866 ($ (-1185) (-694 (-706)))) (-15 -3866 ($ (-1185) (-694 (-704)))) (-15 -3866 ($ (-1185) (-694 (-699)))) (-15 -3866 ($ (-1185) (-1275 (-706)))) (-15 -3866 ($ (-1185) (-1275 (-704)))) (-15 -3866 ($ (-1185) (-1275 (-699)))) (-15 -3866 ($ (-1185) (-694 (-319 (-706))))) (-15 -3866 ($ (-1185) (-694 (-319 (-704))))) (-15 -3866 ($ (-1185) (-694 (-319 (-699))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-706))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-704))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-699))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-706)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-704)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-699)))) (-15 -3866 ($ (-1185) (-319 (-569)))) (-15 -3866 ($ (-1185) (-319 (-383)))) (-15 -3866 ($ (-1185) (-319 (-170 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-569))))) (-15 -3866 ($ (-1185) (-694 (-319 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-569))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-383))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-569)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-383)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -3553 ($ (-649 $))) (-15 -4153 ($)) (-15 -1762 ($)) (-15 -1879 ($ (-649 (-867)))) (-15 -3388 ($ (-1185) (-649 (-1185)))) (-15 -2939 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3209 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 $))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 $))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -3219 ((-1280) $)) (-15 -1459 ((-1112) $)) (-15 -2698 ((-1128) (-1128)))))) (T -333))
+((-3576 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *1 (-333)))) (-3576 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *3 (-958 (-569))) (-5 *1 (-333)))) (-3657 (*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-2599 (*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))) (-3355 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-333)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333)))) (-2224 (*1 *1) (-5 *1 (-333))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-1331 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-706)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-704)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-699)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-569))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-383))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-569)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-383)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-569))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-383))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333)))) (-4153 (*1 *1) (-5 *1 (-333))) (-1762 (*1 *1) (-5 *1 (-333))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333)))) (-3388 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-333)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-333)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| (-333)) (|:| |elseClause| (-333)))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 (-333))) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 (-333)))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 (-333)))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867))))) (-5 *1 (-333)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-333)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-333)))) (-2698 (*1 *2 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))))
+(-13 (-1108) (-10 -8 (-15 -3576 ($ (-1100 (-958 (-569))) $)) (-15 -3576 ($ (-1100 (-958 (-569))) (-958 (-569)) $)) (-15 -3657 ($ (-1184) $)) (-15 -2599 ($ (-1184) $)) (-15 -4025 ($ (-1128))) (-15 -3355 ($ (-1128))) (-15 -3774 ($ (-1167))) (-15 -3774 ($ (-649 (-1167)))) (-15 -2265 ($ (-1167))) (-15 -2224 ($)) (-15 -2224 ($ (-319 (-704)))) (-15 -2224 ($ (-319 (-706)))) (-15 -2224 ($ (-319 (-699)))) (-15 -2224 ($ (-319 (-383)))) (-15 -2224 ($ (-319 (-569)))) (-15 -2224 ($ (-319 (-170 (-383))))) (-15 -1331 ($ (-1184) $)) (-15 -1331 ($ (-1184) $ $)) (-15 -3866 ($ (-1185) (-1167))) (-15 -3866 ($ (-1185) (-319 (-706)))) (-15 -3866 ($ (-1185) (-319 (-704)))) (-15 -3866 ($ (-1185) (-319 (-699)))) (-15 -3866 ($ (-1185) (-694 (-706)))) (-15 -3866 ($ (-1185) (-694 (-704)))) (-15 -3866 ($ (-1185) (-694 (-699)))) (-15 -3866 ($ (-1185) (-1275 (-706)))) (-15 -3866 ($ (-1185) (-1275 (-704)))) (-15 -3866 ($ (-1185) (-1275 (-699)))) (-15 -3866 ($ (-1185) (-694 (-319 (-706))))) (-15 -3866 ($ (-1185) (-694 (-319 (-704))))) (-15 -3866 ($ (-1185) (-694 (-319 (-699))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-706))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-704))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-699))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-706)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-704)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-699)))) (-15 -3866 ($ (-1185) (-319 (-569)))) (-15 -3866 ($ (-1185) (-319 (-383)))) (-15 -3866 ($ (-1185) (-319 (-170 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-569))))) (-15 -3866 ($ (-1185) (-694 (-319 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-569))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-383))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-569)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-383)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -3553 ($ (-649 $))) (-15 -4153 ($)) (-15 -1762 ($)) (-15 -1879 ($ (-649 (-867)))) (-15 -3388 ($ (-1185) (-649 (-1185)))) (-15 -2939 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3209 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 $))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 $))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -3219 ((-1280) $)) (-15 -1459 ((-1112) $)) (-15 -2698 ((-1128) (-1128)))))
+((-2417 (((-112) $ $) NIL)) (-2047 (((-112) $) 13)) (-2601 (($ |#1|) 10)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2614 (($ |#1|) 12)) (-3796 (((-867) $) 19)) (-1520 (((-112) $ $) NIL)) (-1899 ((|#1| $) 14)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 21)))
+(((-334 |#1|) (-13 (-855) (-10 -8 (-15 -2601 ($ |#1|)) (-15 -2614 ($ |#1|)) (-15 -2047 ((-112) $)) (-15 -1899 (|#1| $)))) (-855)) (T -334))
+((-2601 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-2614 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))) (-1899 (*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))))
+(-13 (-855) (-10 -8 (-15 -2601 ($ |#1|)) (-15 -2614 ($ |#1|)) (-15 -2047 ((-112) $)) (-15 -1899 (|#1| $))))
+((-1840 (((-333) (-1185) (-958 (-569))) 23)) (-3493 (((-333) (-1185) (-958 (-569))) 27)) (-2656 (((-333) (-1185) (-1100 (-958 (-569))) (-1100 (-958 (-569)))) 26) (((-333) (-1185) (-958 (-569)) (-958 (-569))) 24)) (-2014 (((-333) (-1185) (-958 (-569))) 31)))
+(((-335) (-10 -7 (-15 -1840 ((-333) (-1185) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-958 (-569)) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-1100 (-958 (-569))) (-1100 (-958 (-569))))) (-15 -3493 ((-333) (-1185) (-958 (-569)))) (-15 -2014 ((-333) (-1185) (-958 (-569)))))) (T -335))
+((-2014 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-1100 (-958 (-569)))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))))
+(-10 -7 (-15 -1840 ((-333) (-1185) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-958 (-569)) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-1100 (-958 (-569))) (-1100 (-958 (-569))))) (-15 -3493 ((-333) (-1185) (-958 (-569)))) (-15 -2014 ((-333) (-1185) (-958 (-569)))))
+((-2417 (((-112) $ $) NIL)) (-3114 (((-511) $) 20)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1580 (((-964 (-776)) $) 18)) (-3137 (((-251) $) 7)) (-3796 (((-867) $) 26)) (-1934 (((-964 (-184 (-139))) $) 16)) (-1520 (((-112) $ $) NIL)) (-1406 (((-649 (-878 (-1190) (-776))) $) 12)) (-2920 (((-112) $ $) 22)))
+(((-336) (-13 (-1108) (-10 -8 (-15 -3137 ((-251) $)) (-15 -1406 ((-649 (-878 (-1190) (-776))) $)) (-15 -1580 ((-964 (-776)) $)) (-15 -1934 ((-964 (-184 (-139))) $)) (-15 -3114 ((-511) $))))) (T -336))
+((-3137 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1190) (-776)))) (-5 *1 (-336)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-964 (-184 (-139)))) (-5 *1 (-336)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
+(-13 (-1108) (-10 -8 (-15 -3137 ((-251) $)) (-15 -1406 ((-649 (-878 (-1190) (-776))) $)) (-15 -1580 ((-964 (-776)) $)) (-15 -1934 ((-964 (-184 (-139))) $)) (-15 -3114 ((-511) $))))
+((-1346 (((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)) 33)))
+(((-337 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-367) (-1251 |#5|) (-1251 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -337))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-340 *5 *6 *7 *8)) (-4 *5 (-367)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *9 (-367)) (-4 *10 (-1251 *9)) (-4 *11 (-1251 (-412 *10))) (-5 *2 (-340 *9 *10 *11 *12)) (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-346 *9 *10 *11)))))
+(-10 -7 (-15 -1346 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|))))
+((-1310 (((-112) $) 14)))
+(((-338 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1310 ((-112) |#1|))) (-339 |#2| |#3| |#4| |#5|) (-367) (-1251 |#2|) (-1251 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -338))
+NIL
+(-10 -8 (-15 -1310 ((-112) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3598 (($ $) 29)) (-1310 (((-112) $) 28)) (-3435 (((-1167) $) 10)) (-3198 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 35)) (-3547 (((-1128) $) 11)) (-2332 (((-3 |#4| "failed") $) 27)) (-4102 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-569)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2316 (((-2 (|:| -4267 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24)))
+(((-339 |#1| |#2| |#3| |#4|) (-140) (-367) (-1251 |t#1|) (-1251 (-412 |t#2|)) (-346 |t#1| |t#2| |t#3|)) (T -339))
+((-3198 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-418 *4 (-412 *4) *5 *6)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367)) (-4 *1 (-339 *3 *4 *5 *6)))) (-4102 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5)))) (-4102 (*1 *1 *2 *2) (-12 (-4 *2 (-367)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))) (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4)))) (-4102 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1251 *2)) (-4 *5 (-1251 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6)) (-4 *6 (-346 *2 *4 *5)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-2 (|:| -4267 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6))))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))) (-4 *5 (-346 *2 *3 *4)))) (-1310 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))) (-2332 (*1 *2 *1) (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *2 (-346 *3 *4 *5)))) (-4102 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-367)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3198 ((-418 |t#2| (-412 |t#2|) |t#3| |t#4|) $)) (-15 -4102 ($ (-418 |t#2| (-412 |t#2|) |t#3| |t#4|))) (-15 -4102 ($ |t#4|)) (-15 -4102 ($ |t#1| |t#1|)) (-15 -4102 ($ |t#1| |t#1| (-569))) (-15 -2316 ((-2 (|:| -4267 (-418 |t#2| (-412 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3598 ($ $)) (-15 -1310 ((-112) $)) (-15 -2332 ((-3 |t#4| "failed") $)) (-15 -4102 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ $) 33)) (-1310 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-1864 (((-1275 |#4|) $) 134)) (-3198 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 31)) (-3547 (((-1128) $) NIL)) (-2332 (((-3 |#4| "failed") $) 36)) (-1569 (((-1275 |#4|) $) 126)) (-4102 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-569)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2316 (((-2 (|:| -4267 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3796 (((-867) $) 17)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 14 T CONST)) (-2920 (((-112) $ $) 20)) (-3024 (($ $) 27) (($ $ $) NIL)) (-3012 (($ $ $) 25)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 23)))
+(((-340 |#1| |#2| |#3| |#4|) (-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1569 ((-1275 |#4|) $)) (-15 -1864 ((-1275 |#4|) $)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -340))
+((-1569 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))) (-1864 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))))
+(-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1569 ((-1275 |#4|) $)) (-15 -1864 ((-1275 |#4|) $))))
+((-1725 (($ $ (-1185) |#2|) NIL) (($ $ (-649 (-1185)) (-649 |#2|)) 20) (($ $ (-649 (-297 |#2|))) 15) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-1869 (($ $ |#2|) 11)))
+(((-341 |#1| |#2|) (-10 -8 (-15 -1869 (|#1| |#1| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1185) |#2|))) (-342 |#2|) (-1108)) (T -341))
+NIL
+(-10 -8 (-15 -1869 (|#1| |#1| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1185) |#2|)))
+((-1346 (($ (-1 |#1| |#1|) $) 6)) (-1725 (($ $ (-1185) |#1|) 17 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 16 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-649 (-297 |#1|))) 15 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 14 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-312 |#1|))) (($ $ (-649 |#1|) (-649 |#1|)) 12 (|has| |#1| (-312 |#1|)))) (-1869 (($ $ |#1|) 11 (|has| |#1| (-289 |#1| |#1|)))))
+(((-342 |#1|) (-140) (-1108)) (T -342))
+((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1108)))))
+(-13 (-10 -8 (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-289 |t#1| |t#1|)) (-6 (-289 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-519 (-1185) |t#1|)) (-6 (-519 (-1185) |t#1|)) |%noBranch|)))
+(((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1185)) $) NIL)) (-2329 (((-112)) 96) (((-112) (-112)) 97)) (-3663 (((-649 (-617 $)) $) NIL)) (-2771 (($ $) NIL)) (-2626 (($ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-3813 (($ $) NIL)) (-2746 (($ $) NIL)) (-2601 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-319 |#3|)) 76) (((-3 $ "failed") (-1185)) 103) (((-3 $ "failed") (-319 (-569))) 64 (|has| |#3| (-1046 (-569)))) (((-3 $ "failed") (-412 (-958 (-569)))) 70 (|has| |#3| (-1046 (-569)))) (((-3 $ "failed") (-958 (-569))) 65 (|has| |#3| (-1046 (-569)))) (((-3 $ "failed") (-319 (-383))) 94 (|has| |#3| (-1046 (-383)))) (((-3 $ "failed") (-412 (-958 (-383)))) 88 (|has| |#3| (-1046 (-383)))) (((-3 $ "failed") (-958 (-383))) 83 (|has| |#3| (-1046 (-383))))) (-3150 (((-617 $) $) NIL) ((|#3| $) NIL) (($ (-319 |#3|)) 77) (($ (-1185)) 104) (($ (-319 (-569))) 66 (|has| |#3| (-1046 (-569)))) (($ (-412 (-958 (-569)))) 71 (|has| |#3| (-1046 (-569)))) (($ (-958 (-569))) 67 (|has| |#3| (-1046 (-569)))) (($ (-319 (-383))) 95 (|has| |#3| (-1046 (-383)))) (($ (-412 (-958 (-383)))) 89 (|has| |#3| (-1046 (-383)))) (($ (-958 (-383))) 85 (|has| |#3| (-1046 (-383))))) (-3086 (((-3 $ "failed") $) NIL)) (-1312 (($) 101)) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) NIL)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-2341 (((-1181 $) (-617 $)) NIL (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) NIL)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-1342 (($ $) 99)) (-2662 (($ $) NIL)) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) NIL)) (-1354 (($ (-114) $) 98) (($ (-114) (-649 $)) NIL)) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) NIL)) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-4389 (($ $) NIL)) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL)) (-4061 (($ $) NIL (|has| $ (-1057)))) (-2758 (($ $) NIL)) (-2614 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-617 $)) NIL) (($ |#3|) NIL) (($ (-569)) NIL) (((-319 |#3|) $) 102)) (-2721 (((-776)) NIL T CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-4052 (((-112) (-114)) NIL)) (-1520 (((-112) $ $) NIL)) (-2701 (($ $) NIL)) (-2675 (($ $) NIL)) (-2689 (($ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) 100 T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-343 |#1| |#2| |#3|) (-13 (-305) (-38 |#3|) (-1046 |#3|) (-906 (-1185)) (-10 -8 (-15 -3150 ($ (-319 |#3|))) (-15 -4381 ((-3 $ "failed") (-319 |#3|))) (-15 -3150 ($ (-1185))) (-15 -4381 ((-3 $ "failed") (-1185))) (-15 -3796 ((-319 |#3|) $)) (IF (|has| |#3| (-1046 (-569))) (PROGN (-15 -3150 ($ (-319 (-569)))) (-15 -4381 ((-3 $ "failed") (-319 (-569)))) (-15 -3150 ($ (-412 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3150 ($ (-958 (-569)))) (-15 -4381 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1046 (-383))) (PROGN (-15 -3150 ($ (-319 (-383)))) (-15 -4381 ((-3 $ "failed") (-319 (-383)))) (-15 -3150 ($ (-412 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3150 ($ (-958 (-383)))) (-15 -4381 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -2271 ($ $)) (-15 -3813 ($ $)) (-15 -4389 ($ $)) (-15 -2662 ($ $)) (-15 -1342 ($ $)) (-15 -2601 ($ $)) (-15 -2614 ($ $)) (-15 -2626 ($ $)) (-15 -2675 ($ $)) (-15 -2689 ($ $)) (-15 -2701 ($ $)) (-15 -2746 ($ $)) (-15 -2758 ($ $)) (-15 -2771 ($ $)) (-15 -1312 ($)) (-15 -1712 ((-649 (-1185)) $)) (-15 -2329 ((-112))) (-15 -2329 ((-112) (-112))))) (-649 (-1185)) (-649 (-1185)) (-392)) (T -343))
+((-3150 (*1 *1 *2) (-12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-319 *5)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2662 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-1342 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2601 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2614 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2626 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2675 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2689 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2701 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2746 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2758 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2771 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-1312 (*1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-392)))) (-2329 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))))
+(-13 (-305) (-38 |#3|) (-1046 |#3|) (-906 (-1185)) (-10 -8 (-15 -3150 ($ (-319 |#3|))) (-15 -4381 ((-3 $ "failed") (-319 |#3|))) (-15 -3150 ($ (-1185))) (-15 -4381 ((-3 $ "failed") (-1185))) (-15 -3796 ((-319 |#3|) $)) (IF (|has| |#3| (-1046 (-569))) (PROGN (-15 -3150 ($ (-319 (-569)))) (-15 -4381 ((-3 $ "failed") (-319 (-569)))) (-15 -3150 ($ (-412 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3150 ($ (-958 (-569)))) (-15 -4381 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1046 (-383))) (PROGN (-15 -3150 ($ (-319 (-383)))) (-15 -4381 ((-3 $ "failed") (-319 (-383)))) (-15 -3150 ($ (-412 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3150 ($ (-958 (-383)))) (-15 -4381 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -2271 ($ $)) (-15 -3813 ($ $)) (-15 -4389 ($ $)) (-15 -2662 ($ $)) (-15 -1342 ($ $)) (-15 -2601 ($ $)) (-15 -2614 ($ $)) (-15 -2626 ($ $)) (-15 -2675 ($ $)) (-15 -2689 ($ $)) (-15 -2701 ($ $)) (-15 -2746 ($ $)) (-15 -2758 ($ $)) (-15 -2771 ($ $)) (-15 -1312 ($)) (-15 -1712 ((-649 (-1185)) $)) (-15 -2329 ((-112))) (-15 -2329 ((-112) (-112)))))
+((-1346 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|))) (-1229) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-1229) (-1251 |#5|) (-1251 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -344))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1229)) (-4 *8 (-1229)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *9 (-1251 *8)) (-4 *2 (-346 *8 *9 *10)) (-5 *1 (-344 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1251 (-412 *9))))))
+(-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2877 (((-2 (|:| |num| (-1275 |#3|)) (|:| |den| |#3|)) $) 39)) (-2247 (($ (-1275 (-412 |#3|)) (-1275 $)) NIL) (($ (-1275 (-412 |#3|))) NIL) (($ (-1275 |#3|) |#3|) 177)) (-2980 (((-1275 $) (-1275 $)) 160)) (-2603 (((-649 (-649 |#2|))) 129)) (-1523 (((-112) |#2| |#2|) 76)) (-2642 (($ $) 151)) (-3045 (((-776)) 176)) (-3751 (((-1275 $) (-1275 $)) 222)) (-1388 (((-649 (-958 |#2|)) (-1185)) 118)) (-2173 (((-112) $) 173)) (-3557 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3015 (((-3 |#3| "failed")) 52)) (-3926 (((-776)) 188)) (-1869 ((|#2| $ |#2| |#2|) 143)) (-2893 (((-3 |#3| "failed")) 71)) (-3517 (($ $ (-1 (-412 |#3|) (-412 |#3|)) (-776)) NIL) (($ $ (-1 (-412 |#3|) (-412 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3562 (((-1275 $) (-1275 $)) 166)) (-4279 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1954 (((-112)) 34)))
+(((-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2603 ((-649 (-649 |#2|)))) (-15 -1388 ((-649 (-958 |#2|)) (-1185))) (-15 -4279 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3015 ((-3 |#3| "failed"))) (-15 -2893 ((-3 |#3| "failed"))) (-15 -1869 (|#2| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3557 ((-112) |#1| |#3|)) (-15 -3557 ((-112) |#1| |#2|)) (-15 -2247 (|#1| (-1275 |#3|) |#3|)) (-15 -2877 ((-2 (|:| |num| (-1275 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2980 ((-1275 |#1|) (-1275 |#1|))) (-15 -3751 ((-1275 |#1|) (-1275 |#1|))) (-15 -3562 ((-1275 |#1|) (-1275 |#1|))) (-15 -3557 ((-112) |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -1523 ((-112) |#2| |#2|)) (-15 -1954 ((-112))) (-15 -3926 ((-776))) (-15 -3045 ((-776))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -2247 (|#1| (-1275 (-412 |#3|)))) (-15 -2247 (|#1| (-1275 (-412 |#3|)) (-1275 |#1|)))) (-346 |#2| |#3| |#4|) (-1229) (-1251 |#2|) (-1251 (-412 |#3|))) (T -345))
+((-3045 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-3926 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-1954 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-1523 (*1 *2 *3 *3) (-12 (-4 *3 (-1229)) (-4 *5 (-1251 *3)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6)))) (-2893 (*1 *2) (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-3015 (*1 *2) (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *5 (-1229)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-5 *2 (-649 (-958 *5))) (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7)))) (-2603 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))))
+(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2603 ((-649 (-649 |#2|)))) (-15 -1388 ((-649 (-958 |#2|)) (-1185))) (-15 -4279 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3015 ((-3 |#3| "failed"))) (-15 -2893 ((-3 |#3| "failed"))) (-15 -1869 (|#2| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3557 ((-112) |#1| |#3|)) (-15 -3557 ((-112) |#1| |#2|)) (-15 -2247 (|#1| (-1275 |#3|) |#3|)) (-15 -2877 ((-2 (|:| |num| (-1275 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2980 ((-1275 |#1|) (-1275 |#1|))) (-15 -3751 ((-1275 |#1|) (-1275 |#1|))) (-15 -3562 ((-1275 |#1|) (-1275 |#1|))) (-15 -3557 ((-112) |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -1523 ((-112) |#2| |#2|)) (-15 -1954 ((-112))) (-15 -3926 ((-776))) (-15 -3045 ((-776))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -2247 (|#1| (-1275 (-412 |#3|)))) (-15 -2247 (|#1| (-1275 (-412 |#3|)) (-1275 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2877 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 204)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102 (|has| (-412 |#2|) (-367)))) (-4355 (($ $) 103 (|has| (-412 |#2|) (-367)))) (-3039 (((-112) $) 105 (|has| (-412 |#2|) (-367)))) (-1547 (((-694 (-412 |#2|)) (-1275 $)) 53) (((-694 (-412 |#2|))) 68)) (-3140 (((-412 |#2|) $) 59)) (-3715 (((-1198 (-927) (-776)) (-569)) 155 (|has| (-412 |#2|) (-353)))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 122 (|has| (-412 |#2|) (-367)))) (-3764 (((-423 $) $) 123 (|has| (-412 |#2|) (-367)))) (-2227 (((-112) $ $) 113 (|has| (-412 |#2|) (-367)))) (-3473 (((-776)) 96 (|has| (-412 |#2|) (-372)))) (-2123 (((-112)) 221)) (-3317 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 178 (|has| (-412 |#2|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) 173)) (-3150 (((-569) $) 177 (|has| (-412 |#2|) (-1046 (-569)))) (((-412 (-569)) $) 175 (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-412 |#2|) $) 174)) (-2247 (($ (-1275 (-412 |#2|)) (-1275 $)) 55) (($ (-1275 (-412 |#2|))) 71) (($ (-1275 |#2|) |#2|) 203)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-412 |#2|) (-353)))) (-2368 (($ $ $) 117 (|has| (-412 |#2|) (-367)))) (-1833 (((-694 (-412 |#2|)) $ (-1275 $)) 60) (((-694 (-412 |#2|)) $) 66)) (-2957 (((-694 (-569)) (-694 $)) 172 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 171 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-412 |#2|))) (|:| |vec| (-1275 (-412 |#2|)))) (-694 $) (-1275 $)) 170) (((-694 (-412 |#2|)) (-694 $)) 169)) (-2980 (((-1275 $) (-1275 $)) 209)) (-3598 (($ |#3|) 166) (((-3 $ "failed") (-412 |#3|)) 163 (|has| (-412 |#2|) (-367)))) (-3086 (((-3 $ "failed") $) 37)) (-2603 (((-649 (-649 |#1|))) 190 (|has| |#1| (-372)))) (-1523 (((-112) |#1| |#1|) 225)) (-3978 (((-927)) 61)) (-3406 (($) 99 (|has| (-412 |#2|) (-372)))) (-2303 (((-112)) 218)) (-3811 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2379 (($ $ $) 116 (|has| (-412 |#2|) (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111 (|has| (-412 |#2|) (-367)))) (-2642 (($ $) 196)) (-1616 (($) 157 (|has| (-412 |#2|) (-353)))) (-2807 (((-112) $) 158 (|has| (-412 |#2|) (-353)))) (-3701 (($ $ (-776)) 149 (|has| (-412 |#2|) (-353))) (($ $) 148 (|has| (-412 |#2|) (-353)))) (-1473 (((-112) $) 124 (|has| (-412 |#2|) (-367)))) (-1466 (((-927) $) 160 (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) 146 (|has| (-412 |#2|) (-353)))) (-2349 (((-112) $) 35)) (-3045 (((-776)) 228)) (-3751 (((-1275 $) (-1275 $)) 210)) (-3829 (((-412 |#2|) $) 58)) (-1388 (((-649 (-958 |#1|)) (-1185)) 191 (|has| |#1| (-367)))) (-3885 (((-3 $ "failed") $) 150 (|has| (-412 |#2|) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| (-412 |#2|) (-367)))) (-3859 ((|#3| $) 51 (|has| (-412 |#2|) (-367)))) (-2731 (((-927) $) 98 (|has| (-412 |#2|) (-372)))) (-3585 ((|#3| $) 164)) (-1839 (($ (-649 $)) 109 (|has| (-412 |#2|) (-367))) (($ $ $) 108 (|has| (-412 |#2|) (-367)))) (-3435 (((-1167) $) 10)) (-1334 (((-694 (-412 |#2|))) 205)) (-2979 (((-694 (-412 |#2|))) 207)) (-1817 (($ $) 125 (|has| (-412 |#2|) (-367)))) (-4397 (($ (-1275 |#2|) |#2|) 201)) (-4272 (((-694 (-412 |#2|))) 206)) (-4247 (((-694 (-412 |#2|))) 208)) (-2841 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-4277 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 202)) (-3963 (((-1275 $)) 214)) (-4002 (((-1275 $)) 215)) (-2173 (((-112) $) 213)) (-3557 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2307 (($) 151 (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| (-412 |#2|) (-372)))) (-3015 (((-3 |#2| "failed")) 193)) (-3547 (((-1128) $) 11)) (-3926 (((-776)) 227)) (-2332 (($) 168)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110 (|has| (-412 |#2|) (-367)))) (-1870 (($ (-649 $)) 107 (|has| (-412 |#2|) (-367))) (($ $ $) 106 (|has| (-412 |#2|) (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 154 (|has| (-412 |#2|) (-353)))) (-3800 (((-423 $) $) 121 (|has| (-412 |#2|) (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118 (|has| (-412 |#2|) (-367)))) (-2407 (((-3 $ "failed") $ $) 101 (|has| (-412 |#2|) (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| (-412 |#2|) (-367)))) (-2431 (((-776) $) 114 (|has| (-412 |#2|) (-367)))) (-1869 ((|#1| $ |#1| |#1|) 195)) (-2893 (((-3 |#2| "failed")) 194)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115 (|has| (-412 |#2|) (-367)))) (-3059 (((-412 |#2|) (-1275 $)) 54) (((-412 |#2|)) 67)) (-2166 (((-776) $) 159 (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) 147 (|has| (-412 |#2|) (-353)))) (-3517 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 131 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 130 (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-649 (-1185)) (-649 (-776))) 138 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185) (-776)) 139 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1185))) 140 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185)) 141 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 143 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 145 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2594 (((-694 (-412 |#2|)) (-1275 $) (-1 (-412 |#2|) (-412 |#2|))) 162 (|has| (-412 |#2|) (-367)))) (-4061 ((|#3|) 167)) (-4234 (($) 156 (|has| (-412 |#2|) (-353)))) (-2415 (((-1275 (-412 |#2|)) $ (-1275 $)) 57) (((-694 (-412 |#2|)) (-1275 $) (-1275 $)) 56) (((-1275 (-412 |#2|)) $) 73) (((-694 (-412 |#2|)) (-1275 $)) 72)) (-1410 (((-1275 (-412 |#2|)) $) 70) (($ (-1275 (-412 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 153 (|has| (-412 |#2|) (-353)))) (-3562 (((-1275 $) (-1275 $)) 211)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 |#2|)) 44) (($ (-412 (-569))) 95 (-2776 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-1046 (-412 (-569)))))) (($ $) 100 (|has| (-412 |#2|) (-367)))) (-2239 (($ $) 152 (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) 50 (|has| (-412 |#2|) (-145)))) (-1886 ((|#3| $) 52)) (-2721 (((-776)) 32 T CONST)) (-2784 (((-112)) 224)) (-4050 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-2664 (((-112) $ $) 104 (|has| (-412 |#2|) (-367)))) (-4279 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1954 (((-112)) 226)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 133 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 132 (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1185)) (-649 (-776))) 134 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185) (-776)) 135 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1185))) 136 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185)) 137 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 142 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 144 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 129 (|has| (-412 |#2|) (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 |#2|)) 46) (($ (-412 |#2|) $) 45) (($ (-412 (-569)) $) 128 (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) 127 (|has| (-412 |#2|) (-367)))))
+(((-346 |#1| |#2| |#3|) (-140) (-1229) (-1251 |t#1|) (-1251 (-412 |t#2|))) (T -346))
+((-3045 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776)))) (-3926 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776)))) (-1954 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-1523 (*1 *2 *3 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-2784 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-4050 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-4050 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-2123 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3317 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3317 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-2303 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-4002 (*1 *2) (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)))) (-3963 (*1 *2) (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3562 (*1 *2 *2) (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-2980 (*1 *2 *2) (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-4247 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-2979 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-4272 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-1334 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4))))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3))))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4))))) (-4397 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3))))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))) (-3557 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3557 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))))) (-1869 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))))) (-2893 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229)) (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3)))) (-3015 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229)) (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3)))) (-4279 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1229)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-346 *4 *5 *6)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *4 (-367)) (-5 *2 (-649 (-958 *4))))) (-2603 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3))))))
+(-13 (-729 (-412 |t#2|) |t#3|) (-10 -8 (-15 -3045 ((-776))) (-15 -3926 ((-776))) (-15 -1954 ((-112))) (-15 -1523 ((-112) |t#1| |t#1|)) (-15 -2784 ((-112))) (-15 -4050 ((-112) |t#1|)) (-15 -4050 ((-112) |t#2|)) (-15 -2123 ((-112))) (-15 -3317 ((-112) |t#1|)) (-15 -3317 ((-112) |t#2|)) (-15 -2303 ((-112))) (-15 -3811 ((-112) |t#1|)) (-15 -3811 ((-112) |t#2|)) (-15 -4002 ((-1275 $))) (-15 -3963 ((-1275 $))) (-15 -2173 ((-112) $)) (-15 -3557 ((-112) $)) (-15 -3562 ((-1275 $) (-1275 $))) (-15 -3751 ((-1275 $) (-1275 $))) (-15 -2980 ((-1275 $) (-1275 $))) (-15 -4247 ((-694 (-412 |t#2|)))) (-15 -2979 ((-694 (-412 |t#2|)))) (-15 -4272 ((-694 (-412 |t#2|)))) (-15 -1334 ((-694 (-412 |t#2|)))) (-15 -2877 ((-2 (|:| |num| (-1275 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2247 ($ (-1275 |t#2|) |t#2|)) (-15 -4277 ((-2 (|:| |num| (-1275 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4397 ($ (-1275 |t#2|) |t#2|)) (-15 -2841 ((-2 (|:| |num| (-694 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3557 ((-112) $ |t#1|)) (-15 -3557 ((-112) $ |t#2|)) (-15 -3517 ($ $ (-1 |t#2| |t#2|))) (-15 -2642 ($ $)) (-15 -1869 (|t#1| $ |t#1| |t#1|)) (-15 -2893 ((-3 |t#2| "failed"))) (-15 -3015 ((-3 |t#2| "failed"))) (-15 -4279 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-367)) (-15 -1388 ((-649 (-958 |t#1|)) (-1185))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -2603 ((-649 (-649 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-38 #1=(-412 |#2|)) . T) ((-38 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-102) . T) ((-111 #0# #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-145))) ((-147) |has| (-412 |#2|) (-147)) ((-621 #0#) -2776 (|has| (-412 |#2|) (-1046 (-412 (-569)))) (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-621 #1#) . T) ((-621 (-569)) . T) ((-621 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#3|) . T) ((-232 #1#) |has| (-412 |#2|) (-367)) ((-234) -2776 (|has| (-412 |#2|) (-353)) (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367)))) ((-244) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-293) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-310) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-367) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-407) |has| (-412 |#2|) (-353)) ((-372) -2776 (|has| (-412 |#2|) (-372)) (|has| (-412 |#2|) (-353))) ((-353) |has| (-412 |#2|) (-353)) ((-374 #1# |#3|) . T) ((-414 #1# |#3|) . T) ((-381 #1#) . T) ((-416 #1#) . T) ((-457) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-561) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #1#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-645 #1#) . T) ((-645 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-644 #1#) . T) ((-644 (-569)) |has| (-412 |#2|) (-644 (-569))) ((-722 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-722 #1#) . T) ((-722 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-729 #1# |#3|) . T) ((-731) . T) ((-906 (-1185)) -12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) ((-926) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1046 (-412 (-569))) |has| (-412 |#2|) (-1046 (-412 (-569)))) ((-1046 #1#) . T) ((-1046 (-569)) |has| (-412 |#2|) (-1046 (-569))) ((-1059 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1059 #1#) . T) ((-1059 $) . T) ((-1064 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1064 #1#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| (-412 |#2|) (-353)) ((-1229) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-916 |#1|) "failed") $) NIL)) (-3150 (((-916 |#1|) $) NIL)) (-2247 (($ (-1275 (-916 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-916 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-916 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-916 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3829 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-916 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-3775 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4119 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1181 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-4384 (($ $ (-1181 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2521 (((-964 (-1128))) NIL)) (-2332 (($) NIL (|has| (-916 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-916 |#1|))) NIL)) (-4234 (($) NIL (|has| (-916 |#1|) (-372)))) (-4110 (($) NIL (|has| (-916 |#1|) (-372)))) (-2415 (((-1275 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
+(((-347 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -2521 ((-964 (-1128)))))) (-927) (-927)) (T -347))
+((-2521 (*1 *2) (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))))
+(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -2521 ((-964 (-1128))))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 58)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 56 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 142)) (-3150 ((|#1| $) 113)) (-2247 (($ (-1275 |#1|)) 130)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) 124 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 160 (|has| |#1| (-372)))) (-2807 (((-112) $) 66 (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) 60 (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) 62)) (-2155 (($) 162 (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) 117) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) 171 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 178)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 96 (|has| |#1| (-372)))) (-3020 (((-112) $) 147)) (-3547 (((-1128) $) NIL)) (-2521 (((-964 (-1128))) 57)) (-2332 (($) 158 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 119 (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) 90) (((-927)) 91)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) 161 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 154 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) 122)) (-4234 (($) 159 (|has| |#1| (-372)))) (-4110 (($) 167 (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 77) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) 174) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 155 T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 144) (((-1275 $) (-927)) 98)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 67 T CONST)) (-1815 (($) 103 T CONST)) (-1679 (($ $) 107 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) 65)) (-3035 (($ $ $) 176) (($ $ |#1|) 177)) (-3024 (($ $) 157) (($ $ $) NIL)) (-3012 (($ $ $) 86)) (** (($ $ (-927)) 180) (($ $ (-776)) 181) (($ $ (-569)) 179)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 102) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
+(((-348 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128)))))) (-353) (-1181 |#1|)) (T -348))
+((-2521 (*1 *2) (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353)) (-14 *4 (-1181 *3)))))
+(-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128))))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) NIL) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2521 (((-964 (-1128))) NIL)) (-2332 (($) NIL (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) NIL)) (-4234 (($) NIL (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-349 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128)))))) (-353) (-927)) (T -349))
+((-2521 (*1 *2) (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
+(-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128))))))
+((-2846 (((-776) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) 61)) (-3689 (((-964 (-1128)) (-1181 |#1|)) 111)) (-2366 (((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) (-1181 |#1|)) 102)) (-2250 (((-694 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) 113)) (-4063 (((-3 (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) "failed") (-927)) 13)) (-2632 (((-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) (-927)) 18)))
+(((-350 |#1|) (-10 -7 (-15 -3689 ((-964 (-1128)) (-1181 |#1|))) (-15 -2366 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) (-1181 |#1|))) (-15 -2250 ((-694 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -2846 ((-776) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -4063 ((-3 (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) "failed") (-927))) (-15 -2632 ((-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) (-927)))) (-353)) (T -350))
+((-2632 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-3 (-1181 *4) (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-4063 (*1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-5 *1 (-350 *4)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1128))) (-5 *1 (-350 *4)))))
+(-10 -7 (-15 -3689 ((-964 (-1128)) (-1181 |#1|))) (-15 -2366 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) (-1181 |#1|))) (-15 -2250 ((-694 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -2846 ((-776) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -4063 ((-3 (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) "failed") (-927))) (-15 -2632 ((-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) (-927))))
+((-3796 ((|#1| |#3|) 106) ((|#3| |#1|) 89)))
+(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3796 (|#3| |#1|)) (-15 -3796 (|#1| |#3|))) (-332 |#2|) (-353) (-332 |#2|)) (T -351))
+((-3796 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *2 *4 *3)) (-4 *3 (-332 *4)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *3 *4 *2)) (-4 *3 (-332 *4)))))
+(-10 -7 (-15 -3796 (|#3| |#1|)) (-15 -3796 (|#1| |#3|)))
+((-2807 (((-112) $) 60)) (-1466 (((-838 (-927)) $) 23) (((-927) $) 66)) (-3885 (((-3 $ "failed") $) 18)) (-2307 (($) 9)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 116)) (-2166 (((-3 (-776) "failed") $ $) 94) (((-776) $) 81)) (-3517 (($ $ (-776)) NIL) (($ $) 8)) (-4234 (($) 53)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 38)) (-2239 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-352 |#1|) (-10 -8 (-15 -1466 ((-927) |#1|)) (-15 -2166 ((-776) |#1|)) (-15 -2807 ((-112) |#1|)) (-15 -4234 (|#1|)) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2239 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -2166 ((-3 (-776) "failed") |#1| |#1|)) (-15 -1466 ((-838 (-927)) |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)))) (-353)) (T -352))
+NIL
+(-10 -8 (-15 -1466 ((-927) |#1|)) (-15 -2166 ((-776) |#1|)) (-15 -2807 ((-112) |#1|)) (-15 -4234 (|#1|)) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2239 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -2166 ((-3 (-776) "failed") |#1| |#1|)) (-15 -1466 ((-838 (-927)) |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-3715 (((-1198 (-927) (-776)) (-569)) 101)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-3473 (((-776)) 111)) (-4427 (($) 18 T CONST)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-3406 (($) 114)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1616 (($) 99)) (-2807 (((-112) $) 98)) (-3701 (($ $) 87) (($ $ (-776)) 86)) (-1473 (((-112) $) 79)) (-1466 (((-838 (-927)) $) 89) (((-927) $) 96)) (-2349 (((-112) $) 35)) (-3885 (((-3 $ "failed") $) 110)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2731 (((-927) $) 113)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-2307 (($) 109 T CONST)) (-2150 (($ (-927)) 112)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 102)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-3 (-776) "failed") $ $) 88) (((-776) $) 97)) (-3517 (($ $ (-776)) 107) (($ $) 105)) (-4234 (($) 100)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 103)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2239 (((-3 $ "failed") $) 90) (($ $) 104)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-776)) 108) (($ $) 106)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-353) (-140)) (T -353))
-((-4030 (*1 *1 *1) (-4 *1 (-353))) (-4117 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1273 *1)))) (-1507 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))))) (-1372 (*1 *2 *3) (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1196 (-927) (-776))))) (-2430 (*1 *1) (-4 *1 (-353))) (-1312 (*1 *1) (-4 *1 (-353))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927)))) (-2324 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-407) (-372) (-1158) (-234) (-10 -8 (-15 -4030 ($ $)) (-15 -4117 ((-3 (-1273 $) "failed") (-694 $))) (-15 -1507 ((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569)))))) (-15 -1372 ((-1196 (-927) (-776)) (-569))) (-15 -2430 ($)) (-15 -1312 ($)) (-15 -1940 ((-112) $)) (-15 -2601 ((-776) $)) (-15 -3110 ((-927) $)) (-15 -2324 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) . T) ((-372) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) . T) ((-1227) . T))
-((-2493 (((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|) 55)) (-2402 (((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 53)))
-(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -2402 ((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -2493 ((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|))) (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))) (-1249 |#1|) (-414 |#1| |#2|)) (T -354))
-((-2493 (*1 *2 *3) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *2 (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2402 (*1 *2) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *2 (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
-(-10 -7 (-15 -2402 ((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -2493 ((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1618 (((-776)) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-916 |#1|) "failed") $) NIL)) (-3148 (((-916 |#1|) $) NIL)) (-3390 (($ (-1273 (-916 |#1|))) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-916 |#1|) (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL (|has| (-916 |#1|) (-372)))) (-1940 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| (-916 |#1|) (-372)))) (-2968 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2707 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 (-916 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2855 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-4244 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4151 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1179 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-3091 (($ $ (-1179 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-1845 (((-1273 (-649 (-2 (|:| -2185 (-916 |#1|)) (|:| -2150 (-1126)))))) NIL)) (-1736 (((-694 (-916 |#1|))) NIL)) (-2330 (($) NIL (|has| (-916 |#1|) (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 (-916 |#1|))) NIL)) (-2430 (($) NIL (|has| (-916 |#1|) (-372)))) (-3188 (($) NIL (|has| (-916 |#1|) (-372)))) (-2960 (((-1273 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-4030 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2830 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
-(((-355 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -1845 ((-1273 (-649 (-2 (|:| -2185 (-916 |#1|)) (|:| -2150 (-1126))))))) (-15 -1736 ((-694 (-916 |#1|)))) (-15 -1618 ((-776))))) (-927) (-927)) (T -355))
-((-1845 (*1 *2) (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2185 (-916 *3)) (|:| -2150 (-1126)))))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1736 (*1 *2) (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1618 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))))
-(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -1845 ((-1273 (-649 (-2 (|:| -2185 (-916 |#1|)) (|:| -2150 (-1126))))))) (-15 -1736 ((-694 (-916 |#1|)))) (-15 -1618 ((-776)))))
-((-2415 (((-112) $ $) 73)) (-3192 (((-112) $) 88)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 ((|#1| $) 106) (($ $ (-927)) 104 (|has| |#1| (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) 171 (|has| |#1| (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1618 (((-776)) 103)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) 188 (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 128)) (-3148 ((|#1| $) 105)) (-3390 (($ (-1273 |#1|)) 71)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) 183 (|has| |#1| (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) 172 (|has| |#1| (-372)))) (-1940 (((-112) $) NIL (|has| |#1| (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) 114 (|has| |#1| (-372)))) (-2968 (((-112) $) 201 (|has| |#1| (-372)))) (-2707 ((|#1| $) 108) (($ $ (-927)) 107 (|has| |#1| (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 |#1|) $) 215) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2855 (((-927) $) 149 (|has| |#1| (-372)))) (-4244 (((-1179 |#1|) $) 87 (|has| |#1| (-372)))) (-4151 (((-1179 |#1|) $) 84 (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) 96 (|has| |#1| (-372)))) (-3091 (($ $ (-1179 |#1|)) 83 (|has| |#1| (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 219)) (-2305 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 151 (|has| |#1| (-372)))) (-1959 (((-112) $) 124)) (-3545 (((-1126) $) NIL)) (-1845 (((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126)))))) 97)) (-1736 (((-694 |#1|)) 101)) (-2330 (($) 110 (|has| |#1| (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 174 (|has| |#1| (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) 175)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) 75)) (-4143 (((-1179 |#1|)) 176)) (-2430 (($) 148 (|has| |#1| (-372)))) (-3188 (($) NIL (|has| |#1| (-372)))) (-2960 (((-1273 |#1|) $) 122) (((-694 |#1|) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3793 (((-867) $) 141) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 70)) (-4030 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) 181 T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) 198) (((-1273 $) (-927)) 117)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) 187 T CONST)) (-1813 (($) 162 T CONST)) (-2064 (($ $) 123 (|has| |#1| (-372))) (($ $ (-776)) 115 (|has| |#1| (-372)))) (-2830 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2919 (((-112) $ $) 209)) (-3032 (($ $ $) 120) (($ $ |#1|) 121)) (-3021 (($ $) 203) (($ $ $) 207)) (-3009 (($ $ $) 205)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 154)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 212) (($ $ $) 165) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119)))
-(((-356 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -1736 ((-694 |#1|))) (-15 -1618 ((-776))))) (-353) (-3 (-1179 |#1|) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (T -356))
-((-1845 (*1 *2) (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126)))))) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) *2)))) (-1736 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126))))))))) (-1618 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126))))))))))
-(-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -1736 ((-694 |#1|))) (-15 -1618 ((-776)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1618 (((-776)) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3390 (($ (-1273 |#1|)) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| |#1| (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL (|has| |#1| (-372)))) (-1940 (((-112) $) NIL (|has| |#1| (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| |#1| (-372)))) (-2968 (((-112) $) NIL (|has| |#1| (-372)))) (-2707 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 |#1|) $) NIL) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2855 (((-927) $) NIL (|has| |#1| (-372)))) (-4244 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-4151 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-3091 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-1845 (((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126)))))) NIL)) (-1736 (((-694 |#1|)) NIL)) (-2330 (($) NIL (|has| |#1| (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| |#1| (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 |#1|)) NIL)) (-2430 (($) NIL (|has| |#1| (-372)))) (-3188 (($) NIL (|has| |#1| (-372)))) (-2960 (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-4030 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2830 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-357 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -1736 ((-694 |#1|))) (-15 -1618 ((-776))))) (-353) (-927)) (T -357))
-((-1845 (*1 *2) (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-1736 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-1618 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
-(-13 (-332 |#1|) (-10 -7 (-15 -1845 ((-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))))) (-15 -1736 ((-694 |#1|))) (-15 -1618 ((-776)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-916 |#1|) "failed") $) NIL)) (-3148 (((-916 |#1|) $) NIL)) (-3390 (($ (-1273 (-916 |#1|))) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-916 |#1|) (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL (|has| (-916 |#1|) (-372)))) (-1940 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| (-916 |#1|) (-372)))) (-2968 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-2707 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 (-916 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2855 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-4244 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4151 (((-1179 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1179 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-3091 (($ $ (-1179 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-2330 (($) NIL (|has| (-916 |#1|) (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 (-916 |#1|))) NIL)) (-2430 (($) NIL (|has| (-916 |#1|) (-372)))) (-3188 (($) NIL (|has| (-916 |#1|) (-372)))) (-2960 (((-1273 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-4030 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2830 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
+((-2239 (*1 *1 *1) (-4 *1 (-353))) (-1924 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1275 *1)))) (-4218 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))))) (-3715 (*1 *2 *3) (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1198 (-927) (-776))))) (-4234 (*1 *1) (-4 *1 (-353))) (-1616 (*1 *1) (-4 *1 (-353))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927)))) (-4424 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-407) (-372) (-1160) (-234) (-10 -8 (-15 -2239 ($ $)) (-15 -1924 ((-3 (-1275 $) "failed") (-694 $))) (-15 -4218 ((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569)))))) (-15 -3715 ((-1198 (-927) (-776)) (-569))) (-15 -4234 ($)) (-15 -1616 ($)) (-15 -2807 ((-112) $)) (-15 -2166 ((-776) $)) (-15 -1466 ((-927) $)) (-15 -4424 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) . T) ((-372) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) . T) ((-1229) . T))
+((-3615 (((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|) 55)) (-4002 (((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 53)))
+(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|))) (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))) (-1251 |#1|) (-414 |#1| |#2|)) (T -354))
+((-3615 (*1 *2 *3) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4002 (*1 *2) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2846 (((-776)) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-916 |#1|) "failed") $) NIL)) (-3150 (((-916 |#1|) $) NIL)) (-2247 (($ (-1275 (-916 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-916 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-916 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-916 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3829 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-916 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-3775 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4119 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1181 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-4384 (($ $ (-1181 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-3121 (((-1275 (-649 (-2 (|:| -2188 (-916 |#1|)) (|:| -2150 (-1128)))))) NIL)) (-1516 (((-694 (-916 |#1|))) NIL)) (-2332 (($) NIL (|has| (-916 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-916 |#1|))) NIL)) (-4234 (($) NIL (|has| (-916 |#1|) (-372)))) (-4110 (($) NIL (|has| (-916 |#1|) (-372)))) (-2415 (((-1275 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
+(((-355 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 (-916 |#1|)) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 (-916 |#1|)))) (-15 -2846 ((-776))))) (-927) (-927)) (T -355))
+((-3121 (*1 *2) (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 (-916 *3)) (|:| -2150 (-1128)))))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1516 (*1 *2) (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-2846 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))))
+(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 (-916 |#1|)) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 (-916 |#1|)))) (-15 -2846 ((-776)))))
+((-2417 (((-112) $ $) 73)) (-4143 (((-112) $) 88)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) 106) (($ $ (-927)) 104 (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 171 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2846 (((-776)) 103)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) 188 (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 128)) (-3150 ((|#1| $) 105)) (-2247 (($ (-1275 |#1|)) 71)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) 183 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 172 (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) 114 (|has| |#1| (-372)))) (-2483 (((-112) $) 201 (|has| |#1| (-372)))) (-3829 ((|#1| $) 108) (($ $ (-927)) 107 (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) 215) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) 149 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) 87 (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) 84 (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) 96 (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) 83 (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 219)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 151 (|has| |#1| (-372)))) (-3020 (((-112) $) 124)) (-3547 (((-1128) $) NIL)) (-3121 (((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) 97)) (-1516 (((-694 |#1|)) 101)) (-2332 (($) 110 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 174 (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) 175)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) 75)) (-4061 (((-1181 |#1|)) 176)) (-4234 (($) 148 (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 122) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) 141) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 70)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 181 T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 198) (((-1275 $) (-927)) 117)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 187 T CONST)) (-1815 (($) 162 T CONST)) (-1679 (($ $) 123 (|has| |#1| (-372))) (($ $ (-776)) 115 (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) 209)) (-3035 (($ $ $) 120) (($ $ |#1|) 121)) (-3024 (($ $) 203) (($ $ $) 207)) (-3012 (($ $ $) 205)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 154)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 212) (($ $ $) 165) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119)))
+(((-356 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776))))) (-353) (-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (T -356))
+((-3121 (*1 *2) (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) *2)))) (-1516 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128))))))))) (-2846 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128))))))))))
+(-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2846 (((-776)) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) NIL) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-3121 (((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) NIL)) (-1516 (((-694 |#1|)) NIL)) (-2332 (($) NIL (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) NIL)) (-4234 (($) NIL (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-357 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776))))) (-353) (-927)) (T -357))
+((-3121 (*1 *2) (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-1516 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-2846 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
+(-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-916 |#1|) "failed") $) NIL)) (-3150 (((-916 |#1|) $) NIL)) (-2247 (($ (-1275 (-916 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-916 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-916 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-916 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3829 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-916 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-3775 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4119 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1181 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-4384 (($ $ (-1181 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| (-916 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-916 |#1|))) NIL)) (-4234 (($) NIL (|has| (-916 |#1|) (-372)))) (-4110 (($) NIL (|has| (-916 |#1|) (-372)))) (-2415 (((-1275 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL)))
(((-358 |#1| |#2|) (-332 (-916 |#1|)) (-927) (-927)) (T -358))
NIL
(-332 (-916 |#1|))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) 158 (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 106)) (-3148 ((|#1| $) 103)) (-3390 (($ (-1273 |#1|)) 98)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) 95 (|has| |#1| (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) 51 (|has| |#1| (-372)))) (-1940 (((-112) $) NIL (|has| |#1| (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) 133 (|has| |#1| (-372)))) (-2968 (((-112) $) 87 (|has| |#1| (-372)))) (-2707 ((|#1| $) 47) (($ $ (-927)) 52 (|has| |#1| (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 |#1|) $) 78) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2855 (((-927) $) 110 (|has| |#1| (-372)))) (-4244 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-4151 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-3091 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 108 (|has| |#1| (-372)))) (-1959 (((-112) $) 160)) (-3545 (((-1126) $) NIL)) (-2330 (($) 44 (|has| |#1| (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 127 (|has| |#1| (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) 157)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) 70)) (-4143 (((-1179 |#1|)) 101)) (-2430 (($) 138 (|has| |#1| (-372)))) (-3188 (($) NIL (|has| |#1| (-372)))) (-2960 (((-1273 |#1|) $) 66) (((-694 |#1|) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3793 (((-867) $) 156) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-4030 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) 162 T CONST)) (-1441 (((-112) $ $) 164)) (-1903 (((-1273 $)) 122) (((-1273 $) (-927)) 60)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) 124 T CONST)) (-1813 (($) 40 T CONST)) (-2064 (($ $) 81 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2830 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2919 (((-112) $ $) 120)) (-3032 (($ $ $) 112) (($ $ |#1|) 113)) (-3021 (($ $) 93) (($ $ $) 118)) (-3009 (($ $ $) 116)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55) (($ $ (-569)) 141)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 91) (($ $ $) 68) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89)))
-(((-359 |#1| |#2|) (-332 |#1|) (-353) (-1179 |#1|)) (T -359))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) 158 (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 106)) (-3150 ((|#1| $) 103)) (-2247 (($ (-1275 |#1|)) 98)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) 95 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 51 (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) 133 (|has| |#1| (-372)))) (-2483 (((-112) $) 87 (|has| |#1| (-372)))) (-3829 ((|#1| $) 47) (($ $ (-927)) 52 (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) 78) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) 110 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 108 (|has| |#1| (-372)))) (-3020 (((-112) $) 160)) (-3547 (((-1128) $) NIL)) (-2332 (($) 44 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 127 (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) 157)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) 70)) (-4061 (((-1181 |#1|)) 101)) (-4234 (($) 138 (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 66) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) 156) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 162 T CONST)) (-1520 (((-112) $ $) 164)) (-2403 (((-1275 $)) 122) (((-1275 $) (-927)) 60)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 124 T CONST)) (-1815 (($) 40 T CONST)) (-1679 (($ $) 81 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) 120)) (-3035 (($ $ $) 112) (($ $ |#1|) 113)) (-3024 (($ $) 93) (($ $ $) 118)) (-3012 (($ $ $) 116)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55) (($ $ (-569)) 141)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 91) (($ $ $) 68) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89)))
+(((-359 |#1| |#2|) (-332 |#1|) (-353) (-1181 |#1|)) (T -359))
NIL
(-332 |#1|)
-((-2452 ((|#1| (-1179 |#2|)) 61)))
-(((-360 |#1| |#2|) (-10 -7 (-15 -2452 (|#1| (-1179 |#2|)))) (-13 (-407) (-10 -7 (-15 -3793 (|#1| |#2|)) (-15 -2855 ((-927) |#1|)) (-15 -1903 ((-1273 |#1|) (-927))) (-15 -2064 (|#1| |#1|)))) (-353)) (T -360))
-((-2452 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-4 *2 (-13 (-407) (-10 -7 (-15 -3793 (*2 *4)) (-15 -2855 ((-927) *2)) (-15 -1903 ((-1273 *2) (-927))) (-15 -2064 (*2 *2))))) (-5 *1 (-360 *2 *4)))))
-(-10 -7 (-15 -2452 (|#1| (-1179 |#2|))))
-((-3654 (((-964 (-1179 |#1|)) (-1179 |#1|)) 51)) (-3403 (((-1179 |#1|) (-927) (-927)) 158) (((-1179 |#1|) (-927)) 154)) (-1940 (((-112) (-1179 |#1|)) 110)) (-4058 (((-927) (-927)) 88)) (-4162 (((-927) (-927)) 95)) (-3960 (((-927) (-927)) 86)) (-2968 (((-112) (-1179 |#1|)) 114)) (-3720 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 139)) (-2775 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 144)) (-2640 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 143)) (-3819 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 142)) (-3602 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 134)) (-3548 (((-1179 |#1|) (-1179 |#1|)) 74)) (-4358 (((-1179 |#1|) (-927)) 149)) (-3475 (((-1179 |#1|) (-927)) 152)) (-3360 (((-1179 |#1|) (-927)) 151)) (-3230 (((-1179 |#1|) (-927)) 150)) (-4262 (((-1179 |#1|) (-927)) 147)))
-(((-361 |#1|) (-10 -7 (-15 -1940 ((-112) (-1179 |#1|))) (-15 -2968 ((-112) (-1179 |#1|))) (-15 -3960 ((-927) (-927))) (-15 -4058 ((-927) (-927))) (-15 -4162 ((-927) (-927))) (-15 -4262 ((-1179 |#1|) (-927))) (-15 -4358 ((-1179 |#1|) (-927))) (-15 -3230 ((-1179 |#1|) (-927))) (-15 -3360 ((-1179 |#1|) (-927))) (-15 -3475 ((-1179 |#1|) (-927))) (-15 -3602 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3720 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3819 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -2640 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -2775 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3403 ((-1179 |#1|) (-927))) (-15 -3403 ((-1179 |#1|) (-927) (-927))) (-15 -3548 ((-1179 |#1|) (-1179 |#1|))) (-15 -3654 ((-964 (-1179 |#1|)) (-1179 |#1|)))) (-353)) (T -361))
-((-3654 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1179 *4))) (-5 *1 (-361 *4)) (-5 *3 (-1179 *4)))) (-3548 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3403 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-2775 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-2640 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3819 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3720 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3602 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3360 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4)))))
-(-10 -7 (-15 -1940 ((-112) (-1179 |#1|))) (-15 -2968 ((-112) (-1179 |#1|))) (-15 -3960 ((-927) (-927))) (-15 -4058 ((-927) (-927))) (-15 -4162 ((-927) (-927))) (-15 -4262 ((-1179 |#1|) (-927))) (-15 -4358 ((-1179 |#1|) (-927))) (-15 -3230 ((-1179 |#1|) (-927))) (-15 -3360 ((-1179 |#1|) (-927))) (-15 -3475 ((-1179 |#1|) (-927))) (-15 -3602 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3720 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3819 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -2640 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -2775 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3403 ((-1179 |#1|) (-927))) (-15 -3403 ((-1179 |#1|) (-927) (-927))) (-15 -3548 ((-1179 |#1|) (-1179 |#1|))) (-15 -3654 ((-964 (-1179 |#1|)) (-1179 |#1|))))
-((-4216 (((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|) 38)))
-(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -4216 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|))) (-353) (-1249 |#1|) (-1249 |#2|)) (T -362))
-((-4216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3)))))
-(-10 -7 (-15 -4216 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3390 (($ (-1273 |#1|)) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| |#1| (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL (|has| |#1| (-372)))) (-1940 (((-112) $) NIL (|has| |#1| (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| |#1| (-372)))) (-2968 (((-112) $) NIL (|has| |#1| (-372)))) (-2707 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 |#1|) $) NIL) (((-1179 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2855 (((-927) $) NIL (|has| |#1| (-372)))) (-4244 (((-1179 |#1|) $) NIL (|has| |#1| (-372)))) (-4151 (((-1179 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1179 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-3091 (($ $ (-1179 |#1|)) NIL (|has| |#1| (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-2330 (($) NIL (|has| |#1| (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| |#1| (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 |#1|)) NIL)) (-2430 (($) NIL (|has| |#1| (-372)))) (-3188 (($) NIL (|has| |#1| (-372)))) (-2960 (((-1273 |#1|) $) NIL) (((-694 |#1|) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-4030 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2830 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+((-3188 ((|#1| (-1181 |#2|)) 61)))
+(((-360 |#1| |#2|) (-10 -7 (-15 -3188 (|#1| (-1181 |#2|)))) (-13 (-407) (-10 -7 (-15 -3796 (|#1| |#2|)) (-15 -2731 ((-927) |#1|)) (-15 -2403 ((-1275 |#1|) (-927))) (-15 -1679 (|#1| |#1|)))) (-353)) (T -360))
+((-3188 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-4 *2 (-13 (-407) (-10 -7 (-15 -3796 (*2 *4)) (-15 -2731 ((-927) *2)) (-15 -2403 ((-1275 *2) (-927))) (-15 -1679 (*2 *2))))) (-5 *1 (-360 *2 *4)))))
+(-10 -7 (-15 -3188 (|#1| (-1181 |#2|))))
+((-2930 (((-964 (-1181 |#1|)) (-1181 |#1|)) 51)) (-3406 (((-1181 |#1|) (-927) (-927)) 158) (((-1181 |#1|) (-927)) 154)) (-2807 (((-112) (-1181 |#1|)) 110)) (-2481 (((-927) (-927)) 88)) (-4195 (((-927) (-927)) 95)) (-2741 (((-927) (-927)) 86)) (-2483 (((-112) (-1181 |#1|)) 114)) (-2348 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 139)) (-3195 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 144)) (-1319 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 143)) (-3957 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 142)) (-3693 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 134)) (-3153 (((-1181 |#1|) (-1181 |#1|)) 74)) (-2331 (((-1181 |#1|) (-927)) 149)) (-3793 (((-1181 |#1|) (-927)) 152)) (-2015 (((-1181 |#1|) (-927)) 151)) (-3269 (((-1181 |#1|) (-927)) 150)) (-2668 (((-1181 |#1|) (-927)) 147)))
+(((-361 |#1|) (-10 -7 (-15 -2807 ((-112) (-1181 |#1|))) (-15 -2483 ((-112) (-1181 |#1|))) (-15 -2741 ((-927) (-927))) (-15 -2481 ((-927) (-927))) (-15 -4195 ((-927) (-927))) (-15 -2668 ((-1181 |#1|) (-927))) (-15 -2331 ((-1181 |#1|) (-927))) (-15 -3269 ((-1181 |#1|) (-927))) (-15 -2015 ((-1181 |#1|) (-927))) (-15 -3793 ((-1181 |#1|) (-927))) (-15 -3693 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -2348 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3957 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -1319 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3195 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3406 ((-1181 |#1|) (-927))) (-15 -3406 ((-1181 |#1|) (-927) (-927))) (-15 -3153 ((-1181 |#1|) (-1181 |#1|))) (-15 -2930 ((-964 (-1181 |#1|)) (-1181 |#1|)))) (-353)) (T -361))
+((-2930 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1181 *4))) (-5 *1 (-361 *4)) (-5 *3 (-1181 *4)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3406 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3195 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-1319 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3957 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-2348 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-2741 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4)))))
+(-10 -7 (-15 -2807 ((-112) (-1181 |#1|))) (-15 -2483 ((-112) (-1181 |#1|))) (-15 -2741 ((-927) (-927))) (-15 -2481 ((-927) (-927))) (-15 -4195 ((-927) (-927))) (-15 -2668 ((-1181 |#1|) (-927))) (-15 -2331 ((-1181 |#1|) (-927))) (-15 -3269 ((-1181 |#1|) (-927))) (-15 -2015 ((-1181 |#1|) (-927))) (-15 -3793 ((-1181 |#1|) (-927))) (-15 -3693 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -2348 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3957 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -1319 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3195 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3406 ((-1181 |#1|) (-927))) (-15 -3406 ((-1181 |#1|) (-927) (-927))) (-15 -3153 ((-1181 |#1|) (-1181 |#1|))) (-15 -2930 ((-964 (-1181 |#1|)) (-1181 |#1|))))
+((-3466 (((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|) 38)))
+(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -3466 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|))) (-353) (-1251 |#1|) (-1251 |#2|)) (T -362))
+((-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3)))))
+(-10 -7 (-15 -3466 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) NIL) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) NIL)) (-4234 (($) NIL (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-363 |#1| |#2|) (-332 |#1|) (-353) (-927)) (T -363))
NIL
(-332 |#1|)
-((-1656 (((-112) (-649 (-958 |#1|))) 41)) (-1908 (((-649 (-958 |#1|)) (-649 (-958 |#1|))) 53)) (-1798 (((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|))) 48)))
-(((-364 |#1| |#2|) (-10 -7 (-15 -1656 ((-112) (-649 (-958 |#1|)))) (-15 -1798 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -1908 ((-649 (-958 |#1|)) (-649 (-958 |#1|))))) (-457) (-649 (-1183))) (T -364))
-((-1908 (*1 *2 *2) (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1183))))) (-1798 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1183))))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112)) (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1183))))))
-(-10 -7 (-15 -1656 ((-112) (-649 (-958 |#1|)))) (-15 -1798 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -1908 ((-649 (-958 |#1|)) (-649 (-958 |#1|)))))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776) $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) 17)) (-3252 ((|#1| $ (-569)) NIL)) (-3372 (((-569) $ (-569)) NIL)) (-1854 (($ (-1 |#1| |#1|) $) 34)) (-3863 (($ (-1 (-569) (-569)) $) 26)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 28)) (-3545 (((-1126) $) NIL)) (-1411 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-569)))) $) 30)) (-3580 (($ $ $) NIL)) (-2292 (($ $ $) NIL)) (-3793 (((-867) $) 40) (($ |#1|) NIL)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 11 T CONST)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ |#1| (-569)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-365 |#1|) (-13 (-478) (-1044 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3470 ((-776) $)) (-15 -3372 ((-569) $ (-569))) (-15 -3252 (|#1| $ (-569))) (-15 -3863 ($ (-1 (-569) (-569)) $)) (-15 -1854 ($ (-1 |#1| |#1|) $)) (-15 -1411 ((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-569)))) $)))) (-1106)) (T -365))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1106)))) (-3372 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1106)))) (-3252 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106)))) (-3863 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1106)))) (-1854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-365 *3)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 (-569))))) (-5 *1 (-365 *3)) (-4 *3 (-1106)))))
-(-13 (-478) (-1044 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3470 ((-776) $)) (-15 -3372 ((-569) $ (-569))) (-15 -3252 (|#1| $ (-569))) (-15 -3863 ($ (-1 (-569) (-569)) $)) (-15 -1854 ($ (-1 |#1| |#1|) $)) (-15 -1411 ((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-569)))) $))))
-((-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 13)) (-3087 (($ $) 14)) (-2508 (((-423 $) $) 34)) (-4073 (((-112) $) 30)) (-1814 (($ $) 19)) (-1864 (($ $ $) 25) (($ (-649 $)) NIL)) (-3796 (((-423 $) $) 35)) (-2405 (((-3 $ "failed") $ $) 24)) (-1578 (((-776) $) 28)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 39)) (-2985 (((-112) $ $) 16)) (-3032 (($ $ $) 37)))
-(((-366 |#1|) (-10 -8 (-15 -3032 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -2282 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -1578 ((-776) |#1|)) (-15 -1864 (|#1| (-649 |#1|))) (-15 -1864 (|#1| |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -1997 ((-2 (|:| -1934 |#1|) (|:| -4431 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|))) (-367)) (T -366))
-NIL
-(-10 -8 (-15 -3032 (|#1| |#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -2282 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -1578 ((-776) |#1|)) (-15 -1864 (|#1| (-649 |#1|))) (-15 -1864 (|#1| |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -1997 ((-2 (|:| -1934 |#1|) (|:| -4431 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-1680 (((-112) $ $) 65)) (-4188 (($) 18 T CONST)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-4073 (((-112) $) 79)) (-2623 (((-112) $) 35)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 73)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+((-2013 (((-112) (-649 (-958 |#1|))) 41)) (-2454 (((-649 (-958 |#1|)) (-649 (-958 |#1|))) 53)) (-3959 (((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|))) 48)))
+(((-364 |#1| |#2|) (-10 -7 (-15 -2013 ((-112) (-649 (-958 |#1|)))) (-15 -3959 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -2454 ((-649 (-958 |#1|)) (-649 (-958 |#1|))))) (-457) (-649 (-1185))) (T -364))
+((-2454 (*1 *2 *2) (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1185))))) (-3959 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1185))))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112)) (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1185))))))
+(-10 -7 (-15 -2013 ((-112) (-649 (-958 |#1|)))) (-15 -3959 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -2454 ((-649 (-958 |#1|)) (-649 (-958 |#1|)))))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) 17)) (-3522 ((|#1| $ (-569)) NIL)) (-2114 (((-569) $ (-569)) NIL)) (-3196 (($ (-1 |#1| |#1|) $) 34)) (-4308 (($ (-1 (-569) (-569)) $) 26)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 28)) (-3547 (((-1128) $) NIL)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $) 30)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 40) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 11 T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ |#1| (-569)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-365 |#1|) (-13 (-478) (-1046 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3473 ((-776) $)) (-15 -2114 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -4308 ($ (-1 (-569) (-569)) $)) (-15 -3196 ($ (-1 |#1| |#1|) $)) (-15 -4360 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $)))) (-1108)) (T -365))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) (-2114 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (-4308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-365 *3)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-569))))) (-5 *1 (-365 *3)) (-4 *3 (-1108)))))
+(-13 (-478) (-1046 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3473 ((-776) $)) (-15 -2114 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -4308 ($ (-1 (-569) (-569)) $)) (-15 -3196 ($ (-1 |#1| |#1|) $)) (-15 -4360 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $))))
+((-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 13)) (-4355 (($ $) 14)) (-3764 (((-423 $) $) 34)) (-1473 (((-112) $) 30)) (-1817 (($ $) 19)) (-1870 (($ $ $) 25) (($ (-649 $)) NIL)) (-3800 (((-423 $) $) 35)) (-2407 (((-3 $ "failed") $ $) 24)) (-2431 (((-776) $) 28)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 39)) (-2664 (((-112) $ $) 16)) (-3035 (($ $ $) 37)))
+(((-366 |#1|) (-10 -8 (-15 -3035 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|))) (-367)) (T -366))
+NIL
+(-10 -8 (-15 -3035 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-367) (-140)) (T -367))
-((-3032 (*1 *1 *1 *1) (-4 *1 (-367))))
-(-13 (-310) (-1227) (-244) (-10 -8 (-15 -3032 ($ $ $)) (-6 -4442) (-6 -4436)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
-((-2415 (((-112) $ $) 7)) (-2523 ((|#2| $ |#2|) 14)) (-2914 (($ $ (-1165)) 19)) (-2625 ((|#2| $) 15)) (-1717 (($ |#1|) 21) (($ |#1| (-1165)) 20)) (-3570 ((|#1| $) 17)) (-1550 (((-1165) $) 10)) (-2733 (((-1165) $) 16)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-2839 (($ $) 18)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
-(((-368 |#1| |#2|) (-140) (-1106) (-1106)) (T -368))
-((-1717 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-1717 (*1 *1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1106)) (-4 *4 (-1106)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2839 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-1165)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-2523 (*1 *2 *1 *2) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
-(-13 (-1106) (-10 -8 (-15 -1717 ($ |t#1|)) (-15 -1717 ($ |t#1| (-1165))) (-15 -2914 ($ $ (-1165))) (-15 -2839 ($ $)) (-15 -3570 (|t#1| $)) (-15 -2733 ((-1165) $)) (-15 -2625 (|t#2| $)) (-15 -2523 (|t#2| $ |t#2|))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-2523 ((|#1| $ |#1|) 31)) (-2914 (($ $ (-1165)) 23)) (-3444 (((-3 |#1| "failed") $) 30)) (-2625 ((|#1| $) 28)) (-1717 (($ (-393)) 22) (($ (-393) (-1165)) 21)) (-3570 (((-393) $) 25)) (-1550 (((-1165) $) NIL)) (-2733 (((-1165) $) 26)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 20)) (-2839 (($ $) 24)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 19)))
-(((-369 |#1|) (-13 (-368 (-393) |#1|) (-10 -8 (-15 -3444 ((-3 |#1| "failed") $)))) (-1106)) (T -369))
-((-3444 (*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1106)))))
-(-13 (-368 (-393) |#1|) (-10 -8 (-15 -3444 ((-3 |#1| "failed") $))))
-((-2870 (((-1273 (-694 |#2|)) (-1273 $)) 70)) (-4207 (((-694 |#2|) (-1273 $)) 141)) (-2667 ((|#2| $) 39)) (-4023 (((-694 |#2|) $ (-1273 $)) 144)) (-3413 (((-3 $ "failed") $) 91)) (-2449 ((|#2| $) 42)) (-2024 (((-1179 |#2|) $) 99)) (-3161 ((|#2| (-1273 $)) 124)) (-3519 (((-1179 |#2|) $) 34)) (-4051 (((-112)) 118)) (-3390 (($ (-1273 |#2|) (-1273 $)) 134)) (-2888 (((-3 $ "failed") $) 95)) (-1325 (((-112)) 112)) (-2317 (((-112)) 107)) (-1575 (((-112)) 61)) (-4298 (((-694 |#2|) (-1273 $)) 139)) (-2789 ((|#2| $) 38)) (-4109 (((-694 |#2|) $ (-1273 $)) 143)) (-3508 (((-3 $ "failed") $) 89)) (-2551 ((|#2| $) 41)) (-2123 (((-1179 |#2|) $) 98)) (-3266 ((|#2| (-1273 $)) 122)) (-3635 (((-1179 |#2|) $) 32)) (-4175 (((-112)) 117)) (-4342 (((-112)) 109)) (-1452 (((-112)) 59)) (-1699 (((-112)) 104)) (-3930 (((-112)) 119)) (-2960 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) 130)) (-3399 (((-112)) 115)) (-2220 (((-649 (-1273 |#2|))) 103)) (-3158 (((-112)) 116)) (-3264 (((-112)) 113)) (-4284 (((-112)) 54)) (-3821 (((-112)) 120)))
-(((-370 |#1| |#2|) (-10 -8 (-15 -2024 ((-1179 |#2|) |#1|)) (-15 -2123 ((-1179 |#2|) |#1|)) (-15 -2220 ((-649 (-1273 |#2|)))) (-15 -3413 ((-3 |#1| "failed") |#1|)) (-15 -3508 ((-3 |#1| "failed") |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 -2317 ((-112))) (-15 -4342 ((-112))) (-15 -1325 ((-112))) (-15 -1452 ((-112))) (-15 -1575 ((-112))) (-15 -1699 ((-112))) (-15 -3821 ((-112))) (-15 -3930 ((-112))) (-15 -4051 ((-112))) (-15 -4175 ((-112))) (-15 -4284 ((-112))) (-15 -3158 ((-112))) (-15 -3264 ((-112))) (-15 -3399 ((-112))) (-15 -3519 ((-1179 |#2|) |#1|)) (-15 -3635 ((-1179 |#2|) |#1|)) (-15 -4207 ((-694 |#2|) (-1273 |#1|))) (-15 -4298 ((-694 |#2|) (-1273 |#1|))) (-15 -3161 (|#2| (-1273 |#1|))) (-15 -3266 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2449 (|#2| |#1|)) (-15 -2551 (|#2| |#1|)) (-15 -2667 (|#2| |#1|)) (-15 -2789 (|#2| |#1|)) (-15 -4023 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -4109 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2870 ((-1273 (-694 |#2|)) (-1273 |#1|)))) (-371 |#2|) (-173)) (T -370))
-((-3399 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3264 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3158 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4284 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4175 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4051 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3821 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1699 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1575 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1452 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1325 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4342 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2317 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2220 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1273 *4))) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))))
-(-10 -8 (-15 -2024 ((-1179 |#2|) |#1|)) (-15 -2123 ((-1179 |#2|) |#1|)) (-15 -2220 ((-649 (-1273 |#2|)))) (-15 -3413 ((-3 |#1| "failed") |#1|)) (-15 -3508 ((-3 |#1| "failed") |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 -2317 ((-112))) (-15 -4342 ((-112))) (-15 -1325 ((-112))) (-15 -1452 ((-112))) (-15 -1575 ((-112))) (-15 -1699 ((-112))) (-15 -3821 ((-112))) (-15 -3930 ((-112))) (-15 -4051 ((-112))) (-15 -4175 ((-112))) (-15 -4284 ((-112))) (-15 -3158 ((-112))) (-15 -3264 ((-112))) (-15 -3399 ((-112))) (-15 -3519 ((-1179 |#2|) |#1|)) (-15 -3635 ((-1179 |#2|) |#1|)) (-15 -4207 ((-694 |#2|) (-1273 |#1|))) (-15 -4298 ((-694 |#2|) (-1273 |#1|))) (-15 -3161 (|#2| (-1273 |#1|))) (-15 -3266 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -2449 (|#2| |#1|)) (-15 -2551 (|#2| |#1|)) (-15 -2667 (|#2| |#1|)) (-15 -2789 (|#2| |#1|)) (-15 -4023 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -4109 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2870 ((-1273 (-694 |#2|)) (-1273 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1934 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) 20)) (-2870 (((-1273 (-694 |#1|)) (-1273 $)) 83)) (-2897 (((-1273 $)) 86)) (-4188 (($) 18 T CONST)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-1856 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-4207 (((-694 |#1|) (-1273 $)) 70)) (-2667 ((|#1| $) 79)) (-4023 (((-694 |#1|) $ (-1273 $)) 81)) (-3413 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-3727 (($ $ (-927)) 31)) (-2449 ((|#1| $) 77)) (-2024 (((-1179 |#1|) $) 47 (|has| |#1| (-561)))) (-3161 ((|#1| (-1273 $)) 72)) (-3519 (((-1179 |#1|) $) 68)) (-4051 (((-112)) 62)) (-3390 (($ (-1273 |#1|) (-1273 $)) 74)) (-2888 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3975 (((-927)) 85)) (-1816 (((-112)) 59)) (-2760 (($ $ (-927)) 38)) (-1325 (((-112)) 55)) (-2317 (((-112)) 53)) (-1575 (((-112)) 57)) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-1949 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-4298 (((-694 |#1|) (-1273 $)) 71)) (-2789 ((|#1| $) 80)) (-4109 (((-694 |#1|) $ (-1273 $)) 82)) (-3508 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-3627 (($ $ (-927)) 32)) (-2551 ((|#1| $) 78)) (-2123 (((-1179 |#1|) $) 48 (|has| |#1| (-561)))) (-3266 ((|#1| (-1273 $)) 73)) (-3635 (((-1179 |#1|) $) 69)) (-4175 (((-112)) 63)) (-1550 (((-1165) $) 10)) (-4342 (((-112)) 54)) (-1452 (((-112)) 56)) (-1699 (((-112)) 58)) (-3545 (((-1126) $) 11)) (-3930 (((-112)) 61)) (-2960 (((-1273 |#1|) $ (-1273 $)) 76) (((-694 |#1|) (-1273 $) (-1273 $)) 75)) (-3146 (((-649 (-958 |#1|)) (-1273 $)) 84)) (-2292 (($ $ $) 28)) (-3399 (((-112)) 67)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2220 (((-649 (-1273 |#1|))) 49 (|has| |#1| (-561)))) (-2358 (($ $ $ $) 29)) (-3158 (((-112)) 65)) (-2205 (($ $ $) 27)) (-3264 (((-112)) 66)) (-4284 (((-112)) 64)) (-3821 (((-112)) 60)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3035 (*1 *1 *1 *1) (-4 *1 (-367))))
+(-13 (-310) (-1229) (-244) (-10 -8 (-15 -3035 ($ $ $)) (-6 -4445) (-6 -4439)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T))
+((-2417 (((-112) $ $) 7)) (-2617 ((|#2| $ |#2|) 14)) (-3229 (($ $ (-1167)) 19)) (-2358 ((|#2| $) 15)) (-1721 (($ |#1|) 21) (($ |#1| (-1167)) 20)) (-3573 ((|#1| $) 17)) (-3435 (((-1167) $) 10)) (-4065 (((-1167) $) 16)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-2543 (($ $) 18)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
+(((-368 |#1| |#2|) (-140) (-1108) (-1108)) (T -368))
+((-1721 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-1721 (*1 *1 *2 *3) (-12 (-5 *3 (-1167)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1108)) (-4 *4 (-1108)))) (-3229 (*1 *1 *1 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-1167)))) (-2358 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-2617 (*1 *2 *1 *2) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -1721 ($ |t#1|)) (-15 -1721 ($ |t#1| (-1167))) (-15 -3229 ($ $ (-1167))) (-15 -2543 ($ $)) (-15 -3573 (|t#1| $)) (-15 -4065 ((-1167) $)) (-15 -2358 (|t#2| $)) (-15 -2617 (|t#2| $ |t#2|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-2617 ((|#1| $ |#1|) 31)) (-3229 (($ $ (-1167)) 23)) (-1584 (((-3 |#1| "failed") $) 30)) (-2358 ((|#1| $) 28)) (-1721 (($ (-393)) 22) (($ (-393) (-1167)) 21)) (-3573 (((-393) $) 25)) (-3435 (((-1167) $) NIL)) (-4065 (((-1167) $) 26)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20)) (-2543 (($ $) 24)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 19)))
+(((-369 |#1|) (-13 (-368 (-393) |#1|) (-10 -8 (-15 -1584 ((-3 |#1| "failed") $)))) (-1108)) (T -369))
+((-1584 (*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1108)))))
+(-13 (-368 (-393) |#1|) (-10 -8 (-15 -1584 ((-3 |#1| "failed") $))))
+((-2901 (((-1275 (-694 |#2|)) (-1275 $)) 70)) (-3400 (((-694 |#2|) (-1275 $)) 141)) (-1564 ((|#2| $) 39)) (-2183 (((-694 |#2|) $ (-1275 $)) 144)) (-4379 (((-3 $ "failed") $) 91)) (-3156 ((|#2| $) 42)) (-4375 (((-1181 |#2|) $) 99)) (-3850 ((|#2| (-1275 $)) 124)) (-4136 (((-1181 |#2|) $) 34)) (-2413 (((-112)) 118)) (-2247 (($ (-1275 |#2|) (-1275 $)) 134)) (-3086 (((-3 $ "failed") $) 95)) (-1756 (((-112)) 112)) (-2411 (((-112)) 107)) (-2399 (((-112)) 61)) (-2999 (((-694 |#2|) (-1275 $)) 139)) (-3339 ((|#2| $) 38)) (-1866 (((-694 |#2|) $ (-1275 $)) 143)) (-4059 (((-3 $ "failed") $) 89)) (-2907 ((|#2| $) 41)) (-4167 (((-1181 |#2|) $) 98)) (-3674 ((|#2| (-1275 $)) 122)) (-2761 (((-1181 |#2|) $) 32)) (-4307 (((-112)) 117)) (-2189 (((-112)) 109)) (-3703 (((-112)) 59)) (-4324 (((-112)) 104)) (-3749 (((-112)) 119)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) 130)) (-2324 (((-112)) 115)) (-2643 (((-649 (-1275 |#2|))) 103)) (-3821 (((-112)) 116)) (-3649 (((-112)) 113)) (-2887 (((-112)) 54)) (-3967 (((-112)) 120)))
+(((-370 |#1| |#2|) (-10 -8 (-15 -4375 ((-1181 |#2|) |#1|)) (-15 -4167 ((-1181 |#2|) |#1|)) (-15 -2643 ((-649 (-1275 |#2|)))) (-15 -4379 ((-3 |#1| "failed") |#1|)) (-15 -4059 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 -2411 ((-112))) (-15 -2189 ((-112))) (-15 -1756 ((-112))) (-15 -3703 ((-112))) (-15 -2399 ((-112))) (-15 -4324 ((-112))) (-15 -3967 ((-112))) (-15 -3749 ((-112))) (-15 -2413 ((-112))) (-15 -4307 ((-112))) (-15 -2887 ((-112))) (-15 -3821 ((-112))) (-15 -3649 ((-112))) (-15 -2324 ((-112))) (-15 -4136 ((-1181 |#2|) |#1|)) (-15 -2761 ((-1181 |#2|) |#1|)) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3156 (|#2| |#1|)) (-15 -2907 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|)))) (-371 |#2|) (-173)) (T -370))
+((-2324 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3649 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3821 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2887 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4307 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2413 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3749 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3967 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4324 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2399 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3703 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1756 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2189 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2411 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2643 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1275 *4))) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))))
+(-10 -8 (-15 -4375 ((-1181 |#2|) |#1|)) (-15 -4167 ((-1181 |#2|) |#1|)) (-15 -2643 ((-649 (-1275 |#2|)))) (-15 -4379 ((-3 |#1| "failed") |#1|)) (-15 -4059 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 -2411 ((-112))) (-15 -2189 ((-112))) (-15 -1756 ((-112))) (-15 -3703 ((-112))) (-15 -2399 ((-112))) (-15 -4324 ((-112))) (-15 -3967 ((-112))) (-15 -3749 ((-112))) (-15 -2413 ((-112))) (-15 -4307 ((-112))) (-15 -2887 ((-112))) (-15 -3821 ((-112))) (-15 -3649 ((-112))) (-15 -2324 ((-112))) (-15 -4136 ((-1181 |#2|) |#1|)) (-15 -2761 ((-1181 |#2|) |#1|)) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3156 (|#2| |#1|)) (-15 -2907 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2736 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-2901 (((-1275 (-694 |#1|)) (-1275 $)) 83)) (-3076 (((-1275 $)) 86)) (-4427 (($) 18 T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-3207 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-3400 (((-694 |#1|) (-1275 $)) 70)) (-1564 ((|#1| $) 79)) (-2183 (((-694 |#1|) $ (-1275 $)) 81)) (-4379 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-2395 (($ $ (-927)) 31)) (-3156 ((|#1| $) 77)) (-4375 (((-1181 |#1|) $) 47 (|has| |#1| (-561)))) (-3850 ((|#1| (-1275 $)) 72)) (-4136 (((-1181 |#1|) $) 68)) (-2413 (((-112)) 62)) (-2247 (($ (-1275 |#1|) (-1275 $)) 74)) (-3086 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3978 (((-927)) 85)) (-4095 (((-112)) 59)) (-4311 (($ $ (-927)) 38)) (-1756 (((-112)) 55)) (-2411 (((-112)) 53)) (-2399 (((-112)) 57)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-2904 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-2999 (((-694 |#1|) (-1275 $)) 71)) (-3339 ((|#1| $) 80)) (-1866 (((-694 |#1|) $ (-1275 $)) 82)) (-4059 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-2667 (($ $ (-927)) 32)) (-2907 ((|#1| $) 78)) (-4167 (((-1181 |#1|) $) 48 (|has| |#1| (-561)))) (-3674 ((|#1| (-1275 $)) 73)) (-2761 (((-1181 |#1|) $) 69)) (-4307 (((-112)) 63)) (-3435 (((-1167) $) 10)) (-2189 (((-112)) 54)) (-3703 (((-112)) 56)) (-4324 (((-112)) 58)) (-3547 (((-1128) $) 11)) (-3749 (((-112)) 61)) (-2415 (((-1275 |#1|) $ (-1275 $)) 76) (((-694 |#1|) (-1275 $) (-1275 $)) 75)) (-1829 (((-649 (-958 |#1|)) (-1275 $)) 84)) (-2180 (($ $ $) 28)) (-2324 (((-112)) 67)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2643 (((-649 (-1275 |#1|))) 49 (|has| |#1| (-561)))) (-1676 (($ $ $ $) 29)) (-3821 (((-112)) 65)) (-2489 (($ $ $) 27)) (-3649 (((-112)) 66)) (-2887 (((-112)) 64)) (-3967 (((-112)) 60)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-371 |#1|) (-140) (-173)) (T -371))
-((-2897 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-371 *3)))) (-3975 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-927)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1273 (-694 *4))))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-4023 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2960 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1273 *4)))) (-2960 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3390 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173)) (-4 *1 (-371 *4)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3635 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))) (-3399 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3264 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3158 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4284 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4175 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4051 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3930 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3821 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1816 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1699 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1575 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1452 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1325 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4342 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2317 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2888 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-3508 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-3413 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2220 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-649 (-1273 *3))))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1179 *3)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1179 *3)))) (-2321 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1903 (-649 *1)))) (-4 *1 (-371 *3)))) (-2225 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1903 (-649 *1)))) (-4 *1 (-371 *3)))) (-1949 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-1856 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-1934 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
-(-13 (-749 |t#1|) (-10 -8 (-15 -2897 ((-1273 $))) (-15 -3975 ((-927))) (-15 -3146 ((-649 (-958 |t#1|)) (-1273 $))) (-15 -2870 ((-1273 (-694 |t#1|)) (-1273 $))) (-15 -4109 ((-694 |t#1|) $ (-1273 $))) (-15 -4023 ((-694 |t#1|) $ (-1273 $))) (-15 -2789 (|t#1| $)) (-15 -2667 (|t#1| $)) (-15 -2551 (|t#1| $)) (-15 -2449 (|t#1| $)) (-15 -2960 ((-1273 |t#1|) $ (-1273 $))) (-15 -2960 ((-694 |t#1|) (-1273 $) (-1273 $))) (-15 -3390 ($ (-1273 |t#1|) (-1273 $))) (-15 -3266 (|t#1| (-1273 $))) (-15 -3161 (|t#1| (-1273 $))) (-15 -4298 ((-694 |t#1|) (-1273 $))) (-15 -4207 ((-694 |t#1|) (-1273 $))) (-15 -3635 ((-1179 |t#1|) $)) (-15 -3519 ((-1179 |t#1|) $)) (-15 -3399 ((-112))) (-15 -3264 ((-112))) (-15 -3158 ((-112))) (-15 -4284 ((-112))) (-15 -4175 ((-112))) (-15 -4051 ((-112))) (-15 -3930 ((-112))) (-15 -3821 ((-112))) (-15 -1816 ((-112))) (-15 -1699 ((-112))) (-15 -1575 ((-112))) (-15 -1452 ((-112))) (-15 -1325 ((-112))) (-15 -4342 ((-112))) (-15 -2317 ((-112))) (IF (|has| |t#1| (-561)) (PROGN (-15 -2888 ((-3 $ "failed") $)) (-15 -3508 ((-3 $ "failed") $)) (-15 -3413 ((-3 $ "failed") $)) (-15 -2220 ((-649 (-1273 |t#1|)))) (-15 -2123 ((-1179 |t#1|) $)) (-15 -2024 ((-1179 |t#1|) $)) (-15 -2321 ((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed"))) (-15 -2225 ((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed"))) (-15 -1949 ((-3 $ "failed"))) (-15 -1856 ((-3 $ "failed"))) (-15 -1934 ((-3 $ "failed"))) (-6 -4441)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-3470 (((-776)) 17)) (-3403 (($) 14)) (-2855 (((-927) $) 15)) (-1550 (((-1165) $) 10)) (-2150 (($ (-927)) 16)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
+((-3076 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-371 *3)))) (-3978 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-927)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1275 (-694 *4))))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2183 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1275 *4)))) (-2415 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173)) (-4 *1 (-371 *4)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3)))) (-2324 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3649 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3821 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2887 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4307 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2413 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3749 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3967 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4095 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4324 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2399 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3703 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1756 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2189 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2411 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3086 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-4059 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-4379 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2643 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-649 (-1275 *3))))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1181 *3)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1181 *3)))) (-4391 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1)))) (-4 *1 (-371 *3)))) (-2707 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1)))) (-4 *1 (-371 *3)))) (-2904 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-3207 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-2736 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
+(-13 (-749 |t#1|) (-10 -8 (-15 -3076 ((-1275 $))) (-15 -3978 ((-927))) (-15 -1829 ((-649 (-958 |t#1|)) (-1275 $))) (-15 -2901 ((-1275 (-694 |t#1|)) (-1275 $))) (-15 -1866 ((-694 |t#1|) $ (-1275 $))) (-15 -2183 ((-694 |t#1|) $ (-1275 $))) (-15 -3339 (|t#1| $)) (-15 -1564 (|t#1| $)) (-15 -2907 (|t#1| $)) (-15 -3156 (|t#1| $)) (-15 -2415 ((-1275 |t#1|) $ (-1275 $))) (-15 -2415 ((-694 |t#1|) (-1275 $) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|) (-1275 $))) (-15 -3674 (|t#1| (-1275 $))) (-15 -3850 (|t#1| (-1275 $))) (-15 -2999 ((-694 |t#1|) (-1275 $))) (-15 -3400 ((-694 |t#1|) (-1275 $))) (-15 -2761 ((-1181 |t#1|) $)) (-15 -4136 ((-1181 |t#1|) $)) (-15 -2324 ((-112))) (-15 -3649 ((-112))) (-15 -3821 ((-112))) (-15 -2887 ((-112))) (-15 -4307 ((-112))) (-15 -2413 ((-112))) (-15 -3749 ((-112))) (-15 -3967 ((-112))) (-15 -4095 ((-112))) (-15 -4324 ((-112))) (-15 -2399 ((-112))) (-15 -3703 ((-112))) (-15 -1756 ((-112))) (-15 -2189 ((-112))) (-15 -2411 ((-112))) (IF (|has| |t#1| (-561)) (PROGN (-15 -3086 ((-3 $ "failed") $)) (-15 -4059 ((-3 $ "failed") $)) (-15 -4379 ((-3 $ "failed") $)) (-15 -2643 ((-649 (-1275 |t#1|)))) (-15 -4167 ((-1181 |t#1|) $)) (-15 -4375 ((-1181 |t#1|) $)) (-15 -4391 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2904 ((-3 $ "failed"))) (-15 -3207 ((-3 $ "failed"))) (-15 -2736 ((-3 $ "failed"))) (-6 -4444)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-3473 (((-776)) 17)) (-3406 (($) 14)) (-2731 (((-927) $) 15)) (-3435 (((-1167) $) 10)) (-2150 (($ (-927)) 16)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
(((-372) (-140)) (T -372))
-((-3470 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-372)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927)))) (-3403 (*1 *1) (-4 *1 (-372))))
-(-13 (-1106) (-10 -8 (-15 -3470 ((-776))) (-15 -2150 ($ (-927))) (-15 -2855 ((-927) $)) (-15 -3403 ($))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-1739 (((-694 |#2|) (-1273 $)) 47)) (-3390 (($ (-1273 |#2|) (-1273 $)) 41)) (-1635 (((-694 |#2|) $ (-1273 $)) 49)) (-4304 ((|#2| (-1273 $)) 13)) (-2960 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) 27)))
-(((-373 |#1| |#2| |#3|) (-10 -8 (-15 -1739 ((-694 |#2|) (-1273 |#1|))) (-15 -4304 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -1635 ((-694 |#2|) |#1| (-1273 |#1|)))) (-374 |#2| |#3|) (-173) (-1249 |#2|)) (T -373))
-NIL
-(-10 -8 (-15 -1739 ((-694 |#2|) (-1273 |#1|))) (-15 -4304 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -1635 ((-694 |#2|) |#1| (-1273 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1739 (((-694 |#1|) (-1273 $)) 53)) (-3136 ((|#1| $) 59)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-3390 (($ (-1273 |#1|) (-1273 $)) 55)) (-1635 (((-694 |#1|) $ (-1273 $)) 60)) (-2888 (((-3 $ "failed") $) 37)) (-3975 (((-927)) 61)) (-2623 (((-112) $) 35)) (-2707 ((|#1| $) 58)) (-2091 ((|#2| $) 51 (|has| |#1| (-367)))) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-4304 ((|#1| (-1273 $)) 54)) (-2960 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-4030 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3798 ((|#2| $) 52)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-374 |#1| |#2|) (-140) (-173) (-1249 |t#1|)) (T -374))
-((-3975 (*1 *2) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-927)))) (-1635 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173)))) (-2960 (*1 *2 *1 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *4)))) (-2960 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-3390 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173)) (-4 *1 (-374 *4 *5)) (-4 *5 (-1249 *4)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1249 *2)) (-4 *2 (-173)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367)) (-4 *2 (-1249 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3975 ((-927))) (-15 -1635 ((-694 |t#1|) $ (-1273 $))) (-15 -3136 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -2960 ((-1273 |t#1|) $ (-1273 $))) (-15 -2960 ((-694 |t#1|) (-1273 $) (-1273 $))) (-15 -3390 ($ (-1273 |t#1|) (-1273 $))) (-15 -4304 (|t#1| (-1273 $))) (-15 -1739 ((-694 |t#1|) (-1273 $))) (-15 -3798 (|t#2| $)) (IF (|has| |t#1| (-367)) (-15 -2091 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-4085 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3596 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1344 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-375 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3596 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4085 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1223) (-377 |#1|) (-1223) (-377 |#3|)) (T -375))
-((-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6)))) (-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-377 *5)) (-4 *6 (-377 *2)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-4 *2 (-377 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-377 *5)))))
-(-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3596 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4085 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2031 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3012 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3355 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2248 (($ $) 25)) (-4034 (((-569) (-1 (-112) |#2|) $) NIL) (((-569) |#2| $) 11) (((-569) |#2| $ (-569)) NIL)) (-2126 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-376 |#1| |#2|) (-10 -8 (-15 -3012 (|#1| |#1|)) (-15 -3012 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -3355 (|#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -4034 ((-569) |#2| |#1| (-569))) (-15 -4034 ((-569) |#2| |#1|)) (-15 -4034 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -2031 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3355 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -2126 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-377 |#2|) (-1223)) (T -376))
-NIL
-(-10 -8 (-15 -3012 (|#1| |#1|)) (-15 -3012 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -3355 (|#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -4034 ((-569) |#2| |#1| (-569))) (-15 -4034 ((-569) |#2| |#1|)) (-15 -4034 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -2031 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3355 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -2126 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4445))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4445))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-4380 (($ $) 91 (|has| $ (-6 -4445)))) (-2248 (($ $) 101)) (-3547 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 52)) (-4034 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3377 (($ $ $) 88 (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3969 (($ $ $) 87 (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 43 (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4420 (($ $ |#1|) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1938 (($ $ $ (-569)) 92 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 71)) (-2441 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2964 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-377 |#1|) (-140) (-1223)) (T -377))
-((-2126 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-2248 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)))) (-3355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-2031 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-4034 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223)) (-5 *2 (-569)))) (-4034 (*1 *2 *3 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-569)))) (-4034 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)))) (-2126 (*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))) (-3355 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-855)) (-5 *2 (-112)))) (-1938 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4445)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-4380 (*1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-377 *2)) (-4 *2 (-1223)))) (-3012 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4445)) (-4 *1 (-377 *3)) (-4 *3 (-1223)))) (-3012 (*1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855)))))
-(-13 (-656 |t#1|) (-10 -8 (-6 -4444) (-15 -2126 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2248 ($ $)) (-15 -3355 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2031 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4034 ((-569) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -4034 ((-569) |t#1| $)) (-15 -4034 ((-569) |t#1| $ (-569)))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-6 (-855)) (-15 -2126 ($ $ $)) (-15 -3355 ($ $)) (-15 -2031 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4445)) (PROGN (-15 -1938 ($ $ $ (-569))) (-15 -4380 ($ $)) (-15 -3012 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-15 -3012 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3102 (((-649 |#1|) $) 37)) (-3766 (($ $ (-776)) 38)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1326 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 41)) (-2308 (($ $) 39)) (-1453 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 42)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-1723 (($ $ |#1| $) 36) (($ $ (-649 |#1|) (-649 $)) 35)) (-3868 (((-776) $) 43)) (-3806 (($ $ $) 34)) (-3793 (((-867) $) 12) (($ |#1|) 46) (((-1288 |#1| |#2|) $) 45) (((-1297 |#1| |#2|) $) 44)) (-1433 ((|#2| (-1297 |#1| |#2|) $) 47)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2129 (($ (-677 |#1|)) 40)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#2|) 33 (|has| |#2| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+((-3473 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-372)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927)))) (-3406 (*1 *1) (-4 *1 (-372))))
+(-13 (-1108) (-10 -8 (-15 -3473 ((-776))) (-15 -2150 ($ (-927))) (-15 -2731 ((-927) $)) (-15 -3406 ($))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-1547 (((-694 |#2|) (-1275 $)) 47)) (-2247 (($ (-1275 |#2|) (-1275 $)) 41)) (-1833 (((-694 |#2|) $ (-1275 $)) 49)) (-3059 ((|#2| (-1275 $)) 13)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) 27)))
+(((-373 |#1| |#2| |#3|) (-10 -8 (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|)))) (-374 |#2| |#3|) (-173) (-1251 |#2|)) (T -373))
+NIL
+(-10 -8 (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1547 (((-694 |#1|) (-1275 $)) 53)) (-3140 ((|#1| $) 59)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55)) (-1833 (((-694 |#1|) $ (-1275 $)) 60)) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-927)) 61)) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 58)) (-3859 ((|#2| $) 51 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3059 ((|#1| (-1275 $)) 54)) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-2239 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1886 ((|#2| $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-374 |#1| |#2|) (-140) (-173) (-1251 |t#1|)) (T -374))
+((-3978 (*1 *2) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-927)))) (-1833 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *4)))) (-2415 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173)) (-4 *1 (-374 *4 *5)) (-4 *5 (-1251 *4)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1251 *2)) (-4 *2 (-173)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367)) (-4 *2 (-1251 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3978 ((-927))) (-15 -1833 ((-694 |t#1|) $ (-1275 $))) (-15 -3140 (|t#1| $)) (-15 -3829 (|t#1| $)) (-15 -2415 ((-1275 |t#1|) $ (-1275 $))) (-15 -2415 ((-694 |t#1|) (-1275 $) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|) (-1275 $))) (-15 -3059 (|t#1| (-1275 $))) (-15 -1547 ((-694 |t#1|) (-1275 $))) (-15 -1886 (|t#2| $)) (IF (|has| |t#1| (-367)) (-15 -3859 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-1610 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3598 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1346 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-375 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1225) (-377 |#1|) (-1225) (-377 |#3|)) (T -375))
+((-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-377 *5)) (-4 *6 (-377 *2)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-4 *2 (-377 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-377 *5)))))
+(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1317 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2951 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3358 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2251 (($ $) 25)) (-4036 (((-569) (-1 (-112) |#2|) $) NIL) (((-569) |#2| $) 11) (((-569) |#2| $ (-569)) NIL)) (-4198 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-376 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -3358 (|#1| |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3358 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-377 |#2|) (-1225)) (T -376))
+NIL
+(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -3358 (|#1| |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3358 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-377 |#1|) (-140) (-1225)) (T -377))
+((-4198 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-2251 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-1317 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-4036 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225)) (-5 *2 (-569)))) (-4036 (*1 *2 *3 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-569)))) (-4036 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))) (-3358 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-855)) (-5 *2 (-112)))) (-2785 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-2507 (*1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225)))) (-2951 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4448)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-2951 (*1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))))
+(-13 (-656 |t#1|) (-10 -8 (-6 -4447) (-15 -4198 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2251 ($ $)) (-15 -3358 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1317 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4036 ((-569) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -4036 ((-569) |t#1| $)) (-15 -4036 ((-569) |t#1| $ (-569)))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-6 (-855)) (-15 -4198 ($ $ $)) (-15 -3358 ($ $)) (-15 -1317 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4448)) (PROGN (-15 -2785 ($ $ $ (-569))) (-15 -2507 ($ $)) (-15 -2951 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-15 -2951 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3105 (((-649 |#1|) $) 37)) (-1604 (($ $ (-776)) 38)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1768 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 41)) (-2325 (($ $) 39)) (-3714 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 42)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-1725 (($ $ |#1| $) 36) (($ $ (-649 |#1|) (-649 $)) 35)) (-4339 (((-776) $) 43)) (-3809 (($ $ $) 34)) (-3796 (((-867) $) 12) (($ |#1|) 46) (((-1290 |#1| |#2|) $) 45) (((-1299 |#1| |#2|) $) 44)) (-1435 ((|#2| (-1299 |#1| |#2|) $) 47)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-4229 (($ (-677 |#1|)) 40)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#2|) 33 (|has| |#2| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
(((-378 |#1| |#2|) (-140) (-855) (-173)) (T -378))
-((-1433 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855)) (-4 *2 (-173)))) (-3793 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1288 *3 *4)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1297 *3 *4)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-776)))) (-1453 (*1 *2 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-1326 (*1 *2 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2129 (*1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4)) (-4 *4 (-173)))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-649 *3)))) (-1723 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-855)) (-4 *5 (-173)))))
-(-13 (-639 |t#2|) (-10 -8 (-15 -1433 (|t#2| (-1297 |t#1| |t#2|) $)) (-15 -3793 ($ |t#1|)) (-15 -3793 ((-1288 |t#1| |t#2|) $)) (-15 -3793 ((-1297 |t#1| |t#2|) $)) (-15 -3868 ((-776) $)) (-15 -1453 ((-1297 |t#1| |t#2|) (-1297 |t#1| |t#2|) $)) (-15 -1326 ((-1297 |t#1| |t#2|) (-1297 |t#1| |t#2|) $)) (-15 -2129 ($ (-677 |t#1|))) (-15 -2308 ($ $)) (-15 -3766 ($ $ (-776))) (-15 -3102 ((-649 |t#1|) $)) (-15 -1723 ($ $ |t#1| $)) (-15 -1723 ($ $ (-649 |t#1|) (-649 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-653 |#2|) . T) ((-639 |#2|) . T) ((-645 |#2|) . T) ((-722 |#2|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1106) . T))
-((-2419 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2227 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2322 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
-(((-379 |#1| |#2|) (-10 -7 (-15 -2227 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2322 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2419 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1223) (-13 (-377 |#1|) (-10 -7 (-6 -4445)))) (T -379))
-((-2419 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445)))))) (-2322 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445)))))) (-2227 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445)))))))
-(-10 -7 (-15 -2227 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2322 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2419 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-1630 (((-694 |#2|) (-694 $)) NIL) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 22) (((-694 (-569)) (-694 $)) 14)))
-(((-380 |#1| |#2|) (-10 -8 (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 |#2|) (-694 |#1|)))) (-381 |#2|) (-1055)) (T -380))
-NIL
-(-10 -8 (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 |#2|) (-694 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1630 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 39) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 47 (|has| |#1| (-644 (-569)))) (((-694 (-569)) (-694 $)) 46 (|has| |#1| (-644 (-569))))) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-381 |#1|) (-140) (-1055)) (T -381))
+((-1435 (*1 *2 *3 *1) (-12 (-5 *3 (-1299 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855)) (-4 *2 (-173)))) (-3796 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1290 *3 *4)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1299 *3 *4)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-776)))) (-3714 (*1 *2 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-1768 (*1 *2 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4229 (*1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4)) (-4 *4 (-173)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-649 *3)))) (-1725 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-855)) (-4 *5 (-173)))))
+(-13 (-639 |t#2|) (-10 -8 (-15 -1435 (|t#2| (-1299 |t#1| |t#2|) $)) (-15 -3796 ($ |t#1|)) (-15 -3796 ((-1290 |t#1| |t#2|) $)) (-15 -3796 ((-1299 |t#1| |t#2|) $)) (-15 -4339 ((-776) $)) (-15 -3714 ((-1299 |t#1| |t#2|) (-1299 |t#1| |t#2|) $)) (-15 -1768 ((-1299 |t#1| |t#2|) (-1299 |t#1| |t#2|) $)) (-15 -4229 ($ (-677 |t#1|))) (-15 -2325 ($ $)) (-15 -1604 ($ $ (-776))) (-15 -3105 ((-649 |t#1|) $)) (-15 -1725 ($ $ |t#1| $)) (-15 -1725 ($ $ (-649 |t#1|) (-649 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-653 |#2|) . T) ((-639 |#2|) . T) ((-645 |#2|) . T) ((-722 |#2|) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1108) . T))
+((-4139 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2729 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-4402 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
+(((-379 |#1| |#2|) (-10 -7 (-15 -2729 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4402 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4139 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1225) (-13 (-377 |#1|) (-10 -7 (-6 -4448)))) (T -379))
+((-4139 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))) (-4402 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))) (-2729 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))))
+(-10 -7 (-15 -2729 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4402 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4139 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-2957 (((-694 |#2|) (-694 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 22) (((-694 (-569)) (-694 $)) 14)))
+(((-380 |#1| |#2|) (-10 -8 (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 |#2|) (-694 |#1|)))) (-381 |#2|) (-1057)) (T -380))
+NIL
+(-10 -8 (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 |#2|) (-694 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2957 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 39) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 47 (|has| |#1| (-644 (-569)))) (((-694 (-569)) (-694 $)) 46 (|has| |#1| (-644 (-569))))) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-381 |#1|) (-140) (-1057)) (T -381))
NIL
(-13 (-644 |t#1|) (-10 -7 (IF (|has| |t#1| (-644 (-569))) (-6 (-644 (-569))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-4158 (((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|) 51) (((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|) 50) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|) 47) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|) 41)) (-4270 (((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1183)) |#1|) 30) (((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|) 18)))
-(((-382 |#1|) (-10 -7 (-15 -4158 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4158 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -4158 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4158 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4270 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4270 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1183)) |#1|))) (-13 (-367) (-853))) (T -382))
-((-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 (-170 *5)))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853))))) (-4270 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-170 (-569))))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -4158 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4158 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -4158 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4158 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4270 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4270 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1183)) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 35)) (-3673 (((-569) $) 62)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-3008 (($ $) 142)) (-2769 (($ $) 105)) (-2624 (($ $) 93)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-3807 (($ $) 47)) (-1680 (((-112) $ $) NIL)) (-2744 (($ $) 103)) (-2600 (($ $) 87)) (-2552 (((-569) $) 80)) (-3081 (($ $ (-569)) 75)) (-4114 (($ $) NIL)) (-2645 (($ $) NIL)) (-4188 (($) NIL T CONST)) (-3434 (($ $) 144)) (-4378 (((-3 (-569) "failed") $) 239) (((-3 (-412 (-569)) "failed") $) 235)) (-3148 (((-569) $) 237) (((-412 (-569)) $) 233)) (-2366 (($ $ $) NIL)) (-4047 (((-569) $ $) 131)) (-2888 (((-3 $ "failed") $) 147)) (-3949 (((-412 (-569)) $ (-776)) 240) (((-412 (-569)) $ (-776) (-776)) 232)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-3497 (((-927)) 127) (((-927) (-927)) 128 (|has| $ (-6 -4435)))) (-4237 (((-112) $) 136)) (-1310 (($) 41)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-1341 (((-1278) (-776)) 199)) (-1469 (((-1278)) 204) (((-1278) (-776)) 205)) (-1708 (((-1278)) 206) (((-1278) (-776)) 207)) (-1581 (((-1278)) 202) (((-1278) (-776)) 203)) (-3110 (((-569) $) 68)) (-2623 (((-112) $) 40)) (-2506 (($ $ (-569)) NIL)) (-2385 (($ $) 51)) (-2707 (($ $) NIL)) (-4327 (((-112) $) 37)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL) (($) NIL (-12 (-1745 (|has| $ (-6 -4427))) (-1745 (|has| $ (-6 -4435)))))) (-3969 (($ $ $) NIL) (($) NIL (-12 (-1745 (|has| $ (-6 -4427))) (-1745 (|has| $ (-6 -4435)))))) (-3031 (((-569) $) 17)) (-3840 (($) 113) (($ $) 119)) (-1340 (($) 118) (($ $) 120)) (-2660 (($ $) 108)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 149)) (-2815 (((-927) (-569)) 46 (|has| $ (-6 -4435)))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) 60)) (-2478 (($ $) 141)) (-2555 (($ (-569) (-569)) 137) (($ (-569) (-569) (-927)) 138)) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4320 (((-569) $) 19)) (-1832 (($) 121)) (-4386 (($ $) 102)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3380 (((-927)) 129) (((-927) (-927)) 130 (|has| $ (-6 -4435)))) (-3514 (($ $ (-776)) NIL) (($ $) 148)) (-2713 (((-927) (-569)) 50 (|has| $ (-6 -4435)))) (-4124 (($ $) NIL)) (-2659 (($ $) NIL)) (-2781 (($ $) NIL)) (-2632 (($ $) NIL)) (-2756 (($ $) 104)) (-2609 (($ $) 92)) (-1408 (((-383) $) 224) (((-226) $) 226) (((-898 (-383)) $) NIL) (((-1165) $) 210) (((-541) $) 222) (($ (-226)) 231)) (-3793 (((-867) $) 214) (($ (-569)) 236) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 236) (($ (-412 (-569))) NIL) (((-226) $) 227)) (-3302 (((-776)) NIL T CONST)) (-2586 (($ $) 143)) (-2916 (((-927)) 61) (((-927) (-927)) 82 (|has| $ (-6 -4435)))) (-1441 (((-112) $ $) NIL)) (-4360 (((-927)) 132)) (-4161 (($ $) 111)) (-2699 (($ $) 49) (($ $ $) 59)) (-2985 (((-112) $ $) NIL)) (-4133 (($ $) 109)) (-2673 (($ $) 39)) (-4182 (($ $) NIL)) (-2721 (($ $) NIL)) (-1501 (($ $) NIL)) (-2732 (($ $) NIL)) (-4170 (($ $) NIL)) (-2710 (($ $) NIL)) (-4147 (($ $) 110)) (-2687 (($ $) 52)) (-3070 (($ $) 58)) (-1803 (($) 36 T CONST)) (-1813 (($) 43 T CONST)) (-4195 (((-1165) $) 27) (((-1165) $ (-112)) 29) (((-1278) (-827) $) 30) (((-1278) (-827) $ (-112)) 31)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2976 (((-112) $ $) 211)) (-2954 (((-112) $ $) 45)) (-2919 (((-112) $ $) 56)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 57)) (-3032 (($ $ $) 48) (($ $ (-569)) 42)) (-3021 (($ $) 38) (($ $ $) 53)) (-3009 (($ $ $) 74)) (** (($ $ (-927)) 85) (($ $ (-776)) NIL) (($ $ (-569)) 114) (($ $ (-412 (-569))) 160) (($ $ $) 151)) (* (($ (-927) $) 81) (($ (-776) $) NIL) (($ (-569) $) 86) (($ $ $) 73) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
-(((-383) (-13 (-409) (-234) (-619 (-1165)) (-833) (-618 (-226)) (-1208) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -3032 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -2385 ($ $)) (-15 -4047 ((-569) $ $)) (-15 -3081 ($ $ (-569))) (-15 -3949 ((-412 (-569)) $ (-776))) (-15 -3949 ((-412 (-569)) $ (-776) (-776))) (-15 -3840 ($)) (-15 -1340 ($)) (-15 -1832 ($)) (-15 -2699 ($ $ $)) (-15 -3840 ($ $)) (-15 -1340 ($ $)) (-15 -1708 ((-1278))) (-15 -1708 ((-1278) (-776))) (-15 -1581 ((-1278))) (-15 -1581 ((-1278) (-776))) (-15 -1469 ((-1278))) (-15 -1469 ((-1278) (-776))) (-15 -1341 ((-1278) (-776))) (-6 -4435) (-6 -4427)))) (T -383))
-((** (*1 *1 *1 *1) (-5 *1 (-383))) (-3032 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-2385 (*1 *1 *1) (-5 *1 (-383))) (-4047 (*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3949 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-3949 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-3840 (*1 *1) (-5 *1 (-383))) (-1340 (*1 *1) (-5 *1 (-383))) (-1832 (*1 *1) (-5 *1 (-383))) (-2699 (*1 *1 *1 *1) (-5 *1 (-383))) (-3840 (*1 *1 *1) (-5 *1 (-383))) (-1340 (*1 *1 *1) (-5 *1 (-383))) (-1708 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))) (-1581 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))) (-1469 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))))
-(-13 (-409) (-234) (-619 (-1165)) (-833) (-618 (-226)) (-1208) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -3032 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -2385 ($ $)) (-15 -4047 ((-569) $ $)) (-15 -3081 ($ $ (-569))) (-15 -3949 ((-412 (-569)) $ (-776))) (-15 -3949 ((-412 (-569)) $ (-776) (-776))) (-15 -3840 ($)) (-15 -1340 ($)) (-15 -1832 ($)) (-15 -2699 ($ $ $)) (-15 -3840 ($ $)) (-15 -1340 ($ $)) (-15 -1708 ((-1278))) (-15 -1708 ((-1278) (-776))) (-15 -1581 ((-1278))) (-15 -1581 ((-1278) (-776))) (-15 -1469 ((-1278))) (-15 -1469 ((-1278) (-776))) (-15 -1341 ((-1278) (-776))) (-6 -4435) (-6 -4427)))
-((-2912 (((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|) 46) (((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|) 45) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|) 42) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|) 36)) (-3142 (((-649 |#1|) (-412 (-958 (-569))) |#1|) 20) (((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1183)) |#1|) 30)))
-(((-384 |#1|) (-10 -7 (-15 -2912 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -2912 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -2912 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -2912 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -3142 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1183)) |#1|)) (-15 -3142 ((-649 |#1|) (-412 (-958 (-569))) |#1|))) (-13 (-853) (-367))) (T -384))
-((-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5)) (-4 *5 (-13 (-853) (-367))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-569))))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))))
-(-10 -7 (-15 -2912 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -2912 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -2912 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -2912 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -3142 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1183)) |#1|)) (-15 -3142 ((-649 |#1|) (-412 (-958 (-569))) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) 30)) (-3148 ((|#2| $) 32)) (-1879 (($ $) NIL)) (-3238 (((-776) $) 11)) (-2518 (((-649 $) $) 23)) (-4343 (((-112) $) NIL)) (-3345 (($ |#2| |#1|) 21)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-3239 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1846 ((|#2| $) 18)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 51) (($ |#2|) 31)) (-2836 (((-649 |#1|) $) 20)) (-4184 ((|#1| $ |#2|) 55)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 33 T CONST)) (-2198 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-385 |#1| |#2|) (-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1055) (-855)) (T -385))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-4165 (((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|) 51) (((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|) 50) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|) 47) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|) 41)) (-2740 (((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1185)) |#1|) 30) (((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|) 18)))
+(((-382 |#1|) (-10 -7 (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -2740 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -2740 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1185)) |#1|))) (-13 (-367) (-853))) (T -382))
+((-2740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 (-170 *5)))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853))))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-170 (-569))))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -2740 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -2740 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1185)) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 35)) (-1938 (((-569) $) 62)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2917 (($ $) 142)) (-2771 (($ $) 105)) (-2626 (($ $) 93)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) 47)) (-2227 (((-112) $ $) NIL)) (-2746 (($ $) 103)) (-2601 (($ $) 87)) (-2919 (((-569) $) 80)) (-3084 (($ $ (-569)) 75)) (-4118 (($ $) NIL)) (-2647 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-1482 (($ $) 144)) (-4381 (((-3 (-569) "failed") $) 239) (((-3 (-412 (-569)) "failed") $) 235)) (-3150 (((-569) $) 237) (((-412 (-569)) $) 233)) (-2368 (($ $ $) NIL)) (-2374 (((-569) $ $) 131)) (-3086 (((-3 $ "failed") $) 147)) (-2621 (((-412 (-569)) $ (-776)) 240) (((-412 (-569)) $ (-776) (-776)) 232)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3500 (((-927)) 127) (((-927) (-927)) 128 (|has| $ (-6 -4438)))) (-3712 (((-112) $) 136)) (-1312 (($) 41)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-1895 (((-1280) (-776)) 199)) (-3879 (((-1280)) 204) (((-1280) (-776)) 205)) (-4400 (((-1280)) 206) (((-1280) (-776)) 207)) (-2460 (((-1280)) 202) (((-1280) (-776)) 203)) (-1466 (((-569) $) 68)) (-2349 (((-112) $) 40)) (-3742 (($ $ (-569)) NIL)) (-3832 (($ $) 51)) (-3829 (($ $) NIL)) (-2051 (((-112) $) 37)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-2839 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-3034 (((-569) $) 17)) (-4112 (($) 113) (($ $) 119)) (-1342 (($) 118) (($ $) 120)) (-2662 (($ $) 108)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 149)) (-3630 (((-927) (-569)) 46 (|has| $ (-6 -4438)))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) 60)) (-3465 (($ $) 141)) (-2557 (($ (-569) (-569)) 137) (($ (-569) (-569) (-927)) 138)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1993 (((-569) $) 19)) (-4252 (($) 121)) (-4389 (($ $) 102)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-927)) 129) (((-927) (-927)) 130 (|has| $ (-6 -4438)))) (-3517 (($ $ (-776)) NIL) (($ $) 148)) (-3884 (((-927) (-569)) 50 (|has| $ (-6 -4438)))) (-4128 (($ $) NIL)) (-2661 (($ $) NIL)) (-2783 (($ $) NIL)) (-2635 (($ $) NIL)) (-2758 (($ $) 104)) (-2614 (($ $) 92)) (-1410 (((-383) $) 224) (((-226) $) 226) (((-898 (-383)) $) NIL) (((-1167) $) 210) (((-541) $) 222) (($ (-226)) 231)) (-3796 (((-867) $) 214) (($ (-569)) 236) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 236) (($ (-412 (-569))) NIL) (((-226) $) 227)) (-2721 (((-776)) NIL T CONST)) (-2040 (($ $) 143)) (-3251 (((-927)) 61) (((-927) (-927)) 82 (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) NIL)) (-4363 (((-927)) 132)) (-4161 (($ $) 111)) (-2701 (($ $) 49) (($ $ $) 59)) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) 109)) (-2675 (($ $) 39)) (-4183 (($ $) NIL)) (-2723 (($ $) NIL)) (-1503 (($ $) NIL)) (-2734 (($ $) NIL)) (-4175 (($ $) NIL)) (-2712 (($ $) NIL)) (-4151 (($ $) 110)) (-2689 (($ $) 52)) (-2271 (($ $) 58)) (-1804 (($) 36 T CONST)) (-1815 (($) 43 T CONST)) (-3266 (((-1167) $) 27) (((-1167) $ (-112)) 29) (((-1280) (-827) $) 30) (((-1280) (-827) $ (-112)) 31)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) 211)) (-2956 (((-112) $ $) 45)) (-2920 (((-112) $ $) 56)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 57)) (-3035 (($ $ $) 48) (($ $ (-569)) 42)) (-3024 (($ $) 38) (($ $ $) 53)) (-3012 (($ $ $) 74)) (** (($ $ (-927)) 85) (($ $ (-776)) NIL) (($ $ (-569)) 114) (($ $ (-412 (-569))) 160) (($ $ $) 151)) (* (($ (-927) $) 81) (($ (-776) $) NIL) (($ (-569) $) 86) (($ $ $) 73) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-383) (-13 (-409) (-234) (-619 (-1167)) (-833) (-618 (-226)) (-1210) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3832 ($ $)) (-15 -2374 ((-569) $ $)) (-15 -3084 ($ $ (-569))) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776))) (-15 -4112 ($)) (-15 -1342 ($)) (-15 -4252 ($)) (-15 -2701 ($ $ $)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -4400 ((-1280))) (-15 -4400 ((-1280) (-776))) (-15 -2460 ((-1280))) (-15 -2460 ((-1280) (-776))) (-15 -3879 ((-1280))) (-15 -3879 ((-1280) (-776))) (-15 -1895 ((-1280) (-776))) (-6 -4438) (-6 -4430)))) (T -383))
+((** (*1 *1 *1 *1) (-5 *1 (-383))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3832 (*1 *1 *1) (-5 *1 (-383))) (-2374 (*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3084 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-2621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-4112 (*1 *1) (-5 *1 (-383))) (-1342 (*1 *1) (-5 *1 (-383))) (-4252 (*1 *1) (-5 *1 (-383))) (-2701 (*1 *1 *1 *1) (-5 *1 (-383))) (-4112 (*1 *1 *1) (-5 *1 (-383))) (-1342 (*1 *1 *1) (-5 *1 (-383))) (-4400 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) (-2460 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) (-3879 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))))
+(-13 (-409) (-234) (-619 (-1167)) (-833) (-618 (-226)) (-1210) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3832 ($ $)) (-15 -2374 ((-569) $ $)) (-15 -3084 ($ $ (-569))) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776))) (-15 -4112 ($)) (-15 -1342 ($)) (-15 -4252 ($)) (-15 -2701 ($ $ $)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -4400 ((-1280))) (-15 -4400 ((-1280) (-776))) (-15 -2460 ((-1280))) (-15 -2460 ((-1280) (-776))) (-15 -3879 ((-1280))) (-15 -3879 ((-1280) (-776))) (-15 -1895 ((-1280) (-776))) (-6 -4438) (-6 -4430)))
+((-3218 (((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|) 46) (((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|) 45) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|) 42) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|) 36)) (-1787 (((-649 |#1|) (-412 (-958 (-569))) |#1|) 20) (((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1185)) |#1|) 30)))
+(((-384 |#1|) (-10 -7 (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -1787 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1185)) |#1|)) (-15 -1787 ((-649 |#1|) (-412 (-958 (-569))) |#1|))) (-13 (-853) (-367))) (T -384))
+((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5)) (-4 *5 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-569))))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))))
+(-10 -7 (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -1787 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1185)) |#1|)) (-15 -1787 ((-649 |#1|) (-412 (-958 (-569))) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 30)) (-3150 ((|#2| $) 32)) (-1883 (($ $) NIL)) (-3366 (((-776) $) 11)) (-2572 (((-649 $) $) 23)) (-2198 (((-112) $) NIL)) (-3348 (($ |#2| |#1|) 21)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3379 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1849 ((|#2| $) 18)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 51) (($ |#2|) 31)) (-2512 (((-649 |#1|) $) 20)) (-4383 ((|#1| $ |#2|) 55)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 33 T CONST)) (-3717 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-385 |#1| |#2|) (-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1057) (-855)) (T -385))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855)))))
(-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#2| "failed") $) 49)) (-3148 ((|#2| $) 50)) (-1879 (($ $) 35)) (-3238 (((-776) $) 39)) (-2518 (((-649 $) $) 40)) (-4343 (((-112) $) 43)) (-3345 (($ |#2| |#1|) 44)) (-1344 (($ (-1 |#1| |#1|) $) 45)) (-3239 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1846 ((|#2| $) 38)) (-1855 ((|#1| $) 37)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ |#2|) 48)) (-2836 (((-649 |#1|) $) 41)) (-4184 ((|#1| $ |#2|) 46)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2198 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
-(((-386 |#1| |#2|) (-140) (-1055) (-1106)) (T -386))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106)))) (-4184 (*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)))) (-3345 (*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-112)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 *3)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-386 *3 *4)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-776)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106)))))
-(-13 (-111 |t#1| |t#1|) (-1044 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4184 (|t#1| $ |t#2|)) (-15 -1344 ($ (-1 |t#1| |t#1|) $)) (-15 -3345 ($ |t#2| |t#1|)) (-15 -4343 ((-112) $)) (-15 -2198 ((-649 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2836 ((-649 |t#1|) $)) (-15 -2518 ((-649 $) $)) (-15 -3238 ((-776) $)) (-15 -1846 (|t#2| $)) (-15 -1855 (|t#1| $)) (-15 -3239 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1879 ($ $)) (IF (|has| |t#1| (-173)) (-6 (-722 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-1044 |#2|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
-((-3358 (((-1278) $) 7)) (-3793 (((-867) $) 8) (($ (-694 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 11)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#2| "failed") $) 49)) (-3150 ((|#2| $) 50)) (-1883 (($ $) 35)) (-3366 (((-776) $) 39)) (-2572 (((-649 $) $) 40)) (-2198 (((-112) $) 43)) (-3348 (($ |#2| |#1|) 44)) (-1346 (($ (-1 |#1| |#1|) $) 45)) (-3379 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1849 ((|#2| $) 38)) (-1857 ((|#1| $) 37)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ |#2|) 48)) (-2512 (((-649 |#1|) $) 41)) (-4383 ((|#1| $ |#2|) 46)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-3717 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-386 |#1| |#2|) (-140) (-1057) (-1108)) (T -386))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108)))) (-4383 (*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)))) (-3348 (*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-112)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 *3)))) (-2572 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-386 *3 *4)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-776)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108)))))
+(-13 (-111 |t#1| |t#1|) (-1046 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4383 (|t#1| $ |t#2|)) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -3348 ($ |t#2| |t#1|)) (-15 -2198 ((-112) $)) (-15 -3717 ((-649 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2512 ((-649 |t#1|) $)) (-15 -2572 ((-649 $) $)) (-15 -3366 ((-776) $)) (-15 -1849 (|t#2| $)) (-15 -1857 (|t#1| $)) (-15 -3379 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1883 ($ $)) (IF (|has| |t#1| (-173)) (-6 (-722 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-1046 |#2|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T))
+((-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-694 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 11)))
(((-387) (-140)) (T -387))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-387)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) (-4 *1 (-387)))))
-(-13 (-400) (-10 -8 (-15 -3793 ($ (-694 (-704)))) (-15 -3793 ($ (-649 (-333)))) (-15 -3793 ($ (-333))) (-15 -3793 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))))))
-(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
-((-4378 (((-3 $ "failed") (-694 (-319 (-383)))) 21) (((-3 $ "failed") (-694 (-319 (-569)))) 19) (((-3 $ "failed") (-694 (-958 (-383)))) 17) (((-3 $ "failed") (-694 (-958 (-569)))) 15) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 11)) (-3148 (($ (-694 (-319 (-383)))) 22) (($ (-694 (-319 (-569)))) 20) (($ (-694 (-958 (-383)))) 18) (($ (-694 (-958 (-569)))) 16) (($ (-694 (-412 (-958 (-383))))) 14) (($ (-694 (-412 (-958 (-569))))) 12)) (-3358 (((-1278) $) 7)) (-3793 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 23)))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-387)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-387)))))
+(-13 (-400) (-10 -8 (-15 -3796 ($ (-694 (-704)))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1225) . T))
+((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 21) (((-3 $ "failed") (-694 (-319 (-569)))) 19) (((-3 $ "failed") (-694 (-958 (-383)))) 17) (((-3 $ "failed") (-694 (-958 (-569)))) 15) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 11)) (-3150 (($ (-694 (-319 (-383)))) 22) (($ (-694 (-319 (-569)))) 20) (($ (-694 (-958 (-383)))) 18) (($ (-694 (-958 (-569)))) 16) (($ (-694 (-412 (-958 (-383))))) 14) (($ (-694 (-412 (-958 (-569))))) 12)) (-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 23)))
(((-388) (-140)) (T -388))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-388)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-388)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) (-4 *1 (-388)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))))
-(-13 (-400) (-10 -8 (-15 -3793 ($ (-649 (-333)))) (-15 -3793 ($ (-333))) (-15 -3793 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))) (-15 -3148 ($ (-694 (-319 (-383))))) (-15 -4378 ((-3 $ "failed") (-694 (-319 (-383))))) (-15 -3148 ($ (-694 (-319 (-569))))) (-15 -4378 ((-3 $ "failed") (-694 (-319 (-569))))) (-15 -3148 ($ (-694 (-958 (-383))))) (-15 -4378 ((-3 $ "failed") (-694 (-958 (-383))))) (-15 -3148 ($ (-694 (-958 (-569))))) (-15 -4378 ((-3 $ "failed") (-694 (-958 (-569))))) (-15 -3148 ($ (-694 (-412 (-958 (-383)))))) (-15 -4378 ((-3 $ "failed") (-694 (-412 (-958 (-383)))))) (-15 -3148 ($ (-694 (-412 (-958 (-569)))))) (-15 -4378 ((-3 $ "failed") (-694 (-412 (-958 (-569))))))))
-(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-3920 (($ |#1| |#2|) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1915 ((|#2| $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 33)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 12 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-389 |#1| |#2|) (-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|))) (-1055) (-855)) (T -389))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-388)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-388)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))))
+(-13 (-400) (-10 -8 (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3150 ($ (-694 (-319 (-383))))) (-15 -4381 ((-3 $ "failed") (-694 (-319 (-383))))) (-15 -3150 ($ (-694 (-319 (-569))))) (-15 -4381 ((-3 $ "failed") (-694 (-319 (-569))))) (-15 -3150 ($ (-694 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-694 (-958 (-383))))) (-15 -3150 ($ (-694 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-694 (-958 (-569))))) (-15 -3150 ($ (-694 (-412 (-958 (-383)))))) (-15 -4381 ((-3 $ "failed") (-694 (-412 (-958 (-383)))))) (-15 -3150 ($ (-694 (-412 (-958 (-569)))))) (-15 -4381 ((-3 $ "failed") (-694 (-412 (-958 (-569))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1225) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 33)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 12 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-389 |#1| |#2|) (-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|))) (-1057) (-855)) (T -389))
NIL
(-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|)))
-((-2415 (((-112) $ $) 7)) (-3470 (((-776) $) 34)) (-4188 (($) 19 T CONST)) (-1326 (((-3 $ "failed") $ $) 37)) (-4378 (((-3 |#1| "failed") $) 45)) (-3148 ((|#1| $) 46)) (-2888 (((-3 $ "failed") $) 16)) (-3371 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2623 (((-112) $) 18)) (-3252 ((|#1| $ (-569)) 31)) (-3372 (((-776) $ (-569)) 32)) (-3377 (($ $ $) 28 (|has| |#1| (-855)))) (-3969 (($ $ $) 27 (|has| |#1| (-855)))) (-1854 (($ (-1 |#1| |#1|) $) 29)) (-3863 (($ (-1 (-776) (-776)) $) 30)) (-1453 (((-3 $ "failed") $ $) 38)) (-1550 (((-1165) $) 10)) (-3485 (($ $ $) 39)) (-1754 (($ $ $) 40)) (-3545 (((-1126) $) 11)) (-1411 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-776)))) $) 33)) (-2282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-3793 (((-867) $) 12) (($ |#1|) 44)) (-1441 (((-112) $ $) 9)) (-1813 (($) 20 T CONST)) (-2976 (((-112) $ $) 25 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 24 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 26 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 23 (|has| |#1| (-855)))) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ |#1| (-776)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
-(((-390 |#1|) (-140) (-1106)) (T -390))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-1754 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-3485 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-1453 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-1326 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-2282 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1106)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-3371 (*1 *2 *1 *1) (-12 (-4 *3 (-1106)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106)) (-5 *2 (-776)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 (-776))))))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1106)) (-5 *2 (-776)))) (-3252 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1106)))) (-3863 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1106)))) (-1854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1106)))))
-(-13 (-731) (-1044 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-776))) (-15 -1754 ($ $ $)) (-15 -3485 ($ $ $)) (-15 -1453 ((-3 $ "failed") $ $)) (-15 -1326 ((-3 $ "failed") $ $)) (-15 -2282 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3371 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3470 ((-776) $)) (-15 -1411 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4386 (-776)))) $)) (-15 -3372 ((-776) $ (-569))) (-15 -3252 (|t#1| $ (-569))) (-15 -3863 ($ (-1 (-776) (-776)) $)) (-15 -1854 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|)))
-(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1044 |#1|) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776) $) 74)) (-4188 (($) NIL T CONST)) (-1326 (((-3 $ "failed") $ $) 77)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3371 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2623 (((-112) $) 17)) (-3252 ((|#1| $ (-569)) NIL)) (-3372 (((-776) $ (-569)) NIL)) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-1854 (($ (-1 |#1| |#1|) $) 40)) (-3863 (($ (-1 (-776) (-776)) $) 37)) (-1453 (((-3 $ "failed") $ $) 60)) (-1550 (((-1165) $) NIL)) (-3485 (($ $ $) 28)) (-1754 (($ $ $) 26)) (-3545 (((-1126) $) NIL)) (-1411 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-776)))) $) 34)) (-2282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3793 (((-867) $) 24) (($ |#1|) NIL)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 11 T CONST)) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) 84 (|has| |#1| (-855)))) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-391 |#1|) (-390 |#1|) (-1106)) (T -391))
+((-2417 (((-112) $ $) 7)) (-3473 (((-776) $) 34)) (-4427 (($) 19 T CONST)) (-1768 (((-3 $ "failed") $ $) 37)) (-4381 (((-3 |#1| "failed") $) 45)) (-3150 ((|#1| $) 46)) (-3086 (((-3 $ "failed") $) 16)) (-2102 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2349 (((-112) $) 18)) (-3522 ((|#1| $ (-569)) 31)) (-2114 (((-776) $ (-569)) 32)) (-3380 (($ $ $) 28 (|has| |#1| (-855)))) (-2839 (($ $ $) 27 (|has| |#1| (-855)))) (-3196 (($ (-1 |#1| |#1|) $) 29)) (-4308 (($ (-1 (-776) (-776)) $) 30)) (-3714 (((-3 $ "failed") $ $) 38)) (-3435 (((-1167) $) 10)) (-3887 (($ $ $) 39)) (-1684 (($ $ $) 40)) (-3547 (((-1128) $) 11)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) 33)) (-2084 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-3796 (((-867) $) 12) (($ |#1|) 44)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2978 (((-112) $ $) 25 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 24 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 26 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 23 (|has| |#1| (-855)))) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ |#1| (-776)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+(((-390 |#1|) (-140) (-1108)) (T -390))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-1684 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-3887 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-3714 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-1768 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-2084 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1108)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-2102 (*1 *2 *1 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108)) (-5 *2 (-776)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-776))))))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1108)) (-5 *2 (-776)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-4308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1108)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1108)))))
+(-13 (-731) (-1046 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-776))) (-15 -1684 ($ $ $)) (-15 -3887 ($ $ $)) (-15 -3714 ((-3 $ "failed") $ $)) (-15 -1768 ((-3 $ "failed") $ $)) (-15 -2084 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2102 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3473 ((-776) $)) (-15 -4360 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4389 (-776)))) $)) (-15 -2114 ((-776) $ (-569))) (-15 -3522 (|t#1| $ (-569))) (-15 -4308 ($ (-1 (-776) (-776)) $)) (-15 -3196 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|)))
+(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1046 |#1|) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776) $) 74)) (-4427 (($) NIL T CONST)) (-1768 (((-3 $ "failed") $ $) 77)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2102 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2349 (((-112) $) 17)) (-3522 ((|#1| $ (-569)) NIL)) (-2114 (((-776) $ (-569)) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3196 (($ (-1 |#1| |#1|) $) 40)) (-4308 (($ (-1 (-776) (-776)) $) 37)) (-3714 (((-3 $ "failed") $ $) 60)) (-3435 (((-1167) $) NIL)) (-3887 (($ $ $) 28)) (-1684 (($ $ $) 26)) (-3547 (((-1128) $) NIL)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) 34)) (-2084 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3796 (((-867) $) 24) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 11 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) 84 (|has| |#1| (-855)))) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-391 |#1|) (-390 |#1|) (-1108)) (T -391))
NIL
(-390 |#1|)
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 53)) (-3148 (((-569) $) 54)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-3377 (($ $ $) 60)) (-3969 (($ $ $) 59)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ $) 48)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 52)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2976 (((-112) $ $) 57)) (-2954 (((-112) $ $) 56)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 58)) (-2942 (((-112) $ $) 55)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 53)) (-3150 (((-569) $) 54)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3380 (($ $ $) 60)) (-2839 (($ $ $) 59)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 57)) (-2956 (((-112) $ $) 56)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 58)) (-2944 (((-112) $ $) 55)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-392) (-140)) (T -392))
NIL
-(-13 (-561) (-855) (-1044 (-569)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1044 (-569)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-1843 (((-112) $) 25)) (-3829 (((-112) $) 22)) (-4295 (($ (-1165) (-1165) (-1165)) 26)) (-3570 (((-1165) $) 16)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2020 (($ (-1165) (-1165) (-1165)) 14)) (-3999 (((-1165) $) 17)) (-3905 (((-112) $) 18)) (-4359 (((-1165) $) 15)) (-3793 (((-867) $) 12) (($ (-1165)) 13) (((-1165) $) 9)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 7)))
+(-13 (-561) (-855) (-1046 (-569)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1046 (-569)) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3100 (((-112) $) 25)) (-4026 (((-112) $) 22)) (-4300 (($ (-1167) (-1167) (-1167)) 26)) (-3573 (((-1167) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2025 (($ (-1167) (-1167) (-1167)) 14)) (-3141 (((-1167) $) 17)) (-3482 (((-112) $) 18)) (-4361 (((-1167) $) 15)) (-3796 (((-867) $) 12) (($ (-1167)) 13) (((-1167) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 7)))
(((-393) (-394)) (T -393))
NIL
(-394)
-((-2415 (((-112) $ $) 7)) (-1843 (((-112) $) 17)) (-3829 (((-112) $) 18)) (-4295 (($ (-1165) (-1165) (-1165)) 16)) (-3570 (((-1165) $) 21)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2020 (($ (-1165) (-1165) (-1165)) 23)) (-3999 (((-1165) $) 20)) (-3905 (((-112) $) 19)) (-4359 (((-1165) $) 22)) (-3793 (((-867) $) 12) (($ (-1165)) 25) (((-1165) $) 24)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
+((-2417 (((-112) $ $) 7)) (-3100 (((-112) $) 17)) (-4026 (((-112) $) 18)) (-4300 (($ (-1167) (-1167) (-1167)) 16)) (-3573 (((-1167) $) 21)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2025 (($ (-1167) (-1167) (-1167)) 23)) (-3141 (((-1167) $) 20)) (-3482 (((-112) $) 19)) (-4361 (((-1167) $) 22)) (-3796 (((-867) $) 12) (($ (-1167)) 25) (((-1167) $) 24)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
(((-394) (-140)) (T -394))
-((-2020 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-4295 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))))
-(-13 (-1106) (-495 (-1165)) (-10 -8 (-15 -2020 ($ (-1165) (-1165) (-1165))) (-15 -4359 ((-1165) $)) (-15 -3570 ((-1165) $)) (-15 -3999 ((-1165) $)) (-15 -3905 ((-112) $)) (-15 -3829 ((-112) $)) (-15 -1843 ((-112) $)) (-15 -4295 ($ (-1165) (-1165) (-1165)))))
-(((-102) . T) ((-621 #0=(-1165)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4075 (((-867) $) 63)) (-4188 (($) NIL T CONST)) (-3727 (($ $ (-927)) NIL)) (-2760 (($ $ (-927)) NIL)) (-3627 (($ $ (-927)) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2330 (($ (-776)) 38)) (-3083 (((-776)) 18)) (-4160 (((-867) $) 65)) (-2292 (($ $ $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2358 (($ $ $ $) NIL)) (-2205 (($ $ $) NIL)) (-1803 (($) 24 T CONST)) (-2919 (((-112) $ $) 41)) (-3021 (($ $) 48) (($ $ $) 50)) (-3009 (($ $ $) 51)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-395 |#1| |#2| |#3|) (-13 (-749 |#3|) (-10 -8 (-15 -3083 ((-776))) (-15 -4160 ((-867) $)) (-15 -4075 ((-867) $)) (-15 -2330 ($ (-776))))) (-776) (-776) (-173)) (T -395))
-((-3083 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))))
-(-13 (-749 |#3|) (-10 -8 (-15 -3083 ((-776))) (-15 -4160 ((-867) $)) (-15 -4075 ((-867) $)) (-15 -2330 ($ (-776)))))
-((-3143 (((-1165)) 12)) (-4302 (((-1153 (-1165))) 30)) (-3324 (((-1278) (-1165)) 27) (((-1278) (-393)) 26)) (-3339 (((-1278)) 28)) (-4223 (((-1153 (-1165))) 29)))
-(((-396) (-10 -7 (-15 -4223 ((-1153 (-1165)))) (-15 -4302 ((-1153 (-1165)))) (-15 -3339 ((-1278))) (-15 -3324 ((-1278) (-393))) (-15 -3324 ((-1278) (-1165))) (-15 -3143 ((-1165))))) (T -396))
-((-3143 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-396)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-396)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-396)))) (-3339 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-396)))) (-4302 (*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))) (-4223 (*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
-(-10 -7 (-15 -4223 ((-1153 (-1165)))) (-15 -4302 ((-1153 (-1165)))) (-15 -3339 ((-1278))) (-15 -3324 ((-1278) (-393))) (-15 -3324 ((-1278) (-1165))) (-15 -3143 ((-1165))))
-((-3110 (((-776) (-340 |#1| |#2| |#3| |#4|)) 19)))
-(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3110 ((-776) (-340 |#1| |#2| |#3| |#4|)))) (-13 (-372) (-367)) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -397))
-((-3110 (*1 *2 *3) (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367))) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *7 (-346 *4 *5 *6)) (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3110 ((-776) (-340 |#1| |#2| |#3| |#4|))))
-((-3793 (((-399) |#1|) 11)))
-(((-398 |#1|) (-10 -7 (-15 -3793 ((-399) |#1|))) (-1106)) (T -398))
-((-3793 (*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1106)))))
-(-10 -7 (-15 -3793 ((-399) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-4088 (((-649 (-1165)) $ (-649 (-1165))) 42)) (-3216 (((-649 (-1165)) $ (-649 (-1165))) 43)) (-4275 (((-649 (-1165)) $ (-649 (-1165))) 44)) (-3126 (((-649 (-1165)) $) 39)) (-4295 (($) 30)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3177 (((-649 (-1165)) $) 40)) (-3222 (((-649 (-1165)) $) 41)) (-4155 (((-1278) $ (-569)) 37) (((-1278) $) 38)) (-1408 (($ (-867) (-569)) 35)) (-3793 (((-867) $) 49) (($ (-867)) 32)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-399) (-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1408 ($ (-867) (-569))) (-15 -4155 ((-1278) $ (-569))) (-15 -4155 ((-1278) $)) (-15 -3222 ((-649 (-1165)) $)) (-15 -3177 ((-649 (-1165)) $)) (-15 -4295 ($)) (-15 -3126 ((-649 (-1165)) $)) (-15 -4275 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -3216 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -4088 ((-649 (-1165)) $ (-649 (-1165))))))) (T -399))
-((-1408 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-399)))) (-4155 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-399)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-399)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-4295 (*1 *1) (-5 *1 (-399))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-4275 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-3216 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))) (-4088 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))))
-(-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1408 ($ (-867) (-569))) (-15 -4155 ((-1278) $ (-569))) (-15 -4155 ((-1278) $)) (-15 -3222 ((-649 (-1165)) $)) (-15 -3177 ((-649 (-1165)) $)) (-15 -4295 ($)) (-15 -3126 ((-649 (-1165)) $)) (-15 -4275 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -3216 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -4088 ((-649 (-1165)) $ (-649 (-1165))))))
-((-3358 (((-1278) $) 7)) (-3793 (((-867) $) 8)))
+((-2025 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-4300 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394)))))
+(-13 (-1108) (-495 (-1167)) (-10 -8 (-15 -2025 ($ (-1167) (-1167) (-1167))) (-15 -4361 ((-1167) $)) (-15 -3573 ((-1167) $)) (-15 -3141 ((-1167) $)) (-15 -3482 ((-112) $)) (-15 -4026 ((-112) $)) (-15 -3100 ((-112) $)) (-15 -4300 ($ (-1167) (-1167) (-1167)))))
+(((-102) . T) ((-621 #0=(-1167)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1495 (((-867) $) 63)) (-4427 (($) NIL T CONST)) (-2395 (($ $ (-927)) NIL)) (-4311 (($ $ (-927)) NIL)) (-2667 (($ $ (-927)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($ (-776)) 38)) (-2377 (((-776)) 18)) (-4186 (((-867) $) 65)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1676 (($ $ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1804 (($) 24 T CONST)) (-2920 (((-112) $ $) 41)) (-3024 (($ $) 48) (($ $ $) 50)) (-3012 (($ $ $) 51)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-395 |#1| |#2| |#3|) (-13 (-749 |#3|) (-10 -8 (-15 -2377 ((-776))) (-15 -4186 ((-867) $)) (-15 -1495 ((-867) $)) (-15 -2332 ($ (-776))))) (-776) (-776) (-173)) (T -395))
+((-2377 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))))
+(-13 (-749 |#3|) (-10 -8 (-15 -2377 ((-776))) (-15 -4186 ((-867) $)) (-15 -1495 ((-867) $)) (-15 -2332 ($ (-776)))))
+((-1799 (((-1167)) 12)) (-3031 (((-1155 (-1167))) 30)) (-3326 (((-1280) (-1167)) 27) (((-1280) (-393)) 26)) (-3340 (((-1280)) 28)) (-3555 (((-1155 (-1167))) 29)))
+(((-396) (-10 -7 (-15 -3555 ((-1155 (-1167)))) (-15 -3031 ((-1155 (-1167)))) (-15 -3340 ((-1280))) (-15 -3326 ((-1280) (-393))) (-15 -3326 ((-1280) (-1167))) (-15 -1799 ((-1167))))) (T -396))
+((-1799 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-396)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-396)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-396)))) (-3340 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-396)))) (-3031 (*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396)))) (-3555 (*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396)))))
+(-10 -7 (-15 -3555 ((-1155 (-1167)))) (-15 -3031 ((-1155 (-1167)))) (-15 -3340 ((-1280))) (-15 -3326 ((-1280) (-393))) (-15 -3326 ((-1280) (-1167))) (-15 -1799 ((-1167))))
+((-1466 (((-776) (-340 |#1| |#2| |#3| |#4|)) 19)))
+(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|)))) (-13 (-372) (-367)) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -397))
+((-1466 (*1 *2 *3) (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367))) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *7 (-346 *4 *5 *6)) (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|))))
+((-3796 (((-399) |#1|) 11)))
+(((-398 |#1|) (-10 -7 (-15 -3796 ((-399) |#1|))) (-1108)) (T -398))
+((-3796 (*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -3796 ((-399) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-1644 (((-649 (-1167)) $ (-649 (-1167))) 42)) (-3138 (((-649 (-1167)) $ (-649 (-1167))) 43)) (-2789 (((-649 (-1167)) $ (-649 (-1167))) 44)) (-1612 (((-649 (-1167)) $) 39)) (-4300 (($) 30)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3180 (((-649 (-1167)) $) 40)) (-3193 (((-649 (-1167)) $) 41)) (-4158 (((-1280) $ (-569)) 37) (((-1280) $) 38)) (-1410 (($ (-867) (-569)) 35)) (-3796 (((-867) $) 49) (($ (-867)) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-399) (-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -3180 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -3138 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167))))))) (T -399))
+((-1410 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-399)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-399)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-399)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-4300 (*1 *1) (-5 *1 (-399))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-2789 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-3138 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-1644 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))))
+(-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -3180 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -3138 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167))))))
+((-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8)))
(((-400) (-140)) (T -400))
-((-3358 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1278)))))
-(-13 (-1223) (-618 (-867)) (-10 -8 (-15 -3358 ((-1278) $))))
-(((-618 (-867)) . T) ((-1223) . T))
-((-4378 (((-3 $ "failed") (-319 (-383))) 21) (((-3 $ "failed") (-319 (-569))) 19) (((-3 $ "failed") (-958 (-383))) 17) (((-3 $ "failed") (-958 (-569))) 15) (((-3 $ "failed") (-412 (-958 (-383)))) 13) (((-3 $ "failed") (-412 (-958 (-569)))) 11)) (-3148 (($ (-319 (-383))) 22) (($ (-319 (-569))) 20) (($ (-958 (-383))) 18) (($ (-958 (-569))) 16) (($ (-412 (-958 (-383)))) 14) (($ (-412 (-958 (-569)))) 12)) (-3358 (((-1278) $) 7)) (-3793 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 23)))
+((-3362 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1280)))))
+(-13 (-1225) (-618 (-867)) (-10 -8 (-15 -3362 ((-1280) $))))
+(((-618 (-867)) . T) ((-1225) . T))
+((-4381 (((-3 $ "failed") (-319 (-383))) 21) (((-3 $ "failed") (-319 (-569))) 19) (((-3 $ "failed") (-958 (-383))) 17) (((-3 $ "failed") (-958 (-569))) 15) (((-3 $ "failed") (-412 (-958 (-383)))) 13) (((-3 $ "failed") (-412 (-958 (-569)))) 11)) (-3150 (($ (-319 (-383))) 22) (($ (-319 (-569))) 20) (($ (-958 (-383))) 18) (($ (-958 (-569))) 16) (($ (-412 (-958 (-383)))) 14) (($ (-412 (-958 (-569)))) 12)) (-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 23)))
(((-401) (-140)) (T -401))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-401)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-401)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) (-4 *1 (-401)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))))
-(-13 (-400) (-10 -8 (-15 -3793 ($ (-649 (-333)))) (-15 -3793 ($ (-333))) (-15 -3793 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))) (-15 -3148 ($ (-319 (-383)))) (-15 -4378 ((-3 $ "failed") (-319 (-383)))) (-15 -3148 ($ (-319 (-569)))) (-15 -4378 ((-3 $ "failed") (-319 (-569)))) (-15 -3148 ($ (-958 (-383)))) (-15 -4378 ((-3 $ "failed") (-958 (-383)))) (-15 -3148 ($ (-958 (-569)))) (-15 -4378 ((-3 $ "failed") (-958 (-569)))) (-15 -3148 ($ (-412 (-958 (-383))))) (-15 -4378 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3148 ($ (-412 (-958 (-569))))) (-15 -4378 ((-3 $ "failed") (-412 (-958 (-569)))))))
-(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
-((-3418 (((-649 (-1165)) (-649 (-1165))) 9)) (-3358 (((-1278) (-393)) 26)) (-3310 (((-1110) (-1183) (-649 (-1183)) (-1186) (-649 (-1183))) 59) (((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)) (-1183)) 34) (((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183))) 33)))
-(((-402) (-10 -7 (-15 -3310 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)))) (-15 -3310 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)) (-1183))) (-15 -3310 ((-1110) (-1183) (-649 (-1183)) (-1186) (-649 (-1183)))) (-15 -3358 ((-1278) (-393))) (-15 -3418 ((-649 (-1165)) (-649 (-1165)))))) (T -402))
-((-3418 (*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-402)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-402)))) (-3310 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-649 (-1183))) (-5 *5 (-1186)) (-5 *3 (-1183)) (-5 *2 (-1110)) (-5 *1 (-402)))) (-3310 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183))))) (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110)) (-5 *1 (-402)))) (-3310 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183))))) (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110)) (-5 *1 (-402)))))
-(-10 -7 (-15 -3310 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)))) (-15 -3310 ((-1110) (-1183) (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183)))) (-649 (-649 (-3 (|:| |array| (-649 (-1183))) (|:| |scalar| (-1183))))) (-649 (-1183)) (-1183))) (-15 -3310 ((-1110) (-1183) (-649 (-1183)) (-1186) (-649 (-1183)))) (-15 -3358 ((-1278) (-393))) (-15 -3418 ((-649 (-1165)) (-649 (-1165)))))
-((-3358 (((-1278) $) 35)) (-3793 (((-867) $) 97) (($ (-333)) 99) (($ (-649 (-333))) 98) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 96) (($ (-319 (-706))) 52) (($ (-319 (-704))) 72) (($ (-319 (-699))) 85) (($ (-297 (-319 (-706)))) 67) (($ (-297 (-319 (-704)))) 80) (($ (-297 (-319 (-699)))) 93) (($ (-319 (-569))) 104) (($ (-319 (-383))) 117) (($ (-319 (-170 (-383)))) 130) (($ (-297 (-319 (-569)))) 112) (($ (-297 (-319 (-383)))) 125) (($ (-297 (-319 (-170 (-383))))) 138)))
-(((-403 |#1| |#2| |#3| |#4|) (-13 (-400) (-10 -8 (-15 -3793 ($ (-333))) (-15 -3793 ($ (-649 (-333)))) (-15 -3793 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))) (-15 -3793 ($ (-319 (-706)))) (-15 -3793 ($ (-319 (-704)))) (-15 -3793 ($ (-319 (-699)))) (-15 -3793 ($ (-297 (-319 (-706))))) (-15 -3793 ($ (-297 (-319 (-704))))) (-15 -3793 ($ (-297 (-319 (-699))))) (-15 -3793 ($ (-319 (-569)))) (-15 -3793 ($ (-319 (-383)))) (-15 -3793 ($ (-319 (-170 (-383))))) (-15 -3793 ($ (-297 (-319 (-569))))) (-15 -3793 ($ (-297 (-319 (-383))))) (-15 -3793 ($ (-297 (-319 (-170 (-383)))))))) (-1183) (-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-649 (-1183)) (-1187)) (T -403))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-706)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-704)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-699)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-569)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-170 (-383))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-14 *5 (-649 (-1183))) (-14 *6 (-1187)))))
-(-13 (-400) (-10 -8 (-15 -3793 ($ (-333))) (-15 -3793 ($ (-649 (-333)))) (-15 -3793 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))) (-15 -3793 ($ (-319 (-706)))) (-15 -3793 ($ (-319 (-704)))) (-15 -3793 ($ (-319 (-699)))) (-15 -3793 ($ (-297 (-319 (-706))))) (-15 -3793 ($ (-297 (-319 (-704))))) (-15 -3793 ($ (-297 (-319 (-699))))) (-15 -3793 ($ (-319 (-569)))) (-15 -3793 ($ (-319 (-383)))) (-15 -3793 ($ (-319 (-170 (-383))))) (-15 -3793 ($ (-297 (-319 (-569))))) (-15 -3793 ($ (-297 (-319 (-383))))) (-15 -3793 ($ (-297 (-319 (-170 (-383))))))))
-((-2415 (((-112) $ $) NIL)) (-3611 ((|#2| $) 38)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3707 (($ (-412 |#2|)) 95)) (-3511 (((-649 (-2 (|:| -4320 (-776)) (|:| -2167 |#2|) (|:| |num| |#2|))) $) 39)) (-3514 (($ $) 34) (($ $ (-776)) 36)) (-1408 (((-412 |#2|) $) 51)) (-3806 (($ (-649 (-2 (|:| -4320 (-776)) (|:| -2167 |#2|) (|:| |num| |#2|)))) 33)) (-3793 (((-867) $) 132)) (-1441 (((-112) $ $) NIL)) (-2830 (($ $) 35) (($ $ (-776)) 37)) (-2919 (((-112) $ $) NIL)) (-3009 (($ |#2| $) 41)))
-(((-404 |#1| |#2|) (-13 (-1106) (-619 (-412 |#2|)) (-10 -8 (-15 -3009 ($ |#2| $)) (-15 -3707 ($ (-412 |#2|))) (-15 -3611 (|#2| $)) (-15 -3511 ((-649 (-2 (|:| -4320 (-776)) (|:| -2167 |#2|) (|:| |num| |#2|))) $)) (-15 -3806 ($ (-649 (-2 (|:| -4320 (-776)) (|:| -2167 |#2|) (|:| |num| |#2|))))) (-15 -3514 ($ $)) (-15 -2830 ($ $)) (-15 -3514 ($ $ (-776))) (-15 -2830 ($ $ (-776))))) (-13 (-367) (-147)) (-1249 |#1|)) (T -404))
-((-3009 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2)) (-4 *2 (-1249 *3)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-3611 (*1 *2 *1) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-404 *3 *2)) (-4 *3 (-13 (-367) (-147))))) (-3511 (*1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *2 (-649 (-2 (|:| -4320 (-776)) (|:| -2167 *4) (|:| |num| *4)))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -4320 (-776)) (|:| -2167 *4) (|:| |num| *4)))) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-3514 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1249 *2)))) (-2830 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1249 *2)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))))
-(-13 (-1106) (-619 (-412 |#2|)) (-10 -8 (-15 -3009 ($ |#2| $)) (-15 -3707 ($ (-412 |#2|))) (-15 -3611 (|#2| $)) (-15 -3511 ((-649 (-2 (|:| -4320 (-776)) (|:| -2167 |#2|) (|:| |num| |#2|))) $)) (-15 -3806 ($ (-649 (-2 (|:| -4320 (-776)) (|:| -2167 |#2|) (|:| |num| |#2|))))) (-15 -3514 ($ $)) (-15 -2830 ($ $)) (-15 -3514 ($ $ (-776))) (-15 -2830 ($ $ (-776)))))
-((-2415 (((-112) $ $) 9 (-2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 16 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 15 (|has| |#1| (-892 (-569))))) (-1550 (((-1165) $) 13 (-2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3545 (((-1126) $) 12 (-2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3793 (((-867) $) 11 (-2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-1441 (((-112) $ $) 14 (-2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-2919 (((-112) $ $) 10 (-2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))))
-(((-405 |#1|) (-140) (-1223)) (T -405))
-NIL
-(-13 (-1223) (-10 -7 (IF (|has| |t#1| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|)))
-(((-102) -2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-618 (-867)) -2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-1106) -2774 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-1223) . T))
-((-2501 (($ $) 10) (($ $ (-776)) 12)))
-(((-406 |#1|) (-10 -8 (-15 -2501 (|#1| |#1| (-776))) (-15 -2501 (|#1| |#1|))) (-407)) (T -406))
-NIL
-(-10 -8 (-15 -2501 (|#1| |#1| (-776))) (-15 -2501 (|#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-1680 (((-112) $ $) 65)) (-4188 (($) 18 T CONST)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-2501 (($ $) 87) (($ $ (-776)) 86)) (-4073 (((-112) $) 79)) (-3110 (((-838 (-927)) $) 89)) (-2623 (((-112) $) 35)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-2601 (((-3 (-776) "failed") $ $) 88)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-4030 (((-3 $ "failed") $) 90)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 73)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-401)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-401)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))))
+(-13 (-400) (-10 -8 (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3150 ($ (-319 (-383)))) (-15 -4381 ((-3 $ "failed") (-319 (-383)))) (-15 -3150 ($ (-319 (-569)))) (-15 -4381 ((-3 $ "failed") (-319 (-569)))) (-15 -3150 ($ (-958 (-383)))) (-15 -4381 ((-3 $ "failed") (-958 (-383)))) (-15 -3150 ($ (-958 (-569)))) (-15 -4381 ((-3 $ "failed") (-958 (-569)))) (-15 -3150 ($ (-412 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3150 ($ (-412 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-569)))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1225) . T))
+((-4425 (((-649 (-1167)) (-649 (-1167))) 9)) (-3362 (((-1280) (-393)) 26)) (-2802 (((-1112) (-1185) (-649 (-1185)) (-1188) (-649 (-1185))) 59) (((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)) (-1185)) 34) (((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185))) 33)))
+(((-402) (-10 -7 (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)))) (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)) (-1185))) (-15 -2802 ((-1112) (-1185) (-649 (-1185)) (-1188) (-649 (-1185)))) (-15 -3362 ((-1280) (-393))) (-15 -4425 ((-649 (-1167)) (-649 (-1167)))))) (T -402))
+((-4425 (*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-402)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-402)))) (-2802 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-649 (-1185))) (-5 *5 (-1188)) (-5 *3 (-1185)) (-5 *2 (-1112)) (-5 *1 (-402)))) (-2802 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185))))) (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112)) (-5 *1 (-402)))) (-2802 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185))))) (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112)) (-5 *1 (-402)))))
+(-10 -7 (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)))) (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)) (-1185))) (-15 -2802 ((-1112) (-1185) (-649 (-1185)) (-1188) (-649 (-1185)))) (-15 -3362 ((-1280) (-393))) (-15 -4425 ((-649 (-1167)) (-649 (-1167)))))
+((-3362 (((-1280) $) 35)) (-3796 (((-867) $) 97) (($ (-333)) 99) (($ (-649 (-333))) 98) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 96) (($ (-319 (-706))) 52) (($ (-319 (-704))) 72) (($ (-319 (-699))) 85) (($ (-297 (-319 (-706)))) 67) (($ (-297 (-319 (-704)))) 80) (($ (-297 (-319 (-699)))) 93) (($ (-319 (-569))) 104) (($ (-319 (-383))) 117) (($ (-319 (-170 (-383)))) 130) (($ (-297 (-319 (-569)))) 112) (($ (-297 (-319 (-383)))) 125) (($ (-297 (-319 (-170 (-383))))) 138)))
+(((-403 |#1| |#2| |#3| |#4|) (-13 (-400) (-10 -8 (-15 -3796 ($ (-333))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3796 ($ (-319 (-706)))) (-15 -3796 ($ (-319 (-704)))) (-15 -3796 ($ (-319 (-699)))) (-15 -3796 ($ (-297 (-319 (-706))))) (-15 -3796 ($ (-297 (-319 (-704))))) (-15 -3796 ($ (-297 (-319 (-699))))) (-15 -3796 ($ (-319 (-569)))) (-15 -3796 ($ (-319 (-383)))) (-15 -3796 ($ (-319 (-170 (-383))))) (-15 -3796 ($ (-297 (-319 (-569))))) (-15 -3796 ($ (-297 (-319 (-383))))) (-15 -3796 ($ (-297 (-319 (-170 (-383)))))))) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-1189)) (T -403))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-706)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-704)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-699)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-569)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-170 (-383))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))))
+(-13 (-400) (-10 -8 (-15 -3796 ($ (-333))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3796 ($ (-319 (-706)))) (-15 -3796 ($ (-319 (-704)))) (-15 -3796 ($ (-319 (-699)))) (-15 -3796 ($ (-297 (-319 (-706))))) (-15 -3796 ($ (-297 (-319 (-704))))) (-15 -3796 ($ (-297 (-319 (-699))))) (-15 -3796 ($ (-319 (-569)))) (-15 -3796 ($ (-319 (-383)))) (-15 -3796 ($ (-319 (-170 (-383))))) (-15 -3796 ($ (-297 (-319 (-569))))) (-15 -3796 ($ (-297 (-319 (-383))))) (-15 -3796 ($ (-297 (-319 (-170 (-383))))))))
+((-2417 (((-112) $ $) NIL)) (-2482 ((|#2| $) 38)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2233 (($ (-412 |#2|)) 95)) (-4079 (((-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))) $) 39)) (-3517 (($ $) 34) (($ $ (-776)) 36)) (-1410 (((-412 |#2|) $) 51)) (-3809 (($ (-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|)))) 33)) (-3796 (((-867) $) 132)) (-1520 (((-112) $ $) NIL)) (-2832 (($ $) 35) (($ $ (-776)) 37)) (-2920 (((-112) $ $) NIL)) (-3012 (($ |#2| $) 41)))
+(((-404 |#1| |#2|) (-13 (-1108) (-619 (-412 |#2|)) (-10 -8 (-15 -3012 ($ |#2| $)) (-15 -2233 ($ (-412 |#2|))) (-15 -2482 (|#2| $)) (-15 -4079 ((-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))))) (-15 -3517 ($ $)) (-15 -2832 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -2832 ($ $ (-776))))) (-13 (-367) (-147)) (-1251 |#1|)) (T -404))
+((-3012 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2)) (-4 *2 (-1251 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-2482 (*1 *2 *1) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-404 *3 *2)) (-4 *3 (-13 (-367) (-147))))) (-4079 (*1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4)))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4)))) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-3517 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1251 *2)))) (-2832 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1251 *2)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3)))))
+(-13 (-1108) (-619 (-412 |#2|)) (-10 -8 (-15 -3012 ($ |#2| $)) (-15 -2233 ($ (-412 |#2|))) (-15 -2482 (|#2| $)) (-15 -4079 ((-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))))) (-15 -3517 ($ $)) (-15 -2832 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -2832 ($ $ (-776)))))
+((-2417 (((-112) $ $) 9 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 16 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 15 (|has| |#1| (-892 (-569))))) (-3435 (((-1167) $) 13 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3547 (((-1128) $) 12 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3796 (((-867) $) 11 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-1520 (((-112) $ $) 14 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-2920 (((-112) $ $) 10 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))))
+(((-405 |#1|) (-140) (-1225)) (T -405))
+NIL
+(-13 (-1225) (-10 -7 (IF (|has| |t#1| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|)))
+(((-102) -2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-618 (-867)) -2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-1108) -2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-1225) . T))
+((-3701 (($ $) 10) (($ $ (-776)) 12)))
+(((-406 |#1|) (-10 -8 (-15 -3701 (|#1| |#1| (-776))) (-15 -3701 (|#1| |#1|))) (-407)) (T -406))
+NIL
+(-10 -8 (-15 -3701 (|#1| |#1| (-776))) (-15 -3701 (|#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-3701 (($ $) 87) (($ $ (-776)) 86)) (-1473 (((-112) $) 79)) (-1466 (((-838 (-927)) $) 89)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-3 (-776) "failed") $ $) 88)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2239 (((-3 $ "failed") $) 90)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-407) (-140)) (T -407))
-((-3110 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927))))) (-2601 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))) (-2501 (*1 *1 *1) (-4 *1 (-407))) (-2501 (*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776)))))
-(-13 (-367) (-145) (-10 -8 (-15 -3110 ((-838 (-927)) $)) (-15 -2601 ((-3 (-776) "failed") $ $)) (-15 -2501 ($ $)) (-15 -2501 ($ $ (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
-((-2555 (($ (-569) (-569)) 11) (($ (-569) (-569) (-927)) NIL)) (-3380 (((-927)) 19) (((-927) (-927)) NIL)))
-(((-408 |#1|) (-10 -8 (-15 -3380 ((-927) (-927))) (-15 -3380 ((-927))) (-15 -2555 (|#1| (-569) (-569) (-927))) (-15 -2555 (|#1| (-569) (-569)))) (-409)) (T -408))
-((-3380 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))))
-(-10 -8 (-15 -3380 ((-927) (-927))) (-15 -3380 ((-927))) (-15 -2555 (|#1| (-569) (-569) (-927))) (-15 -2555 (|#1| (-569) (-569))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3673 (((-569) $) 97)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-3008 (($ $) 95)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-3807 (($ $) 105)) (-1680 (((-112) $ $) 65)) (-2552 (((-569) $) 122)) (-4188 (($) 18 T CONST)) (-3434 (($ $) 94)) (-4378 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3148 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-4073 (((-112) $) 79)) (-3497 (((-927)) 138) (((-927) (-927)) 135 (|has| $ (-6 -4435)))) (-4237 (((-112) $) 120)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-3110 (((-569) $) 144)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 104)) (-2707 (($ $) 100)) (-4327 (((-112) $) 121)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3377 (($ $ $) 119) (($) 132 (-12 (-1745 (|has| $ (-6 -4435))) (-1745 (|has| $ (-6 -4427)))))) (-3969 (($ $ $) 118) (($) 131 (-12 (-1745 (|has| $ (-6 -4435))) (-1745 (|has| $ (-6 -4427)))))) (-3031 (((-569) $) 141)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-2815 (((-927) (-569)) 134 (|has| $ (-6 -4435)))) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3555 (($ $) 96)) (-2478 (($ $) 98)) (-2555 (($ (-569) (-569)) 146) (($ (-569) (-569) (-927)) 145)) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4320 (((-569) $) 142)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-3380 (((-927)) 139) (((-927) (-927)) 136 (|has| $ (-6 -4435)))) (-2713 (((-927) (-569)) 133 (|has| $ (-6 -4435)))) (-1408 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-3302 (((-776)) 32 T CONST)) (-2586 (($ $) 99)) (-2916 (((-927)) 140) (((-927) (-927)) 137 (|has| $ (-6 -4435)))) (-1441 (((-112) $ $) 9)) (-4360 (((-927)) 143)) (-2985 (((-112) $ $) 45)) (-3070 (($ $) 123)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2976 (((-112) $ $) 116)) (-2954 (((-112) $ $) 115)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 117)) (-2942 (((-112) $ $) 114)) (-3032 (($ $ $) 73)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+((-1466 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927))))) (-2166 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))) (-3701 (*1 *1 *1) (-4 *1 (-407))) (-3701 (*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776)))))
+(-13 (-367) (-145) (-10 -8 (-15 -1466 ((-838 (-927)) $)) (-15 -2166 ((-3 (-776) "failed") $ $)) (-15 -3701 ($ $)) (-15 -3701 ($ $ (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T))
+((-2557 (($ (-569) (-569)) 11) (($ (-569) (-569) (-927)) NIL)) (-2171 (((-927)) 19) (((-927) (-927)) NIL)))
+(((-408 |#1|) (-10 -8 (-15 -2171 ((-927) (-927))) (-15 -2171 ((-927))) (-15 -2557 (|#1| (-569) (-569) (-927))) (-15 -2557 (|#1| (-569) (-569)))) (-409)) (T -408))
+((-2171 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))))
+(-10 -8 (-15 -2171 ((-927) (-927))) (-15 -2171 ((-927))) (-15 -2557 (|#1| (-569) (-569) (-927))) (-15 -2557 (|#1| (-569) (-569))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 (((-569) $) 97)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2917 (($ $) 95)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 105)) (-2227 (((-112) $ $) 65)) (-2919 (((-569) $) 122)) (-4427 (($) 18 T CONST)) (-1482 (($ $) 94)) (-4381 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3150 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3500 (((-927)) 138) (((-927) (-927)) 135 (|has| $ (-6 -4438)))) (-3712 (((-112) $) 120)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-1466 (((-569) $) 144)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 104)) (-3829 (($ $) 100)) (-2051 (((-112) $) 121)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3380 (($ $ $) 119) (($) 132 (-12 (-1749 (|has| $ (-6 -4438))) (-1749 (|has| $ (-6 -4430)))))) (-2839 (($ $ $) 118) (($) 131 (-12 (-1749 (|has| $ (-6 -4438))) (-1749 (|has| $ (-6 -4430)))))) (-3034 (((-569) $) 141)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3630 (((-927) (-569)) 134 (|has| $ (-6 -4438)))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3231 (($ $) 96)) (-3465 (($ $) 98)) (-2557 (($ (-569) (-569)) 146) (($ (-569) (-569) (-927)) 145)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1993 (((-569) $) 142)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2171 (((-927)) 139) (((-927) (-927)) 136 (|has| $ (-6 -4438)))) (-3884 (((-927) (-569)) 133 (|has| $ (-6 -4438)))) (-1410 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-2721 (((-776)) 32 T CONST)) (-2040 (($ $) 99)) (-3251 (((-927)) 140) (((-927) (-927)) 137 (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) 9)) (-4363 (((-927)) 143)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 123)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 116)) (-2956 (((-112) $ $) 115)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 117)) (-2944 (((-112) $ $) 114)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
(((-409) (-140)) (T -409))
-((-2555 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409)))) (-2555 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-4360 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-2916 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-3380 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-3497 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4435)) (-4 *1 (-409)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4435)) (-4 *1 (-409)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4435)) (-4 *1 (-409)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4435)) (-4 *1 (-409)) (-5 *2 (-927)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4435)) (-4 *1 (-409)) (-5 *2 (-927)))) (-3377 (*1 *1) (-12 (-4 *1 (-409)) (-1745 (|has| *1 (-6 -4435))) (-1745 (|has| *1 (-6 -4427))))) (-3969 (*1 *1) (-12 (-4 *1 (-409)) (-1745 (|has| *1 (-6 -4435))) (-1745 (|has| *1 (-6 -4427))))))
-(-13 (-1066) (-10 -8 (-6 -3088) (-15 -2555 ($ (-569) (-569))) (-15 -2555 ($ (-569) (-569) (-927))) (-15 -3110 ((-569) $)) (-15 -4360 ((-927))) (-15 -4320 ((-569) $)) (-15 -3031 ((-569) $)) (-15 -2916 ((-927))) (-15 -3380 ((-927))) (-15 -3497 ((-927))) (IF (|has| $ (-6 -4435)) (PROGN (-15 -2916 ((-927) (-927))) (-15 -3380 ((-927) (-927))) (-15 -3497 ((-927) (-927))) (-15 -2815 ((-927) (-569))) (-15 -2713 ((-927) (-569)))) |%noBranch|) (IF (|has| $ (-6 -4427)) |%noBranch| (IF (|has| $ (-6 -4435)) |%noBranch| (PROGN (-15 -3377 ($)) (-15 -3969 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1008) . T) ((-1028) . T) ((-1066) . T) ((-1044 (-412 (-569))) . T) ((-1044 (-569)) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
-((-1344 (((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)) 20)))
-(((-410 |#1| |#2|) (-10 -7 (-15 -1344 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)))) (-561) (-561)) (T -410))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-423 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-423 *6)) (-5 *1 (-410 *5 *6)))))
-(-10 -7 (-15 -1344 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|))))
-((-1344 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 13)))
-(((-411 |#1| |#2|) (-10 -7 (-15 -1344 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-561) (-561)) (T -411))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-412 *6)) (-5 *1 (-411 *5 *6)))))
-(-10 -7 (-15 -1344 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 13)) (-3673 ((|#1| $) 21 (|has| |#1| (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| |#1| (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 17) (((-3 (-1183) "failed") $) NIL (|has| |#1| (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) 72 (|has| |#1| (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569))))) (-3148 ((|#1| $) 15) (((-1183) $) NIL (|has| |#1| (-1044 (-1183)))) (((-412 (-569)) $) 69 (|has| |#1| (-1044 (-569)))) (((-569) $) NIL (|has| |#1| (-1044 (-569))))) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) 51)) (-3403 (($) NIL (|has| |#1| (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| |#1| (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-2623 (((-112) $) 57)) (-3700 (($ $) NIL)) (-4396 ((|#1| $) 73)) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-4327 (((-112) $) NIL (|has| |#1| (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| |#1| (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 100)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| |#1| (-310)))) (-2478 ((|#1| $) 28 (|has| |#1| (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) 148 (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 141 (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1578 (((-776) $) NIL)) (-1866 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1528 (($ $) NIL)) (-4409 ((|#1| $) 75)) (-1408 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#1| (-619 (-541)))) (((-383) $) NIL (|has| |#1| (-1028))) (((-226) $) NIL (|has| |#1| (-1028)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 10) (($ (-1183)) NIL (|has| |#1| (-1044 (-1183))))) (-4030 (((-3 $ "failed") $) 102 (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) 103 T CONST)) (-2586 ((|#1| $) 26 (|has| |#1| (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| |#1| (-825)))) (-1803 (($) 22 T CONST)) (-1813 (($) 8 T CONST)) (-4195 (((-1165) $) 44 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1165) $ (-112)) 45 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1278) (-827) $) 46 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1278) (-827) $ (-112)) 47 (-12 (|has| |#1| (-550)) (|has| |#1| (-833))))) (-2830 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) 66)) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) 24 (|has| |#1| (-855)))) (-3032 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3021 (($ $) 25) (($ $ $) 56)) (-3009 (($ $ $) 54)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 135)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 61) (($ $ $) 58) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-412 |#1|) (-13 (-998 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4431)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4442)) (-6 -4431) |%noBranch|) |%noBranch|) |%noBranch|))) (-561)) (T -412))
-NIL
-(-13 (-998 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4431)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4442)) (-6 -4431) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-1739 (((-694 |#2|) (-1273 $)) NIL) (((-694 |#2|)) 18)) (-3390 (($ (-1273 |#2|) (-1273 $)) NIL) (($ (-1273 |#2|)) 24)) (-1635 (((-694 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) $) 40)) (-2091 ((|#3| $) 73)) (-4304 ((|#2| (-1273 $)) NIL) ((|#2|) 20)) (-2960 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $) 22) (((-694 |#2|) (-1273 $)) 38)) (-1408 (((-1273 |#2|) $) 11) (($ (-1273 |#2|)) 13)) (-3798 ((|#3| $) 55)))
-(((-413 |#1| |#2| |#3|) (-10 -8 (-15 -1635 ((-694 |#2|) |#1|)) (-15 -4304 (|#2|)) (-15 -1739 ((-694 |#2|))) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -3390 (|#1| (-1273 |#2|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -2091 (|#3| |#1|)) (-15 -3798 (|#3| |#1|)) (-15 -1739 ((-694 |#2|) (-1273 |#1|))) (-15 -4304 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -1635 ((-694 |#2|) |#1| (-1273 |#1|)))) (-414 |#2| |#3|) (-173) (-1249 |#2|)) (T -413))
-((-1739 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5)))) (-4304 (*1 *2) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4)) (-4 *3 (-414 *2 *4)))))
-(-10 -8 (-15 -1635 ((-694 |#2|) |#1|)) (-15 -4304 (|#2|)) (-15 -1739 ((-694 |#2|))) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -3390 (|#1| (-1273 |#2|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -2091 (|#3| |#1|)) (-15 -3798 (|#3| |#1|)) (-15 -1739 ((-694 |#2|) (-1273 |#1|))) (-15 -4304 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -1635 ((-694 |#2|) |#1| (-1273 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1739 (((-694 |#1|) (-1273 $)) 53) (((-694 |#1|)) 68)) (-3136 ((|#1| $) 59)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-3390 (($ (-1273 |#1|) (-1273 $)) 55) (($ (-1273 |#1|)) 71)) (-1635 (((-694 |#1|) $ (-1273 $)) 60) (((-694 |#1|) $) 66)) (-2888 (((-3 $ "failed") $) 37)) (-3975 (((-927)) 61)) (-2623 (((-112) $) 35)) (-2707 ((|#1| $) 58)) (-2091 ((|#2| $) 51 (|has| |#1| (-367)))) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-4304 ((|#1| (-1273 $)) 54) ((|#1|) 67)) (-2960 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56) (((-1273 |#1|) $) 73) (((-694 |#1|) (-1273 $)) 72)) (-1408 (((-1273 |#1|) $) 70) (($ (-1273 |#1|)) 69)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-4030 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3798 ((|#2| $) 52)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1903 (((-1273 $)) 74)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-414 |#1| |#2|) (-140) (-173) (-1249 |t#1|)) (T -414))
-((-1903 (*1 *2) (-12 (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *1)) (-4 *1 (-414 *3 *4)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *3)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1249 *3)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *3)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1249 *3)))) (-1739 (*1 *2) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-694 *3)))) (-4304 (*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-694 *3)))))
-(-13 (-374 |t#1| |t#2|) (-10 -8 (-15 -1903 ((-1273 $))) (-15 -2960 ((-1273 |t#1|) $)) (-15 -2960 ((-694 |t#1|) (-1273 $))) (-15 -3390 ($ (-1273 |t#1|))) (-15 -1408 ((-1273 |t#1|) $)) (-15 -1408 ($ (-1273 |t#1|))) (-15 -1739 ((-694 |t#1|))) (-15 -4304 (|t#1|)) (-15 -1635 ((-694 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-374 |#1| |#2|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) 27) (((-3 (-569) "failed") $) 19)) (-3148 ((|#2| $) NIL) (((-412 (-569)) $) 24) (((-569) $) 14)) (-3793 (($ |#2|) NIL) (($ (-412 (-569))) 22) (($ (-569)) 11)))
-(((-415 |#1| |#2|) (-10 -8 (-15 -3793 (|#1| (-569))) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|))) (-416 |#2|) (-1223)) (T -415))
-NIL
-(-10 -8 (-15 -3793 (|#1| (-569))) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|)))
-((-4378 (((-3 |#1| "failed") $) 9) (((-3 (-412 (-569)) "failed") $) 16 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 13 (|has| |#1| (-1044 (-569))))) (-3148 ((|#1| $) 8) (((-412 (-569)) $) 17 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 14 (|has| |#1| (-1044 (-569))))) (-3793 (($ |#1|) 6) (($ (-412 (-569))) 15 (|has| |#1| (-1044 (-412 (-569))))) (($ (-569)) 12 (|has| |#1| (-1044 (-569))))))
-(((-416 |#1|) (-140) (-1223)) (T -416))
-NIL
-(-13 (-1044 |t#1|) (-10 -7 (IF (|has| |t#1| (-1044 (-569))) (-6 (-1044 (-569))) |%noBranch|) (IF (|has| |t#1| (-1044 (-412 (-569)))) (-6 (-1044 (-412 (-569)))) |%noBranch|)))
-(((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 #1=(-569)) |has| |#1| (-1044 (-569))) ((-621 |#1|) . T) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 #1#) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T))
-((-1344 (((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)) 35)))
-(((-417 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1344 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)))) (-310) (-998 |#1|) (-1249 |#2|) (-13 (-414 |#2| |#3|) (-1044 |#2|)) (-310) (-998 |#5|) (-1249 |#6|) (-13 (-414 |#6| |#7|) (-1044 |#6|))) (T -417))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310)) (-4 *6 (-998 *5)) (-4 *7 (-1249 *6)) (-4 *8 (-13 (-414 *6 *7) (-1044 *6))) (-4 *9 (-310)) (-4 *10 (-998 *9)) (-4 *11 (-1249 *10)) (-5 *2 (-418 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-414 *10 *11) (-1044 *10))))))
-(-10 -7 (-15 -1344 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|))))
-((-2415 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-1840 ((|#4| (-776) (-1273 |#4|)) 58)) (-2623 (((-112) $) NIL)) (-4396 (((-1273 |#4|) $) 15)) (-2707 ((|#2| $) 53)) (-3838 (($ $) 161)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 106)) (-3552 (($ (-1273 |#4|)) 105)) (-3545 (((-1126) $) NIL)) (-4409 ((|#1| $) 16)) (-3580 (($ $ $) NIL)) (-2292 (($ $ $) NIL)) (-3793 (((-867) $) 151)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 |#4|) $) 144)) (-1813 (($) 11 T CONST)) (-2919 (((-112) $ $) 39)) (-3032 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 137)) (* (($ $ $) 133)))
-(((-418 |#1| |#2| |#3| |#4|) (-13 (-478) (-10 -8 (-15 -3552 ($ (-1273 |#4|))) (-15 -1903 ((-1273 |#4|) $)) (-15 -2707 (|#2| $)) (-15 -4396 ((-1273 |#4|) $)) (-15 -4409 (|#1| $)) (-15 -3838 ($ $)) (-15 -1840 (|#4| (-776) (-1273 |#4|))))) (-310) (-998 |#1|) (-1249 |#2|) (-13 (-414 |#2| |#3|) (-1044 |#2|))) (T -418))
-((-3552 (*1 *1 *2) (-12 (-5 *2 (-1273 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4))) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *3 (-310)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1903 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4))))) (-2707 (*1 *2 *1) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3)) (-5 *1 (-418 *3 *2 *4 *5)) (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1044 *2))))) (-4396 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4))))) (-4409 (*1 *2 *1) (-12 (-4 *3 (-998 *2)) (-4 *4 (-1249 *3)) (-4 *2 (-310)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3))))) (-3838 (*1 *1 *1) (-12 (-4 *2 (-310)) (-4 *3 (-998 *2)) (-4 *4 (-1249 *3)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3))))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1273 *2)) (-4 *5 (-310)) (-4 *6 (-998 *5)) (-4 *2 (-13 (-414 *6 *7) (-1044 *6))) (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1249 *6)))))
-(-13 (-478) (-10 -8 (-15 -3552 ($ (-1273 |#4|))) (-15 -1903 ((-1273 |#4|) $)) (-15 -2707 (|#2| $)) (-15 -4396 ((-1273 |#4|) $)) (-15 -4409 (|#1| $)) (-15 -3838 ($ $)) (-15 -1840 (|#4| (-776) (-1273 |#4|)))))
-((-2415 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-2707 ((|#2| $) 71)) (-3932 (($ (-1273 |#4|)) 27) (($ (-418 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1044 |#2|)))) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 37)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 |#4|) $) 28)) (-1813 (($) 25 T CONST)) (-2919 (((-112) $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ $ $) 82)))
-(((-419 |#1| |#2| |#3| |#4| |#5|) (-13 (-731) (-10 -8 (-15 -1903 ((-1273 |#4|) $)) (-15 -2707 (|#2| $)) (-15 -3932 ($ (-1273 |#4|))) (IF (|has| |#4| (-1044 |#2|)) (-15 -3932 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-310) (-998 |#1|) (-1249 |#2|) (-414 |#2| |#3|) (-1273 |#4|)) (T -419))
-((-1903 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-4 *6 (-414 *4 *5)) (-14 *7 *2))) (-2707 (*1 *2 *1) (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3)) (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4)) (-14 *6 (-1273 *5)))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-1273 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3932 (*1 *1 *2) (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1044 *4)) (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *6 (-414 *4 *5)) (-14 *7 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)))))
-(-13 (-731) (-10 -8 (-15 -1903 ((-1273 |#4|) $)) (-15 -2707 (|#2| $)) (-15 -3932 ($ (-1273 |#4|))) (IF (|has| |#4| (-1044 |#2|)) (-15 -3932 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-1344 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#3| (-1 |#4| |#2|) |#1|))) (-422 |#2|) (-173) (-422 |#4|) (-173)) (T -420))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5)))))
-(-10 -7 (-15 -1344 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1934 (((-3 $ "failed")) 99)) (-2870 (((-1273 (-694 |#2|)) (-1273 $)) NIL) (((-1273 (-694 |#2|))) 104)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) 97)) (-1856 (((-3 $ "failed")) 96)) (-4207 (((-694 |#2|) (-1273 $)) NIL) (((-694 |#2|)) 115)) (-4023 (((-694 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) $) 123)) (-2788 (((-1179 (-958 |#2|))) 65)) (-3161 ((|#2| (-1273 $)) NIL) ((|#2|) 119)) (-3390 (($ (-1273 |#2|) (-1273 $)) NIL) (($ (-1273 |#2|)) 125)) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) 95)) (-1949 (((-3 $ "failed")) 87)) (-4298 (((-694 |#2|) (-1273 $)) NIL) (((-694 |#2|)) 113)) (-4109 (((-694 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) $) 121)) (-2030 (((-1179 (-958 |#2|))) 64)) (-3266 ((|#2| (-1273 $)) NIL) ((|#2|) 117)) (-2960 (((-1273 |#2|) $ (-1273 $)) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $) 124) (((-694 |#2|) (-1273 $)) 133)) (-1408 (((-1273 |#2|) $) 109) (($ (-1273 |#2|)) 111)) (-3146 (((-649 (-958 |#2|)) (-1273 $)) NIL) (((-649 (-958 |#2|))) 107)) (-3448 (($ (-694 |#2|) $) 103)))
-(((-421 |#1| |#2|) (-10 -8 (-15 -3448 (|#1| (-694 |#2|) |#1|)) (-15 -2788 ((-1179 (-958 |#2|)))) (-15 -2030 ((-1179 (-958 |#2|)))) (-15 -4023 ((-694 |#2|) |#1|)) (-15 -4109 ((-694 |#2|) |#1|)) (-15 -4207 ((-694 |#2|))) (-15 -4298 ((-694 |#2|))) (-15 -3161 (|#2|)) (-15 -3266 (|#2|)) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -3390 (|#1| (-1273 |#2|))) (-15 -3146 ((-649 (-958 |#2|)))) (-15 -2870 ((-1273 (-694 |#2|)))) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -1934 ((-3 |#1| "failed"))) (-15 -1856 ((-3 |#1| "failed"))) (-15 -1949 ((-3 |#1| "failed"))) (-15 -2225 ((-3 (-2 (|:| |particular| |#1|) (|:| -1903 (-649 |#1|))) "failed"))) (-15 -2321 ((-3 (-2 (|:| |particular| |#1|) (|:| -1903 (-649 |#1|))) "failed"))) (-15 -4207 ((-694 |#2|) (-1273 |#1|))) (-15 -4298 ((-694 |#2|) (-1273 |#1|))) (-15 -3161 (|#2| (-1273 |#1|))) (-15 -3266 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -4023 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -4109 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2870 ((-1273 (-694 |#2|)) (-1273 |#1|))) (-15 -3146 ((-649 (-958 |#2|)) (-1273 |#1|)))) (-422 |#2|) (-173)) (T -421))
-((-2870 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3146 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3266 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-3161 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-4298 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-4207 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-2030 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-2788 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))))
-(-10 -8 (-15 -3448 (|#1| (-694 |#2|) |#1|)) (-15 -2788 ((-1179 (-958 |#2|)))) (-15 -2030 ((-1179 (-958 |#2|)))) (-15 -4023 ((-694 |#2|) |#1|)) (-15 -4109 ((-694 |#2|) |#1|)) (-15 -4207 ((-694 |#2|))) (-15 -4298 ((-694 |#2|))) (-15 -3161 (|#2|)) (-15 -3266 (|#2|)) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -3390 (|#1| (-1273 |#2|))) (-15 -3146 ((-649 (-958 |#2|)))) (-15 -2870 ((-1273 (-694 |#2|)))) (-15 -2960 ((-694 |#2|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1|)) (-15 -1934 ((-3 |#1| "failed"))) (-15 -1856 ((-3 |#1| "failed"))) (-15 -1949 ((-3 |#1| "failed"))) (-15 -2225 ((-3 (-2 (|:| |particular| |#1|) (|:| -1903 (-649 |#1|))) "failed"))) (-15 -2321 ((-3 (-2 (|:| |particular| |#1|) (|:| -1903 (-649 |#1|))) "failed"))) (-15 -4207 ((-694 |#2|) (-1273 |#1|))) (-15 -4298 ((-694 |#2|) (-1273 |#1|))) (-15 -3161 (|#2| (-1273 |#1|))) (-15 -3266 (|#2| (-1273 |#1|))) (-15 -3390 (|#1| (-1273 |#2|) (-1273 |#1|))) (-15 -2960 ((-694 |#2|) (-1273 |#1|) (-1273 |#1|))) (-15 -2960 ((-1273 |#2|) |#1| (-1273 |#1|))) (-15 -4023 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -4109 ((-694 |#2|) |#1| (-1273 |#1|))) (-15 -2870 ((-1273 (-694 |#2|)) (-1273 |#1|))) (-15 -3146 ((-649 (-958 |#2|)) (-1273 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1934 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) 20)) (-2870 (((-1273 (-694 |#1|)) (-1273 $)) 83) (((-1273 (-694 |#1|))) 105)) (-2897 (((-1273 $)) 86)) (-4188 (($) 18 T CONST)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-1856 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-4207 (((-694 |#1|) (-1273 $)) 70) (((-694 |#1|)) 97)) (-2667 ((|#1| $) 79)) (-4023 (((-694 |#1|) $ (-1273 $)) 81) (((-694 |#1|) $) 95)) (-3413 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-2788 (((-1179 (-958 |#1|))) 93 (|has| |#1| (-367)))) (-3727 (($ $ (-927)) 31)) (-2449 ((|#1| $) 77)) (-2024 (((-1179 |#1|) $) 47 (|has| |#1| (-561)))) (-3161 ((|#1| (-1273 $)) 72) ((|#1|) 99)) (-3519 (((-1179 |#1|) $) 68)) (-4051 (((-112)) 62)) (-3390 (($ (-1273 |#1|) (-1273 $)) 74) (($ (-1273 |#1|)) 103)) (-2888 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3975 (((-927)) 85)) (-1816 (((-112)) 59)) (-2760 (($ $ (-927)) 38)) (-1325 (((-112)) 55)) (-2317 (((-112)) 53)) (-1575 (((-112)) 57)) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-1949 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-4298 (((-694 |#1|) (-1273 $)) 71) (((-694 |#1|)) 98)) (-2789 ((|#1| $) 80)) (-4109 (((-694 |#1|) $ (-1273 $)) 82) (((-694 |#1|) $) 96)) (-3508 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-2030 (((-1179 (-958 |#1|))) 94 (|has| |#1| (-367)))) (-3627 (($ $ (-927)) 32)) (-2551 ((|#1| $) 78)) (-2123 (((-1179 |#1|) $) 48 (|has| |#1| (-561)))) (-3266 ((|#1| (-1273 $)) 73) ((|#1|) 100)) (-3635 (((-1179 |#1|) $) 69)) (-4175 (((-112)) 63)) (-1550 (((-1165) $) 10)) (-4342 (((-112)) 54)) (-1452 (((-112)) 56)) (-1699 (((-112)) 58)) (-3545 (((-1126) $) 11)) (-3930 (((-112)) 61)) (-1866 ((|#1| $ (-569)) 106)) (-2960 (((-1273 |#1|) $ (-1273 $)) 76) (((-694 |#1|) (-1273 $) (-1273 $)) 75) (((-1273 |#1|) $) 108) (((-694 |#1|) (-1273 $)) 107)) (-1408 (((-1273 |#1|) $) 102) (($ (-1273 |#1|)) 101)) (-3146 (((-649 (-958 |#1|)) (-1273 $)) 84) (((-649 (-958 |#1|))) 104)) (-2292 (($ $ $) 28)) (-3399 (((-112)) 67)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1903 (((-1273 $)) 109)) (-2220 (((-649 (-1273 |#1|))) 49 (|has| |#1| (-561)))) (-2358 (($ $ $ $) 29)) (-3158 (((-112)) 65)) (-3448 (($ (-694 |#1|) $) 92)) (-2205 (($ $ $) 27)) (-3264 (((-112)) 66)) (-4284 (((-112)) 64)) (-3821 (((-112)) 60)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-2557 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409)))) (-2557 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-4363 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-3034 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-3251 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-2171 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-3500 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409)) (-5 *2 (-927)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409)) (-5 *2 (-927)))) (-3380 (*1 *1) (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438))) (-1749 (|has| *1 (-6 -4430))))) (-2839 (*1 *1) (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438))) (-1749 (|has| *1 (-6 -4430))))))
+(-13 (-1068) (-10 -8 (-6 -3091) (-15 -2557 ($ (-569) (-569))) (-15 -2557 ($ (-569) (-569) (-927))) (-15 -1466 ((-569) $)) (-15 -4363 ((-927))) (-15 -1993 ((-569) $)) (-15 -3034 ((-569) $)) (-15 -3251 ((-927))) (-15 -2171 ((-927))) (-15 -3500 ((-927))) (IF (|has| $ (-6 -4438)) (PROGN (-15 -3251 ((-927) (-927))) (-15 -2171 ((-927) (-927))) (-15 -3500 ((-927) (-927))) (-15 -3630 ((-927) (-569))) (-15 -3884 ((-927) (-569)))) |%noBranch|) (IF (|has| $ (-6 -4430)) |%noBranch| (IF (|has| $ (-6 -4438)) |%noBranch| (PROGN (-15 -3380 ($)) (-15 -2839 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1010) . T) ((-1030) . T) ((-1068) . T) ((-1046 (-412 (-569))) . T) ((-1046 (-569)) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T))
+((-1346 (((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)) 20)))
+(((-410 |#1| |#2|) (-10 -7 (-15 -1346 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)))) (-561) (-561)) (T -410))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-423 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-423 *6)) (-5 *1 (-410 *5 *6)))))
+(-10 -7 (-15 -1346 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|))))
+((-1346 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 13)))
+(((-411 |#1| |#2|) (-10 -7 (-15 -1346 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-561) (-561)) (T -411))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-412 *6)) (-5 *1 (-411 *5 *6)))))
+(-10 -7 (-15 -1346 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 13)) (-1938 ((|#1| $) 21 (|has| |#1| (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| |#1| (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 17) (((-3 (-1185) "failed") $) NIL (|has| |#1| (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) 72 (|has| |#1| (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569))))) (-3150 ((|#1| $) 15) (((-1185) $) NIL (|has| |#1| (-1046 (-1185)))) (((-412 (-569)) $) 69 (|has| |#1| (-1046 (-569)))) (((-569) $) NIL (|has| |#1| (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 51)) (-3406 (($) NIL (|has| |#1| (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| |#1| (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-2349 (((-112) $) 57)) (-2177 (($ $) NIL)) (-4399 ((|#1| $) 73)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-2051 (((-112) $) NIL (|has| |#1| (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 100)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| |#1| (-310)))) (-3465 ((|#1| $) 28 (|has| |#1| (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 148 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 141 (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) NIL)) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3181 (($ $) NIL)) (-4412 ((|#1| $) 75)) (-1410 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#1| (-619 (-541)))) (((-383) $) NIL (|has| |#1| (-1030))) (((-226) $) NIL (|has| |#1| (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 10) (($ (-1185)) NIL (|has| |#1| (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) 102 (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 103 T CONST)) (-2040 ((|#1| $) 26 (|has| |#1| (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| |#1| (-825)))) (-1804 (($) 22 T CONST)) (-1815 (($) 8 T CONST)) (-3266 (((-1167) $) 44 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1167) $ (-112)) 45 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1280) (-827) $) 46 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1280) (-827) $ (-112)) 47 (-12 (|has| |#1| (-550)) (|has| |#1| (-833))))) (-2832 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) 66)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) 24 (|has| |#1| (-855)))) (-3035 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3024 (($ $) 25) (($ $ $) 56)) (-3012 (($ $ $) 54)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 135)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 61) (($ $ $) 58) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-412 |#1|) (-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4434)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4445)) (-6 -4434) |%noBranch|) |%noBranch|) |%noBranch|))) (-561)) (T -412))
+NIL
+(-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4434)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4445)) (-6 -4434) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-1547 (((-694 |#2|) (-1275 $)) NIL) (((-694 |#2|)) 18)) (-2247 (($ (-1275 |#2|) (-1275 $)) NIL) (($ (-1275 |#2|)) 24)) (-1833 (((-694 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) $) 40)) (-3859 ((|#3| $) 73)) (-3059 ((|#2| (-1275 $)) NIL) ((|#2|) 20)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $) 22) (((-694 |#2|) (-1275 $)) 38)) (-1410 (((-1275 |#2|) $) 11) (($ (-1275 |#2|)) 13)) (-1886 ((|#3| $) 55)))
+(((-413 |#1| |#2| |#3|) (-10 -8 (-15 -1833 ((-694 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1547 ((-694 |#2|))) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 (|#3| |#1|)) (-15 -1886 (|#3| |#1|)) (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|)))) (-414 |#2| |#3|) (-173) (-1251 |#2|)) (T -413))
+((-1547 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5)))) (-3059 (*1 *2) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4)) (-4 *3 (-414 *2 *4)))))
+(-10 -8 (-15 -1833 ((-694 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1547 ((-694 |#2|))) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 (|#3| |#1|)) (-15 -1886 (|#3| |#1|)) (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1547 (((-694 |#1|) (-1275 $)) 53) (((-694 |#1|)) 68)) (-3140 ((|#1| $) 59)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55) (($ (-1275 |#1|)) 71)) (-1833 (((-694 |#1|) $ (-1275 $)) 60) (((-694 |#1|) $) 66)) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-927)) 61)) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 58)) (-3859 ((|#2| $) 51 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3059 ((|#1| (-1275 $)) 54) ((|#1|) 67)) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56) (((-1275 |#1|) $) 73) (((-694 |#1|) (-1275 $)) 72)) (-1410 (((-1275 |#1|) $) 70) (($ (-1275 |#1|)) 69)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-2239 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1886 ((|#2| $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-414 |#1| |#2|) (-140) (-173) (-1251 |t#1|)) (T -414))
+((-2403 (*1 *2) (-12 (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *1)) (-4 *1 (-414 *3 *4)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *3)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1251 *3)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *3)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1251 *3)))) (-1547 (*1 *2) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-694 *3)))) (-3059 (*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-694 *3)))))
+(-13 (-374 |t#1| |t#2|) (-10 -8 (-15 -2403 ((-1275 $))) (-15 -2415 ((-1275 |t#1|) $)) (-15 -2415 ((-694 |t#1|) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|))) (-15 -1410 ((-1275 |t#1|) $)) (-15 -1410 ($ (-1275 |t#1|))) (-15 -1547 ((-694 |t#1|))) (-15 -3059 (|t#1|)) (-15 -1833 ((-694 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-374 |#1| |#2|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) 27) (((-3 (-569) "failed") $) 19)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) 24) (((-569) $) 14)) (-3796 (($ |#2|) NIL) (($ (-412 (-569))) 22) (($ (-569)) 11)))
+(((-415 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| (-569))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|))) (-416 |#2|) (-1225)) (T -415))
+NIL
+(-10 -8 (-15 -3796 (|#1| (-569))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)))
+((-4381 (((-3 |#1| "failed") $) 9) (((-3 (-412 (-569)) "failed") $) 16 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 13 (|has| |#1| (-1046 (-569))))) (-3150 ((|#1| $) 8) (((-412 (-569)) $) 17 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 14 (|has| |#1| (-1046 (-569))))) (-3796 (($ |#1|) 6) (($ (-412 (-569))) 15 (|has| |#1| (-1046 (-412 (-569))))) (($ (-569)) 12 (|has| |#1| (-1046 (-569))))))
+(((-416 |#1|) (-140) (-1225)) (T -416))
+NIL
+(-13 (-1046 |t#1|) (-10 -7 (IF (|has| |t#1| (-1046 (-569))) (-6 (-1046 (-569))) |%noBranch|) (IF (|has| |t#1| (-1046 (-412 (-569)))) (-6 (-1046 (-412 (-569)))) |%noBranch|)))
+(((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 #1=(-569)) |has| |#1| (-1046 (-569))) ((-621 |#1|) . T) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 #1#) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T))
+((-1346 (((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)) 35)))
+(((-417 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)))) (-310) (-1000 |#1|) (-1251 |#2|) (-13 (-414 |#2| |#3|) (-1046 |#2|)) (-310) (-1000 |#5|) (-1251 |#6|) (-13 (-414 |#6| |#7|) (-1046 |#6|))) (T -417))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310)) (-4 *6 (-1000 *5)) (-4 *7 (-1251 *6)) (-4 *8 (-13 (-414 *6 *7) (-1046 *6))) (-4 *9 (-310)) (-4 *10 (-1000 *9)) (-4 *11 (-1251 *10)) (-5 *2 (-418 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-414 *10 *11) (-1046 *10))))))
+(-10 -7 (-15 -1346 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|))))
+((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-3066 ((|#4| (-776) (-1275 |#4|)) 58)) (-2349 (((-112) $) NIL)) (-4399 (((-1275 |#4|) $) 15)) (-3829 ((|#2| $) 53)) (-4093 (($ $) 161)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 106)) (-3198 (($ (-1275 |#4|)) 105)) (-3547 (((-1128) $) NIL)) (-4412 ((|#1| $) 16)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 151)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 |#4|) $) 144)) (-1815 (($) 11 T CONST)) (-2920 (((-112) $ $) 39)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 137)) (* (($ $ $) 133)))
+(((-418 |#1| |#2| |#3| |#4|) (-13 (-478) (-10 -8 (-15 -3198 ($ (-1275 |#4|))) (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -4399 ((-1275 |#4|) $)) (-15 -4412 (|#1| $)) (-15 -4093 ($ $)) (-15 -3066 (|#4| (-776) (-1275 |#4|))))) (-310) (-1000 |#1|) (-1251 |#2|) (-13 (-414 |#2| |#3|) (-1046 |#2|))) (T -418))
+((-3198 (*1 *1 *2) (-12 (-5 *2 (-1275 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4))) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *3 (-310)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2403 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4))))) (-3829 (*1 *2 *1) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3)) (-5 *1 (-418 *3 *2 *4 *5)) (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1046 *2))))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4))))) (-4412 (*1 *2 *1) (-12 (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3)) (-4 *2 (-310)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3))))) (-4093 (*1 *1 *1) (-12 (-4 *2 (-310)) (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1275 *2)) (-4 *5 (-310)) (-4 *6 (-1000 *5)) (-4 *2 (-13 (-414 *6 *7) (-1046 *6))) (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1251 *6)))))
+(-13 (-478) (-10 -8 (-15 -3198 ($ (-1275 |#4|))) (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -4399 ((-1275 |#4|) $)) (-15 -4412 (|#1| $)) (-15 -4093 ($ $)) (-15 -3066 (|#4| (-776) (-1275 |#4|)))))
+((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3829 ((|#2| $) 71)) (-3770 (($ (-1275 |#4|)) 27) (($ (-418 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1046 |#2|)))) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 37)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 |#4|) $) 28)) (-1815 (($) 25 T CONST)) (-2920 (((-112) $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ $ $) 82)))
+(((-419 |#1| |#2| |#3| |#4| |#5|) (-13 (-731) (-10 -8 (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -3770 ($ (-1275 |#4|))) (IF (|has| |#4| (-1046 |#2|)) (-15 -3770 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-310) (-1000 |#1|) (-1251 |#2|) (-414 |#2| |#3|) (-1275 |#4|)) (T -419))
+((-2403 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-4 *6 (-414 *4 *5)) (-14 *7 *2))) (-3829 (*1 *2 *1) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3)) (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4)) (-14 *6 (-1275 *5)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-1275 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1046 *4)) (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *6 (-414 *4 *5)) (-14 *7 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)))))
+(-13 (-731) (-10 -8 (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -3770 ($ (-1275 |#4|))) (IF (|has| |#4| (-1046 |#2|)) (-15 -3770 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-1346 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) (-422 |#2|) (-173) (-422 |#4|) (-173)) (T -420))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5)))))
+(-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2736 (((-3 $ "failed")) 99)) (-2901 (((-1275 (-694 |#2|)) (-1275 $)) NIL) (((-1275 (-694 |#2|))) 104)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 97)) (-3207 (((-3 $ "failed")) 96)) (-3400 (((-694 |#2|) (-1275 $)) NIL) (((-694 |#2|)) 115)) (-2183 (((-694 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) $) 123)) (-3319 (((-1181 (-958 |#2|))) 65)) (-3850 ((|#2| (-1275 $)) NIL) ((|#2|) 119)) (-2247 (($ (-1275 |#2|) (-1275 $)) NIL) (($ (-1275 |#2|)) 125)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 95)) (-2904 (((-3 $ "failed")) 87)) (-2999 (((-694 |#2|) (-1275 $)) NIL) (((-694 |#2|)) 113)) (-1866 (((-694 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) $) 121)) (-1308 (((-1181 (-958 |#2|))) 64)) (-3674 ((|#2| (-1275 $)) NIL) ((|#2|) 117)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $) 124) (((-694 |#2|) (-1275 $)) 133)) (-1410 (((-1275 |#2|) $) 109) (($ (-1275 |#2|)) 111)) (-1829 (((-649 (-958 |#2|)) (-1275 $)) NIL) (((-649 (-958 |#2|))) 107)) (-3451 (($ (-694 |#2|) $) 103)))
+(((-421 |#1| |#2|) (-10 -8 (-15 -3451 (|#1| (-694 |#2|) |#1|)) (-15 -3319 ((-1181 (-958 |#2|)))) (-15 -1308 ((-1181 (-958 |#2|)))) (-15 -2183 ((-694 |#2|) |#1|)) (-15 -1866 ((-694 |#2|) |#1|)) (-15 -3400 ((-694 |#2|))) (-15 -2999 ((-694 |#2|))) (-15 -3850 (|#2|)) (-15 -3674 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -1829 ((-649 (-958 |#2|)))) (-15 -2901 ((-1275 (-694 |#2|)))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -2736 ((-3 |#1| "failed"))) (-15 -3207 ((-3 |#1| "failed"))) (-15 -2904 ((-3 |#1| "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -4391 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|))) (-15 -1829 ((-649 (-958 |#2|)) (-1275 |#1|)))) (-422 |#2|) (-173)) (T -421))
+((-2901 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3674 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-3850 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-2999 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3400 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1308 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3319 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))))
+(-10 -8 (-15 -3451 (|#1| (-694 |#2|) |#1|)) (-15 -3319 ((-1181 (-958 |#2|)))) (-15 -1308 ((-1181 (-958 |#2|)))) (-15 -2183 ((-694 |#2|) |#1|)) (-15 -1866 ((-694 |#2|) |#1|)) (-15 -3400 ((-694 |#2|))) (-15 -2999 ((-694 |#2|))) (-15 -3850 (|#2|)) (-15 -3674 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -1829 ((-649 (-958 |#2|)))) (-15 -2901 ((-1275 (-694 |#2|)))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -2736 ((-3 |#1| "failed"))) (-15 -3207 ((-3 |#1| "failed"))) (-15 -2904 ((-3 |#1| "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -4391 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|))) (-15 -1829 ((-649 (-958 |#2|)) (-1275 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2736 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-2901 (((-1275 (-694 |#1|)) (-1275 $)) 83) (((-1275 (-694 |#1|))) 105)) (-3076 (((-1275 $)) 86)) (-4427 (($) 18 T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-3207 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-3400 (((-694 |#1|) (-1275 $)) 70) (((-694 |#1|)) 97)) (-1564 ((|#1| $) 79)) (-2183 (((-694 |#1|) $ (-1275 $)) 81) (((-694 |#1|) $) 95)) (-4379 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-3319 (((-1181 (-958 |#1|))) 93 (|has| |#1| (-367)))) (-2395 (($ $ (-927)) 31)) (-3156 ((|#1| $) 77)) (-4375 (((-1181 |#1|) $) 47 (|has| |#1| (-561)))) (-3850 ((|#1| (-1275 $)) 72) ((|#1|) 99)) (-4136 (((-1181 |#1|) $) 68)) (-2413 (((-112)) 62)) (-2247 (($ (-1275 |#1|) (-1275 $)) 74) (($ (-1275 |#1|)) 103)) (-3086 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3978 (((-927)) 85)) (-4095 (((-112)) 59)) (-4311 (($ $ (-927)) 38)) (-1756 (((-112)) 55)) (-2411 (((-112)) 53)) (-2399 (((-112)) 57)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-2904 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-2999 (((-694 |#1|) (-1275 $)) 71) (((-694 |#1|)) 98)) (-3339 ((|#1| $) 80)) (-1866 (((-694 |#1|) $ (-1275 $)) 82) (((-694 |#1|) $) 96)) (-4059 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-1308 (((-1181 (-958 |#1|))) 94 (|has| |#1| (-367)))) (-2667 (($ $ (-927)) 32)) (-2907 ((|#1| $) 78)) (-4167 (((-1181 |#1|) $) 48 (|has| |#1| (-561)))) (-3674 ((|#1| (-1275 $)) 73) ((|#1|) 100)) (-2761 (((-1181 |#1|) $) 69)) (-4307 (((-112)) 63)) (-3435 (((-1167) $) 10)) (-2189 (((-112)) 54)) (-3703 (((-112)) 56)) (-4324 (((-112)) 58)) (-3547 (((-1128) $) 11)) (-3749 (((-112)) 61)) (-1869 ((|#1| $ (-569)) 106)) (-2415 (((-1275 |#1|) $ (-1275 $)) 76) (((-694 |#1|) (-1275 $) (-1275 $)) 75) (((-1275 |#1|) $) 108) (((-694 |#1|) (-1275 $)) 107)) (-1410 (((-1275 |#1|) $) 102) (($ (-1275 |#1|)) 101)) (-1829 (((-649 (-958 |#1|)) (-1275 $)) 84) (((-649 (-958 |#1|))) 104)) (-2180 (($ $ $) 28)) (-2324 (((-112)) 67)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 109)) (-2643 (((-649 (-1275 |#1|))) 49 (|has| |#1| (-561)))) (-1676 (($ $ $ $) 29)) (-3821 (((-112)) 65)) (-3451 (($ (-694 |#1|) $) 92)) (-2489 (($ $ $) 27)) (-3649 (((-112)) 66)) (-2887 (((-112)) 64)) (-3967 (((-112)) 60)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-422 |#1|) (-140) (-173)) (T -422))
-((-1903 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-422 *3)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-2870 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 (-694 *3))))) (-3146 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3))))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-3266 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-3161 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-4298 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-4207 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-4023 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-2030 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1179 (-958 *3))))) (-2788 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1179 (-958 *3))))) (-3448 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173)))))
-(-13 (-371 |t#1|) (-10 -8 (-15 -1903 ((-1273 $))) (-15 -2960 ((-1273 |t#1|) $)) (-15 -2960 ((-694 |t#1|) (-1273 $))) (-15 -1866 (|t#1| $ (-569))) (-15 -2870 ((-1273 (-694 |t#1|)))) (-15 -3146 ((-649 (-958 |t#1|)))) (-15 -3390 ($ (-1273 |t#1|))) (-15 -1408 ((-1273 |t#1|) $)) (-15 -1408 ($ (-1273 |t#1|))) (-15 -3266 (|t#1|)) (-15 -3161 (|t#1|)) (-15 -4298 ((-694 |t#1|))) (-15 -4207 ((-694 |t#1|))) (-15 -4109 ((-694 |t#1|) $)) (-15 -4023 ((-694 |t#1|) $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -2030 ((-1179 (-958 |t#1|)))) (-15 -2788 ((-1179 (-958 |t#1|))))) |%noBranch|) (-15 -3448 ($ (-694 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-371 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 60)) (-3018 (($ $) 78)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 191)) (-3087 (($ $) NIL)) (-2883 (((-112) $) 48)) (-1934 ((|#1| $) 16)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-1227)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-1227)))) (-2125 (($ |#1| (-569)) 42)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 148)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 74)) (-2888 (((-3 $ "failed") $) 164)) (-1545 (((-3 (-412 (-569)) "failed") $) 84 (|has| |#1| (-550)))) (-1434 (((-112) $) 80 (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) 91 (|has| |#1| (-550)))) (-2212 (($ |#1| (-569)) 44)) (-4073 (((-112) $) 213 (|has| |#1| (-1227)))) (-2623 (((-112) $) 62)) (-4011 (((-776) $) 51)) (-2300 (((-3 "nil" "sqfr" "irred" "prime") $ (-569)) 175)) (-3252 ((|#1| $ (-569)) 174)) (-2387 (((-569) $ (-569)) 173)) (-1531 (($ |#1| (-569)) 41)) (-1344 (($ (-1 |#1| |#1|) $) 183)) (-1826 (($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569))))) 79)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-4418 (($ |#1| (-569)) 43)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 192 (|has| |#1| (-457)))) (-2027 (($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1411 (((-649 (-2 (|:| -3796 |#1|) (|:| -4320 (-569)))) $) 73)) (-2180 (((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $) 12)) (-3796 (((-423 $) $) NIL (|has| |#1| (-1227)))) (-2405 (((-3 $ "failed") $ $) 176)) (-4320 (((-569) $) 167)) (-1378 ((|#1| $) 75)) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 100 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 106 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) $) NIL (|has| |#1| (-519 (-1183) $))) (($ $ (-649 (-1183)) (-649 $)) 107 (|has| |#1| (-519 (-1183) $))) (($ $ (-649 (-297 $))) 103 (|has| |#1| (-312 $))) (($ $ (-297 $)) NIL (|has| |#1| (-312 $))) (($ $ $ $) NIL (|has| |#1| (-312 $))) (($ $ (-649 $) (-649 $)) NIL (|has| |#1| (-312 $)))) (-1866 (($ $ |#1|) 92 (|has| |#1| (-289 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-289 $ $)))) (-3514 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-1408 (((-541) $) 39 (|has| |#1| (-619 (-541)))) (((-383) $) 113 (|has| |#1| (-1028))) (((-226) $) 119 (|has| |#1| (-1028)))) (-3793 (((-867) $) 146) (($ (-569)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569)))))) (-3302 (((-776)) 67 T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) 53 T CONST)) (-1813 (($) 52 T CONST)) (-2830 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2919 (((-112) $ $) 159)) (-3021 (($ $) 161) (($ $ $) NIL)) (-3009 (($ $ $) 180)) (** (($ $ (-927)) NIL) (($ $ (-776)) 125)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-423 |#1|) (-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1378 (|#1| $)) (-15 -4320 ((-569) $)) (-15 -1826 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -2180 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -1531 ($ |#1| (-569))) (-15 -1411 ((-649 (-2 (|:| -3796 |#1|) (|:| -4320 (-569)))) $)) (-15 -4418 ($ |#1| (-569))) (-15 -2387 ((-569) $ (-569))) (-15 -3252 (|#1| $ (-569))) (-15 -2300 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -4011 ((-776) $)) (-15 -2212 ($ |#1| (-569))) (-15 -2125 ($ |#1| (-569))) (-15 -2027 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1934 (|#1| $)) (-15 -3018 ($ $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1028)) (-6 (-1028)) |%noBranch|) (IF (|has| |#1| (-1227)) (-6 (-1227)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1183) $)) (-6 (-519 (-1183) $)) |%noBranch|))) (-561)) (T -423))
-((-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3)))) (-1378 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-1826 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-569))))) (-4 *2 (-561)) (-5 *1 (-423 *2)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-1531 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -3796 *3) (|:| -4320 (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-4418 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2387 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-3252 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *4)) (-4 *4 (-561)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-2212 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2125 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2027 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1934 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-3018 (*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-1545 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))))
-(-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1378 (|#1| $)) (-15 -4320 ((-569) $)) (-15 -1826 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -2180 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -1531 ($ |#1| (-569))) (-15 -1411 ((-649 (-2 (|:| -3796 |#1|) (|:| -4320 (-569)))) $)) (-15 -4418 ($ |#1| (-569))) (-15 -2387 ((-569) $ (-569))) (-15 -3252 (|#1| $ (-569))) (-15 -2300 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -4011 ((-776) $)) (-15 -2212 ($ |#1| (-569))) (-15 -2125 ($ |#1| (-569))) (-15 -2027 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1934 (|#1| $)) (-15 -3018 ($ $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1028)) (-6 (-1028)) |%noBranch|) (IF (|has| |#1| (-1227)) (-6 (-1227)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1183) $)) (-6 (-519 (-1183) $)) |%noBranch|)))
-((-2933 (((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|)) 28)) (-3490 (((-423 |#1|) (-423 |#1|) (-423 |#1|)) 17)))
-(((-424 |#1|) (-10 -7 (-15 -2933 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -3490 ((-423 |#1|) (-423 |#1|) (-423 |#1|)))) (-561)) (T -424))
-((-3490 (*1 *2 *2 *2) (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4)) (-5 *1 (-424 *4)))))
-(-10 -7 (-15 -2933 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -3490 ((-423 |#1|) (-423 |#1|) (-423 |#1|))))
-((-2709 ((|#2| |#2|) 183)) (-3704 (((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112)) 60)))
-(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3704 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112))) (-15 -2709 (|#2| |#2|))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|)) (-1183) |#2|) (T -425))
-((-2709 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1208) (-435 *3))) (-14 *4 (-1183)) (-14 *5 *2))) (-3704 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |%expansion| (-316 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-14 *6 (-1183)) (-14 *7 *3))))
-(-10 -7 (-15 -3704 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112))) (-15 -2709 (|#2| |#2|)))
-((-1344 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|))) (-1055) (-435 |#1|) (-1055) (-435 |#3|)) (T -426))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-435 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-435 *5)))))
-(-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2709 ((|#2| |#2|) 106)) (-3801 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165)) 52)) (-2596 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165)) 170)))
-(((-427 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3801 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2596 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2709 (|#2| |#2|))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|) (-10 -8 (-15 -3793 ($ |#3|)))) (-853) (-13 (-1251 |#2| |#3|) (-367) (-1208) (-10 -8 (-15 -3514 ($ $)) (-15 -2488 ($ $)))) (-989 |#4|) (-1183)) (T -427))
-((-2709 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *2 (-13 (-27) (-1208) (-435 *3) (-10 -8 (-15 -3793 ($ *4))))) (-4 *4 (-853)) (-4 *5 (-13 (-1251 *2 *4) (-367) (-1208) (-10 -8 (-15 -3514 ($ $)) (-15 -2488 ($ $))))) (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-989 *5)) (-14 *7 (-1183)))) (-2596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -3793 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1251 *3 *7) (-367) (-1208) (-10 -8 (-15 -3514 ($ $)) (-15 -2488 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8)) (-14 *10 (-1183)))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -3793 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1251 *3 *7) (-367) (-1208) (-10 -8 (-15 -3514 ($ $)) (-15 -2488 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8)) (-14 *10 (-1183)))))
-(-10 -7 (-15 -3801 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2596 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))) |#2| (-112) (-1165))) (-15 -2709 (|#2| |#2|)))
-((-4085 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3596 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1344 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3596 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4085 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1106) (-430 |#1|) (-1106) (-430 |#3|)) (T -428))
-((-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1106)) (-4 *5 (-1106)) (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6)))) (-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1106)) (-4 *2 (-1106)) (-5 *1 (-428 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-430 *6)) (-5 *1 (-428 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
-(-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3596 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4085 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2813 (($) 52)) (-3966 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2210 (($ $ $) 45)) (-2124 (((-112) $ $) 34)) (-3470 (((-776)) 56)) (-4255 (($ (-649 |#2|)) 23) (($) NIL)) (-3403 (($) 67)) (-1315 (((-112) $ $) 15)) (-3377 ((|#2| $) 78)) (-3969 ((|#2| $) 76)) (-2855 (((-927) $) 71)) (-4333 (($ $ $) 41)) (-2150 (($ (-927)) 61)) (-2298 (($ $ |#2|) NIL) (($ $ $) 44)) (-3558 (((-776) (-1 (-112) |#2|) $) NIL) (((-776) |#2| $) 31)) (-3806 (($ (-649 |#2|)) 27)) (-2923 (($ $) 54)) (-3793 (((-867) $) 39)) (-3036 (((-776) $) 24)) (-3864 (($ (-649 |#2|)) 22) (($) NIL)) (-2919 (((-112) $ $) 19)))
-(((-429 |#1| |#2|) (-10 -8 (-15 -3470 ((-776))) (-15 -2150 (|#1| (-927))) (-15 -2855 ((-927) |#1|)) (-15 -3403 (|#1|)) (-15 -3377 (|#2| |#1|)) (-15 -3969 (|#2| |#1|)) (-15 -2813 (|#1|)) (-15 -2923 (|#1| |#1|)) (-15 -3036 ((-776) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -1315 ((-112) |#1| |#1|)) (-15 -3864 (|#1|)) (-15 -3864 (|#1| (-649 |#2|))) (-15 -4255 (|#1|)) (-15 -4255 (|#1| (-649 |#2|))) (-15 -4333 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1| |#2|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2124 ((-112) |#1| |#1|)) (-15 -3966 (|#1| |#1| |#1|)) (-15 -3966 (|#1| |#1| |#2|)) (-15 -3966 (|#1| |#2| |#1|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|))) (-430 |#2|) (-1106)) (T -429))
-((-3470 (*1 *2) (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
-(-10 -8 (-15 -3470 ((-776))) (-15 -2150 (|#1| (-927))) (-15 -2855 ((-927) |#1|)) (-15 -3403 (|#1|)) (-15 -3377 (|#2| |#1|)) (-15 -3969 (|#2| |#1|)) (-15 -2813 (|#1|)) (-15 -2923 (|#1| |#1|)) (-15 -3036 ((-776) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -1315 ((-112) |#1| |#1|)) (-15 -3864 (|#1|)) (-15 -3864 (|#1| (-649 |#2|))) (-15 -4255 (|#1|)) (-15 -4255 (|#1| (-649 |#2|))) (-15 -4333 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1| |#2|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2124 ((-112) |#1| |#1|)) (-15 -3966 (|#1| |#1| |#1|)) (-15 -3966 (|#1| |#1| |#2|)) (-15 -3966 (|#1| |#2| |#1|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)))
-((-2415 (((-112) $ $) 19)) (-2813 (($) 68 (|has| |#1| (-372)))) (-3966 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2210 (($ $ $) 79)) (-2124 (((-112) $ $) 80)) (-2716 (((-112) $ (-776)) 8)) (-3470 (((-776)) 62 (|has| |#1| (-372)))) (-4255 (($ (-649 |#1|)) 75) (($) 74)) (-4101 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3547 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ |#1| $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4444)))) (-3403 (($) 65 (|has| |#1| (-372)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1315 (((-112) $ $) 71)) (-1689 (((-112) $ (-776)) 9)) (-3377 ((|#1| $) 66 (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3969 ((|#1| $) 67 (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2855 (((-927) $) 64 (|has| |#1| (-372)))) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22)) (-4333 (($ $ $) 76)) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41)) (-2150 (($ (-927)) 63 (|has| |#1| (-372)))) (-3545 (((-1126) $) 21)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-2298 (($ $ |#1|) 78) (($ $ $) 77)) (-1906 (($) 50) (($ (-649 |#1|)) 49)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 51)) (-2923 (($ $) 69 (|has| |#1| (-372)))) (-3793 (((-867) $) 18)) (-3036 (((-776) $) 70)) (-3864 (($ (-649 |#1|)) 73) (($) 72)) (-1441 (((-112) $ $) 23)) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20)) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-430 |#1|) (-140) (-1106)) (T -430))
-((-3036 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1106)) (-5 *2 (-776)))) (-2923 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-372)))) (-2813 (*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1106)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855)))))
-(-13 (-230 |t#1|) (-1104 |t#1|) (-10 -8 (-6 -4444) (-15 -3036 ((-776) $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-15 -2923 ($ $)) (-15 -2813 ($))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -3969 (|t#1| $)) (-15 -3377 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-230 |#1|) . T) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-372) |has| |#1| (-372)) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1104 |#1|) . T) ((-1106) . T) ((-1223) . T))
-((-3138 (((-591 |#2|) |#2| (-1183)) 36)) (-3629 (((-591 |#2|) |#2| (-1183)) 21)) (-4412 ((|#2| |#2| (-1183)) 26)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -3629 ((-591 |#2|) |#2| (-1183))) (-15 -3138 ((-591 |#2|) |#2| (-1183))) (-15 -4412 (|#2| |#2| (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-29 |#1|))) (T -431))
-((-4412 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1208) (-29 *4))))) (-3138 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5))))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1208) (-29 *5))))))
-(-10 -7 (-15 -3629 ((-591 |#2|) |#2| (-1183))) (-15 -3138 ((-591 |#2|) |#2| (-1183))) (-15 -4412 (|#2| |#2| (-1183))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-3215 (($ |#2| |#1|) 37)) (-3119 (($ |#2| |#1|) 35)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-334 |#2|)) 25)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 10 T CONST)) (-1813 (($) 16 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 36)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-432 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4431)) (IF (|has| |#1| (-6 -4431)) (-6 -4431) |%noBranch|) |%noBranch|) (-15 -3793 ($ |#1|)) (-15 -3793 ($ (-334 |#2|))) (-15 -3215 ($ |#2| |#1|)) (-15 -3119 ($ |#2| |#1|)))) (-13 (-173) (-38 (-412 (-569)))) (-13 (-855) (-21))) (T -432))
-((-3793 (*1 *1 *2) (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-569))))) (-4 *3 (-13 (-855) (-21))))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21))) (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))))) (-3215 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21))))) (-3119 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4431)) (IF (|has| |#1| (-6 -4431)) (-6 -4431) |%noBranch|) |%noBranch|) (-15 -3793 ($ |#1|)) (-15 -3793 ($ (-334 |#2|))) (-15 -3215 ($ |#2| |#1|)) (-15 -3119 ($ |#2| |#1|))))
-((-2488 (((-3 |#2| (-649 |#2|)) |#2| (-1183)) 115)))
-(((-433 |#1| |#2|) (-10 -7 (-15 -2488 ((-3 |#2| (-649 |#2|)) |#2| (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-29 |#1|))) (T -433))
-((-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1208) (-965) (-29 *5))))))
-(-10 -7 (-15 -2488 ((-3 |#2| (-649 |#2|)) |#2| (-1183))))
-((-1710 (((-649 (-1183)) $) 81)) (-3763 (((-412 (-1179 $)) $ (-617 $)) 314)) (-4293 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) 278)) (-4378 (((-3 (-617 $) "failed") $) NIL) (((-3 (-1183) "failed") $) 84) (((-3 (-569) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-412 (-958 |#2|)) "failed") $) 364) (((-3 (-958 |#2|) "failed") $) 276) (((-3 (-412 (-569)) "failed") $) NIL)) (-3148 (((-617 $) $) NIL) (((-1183) $) 28) (((-569) $) NIL) ((|#2| $) 272) (((-412 (-958 |#2|)) $) 346) (((-958 |#2|) $) 273) (((-412 (-569)) $) NIL)) (-3743 (((-114) (-114)) 47)) (-3700 (($ $) 99)) (-1574 (((-3 (-617 $) "failed") $) 269)) (-3733 (((-649 (-617 $)) $) 270)) (-2753 (((-3 (-649 $) "failed") $) 288)) (-2980 (((-3 (-2 (|:| |val| $) (|:| -4320 (-569))) "failed") $) 295)) (-2633 (((-3 (-649 $) "failed") $) 286)) (-3607 (((-3 (-2 (|:| -1433 (-569)) (|:| |var| (-617 $))) "failed") $) 305)) (-2865 (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $) 292) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-1183)) 258)) (-1824 (((-112) $) 17)) (-1833 ((|#2| $) 19)) (-1723 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 277) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 109) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1183)) 62) (($ $ (-649 (-1183))) 281) (($ $) 282) (($ $ (-114) $ (-1183)) 65) (($ $ (-649 (-114)) (-649 $) (-1183)) 72) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) 120) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 283) (($ $ (-1183) (-776) (-1 $ (-649 $))) 105) (($ $ (-1183) (-776) (-1 $ $)) 104)) (-1866 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) 119)) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) 279)) (-1528 (($ $) 325)) (-1408 (((-898 (-569)) $) 298) (((-898 (-383)) $) 302) (($ (-423 $)) 360) (((-541) $) NIL)) (-3793 (((-867) $) 280) (($ (-617 $)) 93) (($ (-1183)) 24) (($ |#2|) NIL) (($ (-1131 |#2| (-617 $))) NIL) (($ (-412 |#2|)) 330) (($ (-958 (-412 |#2|))) 369) (($ (-412 (-958 (-412 |#2|)))) 342) (($ (-412 (-958 |#2|))) 336) (($ $) NIL) (($ (-958 |#2|)) 218) (($ (-412 (-569))) 374) (($ (-569)) NIL)) (-3302 (((-776)) 88)) (-4142 (((-112) (-114)) 42)) (-4212 (($ (-1183) $) 31) (($ (-1183) $ $) 32) (($ (-1183) $ $ $) 33) (($ (-1183) $ $ $ $) 34) (($ (-1183) (-649 $)) 39)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
-(((-434 |#1| |#2|) (-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3793 (|#1| (-569))) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-412 (-569)))) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -3793 (|#1| (-958 |#2|))) (-15 -4378 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3148 ((-958 |#2|) |#1|)) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3793 (|#1| (-412 (-958 |#2|)))) (-15 -4378 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3148 ((-412 (-958 |#2|)) |#1|)) (-15 -3763 ((-412 (-1179 |#1|)) |#1| (-617 |#1|))) (-15 -3793 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -3793 (|#1| (-958 (-412 |#2|)))) (-15 -3793 (|#1| (-412 |#2|))) (-15 -1528 (|#1| |#1|)) (-15 -1408 (|#1| (-423 |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-776) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -2980 ((-3 (-2 (|:| |val| |#1|) (|:| -4320 (-569))) "failed") |#1|)) (-15 -2865 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -4320 (-569))) "failed") |#1| (-1183))) (-15 -2865 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -4320 (-569))) "failed") |#1| (-114))) (-15 -3700 (|#1| |#1|)) (-15 -3793 (|#1| (-1131 |#2| (-617 |#1|)))) (-15 -3607 ((-3 (-2 (|:| -1433 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -2633 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2865 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -4320 (-569))) "failed") |#1|)) (-15 -2753 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1183))) (-15 -1723 (|#1| |#1| (-114) |#1| (-1183))) (-15 -1723 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-649 (-1183)))) (-15 -1723 (|#1| |#1| (-1183))) (-15 -4212 (|#1| (-1183) (-649 |#1|))) (-15 -4212 (|#1| (-1183) |#1| |#1| |#1| |#1|)) (-15 -4212 (|#1| (-1183) |#1| |#1| |#1|)) (-15 -4212 (|#1| (-1183) |#1| |#1|)) (-15 -4212 (|#1| (-1183) |#1|)) (-15 -1710 ((-649 (-1183)) |#1|)) (-15 -1833 (|#2| |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -3793 (|#1| (-1183))) (-15 -4378 ((-3 (-1183) "failed") |#1|)) (-15 -3148 ((-1183) |#1|)) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3733 ((-649 (-617 |#1|)) |#1|)) (-15 -1574 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4293 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4293 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4293 (|#1| |#1| (-297 |#1|))) (-15 -1866 (|#1| (-114) (-649 |#1|))) (-15 -1866 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1723 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -3793 (|#1| (-617 |#1|))) (-15 -4378 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3148 ((-617 |#1|) |#1|)) (-15 -3793 ((-867) |#1|))) (-435 |#2|) (-1106)) (T -434))
-((-3743 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1106)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) (-3302 (*1 *2) (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))))
-(-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3793 (|#1| (-569))) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-412 (-569)))) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -3793 (|#1| (-958 |#2|))) (-15 -4378 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3148 ((-958 |#2|) |#1|)) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3793 (|#1| (-412 (-958 |#2|)))) (-15 -4378 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3148 ((-412 (-958 |#2|)) |#1|)) (-15 -3763 ((-412 (-1179 |#1|)) |#1| (-617 |#1|))) (-15 -3793 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -3793 (|#1| (-958 (-412 |#2|)))) (-15 -3793 (|#1| (-412 |#2|))) (-15 -1528 (|#1| |#1|)) (-15 -1408 (|#1| (-423 |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-776) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -2980 ((-3 (-2 (|:| |val| |#1|) (|:| -4320 (-569))) "failed") |#1|)) (-15 -2865 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -4320 (-569))) "failed") |#1| (-1183))) (-15 -2865 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -4320 (-569))) "failed") |#1| (-114))) (-15 -3700 (|#1| |#1|)) (-15 -3793 (|#1| (-1131 |#2| (-617 |#1|)))) (-15 -3607 ((-3 (-2 (|:| -1433 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -2633 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2865 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -4320 (-569))) "failed") |#1|)) (-15 -2753 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1183))) (-15 -1723 (|#1| |#1| (-114) |#1| (-1183))) (-15 -1723 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-649 (-1183)))) (-15 -1723 (|#1| |#1| (-1183))) (-15 -4212 (|#1| (-1183) (-649 |#1|))) (-15 -4212 (|#1| (-1183) |#1| |#1| |#1| |#1|)) (-15 -4212 (|#1| (-1183) |#1| |#1| |#1|)) (-15 -4212 (|#1| (-1183) |#1| |#1|)) (-15 -4212 (|#1| (-1183) |#1|)) (-15 -1710 ((-649 (-1183)) |#1|)) (-15 -1833 (|#2| |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -3793 (|#1| (-1183))) (-15 -4378 ((-3 (-1183) "failed") |#1|)) (-15 -3148 ((-1183) |#1|)) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| |#1|))) (-15 -1723 (|#1| |#1| (-1183) (-1 |#1| (-649 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1723 (|#1| |#1| (-649 (-1183)) (-649 (-1 |#1| |#1|)))) (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3733 ((-649 (-617 |#1|)) |#1|)) (-15 -1574 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4293 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4293 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4293 (|#1| |#1| (-297 |#1|))) (-15 -1866 (|#1| (-114) (-649 |#1|))) (-15 -1866 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1| |#1|)) (-15 -1866 (|#1| (-114) |#1|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1723 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1723 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -3793 (|#1| (-617 |#1|))) (-15 -4378 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3148 ((-617 |#1|) |#1|)) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 116 (|has| |#1| (-25)))) (-1710 (((-649 (-1183)) $) 203)) (-3763 (((-412 (-1179 $)) $ (-617 $)) 171 (|has| |#1| (-561)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 143 (|has| |#1| (-561)))) (-3087 (($ $) 144 (|has| |#1| (-561)))) (-2883 (((-112) $) 146 (|has| |#1| (-561)))) (-3660 (((-649 (-617 $)) $) 39)) (-1678 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-4293 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-2078 (($ $) 163 (|has| |#1| (-561)))) (-2508 (((-423 $) $) 164 (|has| |#1| (-561)))) (-1680 (((-112) $ $) 154 (|has| |#1| (-561)))) (-4188 (($) 104 (-2774 (|has| |#1| (-1118)) (|has| |#1| (-25))) CONST)) (-4378 (((-3 (-617 $) "failed") $) 64) (((-3 (-1183) "failed") $) 216) (((-3 (-569) "failed") $) 210 (|has| |#1| (-1044 (-569)))) (((-3 |#1| "failed") $) 207) (((-3 (-412 (-958 |#1|)) "failed") $) 169 (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) 123 (|has| |#1| (-1055))) (((-3 (-412 (-569)) "failed") $) 98 (-2774 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-3148 (((-617 $) $) 65) (((-1183) $) 217) (((-569) $) 209 (|has| |#1| (-1044 (-569)))) ((|#1| $) 208) (((-412 (-958 |#1|)) $) 170 (|has| |#1| (-561))) (((-958 |#1|) $) 124 (|has| |#1| (-1055))) (((-412 (-569)) $) 99 (-2774 (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569))))))) (-2366 (($ $ $) 158 (|has| |#1| (-561)))) (-1630 (((-694 (-569)) (-694 $)) 137 (-1756 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 136 (-1756 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 135 (|has| |#1| (-1055))) (((-694 |#1|) (-694 $)) 134 (|has| |#1| (-1055)))) (-2888 (((-3 $ "failed") $) 106 (|has| |#1| (-1118)))) (-2373 (($ $ $) 157 (|has| |#1| (-561)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 152 (|has| |#1| (-561)))) (-4073 (((-112) $) 165 (|has| |#1| (-561)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 212 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 211 (|has| |#1| (-892 (-383))))) (-2223 (($ $) 46) (($ (-649 $)) 45)) (-1463 (((-649 (-114)) $) 38)) (-3743 (((-114) (-114)) 37)) (-2623 (((-112) $) 105 (|has| |#1| (-1118)))) (-1607 (((-112) $) 17 (|has| $ (-1044 (-569))))) (-3700 (($ $) 186 (|has| |#1| (-1055)))) (-4396 (((-1131 |#1| (-617 $)) $) 187 (|has| |#1| (-1055)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 161 (|has| |#1| (-561)))) (-4362 (((-1179 $) (-617 $)) 20 (|has| $ (-1055)))) (-1344 (($ (-1 $ $) (-617 $)) 31)) (-1574 (((-3 (-617 $) "failed") $) 41)) (-1835 (($ (-649 $)) 150 (|has| |#1| (-561))) (($ $ $) 149 (|has| |#1| (-561)))) (-1550 (((-1165) $) 10)) (-3733 (((-649 (-617 $)) $) 40)) (-1352 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-2753 (((-3 (-649 $) "failed") $) 192 (|has| |#1| (-1118)))) (-2980 (((-3 (-2 (|:| |val| $) (|:| -4320 (-569))) "failed") $) 183 (|has| |#1| (-1055)))) (-2633 (((-3 (-649 $) "failed") $) 190 (|has| |#1| (-25)))) (-3607 (((-3 (-2 (|:| -1433 (-569)) (|:| |var| (-617 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2865 (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $) 191 (|has| |#1| (-1118))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-114)) 185 (|has| |#1| (-1055))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-1183)) 184 (|has| |#1| (-1055)))) (-2374 (((-112) $ (-114)) 35) (((-112) $ (-1183)) 34)) (-1814 (($ $) 108 (-2774 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-1425 (((-776) $) 42)) (-3545 (((-1126) $) 11)) (-1824 (((-112) $) 205)) (-1833 ((|#1| $) 204)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 151 (|has| |#1| (-561)))) (-1864 (($ (-649 $)) 148 (|has| |#1| (-561))) (($ $ $) 147 (|has| |#1| (-561)))) (-1335 (((-112) $ $) 30) (((-112) $ (-1183)) 29)) (-3796 (((-423 $) $) 162 (|has| |#1| (-561)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 159 (|has| |#1| (-561)))) (-2405 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 153 (|has| |#1| (-561)))) (-2108 (((-112) $) 18 (|has| $ (-1044 (-569))))) (-1723 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1183)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1183) (-1 $ (-649 $))) 26) (($ $ (-1183) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1183)) 197 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183))) 196 (|has| |#1| (-619 (-541)))) (($ $) 195 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1183)) 194 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1183)) 193 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $))) 182 (|has| |#1| (-1055))) (($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 181 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ (-649 $))) 180 (|has| |#1| (-1055))) (($ $ (-1183) (-776) (-1 $ $)) 179 (|has| |#1| (-1055)))) (-1578 (((-776) $) 155 (|has| |#1| (-561)))) (-1866 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 156 (|has| |#1| (-561)))) (-1676 (($ $) 44) (($ $ $) 43)) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) 128 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 127 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 126 (|has| |#1| (-1055))) (($ $ (-1183)) 125 (|has| |#1| (-1055)))) (-1528 (($ $) 176 (|has| |#1| (-561)))) (-4409 (((-1131 |#1| (-617 $)) $) 177 (|has| |#1| (-561)))) (-4143 (($ $) 19 (|has| $ (-1055)))) (-1408 (((-898 (-569)) $) 214 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 213 (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) 178 (|has| |#1| (-561))) (((-541) $) 100 (|has| |#1| (-619 (-541))))) (-3580 (($ $ $) 111 (|has| |#1| (-478)))) (-2292 (($ $ $) 112 (|has| |#1| (-478)))) (-3793 (((-867) $) 12) (($ (-617 $)) 63) (($ (-1183)) 215) (($ |#1|) 206) (($ (-1131 |#1| (-617 $))) 188 (|has| |#1| (-1055))) (($ (-412 |#1|)) 174 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 173 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 172 (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) 168 (|has| |#1| (-561))) (($ $) 141 (|has| |#1| (-561))) (($ (-958 |#1|)) 122 (|has| |#1| (-1055))) (($ (-412 (-569))) 97 (-2774 (|has| |#1| (-561)) (-12 (|has| |#1| (-1044 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1044 (-412 (-569)))))) (($ (-569)) 96 (-2774 (|has| |#1| (-1055)) (|has| |#1| (-1044 (-569)))))) (-4030 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-3302 (((-776)) 133 (|has| |#1| (-1055)) CONST)) (-4211 (($ $) 48) (($ (-649 $)) 47)) (-4142 (((-112) (-114)) 36)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 145 (|has| |#1| (-561)))) (-4212 (($ (-1183) $) 202) (($ (-1183) $ $) 201) (($ (-1183) $ $ $) 200) (($ (-1183) $ $ $ $) 199) (($ (-1183) (-649 $)) 198)) (-1803 (($) 115 (|has| |#1| (-25)) CONST)) (-1813 (($) 103 (|has| |#1| (-1118)) CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) 132 (|has| |#1| (-1055))) (($ $ (-1183) (-776)) 131 (|has| |#1| (-1055))) (($ $ (-649 (-1183))) 130 (|has| |#1| (-1055))) (($ $ (-1183)) 129 (|has| |#1| (-1055)))) (-2919 (((-112) $ $) 6)) (-3032 (($ (-1131 |#1| (-617 $)) (-1131 |#1| (-617 $))) 175 (|has| |#1| (-561))) (($ $ $) 109 (-2774 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3021 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3009 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-569)) 110 (-2774 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 107 (|has| |#1| (-1118))) (($ $ (-927)) 102 (|has| |#1| (-1118)))) (* (($ (-412 (-569)) $) 167 (|has| |#1| (-561))) (($ $ (-412 (-569))) 166 (|has| |#1| (-561))) (($ |#1| $) 140 (|has| |#1| (-173))) (($ $ |#1|) 139 (|has| |#1| (-173))) (($ (-569) $) 119 (|has| |#1| (-21))) (($ (-776) $) 117 (|has| |#1| (-25))) (($ (-927) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1118)))))
-(((-435 |#1|) (-140) (-1106)) (T -435))
-((-1824 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-1183))))) (-4212 (*1 *1 *2 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4212 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4212 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))) (-4212 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1106)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-4 *3 (-619 (-541))))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1183))) (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-4 *3 (-619 (-541))))) (-1723 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-619 (-541))))) (-1723 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1183)) (-4 *1 (-435 *4)) (-4 *4 (-1106)) (-4 *4 (-619 (-541))))) (-1723 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1183)) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-619 (-541))))) (-2753 (*1 *2 *1) (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-2865 (*1 *2 *1) (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -4320 (-569)))) (-4 *1 (-435 *3)))) (-2633 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-3607 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| -1433 (-569)) (|:| |var| (-617 *1)))) (-4 *1 (-435 *3)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-1055)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-4396 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-3700 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-1055)))) (-2865 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1055)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -4320 (-569)))) (-4 *1 (-435 *4)))) (-2865 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-1055)) (-4 *4 (-1106)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -4320 (-569)))) (-4 *1 (-435 *4)))) (-2980 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| |val| *1) (|:| -4320 (-569)))) (-4 *1 (-435 *3)))) (-1723 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1723 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1723 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1723 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-423 *1)) (-4 *1 (-435 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))) (-4409 (*1 *2 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-561)))) (-3032 (*1 *1 *2 *2) (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1106)) (-4 *1 (-435 *3)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1106)) (-4 *4 (-561)) (-5 *2 (-412 (-1179 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-4 *3 (-1118)))))
-(-13 (-305) (-1044 (-1183)) (-890 |t#1|) (-405 |t#1|) (-416 |t#1|) (-10 -8 (-15 -1824 ((-112) $)) (-15 -1833 (|t#1| $)) (-15 -1710 ((-649 (-1183)) $)) (-15 -4212 ($ (-1183) $)) (-15 -4212 ($ (-1183) $ $)) (-15 -4212 ($ (-1183) $ $ $)) (-15 -4212 ($ (-1183) $ $ $ $)) (-15 -4212 ($ (-1183) (-649 $))) (IF (|has| |t#1| (-619 (-541))) (PROGN (-6 (-619 (-541))) (-15 -1723 ($ $ (-1183))) (-15 -1723 ($ $ (-649 (-1183)))) (-15 -1723 ($ $)) (-15 -1723 ($ $ (-114) $ (-1183))) (-15 -1723 ($ $ (-649 (-114)) (-649 $) (-1183)))) |%noBranch|) (IF (|has| |t#1| (-1118)) (PROGN (-6 (-731)) (-15 ** ($ $ (-776))) (-15 -2753 ((-3 (-649 $) "failed") $)) (-15 -2865 ((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-478)) (-6 (-478)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2633 ((-3 (-649 $) "failed") $)) (-15 -3607 ((-3 (-2 (|:| -1433 (-569)) (|:| |var| (-617 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1055)) (PROGN (-6 (-1055)) (-6 (-1044 (-958 |t#1|))) (-6 (-906 (-1183))) (-6 (-381 |t#1|)) (-15 -3793 ($ (-1131 |t#1| (-617 $)))) (-15 -4396 ((-1131 |t#1| (-617 $)) $)) (-15 -3700 ($ $)) (-15 -2865 ((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-114))) (-15 -2865 ((-3 (-2 (|:| |var| (-617 $)) (|:| -4320 (-569))) "failed") $ (-1183))) (-15 -2980 ((-3 (-2 (|:| |val| $) (|:| -4320 (-569))) "failed") $)) (-15 -1723 ($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ $)))) (-15 -1723 ($ $ (-649 (-1183)) (-649 (-776)) (-649 (-1 $ (-649 $))))) (-15 -1723 ($ $ (-1183) (-776) (-1 $ (-649 $)))) (-15 -1723 ($ $ (-1183) (-776) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-367)) (-6 (-1044 (-412 (-958 |t#1|)))) (-15 -1408 ($ (-423 $))) (-15 -4409 ((-1131 |t#1| (-617 $)) $)) (-15 -1528 ($ $)) (-15 -3032 ($ (-1131 |t#1| (-617 $)) (-1131 |t#1| (-617 $)))) (-15 -3793 ($ (-412 |t#1|))) (-15 -3793 ($ (-958 (-412 |t#1|)))) (-15 -3793 ($ (-412 (-958 (-412 |t#1|))))) (-15 -3763 ((-412 (-1179 $)) $ (-617 $))) (IF (|has| |t#1| (-1044 (-569))) (-6 (-1044 (-412 (-569)))) |%noBranch|)) |%noBranch|)))
-(((-21) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-412 (-569))) |has| |#1| (-561)) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-561)) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) |has| |#1| (-561)) ((-131) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-561))) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) -2774 (|has| |#1| (-1055)) (|has| |#1| (-1044 (-569))) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1055)) ((-621 #4=(-1183)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) |has| |#1| (-561)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) |has| |#1| (-561)) ((-293) |has| |#1| (-561)) ((-310) |has| |#1| (-561)) ((-312 $) . T) ((-305) . T) ((-367) |has| |#1| (-561)) ((-381 |#1|) |has| |#1| (-1055)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) |has| |#1| (-561)) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-561)) ((-651 (-569)) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-653 #0#) |has| |#1| (-561)) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-645 #0#) |has| |#1| (-561)) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1055))) ((-644 |#1|) |has| |#1| (-1055)) ((-722 #0#) |has| |#1| (-561)) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) -2774 (|has| |#1| (-1118)) (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-906 (-1183)) |has| |#1| (-1055)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) |has| |#1| (-561)) ((-1044 (-412 (-569))) -2774 (|has| |#1| (-1044 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1044 (-569))))) ((-1044 #1#) |has| |#1| (-561)) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #2#) . T) ((-1044 #3#) |has| |#1| (-1055)) ((-1044 #4#) . T) ((-1044 |#1|) . T) ((-1057 #0#) |has| |#1| (-561)) ((-1057 |#1|) |has| |#1| (-173)) ((-1057 $) |has| |#1| (-561)) ((-1062 #0#) |has| |#1| (-561)) ((-1062 |#1|) |has| |#1| (-173)) ((-1062 $) |has| |#1| (-561)) ((-1055) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1064) -2774 (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1118) -2774 (|has| |#1| (-1118)) (|has| |#1| (-1055)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) . T) ((-1223) . T) ((-1227) |has| |#1| (-561)))
-((-2209 ((|#2| |#2| |#2|) 31)) (-3743 (((-114) (-114)) 43)) (-3072 ((|#2| |#2|) 63)) (-3340 ((|#2| |#2|) 66)) (-2103 ((|#2| |#2|) 30)) (-1357 ((|#2| |#2| |#2|) 33)) (-1608 ((|#2| |#2| |#2|) 35)) (-2421 ((|#2| |#2| |#2|) 32)) (-1493 ((|#2| |#2| |#2|) 34)) (-4142 (((-112) (-114)) 41)) (-1836 ((|#2| |#2|) 37)) (-1724 ((|#2| |#2|) 36)) (-3070 ((|#2| |#2|) 25)) (-2315 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1994 ((|#2| |#2| |#2|) 29)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3070 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2315 (|#2| |#2| |#2|)) (-15 -1994 (|#2| |#2| |#2|)) (-15 -2103 (|#2| |#2|)) (-15 -2209 (|#2| |#2| |#2|)) (-15 -2421 (|#2| |#2| |#2|)) (-15 -1357 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2| |#2|)) (-15 -1608 (|#2| |#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -3340 (|#2| |#2|)) (-15 -3072 (|#2| |#2|))) (-561) (-435 |#1|)) (T -436))
-((-3072 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3340 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1836 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1608 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1493 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1357 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2421 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2209 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2103 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1994 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2315 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3070 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-436 *3 *4)) (-4 *4 (-435 *3)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4)))))
-(-10 -7 (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3070 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2315 (|#2| |#2| |#2|)) (-15 -1994 (|#2| |#2| |#2|)) (-15 -2103 (|#2| |#2|)) (-15 -2209 (|#2| |#2| |#2|)) (-15 -2421 (|#2| |#2| |#2|)) (-15 -1357 (|#2| |#2| |#2|)) (-15 -1493 (|#2| |#2| |#2|)) (-15 -1608 (|#2| |#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -3340 (|#2| |#2|)) (-15 -3072 (|#2| |#2|)))
-((-1312 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1179 |#2|)) (|:| |pol2| (-1179 |#2|)) (|:| |prim| (-1179 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1179 |#2|))) (|:| |prim| (-1179 |#2|))) (-649 |#2|)) 68)))
-(((-437 |#1| |#2|) (-10 -7 (-15 -1312 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1179 |#2|))) (|:| |prim| (-1179 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -1312 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1179 |#2|)) (|:| |pol2| (-1179 |#2|)) (|:| |prim| (-1179 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-561) (-147)) (-435 |#1|)) (T -437))
-((-1312 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1179 *3)) (|:| |pol2| (-1179 *3)) (|:| |prim| (-1179 *3)))) (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1179 *5))) (|:| |prim| (-1179 *5)))) (-5 *1 (-437 *4 *5)))))
-(-10 -7 (-15 -1312 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1179 |#2|))) (|:| |prim| (-1179 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -1312 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1179 |#2|)) (|:| |pol2| (-1179 |#2|)) (|:| |prim| (-1179 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3271 (((-1278)) 18)) (-3173 (((-1179 (-412 (-569))) |#2| (-617 |#2|)) 40) (((-412 (-569)) |#2|) 24)))
-(((-438 |#1| |#2|) (-10 -7 (-15 -3173 ((-412 (-569)) |#2|)) (-15 -3173 ((-1179 (-412 (-569))) |#2| (-617 |#2|))) (-15 -3271 ((-1278)))) (-13 (-561) (-1044 (-569))) (-435 |#1|)) (T -438))
-((-3271 (*1 *2) (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1278)) (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3)))) (-3173 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-438 *5 *3)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4)))))
-(-10 -7 (-15 -3173 ((-412 (-569)) |#2|)) (-15 -3173 ((-1179 (-412 (-569))) |#2| (-617 |#2|))) (-15 -3271 ((-1278))))
-((-2410 (((-112) $) 32)) (-3368 (((-112) $) 34)) (-4227 (((-112) $) 35)) (-3573 (((-112) $) 38)) (-2443 (((-112) $) 33)) (-3665 (((-112) $) 37)) (-3793 (((-867) $) 20) (($ (-1165)) 31) (($ (-1183)) 26) (((-1183) $) 24) (((-1110) $) 23)) (-3459 (((-112) $) 36)) (-2919 (((-112) $ $) 17)))
-(((-439) (-13 (-618 (-867)) (-10 -8 (-15 -3793 ($ (-1165))) (-15 -3793 ($ (-1183))) (-15 -3793 ((-1183) $)) (-15 -3793 ((-1110) $)) (-15 -2410 ((-112) $)) (-15 -2443 ((-112) $)) (-15 -4227 ((-112) $)) (-15 -3665 ((-112) $)) (-15 -3573 ((-112) $)) (-15 -3459 ((-112) $)) (-15 -3368 ((-112) $)) (-15 -2919 ((-112) $ $))))) (T -439))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-439)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-439)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2919 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3793 ($ (-1165))) (-15 -3793 ($ (-1183))) (-15 -3793 ((-1183) $)) (-15 -3793 ((-1110) $)) (-15 -2410 ((-112) $)) (-15 -2443 ((-112) $)) (-15 -4227 ((-112) $)) (-15 -3665 ((-112) $)) (-15 -3573 ((-112) $)) (-15 -3459 ((-112) $)) (-15 -3368 ((-112) $)) (-15 -2919 ((-112) $ $))))
-((-2636 (((-3 (-423 (-1179 (-412 (-569)))) "failed") |#3|) 72)) (-2534 (((-423 |#3|) |#3|) 34)) (-2840 (((-3 (-423 (-1179 (-48))) "failed") |#3|) 46 (|has| |#2| (-1044 (-48))))) (-2734 (((-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2492 (-112))) |#3|) 37)))
-(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2534 ((-423 |#3|) |#3|)) (-15 -2636 ((-3 (-423 (-1179 (-412 (-569)))) "failed") |#3|)) (-15 -2734 ((-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2492 (-112))) |#3|)) (IF (|has| |#2| (-1044 (-48))) (-15 -2840 ((-3 (-423 (-1179 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-561) (-1044 (-569))) (-435 |#1|) (-1249 |#2|)) (T -440))
-((-2840 (*1 *2 *3) (|partial| -12 (-4 *5 (-1044 (-48))) (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1179 (-48)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-2734 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2492 (-112)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-2636 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1179 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))))
-(-10 -7 (-15 -2534 ((-423 |#3|) |#3|)) (-15 -2636 ((-3 (-423 (-1179 (-412 (-569)))) "failed") |#3|)) (-15 -2734 ((-3 (|:| |overq| (-1179 (-412 (-569)))) (|:| |overan| (-1179 (-48))) (|:| -2492 (-112))) |#3|)) (IF (|has| |#2| (-1044 (-48))) (-15 -2840 ((-3 (-423 (-1179 (-48))) "failed") |#3|)) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-2523 (((-1165) $ (-1165)) NIL)) (-2914 (($ $ (-1165)) NIL)) (-2625 (((-1165) $) NIL)) (-1726 (((-393) (-393) (-393)) 17) (((-393) (-393)) 15)) (-1717 (($ (-393)) NIL) (($ (-393) (-1165)) NIL)) (-3570 (((-393) $) NIL)) (-1550 (((-1165) $) NIL)) (-2733 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1620 (((-1278) (-1165)) 9)) (-1519 (((-1278) (-1165)) 10)) (-1398 (((-1278)) 11)) (-3793 (((-867) $) NIL)) (-2839 (($ $) 39)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-441) (-13 (-368 (-393) (-1165)) (-10 -7 (-15 -1726 ((-393) (-393) (-393))) (-15 -1726 ((-393) (-393))) (-15 -1620 ((-1278) (-1165))) (-15 -1519 ((-1278) (-1165))) (-15 -1398 ((-1278)))))) (T -441))
-((-1726 (*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))) (-1398 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-441)))))
-(-13 (-368 (-393) (-1165)) (-10 -7 (-15 -1726 ((-393) (-393) (-393))) (-15 -1726 ((-393) (-393))) (-15 -1620 ((-1278) (-1165))) (-15 -1519 ((-1278) (-1165))) (-15 -1398 ((-1278)))))
-((-2415 (((-112) $ $) NIL)) (-4402 (((-3 (|:| |fst| (-439)) (|:| -2577 "void")) $) 11)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2269 (($) 35)) (-2005 (($) 41)) (-2094 (($) 37)) (-3017 (($) 39)) (-2182 (($) 36)) (-1922 (($) 38)) (-2925 (($) 40)) (-2364 (((-112) $) 8)) (-2029 (((-649 (-958 (-569))) $) 19)) (-3806 (($ (-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-649 (-1183)) (-112)) 29) (($ (-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-649 (-958 (-569))) (-112)) 30)) (-3793 (((-867) $) 24) (($ (-439)) 32)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-442) (-13 (-1106) (-10 -8 (-15 -3793 ($ (-439))) (-15 -4402 ((-3 (|:| |fst| (-439)) (|:| -2577 "void")) $)) (-15 -2029 ((-649 (-958 (-569))) $)) (-15 -2364 ((-112) $)) (-15 -3806 ($ (-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-649 (-1183)) (-112))) (-15 -3806 ($ (-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-649 (-958 (-569))) (-112))) (-15 -2269 ($)) (-15 -2182 ($)) (-15 -2094 ($)) (-15 -2005 ($)) (-15 -1922 ($)) (-15 -3017 ($)) (-15 -2925 ($))))) (T -442))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-442)))) (-4402 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *1 (-442)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3806 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *3 (-649 (-1183))) (-5 *4 (-112)) (-5 *1 (-442)))) (-3806 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-112)) (-5 *1 (-442)))) (-2269 (*1 *1) (-5 *1 (-442))) (-2182 (*1 *1) (-5 *1 (-442))) (-2094 (*1 *1) (-5 *1 (-442))) (-2005 (*1 *1) (-5 *1 (-442))) (-1922 (*1 *1) (-5 *1 (-442))) (-3017 (*1 *1) (-5 *1 (-442))) (-2925 (*1 *1) (-5 *1 (-442))))
-(-13 (-1106) (-10 -8 (-15 -3793 ($ (-439))) (-15 -4402 ((-3 (|:| |fst| (-439)) (|:| -2577 "void")) $)) (-15 -2029 ((-649 (-958 (-569))) $)) (-15 -2364 ((-112) $)) (-15 -3806 ($ (-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-649 (-1183)) (-112))) (-15 -3806 ($ (-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-649 (-958 (-569))) (-112))) (-15 -2269 ($)) (-15 -2182 ($)) (-15 -2094 ($)) (-15 -2005 ($)) (-15 -1922 ($)) (-15 -3017 ($)) (-15 -2925 ($))))
-((-2415 (((-112) $ $) NIL)) (-3570 (((-1183) $) 8)) (-1550 (((-1165) $) 17)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 11)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 14)))
-(((-443 |#1|) (-13 (-1106) (-10 -8 (-15 -3570 ((-1183) $)))) (-1183)) (T -443))
-((-3570 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-443 *3)) (-14 *3 *2))))
-(-13 (-1106) (-10 -8 (-15 -3570 ((-1183) $))))
-((-2415 (((-112) $ $) NIL)) (-4328 (((-1124) $) 7)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 13)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 9)))
-(((-444) (-13 (-1106) (-10 -8 (-15 -4328 ((-1124) $))))) (T -444))
-((-4328 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-444)))))
-(-13 (-1106) (-10 -8 (-15 -4328 ((-1124) $))))
-((-3358 (((-1278) $) 7)) (-3793 (((-867) $) 8) (($ (-1273 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 11)))
+((-2403 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-422 *3)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-2901 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 (-694 *3))))) (-1829 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3))))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-3674 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-3850 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-2999 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-3400 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1308 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1181 (-958 *3))))) (-3319 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1181 (-958 *3))))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173)))))
+(-13 (-371 |t#1|) (-10 -8 (-15 -2403 ((-1275 $))) (-15 -2415 ((-1275 |t#1|) $)) (-15 -2415 ((-694 |t#1|) (-1275 $))) (-15 -1869 (|t#1| $ (-569))) (-15 -2901 ((-1275 (-694 |t#1|)))) (-15 -1829 ((-649 (-958 |t#1|)))) (-15 -2247 ($ (-1275 |t#1|))) (-15 -1410 ((-1275 |t#1|) $)) (-15 -1410 ($ (-1275 |t#1|))) (-15 -3674 (|t#1|)) (-15 -3850 (|t#1|)) (-15 -2999 ((-694 |t#1|))) (-15 -3400 ((-694 |t#1|))) (-15 -1866 ((-694 |t#1|) $)) (-15 -2183 ((-694 |t#1|) $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -1308 ((-1181 (-958 |t#1|)))) (-15 -3319 ((-1181 (-958 |t#1|))))) |%noBranch|) (-15 -3451 ($ (-694 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-371 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 60)) (-3007 (($ $) 78)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 191)) (-4355 (($ $) NIL)) (-3039 (((-112) $) 48)) (-2736 ((|#1| $) 16)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-1229)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-1229)))) (-4188 (($ |#1| (-569)) 42)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 148)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 74)) (-3086 (((-3 $ "failed") $) 164)) (-3377 (((-3 (-412 (-569)) "failed") $) 84 (|has| |#1| (-550)))) (-1441 (((-112) $) 80 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 91 (|has| |#1| (-550)))) (-2566 (($ |#1| (-569)) 44)) (-1473 (((-112) $) 213 (|has| |#1| (-1229)))) (-2349 (((-112) $) 62)) (-2065 (((-776) $) 51)) (-2257 (((-3 "nil" "sqfr" "irred" "prime") $ (-569)) 175)) (-3522 ((|#1| $ (-569)) 174)) (-3854 (((-569) $ (-569)) 173)) (-3212 (($ |#1| (-569)) 41)) (-1346 (($ (-1 |#1| |#1|) $) 183)) (-4192 (($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569))))) 79)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-1672 (($ |#1| (-569)) 43)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 192 (|has| |#1| (-457)))) (-4405 (($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4360 (((-649 (-2 (|:| -3800 |#1|) (|:| -1993 (-569)))) $) 73)) (-3521 (((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $) 12)) (-3800 (((-423 $) $) NIL (|has| |#1| (-1229)))) (-2407 (((-3 $ "failed") $ $) 176)) (-1993 (((-569) $) 167)) (-1380 ((|#1| $) 75)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 100 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 106 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) $) NIL (|has| |#1| (-519 (-1185) $))) (($ $ (-649 (-1185)) (-649 $)) 107 (|has| |#1| (-519 (-1185) $))) (($ $ (-649 (-297 $))) 103 (|has| |#1| (-312 $))) (($ $ (-297 $)) NIL (|has| |#1| (-312 $))) (($ $ $ $) NIL (|has| |#1| (-312 $))) (($ $ (-649 $) (-649 $)) NIL (|has| |#1| (-312 $)))) (-1869 (($ $ |#1|) 92 (|has| |#1| (-289 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-289 $ $)))) (-3517 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-1410 (((-541) $) 39 (|has| |#1| (-619 (-541)))) (((-383) $) 113 (|has| |#1| (-1030))) (((-226) $) 119 (|has| |#1| (-1030)))) (-3796 (((-867) $) 146) (($ (-569)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569)))))) (-2721 (((-776)) 67 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 53 T CONST)) (-1815 (($) 52 T CONST)) (-2832 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) 159)) (-3024 (($ $) 161) (($ $ $) NIL)) (-3012 (($ $ $) 180)) (** (($ $ (-927)) NIL) (($ $ (-776)) 125)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-423 |#1|) (-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1380 (|#1| $)) (-15 -1993 ((-569) $)) (-15 -4192 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -3521 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -3212 ($ |#1| (-569))) (-15 -4360 ((-649 (-2 (|:| -3800 |#1|) (|:| -1993 (-569)))) $)) (-15 -1672 ($ |#1| (-569))) (-15 -3854 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2257 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -2065 ((-776) $)) (-15 -2566 ($ |#1| (-569))) (-15 -4188 ($ |#1| (-569))) (-15 -4405 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2736 (|#1| $)) (-15 -3007 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-1229)) (-6 (-1229)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1185) $)) (-6 (-519 (-1185) $)) |%noBranch|))) (-561)) (T -423))
+((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3)))) (-1380 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-4192 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-569))))) (-4 *2 (-561)) (-5 *1 (-423 *2)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-3212 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -1993 (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-1672 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-3854 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2257 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *4)) (-4 *4 (-561)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-2566 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-4188 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-4405 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2736 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-3007 (*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-3377 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))))
+(-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1380 (|#1| $)) (-15 -1993 ((-569) $)) (-15 -4192 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -3521 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -3212 ($ |#1| (-569))) (-15 -4360 ((-649 (-2 (|:| -3800 |#1|) (|:| -1993 (-569)))) $)) (-15 -1672 ($ |#1| (-569))) (-15 -3854 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2257 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -2065 ((-776) $)) (-15 -2566 ($ |#1| (-569))) (-15 -4188 ($ |#1| (-569))) (-15 -4405 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2736 (|#1| $)) (-15 -3007 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-1229)) (-6 (-1229)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1185) $)) (-6 (-519 (-1185) $)) |%noBranch|)))
+((-3442 (((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|)) 28)) (-3918 (((-423 |#1|) (-423 |#1|) (-423 |#1|)) 17)))
+(((-424 |#1|) (-10 -7 (-15 -3442 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -3918 ((-423 |#1|) (-423 |#1|) (-423 |#1|)))) (-561)) (T -424))
+((-3918 (*1 *2 *2 *2) (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3)))) (-3442 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4)) (-5 *1 (-424 *4)))))
+(-10 -7 (-15 -3442 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -3918 ((-423 |#1|) (-423 |#1|) (-423 |#1|))))
+((-3852 ((|#2| |#2|) 183)) (-2215 (((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112)) 60)))
+(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2215 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112))) (-15 -3852 (|#2| |#2|))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|)) (-1185) |#2|) (T -425))
+((-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1210) (-435 *3))) (-14 *4 (-1185)) (-14 *5 *2))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |%expansion| (-316 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-14 *6 (-1185)) (-14 *7 *3))))
+(-10 -7 (-15 -2215 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112))) (-15 -3852 (|#2| |#2|)))
+((-1346 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|))) (-1057) (-435 |#1|) (-1057) (-435 |#3|)) (T -426))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *2 (-435 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-435 *5)))))
+(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3852 ((|#2| |#2|) 106)) (-1911 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167)) 52)) (-2128 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167)) 170)))
+(((-427 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1911 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -2128 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -3852 (|#2| |#2|))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|) (-10 -8 (-15 -3796 ($ |#3|)))) (-853) (-13 (-1253 |#2| |#3|) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $)))) (-991 |#4|) (-1185)) (T -427))
+((-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *2 (-13 (-27) (-1210) (-435 *3) (-10 -8 (-15 -3796 ($ *4))))) (-4 *4 (-853)) (-4 *5 (-13 (-1253 *2 *4) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-991 *5)) (-14 *7 (-1185)))) (-2128 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1253 *3 *7) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8)) (-14 *10 (-1185)))) (-1911 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1253 *3 *7) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8)) (-14 *10 (-1185)))))
+(-10 -7 (-15 -1911 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -2128 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -3852 (|#2| |#2|)))
+((-1610 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3598 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1346 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1108) (-430 |#1|) (-1108) (-430 |#3|)) (T -428))
+((-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-428 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-430 *6)) (-5 *1 (-428 *5 *4 *6 *2)) (-4 *4 (-430 *5)))))
+(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3610 (($) 52)) (-3969 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2541 (($ $ $) 45)) (-4179 (((-112) $ $) 34)) (-3473 (((-776)) 56)) (-4257 (($ (-649 |#2|)) 23) (($) NIL)) (-3406 (($) 67)) (-1651 (((-112) $ $) 15)) (-3380 ((|#2| $) 78)) (-2839 ((|#2| $) 76)) (-2731 (((-927) $) 71)) (-2101 (($ $ $) 41)) (-2150 (($ (-927)) 61)) (-2237 (($ $ |#2|) NIL) (($ $ $) 44)) (-3560 (((-776) (-1 (-112) |#2|) $) NIL) (((-776) |#2| $) 31)) (-3809 (($ (-649 |#2|)) 27)) (-3327 (($ $) 54)) (-3796 (((-867) $) 39)) (-1970 (((-776) $) 24)) (-3868 (($ (-649 |#2|)) 22) (($) NIL)) (-2920 (((-112) $ $) 19)))
+(((-429 |#1| |#2|) (-10 -8 (-15 -3473 ((-776))) (-15 -2150 (|#1| (-927))) (-15 -2731 ((-927) |#1|)) (-15 -3406 (|#1|)) (-15 -3380 (|#2| |#1|)) (-15 -2839 (|#2| |#1|)) (-15 -3610 (|#1|)) (-15 -3327 (|#1| |#1|)) (-15 -1970 ((-776) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1651 ((-112) |#1| |#1|)) (-15 -3868 (|#1|)) (-15 -3868 (|#1| (-649 |#2|))) (-15 -4257 (|#1|)) (-15 -4257 (|#1| (-649 |#2|))) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -4179 ((-112) |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#2| |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|))) (-430 |#2|) (-1108)) (T -429))
+((-3473 (*1 *2) (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))))
+(-10 -8 (-15 -3473 ((-776))) (-15 -2150 (|#1| (-927))) (-15 -2731 ((-927) |#1|)) (-15 -3406 (|#1|)) (-15 -3380 (|#2| |#1|)) (-15 -2839 (|#2| |#1|)) (-15 -3610 (|#1|)) (-15 -3327 (|#1| |#1|)) (-15 -1970 ((-776) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1651 ((-112) |#1| |#1|)) (-15 -3868 (|#1|)) (-15 -3868 (|#1| (-649 |#2|))) (-15 -4257 (|#1|)) (-15 -4257 (|#1| (-649 |#2|))) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -4179 ((-112) |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#2| |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)))
+((-2417 (((-112) $ $) 19)) (-3610 (($) 68 (|has| |#1| (-372)))) (-3969 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2541 (($ $ $) 79)) (-4179 (((-112) $ $) 80)) (-3914 (((-112) $ (-776)) 8)) (-3473 (((-776)) 62 (|has| |#1| (-372)))) (-4257 (($ (-649 |#1|)) 75) (($) 74)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-3406 (($) 65 (|has| |#1| (-372)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 71)) (-2314 (((-112) $ (-776)) 9)) (-3380 ((|#1| $) 66 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2839 ((|#1| $) 67 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-2731 (((-927) $) 64 (|has| |#1| (-372)))) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22)) (-2101 (($ $ $) 76)) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-2150 (($ (-927)) 63 (|has| |#1| (-372)))) (-3547 (((-1128) $) 21)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2237 (($ $ |#1|) 78) (($ $ $) 77)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3327 (($ $) 69 (|has| |#1| (-372)))) (-3796 (((-867) $) 18)) (-1970 (((-776) $) 70)) (-3868 (($ (-649 |#1|)) 73) (($) 72)) (-1520 (((-112) $ $) 23)) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-430 |#1|) (-140) (-1108)) (T -430))
+((-1970 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1108)) (-5 *2 (-776)))) (-3327 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-372)))) (-3610 (*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1108)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855)))))
+(-13 (-230 |t#1|) (-1106 |t#1|) (-10 -8 (-6 -4447) (-15 -1970 ((-776) $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-15 -3327 ($ $)) (-15 -3610 ($))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -2839 (|t#1| $)) (-15 -3380 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-230 |#1|) . T) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-372) |has| |#1| (-372)) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1106 |#1|) . T) ((-1108) . T) ((-1225) . T))
+((-1741 (((-591 |#2|) |#2| (-1185)) 36)) (-2693 (((-591 |#2|) |#2| (-1185)) 21)) (-1605 ((|#2| |#2| (-1185)) 26)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -2693 ((-591 |#2|) |#2| (-1185))) (-15 -1741 ((-591 |#2|) |#2| (-1185))) (-15 -1605 (|#2| |#2| (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-29 |#1|))) (T -431))
+((-1605 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1210) (-29 *4))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1210) (-29 *5))))) (-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1210) (-29 *5))))))
+(-10 -7 (-15 -2693 ((-591 |#2|) |#2| (-1185))) (-15 -1741 ((-591 |#2|) |#2| (-1185))) (-15 -1605 (|#2| |#2| (-1185))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3128 (($ |#2| |#1|) 37)) (-1542 (($ |#2| |#1|) 35)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-334 |#2|)) 25)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 10 T CONST)) (-1815 (($) 16 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 36)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-432 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4434)) (IF (|has| |#1| (-6 -4434)) (-6 -4434) |%noBranch|) |%noBranch|) (-15 -3796 ($ |#1|)) (-15 -3796 ($ (-334 |#2|))) (-15 -3128 ($ |#2| |#1|)) (-15 -1542 ($ |#2| |#1|)))) (-13 (-173) (-38 (-412 (-569)))) (-13 (-855) (-21))) (T -432))
+((-3796 (*1 *1 *2) (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-569))))) (-4 *3 (-13 (-855) (-21))))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21))) (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))))) (-3128 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21))))) (-1542 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4434)) (IF (|has| |#1| (-6 -4434)) (-6 -4434) |%noBranch|) |%noBranch|) (-15 -3796 ($ |#1|)) (-15 -3796 ($ (-334 |#2|))) (-15 -3128 ($ |#2| |#1|)) (-15 -1542 ($ |#2| |#1|))))
+((-3579 (((-3 |#2| (-649 |#2|)) |#2| (-1185)) 115)))
+(((-433 |#1| |#2|) (-10 -7 (-15 -3579 ((-3 |#2| (-649 |#2|)) |#2| (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-29 |#1|))) (T -433))
+((-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1210) (-965) (-29 *5))))))
+(-10 -7 (-15 -3579 ((-3 |#2| (-649 |#2|)) |#2| (-1185))))
+((-1712 (((-649 (-1185)) $) 81)) (-3767 (((-412 (-1181 $)) $ (-617 $)) 314)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) 278)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 (-1185) "failed") $) 84) (((-3 (-569) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-412 (-958 |#2|)) "failed") $) 364) (((-3 (-958 |#2|) "failed") $) 276) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-617 $) $) NIL) (((-1185) $) 28) (((-569) $) NIL) ((|#2| $) 272) (((-412 (-958 |#2|)) $) 346) (((-958 |#2|) $) 273) (((-412 (-569)) $) NIL)) (-3746 (((-114) (-114)) 47)) (-2177 (($ $) 99)) (-2391 (((-3 (-617 $) "failed") $) 269)) (-3736 (((-649 (-617 $)) $) 270)) (-4250 (((-3 (-649 $) "failed") $) 288)) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) 295)) (-2427 (((-3 (-649 $) "failed") $) 286)) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 305)) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) 292) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) 258)) (-1828 (((-112) $) 17)) (-1835 ((|#2| $) 19)) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 277) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 109) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1185)) 62) (($ $ (-649 (-1185))) 281) (($ $) 282) (($ $ (-114) $ (-1185)) 65) (($ $ (-649 (-114)) (-649 $) (-1185)) 72) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) 120) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 283) (($ $ (-1185) (-776) (-1 $ (-649 $))) 105) (($ $ (-1185) (-776) (-1 $ $)) 104)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) 119)) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) 279)) (-3181 (($ $) 325)) (-1410 (((-898 (-569)) $) 298) (((-898 (-383)) $) 302) (($ (-423 $)) 360) (((-541) $) NIL)) (-3796 (((-867) $) 280) (($ (-617 $)) 93) (($ (-1185)) 24) (($ |#2|) NIL) (($ (-1133 |#2| (-617 $))) NIL) (($ (-412 |#2|)) 330) (($ (-958 (-412 |#2|))) 369) (($ (-412 (-958 (-412 |#2|)))) 342) (($ (-412 (-958 |#2|))) 336) (($ $) NIL) (($ (-958 |#2|)) 218) (($ (-412 (-569))) 374) (($ (-569)) NIL)) (-2721 (((-776)) 88)) (-4052 (((-112) (-114)) 42)) (-4215 (($ (-1185) $) 31) (($ (-1185) $ $) 32) (($ (-1185) $ $ $) 33) (($ (-1185) $ $ $ $) 34) (($ (-1185) (-649 $)) 39)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-434 |#1| |#2|) (-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3796 (|#1| (-569))) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-958 |#2|))) (-15 -4381 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3150 ((-958 |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-958 |#2|)))) (-15 -4381 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3150 ((-412 (-958 |#2|)) |#1|)) (-15 -3767 ((-412 (-1181 |#1|)) |#1| (-617 |#1|))) (-15 -3796 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -3796 (|#1| (-958 (-412 |#2|)))) (-15 -3796 (|#1| (-412 |#2|))) (-15 -3181 (|#1| |#1|)) (-15 -1410 (|#1| (-423 |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -2605 ((-3 (-2 (|:| |val| |#1|) (|:| -1993 (-569))) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-1185))) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-114))) (-15 -2177 (|#1| |#1|)) (-15 -3796 (|#1| (-1133 |#2| (-617 |#1|)))) (-15 -3741 ((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1185))) (-15 -1725 (|#1| |#1| (-114) |#1| (-1185))) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1185)))) (-15 -1725 (|#1| |#1| (-1185))) (-15 -4215 (|#1| (-1185) (-649 |#1|))) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1|)) (-15 -1712 ((-649 (-1185)) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3736 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -3796 (|#1| (-617 |#1|))) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|)) (-15 -3796 ((-867) |#1|))) (-435 |#2|) (-1108)) (T -434))
+((-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1108)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) (-2721 (*1 *2) (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))))
+(-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3796 (|#1| (-569))) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-958 |#2|))) (-15 -4381 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3150 ((-958 |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-958 |#2|)))) (-15 -4381 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3150 ((-412 (-958 |#2|)) |#1|)) (-15 -3767 ((-412 (-1181 |#1|)) |#1| (-617 |#1|))) (-15 -3796 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -3796 (|#1| (-958 (-412 |#2|)))) (-15 -3796 (|#1| (-412 |#2|))) (-15 -3181 (|#1| |#1|)) (-15 -1410 (|#1| (-423 |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -2605 ((-3 (-2 (|:| |val| |#1|) (|:| -1993 (-569))) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-1185))) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-114))) (-15 -2177 (|#1| |#1|)) (-15 -3796 (|#1| (-1133 |#2| (-617 |#1|)))) (-15 -3741 ((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1185))) (-15 -1725 (|#1| |#1| (-114) |#1| (-1185))) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1185)))) (-15 -1725 (|#1| |#1| (-1185))) (-15 -4215 (|#1| (-1185) (-649 |#1|))) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1|)) (-15 -1712 ((-649 (-1185)) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3736 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -3796 (|#1| (-617 |#1|))) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|)) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 116 (|has| |#1| (-25)))) (-1712 (((-649 (-1185)) $) 203)) (-3767 (((-412 (-1181 $)) $ (-617 $)) 171 (|has| |#1| (-561)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 143 (|has| |#1| (-561)))) (-4355 (($ $) 144 (|has| |#1| (-561)))) (-3039 (((-112) $) 146 (|has| |#1| (-561)))) (-3663 (((-649 (-617 $)) $) 39)) (-2208 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-4296 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-1830 (($ $) 163 (|has| |#1| (-561)))) (-3764 (((-423 $) $) 164 (|has| |#1| (-561)))) (-2227 (((-112) $ $) 154 (|has| |#1| (-561)))) (-4427 (($) 104 (-2776 (|has| |#1| (-1120)) (|has| |#1| (-25))) CONST)) (-4381 (((-3 (-617 $) "failed") $) 64) (((-3 (-1185) "failed") $) 216) (((-3 (-569) "failed") $) 210 (|has| |#1| (-1046 (-569)))) (((-3 |#1| "failed") $) 207) (((-3 (-412 (-958 |#1|)) "failed") $) 169 (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) 123 (|has| |#1| (-1057))) (((-3 (-412 (-569)) "failed") $) 98 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 (((-617 $) $) 65) (((-1185) $) 217) (((-569) $) 209 (|has| |#1| (-1046 (-569)))) ((|#1| $) 208) (((-412 (-958 |#1|)) $) 170 (|has| |#1| (-561))) (((-958 |#1|) $) 124 (|has| |#1| (-1057))) (((-412 (-569)) $) 99 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-2368 (($ $ $) 158 (|has| |#1| (-561)))) (-2957 (((-694 (-569)) (-694 $)) 137 (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 136 (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 135 (|has| |#1| (-1057))) (((-694 |#1|) (-694 $)) 134 (|has| |#1| (-1057)))) (-3086 (((-3 $ "failed") $) 106 (|has| |#1| (-1120)))) (-2379 (($ $ $) 157 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 152 (|has| |#1| (-561)))) (-1473 (((-112) $) 165 (|has| |#1| (-561)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 212 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 211 (|has| |#1| (-892 (-383))))) (-2687 (($ $) 46) (($ (-649 $)) 45)) (-3810 (((-649 (-114)) $) 38)) (-3746 (((-114) (-114)) 37)) (-2349 (((-112) $) 105 (|has| |#1| (-1120)))) (-2719 (((-112) $) 17 (|has| $ (-1046 (-569))))) (-2177 (($ $) 186 (|has| |#1| (-1057)))) (-4399 (((-1133 |#1| (-617 $)) $) 187 (|has| |#1| (-1057)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 161 (|has| |#1| (-561)))) (-2341 (((-1181 $) (-617 $)) 20 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 31)) (-2391 (((-3 (-617 $) "failed") $) 41)) (-1839 (($ (-649 $)) 150 (|has| |#1| (-561))) (($ $ $) 149 (|has| |#1| (-561)))) (-3435 (((-1167) $) 10)) (-3736 (((-649 (-617 $)) $) 40)) (-1354 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-4250 (((-3 (-649 $) "failed") $) 192 (|has| |#1| (-1120)))) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) 183 (|has| |#1| (-1057)))) (-2427 (((-3 (-649 $) "failed") $) 190 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) 191 (|has| |#1| (-1120))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) 185 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) 184 (|has| |#1| (-1057)))) (-1825 (((-112) $ (-114)) 35) (((-112) $ (-1185)) 34)) (-1817 (($ $) 108 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-1427 (((-776) $) 42)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 205)) (-1835 ((|#1| $) 204)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 151 (|has| |#1| (-561)))) (-1870 (($ (-649 $)) 148 (|has| |#1| (-561))) (($ $ $) 147 (|has| |#1| (-561)))) (-1852 (((-112) $ $) 30) (((-112) $ (-1185)) 29)) (-3800 (((-423 $) $) 162 (|has| |#1| (-561)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 159 (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 153 (|has| |#1| (-561)))) (-4024 (((-112) $) 18 (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1185) (-1 $ (-649 $))) 26) (($ $ (-1185) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1185)) 197 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185))) 196 (|has| |#1| (-619 (-541)))) (($ $) 195 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1185)) 194 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1185)) 193 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) 182 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 181 (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ (-649 $))) 180 (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ $)) 179 (|has| |#1| (-1057)))) (-2431 (((-776) $) 155 (|has| |#1| (-561)))) (-1869 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 156 (|has| |#1| (-561)))) (-2190 (($ $) 44) (($ $ $) 43)) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 128 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 127 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 126 (|has| |#1| (-1057))) (($ $ (-1185)) 125 (|has| |#1| (-1057)))) (-3181 (($ $) 176 (|has| |#1| (-561)))) (-4412 (((-1133 |#1| (-617 $)) $) 177 (|has| |#1| (-561)))) (-4061 (($ $) 19 (|has| $ (-1057)))) (-1410 (((-898 (-569)) $) 214 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 213 (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) 178 (|has| |#1| (-561))) (((-541) $) 100 (|has| |#1| (-619 (-541))))) (-3476 (($ $ $) 111 (|has| |#1| (-478)))) (-2180 (($ $ $) 112 (|has| |#1| (-478)))) (-3796 (((-867) $) 12) (($ (-617 $)) 63) (($ (-1185)) 215) (($ |#1|) 206) (($ (-1133 |#1| (-617 $))) 188 (|has| |#1| (-1057))) (($ (-412 |#1|)) 174 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 173 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 172 (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) 168 (|has| |#1| (-561))) (($ $) 141 (|has| |#1| (-561))) (($ (-958 |#1|)) 122 (|has| |#1| (-1057))) (($ (-412 (-569))) 97 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569)))))) (($ (-569)) 96 (-2776 (|has| |#1| (-1057)) (|has| |#1| (-1046 (-569)))))) (-2239 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2721 (((-776)) 133 (|has| |#1| (-1057)) CONST)) (-4213 (($ $) 48) (($ (-649 $)) 47)) (-4052 (((-112) (-114)) 36)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 145 (|has| |#1| (-561)))) (-4215 (($ (-1185) $) 202) (($ (-1185) $ $) 201) (($ (-1185) $ $ $) 200) (($ (-1185) $ $ $ $) 199) (($ (-1185) (-649 $)) 198)) (-1804 (($) 115 (|has| |#1| (-25)) CONST)) (-1815 (($) 103 (|has| |#1| (-1120)) CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 132 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 131 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 130 (|has| |#1| (-1057))) (($ $ (-1185)) 129 (|has| |#1| (-1057)))) (-2920 (((-112) $ $) 6)) (-3035 (($ (-1133 |#1| (-617 $)) (-1133 |#1| (-617 $))) 175 (|has| |#1| (-561))) (($ $ $) 109 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3024 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3012 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-569)) 110 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 107 (|has| |#1| (-1120))) (($ $ (-927)) 102 (|has| |#1| (-1120)))) (* (($ (-412 (-569)) $) 167 (|has| |#1| (-561))) (($ $ (-412 (-569))) 166 (|has| |#1| (-561))) (($ |#1| $) 140 (|has| |#1| (-173))) (($ $ |#1|) 139 (|has| |#1| (-173))) (($ (-569) $) 119 (|has| |#1| (-21))) (($ (-776) $) 117 (|has| |#1| (-25))) (($ (-927) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1120)))))
+(((-435 |#1|) (-140) (-1108)) (T -435))
+((-1828 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-1185))))) (-4215 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1108)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-4 *3 (-619 (-541))))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1185))) (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-4 *3 (-619 (-541))))) (-1725 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-619 (-541))))) (-1725 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1185)) (-4 *1 (-435 *4)) (-4 *4 (-1108)) (-4 *4 (-619 (-541))))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1185)) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-619 (-541))))) (-4250 (*1 *2 *1) (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-2850 (*1 *2 *1) (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) (-4 *1 (-435 *3)))) (-2427 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-3741 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| -1435 (-569)) (|:| |var| (-617 *1)))) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-1057)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-1057)))) (-2850 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1057)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) (-4 *1 (-435 *4)))) (-2850 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-1057)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) (-4 *1 (-435 *4)))) (-2605 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| |val| *1) (|:| -1993 (-569)))) (-4 *1 (-435 *3)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-423 *1)) (-4 *1 (-435 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))) (-4412 (*1 *2 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-561)))) (-3035 (*1 *1 *2 *2) (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1108)) (-4 *4 (-561)) (-5 *2 (-412 (-1181 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-4 *3 (-1120)))))
+(-13 (-305) (-1046 (-1185)) (-890 |t#1|) (-405 |t#1|) (-416 |t#1|) (-10 -8 (-15 -1828 ((-112) $)) (-15 -1835 (|t#1| $)) (-15 -1712 ((-649 (-1185)) $)) (-15 -4215 ($ (-1185) $)) (-15 -4215 ($ (-1185) $ $)) (-15 -4215 ($ (-1185) $ $ $)) (-15 -4215 ($ (-1185) $ $ $ $)) (-15 -4215 ($ (-1185) (-649 $))) (IF (|has| |t#1| (-619 (-541))) (PROGN (-6 (-619 (-541))) (-15 -1725 ($ $ (-1185))) (-15 -1725 ($ $ (-649 (-1185)))) (-15 -1725 ($ $)) (-15 -1725 ($ $ (-114) $ (-1185))) (-15 -1725 ($ $ (-649 (-114)) (-649 $) (-1185)))) |%noBranch|) (IF (|has| |t#1| (-1120)) (PROGN (-6 (-731)) (-15 ** ($ $ (-776))) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-478)) (-6 (-478)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -3741 ((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1057)) (PROGN (-6 (-1057)) (-6 (-1046 (-958 |t#1|))) (-6 (-906 (-1185))) (-6 (-381 |t#1|)) (-15 -3796 ($ (-1133 |t#1| (-617 $)))) (-15 -4399 ((-1133 |t#1| (-617 $)) $)) (-15 -2177 ($ $)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114))) (-15 -2850 ((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185))) (-15 -2605 ((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $)) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $)))) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $))))) (-15 -1725 ($ $ (-1185) (-776) (-1 $ (-649 $)))) (-15 -1725 ($ $ (-1185) (-776) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-367)) (-6 (-1046 (-412 (-958 |t#1|)))) (-15 -1410 ($ (-423 $))) (-15 -4412 ((-1133 |t#1| (-617 $)) $)) (-15 -3181 ($ $)) (-15 -3035 ($ (-1133 |t#1| (-617 $)) (-1133 |t#1| (-617 $)))) (-15 -3796 ($ (-412 |t#1|))) (-15 -3796 ($ (-958 (-412 |t#1|)))) (-15 -3796 ($ (-412 (-958 (-412 |t#1|))))) (-15 -3767 ((-412 (-1181 $)) $ (-617 $))) (IF (|has| |t#1| (-1046 (-569))) (-6 (-1046 (-412 (-569)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-412 (-569))) |has| |#1| (-561)) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-561)) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) |has| |#1| (-561)) ((-131) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-561))) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) -2776 (|has| |#1| (-1057)) (|has| |#1| (-1046 (-569))) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1057)) ((-621 #4=(-1185)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) |has| |#1| (-561)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) |has| |#1| (-561)) ((-293) |has| |#1| (-561)) ((-310) |has| |#1| (-561)) ((-312 $) . T) ((-305) . T) ((-367) |has| |#1| (-561)) ((-381 |#1|) |has| |#1| (-1057)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) |has| |#1| (-561)) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-561)) ((-651 (-569)) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-653 #0#) |has| |#1| (-561)) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-645 #0#) |has| |#1| (-561)) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) ((-644 |#1|) |has| |#1| (-1057)) ((-722 #0#) |has| |#1| (-561)) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) -2776 (|has| |#1| (-1120)) (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-906 (-1185)) |has| |#1| (-1057)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) |has| |#1| (-561)) ((-1046 (-412 (-569))) -2776 (|has| |#1| (-1046 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) ((-1046 #1#) |has| |#1| (-561)) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #2#) . T) ((-1046 #3#) |has| |#1| (-1057)) ((-1046 #4#) . T) ((-1046 |#1|) . T) ((-1059 #0#) |has| |#1| (-561)) ((-1059 |#1|) |has| |#1| (-173)) ((-1059 $) |has| |#1| (-561)) ((-1064 #0#) |has| |#1| (-561)) ((-1064 |#1|) |has| |#1| (-173)) ((-1064 $) |has| |#1| (-561)) ((-1057) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1066) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1120) -2776 (|has| |#1| (-1120)) (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1108) . T) ((-1225) . T) ((-1229) |has| |#1| (-561)))
+((-2533 ((|#2| |#2| |#2|) 31)) (-3746 (((-114) (-114)) 43)) (-2281 ((|#2| |#2|) 63)) (-3061 ((|#2| |#2|) 66)) (-3977 ((|#2| |#2|) 30)) (-2090 ((|#2| |#2| |#2|) 33)) (-2730 ((|#2| |#2| |#2|) 35)) (-4164 ((|#2| |#2| |#2|) 32)) (-4099 ((|#2| |#2| |#2|) 34)) (-4052 (((-112) (-114)) 41)) (-4273 ((|#2| |#2|) 37)) (-1407 ((|#2| |#2|) 36)) (-2271 ((|#2| |#2|) 25)) (-2392 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2165 ((|#2| |#2| |#2|) 29)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2271 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2392 (|#2| |#2| |#2|)) (-15 -2165 (|#2| |#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -2533 (|#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2|)) (-15 -2090 (|#2| |#2| |#2|)) (-15 -4099 (|#2| |#2| |#2|)) (-15 -2730 (|#2| |#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -2281 (|#2| |#2|))) (-561) (-435 |#1|)) (T -436))
+((-2281 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3061 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4273 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1407 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2730 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4099 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2090 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4164 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2533 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2165 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2392 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2271 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-436 *3 *4)) (-4 *4 (-435 *3)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4)))))
+(-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2271 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2392 (|#2| |#2| |#2|)) (-15 -2165 (|#2| |#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -2533 (|#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2|)) (-15 -2090 (|#2| |#2| |#2|)) (-15 -4099 (|#2| |#2| |#2|)) (-15 -2730 (|#2| |#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)))
+((-1616 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1181 |#2|)) (|:| |pol2| (-1181 |#2|)) (|:| |prim| (-1181 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1181 |#2|))) (|:| |prim| (-1181 |#2|))) (-649 |#2|)) 68)))
+(((-437 |#1| |#2|) (-10 -7 (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1181 |#2|))) (|:| |prim| (-1181 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1181 |#2|)) (|:| |pol2| (-1181 |#2|)) (|:| |prim| (-1181 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-561) (-147)) (-435 |#1|)) (T -437))
+((-1616 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1181 *3)) (|:| |pol2| (-1181 *3)) (|:| |prim| (-1181 *3)))) (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1181 *5))) (|:| |prim| (-1181 *5)))) (-5 *1 (-437 *4 *5)))))
+(-10 -7 (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1181 |#2|))) (|:| |prim| (-1181 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1181 |#2|)) (|:| |pol2| (-1181 |#2|)) (|:| |prim| (-1181 |#2|))) |#2| |#2|)) |%noBranch|))
+((-3716 (((-1280)) 18)) (-3974 (((-1181 (-412 (-569))) |#2| (-617 |#2|)) 40) (((-412 (-569)) |#2|) 24)))
+(((-438 |#1| |#2|) (-10 -7 (-15 -3974 ((-412 (-569)) |#2|)) (-15 -3974 ((-1181 (-412 (-569))) |#2| (-617 |#2|))) (-15 -3716 ((-1280)))) (-13 (-561) (-1046 (-569))) (-435 |#1|)) (T -438))
+((-3716 (*1 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1280)) (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-438 *5 *3)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4)))))
+(-10 -7 (-15 -3974 ((-412 (-569)) |#2|)) (-15 -3974 ((-1181 (-412 (-569))) |#2| (-617 |#2|))) (-15 -3716 ((-1280))))
+((-4060 (((-112) $) 32)) (-2073 (((-112) $) 34)) (-3605 (((-112) $) 35)) (-3398 (((-112) $) 38)) (-4333 (((-112) $) 33)) (-3032 (((-112) $) 37)) (-3796 (((-867) $) 20) (($ (-1167)) 31) (($ (-1185)) 26) (((-1185) $) 24) (((-1112) $) 23)) (-1744 (((-112) $) 36)) (-2920 (((-112) $ $) 17)))
+(((-439) (-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1167))) (-15 -3796 ($ (-1185))) (-15 -3796 ((-1185) $)) (-15 -3796 ((-1112) $)) (-15 -4060 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3398 ((-112) $)) (-15 -1744 ((-112) $)) (-15 -2073 ((-112) $)) (-15 -2920 ((-112) $ $))))) (T -439))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-439)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-439)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-439)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2920 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1167))) (-15 -3796 ($ (-1185))) (-15 -3796 ((-1185) $)) (-15 -3796 ((-1112) $)) (-15 -4060 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3398 ((-112) $)) (-15 -1744 ((-112) $)) (-15 -2073 ((-112) $)) (-15 -2920 ((-112) $ $))))
+((-2456 (((-3 (-423 (-1181 (-412 (-569)))) "failed") |#3|) 72)) (-2726 (((-423 |#3|) |#3|) 34)) (-2553 (((-3 (-423 (-1181 (-48))) "failed") |#3|) 46 (|has| |#2| (-1046 (-48))))) (-4071 (((-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112))) |#3|) 37)))
+(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2726 ((-423 |#3|) |#3|)) (-15 -2456 ((-3 (-423 (-1181 (-412 (-569)))) "failed") |#3|)) (-15 -4071 ((-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112))) |#3|)) (IF (|has| |#2| (-1046 (-48))) (-15 -2553 ((-3 (-423 (-1181 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-561) (-1046 (-569))) (-435 |#1|) (-1251 |#2|)) (T -440))
+((-2553 (*1 *2 *3) (|partial| -12 (-4 *5 (-1046 (-48))) (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1181 (-48)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-4071 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-2456 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1181 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-2726 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))))
+(-10 -7 (-15 -2726 ((-423 |#3|) |#3|)) (-15 -2456 ((-3 (-423 (-1181 (-412 (-569)))) "failed") |#3|)) (-15 -4071 ((-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112))) |#3|)) (IF (|has| |#2| (-1046 (-48))) (-15 -2553 ((-3 (-423 (-1181 (-48))) "failed") |#3|)) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-2617 (((-1167) $ (-1167)) NIL)) (-3229 (($ $ (-1167)) NIL)) (-2358 (((-1167) $) NIL)) (-1422 (((-393) (-393) (-393)) 17) (((-393) (-393)) 15)) (-1721 (($ (-393)) NIL) (($ (-393) (-1167)) NIL)) (-3573 (((-393) $) NIL)) (-3435 (((-1167) $) NIL)) (-4065 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2856 (((-1280) (-1167)) 9)) (-3080 (((-1280) (-1167)) 10)) (-3880 (((-1280)) 11)) (-3796 (((-867) $) NIL)) (-2543 (($ $) 39)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-441) (-13 (-368 (-393) (-1167)) (-10 -7 (-15 -1422 ((-393) (-393) (-393))) (-15 -1422 ((-393) (-393))) (-15 -2856 ((-1280) (-1167))) (-15 -3080 ((-1280) (-1167))) (-15 -3880 ((-1280)))))) (T -441))
+((-1422 (*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-1422 (*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441)))) (-3880 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-441)))))
+(-13 (-368 (-393) (-1167)) (-10 -7 (-15 -1422 ((-393) (-393) (-393))) (-15 -1422 ((-393) (-393))) (-15 -2856 ((-1280) (-1167))) (-15 -3080 ((-1280) (-1167))) (-15 -3880 ((-1280)))))
+((-2417 (((-112) $ $) NIL)) (-1535 (((-3 (|:| |fst| (-439)) (|:| -2579 "void")) $) 11)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1977 (($) 35)) (-2260 (($) 41)) (-3890 (($) 37)) (-2996 (($) 39)) (-3545 (($) 36)) (-2604 (($) 38)) (-3356 (($) 40)) (-1736 (((-112) $) 8)) (-4420 (((-649 (-958 (-569))) $) 19)) (-3809 (($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-112)) 29) (($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-958 (-569))) (-112)) 30)) (-3796 (((-867) $) 24) (($ (-439)) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-442) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-439))) (-15 -1535 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -4420 ((-649 (-958 (-569))) $)) (-15 -1736 ((-112) $)) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-112))) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-958 (-569))) (-112))) (-15 -1977 ($)) (-15 -3545 ($)) (-15 -3890 ($)) (-15 -2260 ($)) (-15 -2604 ($)) (-15 -2996 ($)) (-15 -3356 ($))))) (T -442))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-442)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *1 (-442)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *3 (-649 (-1185))) (-5 *4 (-112)) (-5 *1 (-442)))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-112)) (-5 *1 (-442)))) (-1977 (*1 *1) (-5 *1 (-442))) (-3545 (*1 *1) (-5 *1 (-442))) (-3890 (*1 *1) (-5 *1 (-442))) (-2260 (*1 *1) (-5 *1 (-442))) (-2604 (*1 *1) (-5 *1 (-442))) (-2996 (*1 *1) (-5 *1 (-442))) (-3356 (*1 *1) (-5 *1 (-442))))
+(-13 (-1108) (-10 -8 (-15 -3796 ($ (-439))) (-15 -1535 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -4420 ((-649 (-958 (-569))) $)) (-15 -1736 ((-112) $)) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-112))) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-958 (-569))) (-112))) (-15 -1977 ($)) (-15 -3545 ($)) (-15 -3890 ($)) (-15 -2260 ($)) (-15 -2604 ($)) (-15 -2996 ($)) (-15 -3356 ($))))
+((-2417 (((-112) $ $) NIL)) (-3573 (((-1185) $) 8)) (-3435 (((-1167) $) 17)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 14)))
+(((-443 |#1|) (-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $)))) (-1185)) (T -443))
+((-3573 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-443 *3)) (-14 *3 *2))))
+(-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $))))
+((-2417 (((-112) $ $) NIL)) (-4331 (((-1126) $) 7)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 13)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)))
+(((-444) (-13 (-1108) (-10 -8 (-15 -4331 ((-1126) $))))) (T -444))
+((-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-444)))))
+(-13 (-1108) (-10 -8 (-15 -4331 ((-1126) $))))
+((-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-1275 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 11)))
(((-445) (-140)) (T -445))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-704))) (-4 *1 (-445)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-445)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) (-4 *1 (-445)))))
-(-13 (-400) (-10 -8 (-15 -3793 ($ (-1273 (-704)))) (-15 -3793 ($ (-649 (-333)))) (-15 -3793 ($ (-333))) (-15 -3793 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))))))
-(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
-((-4378 (((-3 $ "failed") (-1273 (-319 (-383)))) 21) (((-3 $ "failed") (-1273 (-319 (-569)))) 19) (((-3 $ "failed") (-1273 (-958 (-383)))) 17) (((-3 $ "failed") (-1273 (-958 (-569)))) 15) (((-3 $ "failed") (-1273 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-1273 (-412 (-958 (-569))))) 11)) (-3148 (($ (-1273 (-319 (-383)))) 22) (($ (-1273 (-319 (-569)))) 20) (($ (-1273 (-958 (-383)))) 18) (($ (-1273 (-958 (-569)))) 16) (($ (-1273 (-412 (-958 (-383))))) 14) (($ (-1273 (-412 (-958 (-569))))) 12)) (-3358 (((-1278) $) 7)) (-3793 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) 23)))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-704))) (-4 *1 (-445)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-445)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-445)))))
+(-13 (-400) (-10 -8 (-15 -3796 ($ (-1275 (-704)))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1225) . T))
+((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 21) (((-3 $ "failed") (-1275 (-319 (-569)))) 19) (((-3 $ "failed") (-1275 (-958 (-383)))) 17) (((-3 $ "failed") (-1275 (-958 (-569)))) 15) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 11)) (-3150 (($ (-1275 (-319 (-383)))) 22) (($ (-1275 (-319 (-569)))) 20) (($ (-1275 (-958 (-383)))) 18) (($ (-1275 (-958 (-569)))) 16) (($ (-1275 (-412 (-958 (-383))))) 14) (($ (-1275 (-412 (-958 (-569))))) 12)) (-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 23)))
(((-446) (-140)) (T -446))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-446)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333))))) (-4 *1 (-446)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446)))))
-(-13 (-400) (-10 -8 (-15 -3793 ($ (-649 (-333)))) (-15 -3793 ($ (-333))) (-15 -3793 ($ (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))) (-15 -3148 ($ (-1273 (-319 (-383))))) (-15 -4378 ((-3 $ "failed") (-1273 (-319 (-383))))) (-15 -3148 ($ (-1273 (-319 (-569))))) (-15 -4378 ((-3 $ "failed") (-1273 (-319 (-569))))) (-15 -3148 ($ (-1273 (-958 (-383))))) (-15 -4378 ((-3 $ "failed") (-1273 (-958 (-383))))) (-15 -3148 ($ (-1273 (-958 (-569))))) (-15 -4378 ((-3 $ "failed") (-1273 (-958 (-569))))) (-15 -3148 ($ (-1273 (-412 (-958 (-383)))))) (-15 -4378 ((-3 $ "failed") (-1273 (-412 (-958 (-383)))))) (-15 -3148 ($ (-1273 (-412 (-958 (-569)))))) (-15 -4378 ((-3 $ "failed") (-1273 (-412 (-958 (-569))))))))
-(((-618 (-867)) . T) ((-400) . T) ((-1223) . T))
-((-4194 (((-112)) 18)) (-4285 (((-112) (-112)) 19)) (-3135 (((-112)) 14)) (-3232 (((-112) (-112)) 15)) (-3456 (((-112)) 16)) (-3565 (((-112) (-112)) 17)) (-3921 (((-927) (-927)) 22) (((-927)) 21)) (-4011 (((-776) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569))))) 52)) (-3823 (((-927) (-927)) 24) (((-927)) 23)) (-4098 (((-2 (|:| -1542 (-569)) (|:| -1411 (-649 |#1|))) |#1|) 97)) (-1826 (((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569))))))) 178)) (-3696 (((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112)) 211)) (-3572 (((-423 |#1|) |#1| (-776) (-776)) 226) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 223) (((-423 |#1|) |#1| (-649 (-776))) 225) (((-423 |#1|) |#1| (-776)) 224) (((-423 |#1|) |#1|) 222)) (-2109 (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112)) 228) (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776)) 229) (((-3 |#1| "failed") (-927) |#1| (-649 (-776))) 231) (((-3 |#1| "failed") (-927) |#1| (-776)) 230) (((-3 |#1| "failed") (-927) |#1|) 232)) (-3796 (((-423 |#1|) |#1| (-776) (-776)) 221) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 217) (((-423 |#1|) |#1| (-649 (-776))) 219) (((-423 |#1|) |#1| (-776)) 218) (((-423 |#1|) |#1|) 216)) (-3348 (((-112) |#1|) 44)) (-2032 (((-742 (-776)) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569))))) 102)) (-3671 (((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112) (-1108 (-776)) (-776)) 215)))
-(((-447 |#1|) (-10 -7 (-15 -1826 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))))) (-15 -2032 ((-742 (-776)) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))))) (-15 -3823 ((-927))) (-15 -3823 ((-927) (-927))) (-15 -3921 ((-927))) (-15 -3921 ((-927) (-927))) (-15 -4011 ((-776) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))))) (-15 -4098 ((-2 (|:| -1542 (-569)) (|:| -1411 (-649 |#1|))) |#1|)) (-15 -4194 ((-112))) (-15 -4285 ((-112) (-112))) (-15 -3135 ((-112))) (-15 -3232 ((-112) (-112))) (-15 -3348 ((-112) |#1|)) (-15 -3456 ((-112))) (-15 -3565 ((-112) (-112))) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3796 ((-423 |#1|) |#1| (-776))) (-15 -3796 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3796 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3796 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3572 ((-423 |#1|) |#1|)) (-15 -3572 ((-423 |#1|) |#1| (-776))) (-15 -3572 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3572 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3572 ((-423 |#1|) |#1| (-776) (-776))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1|)) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -3696 ((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112))) (-15 -3671 ((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112) (-1108 (-776)) (-776)))) (-1249 (-569))) (T -447))
-((-3671 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1108 (-776))) (-5 *6 (-776)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2109 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2109 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2109 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2109 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-2109 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569))))) (-3572 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3572 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3572 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3572 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3796 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3565 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3456 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3348 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3135 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-4194 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-4098 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1542 (-569)) (|:| -1411 (-649 *3)))) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3796 *4) (|:| -3868 (-569))))) (-4 *4 (-1249 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3921 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-3823 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3796 *4) (|:| -3868 (-569))))) (-4 *4 (-1249 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| *4) (|:| -3849 (-569))))))) (-4 *4 (-1249 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4)))))
-(-10 -7 (-15 -1826 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))))) (-15 -2032 ((-742 (-776)) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))))) (-15 -3823 ((-927))) (-15 -3823 ((-927) (-927))) (-15 -3921 ((-927))) (-15 -3921 ((-927) (-927))) (-15 -4011 ((-776) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))))) (-15 -4098 ((-2 (|:| -1542 (-569)) (|:| -1411 (-649 |#1|))) |#1|)) (-15 -4194 ((-112))) (-15 -4285 ((-112) (-112))) (-15 -3135 ((-112))) (-15 -3232 ((-112) (-112))) (-15 -3348 ((-112) |#1|)) (-15 -3456 ((-112))) (-15 -3565 ((-112) (-112))) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3796 ((-423 |#1|) |#1| (-776))) (-15 -3796 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3796 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3796 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3572 ((-423 |#1|) |#1|)) (-15 -3572 ((-423 |#1|) |#1| (-776))) (-15 -3572 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3572 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3572 ((-423 |#1|) |#1| (-776) (-776))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1|)) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -2109 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -3696 ((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112))) (-15 -3671 ((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112) (-1108 (-776)) (-776))))
-((-2778 (((-569) |#2|) 52) (((-569) |#2| (-776)) 51)) (-2668 (((-569) |#2|) 67)) (-2875 ((|#3| |#2|) 26)) (-2707 ((|#3| |#2| (-927)) 15)) (-3842 ((|#3| |#2|) 16)) (-2967 ((|#3| |#2|) 9)) (-1425 ((|#3| |#2|) 10)) (-2563 ((|#3| |#2| (-927)) 74) ((|#3| |#2|) 34)) (-2468 (((-569) |#2|) 69)))
-(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2468 ((-569) |#2|)) (-15 -2563 (|#3| |#2|)) (-15 -2563 (|#3| |#2| (-927))) (-15 -2668 ((-569) |#2|)) (-15 -2778 ((-569) |#2| (-776))) (-15 -2778 ((-569) |#2|)) (-15 -2707 (|#3| |#2| (-927))) (-15 -2875 (|#3| |#2|)) (-15 -2967 (|#3| |#2|)) (-15 -1425 (|#3| |#2|)) (-15 -3842 (|#3| |#2|))) (-1055) (-1249 |#1|) (-13 (-409) (-1044 |#1|) (-367) (-1208) (-287))) (T -448))
-((-3842 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-1425 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-2967 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5)))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1249 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1249 *5)) (-4 *6 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))))) (-2668 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1249 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))) (-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5)))) (-2563 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1249 *4)) (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
-(-10 -7 (-15 -2468 ((-569) |#2|)) (-15 -2563 (|#3| |#2|)) (-15 -2563 (|#3| |#2| (-927))) (-15 -2668 ((-569) |#2|)) (-15 -2778 ((-569) |#2| (-776))) (-15 -2778 ((-569) |#2|)) (-15 -2707 (|#3| |#2| (-927))) (-15 -2875 (|#3| |#2|)) (-15 -2967 (|#3| |#2|)) (-15 -1425 (|#3| |#2|)) (-15 -3842 (|#3| |#2|)))
-((-3204 ((|#2| (-1273 |#1|)) 45)) (-1955 ((|#2| |#2| |#1|) 61)) (-3058 ((|#2| |#2| |#1|) 53)) (-2248 ((|#2| |#2|) 49)) (-2416 (((-112) |#2|) 36)) (-2189 (((-649 |#2|) (-927) (-423 |#2|)) 24)) (-2109 ((|#2| (-927) (-423 |#2|)) 28)) (-2032 (((-742 (-776)) (-423 |#2|)) 33)))
-(((-449 |#1| |#2|) (-10 -7 (-15 -2416 ((-112) |#2|)) (-15 -3204 (|#2| (-1273 |#1|))) (-15 -2248 (|#2| |#2|)) (-15 -3058 (|#2| |#2| |#1|)) (-15 -1955 (|#2| |#2| |#1|)) (-15 -2032 ((-742 (-776)) (-423 |#2|))) (-15 -2109 (|#2| (-927) (-423 |#2|))) (-15 -2189 ((-649 |#2|) (-927) (-423 |#2|)))) (-1055) (-1249 |#1|)) (T -449))
-((-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-1055)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1249 *5)) (-5 *1 (-449 *5 *2)) (-4 *5 (-1055)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-423 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1055)) (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5)))) (-1955 (*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))) (-3058 (*1 *2 *2 *3) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-1055)) (-4 *2 (-1249 *4)) (-5 *1 (-449 *4 *2)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -2416 ((-112) |#2|)) (-15 -3204 (|#2| (-1273 |#1|))) (-15 -2248 (|#2| |#2|)) (-15 -3058 (|#2| |#2| |#1|)) (-15 -1955 (|#2| |#2| |#1|)) (-15 -2032 ((-742 (-776)) (-423 |#2|))) (-15 -2109 (|#2| (-927) (-423 |#2|))) (-15 -2189 ((-649 |#2|) (-927) (-423 |#2|))))
-((-2420 (((-776)) 59)) (-1594 (((-776)) 29 (|has| |#1| (-409))) (((-776) (-776)) 28 (|has| |#1| (-409)))) (-1504 (((-569) |#1|) 25 (|has| |#1| (-409)))) (-1405 (((-569) |#1|) 27 (|has| |#1| (-409)))) (-2341 (((-776)) 58) (((-776) (-776)) 57)) (-2265 ((|#1| (-776) (-569)) 37)) (-1321 (((-1278)) 61)))
-(((-450 |#1|) (-10 -7 (-15 -2265 (|#1| (-776) (-569))) (-15 -2341 ((-776) (-776))) (-15 -2341 ((-776))) (-15 -2420 ((-776))) (-15 -1321 ((-1278))) (IF (|has| |#1| (-409)) (PROGN (-15 -1405 ((-569) |#1|)) (-15 -1504 ((-569) |#1|)) (-15 -1594 ((-776) (-776))) (-15 -1594 ((-776)))) |%noBranch|)) (-1055)) (T -450))
-((-1594 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-1504 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))) (-1321 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2420 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2341 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2341 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1055)))))
-(-10 -7 (-15 -2265 (|#1| (-776) (-569))) (-15 -2341 ((-776) (-776))) (-15 -2341 ((-776))) (-15 -2420 ((-776))) (-15 -1321 ((-1278))) (IF (|has| |#1| (-409)) (PROGN (-15 -1405 ((-569) |#1|)) (-15 -1504 ((-569) |#1|)) (-15 -1594 ((-776) (-776))) (-15 -1594 ((-776)))) |%noBranch|))
-((-2098 (((-649 (-569)) (-569)) 76)) (-4073 (((-112) (-170 (-569))) 82)) (-3796 (((-423 (-170 (-569))) (-170 (-569))) 75)))
-(((-451) (-10 -7 (-15 -3796 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -2098 ((-649 (-569)) (-569))) (-15 -4073 ((-112) (-170 (-569)))))) (T -451))
-((-4073 (*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451)))) (-2098 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-423 (-170 (-569)))) (-5 *1 (-451)) (-5 *3 (-170 (-569))))))
-(-10 -7 (-15 -3796 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -2098 ((-649 (-569)) (-569))) (-15 -4073 ((-112) (-170 (-569)))))
-((-2186 ((|#4| |#4| (-649 |#4|)) 82)) (-2272 (((-649 |#4|) (-649 |#4|) (-1165) (-1165)) 22) (((-649 |#4|) (-649 |#4|) (-1165)) 21) (((-649 |#4|) (-649 |#4|)) 13)))
-(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2186 (|#4| |#4| (-649 |#4|))) (-15 -2272 ((-649 |#4|) (-649 |#4|))) (-15 -2272 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -2272 ((-649 |#4|) (-649 |#4|) (-1165) (-1165)))) (-310) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -452))
-((-2272 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2272 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6)))) (-2186 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2186 (|#4| |#4| (-649 |#4|))) (-15 -2272 ((-649 |#4|) (-649 |#4|))) (-15 -2272 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -2272 ((-649 |#4|) (-649 |#4|) (-1165) (-1165))))
-((-2427 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 89) (((-649 (-649 |#4|)) (-649 |#4|)) 88) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112)) 82) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|)) 83)) (-2339 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 55) (((-649 (-649 |#4|)) (-649 |#4|)) 77)))
-(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2339 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -2339 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|) (-112)))) (-13 (-310) (-147)) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -453))
-((-2427 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2427 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-2427 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-2339 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
-(-10 -7 (-15 -2339 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -2339 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -2427 ((-649 (-649 |#4|)) (-649 |#4|) (-112))))
-((-3044 (((-776) |#4|) 12)) (-3333 (((-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|)))) 39)) (-4347 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4281 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1456 ((|#4| |#4| (-649 |#4|)) 54)) (-3325 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|)) 96)) (-1570 (((-1278) |#4|) 59)) (-3931 (((-1278) (-649 |#4|)) 69)) (-3734 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569)) 66)) (-4019 (((-1278) (-569)) 112)) (-1333 (((-649 |#4|) (-649 |#4|)) 104)) (-4203 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|)) |#4| (-776)) 31)) (-1461 (((-569) |#4|) 109)) (-2977 ((|#4| |#4|) 37)) (-1533 (((-649 |#4|) (-649 |#4|) (-569) (-569)) 74)) (-3833 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569)) 125)) (-4106 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1637 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1945 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1860 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1565 (((-112) |#2| |#2|) 75)) (-1765 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-1659 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2515 ((|#4| |#4| (-649 |#4|)) 97)))
-(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2515 (|#4| |#4| (-649 |#4|))) (-15 -1456 (|#4| |#4| (-649 |#4|))) (-15 -1533 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -1637 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1565 ((-112) |#2| |#2|)) (-15 -1659 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1765 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1860 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1945 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3325 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -2977 (|#4| |#4|)) (-15 -3333 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|))))) (-15 -4281 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4347 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1333 ((-649 |#4|) (-649 |#4|))) (-15 -1461 ((-569) |#4|)) (-15 -1570 ((-1278) |#4|)) (-15 -3734 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -3833 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -3931 ((-1278) (-649 |#4|))) (-15 -4019 ((-1278) (-569))) (-15 -4106 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4203 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|)) |#4| (-776))) (-15 -3044 ((-776) |#4|))) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -454))
-((-3044 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-4203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -3466 *4))) (-5 *5 (-776)) (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-454 *6 *7 *8 *4)))) (-4106 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *7)))) (-3833 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-3734 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-1570 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-4347 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2)) (-4 *4 (-457)) (-4 *6 (-855)))) (-3333 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 *3)))) (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3)))) (-2977 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-454 *5 *6 *7 *3)))) (-1945 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *4 *3 *5 *6)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-1765 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *3)))) (-1659 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-1565 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-1533 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *7)))) (-1456 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))) (-2515 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2515 (|#4| |#4| (-649 |#4|))) (-15 -1456 (|#4| |#4| (-649 |#4|))) (-15 -1533 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -1637 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1565 ((-112) |#2| |#2|)) (-15 -1659 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1765 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1860 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1945 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3325 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -2977 (|#4| |#4|)) (-15 -3333 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|))))) (-15 -4281 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4347 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1333 ((-649 |#4|) (-649 |#4|))) (-15 -1461 ((-569) |#4|)) (-15 -1570 ((-1278) |#4|)) (-15 -3734 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -3833 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -3931 ((-1278) (-649 |#4|))) (-15 -4019 ((-1278) (-569))) (-15 -4106 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4203 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -3466 |#4|)) |#4| (-776))) (-15 -3044 ((-776) |#4|)))
-((-4079 ((|#4| |#4| (-649 |#4|)) 20 (|has| |#1| (-367)))) (-1908 (((-649 |#4|) (-649 |#4|) (-1165) (-1165)) 46) (((-649 |#4|) (-649 |#4|) (-1165)) 45) (((-649 |#4|) (-649 |#4|)) 34)))
-(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1908 ((-649 |#4|) (-649 |#4|))) (-15 -1908 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -1908 ((-649 |#4|) (-649 |#4|) (-1165) (-1165))) (IF (|has| |#1| (-367)) (-15 -4079 (|#4| |#4| (-649 |#4|))) |%noBranch|)) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -455))
-((-4079 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))) (-1908 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-1908 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1908 ((-649 |#4|) (-649 |#4|))) (-15 -1908 ((-649 |#4|) (-649 |#4|) (-1165))) (-15 -1908 ((-649 |#4|) (-649 |#4|) (-1165) (-1165))) (IF (|has| |#1| (-367)) (-15 -4079 (|#4| |#4| (-649 |#4|))) |%noBranch|))
-((-1835 (($ $ $) 14) (($ (-649 $)) 21)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 46)) (-1864 (($ $ $) NIL) (($ (-649 $)) 22)))
-(((-456 |#1|) (-10 -8 (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1835 (|#1| (-649 |#1|))) (-15 -1835 (|#1| |#1| |#1|)) (-15 -1864 (|#1| (-649 |#1|))) (-15 -1864 (|#1| |#1| |#1|))) (-457)) (T -456))
-NIL
-(-10 -8 (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1835 (|#1| (-649 |#1|))) (-15 -1835 (|#1| |#1| |#1|)) (-15 -1864 (|#1| (-649 |#1|))) (-15 -1864 (|#1| |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-2405 (((-3 $ "failed") $ $) 48)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-446)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446)))))
+(-13 (-400) (-10 -8 (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3150 ($ (-1275 (-319 (-383))))) (-15 -4381 ((-3 $ "failed") (-1275 (-319 (-383))))) (-15 -3150 ($ (-1275 (-319 (-569))))) (-15 -4381 ((-3 $ "failed") (-1275 (-319 (-569))))) (-15 -3150 ($ (-1275 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-1275 (-958 (-383))))) (-15 -3150 ($ (-1275 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-1275 (-958 (-569))))) (-15 -3150 ($ (-1275 (-412 (-958 (-383)))))) (-15 -4381 ((-3 $ "failed") (-1275 (-412 (-958 (-383)))))) (-15 -3150 ($ (-1275 (-412 (-958 (-569)))))) (-15 -4381 ((-3 $ "failed") (-1275 (-412 (-958 (-569))))))))
+(((-618 (-867)) . T) ((-400) . T) ((-1225) . T))
+((-3255 (((-112)) 18)) (-2897 (((-112) (-112)) 19)) (-1714 (((-112)) 14)) (-3292 (((-112) (-112)) 15)) (-1710 (((-112)) 16)) (-3330 (((-112) (-112)) 17)) (-3651 (((-927) (-927)) 22) (((-927)) 21)) (-2065 (((-776) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569))))) 52)) (-3976 (((-927) (-927)) 24) (((-927)) 23)) (-1761 (((-2 (|:| -3335 (-569)) (|:| -4360 (-649 |#1|))) |#1|) 97)) (-4192 (((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569))))))) 178)) (-2138 (((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112)) 211)) (-3386 (((-423 |#1|) |#1| (-776) (-776)) 226) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 223) (((-423 |#1|) |#1| (-649 (-776))) 225) (((-423 |#1|) |#1| (-776)) 224) (((-423 |#1|) |#1|) 222)) (-4034 (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112)) 228) (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776)) 229) (((-3 |#1| "failed") (-927) |#1| (-649 (-776))) 231) (((-3 |#1| "failed") (-927) |#1| (-776)) 230) (((-3 |#1| "failed") (-927) |#1|) 232)) (-3800 (((-423 |#1|) |#1| (-776) (-776)) 221) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 217) (((-423 |#1|) |#1| (-649 (-776))) 219) (((-423 |#1|) |#1| (-776)) 218) (((-423 |#1|) |#1|) 216)) (-1932 (((-112) |#1|) 44)) (-1327 (((-742 (-776)) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569))))) 102)) (-3102 (((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112) (-1110 (-776)) (-776)) 215)))
+(((-447 |#1|) (-10 -7 (-15 -4192 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))))) (-15 -1327 ((-742 (-776)) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -3976 ((-927))) (-15 -3976 ((-927) (-927))) (-15 -3651 ((-927))) (-15 -3651 ((-927) (-927))) (-15 -2065 ((-776) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -1761 ((-2 (|:| -3335 (-569)) (|:| -4360 (-649 |#1|))) |#1|)) (-15 -3255 ((-112))) (-15 -2897 ((-112) (-112))) (-15 -1714 ((-112))) (-15 -3292 ((-112) (-112))) (-15 -1932 ((-112) |#1|)) (-15 -1710 ((-112))) (-15 -3330 ((-112) (-112))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1| (-776))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3800 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1| (-776))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3386 ((-423 |#1|) |#1| (-776) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1|)) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112))) (-15 -3102 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112) (-1110 (-776)) (-776)))) (-1251 (-569))) (T -447))
+((-3102 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1110 (-776))) (-5 *6 (-776)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-3386 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1710 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1932 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1714 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-2897 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3255 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1761 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3335 (-569)) (|:| -4360 (-649 *3)))) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569))))) (-4 *4 (-1251 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3651 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3976 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3976 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569))))) (-4 *4 (-1251 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *4) (|:| -4180 (-569))))))) (-4 *4 (-1251 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4)))))
+(-10 -7 (-15 -4192 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))))) (-15 -1327 ((-742 (-776)) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -3976 ((-927))) (-15 -3976 ((-927) (-927))) (-15 -3651 ((-927))) (-15 -3651 ((-927) (-927))) (-15 -2065 ((-776) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -1761 ((-2 (|:| -3335 (-569)) (|:| -4360 (-649 |#1|))) |#1|)) (-15 -3255 ((-112))) (-15 -2897 ((-112) (-112))) (-15 -1714 ((-112))) (-15 -3292 ((-112) (-112))) (-15 -1932 ((-112) |#1|)) (-15 -1710 ((-112))) (-15 -3330 ((-112) (-112))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1| (-776))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3800 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1| (-776))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3386 ((-423 |#1|) |#1| (-776) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1|)) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112))) (-15 -3102 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112) (-1110 (-776)) (-776))))
+((-3226 (((-569) |#2|) 52) (((-569) |#2| (-776)) 51)) (-1578 (((-569) |#2|) 67)) (-2961 ((|#3| |#2|) 26)) (-3829 ((|#3| |#2| (-927)) 15)) (-3845 ((|#3| |#2|) 16)) (-2473 ((|#3| |#2|) 9)) (-1427 ((|#3| |#2|) 10)) (-3010 ((|#3| |#2| (-927)) 74) ((|#3| |#2|) 34)) (-3344 (((-569) |#2|) 69)))
+(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -3344 ((-569) |#2|)) (-15 -3010 (|#3| |#2|)) (-15 -3010 (|#3| |#2| (-927))) (-15 -1578 ((-569) |#2|)) (-15 -3226 ((-569) |#2| (-776))) (-15 -3226 ((-569) |#2|)) (-15 -3829 (|#3| |#2| (-927))) (-15 -2961 (|#3| |#2|)) (-15 -2473 (|#3| |#2|)) (-15 -1427 (|#3| |#2|)) (-15 -3845 (|#3| |#2|))) (-1057) (-1251 |#1|) (-13 (-409) (-1046 |#1|) (-367) (-1210) (-287))) (T -448))
+((-3845 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5)))) (-3226 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1251 *4)) (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))) (-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1251 *5)) (-4 *6 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1251 *4)) (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))) (-3010 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5)))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1251 *4)) (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))))
+(-10 -7 (-15 -3344 ((-569) |#2|)) (-15 -3010 (|#3| |#2|)) (-15 -3010 (|#3| |#2| (-927))) (-15 -1578 ((-569) |#2|)) (-15 -3226 ((-569) |#2| (-776))) (-15 -3226 ((-569) |#2|)) (-15 -3829 (|#3| |#2| (-927))) (-15 -2961 (|#3| |#2|)) (-15 -2473 (|#3| |#2|)) (-15 -1427 (|#3| |#2|)) (-15 -3845 (|#3| |#2|)))
+((-4258 ((|#2| (-1275 |#1|)) 45)) (-2973 ((|#2| |#2| |#1|) 61)) (-2164 ((|#2| |#2| |#1|) 53)) (-2251 ((|#2| |#2|) 49)) (-4107 (((-112) |#2|) 36)) (-3619 (((-649 |#2|) (-927) (-423 |#2|)) 24)) (-4034 ((|#2| (-927) (-423 |#2|)) 28)) (-1327 (((-742 (-776)) (-423 |#2|)) 33)))
+(((-449 |#1| |#2|) (-10 -7 (-15 -4107 ((-112) |#2|)) (-15 -4258 (|#2| (-1275 |#1|))) (-15 -2251 (|#2| |#2|)) (-15 -2164 (|#2| |#2| |#1|)) (-15 -2973 (|#2| |#2| |#1|)) (-15 -1327 ((-742 (-776)) (-423 |#2|))) (-15 -4034 (|#2| (-927) (-423 |#2|))) (-15 -3619 ((-649 |#2|) (-927) (-423 |#2|)))) (-1057) (-1251 |#1|)) (T -449))
+((-3619 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-1057)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1251 *5)) (-5 *1 (-449 *5 *2)) (-4 *5 (-1057)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-423 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1057)) (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5)))) (-2973 (*1 *2 *2 *3) (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))) (-2164 (*1 *2 *2 *3) (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-1057)) (-4 *2 (-1251 *4)) (-5 *1 (-449 *4 *2)))) (-4107 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -4107 ((-112) |#2|)) (-15 -4258 (|#2| (-1275 |#1|))) (-15 -2251 (|#2| |#2|)) (-15 -2164 (|#2| |#2| |#1|)) (-15 -2973 (|#2| |#2| |#1|)) (-15 -1327 ((-742 (-776)) (-423 |#2|))) (-15 -4034 (|#2| (-927) (-423 |#2|))) (-15 -3619 ((-649 |#2|) (-927) (-423 |#2|))))
+((-4147 (((-776)) 59)) (-2574 (((-776)) 29 (|has| |#1| (-409))) (((-776) (-776)) 28 (|has| |#1| (-409)))) (-4187 (((-569) |#1|) 25 (|has| |#1| (-409)))) (-1425 (((-569) |#1|) 27 (|has| |#1| (-409)))) (-1493 (((-776)) 58) (((-776) (-776)) 57)) (-1941 ((|#1| (-776) (-569)) 37)) (-1706 (((-1280)) 61)))
+(((-450 |#1|) (-10 -7 (-15 -1941 (|#1| (-776) (-569))) (-15 -1493 ((-776) (-776))) (-15 -1493 ((-776))) (-15 -4147 ((-776))) (-15 -1706 ((-1280))) (IF (|has| |#1| (-409)) (PROGN (-15 -1425 ((-569) |#1|)) (-15 -4187 ((-569) |#1|)) (-15 -2574 ((-776) (-776))) (-15 -2574 ((-776)))) |%noBranch|)) (-1057)) (T -450))
+((-2574 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-2574 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-4187 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-1706 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-4147 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-1493 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1057)))))
+(-10 -7 (-15 -1941 (|#1| (-776) (-569))) (-15 -1493 ((-776) (-776))) (-15 -1493 ((-776))) (-15 -4147 ((-776))) (-15 -1706 ((-1280))) (IF (|has| |#1| (-409)) (PROGN (-15 -1425 ((-569) |#1|)) (-15 -4187 ((-569) |#1|)) (-15 -2574 ((-776) (-776))) (-15 -2574 ((-776)))) |%noBranch|))
+((-3933 (((-649 (-569)) (-569)) 76)) (-1473 (((-112) (-170 (-569))) 82)) (-3800 (((-423 (-170 (-569))) (-170 (-569))) 75)))
+(((-451) (-10 -7 (-15 -3800 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -3933 ((-649 (-569)) (-569))) (-15 -1473 ((-112) (-170 (-569)))))) (T -451))
+((-1473 (*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569)))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 (-170 (-569)))) (-5 *1 (-451)) (-5 *3 (-170 (-569))))))
+(-10 -7 (-15 -3800 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -3933 ((-649 (-569)) (-569))) (-15 -1473 ((-112) (-170 (-569)))))
+((-3582 ((|#4| |#4| (-649 |#4|)) 82)) (-2003 (((-649 |#4|) (-649 |#4|) (-1167) (-1167)) 22) (((-649 |#4|) (-649 |#4|) (-1167)) 21) (((-649 |#4|) (-649 |#4|)) 13)))
+(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3582 (|#4| |#4| (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167) (-1167)))) (-310) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -452))
+((-2003 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2003 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3582 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3582 (|#4| |#4| (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167) (-1167))))
+((-4216 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 89) (((-649 (-649 |#4|)) (-649 |#4|)) 88) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112)) 82) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|)) 83)) (-1471 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 55) (((-649 (-649 |#4|)) (-649 |#4|)) 77)))
+(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-112)))) (-13 (-310) (-147)) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -453))
+((-4216 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-4216 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-4216 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-4216 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(-10 -7 (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-112))))
+((-2048 (((-776) |#4|) 12)) (-2991 (((-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)))) 39)) (-2235 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2855 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3745 ((|#4| |#4| (-649 |#4|)) 54)) (-2923 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|)) 96)) (-2371 (((-1280) |#4|) 59)) (-3759 (((-1280) (-649 |#4|)) 69)) (-2457 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569)) 66)) (-2144 (((-1280) (-569)) 112)) (-1834 (((-649 |#4|) (-649 |#4|)) 104)) (-3363 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)) |#4| (-776)) 31)) (-3787 (((-569) |#4|) 109)) (-2570 ((|#4| |#4|) 37)) (-3234 (((-649 |#4|) (-649 |#4|) (-569) (-569)) 74)) (-4056 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569)) 125)) (-1838 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1844 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2861 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3252 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3617 (((-112) |#2| |#2|) 75)) (-1792 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2043 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2538 ((|#4| |#4| (-649 |#4|)) 97)))
+(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2538 (|#4| |#4| (-649 |#4|))) (-15 -3745 (|#4| |#4| (-649 |#4|))) (-15 -3234 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -1844 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3617 ((-112) |#2| |#2|)) (-15 -2043 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1792 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3252 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2861 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2923 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -2570 (|#4| |#4|)) (-15 -2991 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))))) (-15 -2855 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2235 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1834 ((-649 |#4|) (-649 |#4|))) (-15 -3787 ((-569) |#4|)) (-15 -2371 ((-1280) |#4|)) (-15 -2457 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -4056 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -3759 ((-1280) (-649 |#4|))) (-15 -2144 ((-1280) (-569))) (-15 -1838 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)) |#4| (-776))) (-15 -2048 ((-776) |#4|))) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -454))
+((-2048 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-3363 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -1814 *4))) (-5 *5 (-776)) (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-454 *6 *7 *8 *4)))) (-1838 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *7)))) (-4056 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-2457 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-2371 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-2235 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2)) (-4 *4 (-457)) (-4 *6 (-855)))) (-2991 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 *3)))) (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-454 *5 *6 *7 *3)))) (-2861 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *4 *3 *5 *6)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-1792 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *3)))) (-2043 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-3617 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-3234 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *7)))) (-3745 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))) (-2538 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2538 (|#4| |#4| (-649 |#4|))) (-15 -3745 (|#4| |#4| (-649 |#4|))) (-15 -3234 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -1844 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3617 ((-112) |#2| |#2|)) (-15 -2043 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1792 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3252 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2861 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2923 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -2570 (|#4| |#4|)) (-15 -2991 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))))) (-15 -2855 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2235 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1834 ((-649 |#4|) (-649 |#4|))) (-15 -3787 ((-569) |#4|)) (-15 -2371 ((-1280) |#4|)) (-15 -2457 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -4056 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -3759 ((-1280) (-649 |#4|))) (-15 -2144 ((-1280) (-569))) (-15 -1838 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)) |#4| (-776))) (-15 -2048 ((-776) |#4|)))
+((-1540 ((|#4| |#4| (-649 |#4|)) 20 (|has| |#1| (-367)))) (-2454 (((-649 |#4|) (-649 |#4|) (-1167) (-1167)) 46) (((-649 |#4|) (-649 |#4|) (-1167)) 45) (((-649 |#4|) (-649 |#4|)) 34)))
+(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2454 ((-649 |#4|) (-649 |#4|))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167) (-1167))) (IF (|has| |#1| (-367)) (-15 -1540 (|#4| |#4| (-649 |#4|))) |%noBranch|)) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -455))
+((-1540 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))) (-2454 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2454 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2454 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2454 ((-649 |#4|) (-649 |#4|))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167) (-1167))) (IF (|has| |#1| (-367)) (-15 -1540 (|#4| |#4| (-649 |#4|))) |%noBranch|))
+((-1839 (($ $ $) 14) (($ (-649 $)) 21)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 46)) (-1870 (($ $ $) NIL) (($ (-649 $)) 22)))
+(((-456 |#1|) (-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -1839 (|#1| (-649 |#1|))) (-15 -1839 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|))) (-457)) (T -456))
+NIL
+(-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -1839 (|#1| (-649 |#1|))) (-15 -1839 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-457) (-140)) (T -457))
-((-1864 (*1 *1 *1 *1) (-4 *1 (-457))) (-1864 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-1835 (*1 *1 *1 *1) (-4 *1 (-457))) (-1835 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-457)))))
-(-13 (-561) (-10 -8 (-15 -1864 ($ $ $)) (-15 -1864 ($ (-649 $))) (-15 -1835 ($ $ $)) (-15 -1835 ($ (-649 $))) (-15 -3386 ((-1179 $) (-1179 $) (-1179 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1934 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2870 (((-1273 (-694 (-412 (-958 |#1|)))) (-1273 $)) NIL) (((-1273 (-694 (-412 (-958 |#1|))))) NIL)) (-2897 (((-1273 $)) NIL)) (-4188 (($) NIL T CONST)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL)) (-1856 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-4207 (((-694 (-412 (-958 |#1|))) (-1273 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-2667 (((-412 (-958 |#1|)) $) NIL)) (-4023 (((-694 (-412 (-958 |#1|))) $ (-1273 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-3413 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2788 (((-1179 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1179 (-412 (-958 |#1|)))) 92 (|has| |#1| (-561)))) (-3727 (($ $ (-927)) NIL)) (-2449 (((-412 (-958 |#1|)) $) NIL)) (-2024 (((-1179 (-412 (-958 |#1|))) $) 90 (|has| (-412 (-958 |#1|)) (-561)))) (-3161 (((-412 (-958 |#1|)) (-1273 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-3519 (((-1179 (-412 (-958 |#1|))) $) NIL)) (-4051 (((-112)) NIL)) (-3390 (($ (-1273 (-412 (-958 |#1|))) (-1273 $)) 116) (($ (-1273 (-412 (-958 |#1|)))) NIL)) (-2888 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3975 (((-927)) NIL)) (-1816 (((-112)) NIL)) (-2760 (($ $ (-927)) NIL)) (-1325 (((-112)) NIL)) (-2317 (((-112)) NIL)) (-1575 (((-112)) NIL)) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL)) (-1949 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-4298 (((-694 (-412 (-958 |#1|))) (-1273 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-2789 (((-412 (-958 |#1|)) $) NIL)) (-4109 (((-694 (-412 (-958 |#1|))) $ (-1273 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-3508 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2030 (((-1179 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1179 (-412 (-958 |#1|)))) 91 (|has| |#1| (-561)))) (-3627 (($ $ (-927)) NIL)) (-2551 (((-412 (-958 |#1|)) $) NIL)) (-2123 (((-1179 (-412 (-958 |#1|))) $) 87 (|has| (-412 (-958 |#1|)) (-561)))) (-3266 (((-412 (-958 |#1|)) (-1273 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-3635 (((-1179 (-412 (-958 |#1|))) $) NIL)) (-4175 (((-112)) NIL)) (-1550 (((-1165) $) NIL)) (-4342 (((-112)) NIL)) (-1452 (((-112)) NIL)) (-1699 (((-112)) NIL)) (-3545 (((-1126) $) NIL)) (-3374 (((-412 (-958 |#1|)) $ $) 78 (|has| |#1| (-561)))) (-2538 (((-412 (-958 |#1|)) $) 102 (|has| |#1| (-561)))) (-2429 (((-412 (-958 |#1|)) $) 106 (|has| |#1| (-561)))) (-2669 (((-1179 (-412 (-958 |#1|))) $) 96 (|has| |#1| (-561)))) (-3243 (((-412 (-958 |#1|))) 79 (|has| |#1| (-561)))) (-3614 (((-412 (-958 |#1|)) $ $) 71 (|has| |#1| (-561)))) (-1842 (((-412 (-958 |#1|)) $) 101 (|has| |#1| (-561)))) (-2896 (((-412 (-958 |#1|)) $) 105 (|has| |#1| (-561)))) (-1937 (((-1179 (-412 (-958 |#1|))) $) 95 (|has| |#1| (-561)))) (-3491 (((-412 (-958 |#1|))) 75 (|has| |#1| (-561)))) (-2128 (($) 112) (($ (-1183)) 120) (($ (-1273 (-1183))) 119) (($ (-1273 $)) 107) (($ (-1183) (-1273 $)) 118) (($ (-1273 (-1183)) (-1273 $)) 117)) (-3930 (((-112)) NIL)) (-1866 (((-412 (-958 |#1|)) $ (-569)) NIL)) (-2960 (((-1273 (-412 (-958 |#1|))) $ (-1273 $)) 109) (((-694 (-412 (-958 |#1|))) (-1273 $) (-1273 $)) NIL) (((-1273 (-412 (-958 |#1|))) $) 45) (((-694 (-412 (-958 |#1|))) (-1273 $)) NIL)) (-1408 (((-1273 (-412 (-958 |#1|))) $) NIL) (($ (-1273 (-412 (-958 |#1|)))) 42)) (-3146 (((-649 (-958 (-412 (-958 |#1|)))) (-1273 $)) NIL) (((-649 (-958 (-412 (-958 |#1|))))) NIL) (((-649 (-958 |#1|)) (-1273 $)) 110 (|has| |#1| (-561))) (((-649 (-958 |#1|))) 111 (|has| |#1| (-561)))) (-2292 (($ $ $) NIL)) (-3399 (((-112)) NIL)) (-3793 (((-867) $) NIL) (($ (-1273 (-412 (-958 |#1|)))) NIL)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) 67)) (-2220 (((-649 (-1273 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2358 (($ $ $ $) NIL)) (-3158 (((-112)) NIL)) (-3448 (($ (-694 (-412 (-958 |#1|))) $) NIL)) (-2205 (($ $ $) NIL)) (-3264 (((-112)) NIL)) (-4284 (((-112)) NIL)) (-3821 (((-112)) NIL)) (-1803 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) 108)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 63) (($ $ (-412 (-958 |#1|))) NIL) (($ (-412 (-958 |#1|)) $) NIL) (($ (-1148 |#2| (-412 (-958 |#1|))) $) NIL)))
-(((-458 |#1| |#2| |#3| |#4|) (-13 (-422 (-412 (-958 |#1|))) (-653 (-1148 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -3793 ($ (-1273 (-412 (-958 |#1|))))) (-15 -2321 ((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed"))) (-15 -2225 ((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed"))) (-15 -2128 ($)) (-15 -2128 ($ (-1183))) (-15 -2128 ($ (-1273 (-1183)))) (-15 -2128 ($ (-1273 $))) (-15 -2128 ($ (-1183) (-1273 $))) (-15 -2128 ($ (-1273 (-1183)) (-1273 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -2030 ((-1179 (-412 (-958 |#1|))))) (-15 -1937 ((-1179 (-412 (-958 |#1|))) $)) (-15 -1842 ((-412 (-958 |#1|)) $)) (-15 -2896 ((-412 (-958 |#1|)) $)) (-15 -2788 ((-1179 (-412 (-958 |#1|))))) (-15 -2669 ((-1179 (-412 (-958 |#1|))) $)) (-15 -2538 ((-412 (-958 |#1|)) $)) (-15 -2429 ((-412 (-958 |#1|)) $)) (-15 -3614 ((-412 (-958 |#1|)) $ $)) (-15 -3491 ((-412 (-958 |#1|)))) (-15 -3374 ((-412 (-958 |#1|)) $ $)) (-15 -3243 ((-412 (-958 |#1|)))) (-15 -3146 ((-649 (-958 |#1|)) (-1273 $))) (-15 -3146 ((-649 (-958 |#1|))))) |%noBranch|))) (-173) (-927) (-649 (-1183)) (-1273 (-694 |#1|))) (T -458))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 *3)))) (-4 *3 (-173)) (-14 *6 (-1273 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))))) (-2321 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -1903 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2225 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -1903 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2128 (*1 *1) (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927)) (-14 *4 (-649 (-1183))) (-14 *5 (-1273 (-694 *2))))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1273 (-694 *3))))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-1273 (-1183))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-1273 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2128 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 *2)) (-14 *7 (-1273 (-694 *4))))) (-2128 (*1 *1 *2 *3) (-12 (-5 *2 (-1273 (-1183))) (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4))))) (-2030 (*1 *2) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-1842 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2788 (*1 *2) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-3614 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-3491 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-3374 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-3243 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4))))) (-3146 (*1 *2) (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(-13 (-422 (-412 (-958 |#1|))) (-653 (-1148 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -3793 ($ (-1273 (-412 (-958 |#1|))))) (-15 -2321 ((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed"))) (-15 -2225 ((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed"))) (-15 -2128 ($)) (-15 -2128 ($ (-1183))) (-15 -2128 ($ (-1273 (-1183)))) (-15 -2128 ($ (-1273 $))) (-15 -2128 ($ (-1183) (-1273 $))) (-15 -2128 ($ (-1273 (-1183)) (-1273 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -2030 ((-1179 (-412 (-958 |#1|))))) (-15 -1937 ((-1179 (-412 (-958 |#1|))) $)) (-15 -1842 ((-412 (-958 |#1|)) $)) (-15 -2896 ((-412 (-958 |#1|)) $)) (-15 -2788 ((-1179 (-412 (-958 |#1|))))) (-15 -2669 ((-1179 (-412 (-958 |#1|))) $)) (-15 -2538 ((-412 (-958 |#1|)) $)) (-15 -2429 ((-412 (-958 |#1|)) $)) (-15 -3614 ((-412 (-958 |#1|)) $ $)) (-15 -3491 ((-412 (-958 |#1|)))) (-15 -3374 ((-412 (-958 |#1|)) $ $)) (-15 -3243 ((-412 (-958 |#1|)))) (-15 -3146 ((-649 (-958 |#1|)) (-1273 $))) (-15 -3146 ((-649 (-958 |#1|))))) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 18)) (-1710 (((-649 (-869 |#1|)) $) 90)) (-3763 (((-1179 $) $ (-869 |#1|)) 55) (((-1179 |#2|) $) 140)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-3087 (($ $) NIL (|has| |#2| (-561)))) (-2883 (((-112) $) NIL (|has| |#2| (-561)))) (-3605 (((-776) $) 27) (((-776) $ (-649 (-869 |#1|))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-2078 (($ $) NIL (|has| |#2| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#2| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) 53) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3148 ((|#2| $) 51) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4202 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3191 (($ $ (-649 (-569))) 96)) (-1879 (($ $) 83)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#2| (-915)))) (-3972 (($ $ |#2| |#3| $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) 68)) (-1697 (($ (-1179 |#2|) (-869 |#1|)) 145) (($ (-1179 $) (-869 |#1|)) 61)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) 71)) (-3920 (($ |#2| |#3|) 38) (($ $ (-869 |#1|) (-776)) 40) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-869 |#1|)) NIL)) (-3712 ((|#3| $) NIL) (((-776) $ (-869 |#1|)) 59) (((-649 (-776)) $ (-649 (-869 |#1|))) 66)) (-4059 (($ (-1 |#3| |#3|) $) NIL)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-3397 (((-3 (-869 |#1|) "failed") $) 48)) (-1846 (($ $) NIL)) (-1855 ((|#2| $) 50)) (-1835 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1550 (((-1165) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -4320 (-776))) "failed") $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) 49)) (-1833 ((|#2| $) 138)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) 151 (|has| |#2| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) 103) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) 109) (($ $ (-869 |#1|) $) 101) (($ $ (-649 (-869 |#1|)) (-649 $)) 127)) (-4304 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3514 (($ $ (-869 |#1|)) 62) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3868 ((|#3| $) 82) (((-776) $ (-869 |#1|)) 45) (((-649 (-776)) $ (-649 (-869 |#1|))) 65)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3479 ((|#2| $) 147 (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3793 (((-867) $) 175) (($ (-569)) NIL) (($ |#2|) 102) (($ (-869 |#1|)) 42) (($ (-412 (-569))) NIL (-2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ |#3|) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1803 (($) 22 T CONST)) (-1813 (($) 31 T CONST)) (-2830 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#2|) 79 (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 133)) (** (($ $ (-927)) NIL) (($ $ (-776)) 131)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) 78) (($ $ |#2|) NIL)))
-(((-459 |#1| |#2| |#3|) (-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -3191 ($ $ (-649 (-569)))))) (-649 (-1183)) (-1055) (-239 (-2426 |#1|) (-776))) (T -459))
-((-3191 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1183))) (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-239 (-2426 *3) (-776))))))
-(-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -3191 ($ $ (-649 (-569))))))
-((-1580 (((-112) |#1| (-649 |#2|)) 93)) (-1342 (((-3 (-1273 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|)) 102)) (-1468 (((-3 (-649 |#2|) "failed") |#2| |#1| (-1273 (-649 |#2|))) 104)) (-3440 ((|#2| |#2| |#1|) 35)) (-4356 (((-776) |#2| (-649 |#2|)) 26)))
-(((-460 |#1| |#2|) (-10 -7 (-15 -3440 (|#2| |#2| |#1|)) (-15 -4356 ((-776) |#2| (-649 |#2|))) (-15 -1342 ((-3 (-1273 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -1468 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1273 (-649 |#2|)))) (-15 -1580 ((-112) |#1| (-649 |#2|)))) (-310) (-1249 |#1|)) (T -460))
-((-1580 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-1249 *3)) (-4 *3 (-310)) (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))) (-1468 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1273 (-649 *3))) (-4 *4 (-310)) (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1249 *4)))) (-1342 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1249 *4)) (-5 *2 (-1273 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6)))) (-4356 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-310)) (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))) (-3440 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1249 *3)))))
-(-10 -7 (-15 -3440 (|#2| |#2| |#1|)) (-15 -4356 ((-776) |#2| (-649 |#2|))) (-15 -1342 ((-3 (-1273 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -1468 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1273 (-649 |#2|)))) (-15 -1580 ((-112) |#1| (-649 |#2|))))
-((-3796 (((-423 |#5|) |#5|) 24)))
-(((-461 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3796 ((-423 |#5|) |#5|))) (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183))))) (-798) (-561) (-561) (-955 |#4| |#2| |#1|)) (T -461))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183)))))) (-4 *5 (-798)) (-4 *7 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-561)) (-4 *3 (-955 *7 *5 *4)))))
-(-10 -7 (-15 -3796 ((-423 |#5|) |#5|)))
-((-3855 ((|#3|) 38)) (-3386 (((-1179 |#4|) (-1179 |#4|) (-1179 |#4|)) 34)))
-(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3386 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -3855 (|#3|))) (-798) (-855) (-915) (-955 |#3| |#1| |#2|)) (T -462))
-((-3855 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3386 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -3855 (|#3|)))
-((-3796 (((-423 (-1179 |#1|)) (-1179 |#1|)) 43)))
-(((-463 |#1|) (-10 -7 (-15 -3796 ((-423 (-1179 |#1|)) (-1179 |#1|)))) (-310)) (T -463))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1179 *4))) (-5 *1 (-463 *4)) (-5 *3 (-1179 *4)))))
-(-10 -7 (-15 -3796 ((-423 (-1179 |#1|)) (-1179 |#1|))))
-((-1770 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-776))) 44) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-776))) 43) (((-52) |#2| (-1183) (-297 |#2|)) 36) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 29)) (-3317 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 88) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 87) (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569))) 86) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569))) 85) (((-52) |#2| (-1183) (-297 |#2|)) 80) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 79)) (-1794 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 74) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))) 72)) (-1781 (((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569))) 51) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569))) 50)))
-(((-464 |#1| |#2|) (-10 -7 (-15 -1770 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1770 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -1770 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-776)))) (-15 -1770 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-776)))) (-15 -1781 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -1781 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -1794 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -1794 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -3317 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -3317 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -3317 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -3317 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -3317 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -3317 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569))))) (-13 (-561) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -464))
-((-3317 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8))) (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-3317 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-3317 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-3317 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569))) (-4 *7 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-3317 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6)))) (-1794 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8))) (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-1794 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-1781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569))) (-4 *7 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1770 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-776))) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-776))) (-4 *7 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6)))))
-(-10 -7 (-15 -1770 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1770 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -1770 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-776)))) (-15 -1770 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-776)))) (-15 -1781 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -1781 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -1794 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -1794 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -3317 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -3317 ((-52) |#2| (-1183) (-297 |#2|))) (-15 -3317 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1240 (-569)))) (-15 -3317 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-569)))) (-15 -3317 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))) (-15 -3317 ((-52) |#2| (-1183) (-297 |#2|) (-1240 (-412 (-569))) (-412 (-569)))))
-((-3440 ((|#2| |#2| |#1|) 15)) (-1787 (((-649 |#2|) |#2| (-649 |#2|) |#1| (-927)) 82)) (-1682 (((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927)) 72)))
-(((-465 |#1| |#2|) (-10 -7 (-15 -1682 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -1787 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -3440 (|#2| |#2| |#1|))) (-310) (-1249 |#1|)) (T -465))
-((-3440 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1249 *3)))) (-1787 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1249 *4)) (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))) (-1682 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1249 *5)) (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5))) (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3)))))
-(-10 -7 (-15 -1682 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -1787 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -3440 (|#2| |#2| |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 28)) (-4230 (($ |#3|) 25)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1879 (($ $) 32)) (-3779 (($ |#2| |#4| $) 33)) (-3920 (($ |#2| (-718 |#3| |#4| |#5|)) 24)) (-1846 (((-718 |#3| |#4| |#5|) $) 15)) (-3967 ((|#3| $) 19)) (-4055 ((|#4| $) 17)) (-1855 ((|#2| $) 29)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-3883 (($ |#2| |#3| |#4|) 26)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 36 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-466 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1855 (|#2| $)) (-15 -1846 ((-718 |#3| |#4| |#5|) $)) (-15 -4055 (|#4| $)) (-15 -3967 (|#3| $)) (-15 -1879 ($ $)) (-15 -3920 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -4230 ($ |#3|)) (-15 -3883 ($ |#2| |#3| |#4|)) (-15 -3779 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-649 (-1183)) (-173) (-855) (-239 (-2426 |#1|) (-776)) (-1 (-112) (-2 (|:| -2150 |#3|) (|:| -4320 |#4|)) (-2 (|:| -2150 |#3|) (|:| -4320 |#4|))) (-955 |#2| |#4| (-869 |#1|))) (T -466))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-2426 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *6)) (-2 (|:| -2150 *5) (|:| -4320 *6)))) (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855)) (-4 *2 (-955 *4 *6 (-869 *3))))) (-1855 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *5 (-239 (-2426 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *4) (|:| -4320 *5)) (-2 (|:| -2150 *4) (|:| -4320 *5)))) (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *2 *5 (-869 *3))))) (-1846 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *6 (-239 (-2426 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *6)) (-2 (|:| -2150 *5) (|:| -4320 *6)))) (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8)) (-4 *5 (-855)) (-4 *8 (-955 *4 *6 (-869 *3))))) (-4055 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-14 *6 (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *2)) (-2 (|:| -2150 *5) (|:| -4320 *2)))) (-4 *2 (-239 (-2426 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3))))) (-3967 (*1 *2 *1) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-2426 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *5)) (-2 (|:| -2150 *2) (|:| -4320 *5)))) (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-1879 (*1 *1 *1) (-12 (-14 *2 (-649 (-1183))) (-4 *3 (-173)) (-4 *5 (-239 (-2426 *2) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *4) (|:| -4320 *5)) (-2 (|:| -2150 *4) (|:| -4320 *5)))) (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *3 *5 (-869 *2))))) (-3920 (*1 *1 *2 *3) (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855)) (-4 *6 (-239 (-2426 *4) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *6)) (-2 (|:| -2150 *5) (|:| -4320 *6)))) (-14 *4 (-649 (-1183))) (-4 *2 (-173)) (-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-955 *2 *6 (-869 *4))))) (-4230 (*1 *1 *2) (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173)) (-4 *5 (-239 (-2426 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *5)) (-2 (|:| -2150 *2) (|:| -4320 *5)))) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-3883 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-649 (-1183))) (-4 *2 (-173)) (-4 *4 (-239 (-2426 *5) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *3) (|:| -4320 *4)) (-2 (|:| -2150 *3) (|:| -4320 *4)))) (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855)) (-4 *7 (-955 *2 *4 (-869 *5))))) (-3779 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-649 (-1183))) (-4 *2 (-173)) (-4 *3 (-239 (-2426 *4) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *3)) (-2 (|:| -2150 *5) (|:| -4320 *3)))) (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *2 *3 (-869 *4))))))
-(-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1855 (|#2| $)) (-15 -1846 ((-718 |#3| |#4| |#5|) $)) (-15 -4055 (|#4| $)) (-15 -3967 (|#3| $)) (-15 -1879 ($ $)) (-15 -3920 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -4230 ($ |#3|)) (-15 -3883 ($ |#2| |#3| |#4|)) (-15 -3779 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-4145 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-467 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4145 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-1044 (-412 (-569))) (-367) (-10 -8 (-15 -3793 ($ |#4|)) (-15 -4396 (|#4| $)) (-15 -4409 (|#4| $))))) (T -467))
-((-4145 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798)) (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3)) (-5 *1 (-467 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1044 (-412 (-569))) (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))))
-(-10 -7 (-15 -4145 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2415 (((-112) $ $) NIL)) (-1710 (((-649 |#3|) $) 41)) (-2686 (((-112) $) NIL)) (-4276 (((-112) $) NIL (|has| |#1| (-561)))) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-3584 (((-112) $) NIL (|has| |#1| (-561)))) (-3778 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2576 (((-112) $) NIL (|has| |#1| (-561)))) (-4374 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) 49)) (-3148 (($ (-649 |#4|)) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-1696 (($ |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4444)))) (-2880 (((-649 |#4|) $) 18 (|has| $ (-6 -4444)))) (-1873 ((|#3| $) 47)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#4|) $) 14 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-3831 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 21)) (-3097 (((-649 |#3|) $) NIL)) (-3116 (((-112) |#3| $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3545 (((-1126) $) NIL)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2911 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 39)) (-3597 (($) 17)) (-3558 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) 16)) (-1408 (((-541) $) NIL (|has| |#4| (-619 (-541)))) (($ (-649 |#4|)) 51)) (-3806 (($ (-649 |#4|)) 13)) (-2792 (($ $ |#3|) NIL)) (-3013 (($ $ |#3|) NIL)) (-2900 (($ $ |#3|) NIL)) (-3793 (((-867) $) 38) (((-649 |#4|) $) 50)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 30)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-468 |#1| |#2| |#3| |#4|) (-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1408 ($ (-649 |#4|))) (-6 -4444) (-6 -4445))) (-1055) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -468))
-((-1408 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6)))))
-(-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1408 ($ (-649 |#4|))) (-6 -4444) (-6 -4445)))
-((-1803 (($) 11)) (-1813 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1813 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1803 (|#1|))) (-470 |#2| |#3|) (-173) (-23)) (T -469))
-NIL
-(-10 -8 (-15 -1813 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1803 (|#1|)))
-((-2415 (((-112) $ $) 7)) (-4378 (((-3 |#1| "failed") $) 27)) (-3148 ((|#1| $) 28)) (-1667 (($ $ $) 24)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3868 ((|#2| $) 20)) (-3793 (((-867) $) 12) (($ |#1|) 26)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 25 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 16) (($ $ $) 14)) (-3009 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-1870 (*1 *1 *1 *1) (-4 *1 (-457))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-1839 (*1 *1 *1 *1) (-4 *1 (-457))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-2219 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-457)))))
+(-13 (-561) (-10 -8 (-15 -1870 ($ $ $)) (-15 -1870 ($ (-649 $))) (-15 -1839 ($ $ $)) (-15 -1839 ($ (-649 $))) (-15 -2219 ((-1181 $) (-1181 $) (-1181 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 (-412 (-958 |#1|)))) (-1275 $)) NIL) (((-1275 (-694 (-412 (-958 |#1|))))) NIL)) (-3076 (((-1275 $)) NIL)) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL)) (-3207 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3400 (((-694 (-412 (-958 |#1|))) (-1275 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-1564 (((-412 (-958 |#1|)) $) NIL)) (-2183 (((-694 (-412 (-958 |#1|))) $ (-1275 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-4379 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3319 (((-1181 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1181 (-412 (-958 |#1|)))) 92 (|has| |#1| (-561)))) (-2395 (($ $ (-927)) NIL)) (-3156 (((-412 (-958 |#1|)) $) NIL)) (-4375 (((-1181 (-412 (-958 |#1|))) $) 90 (|has| (-412 (-958 |#1|)) (-561)))) (-3850 (((-412 (-958 |#1|)) (-1275 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-4136 (((-1181 (-412 (-958 |#1|))) $) NIL)) (-2413 (((-112)) NIL)) (-2247 (($ (-1275 (-412 (-958 |#1|))) (-1275 $)) 116) (($ (-1275 (-412 (-958 |#1|)))) NIL)) (-3086 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3978 (((-927)) NIL)) (-4095 (((-112)) NIL)) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL)) (-2411 (((-112)) NIL)) (-2399 (((-112)) NIL)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL)) (-2904 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2999 (((-694 (-412 (-958 |#1|))) (-1275 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-3339 (((-412 (-958 |#1|)) $) NIL)) (-1866 (((-694 (-412 (-958 |#1|))) $ (-1275 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-4059 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-1308 (((-1181 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1181 (-412 (-958 |#1|)))) 91 (|has| |#1| (-561)))) (-2667 (($ $ (-927)) NIL)) (-2907 (((-412 (-958 |#1|)) $) NIL)) (-4167 (((-1181 (-412 (-958 |#1|))) $) 87 (|has| (-412 (-958 |#1|)) (-561)))) (-3674 (((-412 (-958 |#1|)) (-1275 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-2761 (((-1181 (-412 (-958 |#1|))) $) NIL)) (-4307 (((-112)) NIL)) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL)) (-3703 (((-112)) NIL)) (-4324 (((-112)) NIL)) (-3547 (((-1128) $) NIL)) (-2132 (((-412 (-958 |#1|)) $ $) 78 (|has| |#1| (-561)))) (-2772 (((-412 (-958 |#1|)) $) 102 (|has| |#1| (-561)))) (-4225 (((-412 (-958 |#1|)) $) 106 (|has| |#1| (-561)))) (-1591 (((-1181 (-412 (-958 |#1|))) $) 96 (|has| |#1| (-561)))) (-3415 (((-412 (-958 |#1|))) 79 (|has| |#1| (-561)))) (-2515 (((-412 (-958 |#1|)) $ $) 71 (|has| |#1| (-561)))) (-3087 (((-412 (-958 |#1|)) $) 101 (|has| |#1| (-561)))) (-3067 (((-412 (-958 |#1|)) $) 105 (|has| |#1| (-561)))) (-2773 (((-1181 (-412 (-958 |#1|))) $) 95 (|has| |#1| (-561)))) (-3930 (((-412 (-958 |#1|))) 75 (|has| |#1| (-561)))) (-4219 (($) 112) (($ (-1185)) 120) (($ (-1275 (-1185))) 119) (($ (-1275 $)) 107) (($ (-1185) (-1275 $)) 118) (($ (-1275 (-1185)) (-1275 $)) 117)) (-3749 (((-112)) NIL)) (-1869 (((-412 (-958 |#1|)) $ (-569)) NIL)) (-2415 (((-1275 (-412 (-958 |#1|))) $ (-1275 $)) 109) (((-694 (-412 (-958 |#1|))) (-1275 $) (-1275 $)) NIL) (((-1275 (-412 (-958 |#1|))) $) 45) (((-694 (-412 (-958 |#1|))) (-1275 $)) NIL)) (-1410 (((-1275 (-412 (-958 |#1|))) $) NIL) (($ (-1275 (-412 (-958 |#1|)))) 42)) (-1829 (((-649 (-958 (-412 (-958 |#1|)))) (-1275 $)) NIL) (((-649 (-958 (-412 (-958 |#1|))))) NIL) (((-649 (-958 |#1|)) (-1275 $)) 110 (|has| |#1| (-561))) (((-649 (-958 |#1|))) 111 (|has| |#1| (-561)))) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL)) (-3796 (((-867) $) NIL) (($ (-1275 (-412 (-958 |#1|)))) NIL)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 67)) (-2643 (((-649 (-1275 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL)) (-3451 (($ (-694 (-412 (-958 |#1|))) $) NIL)) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL)) (-2887 (((-112)) NIL)) (-3967 (((-112)) NIL)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) 108)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 63) (($ $ (-412 (-958 |#1|))) NIL) (($ (-412 (-958 |#1|)) $) NIL) (($ (-1150 |#2| (-412 (-958 |#1|))) $) NIL)))
+(((-458 |#1| |#2| |#3| |#4|) (-13 (-422 (-412 (-958 |#1|))) (-653 (-1150 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -3796 ($ (-1275 (-412 (-958 |#1|))))) (-15 -4391 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -4219 ($)) (-15 -4219 ($ (-1185))) (-15 -4219 ($ (-1275 (-1185)))) (-15 -4219 ($ (-1275 $))) (-15 -4219 ($ (-1185) (-1275 $))) (-15 -4219 ($ (-1275 (-1185)) (-1275 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -1308 ((-1181 (-412 (-958 |#1|))))) (-15 -2773 ((-1181 (-412 (-958 |#1|))) $)) (-15 -3087 ((-412 (-958 |#1|)) $)) (-15 -3067 ((-412 (-958 |#1|)) $)) (-15 -3319 ((-1181 (-412 (-958 |#1|))))) (-15 -1591 ((-1181 (-412 (-958 |#1|))) $)) (-15 -2772 ((-412 (-958 |#1|)) $)) (-15 -4225 ((-412 (-958 |#1|)) $)) (-15 -2515 ((-412 (-958 |#1|)) $ $)) (-15 -3930 ((-412 (-958 |#1|)))) (-15 -2132 ((-412 (-958 |#1|)) $ $)) (-15 -3415 ((-412 (-958 |#1|)))) (-15 -1829 ((-649 (-958 |#1|)) (-1275 $))) (-15 -1829 ((-649 (-958 |#1|))))) |%noBranch|))) (-173) (-927) (-649 (-1185)) (-1275 (-694 |#1|))) (T -458))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 *3)))) (-4 *3 (-173)) (-14 *6 (-1275 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))))) (-4391 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -2403 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2707 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -2403 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1) (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927)) (-14 *4 (-649 (-1185))) (-14 *5 (-1275 (-694 *2))))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-1275 (-1185))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-1275 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 *2)) (-14 *7 (-1275 (-694 *4))))) (-4219 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 (-1185))) (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4))))) (-1308 (*1 *2) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3319 (*1 *2) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2515 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3930 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2132 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3415 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4))))) (-1829 (*1 *2) (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(-13 (-422 (-412 (-958 |#1|))) (-653 (-1150 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -3796 ($ (-1275 (-412 (-958 |#1|))))) (-15 -4391 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -4219 ($)) (-15 -4219 ($ (-1185))) (-15 -4219 ($ (-1275 (-1185)))) (-15 -4219 ($ (-1275 $))) (-15 -4219 ($ (-1185) (-1275 $))) (-15 -4219 ($ (-1275 (-1185)) (-1275 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -1308 ((-1181 (-412 (-958 |#1|))))) (-15 -2773 ((-1181 (-412 (-958 |#1|))) $)) (-15 -3087 ((-412 (-958 |#1|)) $)) (-15 -3067 ((-412 (-958 |#1|)) $)) (-15 -3319 ((-1181 (-412 (-958 |#1|))))) (-15 -1591 ((-1181 (-412 (-958 |#1|))) $)) (-15 -2772 ((-412 (-958 |#1|)) $)) (-15 -4225 ((-412 (-958 |#1|)) $)) (-15 -2515 ((-412 (-958 |#1|)) $ $)) (-15 -3930 ((-412 (-958 |#1|)))) (-15 -2132 ((-412 (-958 |#1|)) $ $)) (-15 -3415 ((-412 (-958 |#1|)))) (-15 -1829 ((-649 (-958 |#1|)) (-1275 $))) (-15 -1829 ((-649 (-958 |#1|))))) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 18)) (-1712 (((-649 (-869 |#1|)) $) 90)) (-3767 (((-1181 $) $ (-869 |#1|)) 55) (((-1181 |#2|) $) 140)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) 27) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 53) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) 51) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4130 (($ $ (-649 (-569))) 96)) (-1883 (($ $) 83)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| |#3| $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 68)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) 145) (($ (-1181 $) (-869 |#1|)) 61)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) 71)) (-3923 (($ |#2| |#3|) 38) (($ $ (-869 |#1|) (-776)) 40) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 ((|#3| $) NIL) (((-776) $ (-869 |#1|)) 59) (((-649 (-776)) $ (-649 (-869 |#1|))) 66)) (-2492 (($ (-1 |#3| |#3|) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) 48)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) 50)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 49)) (-1835 ((|#2| $) 138)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) 151 (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) 103) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) 109) (($ $ (-869 |#1|) $) 101) (($ $ (-649 (-869 |#1|)) (-649 $)) 127)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) 62) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 ((|#3| $) 82) (((-776) $ (-869 |#1|)) 45) (((-649 (-776)) $ (-649 (-869 |#1|))) 65)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) 147 (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) 175) (($ (-569)) NIL) (($ |#2|) 102) (($ (-869 |#1|)) 42) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ |#3|) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) 22 T CONST)) (-1815 (($) 31 T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) 79 (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 133)) (** (($ $ (-927)) NIL) (($ $ (-776)) 131)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) 78) (($ $ |#2|) NIL)))
+(((-459 |#1| |#2| |#3|) (-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) (-649 (-1185)) (-1057) (-239 (-2428 |#1|) (-776))) (T -459))
+((-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1185))) (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-239 (-2428 *3) (-776))))))
+(-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569))))))
+((-2450 (((-112) |#1| (-649 |#2|)) 93)) (-1904 (((-3 (-1275 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|)) 102)) (-3867 (((-3 (-649 |#2|) "failed") |#2| |#1| (-1275 (-649 |#2|))) 104)) (-1538 ((|#2| |#2| |#1|) 35)) (-2313 (((-776) |#2| (-649 |#2|)) 26)))
+(((-460 |#1| |#2|) (-10 -7 (-15 -1538 (|#2| |#2| |#1|)) (-15 -2313 ((-776) |#2| (-649 |#2|))) (-15 -1904 ((-3 (-1275 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -3867 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1275 (-649 |#2|)))) (-15 -2450 ((-112) |#1| (-649 |#2|)))) (-310) (-1251 |#1|)) (T -460))
+((-2450 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-1251 *3)) (-4 *3 (-310)) (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))) (-3867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1275 (-649 *3))) (-4 *4 (-310)) (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1251 *4)))) (-1904 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1251 *4)) (-5 *2 (-1275 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-310)) (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))) (-1538 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1251 *3)))))
+(-10 -7 (-15 -1538 (|#2| |#2| |#1|)) (-15 -2313 ((-776) |#2| (-649 |#2|))) (-15 -1904 ((-3 (-1275 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -3867 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1275 (-649 |#2|)))) (-15 -2450 ((-112) |#1| (-649 |#2|))))
+((-3800 (((-423 |#5|) |#5|) 24)))
+(((-461 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-423 |#5|) |#5|))) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185))))) (-798) (-561) (-561) (-955 |#4| |#2| |#1|)) (T -461))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *5 (-798)) (-4 *7 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-561)) (-4 *3 (-955 *7 *5 *4)))))
+(-10 -7 (-15 -3800 ((-423 |#5|) |#5|)))
+((-4231 ((|#3|) 38)) (-2219 (((-1181 |#4|) (-1181 |#4|) (-1181 |#4|)) 34)))
+(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2219 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -4231 (|#3|))) (-798) (-855) (-915) (-955 |#3| |#1| |#2|)) (T -462))
+((-4231 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2219 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2219 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -4231 (|#3|)))
+((-3800 (((-423 (-1181 |#1|)) (-1181 |#1|)) 43)))
+(((-463 |#1|) (-10 -7 (-15 -3800 ((-423 (-1181 |#1|)) (-1181 |#1|)))) (-310)) (T -463))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1181 *4))) (-5 *1 (-463 *4)) (-5 *3 (-1181 *4)))))
+(-10 -7 (-15 -3800 ((-423 (-1181 |#1|)) (-1181 |#1|))))
+((-1773 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-776))) 44) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-776))) 43) (((-52) |#2| (-1185) (-297 |#2|)) 36) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 29)) (-3323 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 88) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 87) (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569))) 86) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569))) 85) (((-52) |#2| (-1185) (-297 |#2|)) 80) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 79)) (-1797 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 74) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 72)) (-1784 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569))) 51) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569))) 50)))
+(((-464 |#1| |#2|) (-10 -7 (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-776)))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-776)))) (-15 -1784 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -1784 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -1797 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -1797 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))))) (-13 (-561) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -464))
+((-3323 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8))) (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-3323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-3323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-3323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569))) (-4 *7 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-3323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6)))) (-1797 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8))) (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-1797 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-1784 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569))) (-4 *7 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1773 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-776))) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-776))) (-4 *7 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6)))))
+(-10 -7 (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-776)))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-776)))) (-15 -1784 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -1784 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -1797 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -1797 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))))
+((-1538 ((|#2| |#2| |#1|) 15)) (-3875 (((-649 |#2|) |#2| (-649 |#2|) |#1| (-927)) 82)) (-2245 (((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927)) 72)))
+(((-465 |#1| |#2|) (-10 -7 (-15 -2245 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -3875 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -1538 (|#2| |#2| |#1|))) (-310) (-1251 |#1|)) (T -465))
+((-1538 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1251 *3)))) (-3875 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1251 *4)) (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))) (-2245 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1251 *5)) (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5))) (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3)))))
+(-10 -7 (-15 -2245 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -3875 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -1538 (|#2| |#2| |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 28)) (-3636 (($ |#3|) 25)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) 32)) (-1730 (($ |#2| |#4| $) 33)) (-3923 (($ |#2| (-718 |#3| |#4| |#5|)) 24)) (-1849 (((-718 |#3| |#4| |#5|) $) 15)) (-2815 ((|#3| $) 19)) (-2453 ((|#4| $) 17)) (-1857 ((|#2| $) 29)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-3238 (($ |#2| |#3| |#4|) 26)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 36 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-466 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1857 (|#2| $)) (-15 -1849 ((-718 |#3| |#4| |#5|) $)) (-15 -2453 (|#4| $)) (-15 -2815 (|#3| $)) (-15 -1883 ($ $)) (-15 -3923 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -3636 ($ |#3|)) (-15 -3238 ($ |#2| |#3| |#4|)) (-15 -1730 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-649 (-1185)) (-173) (-855) (-239 (-2428 |#1|) (-776)) (-1 (-112) (-2 (|:| -2150 |#3|) (|:| -1993 |#4|)) (-2 (|:| -2150 |#3|) (|:| -1993 |#4|))) (-955 |#2| |#4| (-869 |#1|))) (T -466))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *6 (-239 (-2428 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) (-2 (|:| -2150 *5) (|:| -1993 *6)))) (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855)) (-4 *2 (-955 *4 *6 (-869 *3))))) (-1857 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *5 (-239 (-2428 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5)) (-2 (|:| -2150 *4) (|:| -1993 *5)))) (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *2 *5 (-869 *3))))) (-1849 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *6 (-239 (-2428 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) (-2 (|:| -2150 *5) (|:| -1993 *6)))) (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8)) (-4 *5 (-855)) (-4 *8 (-955 *4 *6 (-869 *3))))) (-2453 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-14 *6 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *2)) (-2 (|:| -2150 *5) (|:| -1993 *2)))) (-4 *2 (-239 (-2428 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3))))) (-2815 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *5 (-239 (-2428 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5)) (-2 (|:| -2150 *2) (|:| -1993 *5)))) (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-1883 (*1 *1 *1) (-12 (-14 *2 (-649 (-1185))) (-4 *3 (-173)) (-4 *5 (-239 (-2428 *2) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5)) (-2 (|:| -2150 *4) (|:| -1993 *5)))) (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *3 *5 (-869 *2))))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855)) (-4 *6 (-239 (-2428 *4) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) (-2 (|:| -2150 *5) (|:| -1993 *6)))) (-14 *4 (-649 (-1185))) (-4 *2 (-173)) (-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-955 *2 *6 (-869 *4))))) (-3636 (*1 *1 *2) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *5 (-239 (-2428 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5)) (-2 (|:| -2150 *2) (|:| -1993 *5)))) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-3238 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-649 (-1185))) (-4 *2 (-173)) (-4 *4 (-239 (-2428 *5) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *4)) (-2 (|:| -2150 *3) (|:| -1993 *4)))) (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855)) (-4 *7 (-955 *2 *4 (-869 *5))))) (-1730 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-649 (-1185))) (-4 *2 (-173)) (-4 *3 (-239 (-2428 *4) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *3)) (-2 (|:| -2150 *5) (|:| -1993 *3)))) (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *2 *3 (-869 *4))))))
+(-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1857 (|#2| $)) (-15 -1849 ((-718 |#3| |#4| |#5|) $)) (-15 -2453 (|#4| $)) (-15 -2815 (|#3| $)) (-15 -1883 ($ $)) (-15 -3923 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -3636 ($ |#3|)) (-15 -3238 ($ |#2| |#3| |#4|)) (-15 -1730 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-4080 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-467 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4080 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-1046 (-412 (-569))) (-367) (-10 -8 (-15 -3796 ($ |#4|)) (-15 -4399 (|#4| $)) (-15 -4412 (|#4| $))))) (T -467))
+((-4080 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798)) (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3)) (-5 *1 (-467 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1046 (-412 (-569))) (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))))
+(-10 -7 (-15 -4080 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2417 (((-112) $ $) NIL)) (-1712 (((-649 |#3|) $) 41)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) NIL (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 49)) (-3150 (($ (-649 |#4|)) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447)))) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-3372 ((|#3| $) 47)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 14 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 21)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3547 (((-1128) $) NIL)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 39)) (-3635 (($) 17)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 16)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541)))) (($ (-649 |#4|)) 51)) (-3809 (($ (-649 |#4|)) 13)) (-3381 (($ $ |#3|) NIL)) (-2963 (($ $ |#3|) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 38) (((-649 |#4|) $) 50)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 30)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-468 |#1| |#2| |#3| |#4|) (-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1410 ($ (-649 |#4|))) (-6 -4447) (-6 -4448))) (-1057) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -468))
+((-1410 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6)))))
+(-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1410 ($ (-649 |#4|))) (-6 -4447) (-6 -4448)))
+((-1804 (($) 11)) (-1815 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1815 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1804 (|#1|))) (-470 |#2| |#3|) (-173) (-23)) (T -469))
+NIL
+(-10 -8 (-15 -1815 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1804 (|#1|)))
+((-2417 (((-112) $ $) 7)) (-4381 (((-3 |#1| "failed") $) 27)) (-3150 ((|#1| $) 28)) (-2103 (($ $ $) 24)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 ((|#2| $) 20)) (-3796 (((-867) $) 12) (($ |#1|) 26)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 25 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 16) (($ $ $) 14)) (-3012 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-470 |#1| |#2|) (-140) (-173) (-23)) (T -470))
-((-1813 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-1667 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
-(-13 (-475 |t#1| |t#2|) (-1044 |t#1|) (-10 -8 (-15 (-1813) ($) -3706) (-15 -1667 ($ $ $))))
-(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-475 |#1| |#2|) . T) ((-1044 |#1|) . T) ((-1106) . T))
-((-2841 (((-1273 (-1273 (-569))) (-1273 (-1273 (-569))) (-927)) 28)) (-2962 (((-1273 (-1273 (-569))) (-927)) 23)))
-(((-471) (-10 -7 (-15 -2841 ((-1273 (-1273 (-569))) (-1273 (-1273 (-569))) (-927))) (-15 -2962 ((-1273 (-1273 (-569))) (-927))))) (T -471))
-((-2962 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 (-569)))) (-5 *1 (-471)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 (-1273 (-569)))) (-5 *3 (-927)) (-5 *1 (-471)))))
-(-10 -7 (-15 -2841 ((-1273 (-1273 (-569))) (-1273 (-1273 (-569))) (-927))) (-15 -2962 ((-1273 (-1273 (-569))) (-927))))
-((-1698 (((-569) (-569)) 32) (((-569)) 24)) (-4028 (((-569) (-569)) 28) (((-569)) 20)) (-1914 (((-569) (-569)) 30) (((-569)) 22)) (-1989 (((-112) (-112)) 14) (((-112)) 12)) (-3086 (((-112) (-112)) 13) (((-112)) 11)) (-2084 (((-112) (-112)) 26) (((-112)) 17)))
-(((-472) (-10 -7 (-15 -3086 ((-112))) (-15 -1989 ((-112))) (-15 -3086 ((-112) (-112))) (-15 -1989 ((-112) (-112))) (-15 -2084 ((-112))) (-15 -1914 ((-569))) (-15 -4028 ((-569))) (-15 -1698 ((-569))) (-15 -2084 ((-112) (-112))) (-15 -1914 ((-569) (-569))) (-15 -4028 ((-569) (-569))) (-15 -1698 ((-569) (-569))))) (T -472))
-((-1698 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-4028 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-1698 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-4028 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-1914 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2084 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-3086 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-1989 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-3086 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
-(-10 -7 (-15 -3086 ((-112))) (-15 -1989 ((-112))) (-15 -3086 ((-112) (-112))) (-15 -1989 ((-112) (-112))) (-15 -2084 ((-112))) (-15 -1914 ((-569))) (-15 -4028 ((-569))) (-15 -1698 ((-569))) (-15 -2084 ((-112) (-112))) (-15 -1914 ((-569) (-569))) (-15 -4028 ((-569) (-569))) (-15 -1698 ((-569) (-569))))
-((-2415 (((-112) $ $) NIL)) (-3154 (((-649 (-383)) $) 34) (((-649 (-383)) $ (-649 (-383))) 146)) (-1454 (((-649 (-1100 (-383))) $) 16) (((-649 (-1100 (-383))) $ (-649 (-1100 (-383)))) 142)) (-2309 (((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879))) 58)) (-1589 (((-649 (-649 (-949 (-226)))) $) 137)) (-3281 (((-1278) $ (-949 (-226)) (-879)) 163)) (-1728 (($ $) 136) (($ (-649 (-649 (-949 (-226))))) 149) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927))) 148) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265))) 150)) (-1550 (((-1165) $) NIL)) (-2003 (((-569) $) 110)) (-3545 (((-1126) $) NIL)) (-1847 (($) 147)) (-2203 (((-649 (-226)) (-649 (-649 (-949 (-226))))) 89)) (-1327 (((-1278) $ (-649 (-949 (-226))) (-879) (-879) (-927)) 155) (((-1278) $ (-949 (-226))) 157) (((-1278) $ (-949 (-226)) (-879) (-879) (-927)) 156)) (-3793 (((-867) $) 169) (($ (-649 (-649 (-949 (-226))))) 164)) (-1441 (((-112) $ $) NIL)) (-2393 (((-1278) $ (-949 (-226))) 162)) (-2919 (((-112) $ $) NIL)))
-(((-473) (-13 (-1106) (-10 -8 (-15 -1847 ($)) (-15 -1728 ($ $)) (-15 -1728 ($ (-649 (-649 (-949 (-226)))))) (-15 -1728 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -1728 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -1589 ((-649 (-649 (-949 (-226)))) $)) (-15 -2003 ((-569) $)) (-15 -1454 ((-649 (-1100 (-383))) $)) (-15 -1454 ((-649 (-1100 (-383))) $ (-649 (-1100 (-383))))) (-15 -3154 ((-649 (-383)) $)) (-15 -3154 ((-649 (-383)) $ (-649 (-383)))) (-15 -1327 ((-1278) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -1327 ((-1278) $ (-949 (-226)))) (-15 -1327 ((-1278) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -2393 ((-1278) $ (-949 (-226)))) (-15 -3281 ((-1278) $ (-949 (-226)) (-879))) (-15 -3793 ($ (-649 (-649 (-949 (-226)))))) (-15 -3793 ((-867) $)) (-15 -2309 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -2203 ((-649 (-226)) (-649 (-649 (-949 (-226))))))))) (T -473))
-((-3793 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-473)))) (-1847 (*1 *1) (-5 *1 (-473))) (-1728 (*1 *1 *1) (-5 *1 (-473))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-1728 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *1 (-473)))) (-1728 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473)))) (-1454 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-3154 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-1327 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-1327 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))) (-1327 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))) (-3281 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-473)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-2309 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *1 (-473)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226))) (-5 *1 (-473)))))
-(-13 (-1106) (-10 -8 (-15 -1847 ($)) (-15 -1728 ($ $)) (-15 -1728 ($ (-649 (-649 (-949 (-226)))))) (-15 -1728 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -1728 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -1589 ((-649 (-649 (-949 (-226)))) $)) (-15 -2003 ((-569) $)) (-15 -1454 ((-649 (-1100 (-383))) $)) (-15 -1454 ((-649 (-1100 (-383))) $ (-649 (-1100 (-383))))) (-15 -3154 ((-649 (-383)) $)) (-15 -3154 ((-649 (-383)) $ (-649 (-383)))) (-15 -1327 ((-1278) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -1327 ((-1278) $ (-949 (-226)))) (-15 -1327 ((-1278) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -2393 ((-1278) $ (-949 (-226)))) (-15 -3281 ((-1278) $ (-949 (-226)) (-879))) (-15 -3793 ($ (-649 (-649 (-949 (-226)))))) (-15 -3793 ((-867) $)) (-15 -2309 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -2203 ((-649 (-226)) (-649 (-649 (-949 (-226))))))))
-((-3021 (($ $) NIL) (($ $ $) 11)))
-(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|))) (-475 |#2| |#3|) (-173) (-23)) (T -474))
-NIL
-(-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3868 ((|#2| $) 20)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 16) (($ $ $) 14)) (-3009 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+((-1815 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-2103 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
+(-13 (-475 |t#1| |t#2|) (-1046 |t#1|) (-10 -8 (-15 (-1815) ($) -3709) (-15 -2103 ($ $ $))))
+(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-475 |#1| |#2|) . T) ((-1046 |#1|) . T) ((-1108) . T))
+((-2567 (((-1275 (-1275 (-569))) (-1275 (-1275 (-569))) (-927)) 28)) (-2435 (((-1275 (-1275 (-569))) (-927)) 23)))
+(((-471) (-10 -7 (-15 -2567 ((-1275 (-1275 (-569))) (-1275 (-1275 (-569))) (-927))) (-15 -2435 ((-1275 (-1275 (-569))) (-927))))) (T -471))
+((-2435 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 (-569)))) (-5 *1 (-471)))) (-2567 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 (-1275 (-569)))) (-5 *3 (-927)) (-5 *1 (-471)))))
+(-10 -7 (-15 -2567 ((-1275 (-1275 (-569))) (-1275 (-1275 (-569))) (-927))) (-15 -2435 ((-1275 (-1275 (-569))) (-927))))
+((-4314 (((-569) (-569)) 32) (((-569)) 24)) (-2221 (((-569) (-569)) 28) (((-569)) 20)) (-2514 (((-569) (-569)) 30) (((-569)) 22)) (-2117 (((-112) (-112)) 14) (((-112)) 12)) (-4345 (((-112) (-112)) 13) (((-112)) 11)) (-3788 (((-112) (-112)) 26) (((-112)) 17)))
+(((-472) (-10 -7 (-15 -4345 ((-112))) (-15 -2117 ((-112))) (-15 -4345 ((-112) (-112))) (-15 -2117 ((-112) (-112))) (-15 -3788 ((-112))) (-15 -2514 ((-569))) (-15 -2221 ((-569))) (-15 -4314 ((-569))) (-15 -3788 ((-112) (-112))) (-15 -2514 ((-569) (-569))) (-15 -2221 ((-569) (-569))) (-15 -4314 ((-569) (-569))))) (T -472))
+((-4314 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-4314 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2221 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2514 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-3788 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2117 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-4345 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2117 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-4345 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
+(-10 -7 (-15 -4345 ((-112))) (-15 -2117 ((-112))) (-15 -4345 ((-112) (-112))) (-15 -2117 ((-112) (-112))) (-15 -3788 ((-112))) (-15 -2514 ((-569))) (-15 -2221 ((-569))) (-15 -4314 ((-569))) (-15 -3788 ((-112) (-112))) (-15 -2514 ((-569) (-569))) (-15 -2221 ((-569) (-569))) (-15 -4314 ((-569) (-569))))
+((-2417 (((-112) $ $) NIL)) (-3157 (((-649 (-383)) $) 34) (((-649 (-383)) $ (-649 (-383))) 146)) (-3725 (((-649 (-1102 (-383))) $) 16) (((-649 (-1102 (-383))) $ (-649 (-1102 (-383)))) 142)) (-2334 (((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879))) 58)) (-2531 (((-649 (-649 (-949 (-226)))) $) 137)) (-3283 (((-1280) $ (-949 (-226)) (-879)) 163)) (-1448 (($ $) 136) (($ (-649 (-649 (-949 (-226))))) 149) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927))) 148) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265))) 150)) (-3435 (((-1167) $) NIL)) (-2006 (((-569) $) 110)) (-3547 (((-1128) $) NIL)) (-3132 (($) 147)) (-2470 (((-649 (-226)) (-649 (-649 (-949 (-226))))) 89)) (-1779 (((-1280) $ (-649 (-949 (-226))) (-879) (-879) (-927)) 155) (((-1280) $ (-949 (-226))) 157) (((-1280) $ (-949 (-226)) (-879) (-879) (-927)) 156)) (-3796 (((-867) $) 169) (($ (-649 (-649 (-949 (-226))))) 164)) (-1520 (((-112) $ $) NIL)) (-3919 (((-1280) $ (-949 (-226))) 162)) (-2920 (((-112) $ $) NIL)))
+(((-473) (-13 (-1108) (-10 -8 (-15 -3132 ($)) (-15 -1448 ($ $)) (-15 -1448 ($ (-649 (-649 (-949 (-226)))))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -2531 ((-649 (-649 (-949 (-226)))) $)) (-15 -2006 ((-569) $)) (-15 -3725 ((-649 (-1102 (-383))) $)) (-15 -3725 ((-649 (-1102 (-383))) $ (-649 (-1102 (-383))))) (-15 -3157 ((-649 (-383)) $)) (-15 -3157 ((-649 (-383)) $ (-649 (-383)))) (-15 -1779 ((-1280) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -1779 ((-1280) $ (-949 (-226)))) (-15 -1779 ((-1280) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -3919 ((-1280) $ (-949 (-226)))) (-15 -3283 ((-1280) $ (-949 (-226)) (-879))) (-15 -3796 ($ (-649 (-649 (-949 (-226)))))) (-15 -3796 ((-867) $)) (-15 -2334 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -2470 ((-649 (-226)) (-649 (-649 (-949 (-226))))))))) (T -473))
+((-3796 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-473)))) (-3132 (*1 *1) (-5 *1 (-473))) (-1448 (*1 *1 *1) (-5 *1 (-473))) (-1448 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-1448 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *1 (-473)))) (-1448 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473)))) (-3725 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-3157 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-1779 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1280)) (-5 *1 (-473)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473)))) (-1779 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1280)) (-5 *1 (-473)))) (-3919 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473)))) (-3283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-473)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-2334 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *1 (-473)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226))) (-5 *1 (-473)))))
+(-13 (-1108) (-10 -8 (-15 -3132 ($)) (-15 -1448 ($ $)) (-15 -1448 ($ (-649 (-649 (-949 (-226)))))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -2531 ((-649 (-649 (-949 (-226)))) $)) (-15 -2006 ((-569) $)) (-15 -3725 ((-649 (-1102 (-383))) $)) (-15 -3725 ((-649 (-1102 (-383))) $ (-649 (-1102 (-383))))) (-15 -3157 ((-649 (-383)) $)) (-15 -3157 ((-649 (-383)) $ (-649 (-383)))) (-15 -1779 ((-1280) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -1779 ((-1280) $ (-949 (-226)))) (-15 -1779 ((-1280) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -3919 ((-1280) $ (-949 (-226)))) (-15 -3283 ((-1280) $ (-949 (-226)) (-879))) (-15 -3796 ($ (-649 (-649 (-949 (-226)))))) (-15 -3796 ((-867) $)) (-15 -2334 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -2470 ((-649 (-226)) (-649 (-649 (-949 (-226))))))))
+((-3024 (($ $) NIL) (($ $ $) 11)))
+(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|))) (-475 |#2| |#3|) (-173) (-23)) (T -474))
+NIL
+(-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 ((|#2| $) 20)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 16) (($ $ $) 14)) (-3012 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
(((-475 |#1| |#2|) (-140) (-173) (-23)) (T -475))
-((-3868 (*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) (-1803 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3009 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
-(-13 (-1106) (-10 -8 (-15 -3868 (|t#2| $)) (-15 (-1803) ($) -3706) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3021 ($ $)) (-15 -3009 ($ $ $)) (-15 -3021 ($ $ $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-3985 (((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|))) 134)) (-3870 (((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 131)) (-4090 (((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 86)))
-(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -3870 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3985 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -4090 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))))) (-649 (-1183)) (-457) (-457)) (T -476))
-((-4090 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-2 (|:| |dpolys| (-649 (-248 *5 *6))) (|:| |coords| (-649 (-569))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))) (-3985 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6)) (-4 *6 (-457)))) (-3870 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
-(-10 -7 (-15 -3870 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3985 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -4090 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))))
-((-2888 (((-3 $ "failed") $) 11)) (-3580 (($ $ $) 23)) (-2292 (($ $ $) 24)) (-3032 (($ $ $) 9)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 22)))
-(((-477 |#1|) (-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3032 (|#1| |#1| |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-478)) (T -477))
-NIL
-(-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3032 (|#1| |#1| |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))))
-((-2415 (((-112) $ $) 7)) (-4188 (($) 19 T CONST)) (-2888 (((-3 $ "failed") $) 16)) (-2623 (((-112) $) 18)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 25)) (-3545 (((-1126) $) 11)) (-3580 (($ $ $) 22)) (-2292 (($ $ $) 21)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1813 (($) 20 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15)))
+((-4339 (*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) (-1804 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))))
+(-13 (-1108) (-10 -8 (-15 -4339 (|t#2| $)) (-15 (-1804) ($) -3709) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3024 ($ $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-3005 (((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|))) 134)) (-4347 (((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 131)) (-1665 (((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 86)))
+(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -4347 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3005 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -1665 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))))) (-649 (-1185)) (-457) (-457)) (T -476))
+((-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-2 (|:| |dpolys| (-649 (-248 *5 *6))) (|:| |coords| (-649 (-569))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))) (-3005 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6)) (-4 *6 (-457)))) (-4347 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
+(-10 -7 (-15 -4347 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3005 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -1665 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))))
+((-3086 (((-3 $ "failed") $) 11)) (-3476 (($ $ $) 23)) (-2180 (($ $ $) 24)) (-3035 (($ $ $) 9)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 22)))
+(((-477 |#1|) (-10 -8 (-15 -2180 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-478)) (T -477))
+NIL
+(-10 -8 (-15 -2180 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))))
+((-2417 (((-112) $ $) 7)) (-4427 (($) 19 T CONST)) (-3086 (((-3 $ "failed") $) 16)) (-2349 (((-112) $) 18)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 25)) (-3547 (((-1128) $) 11)) (-3476 (($ $ $) 22)) (-2180 (($ $ $) 21)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15)))
(((-478) (-140)) (T -478))
-((-1814 (*1 *1 *1) (-4 *1 (-478))) (-3032 (*1 *1 *1 *1) (-4 *1 (-478))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-569)))) (-3580 (*1 *1 *1 *1) (-4 *1 (-478))) (-2292 (*1 *1 *1 *1) (-4 *1 (-478))))
-(-13 (-731) (-10 -8 (-15 -1814 ($ $)) (-15 -3032 ($ $ $)) (-15 ** ($ $ (-569))) (-6 -4441) (-15 -3580 ($ $ $)) (-15 -2292 ($ $ $))))
-(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 18)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2009 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2769 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-412 (-569))) NIL) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) 25)) (-2660 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2488 (($ $) 29 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 35 (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 30 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-412 (-569))) NIL)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4386 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) 28 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1269 |#2|)) 16)) (-3868 (((-412 (-569)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1269 |#2|)) NIL) (($ (-1258 |#1| |#2| |#3|)) 9) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4184 ((|#1| $ (-412 (-569))) NIL)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) 21)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) 27)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-479 |#1| |#2| |#3|) (-13 (-1254 |#1|) (-10 -8 (-15 -3793 ($ (-1269 |#2|))) (-15 -3793 ($ (-1258 |#1| |#2| |#3|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -479))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1254 |#1|) (-10 -8 (-15 -3793 ($ (-1269 |#2|))) (-15 -3793 ($ (-1258 |#1| |#2| |#3|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4321 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#2| $ |#1| |#2|) 18)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) 19)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) 16)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) NIL)) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 ((|#1| $) NIL (|has| |#1| (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 ((|#1| $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2796 (((-649 |#1|) $) NIL)) (-3937 (((-112) |#1| $) NIL)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1755 (((-649 |#1|) $) NIL)) (-3748 (((-112) |#1| $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#2| $) NIL (|has| |#1| (-855)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-480 |#1| |#2| |#3| |#4|) (-1199 |#1| |#2|) (-1106) (-1106) (-1199 |#1| |#2|) |#2|) (T -480))
-NIL
-(-1199 |#1| |#2|)
-((-2415 (((-112) $ $) NIL)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) NIL)) (-3465 (((-649 $) (-649 |#4|)) NIL)) (-1710 (((-649 |#3|) $) NIL)) (-2686 (((-112) $) NIL)) (-4276 (((-112) $) NIL (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2874 ((|#4| |#4| $) NIL)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4188 (($) NIL T CONST)) (-3584 (((-112) $) 29 (|has| |#1| (-561)))) (-3778 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2576 (((-112) $) NIL (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4374 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3148 (($ (-649 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 45)) (-2516 ((|#4| |#4| $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-1696 (($ |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3593 ((|#4| |#4| $) NIL)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) NIL)) (-2880 (((-649 |#4|) $) 18 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1873 ((|#3| $) 38)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#4|) $) 19 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-3831 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 23)) (-3097 (((-649 |#3|) $) NIL)) (-3116 (((-112) |#3| $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-1722 (((-3 |#4| "failed") $) 42)) (-1447 (((-649 |#4|) $) NIL)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2642 ((|#4| |#4| $) NIL)) (-1672 (((-112) $ $) NIL)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2765 ((|#4| |#4| $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-3 |#4| "failed") $) 40)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3124 (((-3 $ "failed") $ |#4|) 58)) (-2907 (($ $ |#4|) NIL)) (-2911 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 17)) (-3597 (($) 14)) (-3868 (((-776) $) NIL)) (-3558 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) 13)) (-1408 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 22)) (-2792 (($ $ |#3|) 52)) (-3013 (($ $ |#3|) 54)) (-2408 (($ $) NIL)) (-2900 (($ $ |#3|) NIL)) (-3793 (((-867) $) 35) (((-649 |#4|) $) 46)) (-3023 (((-776) $) NIL (|has| |#3| (-372)))) (-1441 (((-112) $ $) NIL)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-3037 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) NIL)) (-2133 (((-112) |#3| $) NIL)) (-2919 (((-112) $ $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-481 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|) (-561) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -481))
-NIL
-(-1216 |#1| |#2| |#3| |#4|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3148 (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-1310 (($) 17)) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-1408 (((-383) $) 21) (((-226) $) 24) (((-412 (-1179 (-569))) $) 18) (((-541) $) 53)) (-3793 (((-867) $) 51) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (((-226) $) 23) (((-383) $) 20)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) 37 T CONST)) (-1813 (($) 8 T CONST)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
-(((-482) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))) (-1028) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1179 (-569)))) (-619 (-541)) (-10 -8 (-15 -1310 ($))))) (T -482))
-((-1310 (*1 *1) (-5 *1 (-482))))
-(-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))) (-1028) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1179 (-569)))) (-619 (-541)) (-10 -8 (-15 -1310 ($))))
-((-2415 (((-112) $ $) NIL)) (-2112 (((-1141) $) 11)) (-2101 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-483) (-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))) (T -483))
-((-2101 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483)))))
-(-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4321 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#2| $ |#1| |#2|) 16)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) 20)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) 18)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) NIL)) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 ((|#1| $) NIL (|has| |#1| (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 ((|#1| $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2796 (((-649 |#1|) $) 13)) (-3937 (((-112) |#1| $) NIL)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1755 (((-649 |#1|) $) NIL)) (-3748 (((-112) |#1| $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#2| $) NIL (|has| |#1| (-855)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 19)) (-1866 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 11 (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2426 (((-776) $) 15 (|has| $ (-6 -4444)))))
-(((-484 |#1| |#2| |#3|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444))) (-1106) (-1106) (-1165)) (T -484))
-NIL
-(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444)))
-((-4208 (((-569) (-569) (-569)) 19)) (-4316 (((-112) (-569) (-569) (-569) (-569)) 28)) (-1338 (((-1273 (-649 (-569))) (-776) (-776)) 44)))
-(((-485) (-10 -7 (-15 -4208 ((-569) (-569) (-569))) (-15 -4316 ((-112) (-569) (-569) (-569) (-569))) (-15 -1338 ((-1273 (-649 (-569))) (-776) (-776))))) (T -485))
-((-1338 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1273 (-649 (-569)))) (-5 *1 (-485)))) (-4316 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485)))) (-4208 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485)))))
-(-10 -7 (-15 -4208 ((-569) (-569) (-569))) (-15 -4316 ((-112) (-569) (-569) (-569) (-569))) (-15 -1338 ((-1273 (-649 (-569))) (-776) (-776))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-869 |#1|)) $) NIL)) (-3763 (((-1179 $) $ (-869 |#1|)) NIL) (((-1179 |#2|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-3087 (($ $) NIL (|has| |#2| (-561)))) (-2883 (((-112) $) NIL (|has| |#2| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-2078 (($ $) NIL (|has| |#2| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#2| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3148 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4202 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3191 (($ $ (-649 (-569))) NIL)) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#2| (-915)))) (-3972 (($ $ |#2| (-487 (-2426 |#1|) (-776)) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-1697 (($ (-1179 |#2|) (-869 |#1|)) NIL) (($ (-1179 $) (-869 |#1|)) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#2| (-487 (-2426 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-869 |#1|)) NIL)) (-3712 (((-487 (-2426 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-4059 (($ (-1 (-487 (-2426 |#1|) (-776)) (-487 (-2426 |#1|) (-776))) $) NIL)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-3397 (((-3 (-869 |#1|) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#2| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1550 (((-1165) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -4320 (-776))) "failed") $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#2| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-4304 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3514 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3868 (((-487 (-2426 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3479 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-487 (-2426 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-486 |#1| |#2|) (-13 (-955 |#2| (-487 (-2426 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3191 ($ $ (-649 (-569)))))) (-649 (-1183)) (-1055)) (T -486))
-((-3191 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4)) (-14 *3 (-649 (-1183))) (-4 *4 (-1055)))))
-(-13 (-955 |#2| (-487 (-2426 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -3191 ($ $ (-649 (-569))))))
-((-2415 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3192 (((-112) $) NIL (|has| |#2| (-131)))) (-4230 (($ (-927)) NIL (|has| |#2| (-1055)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-3217 (($ $ $) NIL (|has| |#2| (-798)))) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2716 (((-112) $ (-776)) NIL)) (-3470 (((-776)) NIL (|has| |#2| (-372)))) (-2552 (((-569) $) NIL (|has| |#2| (-853)))) (-3940 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1106)))) (-3148 (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) NIL (|has| |#2| (-1106)))) (-1630 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-2888 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3403 (($) NIL (|has| |#2| (-372)))) (-3843 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ (-569)) 15)) (-4237 (((-112) $) NIL (|has| |#2| (-853)))) (-2880 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL (|has| |#2| (-731)))) (-4327 (((-112) $) NIL (|has| |#2| (-853)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3040 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3831 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-2855 (((-927) $) NIL (|has| |#2| (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#2| (-1106)))) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3545 (((-1126) $) NIL (|has| |#2| (-1106)))) (-3510 ((|#2| $) NIL (|has| (-569) (-855)))) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3990 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-3845 (($ (-1273 |#2|)) NIL)) (-3083 (((-134)) NIL (|has| |#2| (-367)))) (-3514 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-3558 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-1273 |#2|) $) NIL) (($ (-569)) NIL (-2774 (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) NIL (|has| |#2| (-1106))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-3302 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-1441 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3037 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3070 (($ $) NIL (|has| |#2| (-853)))) (-1803 (($) NIL (|has| |#2| (-131)) CONST)) (-1813 (($) NIL (|has| |#2| (-731)) CONST)) (-2830 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2976 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2954 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2919 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-2964 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2942 (((-112) $ $) 21 (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-3009 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1055))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
+((-1817 (*1 *1 *1) (-4 *1 (-478))) (-3035 (*1 *1 *1 *1) (-4 *1 (-478))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-569)))) (-3476 (*1 *1 *1 *1) (-4 *1 (-478))) (-2180 (*1 *1 *1 *1) (-4 *1 (-478))))
+(-13 (-731) (-10 -8 (-15 -1817 ($ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ (-569))) (-6 -4444) (-15 -3476 ($ $ $)) (-15 -2180 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 18)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) NIL) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 25)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 29 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 35 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 30 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) 28 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1271 |#2|)) 16)) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1271 |#2|)) NIL) (($ (-1260 |#1| |#2| |#3|)) 9) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 21)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 27)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-479 |#1| |#2| |#3|) (-13 (-1256 |#1|) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3796 ($ (-1260 |#1| |#2| |#3|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -479))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(-13 (-1256 |#1|) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3796 ($ (-1260 |#1| |#2| |#3|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|)))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) 18)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 19)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 16)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-480 |#1| |#2| |#3| |#4|) (-1201 |#1| |#2|) (-1108) (-1108) (-1201 |#1| |#2|) |#2|) (T -480))
+NIL
+(-1201 |#1| |#2|)
+((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) NIL)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) 29 (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 45)) (-2548 ((|#4| |#4| $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 19 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 23)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1724 (((-3 |#4| "failed") $) 42)) (-1586 (((-649 |#4|) $) NIL)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 40)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) 58)) (-3166 (($ $ |#4|) NIL)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 14)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 22)) (-3381 (($ $ |#3|) 52)) (-2963 (($ $ |#3|) 54)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4269 (((-112) |#3| $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-481 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|) (-561) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -481))
+NIL
+(-1218 |#1| |#2| |#3| |#4|)
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-1312 (($) 17)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-1410 (((-383) $) 21) (((-226) $) 24) (((-412 (-1181 (-569))) $) 18) (((-541) $) 53)) (-3796 (((-867) $) 51) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (((-226) $) 23) (((-383) $) 20)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 37 T CONST)) (-1815 (($) 8 T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-482) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))) (-1030) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1181 (-569)))) (-619 (-541)) (-10 -8 (-15 -1312 ($))))) (T -482))
+((-1312 (*1 *1) (-5 *1 (-482))))
+(-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))) (-1030) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1181 (-569)))) (-619 (-541)) (-10 -8 (-15 -1312 ($))))
+((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-483) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -483))
+((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483)))))
+(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) 16)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 20)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 18)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) 13)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 19)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 11 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) 15 (|has| $ (-6 -4447)))))
+(((-484 |#1| |#2| |#3|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108) (-1167)) (T -484))
+NIL
+(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447)))
+((-3412 (((-569) (-569) (-569)) 19)) (-3158 (((-112) (-569) (-569) (-569) (-569)) 28)) (-1340 (((-1275 (-649 (-569))) (-776) (-776)) 44)))
+(((-485) (-10 -7 (-15 -3412 ((-569) (-569) (-569))) (-15 -3158 ((-112) (-569) (-569) (-569) (-569))) (-15 -1340 ((-1275 (-649 (-569))) (-776) (-776))))) (T -485))
+((-1340 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1275 (-649 (-569)))) (-5 *1 (-485)))) (-3158 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485)))) (-3412 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485)))))
+(-10 -7 (-15 -3412 ((-569) (-569) (-569))) (-15 -3158 ((-112) (-569) (-569) (-569) (-569))) (-15 -1340 ((-1275 (-649 (-569))) (-776) (-776))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-869 |#1|)) $) NIL)) (-3767 (((-1181 $) $ (-869 |#1|)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4130 (($ $ (-649 (-569))) NIL)) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-487 (-2428 |#1|) (-776)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) NIL) (($ (-1181 $) (-869 |#1|)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-487 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 (((-487 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-2492 (($ (-1 (-487 (-2428 |#1|) (-776)) (-487 (-2428 |#1|) (-776))) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 (((-487 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-487 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-486 |#1| |#2|) (-13 (-955 |#2| (-487 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) (-649 (-1185)) (-1057)) (T -486))
+((-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4)) (-14 *3 (-649 (-1185))) (-4 *4 (-1057)))))
+(-13 (-955 |#2| (-487 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569))))))
+((-2417 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-4143 (((-112) $) NIL (|has| |#2| (-131)))) (-3636 (($ (-927)) NIL (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#2| (-372)))) (-2919 (((-569) $) NIL (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) NIL (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3406 (($) NIL (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) 15)) (-3712 (((-112) $) NIL (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#2| (-731)))) (-2051 (((-112) $) NIL (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3547 (((-1128) $) NIL (|has| |#2| (-1108)))) (-3513 ((|#2| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3040 ((|#2| $ $) NIL (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) NIL)) (-2377 (((-134)) NIL (|has| |#2| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#2|) $) NIL) (($ (-569)) NIL (-2776 (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) NIL (|has| |#2| (-1108))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#2| (-853)))) (-1804 (($) NIL (|has| |#2| (-131)) CONST)) (-1815 (($) NIL (|has| |#2| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2920 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2944 (((-112) $ $) 21 (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $ $) NIL (|has| |#2| (-1057))) (($ $) NIL (|has| |#2| (-1057)))) (-3012 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1057))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
(((-487 |#1| |#2|) (-239 |#1| |#2|) (-776) (-798)) (T -487))
NIL
(-239 |#1| |#2|)
-((-2415 (((-112) $ $) NIL)) (-3824 (((-649 (-881)) $) 15)) (-3570 (((-511) $) 13)) (-1550 (((-1165) $) NIL)) (-3314 (($ (-511) (-649 (-881))) 11)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 22) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-488) (-13 (-1089) (-10 -8 (-15 -3314 ($ (-511) (-649 (-881)))) (-15 -3570 ((-511) $)) (-15 -3824 ((-649 (-881)) $))))) (T -488))
-((-3314 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488)))))
-(-13 (-1089) (-10 -8 (-15 -3314 ($ (-511) (-649 (-881)))) (-15 -3570 ((-511) $)) (-15 -3824 ((-649 (-881)) $))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) NIL)) (-4188 (($) NIL T CONST)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-2616 (($ $ $) 50)) (-2126 (($ $ $) 49)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3969 ((|#1| $) 40)) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1640 ((|#1| $) 41)) (-3813 (($ |#1| $) 18)) (-3457 (($ (-649 |#1|)) 19)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1764 ((|#1| $) 34)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 11)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 47)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) 29 (|has| $ (-6 -4444)))))
-(((-489 |#1|) (-13 (-974 |#1|) (-10 -8 (-15 -3457 ($ (-649 |#1|))))) (-855)) (T -489))
-((-3457 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
-(-13 (-974 |#1|) (-10 -8 (-15 -3457 ($ (-649 |#1|)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-3596 (($ $) 71)) (-3737 (((-112) $) NIL)) (-1550 (((-1165) $) NIL)) (-3552 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 45)) (-3545 (((-1126) $) NIL)) (-2330 (((-3 |#4| "failed") $) 117)) (-3839 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-569)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2307 (((-2 (|:| -4264 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3793 (((-867) $) 110)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 32 T CONST)) (-2919 (((-112) $ $) 121)) (-3021 (($ $) 77) (($ $ $) NIL)) (-3009 (($ $ $) 72)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 78)))
-(((-490 |#1| |#2| |#3| |#4|) (-339 |#1| |#2| |#3| |#4|) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -490))
+((-2417 (((-112) $ $) NIL)) (-3826 (((-649 (-881)) $) 15)) (-3573 (((-511) $) 13)) (-3435 (((-1167) $) NIL)) (-2837 (($ (-511) (-649 (-881))) 11)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 22) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-488) (-13 (-1091) (-10 -8 (-15 -2837 ($ (-511) (-649 (-881)))) (-15 -3573 ((-511) $)) (-15 -3826 ((-649 (-881)) $))))) (T -488))
+((-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488)))))
+(-13 (-1091) (-10 -8 (-15 -2837 ($ (-511) (-649 (-881)))) (-15 -3573 ((-511) $)) (-15 -3826 ((-649 (-881)) $))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2292 (($ $ $) 50)) (-4198 (($ $ $) 49)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2839 ((|#1| $) 40)) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 41)) (-3894 (($ |#1| $) 18)) (-1723 (($ (-649 |#1|)) 19)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1781 ((|#1| $) 34)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 11)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 47)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) 29 (|has| $ (-6 -4447)))))
+(((-489 |#1|) (-13 (-976 |#1|) (-10 -8 (-15 -1723 ($ (-649 |#1|))))) (-855)) (T -489))
+((-1723 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
+(-13 (-976 |#1|) (-10 -8 (-15 -1723 ($ (-649 |#1|)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ $) 71)) (-1310 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3198 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 45)) (-3547 (((-1128) $) NIL)) (-2332 (((-3 |#4| "failed") $) 117)) (-4102 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-569)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2316 (((-2 (|:| -4267 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3796 (((-867) $) 110)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 32 T CONST)) (-2920 (((-112) $ $) 121)) (-3024 (($ $) 77) (($ $ $) NIL)) (-3012 (($ $ $) 72)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 78)))
+(((-490 |#1| |#2| |#3| |#4|) (-339 |#1| |#2| |#3| |#4|) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -490))
NIL
(-339 |#1| |#2| |#3| |#4|)
-((-2656 (((-569) (-649 (-569))) 55)) (-3591 ((|#1| (-649 |#1|)) 96)) (-2532 (((-649 |#1|) (-649 |#1|)) 97)) (-3715 (((-649 |#1|) (-649 |#1|)) 99)) (-1864 ((|#1| (-649 |#1|)) 98)) (-3479 (((-649 (-569)) (-649 |#1|)) 58)))
-(((-491 |#1|) (-10 -7 (-15 -1864 (|#1| (-649 |#1|))) (-15 -3591 (|#1| (-649 |#1|))) (-15 -3715 ((-649 |#1|) (-649 |#1|))) (-15 -2532 ((-649 |#1|) (-649 |#1|))) (-15 -3479 ((-649 (-569)) (-649 |#1|))) (-15 -2656 ((-569) (-649 (-569))))) (-1249 (-569))) (T -491))
-((-2656 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4)) (-4 *4 (-1249 *2)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1249 (-569))) (-5 *2 (-649 (-569))) (-5 *1 (-491 *4)))) (-2532 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569))))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569))))))
-(-10 -7 (-15 -1864 (|#1| (-649 |#1|))) (-15 -3591 (|#1| (-649 |#1|))) (-15 -3715 ((-649 |#1|) (-649 |#1|))) (-15 -2532 ((-649 |#1|) (-649 |#1|))) (-15 -3479 ((-649 (-569)) (-649 |#1|))) (-15 -2656 ((-569) (-649 (-569)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 (((-569) $) NIL (|has| (-569) (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| (-569) (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1044 (-569))))) (-3148 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-569) (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| (-569) (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 (((-569) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-4327 (((-112) $) NIL (|has| (-569) (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-569) (-855)))) (-1344 (($ (-1 (-569) (-569)) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-569) (-1158)) CONST)) (-2791 (($ (-412 (-569))) 9)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-2478 (((-569) $) NIL (|has| (-569) (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-1578 (((-776) $) NIL)) (-1866 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1528 (($ $) NIL)) (-4409 (((-569) $) NIL)) (-1408 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL) (((-1010 16) $) 10)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3302 (((-776)) NIL T CONST)) (-2586 (((-569) $) NIL (|has| (-569) (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| (-569) (-825)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2976 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3032 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
-(((-492) (-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 16)) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -2791 ($ (-412 (-569))))))) (T -492))
-((-3555 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))))
-(-13 (-998 (-569)) (-618 (-412 (-569))) (-618 (-1010 16)) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -2791 ($ (-412 (-569))))))
-((-3040 (((-649 |#2|) $) 29)) (-1655 (((-112) |#2| $) 34)) (-2911 (((-112) (-1 (-112) |#2|) $) 24)) (-1723 (($ $ (-649 (-297 |#2|))) 13) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-3558 (((-776) (-1 (-112) |#2|) $) 28) (((-776) |#2| $) 32)) (-3793 (((-867) $) 43)) (-3037 (((-112) (-1 (-112) |#2|) $) 23)) (-2919 (((-112) $ $) 37)) (-2426 (((-776) $) 18)))
-(((-493 |#1| |#2|) (-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#2| |#2|)) (-15 -1723 (|#1| |#1| (-297 |#2|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1655 ((-112) |#2| |#1|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3040 ((-649 |#2|) |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2426 ((-776) |#1|))) (-494 |#2|) (-1223)) (T -493))
-NIL
-(-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#2| |#2|)) (-15 -1723 (|#1| |#1| (-297 |#2|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1655 ((-112) |#2| |#1|)) (-15 -3558 ((-776) |#2| |#1|)) (-15 -3040 ((-649 |#2|) |#1|)) (-15 -3558 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2426 ((-776) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4188 (($) 7 T CONST)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-494 |#1|) (-140) (-1223)) (T -494))
-((-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1223)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4445)) (-4 *1 (-494 *3)) (-4 *3 (-1223)))) (-3037 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *4)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-2911 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *4)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *4)) (-4 *4 (-1223)) (-5 *2 (-776)))) (-2880 (*1 *2 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))) (-3040 (*1 *2 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))) (-3558 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-776)))) (-1655 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |t#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1344 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4445)) (-15 -3831 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4444)) (PROGN (-15 -3037 ((-112) (-1 (-112) |t#1|) $)) (-15 -2911 ((-112) (-1 (-112) |t#1|) $)) (-15 -3558 ((-776) (-1 (-112) |t#1|) $)) (-15 -2880 ((-649 |t#1|) $)) (-15 -3040 ((-649 |t#1|) $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -3558 ((-776) |t#1| $)) (-15 -1655 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-3793 ((|#1| $) 6) (($ |#1|) 9)))
-(((-495 |#1|) (-140) (-1223)) (T -495))
+((-1477 (((-569) (-649 (-569))) 55)) (-3578 ((|#1| (-649 |#1|)) 96)) (-2704 (((-649 |#1|) (-649 |#1|)) 97)) (-2301 (((-649 |#1|) (-649 |#1|)) 99)) (-1870 ((|#1| (-649 |#1|)) 98)) (-3833 (((-649 (-569)) (-649 |#1|)) 58)))
+(((-491 |#1|) (-10 -7 (-15 -1870 (|#1| (-649 |#1|))) (-15 -3578 (|#1| (-649 |#1|))) (-15 -2301 ((-649 |#1|) (-649 |#1|))) (-15 -2704 ((-649 |#1|) (-649 |#1|))) (-15 -3833 ((-649 (-569)) (-649 |#1|))) (-15 -1477 ((-569) (-649 (-569))))) (-1251 (-569))) (T -491))
+((-1477 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4)) (-4 *4 (-1251 *2)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1251 (-569))) (-5 *2 (-649 (-569))) (-5 *1 (-491 *4)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569))))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569))))))
+(-10 -7 (-15 -1870 (|#1| (-649 |#1|))) (-15 -3578 (|#1| (-649 |#1|))) (-15 -2301 ((-649 |#1|) (-649 |#1|))) (-15 -2704 ((-649 |#1|) (-649 |#1|))) (-15 -3833 ((-649 (-569)) (-649 |#1|))) (-15 -1477 ((-569) (-649 (-569)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-569) $) NIL (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3368 (($ (-412 (-569))) 9)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3465 (((-569) $) NIL (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL) (((-1012 16) $) 10)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-569) $) NIL (|has| (-569) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3035 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL)))
+(((-492) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 16)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3368 ($ (-412 (-569))))))) (T -492))
+((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))))
+(-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 16)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3368 ($ (-412 (-569))))))
+((-2009 (((-649 |#2|) $) 29)) (-2004 (((-112) |#2| $) 34)) (-3208 (((-112) (-1 (-112) |#2|) $) 24)) (-1725 (($ $ (-649 (-297 |#2|))) 13) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-3560 (((-776) (-1 (-112) |#2|) $) 28) (((-776) |#2| $) 32)) (-3796 (((-867) $) 43)) (-1980 (((-112) (-1 (-112) |#2|) $) 23)) (-2920 (((-112) $ $) 37)) (-2428 (((-776) $) 18)))
+(((-493 |#1| |#2|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2009 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|))) (-494 |#2|) (-1225)) (T -493))
+NIL
+(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2009 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-494 |#1|) (-140) (-1225)) (T -494))
+((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1225)))) (-3834 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4448)) (-4 *1 (-494 *3)) (-4 *3 (-1225)))) (-1980 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-3208 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-3560 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) (-4 *4 (-1225)) (-5 *2 (-776)))) (-2882 (*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3)))) (-2009 (*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3)))) (-3560 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-776)))) (-2004 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |t#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4448)) (-15 -3834 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4447)) (PROGN (-15 -1980 ((-112) (-1 (-112) |t#1|) $)) (-15 -3208 ((-112) (-1 (-112) |t#1|) $)) (-15 -3560 ((-776) (-1 (-112) |t#1|) $)) (-15 -2882 ((-649 |t#1|) $)) (-15 -2009 ((-649 |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -3560 ((-776) |t#1| $)) (-15 -2004 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-3796 ((|#1| $) 6) (($ |#1|) 9)))
+(((-495 |#1|) (-140) (-1225)) (T -495))
NIL
(-13 (-618 |t#1|) (-621 |t#1|))
(((-621 |#1|) . T) ((-618 |#1|) . T))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-1966 (($ (-1165)) 8)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 15) (((-1165) $) 12)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 11)))
-(((-496) (-13 (-1106) (-618 (-1165)) (-10 -8 (-15 -1966 ($ (-1165)))))) (T -496))
-((-1966 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-496)))))
-(-13 (-1106) (-618 (-1165)) (-10 -8 (-15 -1966 ($ (-1165)))))
-((-2769 (($ $) 15)) (-2744 (($ $) 24)) (-4114 (($ $) 12)) (-4124 (($ $) 10)) (-2781 (($ $) 17)) (-2756 (($ $) 22)))
-(((-497 |#1|) (-10 -8 (-15 -2756 (|#1| |#1|)) (-15 -2781 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2769 (|#1| |#1|))) (-498)) (T -497))
-NIL
-(-10 -8 (-15 -2756 (|#1| |#1|)) (-15 -2781 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2769 (|#1| |#1|)))
-((-2769 (($ $) 11)) (-2744 (($ $) 10)) (-4114 (($ $) 9)) (-4124 (($ $) 8)) (-2781 (($ $) 7)) (-2756 (($ $) 6)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1919 (($ (-1167)) 8)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (((-1167) $) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11)))
+(((-496) (-13 (-1108) (-618 (-1167)) (-10 -8 (-15 -1919 ($ (-1167)))))) (T -496))
+((-1919 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-496)))))
+(-13 (-1108) (-618 (-1167)) (-10 -8 (-15 -1919 ($ (-1167)))))
+((-2771 (($ $) 15)) (-2746 (($ $) 24)) (-4118 (($ $) 12)) (-4128 (($ $) 10)) (-2783 (($ $) 17)) (-2758 (($ $) 22)))
+(((-497 |#1|) (-10 -8 (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|))) (-498)) (T -497))
+NIL
+(-10 -8 (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)))
+((-2771 (($ $) 11)) (-2746 (($ $) 10)) (-4118 (($ $) 9)) (-4128 (($ $) 8)) (-2783 (($ $) 7)) (-2758 (($ $) 6)))
(((-498) (-140)) (T -498))
-((-2769 (*1 *1 *1) (-4 *1 (-498))) (-2744 (*1 *1 *1) (-4 *1 (-498))) (-4114 (*1 *1 *1) (-4 *1 (-498))) (-4124 (*1 *1 *1) (-4 *1 (-498))) (-2781 (*1 *1 *1) (-4 *1 (-498))) (-2756 (*1 *1 *1) (-4 *1 (-498))))
-(-13 (-10 -8 (-15 -2756 ($ $)) (-15 -2781 ($ $)) (-15 -4124 ($ $)) (-15 -4114 ($ $)) (-15 -2744 ($ $)) (-15 -2769 ($ $))))
-((-3796 (((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)) 54)))
-(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)))) (-367) (-1249 |#1|) (-13 (-367) (-147) (-729 |#1| |#2|)) (-1249 |#3|)) (T -499))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-423 *3)) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1249 *7)))))
-(-10 -7 (-15 -3796 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3879 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-3288 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-3192 (((-112) $) 39)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2071 (((-112) $ $) 73)) (-3660 (((-649 (-617 $)) $) 50)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4293 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-3807 (($ $) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-3421 (((-649 $) (-1179 $) (-1183)) NIL) (((-649 $) (-1179 $)) NIL) (((-649 $) (-958 $)) NIL)) (-3964 (($ (-1179 $) (-1183)) NIL) (($ (-1179 $)) NIL) (($ (-958 $)) NIL)) (-4378 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3148 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) 55)) (-2366 (($ $ $) NIL)) (-1630 (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-412 (-569)))) (|:| |vec| (-1273 (-412 (-569))))) (-694 $) (-1273 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3596 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2223 (($ $) NIL) (($ (-649 $)) NIL)) (-1463 (((-649 (-114)) $) NIL)) (-3743 (((-114) (-114)) NIL)) (-2623 (((-112) $) 42)) (-1607 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-4396 (((-1131 (-569) (-617 $)) $) 37)) (-2506 (($ $ (-569)) NIL)) (-2707 (((-1179 $) (-1179 $) (-617 $)) 87) (((-1179 $) (-1179 $) (-649 (-617 $))) 62) (($ $ (-617 $)) 76) (($ $ (-649 (-617 $))) 77)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4362 (((-1179 $) (-617 $)) 74 (|has| $ (-1055)))) (-1344 (($ (-1 $ $) (-617 $)) NIL)) (-1574 (((-3 (-617 $) "failed") $) NIL)) (-1835 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3733 (((-649 (-617 $)) $) NIL)) (-1352 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-2374 (((-112) $ (-114)) NIL) (((-112) $ (-1183)) NIL)) (-1814 (($ $) NIL)) (-1425 (((-776) $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1335 (((-112) $ $) NIL) (((-112) $ (-1183)) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2108 (((-112) $) NIL (|has| $ (-1044 (-569))))) (-1723 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1183)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1183) (-1 $ (-649 $))) NIL) (($ $ (-1183) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1578 (((-776) $) NIL)) (-1866 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-1676 (($ $) NIL) (($ $ $) NIL)) (-3514 (($ $ (-776)) NIL) (($ $) 36)) (-4409 (((-1131 (-569) (-617 $)) $) 20)) (-4143 (($ $) NIL (|has| $ (-1055)))) (-1408 (((-383) $) 101) (((-226) $) 109) (((-170 (-383)) $) 117)) (-3793 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1131 (-569) (-617 $))) 21)) (-3302 (((-776)) NIL T CONST)) (-4211 (($ $) NIL) (($ (-649 $)) NIL)) (-4142 (((-112) (-114)) 93)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) 10 T CONST)) (-1813 (($) 22 T CONST)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2919 (((-112) $ $) 24)) (-3032 (($ $ $) 44)) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) 48) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) 27) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
-(((-500) (-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3793 ($ (-1131 (-569) (-617 $)))) (-15 -4396 ((-1131 (-569) (-617 $)) $)) (-15 -4409 ((-1131 (-569) (-617 $)) $)) (-15 -3596 ($ $)) (-15 -2071 ((-112) $ $)) (-15 -2707 ((-1179 $) (-1179 $) (-617 $))) (-15 -2707 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -2707 ($ $ (-617 $))) (-15 -2707 ($ $ (-649 (-617 $))))))) (T -500))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-3596 (*1 *1 *1) (-5 *1 (-500))) (-2071 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-649 (-617 (-500)))) (-5 *1 (-500)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500)))))
-(-13 (-305) (-27) (-1044 (-569)) (-1044 (-412 (-569))) (-644 (-569)) (-1028) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3793 ($ (-1131 (-569) (-617 $)))) (-15 -4396 ((-1131 (-569) (-617 $)) $)) (-15 -4409 ((-1131 (-569) (-617 $)) $)) (-15 -3596 ($ $)) (-15 -2071 ((-112) $ $)) (-15 -2707 ((-1179 $) (-1179 $) (-617 $))) (-15 -2707 ((-1179 $) (-1179 $) (-649 (-617 $)))) (-15 -2707 ($ $ (-617 $))) (-15 -2707 ($ $ (-649 (-617 $))))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) |#1|) 47 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 41)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) 21)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 17 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) 44 (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) 15 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 19)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 46) (($ $ (-1240 (-569))) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 24)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) 11 (|has| $ (-6 -4444)))))
-(((-501 |#1| |#2|) (-19 |#1|) (-1223) (-569)) (T -501))
+((-2771 (*1 *1 *1) (-4 *1 (-498))) (-2746 (*1 *1 *1) (-4 *1 (-498))) (-4118 (*1 *1 *1) (-4 *1 (-498))) (-4128 (*1 *1 *1) (-4 *1 (-498))) (-2783 (*1 *1 *1) (-4 *1 (-498))) (-2758 (*1 *1 *1) (-4 *1 (-498))))
+(-13 (-10 -8 (-15 -2758 ($ $)) (-15 -2783 ($ $)) (-15 -4128 ($ $)) (-15 -4118 ($ $)) (-15 -2746 ($ $)) (-15 -2771 ($ $))))
+((-3800 (((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)) 54)))
+(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)))) (-367) (-1251 |#1|) (-13 (-367) (-147) (-729 |#1| |#2|)) (-1251 |#3|)) (T -499))
+((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-423 *3)) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1251 *7)))))
+(-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|))))
+((-2417 (((-112) $ $) NIL)) (-3194 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2565 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4143 (((-112) $) 39)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1763 (((-112) $ $) 73)) (-3663 (((-649 (-617 $)) $) 50)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1333 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2793 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) 55)) (-2368 (($ $ $) NIL)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-412 (-569)))) (|:| |vec| (-1275 (-412 (-569))))) (-694 $) (-1275 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3598 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) NIL)) (-2349 (((-112) $) 42)) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-4399 (((-1133 (-569) (-617 $)) $) 37)) (-3742 (($ $ (-569)) NIL)) (-3829 (((-1181 $) (-1181 $) (-617 $)) 87) (((-1181 $) (-1181 $) (-649 (-617 $))) 62) (($ $ (-617 $)) 76) (($ $ (-649 (-617 $))) 77)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2341 (((-1181 $) (-617 $)) 74 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) NIL)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) NIL)) (-1354 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) NIL)) (-1817 (($ $) NIL)) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2431 (((-776) $) NIL)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) 36)) (-4412 (((-1133 (-569) (-617 $)) $) 20)) (-4061 (($ $) NIL (|has| $ (-1057)))) (-1410 (((-383) $) 101) (((-226) $) 109) (((-170 (-383)) $) 117)) (-3796 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1133 (-569) (-617 $))) 21)) (-2721 (((-776)) NIL T CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-4052 (((-112) (-114)) 93)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 10 T CONST)) (-1815 (($) 22 T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) 24)) (-3035 (($ $ $) 44)) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) 48) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) 27) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL)))
+(((-500) (-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -1763 ((-112) $ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $))))))) (T -500))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-3598 (*1 *1 *1) (-5 *1 (-500))) (-1763 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-649 (-617 (-500)))) (-5 *1 (-500)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500)))))
+(-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -1763 ((-112) $ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $))))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) 47 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 41)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 21)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 17 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) 44 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) 15 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 19)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 46) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 24)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 11 (|has| $ (-6 -4447)))))
+(((-501 |#1| |#2|) (-19 |#1|) (-1225) (-569)) (T -501))
NIL
(-19 |#1|)
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2316 (($ $ (-569) (-501 |#1| |#3|)) NIL)) (-2782 (($ $ (-569) (-501 |#1| |#2|)) NIL)) (-4188 (($) NIL T CONST)) (-1486 (((-501 |#1| |#3|) $ (-569)) NIL)) (-3843 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3773 ((|#1| $ (-569) (-569)) NIL)) (-2880 (((-649 |#1|) $) NIL)) (-3221 (((-776) $) NIL)) (-4295 (($ (-776) (-776) |#1|) NIL)) (-3234 (((-776) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3856 (((-569) $) NIL)) (-1738 (((-569) $) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3744 (((-569) $) NIL)) (-1609 (((-569) $) NIL)) (-3831 (($ (-1 |#1| |#1|) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-1363 (((-501 |#1| |#2|) $ (-569)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-502 |#1| |#2| |#3|) (-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) (-1223) (-569) (-569)) (T -502))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2400 (($ $ (-569) (-501 |#1| |#3|)) NIL)) (-3259 (($ $ (-569) (-501 |#1| |#2|)) NIL)) (-4427 (($) NIL T CONST)) (-4044 (((-501 |#1| |#3|) $ (-569)) NIL)) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-501 |#1| |#2|) $ (-569)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-502 |#1| |#2| |#3|) (-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) (-1225) (-569) (-569)) (T -502))
NIL
(-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|))
-((-2287 (((-649 (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776)) 33)) (-2180 (((-649 (-1179 |#1|)) |#1| (-776) (-776) (-776)) 43)) (-4267 (((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)) 110)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2180 ((-649 (-1179 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2287 ((-649 (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -4267 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)))) (-353) (-1249 |#1|) (-1249 |#2|)) (T -503))
-((-4267 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-2 (|:| -1903 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7))))) (-5 *5 (-776)) (-4 *8 (-1249 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-353)) (-5 *2 (-2 (|:| -1903 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7)))) (-5 *1 (-503 *6 *7 *8)))) (-2287 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -1903 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6))))) (-5 *1 (-503 *5 *6 *7)) (-5 *3 (-2 (|:| -1903 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6)))) (-4 *7 (-1249 *6)))) (-2180 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1249 *3)) (-5 *2 (-649 (-1179 *3))) (-5 *1 (-503 *3 *5 *6)) (-4 *6 (-1249 *5)))))
-(-10 -7 (-15 -2180 ((-649 (-1179 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2287 ((-649 (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -4267 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776))))
-((-1804 (((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 74)) (-2392 ((|#1| (-694 |#1|) |#1| (-776)) 27)) (-1462 (((-776) (-776) (-776)) 36)) (-1685 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 54)) (-1571 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 62) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 59)) (-1324 ((|#1| (-694 |#1|) (-694 |#1|) |#1| (-569)) 31)) (-2572 ((|#1| (-694 |#1|)) 18)))
-(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -2572 (|#1| (-694 |#1|))) (-15 -2392 (|#1| (-694 |#1|) |#1| (-776))) (-15 -1324 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -1462 ((-776) (-776) (-776))) (-15 -1571 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1571 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -1685 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1804 ((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))))) (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))) (-1249 |#1|) (-414 |#1| |#2|)) (T -504))
-((-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-1685 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-1571 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-1571 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-1324 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-569)) (-4 *2 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-2392 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-776)) (-4 *2 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-694 *2)) (-4 *4 (-1249 *2)) (-4 *2 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $))))) (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4)))))
-(-10 -7 (-15 -2572 (|#1| (-694 |#1|))) (-15 -2392 (|#1| (-694 |#1|) |#1| (-776))) (-15 -1324 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -1462 ((-776) (-776) (-776))) (-15 -1571 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1571 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -1685 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1804 ((-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -1903 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))))
-((-2415 (((-112) $ $) NIL)) (-2436 (($ $) NIL)) (-1780 (($ $ $) 40)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3012 (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4445)))) (-3355 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-3940 (((-112) $ (-1240 (-569)) (-112)) NIL (|has| $ (-6 -4445))) (((-112) $ (-569) (-112)) 42 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-1696 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-3596 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-3843 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4445)))) (-3773 (((-112) $ (-569)) NIL)) (-4034 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1106))) (((-569) (-112) $) NIL (|has| (-112) (-1106))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2880 (((-649 (-112)) $) NIL (|has| $ (-6 -4444)))) (-1769 (($ $ $) 38)) (-1745 (($ $) NIL)) (-2905 (($ $ $) NIL)) (-4295 (($ (-776) (-112)) 27)) (-3028 (($ $ $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 8 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL)) (-2126 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3040 (((-649 (-112)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL)) (-3831 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-4294 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-112) $) NIL (|has| (-569) (-855)))) (-3123 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4420 (($ $ (-112)) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106))))) (-3851 (((-649 (-112)) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 28)) (-1866 (($ $ (-1240 (-569))) NIL) (((-112) $ (-569)) 22) (((-112) $ (-569) (-112)) NIL)) (-4325 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-3558 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-112) (-1106)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) 29)) (-1408 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3806 (($ (-649 (-112))) NIL)) (-2441 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3793 (((-867) $) 26)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4444)))) (-1756 (($ $ $) 36)) (-4419 (($ $ $) NIL)) (-3503 (($ $ $) 45)) (-3516 (($ $) 43)) (-3489 (($ $ $) 44)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 30)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 31)) (-4404 (($ $ $) NIL)) (-2426 (((-776) $) 13 (|has| $ (-6 -4444)))))
-(((-505 |#1|) (-13 (-123) (-10 -8 (-15 -3516 ($ $)) (-15 -3503 ($ $ $)) (-15 -3489 ($ $ $)))) (-569)) (T -505))
-((-3516 (*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3503 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3489 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))))
-(-13 (-123) (-10 -8 (-15 -3516 ($ $)) (-15 -3503 ($ $ $)) (-15 -3489 ($ $ $))))
-((-3917 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1179 |#4|)) 35)) (-1905 (((-1179 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1179 |#4|)) 22)) (-4018 (((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1179 |#4|))) 49)) (-4116 (((-1179 (-1179 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
-(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1905 (|#2| (-1 |#1| |#4|) (-1179 |#4|))) (-15 -1905 ((-1179 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3917 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1179 |#4|))) (-15 -4018 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1179 |#4|)))) (-15 -4116 ((-1179 (-1179 |#4|)) (-1 |#4| |#1|) |#3|))) (-1055) (-1249 |#1|) (-1249 |#2|) (-1055)) (T -506))
-((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *6 (-1249 *5)) (-5 *2 (-1179 (-1179 *7))) (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1249 *6)))) (-4018 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-694 (-1179 *8))) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-1249 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8)) (-4 *7 (-1249 *6)))) (-3917 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1179 *7)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1249 *2)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *4 (-1249 *5)) (-5 *2 (-1179 *7)) (-5 *1 (-506 *5 *4 *6 *7)) (-4 *6 (-1249 *4)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1179 *7)) (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1249 *2)))))
-(-10 -7 (-15 -1905 (|#2| (-1 |#1| |#4|) (-1179 |#4|))) (-15 -1905 ((-1179 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3917 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1179 |#4|))) (-15 -4018 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1179 |#4|)))) (-15 -4116 ((-1179 (-1179 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2415 (((-112) $ $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-4224 (((-1278) $) 25)) (-1866 (((-1165) $ (-1183)) 30)) (-4155 (((-1278) $) 17)) (-3793 (((-867) $) 27) (($ (-1165)) 26)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 11)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 9)))
-(((-507) (-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $)) (-15 -3793 ($ (-1165)))))) (T -507))
-((-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1165)) (-5 *1 (-507)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-507)))))
-(-13 (-855) (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $)) (-15 -4224 ((-1278) $)) (-15 -3793 ($ (-1165)))))
-((-3014 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2768 ((|#1| |#4|) 10)) (-2890 ((|#3| |#4|) 17)))
-(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2768 (|#1| |#4|)) (-15 -2890 (|#3| |#4|)) (-15 -3014 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-561) (-998 |#1|) (-377 |#1|) (-377 |#2|)) (T -508))
-((-3014 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5)))) (-2890 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-4 *2 (-377 *4)) (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5)))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-377 *4)))))
-(-10 -7 (-15 -2768 (|#1| |#4|)) (-15 -2890 (|#3| |#4|)) (-15 -3014 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2415 (((-112) $ $) NIL)) (-2843 (((-112) $ (-649 |#3|)) 124) (((-112) $) 125)) (-3192 (((-112) $) 176)) (-4424 (($ $ |#4|) 115) (($ $ |#4| (-649 |#3|)) 119)) (-4324 (((-1172 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|)) 169 (|has| |#3| (-619 (-1183))))) (-2726 (($ $ $) 105) (($ $ |#4|) 103)) (-2623 (((-112) $) 175)) (-3680 (($ $) 129)) (-1550 (((-1165) $) NIL)) (-4333 (($ $ $) 97) (($ (-649 $)) 99)) (-2930 (((-112) |#4| $) 127)) (-3029 (((-112) $ $) 82)) (-3552 (($ (-649 |#4|)) 104)) (-3545 (((-1126) $) NIL)) (-3431 (($ (-649 |#4|)) 173)) (-3298 (((-112) $) 174)) (-1908 (($ $) 85)) (-4357 (((-649 |#4|) $) 73)) (-2594 (((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|)) NIL)) (-3133 (((-112) |#4| $) 89)) (-3083 (((-569) $ (-649 |#3|)) 131) (((-569) $) 132)) (-3793 (((-867) $) 172) (($ (-649 |#4|)) 100)) (-1441 (((-112) $ $) NIL)) (-3772 (($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $))) NIL)) (-2919 (((-112) $ $) 84)) (-3009 (($ $ $) 107)) (** (($ $ (-776)) 113)) (* (($ $ $) 111)))
-(((-509 |#1| |#2| |#3| |#4|) (-13 (-1106) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -3009 ($ $ $)) (-15 -2623 ((-112) $)) (-15 -3192 ((-112) $)) (-15 -3133 ((-112) |#4| $)) (-15 -3029 ((-112) $ $)) (-15 -2930 ((-112) |#4| $)) (-15 -2843 ((-112) $ (-649 |#3|))) (-15 -2843 ((-112) $)) (-15 -4333 ($ $ $)) (-15 -4333 ($ (-649 $))) (-15 -2726 ($ $ $)) (-15 -2726 ($ $ |#4|)) (-15 -1908 ($ $)) (-15 -2594 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -3772 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -3083 ((-569) $ (-649 |#3|))) (-15 -3083 ((-569) $)) (-15 -3680 ($ $)) (-15 -3552 ($ (-649 |#4|))) (-15 -3431 ($ (-649 |#4|))) (-15 -3298 ((-112) $)) (-15 -4357 ((-649 |#4|) $)) (-15 -3793 ($ (-649 |#4|))) (-15 -4424 ($ $ |#4|)) (-15 -4424 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1183))) (-15 -4324 ((-1172 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -509))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3009 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2623 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3192 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3133 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2930 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-2843 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4333 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2726 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2726 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-1908 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2594 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4)) (|:| |genIdeal| (-509 *4 *5 *6 *7)))) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3)) (|:| |genIdeal| (-509 *3 *4 *5 *6)))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-3083 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3680 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4357 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-4424 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-4424 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1183))) (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1172 (-649 (-958 *4)) (-649 (-297 (-958 *4))))) (-5 *1 (-509 *4 *5 *6 *7)))))
-(-13 (-1106) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -3009 ($ $ $)) (-15 -2623 ((-112) $)) (-15 -3192 ((-112) $)) (-15 -3133 ((-112) |#4| $)) (-15 -3029 ((-112) $ $)) (-15 -2930 ((-112) |#4| $)) (-15 -2843 ((-112) $ (-649 |#3|))) (-15 -2843 ((-112) $)) (-15 -4333 ($ $ $)) (-15 -4333 ($ (-649 $))) (-15 -2726 ($ $ $)) (-15 -2726 ($ $ |#4|)) (-15 -1908 ($ $)) (-15 -2594 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -3772 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -3083 ((-569) $ (-649 |#3|))) (-15 -3083 ((-569) $)) (-15 -3680 ($ $)) (-15 -3552 ($ (-649 |#4|))) (-15 -3431 ($ (-649 |#4|))) (-15 -3298 ((-112) $)) (-15 -4357 ((-649 |#4|) $)) (-15 -3793 ($ (-649 |#4|))) (-15 -4424 ($ $ |#4|)) (-15 -4424 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1183))) (-15 -4324 ((-1172 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|)))
-((-2591 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 176)) (-2701 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 177)) (-3488 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 129)) (-4073 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) NIL)) (-2805 (((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 179)) (-2882 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))) 195)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -2591 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -2701 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -4073 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3488 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -2805 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -2882 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))))) (-649 (-1183)) (-776)) (T -510))
-((-2882 (*1 *2 *2 *3) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *1 (-510 *4 *5)))) (-2805 (*1 *2 *3) (-12 (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-649 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569)))))) (-5 *1 (-510 *4 *5)) (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *4 (-776)) (-869 *3) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))))
-(-10 -7 (-15 -2591 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -2701 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -4073 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3488 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -2805 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -2882 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|)))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2983 (($) 6)) (-3793 (((-867) $) 12) (((-1183) $) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 8)))
-(((-511) (-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -2983 ($))))) (T -511))
-((-2983 (*1 *1) (-5 *1 (-511))))
-(-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -2983 ($))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-3920 (($ |#1| |#2|) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1915 ((|#2| $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 12 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) 11) (($ $ $) 35)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21)))
+((-2133 (((-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776)) 33)) (-3521 (((-649 (-1181 |#1|)) |#1| (-776) (-776) (-776)) 43)) (-2706 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)) 110)))
+(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -3521 ((-649 (-1181 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2133 ((-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2706 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)))) (-353) (-1251 |#1|) (-1251 |#2|)) (T -503))
+((-2706 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7))))) (-5 *5 (-776)) (-4 *8 (-1251 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-353)) (-5 *2 (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7)))) (-5 *1 (-503 *6 *7 *8)))) (-2133 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6))))) (-5 *1 (-503 *5 *6 *7)) (-5 *3 (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6)))) (-4 *7 (-1251 *6)))) (-3521 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1251 *3)) (-5 *2 (-649 (-1181 *3))) (-5 *1 (-503 *3 *5 *6)) (-4 *6 (-1251 *5)))))
+(-10 -7 (-15 -3521 ((-649 (-1181 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2133 ((-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2706 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776))))
+((-4009 (((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 74)) (-3908 ((|#1| (-694 |#1|) |#1| (-776)) 27)) (-3799 (((-776) (-776) (-776)) 36)) (-2276 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 54)) (-2381 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 62) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 59)) (-1745 ((|#1| (-694 |#1|) (-694 |#1|) |#1| (-569)) 31)) (-1928 ((|#1| (-694 |#1|)) 18)))
+(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -1928 (|#1| (-694 |#1|))) (-15 -3908 (|#1| (-694 |#1|) |#1| (-776))) (-15 -1745 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -3799 ((-776) (-776) (-776))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2276 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4009 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))))) (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))) (-1251 |#1|) (-414 |#1| |#2|)) (T -504))
+((-4009 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2276 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2381 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2381 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-1745 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-569)) (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-3908 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-776)) (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-694 *2)) (-4 *4 (-1251 *2)) (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4)))))
+(-10 -7 (-15 -1928 (|#1| (-694 |#1|))) (-15 -3908 (|#1| (-694 |#1|) |#1| (-776))) (-15 -1745 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -3799 ((-776) (-776) (-776))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2276 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4009 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))))
+((-2417 (((-112) $ $) NIL)) (-2436 (($ $) NIL)) (-1783 (($ $ $) 40)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-112) $ (-1242 (-569)) (-112)) NIL (|has| $ (-6 -4448))) (((-112) $ (-569) (-112)) 42 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-1698 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3598 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3846 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4448)))) (-3776 (((-112) $ (-569)) NIL)) (-4036 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1108))) (((-569) (-112) $) NIL (|has| (-112) (-1108))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2882 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-1771 (($ $ $) 38)) (-1749 (($ $) NIL)) (-3143 (($ $ $) NIL)) (-4300 (($ (-776) (-112)) 27)) (-1918 (($ $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 8 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL)) (-4198 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2009 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL)) (-3834 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-112) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1682 (($ $ (-112)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-4199 (((-649 (-112)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 28)) (-1869 (($ $ (-1242 (-569))) NIL) (((-112) $ (-569)) 22) (((-112) $ (-569) (-112)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3560 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 29)) (-1410 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3809 (($ (-649 (-112))) NIL)) (-2443 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3796 (((-867) $) 26)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1759 (($ $ $) 36)) (-4419 (($ $ $) NIL)) (-3506 (($ $ $) 45)) (-3519 (($ $) 43)) (-3492 (($ $ $) 44)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 30)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 31)) (-4406 (($ $ $) NIL)) (-2428 (((-776) $) 13 (|has| $ (-6 -4447)))))
+(((-505 |#1|) (-13 (-123) (-10 -8 (-15 -3519 ($ $)) (-15 -3506 ($ $ $)) (-15 -3492 ($ $ $)))) (-569)) (T -505))
+((-3519 (*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3506 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))))
+(-13 (-123) (-10 -8 (-15 -3519 ($ $)) (-15 -3506 ($ $ $)) (-15 -3492 ($ $ $))))
+((-3631 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1181 |#4|)) 35)) (-2424 (((-1181 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1181 |#4|)) 22)) (-2134 (((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1181 |#4|))) 49)) (-1917 (((-1181 (-1181 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 (|#2| (-1 |#1| |#4|) (-1181 |#4|))) (-15 -2424 ((-1181 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3631 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1181 |#4|))) (-15 -2134 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1181 |#4|)))) (-15 -1917 ((-1181 (-1181 |#4|)) (-1 |#4| |#1|) |#3|))) (-1057) (-1251 |#1|) (-1251 |#2|) (-1057)) (T -506))
+((-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *6 (-1251 *5)) (-5 *2 (-1181 (-1181 *7))) (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1251 *6)))) (-2134 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-694 (-1181 *8))) (-4 *5 (-1057)) (-4 *8 (-1057)) (-4 *6 (-1251 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8)) (-4 *7 (-1251 *6)))) (-3631 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1181 *7)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1251 *2)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *4 (-1251 *5)) (-5 *2 (-1181 *7)) (-5 *1 (-506 *5 *4 *6 *7)) (-4 *6 (-1251 *4)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1181 *7)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1251 *2)))))
+(-10 -7 (-15 -2424 (|#2| (-1 |#1| |#4|) (-1181 |#4|))) (-15 -2424 ((-1181 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3631 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1181 |#4|))) (-15 -2134 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1181 |#4|)))) (-15 -1917 ((-1181 (-1181 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3567 (((-1280) $) 25)) (-1869 (((-1167) $ (-1185)) 30)) (-4158 (((-1280) $) 17)) (-3796 (((-867) $) 27) (($ (-1167)) 26)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 9)))
+(((-507) (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3796 ($ (-1167)))))) (T -507))
+((-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1167)) (-5 *1 (-507)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-507)))))
+(-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3796 ($ (-1167)))))
+((-2974 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4377 ((|#1| |#4|) 10)) (-3110 ((|#3| |#4|) 17)))
+(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4377 (|#1| |#4|)) (-15 -3110 (|#3| |#4|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-561) (-1000 |#1|) (-377 |#1|) (-377 |#2|)) (T -508))
+((-2974 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-4 *2 (-377 *4)) (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5)))) (-4377 (*1 *2 *3) (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-377 *4)))))
+(-10 -7 (-15 -4377 (|#1| |#4|)) (-15 -3110 (|#3| |#4|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2417 (((-112) $ $) NIL)) (-2585 (((-112) $ (-649 |#3|)) 124) (((-112) $) 125)) (-4143 (((-112) $) 176)) (-1732 (($ $ |#4|) 115) (($ $ |#4| (-649 |#3|)) 119)) (-2032 (((-1174 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|)) 169 (|has| |#3| (-619 (-1185))))) (-4007 (($ $ $) 105) (($ $ |#4|) 103)) (-2349 (((-112) $) 175)) (-1991 (($ $) 129)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 97) (($ (-649 $)) 99)) (-3408 (((-112) |#4| $) 127)) (-1926 (((-112) $ $) 82)) (-3198 (($ (-649 |#4|)) 104)) (-3547 (((-1128) $) NIL)) (-1449 (($ (-649 |#4|)) 173)) (-2669 (((-112) $) 174)) (-2454 (($ $) 85)) (-2322 (((-649 |#4|) $) 73)) (-2110 (((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|)) NIL)) (-1689 (((-112) |#4| $) 89)) (-2377 (((-569) $ (-649 |#3|)) 131) (((-569) $) 132)) (-3796 (((-867) $) 172) (($ (-649 |#4|)) 100)) (-1520 (((-112) $ $) NIL)) (-1658 (($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $))) NIL)) (-2920 (((-112) $ $) 84)) (-3012 (($ $ $) 107)) (** (($ $ (-776)) 113)) (* (($ $ $) 111)))
+(((-509 |#1| |#2| |#3| |#4|) (-13 (-1108) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -3012 ($ $ $)) (-15 -2349 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -1689 ((-112) |#4| $)) (-15 -1926 ((-112) $ $)) (-15 -3408 ((-112) |#4| $)) (-15 -2585 ((-112) $ (-649 |#3|))) (-15 -2585 ((-112) $)) (-15 -2101 ($ $ $)) (-15 -2101 ($ (-649 $))) (-15 -4007 ($ $ $)) (-15 -4007 ($ $ |#4|)) (-15 -2454 ($ $)) (-15 -2110 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -2377 ((-569) $ (-649 |#3|))) (-15 -2377 ((-569) $)) (-15 -1991 ($ $)) (-15 -3198 ($ (-649 |#4|))) (-15 -1449 ($ (-649 |#4|))) (-15 -2669 ((-112) $)) (-15 -2322 ((-649 |#4|) $)) (-15 -3796 ($ (-649 |#4|))) (-15 -1732 ($ $ |#4|)) (-15 -1732 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1185))) (-15 -2032 ((-1174 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -509))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2349 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4143 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-1689 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1926 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3408 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-2585 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-2585 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2101 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2101 (*1 *1 *2) (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4007 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-4007 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-2454 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2110 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4)) (|:| |genIdeal| (-509 *4 *5 *6 *7)))) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-1658 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3)) (|:| |genIdeal| (-509 *3 *4 *5 *6)))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-2377 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-1991 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-2669 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2322 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-1732 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-1732 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1185))) (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1174 (-649 (-958 *4)) (-649 (-297 (-958 *4))))) (-5 *1 (-509 *4 *5 *6 *7)))))
+(-13 (-1108) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -3012 ($ $ $)) (-15 -2349 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -1689 ((-112) |#4| $)) (-15 -1926 ((-112) $ $)) (-15 -3408 ((-112) |#4| $)) (-15 -2585 ((-112) $ (-649 |#3|))) (-15 -2585 ((-112) $)) (-15 -2101 ($ $ $)) (-15 -2101 ($ (-649 $))) (-15 -4007 ($ $ $)) (-15 -4007 ($ $ |#4|)) (-15 -2454 ($ $)) (-15 -2110 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -2377 ((-569) $ (-649 |#3|))) (-15 -2377 ((-569) $)) (-15 -1991 ($ $)) (-15 -3198 ($ (-649 |#4|))) (-15 -1449 ($ (-649 |#4|))) (-15 -2669 ((-112) $)) (-15 -2322 ((-649 |#4|) $)) (-15 -3796 ($ (-649 |#4|))) (-15 -1732 ($ $ |#4|)) (-15 -1732 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1185))) (-15 -2032 ((-1174 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|)))
+((-2086 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 176)) (-1861 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 177)) (-3491 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 129)) (-1473 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) NIL)) (-3511 (((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 179)) (-3029 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))) 195)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -2086 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1861 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1473 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3491 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3511 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3029 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))))) (-649 (-1185)) (-776)) (T -510))
+((-3029 (*1 *2 *2 *3) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *1 (-510 *4 *5)))) (-3511 (*1 *2 *3) (-12 (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-649 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569)))))) (-5 *1 (-510 *4 *5)) (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *4 (-776)) (-869 *3) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))))
+(-10 -7 (-15 -2086 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1861 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1473 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3491 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3511 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3029 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|)))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2638 (($) 6)) (-3796 (((-867) $) 12) (((-1185) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 8)))
+(((-511) (-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -2638 ($))))) (T -511))
+((-2638 (*1 *1) (-5 *1 (-511))))
+(-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -2638 ($))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 12 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) 11) (($ $ $) 35)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21)))
(((-512 |#1| |#2|) (-13 (-21) (-514 |#1| |#2|)) (-21) (-855)) (T -512))
NIL
(-13 (-21) (-514 |#1| |#2|))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 13)) (-4188 (($) NIL T CONST)) (-1879 (($ $) 41)) (-3920 (($ |#1| |#2|) 38)) (-1344 (($ (-1 |#1| |#1|) $) 40)) (-1915 ((|#2| $) NIL)) (-1855 ((|#1| $) 42)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 10 T CONST)) (-2919 (((-112) $ $) NIL)) (-3009 (($ $ $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 36)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 13)) (-4427 (($) NIL T CONST)) (-1883 (($ $) 41)) (-3923 (($ |#1| |#2|) 38)) (-1346 (($ (-1 |#1| |#1|) $) 40)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) 42)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 10 T CONST)) (-2920 (((-112) $ $) NIL)) (-3012 (($ $ $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 36)))
(((-513 |#1| |#2|) (-13 (-23) (-514 |#1| |#2|)) (-23) (-855)) (T -513))
NIL
(-13 (-23) (-514 |#1| |#2|))
-((-2415 (((-112) $ $) 7)) (-1879 (($ $) 14)) (-3920 (($ |#1| |#2|) 17)) (-1344 (($ (-1 |#1| |#1|) $) 18)) (-1915 ((|#2| $) 15)) (-1855 ((|#1| $) 16)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
-(((-514 |#1| |#2|) (-140) (-1106) (-855)) (T -514))
-((-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-855)))) (-3920 (*1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1106)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-855)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855)))))
-(-13 (-1106) (-10 -8 (-15 -1344 ($ (-1 |t#1| |t#1|) $)) (-15 -3920 ($ |t#1| |t#2|)) (-15 -1855 (|t#1| $)) (-15 -1915 (|t#2| $)) (-15 -1879 ($ $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-3920 (($ |#1| |#2|) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1915 ((|#2| $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 22)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
+((-2417 (((-112) $ $) 7)) (-1883 (($ $) 14)) (-3923 (($ |#1| |#2|) 17)) (-1346 (($ (-1 |#1| |#1|) $) 18)) (-2525 ((|#2| $) 15)) (-1857 ((|#1| $) 16)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
+(((-514 |#1| |#2|) (-140) (-1108) (-855)) (T -514))
+((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-855)))) (-3923 (*1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1108)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-855)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855)))))
+(-13 (-1108) (-10 -8 (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -3923 ($ |t#1| |t#2|)) (-15 -1857 (|t#1| $)) (-15 -2525 (|t#2| $)) (-15 -1883 ($ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 22)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
(((-515 |#1| |#2|) (-13 (-797) (-514 |#1| |#2|)) (-797) (-855)) (T -515))
NIL
(-13 (-797) (-514 |#1| |#2|))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3217 (($ $ $) 23)) (-1678 (((-3 $ "failed") $ $) 19)) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-3920 (($ |#1| |#2|) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1915 ((|#2| $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3151 (($ $ $) 23)) (-2208 (((-3 $ "failed") $ $) 19)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
(((-516 |#1| |#2|) (-13 (-798) (-514 |#1| |#2|)) (-798) (-855)) (T -516))
NIL
(-13 (-798) (-514 |#1| |#2|))
-((-2415 (((-112) $ $) NIL)) (-1879 (($ $) 32)) (-3920 (($ |#1| |#2|) 28)) (-1344 (($ (-1 |#1| |#1|) $) 30)) (-1915 ((|#2| $) 34)) (-1855 ((|#1| $) 33)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 27)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 20)))
-(((-517 |#1| |#2|) (-514 |#1| |#2|) (-1106) (-855)) (T -517))
+((-2417 (((-112) $ $) NIL)) (-1883 (($ $) 32)) (-3923 (($ |#1| |#2|) 28)) (-1346 (($ (-1 |#1| |#1|) $) 30)) (-2525 ((|#2| $) 34)) (-1857 ((|#1| $) 33)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 20)))
+(((-517 |#1| |#2|) (-514 |#1| |#2|) (-1108) (-855)) (T -517))
NIL
(-514 |#1| |#2|)
-((-1723 (($ $ (-649 |#2|) (-649 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-518 |#1| |#2| |#3|) (-10 -8 (-15 -1723 (|#1| |#1| |#2| |#3|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#3|)))) (-519 |#2| |#3|) (-1106) (-1223)) (T -518))
+((-1725 (($ $ (-649 |#2|) (-649 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-518 |#1| |#2| |#3|) (-10 -8 (-15 -1725 (|#1| |#1| |#2| |#3|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#3|)))) (-519 |#2| |#3|) (-1108) (-1225)) (T -518))
NIL
-(-10 -8 (-15 -1723 (|#1| |#1| |#2| |#3|)) (-15 -1723 (|#1| |#1| (-649 |#2|) (-649 |#3|))))
-((-1723 (($ $ (-649 |#1|) (-649 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-519 |#1| |#2|) (-140) (-1106) (-1223)) (T -519))
-((-1723 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *5)) (-4 *1 (-519 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1223)))) (-1723 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1223)))))
-(-13 (-10 -8 (-15 -1723 ($ $ |t#1| |t#2|)) (-15 -1723 ($ $ (-649 |t#1|) (-649 |t#2|)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 17)) (-2009 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|))) $) 19)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3470 (((-776) $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3252 ((|#1| $ (-569)) 24)) (-3774 ((|#2| $ (-569)) 22)) (-1854 (($ (-1 |#1| |#1|) $) 48)) (-3681 (($ (-1 |#2| |#2|) $) 45)) (-1550 (((-1165) $) NIL)) (-1506 (($ $ $) 55 (|has| |#2| (-797)))) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 44) (($ |#1|) NIL)) (-4184 ((|#2| |#1| $) 51)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 11 T CONST)) (-2919 (((-112) $ $) 30)) (-3009 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 37) (($ |#2| |#1|) 32)))
-(((-520 |#1| |#2| |#3|) (-326 |#1| |#2|) (-1106) (-131) |#2|) (T -520))
+(-10 -8 (-15 -1725 (|#1| |#1| |#2| |#3|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#3|))))
+((-1725 (($ $ (-649 |#1|) (-649 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-519 |#1| |#2|) (-140) (-1108) (-1225)) (T -519))
+((-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *5)) (-4 *1 (-519 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1225)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1225)))))
+(-13 (-10 -8 (-15 -1725 ($ $ |t#1| |t#2|)) (-15 -1725 ($ $ (-649 |t#1|) (-649 |t#2|)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 17)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $) 19)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3522 ((|#1| $ (-569)) 24)) (-1670 ((|#2| $ (-569)) 22)) (-3196 (($ (-1 |#1| |#1|) $) 48)) (-2000 (($ (-1 |#2| |#2|) $) 45)) (-3435 (((-1167) $) NIL)) (-4206 (($ $ $) 55 (|has| |#2| (-797)))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 44) (($ |#1|) NIL)) (-4383 ((|#2| |#1| $) 51)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 11 T CONST)) (-2920 (((-112) $ $) 30)) (-3012 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 37) (($ |#2| |#1|) 32)))
+(((-520 |#1| |#2| |#3|) (-326 |#1| |#2|) (-1108) (-131) |#2|) (T -520))
NIL
(-326 |#1| |#2|)
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-2006 (((-112) (-112)) 32)) (-3940 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) |#1|) $) 80)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3041 (($ $) 84 (|has| |#1| (-1106)))) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) 67)) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2085 (($ $ (-569)) 19)) (-2183 (((-776) $) 13)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) 31)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 29 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2616 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) 28 (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3813 (($ $ $ (-569)) 76) (($ |#1| $ (-569)) 60)) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2279 (($ (-649 |#1|)) 43)) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) 24 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 63)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 21)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 56) (($ $ (-1240 (-569))) NIL)) (-4198 (($ $ (-1240 (-569))) 74) (($ $ (-569)) 68)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) 64 (|has| $ (-6 -4445)))) (-3959 (($ $) 54)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) NIL)) (-1621 (($ $ $) 65) (($ $ |#1|) 62)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) 22 (|has| $ (-6 -4444)))))
-(((-521 |#1| |#2|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2279 ($ (-649 |#1|))) (-15 -2183 ((-776) $)) (-15 -2085 ($ $ (-569))) (-15 -2006 ((-112) (-112))))) (-1223) (-569)) (T -521))
-((-2279 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-521 *3 *4)) (-14 *4 (-569)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 (-569)))) (-2085 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 *2))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 (-569)))))
-(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2279 ($ (-649 |#1|))) (-15 -2183 ((-776) $)) (-15 -2085 ($ $ (-569))) (-15 -2006 ((-112) (-112)))))
-((-2415 (((-112) $ $) NIL)) (-4403 (((-1141) $) 11)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2365 (((-1141) $) 13)) (-2383 (((-1141) $) 9)) (-3793 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-522) (-13 (-1089) (-10 -8 (-15 -2383 ((-1141) $)) (-15 -4403 ((-1141) $)) (-15 -2365 ((-1141) $))))) (T -522))
-((-2383 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
-(-13 (-1089) (-10 -8 (-15 -2383 ((-1141) $)) (-15 -4403 ((-1141) $)) (-15 -2365 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-586 |#1|) (-372)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL (|has| (-586 |#1|) (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-586 |#1|) "failed") $) NIL)) (-3148 (((-586 |#1|) $) NIL)) (-3390 (($ (-1273 (-586 |#1|))) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-586 |#1|) (-372)))) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-586 |#1|) (-372)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL (|has| (-586 |#1|) (-372)))) (-1940 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-2501 (($ $ (-776)) NIL (-2774 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372)))) (($ $) NIL (-2774 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-4073 (((-112) $) NIL)) (-3110 (((-927) $) NIL (|has| (-586 |#1|) (-372))) (((-838 (-927)) $) NIL (-2774 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| (-586 |#1|) (-372)))) (-2968 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-2707 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3812 (((-3 $ "failed") $) NIL (|has| (-586 |#1|) (-372)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 (-586 |#1|)) $) NIL) (((-1179 $) $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-2855 (((-927) $) NIL (|has| (-586 |#1|) (-372)))) (-4244 (((-1179 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372)))) (-4151 (((-1179 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-1179 (-586 |#1|)) "failed") $ $) NIL (|has| (-586 |#1|) (-372)))) (-3091 (($ $ (-1179 (-586 |#1|))) NIL (|has| (-586 |#1|) (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-586 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-2330 (($) NIL (|has| (-586 |#1|) (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| (-586 |#1|) (-372)))) (-3796 (((-423 $) $) NIL)) (-2259 (((-838 (-927))) NIL) (((-927)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-776) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2774 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-3083 (((-134)) NIL)) (-3514 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-3868 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4143 (((-1179 (-586 |#1|))) NIL)) (-2430 (($) NIL (|has| (-586 |#1|) (-372)))) (-3188 (($) NIL (|has| (-586 |#1|) (-372)))) (-2960 (((-1273 (-586 |#1|)) $) NIL) (((-694 (-586 |#1|)) (-1273 $)) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-586 |#1|) (-372)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-586 |#1|)) NIL)) (-4030 (($ $) NIL (|has| (-586 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2774 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL) (((-1273 $) (-927)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2830 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL) (($ $ (-586 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-586 |#1|)) NIL) (($ (-586 |#1|) $) NIL)))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-2270 (((-112) (-112)) 32)) (-3943 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) 80)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-2017 (($ $) 84 (|has| |#1| (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) 67)) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-3802 (($ $ (-569)) 19)) (-3558 (((-776) $) 13)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 31)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 29 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) 28 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3894 (($ $ $ (-569)) 76) (($ |#1| $ (-569)) 60)) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-2053 (($ (-649 |#1|)) 43)) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) 24 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 63)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 21)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 56) (($ $ (-1242 (-569))) NIL)) (-3301 (($ $ (-1242 (-569))) 74) (($ $ (-569)) 68)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) 64 (|has| $ (-6 -4448)))) (-3962 (($ $) 54)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2866 (($ $ $) 65) (($ $ |#1|) 62)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 22 (|has| $ (-6 -4447)))))
+(((-521 |#1| |#2|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112))))) (-1225) (-569)) (T -521))
+((-2053 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-521 *3 *4)) (-14 *4 (-569)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 (-569)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 *2))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 (-569)))))
+(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112)))))
+((-2417 (((-112) $ $) NIL)) (-1546 (((-1143) $) 11)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1748 (((-1143) $) 13)) (-2385 (((-1143) $) 9)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-522) (-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $)) (-15 -1546 ((-1143) $)) (-15 -1748 ((-1143) $))))) (T -522))
+((-2385 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))))
+(-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $)) (-15 -1546 ((-1143) $)) (-15 -1748 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-586 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-586 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-586 |#1|) "failed") $) NIL)) (-3150 (((-586 |#1|) $) NIL)) (-2247 (($ (-1275 (-586 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-586 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-586 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-586 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-586 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-586 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-3829 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-586 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-586 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-586 |#1|) (-372)))) (-3775 (((-1181 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372)))) (-4119 (((-1181 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-1181 (-586 |#1|)) "failed") $ $) NIL (|has| (-586 |#1|) (-372)))) (-4384 (($ $ (-1181 (-586 |#1|))) NIL (|has| (-586 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-586 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| (-586 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-586 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-586 |#1|))) NIL)) (-4234 (($) NIL (|has| (-586 |#1|) (-372)))) (-4110 (($) NIL (|has| (-586 |#1|) (-372)))) (-2415 (((-1275 (-586 |#1|)) $) NIL) (((-694 (-586 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-586 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-586 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-586 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-586 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-586 |#1|)) NIL) (($ (-586 |#1|) $) NIL)))
(((-523 |#1| |#2|) (-332 (-586 |#1|)) (-927) (-927)) (T -523))
NIL
(-332 (-586 |#1|))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) (-569) |#1|) 51)) (-2316 (($ $ (-569) |#4|) NIL)) (-2782 (($ $ (-569) |#5|) NIL)) (-4188 (($) NIL T CONST)) (-1486 ((|#4| $ (-569)) NIL)) (-3843 ((|#1| $ (-569) (-569) |#1|) 50)) (-3773 ((|#1| $ (-569) (-569)) 45)) (-2880 (((-649 |#1|) $) NIL)) (-3221 (((-776) $) 33)) (-4295 (($ (-776) (-776) |#1|) 30)) (-3234 (((-776) $) 38)) (-1689 (((-112) $ (-776)) NIL)) (-3856 (((-569) $) 31)) (-1738 (((-569) $) 32)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3744 (((-569) $) 37)) (-1609 (((-569) $) 39)) (-3831 (($ (-1 |#1| |#1|) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) 55 (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 14)) (-3597 (($) 16)) (-1866 ((|#1| $ (-569) (-569)) 48) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-1363 ((|#5| $ (-569)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-524 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1223) (-569) (-569) (-377 |#1|) (-377 |#1|)) (T -524))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) 51)) (-2400 (($ $ (-569) |#4|) NIL)) (-3259 (($ $ (-569) |#5|) NIL)) (-4427 (($) NIL T CONST)) (-4044 ((|#4| $ (-569)) NIL)) (-3846 ((|#1| $ (-569) (-569) |#1|) 50)) (-3776 ((|#1| $ (-569) (-569)) 45)) (-2882 (((-649 |#1|) $) NIL)) (-3225 (((-776) $) 33)) (-4300 (($ (-776) (-776) |#1|) 30)) (-3236 (((-776) $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) 31)) (-1537 (((-569) $) 32)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) 37)) (-2742 (((-569) $) 39)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) 55 (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 14)) (-3635 (($) 16)) (-1869 ((|#1| $ (-569) (-569)) 48) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 ((|#5| $ (-569)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-524 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1225) (-569) (-569) (-377 |#1|) (-377 |#1|)) (T -524))
NIL
(-57 |#1| |#4| |#5|)
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) NIL)) (-2561 ((|#1| $) NIL)) (-1566 (($ $) NIL)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) 73 (|has| $ (-6 -4445)))) (-2031 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3012 (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4445)))) (-3355 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-4382 (($ $ $) 23 (|has| $ (-6 -4445)))) (-1716 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) 21 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4445))) (($ $ "rest" $) 24 (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2548 ((|#1| $) NIL)) (-4188 (($) NIL T CONST)) (-4380 (($ $) 28 (|has| $ (-6 -4445)))) (-2248 (($ $) 29)) (-3522 (($ $) 18) (($ $ (-776)) 35)) (-3041 (($ $) 66 (|has| |#1| (-1106)))) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1696 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-1677 (((-112) $) NIL)) (-4034 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106))) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2880 (((-649 |#1|) $) 27 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 31 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2616 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2126 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3379 (($ |#1|) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) NIL)) (-1550 (((-1165) $) 62 (|has| |#1| (-1106)))) (-1722 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3813 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4294 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) 13) (($ $ (-776)) NIL)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-1807 (((-112) $) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 12)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) 17)) (-3597 (($) 16)) (-1866 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL)) (-3947 (((-569) $ $) NIL)) (-4198 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4325 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-2102 (((-112) $) 39)) (-1750 (($ $) NIL)) (-1497 (($ $) NIL (|has| $ (-6 -4445)))) (-3754 (((-776) $) NIL)) (-3866 (($ $) 44)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) 40)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 26)) (-1621 (($ $ $) 65) (($ $ |#1|) NIL)) (-2441 (($ $ $) NIL) (($ |#1| $) 10) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3793 (((-867) $) 54 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) 58 (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) 9 (|has| $ (-6 -4444)))))
-(((-525 |#1| |#2|) (-671 |#1|) (-1223) (-569)) (T -525))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 73 (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) 23 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 21 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4448))) (($ $ "rest" $) 24 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-2507 (($ $) 28 (|has| $ (-6 -4448)))) (-2251 (($ $) 29)) (-3525 (($ $) 18) (($ $ (-776)) 35)) (-2017 (($ $) 66 (|has| |#1| (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108))) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2882 (((-649 |#1|) $) 27 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 31 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-4198 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3382 (($ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) 62 (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) 13) (($ $ (-776)) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 12)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 16)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL)) (-2602 (((-569) $ $) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3966 (((-112) $) 39)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) 44)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 40)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 26)) (-2866 (($ $ $) 65) (($ $ |#1|) NIL)) (-2443 (($ $ $) NIL) (($ |#1| $) 10) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3796 (((-867) $) 54 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) 58 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 9 (|has| $ (-6 -4447)))))
+(((-525 |#1| |#2|) (-671 |#1|) (-1225) (-569)) (T -525))
NIL
(-671 |#1|)
-((-4372 ((|#4| |#4|) 37)) (-3975 (((-776) |#4|) 45)) (-2345 (((-776) |#4|) 46)) (-2250 (((-649 |#3|) |#4|) 56 (|has| |#3| (-6 -4445)))) (-1933 (((-3 |#4| "failed") |#4|) 70)) (-1399 ((|#4| |#4|) 62)) (-2458 ((|#1| |#4|) 61)))
-(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4372 (|#4| |#4|)) (-15 -3975 ((-776) |#4|)) (-15 -2345 ((-776) |#4|)) (IF (|has| |#3| (-6 -4445)) (-15 -2250 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -2458 (|#1| |#4|)) (-15 -1399 (|#4| |#4|)) (-15 -1933 ((-3 |#4| "failed") |#4|))) (-367) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -526))
-((-1933 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2458 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367)) (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-2250 (*1 *2 *3) (-12 (|has| *6 (-6 -4445)) (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-2345 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
-(-10 -7 (-15 -4372 (|#4| |#4|)) (-15 -3975 ((-776) |#4|)) (-15 -2345 ((-776) |#4|)) (IF (|has| |#3| (-6 -4445)) (-15 -2250 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -2458 (|#1| |#4|)) (-15 -1399 (|#4| |#4|)) (-15 -1933 ((-3 |#4| "failed") |#4|)))
-((-4372 ((|#8| |#4|) 20)) (-2250 (((-649 |#3|) |#4|) 29 (|has| |#7| (-6 -4445)))) (-1933 (((-3 |#8| "failed") |#4|) 23)))
-(((-527 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4372 (|#8| |#4|)) (-15 -1933 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4445)) (-15 -2250 ((-649 |#3|) |#4|)) |%noBranch|)) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-998 |#1|) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -527))
-((-2250 (*1 *2 *3) (-12 (|has| *9 (-6 -4445)) (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)) (-5 *2 (-649 *6)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6)) (-4 *10 (-692 *7 *8 *9)))) (-1933 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))) (-4372 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))))
-(-10 -7 (-15 -4372 (|#8| |#4|)) (-15 -1933 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4445)) (-15 -2250 ((-649 |#3|) |#4|)) |%noBranch|))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3464 (($ (-776) (-776)) NIL)) (-2149 (($ $ $) NIL)) (-2873 (($ (-607 |#1| |#3|)) NIL) (($ $) NIL)) (-4080 (((-112) $) NIL)) (-2050 (($ $ (-569) (-569)) 21)) (-1956 (($ $ (-569) (-569)) NIL)) (-3034 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-2332 (($ $) NIL)) (-4317 (((-112) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-2922 (($ $ (-569) (-569) $) NIL)) (-3940 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2316 (($ $ (-569) (-607 |#1| |#3|)) NIL)) (-2782 (($ $ (-569) (-607 |#1| |#2|)) NIL)) (-2931 (($ (-776) |#1|) NIL)) (-4188 (($) NIL T CONST)) (-4372 (($ $) 30 (|has| |#1| (-310)))) (-1486 (((-607 |#1| |#3|) $ (-569)) NIL)) (-3975 (((-776) $) 33 (|has| |#1| (-561)))) (-3843 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3773 ((|#1| $ (-569) (-569)) NIL)) (-2880 (((-649 |#1|) $) NIL)) (-2345 (((-776) $) 35 (|has| |#1| (-561)))) (-2250 (((-649 (-607 |#1| |#2|)) $) 38 (|has| |#1| (-561)))) (-3221 (((-776) $) NIL)) (-4295 (($ (-776) (-776) |#1|) NIL)) (-3234 (((-776) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3647 ((|#1| $) 28 (|has| |#1| (-6 (-4446 "*"))))) (-3856 (((-569) $) 10)) (-1738 (((-569) $) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3744 (((-569) $) 13)) (-1609 (((-569) $) NIL)) (-2428 (($ (-649 (-649 |#1|))) NIL)) (-3831 (($ (-1 |#1| |#1|) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3005 (((-649 (-649 |#1|)) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1933 (((-3 $ "failed") $) 42 (|has| |#1| (-367)))) (-2236 (($ $ $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) NIL)) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-2823 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-4206 (((-112) $) NIL)) (-2458 ((|#1| $) 26 (|has| |#1| (-6 (-4446 "*"))))) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-1363 (((-607 |#1| |#2|) $ (-569)) NIL)) (-3793 (($ (-607 |#1| |#2|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3962 (((-112) $) NIL)) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-607 |#1| |#2|) $ (-607 |#1| |#2|)) NIL) (((-607 |#1| |#3|) (-607 |#1| |#3|) $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-528 |#1| |#2| |#3|) (-692 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) (-1055) (-569) (-569)) (T -528))
+((-2439 ((|#4| |#4|) 37)) (-3978 (((-776) |#4|) 45)) (-1539 (((-776) |#4|) 46)) (-2970 (((-649 |#3|) |#4|) 56 (|has| |#3| (-6 -4448)))) (-2725 (((-3 |#4| "failed") |#4|) 70)) (-3892 ((|#4| |#4|) 62)) (-3242 ((|#1| |#4|) 61)))
+(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2439 (|#4| |#4|)) (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (IF (|has| |#3| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -3242 (|#1| |#4|)) (-15 -3892 (|#4| |#4|)) (-15 -2725 ((-3 |#4| "failed") |#4|))) (-367) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -526))
+((-2725 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367)) (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-2970 (*1 *2 *3) (-12 (|has| *6 (-6 -4448)) (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1539 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3978 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(-10 -7 (-15 -2439 (|#4| |#4|)) (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (IF (|has| |#3| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -3242 (|#1| |#4|)) (-15 -3892 (|#4| |#4|)) (-15 -2725 ((-3 |#4| "failed") |#4|)))
+((-2439 ((|#8| |#4|) 20)) (-2970 (((-649 |#3|) |#4|) 29 (|has| |#7| (-6 -4448)))) (-2725 (((-3 |#8| "failed") |#4|) 23)))
+(((-527 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2439 (|#8| |#4|)) (-15 -2725 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|)) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-1000 |#1|) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -527))
+((-2970 (*1 *2 *3) (-12 (|has| *9 (-6 -4448)) (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)) (-5 *2 (-649 *6)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6)) (-4 *10 (-692 *7 *8 *9)))) (-2725 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))) (-2439 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))))
+(-10 -7 (-15 -2439 (|#8| |#4|)) (-15 -2725 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) NIL)) (-3182 (($ $ $) NIL)) (-2937 (($ (-607 |#1| |#3|)) NIL) (($ $) NIL)) (-1551 (((-112) $) NIL)) (-1532 (($ $ (-569) (-569)) 21)) (-2986 (($ $ (-569) (-569)) NIL)) (-1952 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-1383 (($ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3312 (($ $ (-569) (-569) $) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2400 (($ $ (-569) (-607 |#1| |#3|)) NIL)) (-3259 (($ $ (-569) (-607 |#1| |#2|)) NIL)) (-3419 (($ (-776) |#1|) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 30 (|has| |#1| (-310)))) (-4044 (((-607 |#1| |#3|) $ (-569)) NIL)) (-3978 (((-776) $) 33 (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-1539 (((-776) $) 35 (|has| |#1| (-561)))) (-2970 (((-649 (-607 |#1| |#2|)) $) 38 (|has| |#1| (-561)))) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#1| $) 28 (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) 10)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) 13)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#1|))) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2884 (((-649 (-649 |#1|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) 42 (|has| |#1| (-367)))) (-2838 (($ $ $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-3687 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-3387 (((-112) $) NIL)) (-3242 ((|#1| $) 26 (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-607 |#1| |#2|) $ (-569)) NIL)) (-3796 (($ (-607 |#1| |#2|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-607 |#1| |#2|) $ (-607 |#1| |#2|)) NIL) (((-607 |#1| |#3|) (-607 |#1| |#3|) $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-528 |#1| |#2| |#3|) (-692 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) (-1057) (-569) (-569)) (T -528))
NIL
(-692 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-1520 (((-649 (-1222)) $) 13)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL) (($ (-649 (-1222))) 11)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-529) (-13 (-1089) (-10 -8 (-15 -3793 ($ (-649 (-1222)))) (-15 -1520 ((-649 (-1222)) $))))) (T -529))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529)))))
-(-13 (-1089) (-10 -8 (-15 -3793 ($ (-649 (-1222)))) (-15 -1520 ((-649 (-1222)) $))))
-((-2415 (((-112) $ $) NIL)) (-1643 (((-1141) $) 14)) (-1550 (((-1165) $) NIL)) (-4154 (((-511) $) 11)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 21) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-530) (-13 (-1089) (-10 -8 (-15 -4154 ((-511) $)) (-15 -1643 ((-1141) $))))) (T -530))
-((-4154 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-530)))))
-(-13 (-1089) (-10 -8 (-15 -4154 ((-511) $)) (-15 -1643 ((-1141) $))))
-((-4235 (((-696 (-1231)) $) 15)) (-3776 (((-696 (-1229)) $) 38)) (-4002 (((-696 (-1228)) $) 29)) (-3104 (((-696 (-554)) $) 12)) (-3887 (((-696 (-552)) $) 42)) (-4118 (((-696 (-551)) $) 33)) (-1772 (((-776) $ (-128)) 54)))
-(((-531 |#1|) (-10 -8 (-15 -1772 ((-776) |#1| (-128))) (-15 -3776 ((-696 (-1229)) |#1|)) (-15 -3887 ((-696 (-552)) |#1|)) (-15 -4002 ((-696 (-1228)) |#1|)) (-15 -4118 ((-696 (-551)) |#1|)) (-15 -4235 ((-696 (-1231)) |#1|)) (-15 -3104 ((-696 (-554)) |#1|))) (-532)) (T -531))
-NIL
-(-10 -8 (-15 -1772 ((-776) |#1| (-128))) (-15 -3776 ((-696 (-1229)) |#1|)) (-15 -3887 ((-696 (-552)) |#1|)) (-15 -4002 ((-696 (-1228)) |#1|)) (-15 -4118 ((-696 (-551)) |#1|)) (-15 -4235 ((-696 (-1231)) |#1|)) (-15 -3104 ((-696 (-554)) |#1|)))
-((-4235 (((-696 (-1231)) $) 12)) (-3776 (((-696 (-1229)) $) 8)) (-4002 (((-696 (-1228)) $) 10)) (-3104 (((-696 (-554)) $) 13)) (-3887 (((-696 (-552)) $) 9)) (-4118 (((-696 (-551)) $) 11)) (-1772 (((-776) $ (-128)) 7)) (-3219 (((-696 (-129)) $) 14)) (-2839 (($ $) 6)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3093 (((-649 (-1224)) $) 13)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL) (($ (-649 (-1224))) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-529) (-13 (-1091) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -3093 ((-649 (-1224)) $))))) (T -529))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529)))))
+(-13 (-1091) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -3093 ((-649 (-1224)) $))))
+((-2417 (((-112) $ $) NIL)) (-1905 (((-1143) $) 14)) (-3435 (((-1167) $) NIL)) (-4141 (((-511) $) 11)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 21) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-530) (-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -1905 ((-1143) $))))) (T -530))
+((-4141 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-530)))))
+(-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -1905 ((-1143) $))))
+((-3694 (((-696 (-1233)) $) 15)) (-1690 (((-696 (-1231)) $) 38)) (-1979 (((-696 (-1230)) $) 29)) (-1389 (((-696 (-554)) $) 12)) (-3281 (((-696 (-552)) $) 42)) (-1933 (((-696 (-551)) $) 33)) (-3732 (((-776) $ (-128)) 54)))
+(((-531 |#1|) (-10 -8 (-15 -3732 ((-776) |#1| (-128))) (-15 -1690 ((-696 (-1231)) |#1|)) (-15 -3281 ((-696 (-552)) |#1|)) (-15 -1979 ((-696 (-1230)) |#1|)) (-15 -1933 ((-696 (-551)) |#1|)) (-15 -3694 ((-696 (-1233)) |#1|)) (-15 -1389 ((-696 (-554)) |#1|))) (-532)) (T -531))
+NIL
+(-10 -8 (-15 -3732 ((-776) |#1| (-128))) (-15 -1690 ((-696 (-1231)) |#1|)) (-15 -3281 ((-696 (-552)) |#1|)) (-15 -1979 ((-696 (-1230)) |#1|)) (-15 -1933 ((-696 (-551)) |#1|)) (-15 -3694 ((-696 (-1233)) |#1|)) (-15 -1389 ((-696 (-554)) |#1|)))
+((-3694 (((-696 (-1233)) $) 12)) (-1690 (((-696 (-1231)) $) 8)) (-1979 (((-696 (-1230)) $) 10)) (-1389 (((-696 (-554)) $) 13)) (-3281 (((-696 (-552)) $) 9)) (-1933 (((-696 (-551)) $) 11)) (-3732 (((-776) $ (-128)) 7)) (-3171 (((-696 (-129)) $) 14)) (-2543 (($ $) 6)))
(((-532) (-140)) (T -532))
-((-3219 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129))))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554))))) (-4235 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551))))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1228))))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1229))))) (-1772 (*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776)))))
-(-13 (-174) (-10 -8 (-15 -3219 ((-696 (-129)) $)) (-15 -3104 ((-696 (-554)) $)) (-15 -4235 ((-696 (-1231)) $)) (-15 -4118 ((-696 (-551)) $)) (-15 -4002 ((-696 (-1228)) $)) (-15 -3887 ((-696 (-552)) $)) (-15 -3776 ((-696 (-1229)) $)) (-15 -1772 ((-776) $ (-128)))))
+((-3171 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129))))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554))))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1233))))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551))))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1230))))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))) (-3732 (*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(-13 (-174) (-10 -8 (-15 -3171 ((-696 (-129)) $)) (-15 -1389 ((-696 (-554)) $)) (-15 -3694 ((-696 (-1233)) $)) (-15 -1933 ((-696 (-551)) $)) (-15 -1979 ((-696 (-1230)) $)) (-15 -3281 ((-696 (-552)) $)) (-15 -1690 ((-696 (-1231)) $)) (-15 -3732 ((-776) $ (-128)))))
(((-174) . T))
-((-3594 (((-1179 |#1|) (-776)) 114)) (-3136 (((-1273 |#1|) (-1273 |#1|) (-927)) 107)) (-3349 (((-1278) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) |#1|) 122)) (-2507 (((-1273 |#1|) (-1273 |#1|) (-776)) 53)) (-3403 (((-1273 |#1|) (-927)) 109)) (-2739 (((-1273 |#1|) (-1273 |#1|) (-569)) 30)) (-3466 (((-1179 |#1|) (-1273 |#1|)) 115)) (-1993 (((-1273 |#1|) (-927)) 135)) (-2968 (((-112) (-1273 |#1|)) 119)) (-2707 (((-1273 |#1|) (-1273 |#1|) (-927)) 99)) (-2091 (((-1179 |#1|) (-1273 |#1|)) 129)) (-2855 (((-927) (-1273 |#1|)) 95)) (-1814 (((-1273 |#1|) (-1273 |#1|)) 38)) (-2150 (((-1273 |#1|) (-927) (-927)) 138)) (-2621 (((-1273 |#1|) (-1273 |#1|) (-1126) (-1126)) 29)) (-3701 (((-1273 |#1|) (-1273 |#1|) (-776) (-1126)) 54)) (-1903 (((-1273 (-1273 |#1|)) (-927)) 134)) (-3032 (((-1273 |#1|) (-1273 |#1|) (-1273 |#1|)) 120)) (** (((-1273 |#1|) (-1273 |#1|) (-569)) 67)) (* (((-1273 |#1|) (-1273 |#1|) (-1273 |#1|)) 31)))
-(((-533 |#1|) (-10 -7 (-15 -3349 ((-1278) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) |#1|)) (-15 -3403 ((-1273 |#1|) (-927))) (-15 -2150 ((-1273 |#1|) (-927) (-927))) (-15 -3466 ((-1179 |#1|) (-1273 |#1|))) (-15 -3594 ((-1179 |#1|) (-776))) (-15 -3701 ((-1273 |#1|) (-1273 |#1|) (-776) (-1126))) (-15 -2507 ((-1273 |#1|) (-1273 |#1|) (-776))) (-15 -2621 ((-1273 |#1|) (-1273 |#1|) (-1126) (-1126))) (-15 -2739 ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 ** ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 * ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -3032 ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -2707 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -3136 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -1814 ((-1273 |#1|) (-1273 |#1|))) (-15 -2855 ((-927) (-1273 |#1|))) (-15 -2968 ((-112) (-1273 |#1|))) (-15 -1903 ((-1273 (-1273 |#1|)) (-927))) (-15 -1993 ((-1273 |#1|) (-927))) (-15 -2091 ((-1179 |#1|) (-1273 |#1|)))) (-353)) (T -533))
-((-2091 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 *4))) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-533 *4)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-927)) (-5 *1 (-533 *4)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (-3136 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3032 (*1 *2 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2621 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1126)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2507 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3701 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1273 *5)) (-5 *3 (-776)) (-5 *4 (-1126)) (-4 *5 (-353)) (-5 *1 (-533 *5)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4)))) (-2150 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126)))))) (-4 *4 (-353)) (-5 *2 (-1278)) (-5 *1 (-533 *4)))))
-(-10 -7 (-15 -3349 ((-1278) (-1273 (-649 (-2 (|:| -2185 |#1|) (|:| -2150 (-1126))))) |#1|)) (-15 -3403 ((-1273 |#1|) (-927))) (-15 -2150 ((-1273 |#1|) (-927) (-927))) (-15 -3466 ((-1179 |#1|) (-1273 |#1|))) (-15 -3594 ((-1179 |#1|) (-776))) (-15 -3701 ((-1273 |#1|) (-1273 |#1|) (-776) (-1126))) (-15 -2507 ((-1273 |#1|) (-1273 |#1|) (-776))) (-15 -2621 ((-1273 |#1|) (-1273 |#1|) (-1126) (-1126))) (-15 -2739 ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 ** ((-1273 |#1|) (-1273 |#1|) (-569))) (-15 * ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -3032 ((-1273 |#1|) (-1273 |#1|) (-1273 |#1|))) (-15 -2707 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -3136 ((-1273 |#1|) (-1273 |#1|) (-927))) (-15 -1814 ((-1273 |#1|) (-1273 |#1|))) (-15 -2855 ((-927) (-1273 |#1|))) (-15 -2968 ((-112) (-1273 |#1|))) (-15 -1903 ((-1273 (-1273 |#1|)) (-927))) (-15 -1993 ((-1273 |#1|) (-927))) (-15 -2091 ((-1179 |#1|) (-1273 |#1|))))
-((-4235 (((-696 (-1231)) $) NIL)) (-3776 (((-696 (-1229)) $) NIL)) (-4002 (((-696 (-1228)) $) NIL)) (-3104 (((-696 (-554)) $) NIL)) (-3887 (((-696 (-552)) $) NIL)) (-4118 (((-696 (-551)) $) NIL)) (-1772 (((-776) $ (-128)) NIL)) (-3219 (((-696 (-129)) $) 26)) (-2190 (((-1126) $ (-1126)) 31)) (-4034 (((-1126) $) 30)) (-2832 (((-112) $) 20)) (-2381 (($ (-393)) 14) (($ (-1165)) 16)) (-2285 (((-112) $) 27)) (-3793 (((-867) $) 34)) (-2839 (($ $) 28)))
-(((-534) (-13 (-532) (-618 (-867)) (-10 -8 (-15 -2381 ($ (-393))) (-15 -2381 ($ (-1165))) (-15 -2285 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -4034 ((-1126) $)) (-15 -2190 ((-1126) $ (-1126)))))) (T -534))
-((-2381 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-534)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))) (-2190 (*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))))
-(-13 (-532) (-618 (-867)) (-10 -8 (-15 -2381 ($ (-393))) (-15 -2381 ($ (-1165))) (-15 -2285 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -4034 ((-1126) $)) (-15 -2190 ((-1126) $ (-1126)))))
-((-1360 (((-1 |#1| |#1|) |#1|) 11)) (-4421 (((-1 |#1| |#1|)) 10)))
-(((-535 |#1|) (-10 -7 (-15 -4421 ((-1 |#1| |#1|))) (-15 -1360 ((-1 |#1| |#1|) |#1|))) (-13 (-731) (-25))) (T -535))
-((-1360 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))) (-4421 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
-(-10 -7 (-15 -4421 ((-1 |#1| |#1|))) (-15 -1360 ((-1 |#1| |#1|) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3217 (($ $ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-3920 (($ (-776) |#1|) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1344 (($ (-1 (-776) (-776)) $) NIL)) (-1915 ((|#1| $) NIL)) (-1855 (((-776) $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 27)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
+((-3614 (((-1181 |#1|) (-776)) 114)) (-3140 (((-1275 |#1|) (-1275 |#1|) (-927)) 107)) (-1942 (((-1280) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) |#1|) 122)) (-3752 (((-1275 |#1|) (-1275 |#1|) (-776)) 53)) (-3406 (((-1275 |#1|) (-927)) 109)) (-4113 (((-1275 |#1|) (-1275 |#1|) (-569)) 30)) (-1814 (((-1181 |#1|) (-1275 |#1|)) 115)) (-2155 (((-1275 |#1|) (-927)) 135)) (-2483 (((-112) (-1275 |#1|)) 119)) (-3829 (((-1275 |#1|) (-1275 |#1|) (-927)) 99)) (-3859 (((-1181 |#1|) (-1275 |#1|)) 129)) (-2731 (((-927) (-1275 |#1|)) 95)) (-1817 (((-1275 |#1|) (-1275 |#1|)) 38)) (-2150 (((-1275 |#1|) (-927) (-927)) 138)) (-2339 (((-1275 |#1|) (-1275 |#1|) (-1128) (-1128)) 29)) (-2184 (((-1275 |#1|) (-1275 |#1|) (-776) (-1128)) 54)) (-2403 (((-1275 (-1275 |#1|)) (-927)) 134)) (-3035 (((-1275 |#1|) (-1275 |#1|) (-1275 |#1|)) 120)) (** (((-1275 |#1|) (-1275 |#1|) (-569)) 67)) (* (((-1275 |#1|) (-1275 |#1|) (-1275 |#1|)) 31)))
+(((-533 |#1|) (-10 -7 (-15 -1942 ((-1280) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) |#1|)) (-15 -3406 ((-1275 |#1|) (-927))) (-15 -2150 ((-1275 |#1|) (-927) (-927))) (-15 -1814 ((-1181 |#1|) (-1275 |#1|))) (-15 -3614 ((-1181 |#1|) (-776))) (-15 -2184 ((-1275 |#1|) (-1275 |#1|) (-776) (-1128))) (-15 -3752 ((-1275 |#1|) (-1275 |#1|) (-776))) (-15 -2339 ((-1275 |#1|) (-1275 |#1|) (-1128) (-1128))) (-15 -4113 ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 ** ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 * ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3035 ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3829 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -3140 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -1817 ((-1275 |#1|) (-1275 |#1|))) (-15 -2731 ((-927) (-1275 |#1|))) (-15 -2483 ((-112) (-1275 |#1|))) (-15 -2403 ((-1275 (-1275 |#1|)) (-927))) (-15 -2155 ((-1275 |#1|) (-927))) (-15 -3859 ((-1181 |#1|) (-1275 |#1|)))) (-353)) (T -533))
+((-3859 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 *4))) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-533 *4)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-927)) (-5 *1 (-533 *4)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (-3140 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-4113 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2339 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1128)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3752 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2184 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1275 *5)) (-5 *3 (-776)) (-5 *4 (-1128)) (-4 *5 (-353)) (-5 *1 (-533 *5)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4)))) (-2150 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-4 *4 (-353)) (-5 *2 (-1280)) (-5 *1 (-533 *4)))))
+(-10 -7 (-15 -1942 ((-1280) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) |#1|)) (-15 -3406 ((-1275 |#1|) (-927))) (-15 -2150 ((-1275 |#1|) (-927) (-927))) (-15 -1814 ((-1181 |#1|) (-1275 |#1|))) (-15 -3614 ((-1181 |#1|) (-776))) (-15 -2184 ((-1275 |#1|) (-1275 |#1|) (-776) (-1128))) (-15 -3752 ((-1275 |#1|) (-1275 |#1|) (-776))) (-15 -2339 ((-1275 |#1|) (-1275 |#1|) (-1128) (-1128))) (-15 -4113 ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 ** ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 * ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3035 ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3829 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -3140 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -1817 ((-1275 |#1|) (-1275 |#1|))) (-15 -2731 ((-927) (-1275 |#1|))) (-15 -2483 ((-112) (-1275 |#1|))) (-15 -2403 ((-1275 (-1275 |#1|)) (-927))) (-15 -2155 ((-1275 |#1|) (-927))) (-15 -3859 ((-1181 |#1|) (-1275 |#1|))))
+((-3694 (((-696 (-1233)) $) NIL)) (-1690 (((-696 (-1231)) $) NIL)) (-1979 (((-696 (-1230)) $) NIL)) (-1389 (((-696 (-554)) $) NIL)) (-3281 (((-696 (-552)) $) NIL)) (-1933 (((-696 (-551)) $) NIL)) (-3732 (((-776) $ (-128)) NIL)) (-3171 (((-696 (-129)) $) 26)) (-3628 (((-1128) $ (-1128)) 31)) (-4036 (((-1128) $) 30)) (-3771 (((-112) $) 20)) (-3795 (($ (-393)) 14) (($ (-1167)) 16)) (-2112 (((-112) $) 27)) (-3796 (((-867) $) 34)) (-2543 (($ $) 28)))
+(((-534) (-13 (-532) (-618 (-867)) (-10 -8 (-15 -3795 ($ (-393))) (-15 -3795 ($ (-1167))) (-15 -2112 ((-112) $)) (-15 -3771 ((-112) $)) (-15 -4036 ((-1128) $)) (-15 -3628 ((-1128) $ (-1128)))))) (T -534))
+((-3795 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-534)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-534)))) (-3628 (*1 *2 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-534)))))
+(-13 (-532) (-618 (-867)) (-10 -8 (-15 -3795 ($ (-393))) (-15 -3795 ($ (-1167))) (-15 -2112 ((-112) $)) (-15 -3771 ((-112) $)) (-15 -4036 ((-1128) $)) (-15 -3628 ((-1128) $ (-1128)))))
+((-1362 (((-1 |#1| |#1|) |#1|) 11)) (-1692 (((-1 |#1| |#1|)) 10)))
+(((-535 |#1|) (-10 -7 (-15 -1692 ((-1 |#1| |#1|))) (-15 -1362 ((-1 |#1| |#1|) |#1|))) (-13 (-731) (-25))) (T -535))
+((-1362 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))) (-1692 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
+(-10 -7 (-15 -1692 ((-1 |#1| |#1|))) (-15 -1362 ((-1 |#1| |#1|) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3151 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ (-776) |#1|) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 (-776) (-776)) $) NIL)) (-2525 ((|#1| $) NIL)) (-1857 (((-776) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL)))
(((-536 |#1|) (-13 (-798) (-514 (-776) |#1|)) (-855)) (T -536))
NIL
(-13 (-798) (-514 (-776) |#1|))
-((-1536 (((-649 |#2|) (-1179 |#1|) |#3|) 98)) (-1661 (((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1179 |#1|)) (-1179 |#1|))) 114)) (-1421 (((-1179 |#1|) (-694 |#1|)) 110)))
-(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -1421 ((-1179 |#1|) (-694 |#1|))) (-15 -1536 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -1661 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1179 |#1|)) (-1179 |#1|))))) (-367) (-367) (-13 (-367) (-853))) (T -537))
-((-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1179 *6)) (-1179 *6))) (-4 *6 (-367)) (-5 *2 (-649 (-2 (|:| |outval| *7) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *7)))))) (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))) (-1536 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1179 *4)) (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
-(-10 -7 (-15 -1421 ((-1179 |#1|) (-694 |#1|))) (-15 -1536 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -1661 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1179 |#1|)) (-1179 |#1|)))))
-((-2525 (((-696 (-1231)) $ (-1231)) NIL)) (-2615 (((-696 (-554)) $ (-554)) NIL)) (-3719 (((-776) $ (-128)) 39)) (-2725 (((-696 (-129)) $ (-129)) 40)) (-4235 (((-696 (-1231)) $) NIL)) (-3776 (((-696 (-1229)) $) NIL)) (-4002 (((-696 (-1228)) $) NIL)) (-3104 (((-696 (-554)) $) NIL)) (-3887 (((-696 (-552)) $) NIL)) (-4118 (((-696 (-551)) $) NIL)) (-1772 (((-776) $ (-128)) 35)) (-3219 (((-696 (-129)) $) 37)) (-2104 (((-112) $) 27)) (-2202 (((-696 $) (-584) (-960)) 18) (((-696 $) (-496) (-960)) 24)) (-3793 (((-867) $) 48)) (-2839 (($ $) 42)))
-(((-538) (-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -2202 ((-696 $) (-496) (-960)))))) (T -538))
-((-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538))) (-5 *1 (-538)))))
-(-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -2202 ((-696 $) (-496) (-960)))))
-((-1971 (((-848 (-569))) 12)) (-1981 (((-848 (-569))) 14)) (-1319 (((-838 (-569))) 9)))
-(((-539) (-10 -7 (-15 -1319 ((-838 (-569)))) (-15 -1971 ((-848 (-569)))) (-15 -1981 ((-848 (-569)))))) (T -539))
-((-1981 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-1971 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-1319 (*1 *2) (-12 (-5 *2 (-838 (-569))) (-5 *1 (-539)))))
-(-10 -7 (-15 -1319 ((-838 (-569)))) (-15 -1971 ((-848 (-569)))) (-15 -1981 ((-848 (-569)))))
-((-4007 (((-541) (-1183)) 15)) (-3003 ((|#1| (-541)) 20)))
-(((-540 |#1|) (-10 -7 (-15 -4007 ((-541) (-1183))) (-15 -3003 (|#1| (-541)))) (-1223)) (T -540))
-((-3003 (*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1223)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-541)) (-5 *1 (-540 *4)) (-4 *4 (-1223)))))
-(-10 -7 (-15 -4007 ((-541) (-1183))) (-15 -3003 (|#1| (-541))))
-((-2415 (((-112) $ $) NIL)) (-3790 (((-1165) $) 55)) (-4318 (((-112) $) 51)) (-1402 (((-1183) $) 52)) (-3169 (((-112) $) 49)) (-3387 (((-1165) $) 50)) (-1789 (($ (-1165)) 56)) (-3388 (((-112) $) NIL)) (-3606 (((-112) $) NIL)) (-3267 (((-112) $) NIL)) (-1550 (((-1165) $) NIL)) (-3189 (($ $ (-649 (-1183))) 21)) (-3003 (((-52) $) 23)) (-4227 (((-112) $) NIL)) (-1431 (((-569) $) NIL)) (-3545 (((-1126) $) NIL)) (-1691 (($ $ (-649 (-1183)) (-1183)) 73)) (-4129 (((-112) $) NIL)) (-2555 (((-226) $) NIL)) (-4383 (($ $) 44)) (-2622 (((-867) $) NIL)) (-4309 (((-112) $ $) NIL)) (-1866 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3878 (((-649 $) $) 30)) (-4072 (((-1183) (-649 $)) 57)) (-1408 (($ (-1165)) NIL) (($ (-1183)) 19) (($ (-569)) 8) (($ (-226)) 28) (($ (-867)) NIL) (($ (-649 $)) 65) (((-1110) $) 12) (($ (-1110)) 13)) (-2522 (((-1183) (-1183) (-649 $)) 60)) (-3793 (((-867) $) 54)) (-3404 (($ $) 59)) (-3392 (($ $) 58)) (-3906 (($ $ (-649 $)) 66)) (-1441 (((-112) $ $) NIL)) (-3493 (((-112) $) 29)) (-1803 (($) 9 T CONST)) (-1813 (($) 11 T CONST)) (-2919 (((-112) $ $) 74)) (-3032 (($ $ $) 82)) (-3009 (($ $ $) 75)) (** (($ $ (-776)) 81) (($ $ (-569)) 80)) (* (($ $ $) 76)) (-2426 (((-569) $) NIL)))
-(((-541) (-13 (-1109 (-1165) (-1183) (-569) (-226) (-867)) (-619 (-1110)) (-10 -8 (-15 -3003 ((-52) $)) (-15 -1408 ($ (-1110))) (-15 -3906 ($ $ (-649 $))) (-15 -1691 ($ $ (-649 (-1183)) (-1183))) (-15 -3189 ($ $ (-649 (-1183)))) (-15 -3009 ($ $ $)) (-15 * ($ $ $)) (-15 -3032 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 0 ($) -3706) (-15 1 ($) -3706) (-15 -4383 ($ $)) (-15 -3790 ((-1165) $)) (-15 -1789 ($ (-1165))) (-15 -4072 ((-1183) (-649 $))) (-15 -2522 ((-1183) (-1183) (-649 $)))))) (T -541))
-((-3003 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-541)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-541)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541)))) (-1691 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1183)) (-5 *1 (-541)))) (-3189 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-541)))) (-3009 (*1 *1 *1 *1) (-5 *1 (-541))) (* (*1 *1 *1 *1) (-5 *1 (-541))) (-3032 (*1 *1 *1 *1) (-5 *1 (-541))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-541)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-541)))) (-1803 (*1 *1) (-5 *1 (-541))) (-1813 (*1 *1) (-5 *1 (-541))) (-4383 (*1 *1 *1) (-5 *1 (-541))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1183)) (-5 *1 (-541)))) (-2522 (*1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-541))) (-5 *1 (-541)))))
-(-13 (-1109 (-1165) (-1183) (-569) (-226) (-867)) (-619 (-1110)) (-10 -8 (-15 -3003 ((-52) $)) (-15 -1408 ($ (-1110))) (-15 -3906 ($ $ (-649 $))) (-15 -1691 ($ $ (-649 (-1183)) (-1183))) (-15 -3189 ($ $ (-649 (-1183)))) (-15 -3009 ($ $ $)) (-15 * ($ $ $)) (-15 -3032 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 (-1803) ($) -3706) (-15 (-1813) ($) -3706) (-15 -4383 ($ $)) (-15 -3790 ((-1165) $)) (-15 -1789 ($ (-1165))) (-15 -4072 ((-1183) (-649 $))) (-15 -2522 ((-1183) (-1183) (-649 $)))))
-((-3255 ((|#2| |#2|) 17)) (-4266 ((|#2| |#2|) 13)) (-3389 ((|#2| |#2| (-569) (-569)) 20)) (-3137 ((|#2| |#2|) 15)))
-(((-542 |#1| |#2|) (-10 -7 (-15 -4266 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3389 (|#2| |#2| (-569) (-569)))) (-13 (-561) (-147)) (-1264 |#1|)) (T -542))
-((-3389 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1264 *4)))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1264 *3)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1264 *3)))) (-4266 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1264 *3)))))
-(-10 -7 (-15 -4266 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3389 (|#2| |#2| (-569) (-569))))
-((-4340 (((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1183))) 32)) (-4103 (((-649 |#2|) (-958 |#1|) |#3|) 54) (((-649 |#2|) (-1179 |#1|) |#3|) 53)) (-4231 (((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)) |#3|) 106)))
-(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -4103 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -4103 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -4231 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)) |#3|)) (-15 -4340 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1183))))) (-457) (-367) (-13 (-367) (-853))) (T -543))
-((-4340 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1183))) (-4 *6 (-367)) (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))) (-4231 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367)) (-4 *5 (-13 (-367) (-853))))) (-4103 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-4103 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -4103 ((-649 |#2|) (-1179 |#1|) |#3|)) (-15 -4103 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -4231 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)) |#3|)) (-15 -4340 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1183)))))
-((-3440 ((|#2| |#2| |#1|) 17)) (-3195 ((|#2| (-649 |#2|)) 31)) (-3311 ((|#2| (-649 |#2|)) 52)))
-(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3195 (|#2| (-649 |#2|))) (-15 -3311 (|#2| (-649 |#2|))) (-15 -3440 (|#2| |#2| |#1|))) (-310) (-1249 |#1|) |#1| (-1 |#1| |#1| (-776))) (T -544))
-((-3440 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776))) (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1249 *3)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
-(-10 -7 (-15 -3195 (|#2| (-649 |#2|))) (-15 -3311 (|#2| (-649 |#2|))) (-15 -3440 (|#2| |#2| |#1|)))
-((-3796 (((-423 (-1179 |#4|)) (-1179 |#4|) (-1 (-423 (-1179 |#3|)) (-1179 |#3|))) 89) (((-423 |#4|) |#4| (-1 (-423 (-1179 |#3|)) (-1179 |#3|))) 214)))
-(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-423 |#4|) |#4| (-1 (-423 (-1179 |#3|)) (-1179 |#3|)))) (-15 -3796 ((-423 (-1179 |#4|)) (-1179 |#4|) (-1 (-423 (-1179 |#3|)) (-1179 |#3|))))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -545))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1179 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1179 *8)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-955 *7 *6 *5)))))
-(-10 -7 (-15 -3796 ((-423 |#4|) |#4| (-1 (-423 (-1179 |#3|)) (-1179 |#3|)))) (-15 -3796 ((-423 (-1179 |#4|)) (-1179 |#4|) (-1 (-423 (-1179 |#3|)) (-1179 |#3|)))))
-((-3255 ((|#4| |#4|) 74)) (-4266 ((|#4| |#4|) 70)) (-3389 ((|#4| |#4| (-569) (-569)) 76)) (-3137 ((|#4| |#4|) 72)))
-(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4266 (|#4| |#4|)) (-15 -3137 (|#4| |#4|)) (-15 -3255 (|#4| |#4|)) (-15 -3389 (|#4| |#4| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1249 |#1|) (-729 |#1| |#2|) (-1264 |#3|)) (T -546))
-((-3389 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-4 *5 (-1249 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1264 *6)))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5)))) (-4266 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5)))))
-(-10 -7 (-15 -4266 (|#4| |#4|)) (-15 -3137 (|#4| |#4|)) (-15 -3255 (|#4| |#4|)) (-15 -3389 (|#4| |#4| (-569) (-569))))
-((-3255 ((|#2| |#2|) 27)) (-4266 ((|#2| |#2|) 23)) (-3389 ((|#2| |#2| (-569) (-569)) 29)) (-3137 ((|#2| |#2|) 25)))
-(((-547 |#1| |#2|) (-10 -7 (-15 -4266 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3389 (|#2| |#2| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1264 |#1|)) (T -547))
-((-3389 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1264 *4)))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1264 *3)))) (-3137 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1264 *3)))) (-4266 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1264 *3)))))
-(-10 -7 (-15 -4266 (|#2| |#2|)) (-15 -3137 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -3389 (|#2| |#2| (-569) (-569))))
-((-3575 (((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)) 18) (((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|)) 14) (((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|)) 32)))
-(((-548 |#1| |#2|) (-10 -7 (-15 -3575 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3575 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3575 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)))) (-1055) (-1249 |#1|)) (T -548))
-((-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4)))) (-3575 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4)))) (-3575 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1055)) (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1249 *5)))))
-(-10 -7 (-15 -3575 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3575 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3575 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|))))
-((-4122 (($ $ $) 84)) (-2508 (((-423 $) $) 52)) (-4378 (((-3 (-569) "failed") $) 64)) (-3148 (((-569) $) 42)) (-1545 (((-3 (-412 (-569)) "failed") $) 79)) (-1434 (((-112) $) 26)) (-1311 (((-412 (-569)) $) 77)) (-4073 (((-112) $) 55)) (-2481 (($ $ $ $) 92)) (-4237 (((-112) $) 17)) (-1841 (($ $ $) 62)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 74)) (-3812 (((-3 $ "failed") $) 69)) (-2605 (($ $) 24)) (-3678 (($ $ $) 90)) (-2305 (($) 65)) (-1649 (($ $) 58)) (-3796 (((-423 $) $) 50)) (-2108 (((-112) $) 15)) (-1578 (((-776) $) 32)) (-3514 (($ $ (-776)) NIL) (($ $) 11)) (-3959 (($ $) 18)) (-1408 (((-569) $) NIL) (((-541) $) 41) (((-898 (-569)) $) 45) (((-383) $) 35) (((-226) $) 38)) (-3302 (((-776)) 9)) (-4271 (((-112) $ $) 21)) (-2950 (($ $ $) 60)))
-(((-549 |#1|) (-10 -8 (-15 -3678 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -4122 (|#1| |#1| |#1|)) (-15 -4271 ((-112) |#1| |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -1408 ((-226) |#1|)) (-15 -1408 ((-383) |#1|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -2950 (|#1| |#1| |#1|)) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -1408 ((-569) |#1|)) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -4237 ((-112) |#1|)) (-15 -1578 ((-776) |#1|)) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -3302 ((-776)))) (-550)) (T -549))
-((-3302 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550)))))
-(-10 -8 (-15 -3678 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1| |#1|)) (-15 -2605 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -4122 (|#1| |#1| |#1|)) (-15 -4271 ((-112) |#1| |#1|)) (-15 -2108 ((-112) |#1|)) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -1408 ((-226) |#1|)) (-15 -1408 ((-383) |#1|)) (-15 -1841 (|#1| |#1| |#1|)) (-15 -1649 (|#1| |#1|)) (-15 -2950 (|#1| |#1| |#1|)) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -1408 ((-569) |#1|)) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -4237 ((-112) |#1|)) (-15 -1578 ((-776) |#1|)) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -4073 ((-112) |#1|)) (-15 -3302 ((-776))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-4122 (($ $ $) 90)) (-1678 (((-3 $ "failed") $ $) 20)) (-3956 (($ $ $ $) 79)) (-2078 (($ $) 57)) (-2508 (((-423 $) $) 58)) (-1680 (((-112) $ $) 130)) (-2552 (((-569) $) 119)) (-3081 (($ $ $) 93)) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 111)) (-3148 (((-569) $) 112)) (-2366 (($ $ $) 134)) (-1630 (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 109) (((-694 (-569)) (-694 $)) 108)) (-2888 (((-3 $ "failed") $) 37)) (-1545 (((-3 (-412 (-569)) "failed") $) 87)) (-1434 (((-112) $) 89)) (-1311 (((-412 (-569)) $) 88)) (-3403 (($) 86) (($ $) 85)) (-2373 (($ $ $) 133)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 128)) (-4073 (((-112) $) 59)) (-2481 (($ $ $ $) 77)) (-4190 (($ $ $) 91)) (-4237 (((-112) $) 121)) (-1841 (($ $ $) 102)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 105)) (-2623 (((-112) $) 35)) (-1607 (((-112) $) 97)) (-3812 (((-3 $ "failed") $) 99)) (-4327 (((-112) $) 120)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 137)) (-2604 (($ $ $ $) 78)) (-3377 (($ $ $) 122)) (-3969 (($ $ $) 123)) (-2605 (($ $) 81)) (-3842 (($ $) 94)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3678 (($ $ $) 76)) (-2305 (($) 98 T CONST)) (-3589 (($ $) 83)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-1649 (($ $) 103)) (-3796 (((-423 $) $) 56)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 135)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 129)) (-2108 (((-112) $) 96)) (-1578 (((-776) $) 131)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 132)) (-3514 (($ $ (-776)) 116) (($ $) 114)) (-2431 (($ $) 82)) (-3959 (($ $) 84)) (-1408 (((-569) $) 113) (((-541) $) 107) (((-898 (-569)) $) 106) (((-383) $) 101) (((-226) $) 100)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 110)) (-3302 (((-776)) 32 T CONST)) (-4271 (((-112) $ $) 92)) (-2950 (($ $ $) 104)) (-1441 (((-112) $ $) 9)) (-4360 (($) 95)) (-2985 (((-112) $ $) 45)) (-4048 (($ $ $ $) 80)) (-3070 (($ $) 118)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-776)) 117) (($ $) 115)) (-2976 (((-112) $ $) 125)) (-2954 (((-112) $ $) 126)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 124)) (-2942 (((-112) $ $) 127)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-3268 (((-649 |#2|) (-1181 |#1|) |#3|) 98)) (-2062 (((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1181 |#1|)) (-1181 |#1|))) 114)) (-1316 (((-1181 |#1|) (-694 |#1|)) 110)))
+(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -1316 ((-1181 |#1|) (-694 |#1|))) (-15 -3268 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -2062 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1181 |#1|)) (-1181 |#1|))))) (-367) (-367) (-13 (-367) (-853))) (T -537))
+((-2062 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1181 *6)) (-1181 *6))) (-4 *6 (-367)) (-5 *2 (-649 (-2 (|:| |outval| *7) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *7)))))) (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1181 *4)) (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
+(-10 -7 (-15 -1316 ((-1181 |#1|) (-694 |#1|))) (-15 -3268 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -2062 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1181 |#1|)) (-1181 |#1|)))))
+((-2641 (((-696 (-1233)) $ (-1233)) NIL)) (-2283 (((-696 (-554)) $ (-554)) NIL)) (-2340 (((-776) $ (-128)) 39)) (-3998 (((-696 (-129)) $ (-129)) 40)) (-3694 (((-696 (-1233)) $) NIL)) (-1690 (((-696 (-1231)) $) NIL)) (-1979 (((-696 (-1230)) $) NIL)) (-1389 (((-696 (-554)) $) NIL)) (-3281 (((-696 (-552)) $) NIL)) (-1933 (((-696 (-551)) $) NIL)) (-3732 (((-776) $ (-128)) 35)) (-3171 (((-696 (-129)) $) 37)) (-3986 (((-112) $) 27)) (-2462 (((-696 $) (-584) (-960)) 18) (((-696 $) (-496) (-960)) 24)) (-3796 (((-867) $) 48)) (-2543 (($ $) 42)))
+(((-538) (-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -2462 ((-696 $) (-496) (-960)))))) (T -538))
+((-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538))) (-5 *1 (-538)))))
+(-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -2462 ((-696 $) (-496) (-960)))))
+((-1974 (((-848 (-569))) 12)) (-1984 (((-848 (-569))) 14)) (-1321 (((-838 (-569))) 9)))
+(((-539) (-10 -7 (-15 -1321 ((-838 (-569)))) (-15 -1974 ((-848 (-569)))) (-15 -1984 ((-848 (-569)))))) (T -539))
+((-1984 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-1974 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-1321 (*1 *2) (-12 (-5 *2 (-838 (-569))) (-5 *1 (-539)))))
+(-10 -7 (-15 -1321 ((-838 (-569)))) (-15 -1974 ((-848 (-569)))) (-15 -1984 ((-848 (-569)))))
+((-2026 (((-541) (-1185)) 15)) (-3006 ((|#1| (-541)) 20)))
+(((-540 |#1|) (-10 -7 (-15 -2026 ((-541) (-1185))) (-15 -3006 (|#1| (-541)))) (-1225)) (T -540))
+((-3006 (*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1225)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-541)) (-5 *1 (-540 *4)) (-4 *4 (-1225)))))
+(-10 -7 (-15 -2026 ((-541) (-1185))) (-15 -3006 (|#1| (-541))))
+((-2417 (((-112) $ $) NIL)) (-1831 (((-1167) $) 55)) (-3179 (((-112) $) 51)) (-1404 (((-1185) $) 52)) (-3936 (((-112) $) 49)) (-3390 (((-1167) $) 50)) (-3897 (($ (-1167)) 56)) (-2229 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3685 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3192 (($ $ (-649 (-1185))) 21)) (-3006 (((-52) $) 23)) (-3605 (((-112) $) NIL)) (-1433 (((-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-1699 (($ $ (-649 (-1185)) (-1185)) 73)) (-3953 (((-112) $) NIL)) (-2557 (((-226) $) NIL)) (-4387 (($ $) 44)) (-2624 (((-867) $) NIL)) (-4312 (((-112) $ $) NIL)) (-1869 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3881 (((-649 $) $) 30)) (-4075 (((-1185) (-649 $)) 57)) (-1410 (($ (-1167)) NIL) (($ (-1185)) 19) (($ (-569)) 8) (($ (-226)) 28) (($ (-867)) NIL) (($ (-649 $)) 65) (((-1112) $) 12) (($ (-1112)) 13)) (-2524 (((-1185) (-1185) (-649 $)) 60)) (-3796 (((-867) $) 54)) (-3407 (($ $) 59)) (-3395 (($ $) 58)) (-3495 (($ $ (-649 $)) 66)) (-1520 (((-112) $ $) NIL)) (-3952 (((-112) $) 29)) (-1804 (($) 9 T CONST)) (-1815 (($) 11 T CONST)) (-2920 (((-112) $ $) 74)) (-3035 (($ $ $) 82)) (-3012 (($ $ $) 75)) (** (($ $ (-776)) 81) (($ $ (-569)) 80)) (* (($ $ $) 76)) (-2428 (((-569) $) NIL)))
+(((-541) (-13 (-1111 (-1167) (-1185) (-569) (-226) (-867)) (-619 (-1112)) (-10 -8 (-15 -3006 ((-52) $)) (-15 -1410 ($ (-1112))) (-15 -3495 ($ $ (-649 $))) (-15 -1699 ($ $ (-649 (-1185)) (-1185))) (-15 -3192 ($ $ (-649 (-1185)))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 0 ($) -3709) (-15 1 ($) -3709) (-15 -4387 ($ $)) (-15 -1831 ((-1167) $)) (-15 -3897 ($ (-1167))) (-15 -4075 ((-1185) (-649 $))) (-15 -2524 ((-1185) (-1185) (-649 $)))))) (T -541))
+((-3006 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-541)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-541)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541)))) (-1699 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1185)) (-5 *1 (-541)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-541)))) (-3012 (*1 *1 *1 *1) (-5 *1 (-541))) (* (*1 *1 *1 *1) (-5 *1 (-541))) (-3035 (*1 *1 *1 *1) (-5 *1 (-541))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-541)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-541)))) (-1804 (*1 *1) (-5 *1 (-541))) (-1815 (*1 *1) (-5 *1 (-541))) (-4387 (*1 *1 *1) (-5 *1 (-541))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-541)))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-541)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1185)) (-5 *1 (-541)))) (-2524 (*1 *2 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-541))) (-5 *1 (-541)))))
+(-13 (-1111 (-1167) (-1185) (-569) (-226) (-867)) (-619 (-1112)) (-10 -8 (-15 -3006 ((-52) $)) (-15 -1410 ($ (-1112))) (-15 -3495 ($ $ (-649 $))) (-15 -1699 ($ $ (-649 (-1185)) (-1185))) (-15 -3192 ($ $ (-649 (-1185)))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 (-1804) ($) -3709) (-15 (-1815) ($) -3709) (-15 -4387 ($ $)) (-15 -1831 ((-1167) $)) (-15 -3897 ($ (-1167))) (-15 -4075 ((-1185) (-649 $))) (-15 -2524 ((-1185) (-1185) (-649 $)))))
+((-3559 ((|#2| |#2|) 17)) (-2695 ((|#2| |#2|) 13)) (-2238 ((|#2| |#2| (-569) (-569)) 20)) (-1729 ((|#2| |#2|) 15)))
+(((-542 |#1| |#2|) (-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569)))) (-13 (-561) (-147)) (-1266 |#1|)) (T -542))
+((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1266 *4)))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1266 *3)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1266 *3)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1266 *3)))))
+(-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569))))
+((-2168 (((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1185))) 32)) (-1807 (((-649 |#2|) (-958 |#1|) |#3|) 54) (((-649 |#2|) (-1181 |#1|) |#3|) 53)) (-3648 (((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)) |#3|) 106)))
+(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -1807 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -1807 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -3648 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)) |#3|)) (-15 -2168 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1185))))) (-457) (-367) (-13 (-367) (-853))) (T -543))
+((-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1185))) (-4 *6 (-367)) (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))) (-3648 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367)) (-4 *5 (-13 (-367) (-853))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -1807 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -1807 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -3648 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)) |#3|)) (-15 -2168 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1185)))))
+((-1538 ((|#2| |#2| |#1|) 17)) (-4178 ((|#2| (-649 |#2|)) 31)) (-2813 ((|#2| (-649 |#2|)) 52)))
+(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4178 (|#2| (-649 |#2|))) (-15 -2813 (|#2| (-649 |#2|))) (-15 -1538 (|#2| |#2| |#1|))) (-310) (-1251 |#1|) |#1| (-1 |#1| |#1| (-776))) (T -544))
+((-1538 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776))) (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1251 *3)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
+(-10 -7 (-15 -4178 (|#2| (-649 |#2|))) (-15 -2813 (|#2| (-649 |#2|))) (-15 -1538 (|#2| |#2| |#1|)))
+((-3800 (((-423 (-1181 |#4|)) (-1181 |#4|) (-1 (-423 (-1181 |#3|)) (-1181 |#3|))) 89) (((-423 |#4|) |#4| (-1 (-423 (-1181 |#3|)) (-1181 |#3|))) 214)))
+(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 (-1181 |#3|)) (-1181 |#3|)))) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|) (-1 (-423 (-1181 |#3|)) (-1181 |#3|))))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -545))
+((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1181 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1181 *8)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-955 *7 *6 *5)))))
+(-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 (-1181 |#3|)) (-1181 |#3|)))) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|) (-1 (-423 (-1181 |#3|)) (-1181 |#3|)))))
+((-3559 ((|#4| |#4|) 74)) (-2695 ((|#4| |#4|) 70)) (-2238 ((|#4| |#4| (-569) (-569)) 76)) (-1729 ((|#4| |#4|) 72)))
+(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2695 (|#4| |#4|)) (-15 -1729 (|#4| |#4|)) (-15 -3559 (|#4| |#4|)) (-15 -2238 (|#4| |#4| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1251 |#1|) (-729 |#1| |#2|) (-1266 |#3|)) (T -546))
+((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-4 *5 (-1251 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1266 *6)))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))))
+(-10 -7 (-15 -2695 (|#4| |#4|)) (-15 -1729 (|#4| |#4|)) (-15 -3559 (|#4| |#4|)) (-15 -2238 (|#4| |#4| (-569) (-569))))
+((-3559 ((|#2| |#2|) 27)) (-2695 ((|#2| |#2|) 23)) (-2238 ((|#2| |#2| (-569) (-569)) 29)) (-1729 ((|#2| |#2|) 25)))
+(((-547 |#1| |#2|) (-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1266 |#1|)) (T -547))
+((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1266 *4)))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1266 *3)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1266 *3)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1266 *3)))))
+(-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569))))
+((-3421 (((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)) 18) (((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|)) 14) (((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|)) 32)))
+(((-548 |#1| |#2|) (-10 -7 (-15 -3421 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)))) (-1057) (-1251 |#1|)) (T -548))
+((-3421 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4)))) (-3421 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4)))) (-3421 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1057)) (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1251 *5)))))
+(-10 -7 (-15 -3421 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|))))
+((-3889 (($ $ $) 84)) (-3764 (((-423 $) $) 52)) (-4381 (((-3 (-569) "failed") $) 64)) (-3150 (((-569) $) 42)) (-3377 (((-3 (-412 (-569)) "failed") $) 79)) (-1441 (((-112) $) 26)) (-1606 (((-412 (-569)) $) 77)) (-1473 (((-112) $) 55)) (-3499 (($ $ $ $) 92)) (-3712 (((-112) $) 17)) (-3074 (($ $ $) 62)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 74)) (-3885 (((-3 $ "failed") $) 69)) (-2606 (($ $) 24)) (-1973 (($ $ $) 90)) (-2307 (($) 65)) (-1948 (($ $) 58)) (-3800 (((-423 $) $) 50)) (-4024 (((-112) $) 15)) (-2431 (((-776) $) 32)) (-3517 (($ $ (-776)) NIL) (($ $) 11)) (-3962 (($ $) 18)) (-1410 (((-569) $) NIL) (((-541) $) 41) (((-898 (-569)) $) 45) (((-383) $) 35) (((-226) $) 38)) (-2721 (((-776)) 9)) (-2752 (((-112) $ $) 21)) (-3613 (($ $ $) 60)))
+(((-549 |#1|) (-10 -8 (-15 -1973 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3613 (|#1| |#1| |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -1410 ((-569) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3712 ((-112) |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2721 ((-776)))) (-550)) (T -549))
+((-2721 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550)))))
+(-10 -8 (-15 -1973 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3613 (|#1| |#1| |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -1410 ((-569) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3712 ((-112) |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2721 ((-776))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-3889 (($ $ $) 90)) (-2208 (((-3 $ "failed") $ $) 20)) (-2709 (($ $ $ $) 79)) (-1830 (($ $) 57)) (-3764 (((-423 $) $) 58)) (-2227 (((-112) $ $) 130)) (-2919 (((-569) $) 119)) (-3084 (($ $ $) 93)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 111)) (-3150 (((-569) $) 112)) (-2368 (($ $ $) 134)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 109) (((-694 (-569)) (-694 $)) 108)) (-3086 (((-3 $ "failed") $) 37)) (-3377 (((-3 (-412 (-569)) "failed") $) 87)) (-1441 (((-112) $) 89)) (-1606 (((-412 (-569)) $) 88)) (-3406 (($) 86) (($ $) 85)) (-2379 (($ $ $) 133)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 128)) (-1473 (((-112) $) 59)) (-3499 (($ $ $ $) 77)) (-3211 (($ $ $) 91)) (-3712 (((-112) $) 121)) (-3074 (($ $ $) 102)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 105)) (-2349 (((-112) $) 35)) (-2719 (((-112) $) 97)) (-3885 (((-3 $ "failed") $) 99)) (-2051 (((-112) $) 120)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 137)) (-2196 (($ $ $ $) 78)) (-3380 (($ $ $) 122)) (-2839 (($ $ $) 123)) (-2606 (($ $) 81)) (-3845 (($ $) 94)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1973 (($ $ $) 76)) (-2307 (($) 98 T CONST)) (-3593 (($ $) 83)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-1948 (($ $) 103)) (-3800 (((-423 $) $) 56)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 135)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 129)) (-4024 (((-112) $) 96)) (-2431 (((-776) $) 131)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 132)) (-3517 (($ $ (-776)) 116) (($ $) 114)) (-2432 (($ $) 82)) (-3962 (($ $) 84)) (-1410 (((-569) $) 113) (((-541) $) 107) (((-898 (-569)) $) 106) (((-383) $) 101) (((-226) $) 100)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 110)) (-2721 (((-776)) 32 T CONST)) (-2752 (((-112) $ $) 92)) (-3613 (($ $ $) 104)) (-1520 (((-112) $ $) 9)) (-4363 (($) 95)) (-2664 (((-112) $ $) 45)) (-2384 (($ $ $ $) 80)) (-2271 (($ $) 118)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-776)) 117) (($ $) 115)) (-2978 (((-112) $ $) 125)) (-2956 (((-112) $ $) 126)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 124)) (-2944 (((-112) $ $) 127)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-550) (-140)) (T -550))
-((-1607 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4360 (*1 *1) (-4 *1 (-550))) (-3842 (*1 *1 *1) (-4 *1 (-550))) (-3081 (*1 *1 *1 *1) (-4 *1 (-550))) (-4271 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4190 (*1 *1 *1 *1) (-4 *1 (-550))) (-4122 (*1 *1 *1 *1) (-4 *1 (-550))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-1545 (*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-3403 (*1 *1) (-4 *1 (-550))) (-3403 (*1 *1 *1) (-4 *1 (-550))) (-3959 (*1 *1 *1) (-4 *1 (-550))) (-3589 (*1 *1 *1) (-4 *1 (-550))) (-2431 (*1 *1 *1) (-4 *1 (-550))) (-2605 (*1 *1 *1) (-4 *1 (-550))) (-4048 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3956 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2604 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2481 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3678 (*1 *1 *1 *1) (-4 *1 (-550))))
-(-13 (-1227) (-310) (-825) (-234) (-619 (-569)) (-1044 (-569)) (-644 (-569)) (-619 (-541)) (-619 (-898 (-569))) (-892 (-569)) (-143) (-1028) (-147) (-1158) (-10 -8 (-15 -1607 ((-112) $)) (-15 -2108 ((-112) $)) (-6 -4443) (-15 -4360 ($)) (-15 -3842 ($ $)) (-15 -3081 ($ $ $)) (-15 -4271 ((-112) $ $)) (-15 -4190 ($ $ $)) (-15 -4122 ($ $ $)) (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $)) (-15 -3403 ($)) (-15 -3403 ($ $)) (-15 -3959 ($ $)) (-15 -3589 ($ $)) (-15 -2431 ($ $)) (-15 -2605 ($ $)) (-15 -4048 ($ $ $ $)) (-15 -3956 ($ $ $ $)) (-15 -2604 ($ $ $ $)) (-15 -2481 ($ $ $ $)) (-15 -3678 ($ $ $)) (-6 -4442)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-143) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-541)) . T) ((-619 (-569)) . T) ((-619 (-898 (-569))) . T) ((-234) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-644 (-569)) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-825) . T) ((-853) . T) ((-855) . T) ((-892 (-569)) . T) ((-926) . T) ((-1028) . T) ((-1044 (-569)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) . T) ((-1227) . T))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-551) (-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))) (T -551))
-((-4188 (*1 *1) (-5 *1 (-551))))
-(-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))
+((-2719 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4363 (*1 *1) (-4 *1 (-550))) (-3845 (*1 *1 *1) (-4 *1 (-550))) (-3084 (*1 *1 *1 *1) (-4 *1 (-550))) (-2752 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-3211 (*1 *1 *1 *1) (-4 *1 (-550))) (-3889 (*1 *1 *1 *1) (-4 *1 (-550))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-3406 (*1 *1) (-4 *1 (-550))) (-3406 (*1 *1 *1) (-4 *1 (-550))) (-3962 (*1 *1 *1) (-4 *1 (-550))) (-3593 (*1 *1 *1) (-4 *1 (-550))) (-2432 (*1 *1 *1) (-4 *1 (-550))) (-2606 (*1 *1 *1) (-4 *1 (-550))) (-2384 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2709 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2196 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3499 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-1973 (*1 *1 *1 *1) (-4 *1 (-550))))
+(-13 (-1229) (-310) (-825) (-234) (-619 (-569)) (-1046 (-569)) (-644 (-569)) (-619 (-541)) (-619 (-898 (-569))) (-892 (-569)) (-143) (-1030) (-147) (-1160) (-10 -8 (-15 -2719 ((-112) $)) (-15 -4024 ((-112) $)) (-6 -4446) (-15 -4363 ($)) (-15 -3845 ($ $)) (-15 -3084 ($ $ $)) (-15 -2752 ((-112) $ $)) (-15 -3211 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $)) (-15 -3406 ($)) (-15 -3406 ($ $)) (-15 -3962 ($ $)) (-15 -3593 ($ $)) (-15 -2432 ($ $)) (-15 -2606 ($ $)) (-15 -2384 ($ $ $ $)) (-15 -2709 ($ $ $ $)) (-15 -2196 ($ $ $ $)) (-15 -3499 ($ $ $ $)) (-15 -1973 ($ $ $)) (-6 -4445)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-143) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-541)) . T) ((-619 (-569)) . T) ((-619 (-898 (-569))) . T) ((-234) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-644 (-569)) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-825) . T) ((-853) . T) ((-855) . T) ((-892 (-569)) . T) ((-926) . T) ((-1030) . T) ((-1046 (-569)) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) . T) ((-1229) . T))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-551) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -551))
+((-4427 (*1 *1) (-5 *1 (-551))))
+(-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-552) (-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))) (T -552))
-((-4188 (*1 *1) (-5 *1 (-552))))
-(-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-552) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -552))
+((-4427 (*1 *1) (-5 *1 (-552))))
+(-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-553) (-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))) (T -553))
-((-4188 (*1 *1) (-5 *1 (-553))))
-(-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-553) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -553))
+((-4427 (*1 *1) (-5 *1 (-553))))
+(-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-554) (-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))) (T -554))
-((-4188 (*1 *1) (-5 *1 (-554))))
-(-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-554) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -554))
+((-4427 (*1 *1) (-5 *1 (-554))))
+(-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4321 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#2| $ |#1| |#2|) NIL)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) NIL)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) NIL)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) NIL)) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 ((|#1| $) NIL (|has| |#1| (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 ((|#1| $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2796 (((-649 |#1|) $) NIL)) (-3937 (((-112) |#1| $) NIL)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1755 (((-649 |#1|) $) NIL)) (-3748 (((-112) |#1| $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#2| $) NIL (|has| |#1| (-855)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-555 |#1| |#2| |#3|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444))) (-1106) (-1106) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444)))) (T -555))
-NIL
-(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444)))
-((-4348 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1179 |#2|) (-1179 |#2|))) 50)))
-(((-556 |#1| |#2|) (-10 -7 (-15 -4348 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1179 |#2|) (-1179 |#2|))))) (-561) (-13 (-27) (-435 |#1|))) (T -556))
-((-4348 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1179 *3) (-1179 *3))) (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3)) (-5 *1 (-556 *6 *3)))))
-(-10 -7 (-15 -4348 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1179 |#2|) (-1179 |#2|)))))
-((-3272 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-3382 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-3196 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 222)))
-(((-557 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3196 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3272 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3382 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-561) (-1044 (-569))) (-13 (-27) (-435 |#1|)) (-1249 |#2|) (-1249 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -557))
-((-3382 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *7 (-1249 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2)) (-4 *2 (-346 *5 *6 *7)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)))) (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))) (-3196 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569)))) (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
-(-10 -7 (-15 -3196 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3272 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3382 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3679 (((-112) (-569) (-569)) 12)) (-3473 (((-569) (-569)) 7)) (-3576 (((-569) (-569) (-569)) 10)))
-(((-558) (-10 -7 (-15 -3473 ((-569) (-569))) (-15 -3576 ((-569) (-569) (-569))) (-15 -3679 ((-112) (-569) (-569))))) (T -558))
-((-3679 (*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558)))) (-3576 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
-(-10 -7 (-15 -3473 ((-569) (-569))) (-15 -3576 ((-569) (-569) (-569))) (-15 -3679 ((-112) (-569) (-569))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3480 ((|#1| $) 67)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-2769 (($ $) 97)) (-2624 (($ $) 80)) (-3217 ((|#1| $) 68)) (-1678 (((-3 $ "failed") $ $) 20)) (-3807 (($ $) 79)) (-2744 (($ $) 96)) (-2600 (($ $) 81)) (-4114 (($ $) 95)) (-2645 (($ $) 82)) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 75)) (-3148 (((-569) $) 76)) (-2888 (((-3 $ "failed") $) 37)) (-2678 (($ |#1| |#1|) 72)) (-4237 (((-112) $) 66)) (-1310 (($) 107)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 78)) (-4327 (((-112) $) 65)) (-3377 (($ $ $) 113)) (-3969 (($ $ $) 112)) (-2660 (($ $) 104)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-2785 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-412 (-569))) 70)) (-2569 ((|#1| $) 69)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-2405 (((-3 $ "failed") $ $) 48)) (-4386 (($ $) 105)) (-4124 (($ $) 94)) (-2659 (($ $) 83)) (-2781 (($ $) 93)) (-2632 (($ $) 84)) (-2756 (($ $) 92)) (-2609 (($ $) 85)) (-2474 (((-112) $ |#1|) 64)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 74)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-4161 (($ $) 103)) (-2699 (($ $) 91)) (-2985 (((-112) $ $) 45)) (-4133 (($ $) 102)) (-2673 (($ $) 90)) (-4182 (($ $) 101)) (-2721 (($ $) 89)) (-1501 (($ $) 100)) (-2732 (($ $) 88)) (-4170 (($ $) 99)) (-2710 (($ $) 87)) (-4147 (($ $) 98)) (-2687 (($ $) 86)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2976 (((-112) $ $) 110)) (-2954 (((-112) $ $) 109)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 111)) (-2942 (((-112) $ $) 108)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106) (($ $ (-412 (-569))) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-559 |#1|) (-140) (-13 (-409) (-1208))) (T -559))
-((-2785 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2678 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2785 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-2785 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))) (-4327 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))) (-2474 (*1 *2 *1 *3) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))))
-(-13 (-457) (-855) (-1208) (-1008) (-1044 (-569)) (-10 -8 (-6 -3088) (-15 -2785 ($ |t#1| |t#1|)) (-15 -2678 ($ |t#1| |t#1|)) (-15 -2785 ($ |t#1|)) (-15 -2785 ($ (-412 (-569)))) (-15 -2569 (|t#1| $)) (-15 -3217 (|t#1| $)) (-15 -3480 (|t#1| $)) (-15 -4237 ((-112) $)) (-15 -4327 ((-112) $)) (-15 -2474 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-287) . T) ((-293) . T) ((-457) . T) ((-498) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1008) . T) ((-1044 (-569)) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) . T) ((-1211) . T))
-((-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 9)) (-3087 (($ $) 11)) (-2883 (((-112) $) 20)) (-2888 (((-3 $ "failed") $) 16)) (-2985 (((-112) $ $) 22)))
-(((-560 |#1|) (-10 -8 (-15 -2883 ((-112) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -1997 ((-2 (|:| -1934 |#1|) (|:| -4431 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|))) (-561)) (T -560))
-NIL
-(-10 -8 (-15 -2883 ((-112) |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -3087 (|#1| |#1|)) (-15 -1997 ((-2 (|:| -1934 |#1|) (|:| -4431 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ $) 48)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-555 |#1| |#2| |#3|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447)))) (T -555))
+NIL
+(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447)))
+((-2244 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1181 |#2|) (-1181 |#2|))) 50)))
+(((-556 |#1| |#2|) (-10 -7 (-15 -2244 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1181 |#2|) (-1181 |#2|))))) (-561) (-13 (-27) (-435 |#1|))) (T -556))
+((-2244 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1181 *3) (-1181 *3))) (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3)) (-5 *1 (-556 *6 *3)))))
+(-10 -7 (-15 -2244 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1181 |#2|) (-1181 |#2|)))))
+((-3726 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2191 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-4189 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 222)))
+(((-557 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4189 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3726 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2191 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-561) (-1046 (-569))) (-13 (-27) (-435 |#1|)) (-1251 |#2|) (-1251 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -557))
+((-2191 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *7 (-1251 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2)) (-4 *2 (-346 *5 *6 *7)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))) (-4189 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
+(-10 -7 (-15 -4189 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3726 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2191 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-1983 (((-112) (-569) (-569)) 12)) (-1880 (((-569) (-569)) 7)) (-3432 (((-569) (-569) (-569)) 10)))
+(((-558) (-10 -7 (-15 -1880 ((-569) (-569))) (-15 -3432 ((-569) (-569) (-569))) (-15 -1983 ((-112) (-569) (-569))))) (T -558))
+((-1983 (*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558)))) (-3432 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))) (-1880 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
+(-10 -7 (-15 -1880 ((-569) (-569))) (-15 -3432 ((-569) (-569) (-569))) (-15 -1983 ((-112) (-569) (-569))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3485 ((|#1| $) 67)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2771 (($ $) 97)) (-2626 (($ $) 80)) (-3151 ((|#1| $) 68)) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $) 79)) (-2746 (($ $) 96)) (-2601 (($ $) 81)) (-4118 (($ $) 95)) (-2647 (($ $) 82)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 75)) (-3150 (((-569) $) 76)) (-3086 (((-3 $ "failed") $) 37)) (-1659 (($ |#1| |#1|) 72)) (-3712 (((-112) $) 66)) (-1312 (($) 107)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 78)) (-2051 (((-112) $) 65)) (-3380 (($ $ $) 113)) (-2839 (($ $ $) 112)) (-2662 (($ $) 104)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3294 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-412 (-569))) 70)) (-3078 ((|#1| $) 69)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2407 (((-3 $ "failed") $ $) 48)) (-4389 (($ $) 105)) (-4128 (($ $) 94)) (-2661 (($ $) 83)) (-2783 (($ $) 93)) (-2635 (($ $) 84)) (-2758 (($ $) 92)) (-2614 (($ $) 85)) (-3422 (((-112) $ |#1|) 64)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 74)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 103)) (-2701 (($ $) 91)) (-2664 (((-112) $ $) 45)) (-4140 (($ $) 102)) (-2675 (($ $) 90)) (-4183 (($ $) 101)) (-2723 (($ $) 89)) (-1503 (($ $) 100)) (-2734 (($ $) 88)) (-4175 (($ $) 99)) (-2712 (($ $) 87)) (-4151 (($ $) 98)) (-2689 (($ $) 86)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 110)) (-2956 (((-112) $ $) 109)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 111)) (-2944 (((-112) $ $) 108)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106) (($ $ (-412 (-569))) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-559 |#1|) (-140) (-13 (-409) (-1210))) (T -559))
+((-3294 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-1659 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3294 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))) (-3422 (*1 *2 *1 *3) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))))
+(-13 (-457) (-855) (-1210) (-1010) (-1046 (-569)) (-10 -8 (-6 -3091) (-15 -3294 ($ |t#1| |t#1|)) (-15 -1659 ($ |t#1| |t#1|)) (-15 -3294 ($ |t#1|)) (-15 -3294 ($ (-412 (-569)))) (-15 -3078 (|t#1| $)) (-15 -3151 (|t#1| $)) (-15 -3485 (|t#1| $)) (-15 -3712 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3422 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-287) . T) ((-293) . T) ((-457) . T) ((-498) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1010) . T) ((-1046 (-569)) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) . T) ((-1213) . T))
+((-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 9)) (-4355 (($ $) 11)) (-3039 (((-112) $) 20)) (-3086 (((-3 $ "failed") $) 16)) (-2664 (((-112) $ $) 22)))
+(((-560 |#1|) (-10 -8 (-15 -3039 ((-112) |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|))) (-561)) (T -560))
+NIL
+(-10 -8 (-15 -3039 ((-112) |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-561) (-140)) (T -561))
-((-2405 (*1 *1 *1 *1) (|partial| -4 *1 (-561))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1934 *1) (|:| -4431 *1) (|:| |associate| *1))) (-4 *1 (-561)))) (-3087 (*1 *1 *1) (-4 *1 (-561))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
-(-13 (-173) (-38 $) (-293) (-10 -8 (-15 -2405 ((-3 $ "failed") $ $)) (-15 -1997 ((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $)) (-15 -3087 ($ $)) (-15 -2985 ((-112) $ $)) (-15 -2883 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2184 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-649 |#2|)) 38)) (-2354 (((-591 |#2|) |#2| (-1183)) 63)) (-2270 (((-3 |#2| "failed") |#2| (-1183)) 156)) (-2445 (((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) (-617 |#2|) (-649 (-617 |#2|))) 159)) (-2096 (((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) |#2|) 41)))
-(((-562 |#1| |#2|) (-10 -7 (-15 -2096 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) |#2|)) (-15 -2184 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-649 |#2|))) (-15 -2270 ((-3 |#2| "failed") |#2| (-1183))) (-15 -2354 ((-591 |#2|) |#2| (-1183))) (-15 -2445 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) (-617 |#2|) (-649 (-617 |#2|))))) (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -562))
-((-2445 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1183)) (-5 *6 (-649 (-617 *3))) (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *7))) (-4 *7 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3))) (-5 *1 (-562 *7 *3)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-2270 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2184 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *3)))) (-2096 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
-(-10 -7 (-15 -2096 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) |#2|)) (-15 -2184 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1183) (-649 |#2|))) (-15 -2270 ((-3 |#2| "failed") |#2| (-1183))) (-15 -2354 ((-591 |#2|) |#2| (-1183))) (-15 -2445 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1183) (-617 |#2|) (-649 (-617 |#2|)))))
-((-2508 (((-423 |#1|) |#1|) 19)) (-3796 (((-423 |#1|) |#1|) 34)) (-1483 (((-3 |#1| "failed") |#1|) 51)) (-1361 (((-423 |#1|) |#1|) 64)))
-(((-563 |#1|) (-10 -7 (-15 -3796 ((-423 |#1|) |#1|)) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -1361 ((-423 |#1|) |#1|)) (-15 -1483 ((-3 |#1| "failed") |#1|))) (-550)) (T -563))
-((-1483 (*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550)))) (-1361 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-2508 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))))
-(-10 -7 (-15 -3796 ((-423 |#1|) |#1|)) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -1361 ((-423 |#1|) |#1|)) (-15 -1483 ((-3 |#1| "failed") |#1|)))
-((-1601 (($) 9)) (-1619 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 34)) (-2796 (((-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 31)) (-3813 (($ (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-1805 (($ (-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2214 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-3851 (((-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-1702 (((-1278)) 11)))
-(((-564) (-10 -8 (-15 -1601 ($)) (-15 -1702 ((-1278))) (-15 -2796 ((-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -1805 ($ (-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3813 ($ (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1619 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3851 ((-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2214 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -564))
-((-2214 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-1619 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-564)))) (-1805 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-564)))) (-1702 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-564)))) (-1601 (*1 *1) (-5 *1 (-564))))
-(-10 -8 (-15 -1601 ($)) (-15 -1702 ((-1278))) (-15 -2796 ((-649 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -1805 ($ (-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3813 ($ (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1619 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3851 ((-649 (-2 (|:| -2003 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2214 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1163 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2080 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-3763 (((-1179 (-412 (-1179 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1179 |#2|)) 35)) (-3995 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1179 |#2|)) 115)) (-1899 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 85) (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|)) 55)) (-3901 (((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1179 |#2|))) 92) (((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1179 |#2|)) 114)) (-4082 (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) |#2| (-1179 |#2|)) 116)) (-4178 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))) 135 (|has| |#3| (-661 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|)) 134 (|has| |#3| (-661 |#2|)))) (-1697 ((|#2| (-1179 (-412 (-1179 |#2|))) (-617 |#2|) |#2|) 53)) (-3582 (((-1179 (-412 (-1179 |#2|))) (-1179 |#2|) (-617 |#2|)) 34)))
-(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -1899 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -1899 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3901 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1179 |#2|))) (-15 -3901 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1179 |#2|))) (-15 -3995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -4082 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) |#2| (-1179 |#2|))) (-15 -4082 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3763 ((-1179 (-412 (-1179 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1179 |#2|))) (-15 -1697 (|#2| (-1179 (-412 (-1179 |#2|))) (-617 |#2|) |#2|)) (-15 -3582 ((-1179 (-412 (-1179 |#2|))) (-1179 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -4178 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -4178 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))))) |%noBranch|)) (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1208)) (-1106)) (T -565))
-((-4178 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1179 *4))) (-4 *4 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))) (-4178 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1179 *4)) (-4 *4 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1179 (-412 (-1179 *6)))) (-5 *1 (-565 *5 *6 *7)) (-5 *3 (-1179 *6)) (-4 *7 (-1106)))) (-1697 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1179 (-412 (-1179 *2)))) (-5 *4 (-617 *2)) (-4 *2 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1106)))) (-3763 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1179 (-412 (-1179 *3)))) (-5 *1 (-565 *6 *3 *7)) (-5 *5 (-1179 *3)) (-4 *7 (-1106)))) (-4082 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-5 *5 (-412 (-1179 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106)))) (-4082 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-5 *5 (-1179 *2)) (-4 *2 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106)))) (-3995 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106)))) (-3995 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1179 *3)) (-4 *3 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106)))) (-3901 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))) (-3901 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))) (-1899 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))) (-1899 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))))
-(-10 -7 (-15 -1899 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -1899 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3901 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1179 |#2|))) (-15 -3901 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1179 |#2|))) (-15 -3995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -4082 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) |#2| (-1179 |#2|))) (-15 -4082 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)) (-617 |#2|) |#2| (-412 (-1179 |#2|)))) (-15 -3763 ((-1179 (-412 (-1179 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1179 |#2|))) (-15 -1697 (|#2| (-1179 (-412 (-1179 |#2|))) (-617 |#2|) |#2|)) (-15 -3582 ((-1179 (-412 (-1179 |#2|))) (-1179 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -4178 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1179 |#2|))) (-15 -4178 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1179 |#2|))))) |%noBranch|))
-((-2670 (((-569) (-569) (-776)) 90)) (-2565 (((-569) (-569)) 88)) (-3767 (((-569) (-569)) 86)) (-3672 (((-569) (-569)) 92)) (-1414 (((-569) (-569) (-569)) 70)) (-3566 (((-569) (-569) (-569)) 67)) (-3458 (((-412 (-569)) (-569)) 30)) (-3350 (((-569) (-569)) 36)) (-3236 (((-569) (-569)) 79)) (-2289 (((-569) (-569)) 51)) (-4364 (((-649 (-569)) (-569)) 85)) (-4267 (((-569) (-569) (-569) (-569) (-569)) 63)) (-1923 (((-412 (-569)) (-569)) 60)))
-(((-566) (-10 -7 (-15 -1923 ((-412 (-569)) (-569))) (-15 -4267 ((-569) (-569) (-569) (-569) (-569))) (-15 -4364 ((-649 (-569)) (-569))) (-15 -2289 ((-569) (-569))) (-15 -3236 ((-569) (-569))) (-15 -3350 ((-569) (-569))) (-15 -3458 ((-412 (-569)) (-569))) (-15 -3566 ((-569) (-569) (-569))) (-15 -1414 ((-569) (-569) (-569))) (-15 -3672 ((-569) (-569))) (-15 -3767 ((-569) (-569))) (-15 -2565 ((-569) (-569))) (-15 -2670 ((-569) (-569) (-776))))) (T -566))
-((-2670 (*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566)))) (-2565 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3566 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3458 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-4364 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-4267 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1923 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
-(-10 -7 (-15 -1923 ((-412 (-569)) (-569))) (-15 -4267 ((-569) (-569) (-569) (-569) (-569))) (-15 -4364 ((-649 (-569)) (-569))) (-15 -2289 ((-569) (-569))) (-15 -3236 ((-569) (-569))) (-15 -3350 ((-569) (-569))) (-15 -3458 ((-412 (-569)) (-569))) (-15 -3566 ((-569) (-569) (-569))) (-15 -1414 ((-569) (-569) (-569))) (-15 -3672 ((-569) (-569))) (-15 -3767 ((-569) (-569))) (-15 -2565 ((-569) (-569))) (-15 -2670 ((-569) (-569) (-776))))
-((-2780 (((-2 (|:| |answer| |#4|) (|:| -2438 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-567 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2780 ((-2 (|:| |answer| |#4|) (|:| -2438 |#4|)) |#4| (-1 |#2| |#2|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -567))
-((-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-4 *7 (-1249 (-412 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2438 *3))) (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7)))))
-(-10 -7 (-15 -2780 ((-2 (|:| |answer| |#4|) (|:| -2438 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2780 (((-2 (|:| |answer| (-412 |#2|)) (|:| -2438 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 18)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -2780 ((-2 (|:| |answer| (-412 |#2|)) (|:| -2438 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1249 |#1|)) (T -568))
-((-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| (-412 *6)) (|:| -2438 (-412 *6)) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6)))))
-(-10 -7 (-15 -2780 ((-2 (|:| |answer| (-412 |#2|)) (|:| -2438 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 30)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 97)) (-3087 (($ $) 98)) (-2883 (((-112) $) NIL)) (-4122 (($ $ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3956 (($ $ $ $) 52)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL)) (-3081 (($ $ $) 92)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL)) (-3148 (((-569) $) NIL)) (-2366 (($ $ $) 54)) (-1630 (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 77) (((-694 (-569)) (-694 $)) 73)) (-2888 (((-3 $ "failed") $) 94)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL)) (-1434 (((-112) $) NIL)) (-1311 (((-412 (-569)) $) NIL)) (-3403 (($) 79) (($ $) 80)) (-2373 (($ $ $) 91)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2481 (($ $ $ $) NIL)) (-4190 (($ $ $) 70)) (-4237 (((-112) $) NIL)) (-1841 (($ $ $) NIL)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2623 (((-112) $) 34)) (-1607 (((-112) $) 86)) (-3812 (((-3 $ "failed") $) NIL)) (-4327 (((-112) $) 43)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2604 (($ $ $ $) 55)) (-3377 (($ $ $) 88)) (-3969 (($ $ $) 87)) (-2605 (($ $) NIL)) (-3842 (($ $) 49)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) 69)) (-3678 (($ $ $) NIL)) (-2305 (($) NIL T CONST)) (-3589 (($ $) 38)) (-3545 (((-1126) $) 42)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 129)) (-1864 (($ $ $) 95) (($ (-649 $)) NIL)) (-1649 (($ $) NIL)) (-3796 (((-423 $) $) 115)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL)) (-2405 (((-3 $ "failed") $ $) 113)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2108 (((-112) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 90)) (-3514 (($ $ (-776)) NIL) (($ $) NIL)) (-2431 (($ $) 40)) (-3959 (($ $) 36)) (-1408 (((-569) $) 48) (((-541) $) 64) (((-898 (-569)) $) NIL) (((-383) $) 58) (((-226) $) 61) (((-1165) $) 66)) (-3793 (((-867) $) 46) (($ (-569)) 47) (($ $) NIL) (($ (-569)) 47)) (-3302 (((-776)) NIL T CONST)) (-4271 (((-112) $ $) NIL)) (-2950 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-4360 (($) 35)) (-2985 (((-112) $ $) NIL)) (-4048 (($ $ $ $) 51)) (-3070 (($ $) 78)) (-1803 (($) 6 T CONST)) (-1813 (($) 31 T CONST)) (-4195 (((-1165) $) 26) (((-1165) $ (-112)) 27) (((-1278) (-827) $) 28) (((-1278) (-827) $ (-112)) 29)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2976 (((-112) $ $) 50)) (-2954 (((-112) $ $) 81)) (-2919 (((-112) $ $) 33)) (-2964 (((-112) $ $) 83)) (-2942 (((-112) $ $) 10)) (-3021 (($ $) 16) (($ $ $) 39)) (-3009 (($ $ $) 37)) (** (($ $ (-927)) NIL) (($ $ (-776)) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 84) (($ $ $) 53)))
-(((-569) (-13 (-550) (-619 (-1165)) (-833) (-10 -7 (-6 -4431) (-6 -4436) (-6 -4432) (-6 -4426)))) (T -569))
-NIL
-(-13 (-550) (-619 (-1165)) (-833) (-10 -7 (-6 -4431) (-6 -4436) (-6 -4432) (-6 -4426)))
-((-1331 (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774) (-1069)) 119) (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774)) 121)) (-2488 (((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1183)) 197) (((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1165)) 196) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383) (-1069)) 201) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383)) 202) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383)) 203) (((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383))))) 204) (((-1041) (-319 (-383)) (-1100 (-848 (-383)))) 192) (((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383)) 191) (((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383)) 187) (((-1041) (-774)) 179) (((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383) (-1069)) 186)))
-(((-570) (-10 -7 (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383) (-1069))) (-15 -2488 ((-1041) (-774))) (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383) (-1069))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774) (-1069))) (-15 -2488 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1165))) (-15 -2488 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1183))))) (T -570))
-((-2488 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383)))) (-5 *5 (-1183)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383)))) (-5 *5 (-1165)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) (-5 *1 (-570)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041)))) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383))))) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1041)) (-5 *1 (-570)))) (-2488 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570)))))
-(-10 -7 (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383) (-1069))) (-15 -2488 ((-1041) (-774))) (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-1100 (-848 (-383))))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383))) (-15 -2488 ((-1041) (-319 (-383)) (-649 (-1100 (-848 (-383)))) (-383) (-383) (-1069))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))) (-774) (-1069))) (-15 -2488 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1165))) (-15 -2488 ((-3 (-1041) "failed") (-319 (-383)) (-1098 (-848 (-383))) (-1183))))
-((-3106 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|)) 198)) (-2889 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|)) 99)) (-3002 (((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|) 194)) (-3084 (((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183))) 203)) (-3183 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1183)) 212 (|has| |#3| (-661 |#2|)))))
-(((-571 |#1| |#2| |#3|) (-10 -7 (-15 -2889 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -3002 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -3106 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -3084 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)))) (IF (|has| |#3| (-661 |#2|)) (-15 -3183 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1183))) |%noBranch|)) (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1208)) (-1106)) (T -571))
-((-3183 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1183)) (-4 *4 (-13 (-435 *7) (-27) (-1208))) (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))) (-3084 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-4 *2 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1106)))) (-3106 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208))) (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1106)))) (-3002 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))) (-2889 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1208))) (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))))
-(-10 -7 (-15 -2889 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -3002 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -3106 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -3084 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1183)))) (IF (|has| |#3| (-661 |#2|)) (-15 -3183 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1903 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1183))) |%noBranch|))
-((-3282 (((-2 (|:| -3290 |#2|) (|:| |nconst| |#2|)) |#2| (-1183)) 64)) (-3512 (((-3 |#2| "failed") |#2| (-1183) (-848 |#2|) (-848 |#2|)) 175 (-12 (|has| |#2| (-1145)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)) 154 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569)))))) (-3417 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)) 156 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569)))))))
-(((-572 |#1| |#2|) (-10 -7 (-15 -3282 ((-2 (|:| -3290 |#2|) (|:| |nconst| |#2|)) |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -3417 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) (-15 -3512 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) (IF (|has| |#2| (-1145)) (-15 -3512 ((-3 |#2| "failed") |#2| (-1183) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1044 (-569)) (-457) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -572))
-((-3512 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1183)) (-5 *4 (-848 *2)) (-4 *2 (-1145)) (-4 *2 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *1 (-572 *5 *2)))) (-3512 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-3417 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-3282 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| -3290 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
-(-10 -7 (-15 -3282 ((-2 (|:| -3290 |#2|) (|:| |nconst| |#2|)) |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -3417 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) (-15 -3512 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) (IF (|has| |#2| (-1145)) (-15 -3512 ((-3 |#2| "failed") |#2| (-1183) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3427 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))) 41)) (-2488 (((-591 (-412 |#2|)) (-412 |#2|)) 28)) (-3620 (((-3 (-412 |#2|) "failed") (-412 |#2|)) 17)) (-2422 (((-3 (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|)) 48)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -2488 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -3620 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -2422 ((-3 (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -3427 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-569))) (-1249 |#1|)) (T -573))
-((-3427 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *5 *6)))) (-2422 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -2530 (-412 *5)) (|:| |coeff| (-412 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))) (-3620 (*1 *2 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147) (-1044 (-569)))) (-5 *1 (-573 *3 *4)))) (-2488 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
-(-10 -7 (-15 -2488 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -3620 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -2422 ((-3 (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -3427 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|)))))
-((-3535 (((-3 (-569) "failed") |#1|) 14)) (-4227 (((-112) |#1|) 13)) (-1431 (((-569) |#1|) 9)))
-(((-574 |#1|) (-10 -7 (-15 -1431 ((-569) |#1|)) (-15 -4227 ((-112) |#1|)) (-15 -3535 ((-3 (-569) "failed") |#1|))) (-1044 (-569))) (T -574))
-((-3535 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))) (-4227 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1044 (-569))))) (-1431 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))))
-(-10 -7 (-15 -1431 ((-569) |#1|)) (-15 -4227 ((-112) |#1|)) (-15 -3535 ((-3 (-569) "failed") |#1|)))
-((-2502 (((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1183) (-649 (-412 (-958 |#1|)))) 48)) (-3629 (((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1183)) 28)) (-2413 (((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1183)) 23)) (-2602 (((-3 (-2 (|:| -2530 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|))) 35)))
-(((-575 |#1|) (-10 -7 (-15 -3629 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -2413 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1183))) (-15 -2502 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1183) (-649 (-412 (-958 |#1|))))) (-15 -2602 ((-3 (-2 (|:| -2530 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|))))) (-13 (-561) (-1044 (-569)) (-147))) (T -575))
-((-2602 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-147))) (-5 *2 (-2 (|:| -2530 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5))))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))) (-2502 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-561) (-1044 (-569)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *6)))) (-2413 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-147))) (-5 *1 (-575 *4)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-147))) (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))))
-(-10 -7 (-15 -3629 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -2413 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1183))) (-15 -2502 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1183) (-649 (-412 (-958 |#1|))))) (-15 -2602 ((-3 (-2 (|:| -2530 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)))))
-((-2415 (((-112) $ $) 75)) (-3192 (((-112) $) 48)) (-3480 ((|#1| $) 39)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) 79)) (-2769 (($ $) 139)) (-2624 (($ $) 118)) (-3217 ((|#1| $) 37)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $) NIL)) (-2744 (($ $) 141)) (-2600 (($ $) 114)) (-4114 (($ $) 143)) (-2645 (($ $) 122)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) 93)) (-3148 (((-569) $) 95)) (-2888 (((-3 $ "failed") $) 78)) (-2678 (($ |#1| |#1|) 35)) (-4237 (((-112) $) 44)) (-1310 (($) 104)) (-2623 (((-112) $) 55)) (-2506 (($ $ (-569)) NIL)) (-4327 (((-112) $) 45)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-2660 (($ $) 106)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-2785 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-412 (-569))) 92)) (-2569 ((|#1| $) 36)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) 81) (($ (-649 $)) NIL)) (-2405 (((-3 $ "failed") $ $) 80)) (-4386 (($ $) 108)) (-4124 (($ $) 147)) (-2659 (($ $) 120)) (-2781 (($ $) 149)) (-2632 (($ $) 124)) (-2756 (($ $) 145)) (-2609 (($ $) 116)) (-2474 (((-112) $ |#1|) 42)) (-3793 (((-867) $) 100) (($ (-569)) 83) (($ $) NIL) (($ (-569)) 83)) (-3302 (((-776)) 102 T CONST)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) 161)) (-2699 (($ $) 130)) (-2985 (((-112) $ $) NIL)) (-4133 (($ $) 159)) (-2673 (($ $) 126)) (-4182 (($ $) 157)) (-2721 (($ $) 137)) (-1501 (($ $) 155)) (-2732 (($ $) 135)) (-4170 (($ $) 153)) (-2710 (($ $) 132)) (-4147 (($ $) 151)) (-2687 (($ $) 128)) (-1803 (($) 30 T CONST)) (-1813 (($) 10 T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 49)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 47)) (-3021 (($ $) 53) (($ $ $) 54)) (-3009 (($ $ $) 52)) (** (($ $ (-927)) 71) (($ $ (-776)) NIL) (($ $ $) 110) (($ $ (-412 (-569))) 163)) (* (($ (-927) $) 66) (($ (-776) $) NIL) (($ (-569) $) 65) (($ $ $) 61)))
-(((-576 |#1|) (-559 |#1|) (-13 (-409) (-1208))) (T -576))
+((-2407 (*1 *1 *1 *1) (|partial| -4 *1 (-561))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2736 *1) (|:| -4434 *1) (|:| |associate| *1))) (-4 *1 (-561)))) (-4355 (*1 *1 *1) (-4 *1 (-561))) (-2664 (*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
+(-13 (-173) (-38 $) (-293) (-10 -8 (-15 -2407 ((-3 $ "failed") $ $)) (-15 -2194 ((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $)) (-15 -4355 ($ $)) (-15 -2664 ((-112) $ $)) (-15 -3039 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3568 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1185) (-649 |#2|)) 38)) (-1642 (((-591 |#2|) |#2| (-1185)) 63)) (-1986 (((-3 |#2| "failed") |#2| (-1185)) 156)) (-4350 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) (-617 |#2|) (-649 (-617 |#2|))) 159)) (-3912 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) |#2|) 41)))
+(((-562 |#1| |#2|) (-10 -7 (-15 -3912 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) |#2|)) (-15 -3568 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1185) (-649 |#2|))) (-15 -1986 ((-3 |#2| "failed") |#2| (-1185))) (-15 -1642 ((-591 |#2|) |#2| (-1185))) (-15 -4350 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) (-617 |#2|) (-649 (-617 |#2|))))) (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -562))
+((-4350 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1185)) (-5 *6 (-649 (-617 *3))) (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-562 *7 *3)))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1986 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3568 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *3)))) (-3912 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))))
+(-10 -7 (-15 -3912 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) |#2|)) (-15 -3568 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1185) (-649 |#2|))) (-15 -1986 ((-3 |#2| "failed") |#2| (-1185))) (-15 -1642 ((-591 |#2|) |#2| (-1185))) (-15 -4350 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) (-617 |#2|) (-649 (-617 |#2|)))))
+((-3764 (((-423 |#1|) |#1|) 19)) (-3800 (((-423 |#1|) |#1|) 34)) (-4022 (((-3 |#1| "failed") |#1|) 51)) (-3309 (((-423 |#1|) |#1|) 64)))
+(((-563 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3309 ((-423 |#1|) |#1|)) (-15 -4022 ((-3 |#1| "failed") |#1|))) (-550)) (T -563))
+((-4022 (*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550)))) (-3309 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-3764 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))))
+(-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3309 ((-423 |#1|) |#1|)) (-15 -4022 ((-3 |#1| "failed") |#1|)))
+((-2644 (($) 9)) (-1621 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 34)) (-2795 (((-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 31)) (-3894 (($ (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-4018 (($ (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2216 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-4199 (((-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-4349 (((-1280)) 11)))
+(((-564) (-10 -8 (-15 -2644 ($)) (-15 -4349 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -4018 ($ (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1621 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4199 ((-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2216 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -564))
+((-2216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-1621 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-3894 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-564)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-564)))) (-4349 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-564)))) (-2644 (*1 *1) (-5 *1 (-564))))
+(-10 -8 (-15 -2644 ($)) (-15 -4349 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -4018 ($ (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1621 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4199 ((-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2216 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-3767 (((-1181 (-412 (-1181 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1181 |#2|)) 35)) (-3097 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1181 |#2|)) 115)) (-3658 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 85) (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|)) 55)) (-3449 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1181 |#2|))) 92) (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1181 |#2|)) 114)) (-1573 (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) |#2| (-1181 |#2|)) 116)) (-4335 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 135 (|has| |#3| (-661 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|)) 134 (|has| |#3| (-661 |#2|)))) (-1700 ((|#2| (-1181 (-412 (-1181 |#2|))) (-617 |#2|) |#2|) 53)) (-3585 (((-1181 (-412 (-1181 |#2|))) (-1181 |#2|) (-617 |#2|)) 34)))
+(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1181 |#2|))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1181 |#2|))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) |#2| (-1181 |#2|))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3767 ((-1181 (-412 (-1181 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1181 |#2|))) (-15 -1700 (|#2| (-1181 (-412 (-1181 |#2|))) (-617 |#2|) |#2|)) (-15 -3585 ((-1181 (-412 (-1181 |#2|))) (-1181 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))))) |%noBranch|)) (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1210)) (-1108)) (T -565))
+((-4335 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1181 *4))) (-4 *4 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))) (-4335 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1181 *4)) (-4 *4 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1181 (-412 (-1181 *6)))) (-5 *1 (-565 *5 *6 *7)) (-5 *3 (-1181 *6)) (-4 *7 (-1108)))) (-1700 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1181 (-412 (-1181 *2)))) (-5 *4 (-617 *2)) (-4 *2 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1108)))) (-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1181 (-412 (-1181 *3)))) (-5 *1 (-565 *6 *3 *7)) (-5 *5 (-1181 *3)) (-4 *7 (-1108)))) (-1573 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-5 *5 (-412 (-1181 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108)))) (-1573 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-5 *5 (-1181 *2)) (-4 *2 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108)))) (-3097 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108)))) (-3097 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1181 *3)) (-4 *3 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108)))) (-3449 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) (-3449 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) (-3658 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) (-3658 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))))
+(-10 -7 (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1181 |#2|))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1181 |#2|))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) |#2| (-1181 |#2|))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3767 ((-1181 (-412 (-1181 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1181 |#2|))) (-15 -1700 (|#2| (-1181 (-412 (-1181 |#2|))) (-617 |#2|) |#2|)) (-15 -3585 ((-1181 (-412 (-1181 |#2|))) (-1181 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))))) |%noBranch|))
+((-1603 (((-569) (-569) (-776)) 90)) (-3033 (((-569) (-569)) 88)) (-1613 (((-569) (-569)) 86)) (-1927 (((-569) (-569)) 92)) (-4393 (((-569) (-569) (-569)) 70)) (-3345 (((-569) (-569) (-569)) 67)) (-1737 (((-412 (-569)) (-569)) 30)) (-1950 (((-569) (-569)) 36)) (-3334 (((-569) (-569)) 79)) (-2153 (((-569) (-569)) 51)) (-2360 (((-649 (-569)) (-569)) 85)) (-2706 (((-569) (-569) (-569) (-569) (-569)) 63)) (-2616 (((-412 (-569)) (-569)) 60)))
+(((-566) (-10 -7 (-15 -2616 ((-412 (-569)) (-569))) (-15 -2706 ((-569) (-569) (-569) (-569) (-569))) (-15 -2360 ((-649 (-569)) (-569))) (-15 -2153 ((-569) (-569))) (-15 -3334 ((-569) (-569))) (-15 -1950 ((-569) (-569))) (-15 -1737 ((-412 (-569)) (-569))) (-15 -3345 ((-569) (-569) (-569))) (-15 -4393 ((-569) (-569) (-569))) (-15 -1927 ((-569) (-569))) (-15 -1613 ((-569) (-569))) (-15 -3033 ((-569) (-569))) (-15 -1603 ((-569) (-569) (-776))))) (T -566))
+((-1603 (*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-4393 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3345 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1737 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2360 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-2706 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
+(-10 -7 (-15 -2616 ((-412 (-569)) (-569))) (-15 -2706 ((-569) (-569) (-569) (-569) (-569))) (-15 -2360 ((-649 (-569)) (-569))) (-15 -2153 ((-569) (-569))) (-15 -3334 ((-569) (-569))) (-15 -1950 ((-569) (-569))) (-15 -1737 ((-412 (-569)) (-569))) (-15 -3345 ((-569) (-569) (-569))) (-15 -4393 ((-569) (-569) (-569))) (-15 -1927 ((-569) (-569))) (-15 -1613 ((-569) (-569))) (-15 -3033 ((-569) (-569))) (-15 -1603 ((-569) (-569) (-776))))
+((-3250 (((-2 (|:| |answer| |#4|) (|:| -4292 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-567 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3250 ((-2 (|:| |answer| |#4|) (|:| -4292 |#4|)) |#4| (-1 |#2| |#2|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -567))
+((-3250 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-4 *7 (-1251 (-412 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4292 *3))) (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7)))))
+(-10 -7 (-15 -3250 ((-2 (|:| |answer| |#4|) (|:| -4292 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3250 (((-2 (|:| |answer| (-412 |#2|)) (|:| -4292 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 18)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -3250 ((-2 (|:| |answer| (-412 |#2|)) (|:| -4292 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1251 |#1|)) (T -568))
+((-3250 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| (-412 *6)) (|:| -4292 (-412 *6)) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6)))))
+(-10 -7 (-15 -3250 ((-2 (|:| |answer| (-412 |#2|)) (|:| -4292 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 30)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 97)) (-4355 (($ $) 98)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) 52)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) 92)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL)) (-3150 (((-569) $) NIL)) (-2368 (($ $ $) 54)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 77) (((-694 (-569)) (-694 $)) 73)) (-3086 (((-3 $ "failed") $) 94)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($) 79) (($ $) 80)) (-2379 (($ $ $) 91)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) 70)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) 34)) (-2719 (((-112) $) 86)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) 43)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) 55)) (-3380 (($ $ $) 88)) (-2839 (($ $ $) 87)) (-2606 (($ $) NIL)) (-3845 (($ $) 49)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) 69)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-3593 (($ $) 38)) (-3547 (((-1128) $) 42)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 129)) (-1870 (($ $ $) 95) (($ (-649 $)) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) 115)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) 113)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 90)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-2432 (($ $) 40)) (-3962 (($ $) 36)) (-1410 (((-569) $) 48) (((-541) $) 64) (((-898 (-569)) $) NIL) (((-383) $) 58) (((-226) $) 61) (((-1167) $) 66)) (-3796 (((-867) $) 46) (($ (-569)) 47) (($ $) NIL) (($ (-569)) 47)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) 35)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) 51)) (-2271 (($ $) 78)) (-1804 (($) 6 T CONST)) (-1815 (($) 31 T CONST)) (-3266 (((-1167) $) 26) (((-1167) $ (-112)) 27) (((-1280) (-827) $) 28) (((-1280) (-827) $ (-112)) 29)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) 50)) (-2956 (((-112) $ $) 81)) (-2920 (((-112) $ $) 33)) (-2966 (((-112) $ $) 83)) (-2944 (((-112) $ $) 10)) (-3024 (($ $) 16) (($ $ $) 39)) (-3012 (($ $ $) 37)) (** (($ $ (-927)) NIL) (($ $ (-776)) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 84) (($ $ $) 53)))
+(((-569) (-13 (-550) (-619 (-1167)) (-833) (-10 -7 (-6 -4434) (-6 -4439) (-6 -4435) (-6 -4429)))) (T -569))
+NIL
+(-13 (-550) (-619 (-1167)) (-833) (-10 -7 (-6 -4434) (-6 -4439) (-6 -4435) (-6 -4429)))
+((-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774) (-1071)) 119) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774)) 121)) (-3579 (((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1185)) 197) (((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1167)) 196) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383) (-1071)) 201) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383)) 202) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383)) 203) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383))))) 204) (((-1043) (-319 (-383)) (-1102 (-848 (-383)))) 192) (((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383)) 191) (((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383)) 187) (((-1043) (-774)) 179) (((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383) (-1071)) 186)))
+(((-570) (-10 -7 (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383) (-1071))) (-15 -3579 ((-1043) (-774))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383) (-1071))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774) (-1071))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1167))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1185))))) (T -570))
+((-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-1185)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-1167)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) (-5 *1 (-570)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570)))))
+(-10 -7 (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383) (-1071))) (-15 -3579 ((-1043) (-774))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383) (-1071))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774) (-1071))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1167))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1185))))
+((-1413 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|)) 198)) (-3098 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|)) 99)) (-2862 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|) 194)) (-2387 (((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185))) 203)) (-4064 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1185)) 212 (|has| |#3| (-661 |#2|)))))
+(((-571 |#1| |#2| |#3|) (-10 -7 (-15 -3098 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -2862 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -1413 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -2387 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)))) (IF (|has| |#3| (-661 |#2|)) (-15 -4064 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1185))) |%noBranch|)) (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1210)) (-1108)) (T -571))
+((-4064 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1185)) (-4 *4 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))) (-2387 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-4 *2 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1108)))) (-1413 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1108)))) (-2862 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108)))) (-3098 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108)))))
+(-10 -7 (-15 -3098 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -2862 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -1413 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -2387 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)))) (IF (|has| |#3| (-661 |#2|)) (-15 -4064 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1185))) |%noBranch|))
+((-2509 (((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1185)) 64)) (-4087 (((-3 |#2| "failed") |#2| (-1185) (-848 |#2|) (-848 |#2|)) 175 (-12 (|has| |#2| (-1147)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)) 154 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569)))))) (-4414 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)) 156 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569)))))))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2509 ((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -4414 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185))) (-15 -4087 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) (IF (|has| |#2| (-1147)) (-15 -4087 ((-3 |#2| "failed") |#2| (-1185) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1046 (-569)) (-457) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -572))
+((-4087 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1185)) (-5 *4 (-848 *2)) (-4 *2 (-1147)) (-4 *2 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *1 (-572 *5 *2)))) (-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-4414 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-2509 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| -2587 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))))
+(-10 -7 (-15 -2509 ((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -4414 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185))) (-15 -4087 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) (IF (|has| |#2| (-1147)) (-15 -4087 ((-3 |#2| "failed") |#2| (-1185) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1395 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))) 41)) (-3579 (((-591 (-412 |#2|)) (-412 |#2|)) 28)) (-2583 (((-3 (-412 |#2|) "failed") (-412 |#2|)) 17)) (-4174 (((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|)) 48)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -3579 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -2583 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -1395 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1046 (-569))) (-1251 |#1|)) (T -573))
+((-1395 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *5 *6)))) (-4174 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2679 (-412 *5)) (|:| |coeff| (-412 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))) (-2583 (*1 *2 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147) (-1046 (-569)))) (-5 *1 (-573 *3 *4)))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
+(-10 -7 (-15 -3579 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -2583 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -1395 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|)))))
+((-4282 (((-3 (-569) "failed") |#1|) 14)) (-3605 (((-112) |#1|) 13)) (-1433 (((-569) |#1|) 9)))
+(((-574 |#1|) (-10 -7 (-15 -1433 ((-569) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -4282 ((-3 (-569) "failed") |#1|))) (-1046 (-569))) (T -574))
+((-4282 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2)))) (-3605 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1046 (-569))))) (-1433 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2)))))
+(-10 -7 (-15 -1433 ((-569) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -4282 ((-3 (-569) "failed") |#1|)))
+((-3710 (((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1185) (-649 (-412 (-958 |#1|)))) 48)) (-2693 (((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1185)) 28)) (-4088 (((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1185)) 23)) (-2176 (((-3 (-2 (|:| -2679 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|))) 35)))
+(((-575 |#1|) (-10 -7 (-15 -2693 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -4088 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1185))) (-15 -3710 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1185) (-649 (-412 (-958 |#1|))))) (-15 -2176 ((-3 (-2 (|:| -2679 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|))))) (-13 (-561) (-1046 (-569)) (-147))) (T -575))
+((-2176 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-147))) (-5 *2 (-2 (|:| -2679 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5))))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))) (-3710 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *6)))) (-4088 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-147))) (-5 *1 (-575 *4)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-147))) (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))))
+(-10 -7 (-15 -2693 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -4088 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1185))) (-15 -3710 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1185) (-649 (-412 (-958 |#1|))))) (-15 -2176 ((-3 (-2 (|:| -2679 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)))))
+((-2417 (((-112) $ $) 75)) (-4143 (((-112) $) 48)) (-3485 ((|#1| $) 39)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) 79)) (-2771 (($ $) 139)) (-2626 (($ $) 118)) (-3151 ((|#1| $) 37)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL)) (-2746 (($ $) 141)) (-2601 (($ $) 114)) (-4118 (($ $) 143)) (-2647 (($ $) 122)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) 93)) (-3150 (((-569) $) 95)) (-3086 (((-3 $ "failed") $) 78)) (-1659 (($ |#1| |#1|) 35)) (-3712 (((-112) $) 44)) (-1312 (($) 104)) (-2349 (((-112) $) 55)) (-3742 (($ $ (-569)) NIL)) (-2051 (((-112) $) 45)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2662 (($ $) 106)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3294 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-412 (-569))) 92)) (-3078 ((|#1| $) 36)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) 81) (($ (-649 $)) NIL)) (-2407 (((-3 $ "failed") $ $) 80)) (-4389 (($ $) 108)) (-4128 (($ $) 147)) (-2661 (($ $) 120)) (-2783 (($ $) 149)) (-2635 (($ $) 124)) (-2758 (($ $) 145)) (-2614 (($ $) 116)) (-3422 (((-112) $ |#1|) 42)) (-3796 (((-867) $) 100) (($ (-569)) 83) (($ $) NIL) (($ (-569)) 83)) (-2721 (((-776)) 102 T CONST)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 161)) (-2701 (($ $) 130)) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) 159)) (-2675 (($ $) 126)) (-4183 (($ $) 157)) (-2723 (($ $) 137)) (-1503 (($ $) 155)) (-2734 (($ $) 135)) (-4175 (($ $) 153)) (-2712 (($ $) 132)) (-4151 (($ $) 151)) (-2689 (($ $) 128)) (-1804 (($) 30 T CONST)) (-1815 (($) 10 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 49)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 47)) (-3024 (($ $) 53) (($ $ $) 54)) (-3012 (($ $ $) 52)) (** (($ $ (-927)) 71) (($ $ (-776)) NIL) (($ $ $) 110) (($ $ (-412 (-569))) 163)) (* (($ (-927) $) 66) (($ (-776) $) NIL) (($ (-569) $) 65) (($ $ $) 61)))
+(((-576 |#1|) (-559 |#1|) (-13 (-409) (-1210))) (T -576))
NIL
(-559 |#1|)
-((-4216 (((-3 (-649 (-1179 (-569))) "failed") (-649 (-1179 (-569))) (-1179 (-569))) 27)))
-(((-577) (-10 -7 (-15 -4216 ((-3 (-649 (-1179 (-569))) "failed") (-649 (-1179 (-569))) (-1179 (-569)))))) (T -577))
-((-4216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 (-569)))) (-5 *3 (-1179 (-569))) (-5 *1 (-577)))))
-(-10 -7 (-15 -4216 ((-3 (-649 (-1179 (-569))) "failed") (-649 (-1179 (-569))) (-1179 (-569)))))
-((-2711 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1183)) 19)) (-2984 (((-649 (-617 |#2|)) (-649 |#2|) (-1183)) 23)) (-3966 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|))) 11)) (-1897 ((|#2| |#2| (-1183)) 59 (|has| |#1| (-561)))) (-1977 ((|#2| |#2| (-1183)) 87 (-12 (|has| |#2| (-287)) (|has| |#1| (-457))))) (-2891 (((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1183)) 25)) (-2806 (((-617 |#2|) (-649 (-617 |#2|))) 24)) (-2063 (((-591 |#2|) |#2| (-1183) (-1 (-591 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183))) 115 (-12 (|has| |#2| (-287)) (|has| |#2| (-634)) (|has| |#2| (-1044 (-1183))) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-457)) (|has| |#1| (-892 (-569)))))))
-(((-578 |#1| |#2|) (-10 -7 (-15 -2711 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1183))) (-15 -2806 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -2891 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1183))) (-15 -3966 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -2984 ((-649 (-617 |#2|)) (-649 |#2|) (-1183))) (IF (|has| |#1| (-561)) (-15 -1897 (|#2| |#2| (-1183))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -1977 (|#2| |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1044 (-1183))) (-15 -2063 ((-591 |#2|) |#2| (-1183) (-1 (-591 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1106) (-435 |#1|)) (T -578))
-((-2063 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-591 *3) *3 (-1183))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1183))) (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1044 *4)) (-4 *3 (-435 *7)) (-5 *4 (-1183)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457)) (-4 *7 (-892 (-569))) (-4 *7 (-1106)) (-5 *2 (-591 *3)) (-5 *1 (-578 *7 *3)))) (-1977 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-457)) (-4 *4 (-1106)) (-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-435 *4)))) (-1897 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-4 *4 (-1106)) (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4)))) (-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-1183)) (-4 *6 (-435 *5)) (-4 *5 (-1106)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6)))) (-3966 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1106)) (-5 *1 (-578 *3 *4)))) (-2891 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1183)) (-5 *2 (-617 *6)) (-4 *6 (-435 *5)) (-4 *5 (-1106)) (-5 *1 (-578 *5 *6)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1106)) (-5 *2 (-617 *5)) (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4)))) (-2711 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1183)) (-4 *5 (-435 *4)) (-4 *4 (-1106)) (-5 *1 (-578 *4 *5)))))
-(-10 -7 (-15 -2711 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1183))) (-15 -2806 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -2891 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1183))) (-15 -3966 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -2984 ((-649 (-617 |#2|)) (-649 |#2|) (-1183))) (IF (|has| |#1| (-561)) (-15 -1897 (|#2| |#2| (-1183))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -1977 (|#2| |#2| (-1183))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1044 (-1183))) (-15 -2063 ((-591 |#2|) |#2| (-1183) (-1 (-591 |#2|) |#2| (-1183)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1183)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2335 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|)) 201)) (-1473 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|))) 176)) (-1795 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|))) 173)) (-3785 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 164)) (-2152 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-1687 (((-3 (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|)) 204)) (-4371 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|)) 207)) (-3984 (((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 88)) (-4070 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-1585 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|))) 180)) (-3889 (((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 168)) (-2238 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 191)) (-1347 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|)) 212)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -2152 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2238 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2335 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -4371 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -1347 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -1473 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -1585 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -1687 ((-3 (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -1795 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -3785 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3889 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -3984 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -4070 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-367) (-1249 |#1|)) (T -579))
-((-4070 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-579 *5 *3)))) (-3984 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-3889 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-628 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4407 *4) (|:| |sol?| (-112))) (-569) *4)) (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *1 (-579 *4 *5)))) (-3785 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2530 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1249 *4)))) (-1795 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7))) (-4 *7 (-1249 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *7)))) (-1687 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -2530 (-412 *6)) (|:| |coeff| (-412 *6)))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-1585 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4407 *7) (|:| |sol?| (-112))) (-569) *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-1473 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2530 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-1347 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4407 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2530 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-4371 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2530 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2530 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2335 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2238 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4407 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2530 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(-10 -7 (-15 -2152 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2238 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2335 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -4371 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -1347 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -1473 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -1585 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -1687 ((-3 (-2 (|:| -2530 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -1795 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -3785 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3889 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4407 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -3984 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -4070 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-4165 (((-3 |#2| "failed") |#2| (-1183) (-1183)) 10)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -4165 ((-3 |#2| "failed") |#2| (-1183) (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-1145) (-29 |#1|))) (T -580))
-((-4165 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-580 *4 *2)) (-4 *2 (-13 (-1208) (-965) (-1145) (-29 *4))))))
-(-10 -7 (-15 -4165 ((-3 |#2| "failed") |#2| (-1183) (-1183))))
-((-2525 (((-696 (-1231)) $ (-1231)) 26)) (-2615 (((-696 (-554)) $ (-554)) 25)) (-3719 (((-776) $ (-128)) 27)) (-2725 (((-696 (-129)) $ (-129)) 24)) (-4235 (((-696 (-1231)) $) 12)) (-3776 (((-696 (-1229)) $) 8)) (-4002 (((-696 (-1228)) $) 10)) (-3104 (((-696 (-554)) $) 13)) (-3887 (((-696 (-552)) $) 9)) (-4118 (((-696 (-551)) $) 11)) (-1772 (((-776) $ (-128)) 7)) (-3219 (((-696 (-129)) $) 14)) (-2839 (($ $) 6)))
+((-3466 (((-3 (-649 (-1181 (-569))) "failed") (-649 (-1181 (-569))) (-1181 (-569))) 27)))
+(((-577) (-10 -7 (-15 -3466 ((-3 (-649 (-1181 (-569))) "failed") (-649 (-1181 (-569))) (-1181 (-569)))))) (T -577))
+((-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 (-569)))) (-5 *3 (-1181 (-569))) (-5 *1 (-577)))))
+(-10 -7 (-15 -3466 ((-3 (-649 (-1181 (-569))) "failed") (-649 (-1181 (-569))) (-1181 (-569)))))
+((-3861 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1185)) 19)) (-2651 (((-649 (-617 |#2|)) (-649 |#2|) (-1185)) 23)) (-3969 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|))) 11)) (-3632 ((|#2| |#2| (-1185)) 59 (|has| |#1| (-561)))) (-2008 ((|#2| |#2| (-1185)) 87 (-12 (|has| |#2| (-287)) (|has| |#1| (-457))))) (-3119 (((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1185)) 25)) (-3523 (((-617 |#2|) (-649 (-617 |#2|))) 24)) (-1667 (((-591 |#2|) |#2| (-1185) (-1 (-591 |#2|) |#2| (-1185)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185))) 115 (-12 (|has| |#2| (-287)) (|has| |#2| (-634)) (|has| |#2| (-1046 (-1185))) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-457)) (|has| |#1| (-892 (-569)))))))
+(((-578 |#1| |#2|) (-10 -7 (-15 -3861 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1185))) (-15 -3523 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -3119 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1185))) (-15 -3969 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -2651 ((-649 (-617 |#2|)) (-649 |#2|) (-1185))) (IF (|has| |#1| (-561)) (-15 -3632 (|#2| |#2| (-1185))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -2008 (|#2| |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1667 ((-591 |#2|) |#2| (-1185) (-1 (-591 |#2|) |#2| (-1185)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1108) (-435 |#1|)) (T -578))
+((-1667 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-591 *3) *3 (-1185))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1185))) (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1046 *4)) (-4 *3 (-435 *7)) (-5 *4 (-1185)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457)) (-4 *7 (-892 (-569))) (-4 *7 (-1108)) (-5 *2 (-591 *3)) (-5 *1 (-578 *7 *3)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-457)) (-4 *4 (-1108)) (-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-435 *4)))) (-3632 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-4 *4 (-1108)) (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-1185)) (-4 *6 (-435 *5)) (-4 *5 (-1108)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6)))) (-3969 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1108)) (-5 *1 (-578 *3 *4)))) (-3119 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1185)) (-5 *2 (-617 *6)) (-4 *6 (-435 *5)) (-4 *5 (-1108)) (-5 *1 (-578 *5 *6)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1108)) (-5 *2 (-617 *5)) (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4)))) (-3861 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1185)) (-4 *5 (-435 *4)) (-4 *4 (-1108)) (-5 *1 (-578 *4 *5)))))
+(-10 -7 (-15 -3861 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1185))) (-15 -3523 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -3119 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1185))) (-15 -3969 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -2651 ((-649 (-617 |#2|)) (-649 |#2|) (-1185))) (IF (|has| |#1| (-561)) (-15 -3632 (|#2| |#2| (-1185))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -2008 (|#2| |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1667 ((-591 |#2|) |#2| (-1185) (-1 (-591 |#2|) |#2| (-1185)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1424 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|)) 201)) (-3922 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|))) 176)) (-3929 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|))) 173)) (-1789 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 164)) (-3203 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-2295 (((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|)) 204)) (-2429 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|)) 207)) (-2994 (((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 88)) (-1450 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2499 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|))) 180)) (-3302 (((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 168)) (-2857 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 191)) (-1939 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|)) 212)))
+(((-579 |#1| |#2|) (-10 -7 (-15 -3203 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2857 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -1424 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -2429 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -1939 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -3922 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -2499 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -2295 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -3929 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -1789 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3302 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2994 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1450 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-367) (-1251 |#1|)) (T -579))
+((-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-579 *5 *3)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-3302 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-628 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112))) (-569) *4)) (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *1 (-579 *4 *5)))) (-1789 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1251 *4)))) (-3929 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7))) (-4 *7 (-1251 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *7)))) (-2295 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -2679 (-412 *6)) (|:| |coeff| (-412 *6)))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-2499 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4410 *7) (|:| |sol?| (-112))) (-569) *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-3922 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2679 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-1939 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2429 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-1424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2857 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(-10 -7 (-15 -3203 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2857 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -1424 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -2429 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -1939 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -3922 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -2499 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -2295 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -3929 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -1789 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3302 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2994 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1450 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-4227 (((-3 |#2| "failed") |#2| (-1185) (-1185)) 10)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -4227 ((-3 |#2| "failed") |#2| (-1185) (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-1147) (-29 |#1|))) (T -580))
+((-4227 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-580 *4 *2)) (-4 *2 (-13 (-1210) (-965) (-1147) (-29 *4))))))
+(-10 -7 (-15 -4227 ((-3 |#2| "failed") |#2| (-1185) (-1185))))
+((-2641 (((-696 (-1233)) $ (-1233)) 26)) (-2283 (((-696 (-554)) $ (-554)) 25)) (-2340 (((-776) $ (-128)) 27)) (-3998 (((-696 (-129)) $ (-129)) 24)) (-3694 (((-696 (-1233)) $) 12)) (-1690 (((-696 (-1231)) $) 8)) (-1979 (((-696 (-1230)) $) 10)) (-1389 (((-696 (-554)) $) 13)) (-3281 (((-696 (-552)) $) 9)) (-1933 (((-696 (-551)) $) 11)) (-3732 (((-776) $ (-128)) 7)) (-3171 (((-696 (-129)) $) 14)) (-2543 (($ $) 6)))
(((-581) (-140)) (T -581))
NIL
(-13 (-532) (-865))
(((-174) . T) ((-532) . T) ((-865) . T))
-((-2525 (((-696 (-1231)) $ (-1231)) NIL)) (-2615 (((-696 (-554)) $ (-554)) NIL)) (-3719 (((-776) $ (-128)) NIL)) (-2725 (((-696 (-129)) $ (-129)) NIL)) (-4235 (((-696 (-1231)) $) NIL)) (-3776 (((-696 (-1229)) $) NIL)) (-4002 (((-696 (-1228)) $) NIL)) (-3104 (((-696 (-554)) $) NIL)) (-3887 (((-696 (-552)) $) NIL)) (-4118 (((-696 (-551)) $) NIL)) (-1772 (((-776) $ (-128)) NIL)) (-3219 (((-696 (-129)) $) NIL)) (-2832 (((-112) $) NIL)) (-4253 (($ (-393)) 14) (($ (-1165)) 16)) (-3793 (((-867) $) NIL)) (-2839 (($ $) NIL)))
-(((-582) (-13 (-581) (-618 (-867)) (-10 -8 (-15 -4253 ($ (-393))) (-15 -4253 ($ (-1165))) (-15 -2832 ((-112) $))))) (T -582))
-((-4253 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))) (-4253 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-582)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582)))))
-(-13 (-581) (-618 (-867)) (-10 -8 (-15 -4253 ($ (-393))) (-15 -4253 ($ (-1165))) (-15 -2832 ((-112) $))))
-((-2415 (((-112) $ $) NIL)) (-1867 (($) 7 T CONST)) (-1550 (((-1165) $) NIL)) (-4204 (($) 6 T CONST)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 15)) (-2187 (($) 9 T CONST)) (-3105 (($) 8 T CONST)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 11)))
-(((-583) (-13 (-1106) (-10 -8 (-15 -4204 ($) -3706) (-15 -1867 ($) -3706) (-15 -3105 ($) -3706) (-15 -2187 ($) -3706)))) (T -583))
-((-4204 (*1 *1) (-5 *1 (-583))) (-1867 (*1 *1) (-5 *1 (-583))) (-3105 (*1 *1) (-5 *1 (-583))) (-2187 (*1 *1) (-5 *1 (-583))))
-(-13 (-1106) (-10 -8 (-15 -4204 ($) -3706) (-15 -1867 ($) -3706) (-15 -3105 ($) -3706) (-15 -2187 ($) -3706)))
-((-2415 (((-112) $ $) NIL)) (-2937 (((-696 $) (-496)) 21)) (-1550 (((-1165) $) NIL)) (-3301 (($ (-1165)) 14)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 34)) (-3199 (((-214 4 (-129)) $) 24)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 26)))
-(((-584) (-13 (-1106) (-10 -8 (-15 -3301 ($ (-1165))) (-15 -3199 ((-214 4 (-129)) $)) (-15 -2937 ((-696 $) (-496)))))) (T -584))
-((-3301 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-584)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
-(-13 (-1106) (-10 -8 (-15 -3301 ($ (-1165))) (-15 -3199 ((-214 4 (-129)) $)) (-15 -2937 ((-696 $) (-496)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $ (-569)) 77)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-3354 (($ (-1179 (-569)) (-569)) 83)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) 68)) (-3085 (($ $) 43)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-3110 (((-776) $) 16)) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3283 (((-569)) 37)) (-3184 (((-569) $) 41)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2907 (($ $ (-569)) 24)) (-2405 (((-3 $ "failed") $ $) 73)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) 17)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 74)) (-3380 (((-1163 (-569)) $) 19)) (-4005 (($ $) 26)) (-3793 (((-867) $) 104) (($ (-569)) 63) (($ $) NIL)) (-3302 (((-776)) 15 T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3088 (((-569) $ (-569)) 46)) (-1803 (($) 44 T CONST)) (-1813 (($) 21 T CONST)) (-2919 (((-112) $ $) 54)) (-3021 (($ $) 62) (($ $ $) 48)) (-3009 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 64) (($ $ $) 65)))
+((-2641 (((-696 (-1233)) $ (-1233)) NIL)) (-2283 (((-696 (-554)) $ (-554)) NIL)) (-2340 (((-776) $ (-128)) NIL)) (-3998 (((-696 (-129)) $ (-129)) NIL)) (-3694 (((-696 (-1233)) $) NIL)) (-1690 (((-696 (-1231)) $) NIL)) (-1979 (((-696 (-1230)) $) NIL)) (-1389 (((-696 (-554)) $) NIL)) (-3281 (((-696 (-552)) $) NIL)) (-1933 (((-696 (-551)) $) NIL)) (-3732 (((-776) $ (-128)) NIL)) (-3171 (((-696 (-129)) $) NIL)) (-3771 (((-112) $) NIL)) (-2573 (($ (-393)) 14) (($ (-1167)) 16)) (-3796 (((-867) $) NIL)) (-2543 (($ $) NIL)))
+(((-582) (-13 (-581) (-618 (-867)) (-10 -8 (-15 -2573 ($ (-393))) (-15 -2573 ($ (-1167))) (-15 -3771 ((-112) $))))) (T -582))
+((-2573 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-582)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582)))))
+(-13 (-581) (-618 (-867)) (-10 -8 (-15 -2573 ($ (-393))) (-15 -2573 ($ (-1167))) (-15 -3771 ((-112) $))))
+((-2417 (((-112) $ $) NIL)) (-1871 (($) 7 T CONST)) (-3435 (((-1167) $) NIL)) (-4207 (($) 6 T CONST)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15)) (-3595 (($) 9 T CONST)) (-1399 (($) 8 T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11)))
+(((-583) (-13 (-1108) (-10 -8 (-15 -4207 ($) -3709) (-15 -1871 ($) -3709) (-15 -1399 ($) -3709) (-15 -3595 ($) -3709)))) (T -583))
+((-4207 (*1 *1) (-5 *1 (-583))) (-1871 (*1 *1) (-5 *1 (-583))) (-1399 (*1 *1) (-5 *1 (-583))) (-3595 (*1 *1) (-5 *1 (-583))))
+(-13 (-1108) (-10 -8 (-15 -4207 ($) -3709) (-15 -1871 ($) -3709) (-15 -1399 ($) -3709) (-15 -3595 ($) -3709)))
+((-2417 (((-112) $ $) NIL)) (-2940 (((-696 $) (-496)) 21)) (-3435 (((-1167) $) NIL)) (-2710 (($ (-1167)) 14)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 34)) (-4220 (((-214 4 (-129)) $) 24)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 26)))
+(((-584) (-13 (-1108) (-10 -8 (-15 -2710 ($ (-1167))) (-15 -4220 ((-214 4 (-129)) $)) (-15 -2940 ((-696 $) (-496)))))) (T -584))
+((-2710 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-584)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
+(-13 (-1108) (-10 -8 (-15 -2710 ($ (-1167))) (-15 -4220 ((-214 4 (-129)) $)) (-15 -2940 ((-696 $) (-496)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ (-569)) 77)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1978 (($ (-1181 (-569)) (-569)) 83)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 68)) (-4337 (($ $) 43)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1466 (((-776) $) 16)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 (((-569)) 37)) (-4074 (((-569) $) 41)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3166 (($ $ (-569)) 24)) (-2407 (((-3 $ "failed") $ $) 73)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) 17)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 74)) (-2171 (((-1165 (-569)) $) 19)) (-2007 (($ $) 26)) (-3796 (((-867) $) 104) (($ (-569)) 63) (($ $) NIL)) (-2721 (((-776)) 15 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-569) $ (-569)) 46)) (-1804 (($) 44 T CONST)) (-1815 (($) 21 T CONST)) (-2920 (((-112) $ $) 54)) (-3024 (($ $) 62) (($ $ $) 48)) (-3012 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 64) (($ $ $) 65)))
(((-585 |#1| |#2|) (-874 |#1|) (-569) (-112)) (T -585))
NIL
(-874 |#1|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 30)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-1372 (((-1196 (-927) (-776)) (-569)) 59)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 $ "failed") $) 95)) (-3148 (($ $) 94)) (-3390 (($ (-1273 $)) 93)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) 44)) (-3403 (($) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) 61)) (-1940 (((-112) $) NIL)) (-2501 (($ $) NIL) (($ $ (-776)) NIL)) (-4073 (((-112) $) NIL)) (-3110 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2623 (((-112) $) NIL)) (-1993 (($) 49 (|has| $ (-372)))) (-2968 (((-112) $) NIL (|has| $ (-372)))) (-2707 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3812 (((-3 $ "failed") $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 $) $ (-927)) NIL (|has| $ (-372))) (((-1179 $) $) 104)) (-2855 (((-927) $) 67)) (-4244 (((-1179 $) $) NIL (|has| $ (-372)))) (-4151 (((-3 (-1179 $) "failed") $ $) NIL (|has| $ (-372))) (((-1179 $) $) NIL (|has| $ (-372)))) (-3091 (($ $ (-1179 $)) NIL (|has| $ (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL T CONST)) (-2150 (($ (-927)) 60)) (-1959 (((-112) $) 87)) (-3545 (((-1126) $) NIL)) (-2330 (($) 28 (|has| $ (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 54)) (-3796 (((-423 $) $) NIL)) (-2259 (((-927)) 86) (((-838 (-927))) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-3083 (((-134)) NIL)) (-3514 (($ $ (-776)) NIL) (($ $) NIL)) (-3868 (((-927) $) 85) (((-838 (-927)) $) NIL)) (-4143 (((-1179 $)) 102)) (-2430 (($) 66)) (-3188 (($) 50 (|has| $ (-372)))) (-2960 (((-694 $) (-1273 $)) NIL) (((-1273 $) $) 91)) (-1408 (((-569) $) 40)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) 42) (($ $) NIL) (($ (-412 (-569))) NIL)) (-4030 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3302 (((-776)) 51 T CONST)) (-1441 (((-112) $ $) 107)) (-1903 (((-1273 $) (-927)) 97) (((-1273 $)) 96)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) 31 T CONST)) (-1813 (($) 27 T CONST)) (-2064 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 81) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 30)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) 59)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 $ "failed") $) 95)) (-3150 (($ $) 94)) (-2247 (($ (-1275 $)) 93)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 44)) (-3406 (($) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 61)) (-2807 (((-112) $) NIL)) (-3701 (($ $) NIL) (($ $ (-776)) NIL)) (-1473 (((-112) $) NIL)) (-1466 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2349 (((-112) $) NIL)) (-2155 (($) 49 (|has| $ (-372)))) (-2483 (((-112) $) NIL (|has| $ (-372)))) (-3829 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 $) $ (-927)) NIL (|has| $ (-372))) (((-1181 $) $) 104)) (-2731 (((-927) $) 67)) (-3775 (((-1181 $) $) NIL (|has| $ (-372)))) (-4119 (((-3 (-1181 $) "failed") $ $) NIL (|has| $ (-372))) (((-1181 $) $) NIL (|has| $ (-372)))) (-4384 (($ $ (-1181 $)) NIL (|has| $ (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL T CONST)) (-2150 (($ (-927)) 60)) (-3020 (((-112) $) 87)) (-3547 (((-1128) $) NIL)) (-2332 (($) 28 (|has| $ (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 54)) (-3800 (((-423 $) $) NIL)) (-1898 (((-927)) 86) (((-838 (-927))) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-2377 (((-134)) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-4339 (((-927) $) 85) (((-838 (-927)) $) NIL)) (-4061 (((-1181 $)) 102)) (-4234 (($) 66)) (-4110 (($) 50 (|has| $ (-372)))) (-2415 (((-694 $) (-1275 $)) NIL) (((-1275 $) $) 91)) (-1410 (((-569) $) 40)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) 42) (($ $) NIL) (($ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2721 (((-776)) 51 T CONST)) (-1520 (((-112) $ $) 107)) (-2403 (((-1275 $) (-927)) 97) (((-1275 $)) 96)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 31 T CONST)) (-1815 (($) 27 T CONST)) (-1679 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 81) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
(((-586 |#1|) (-13 (-353) (-332 $) (-619 (-569))) (-927)) (T -586))
NIL
(-13 (-353) (-332 $) (-619 (-569)))
-((-3422 (((-1278) (-1165)) 10)))
-(((-587) (-10 -7 (-15 -3422 ((-1278) (-1165))))) (T -587))
-((-3422 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-587)))))
-(-10 -7 (-15 -3422 ((-1278) (-1165))))
-((-3067 (((-591 |#2|) (-591 |#2|)) 42)) (-1378 (((-649 |#2|) (-591 |#2|)) 44)) (-2390 ((|#2| (-591 |#2|)) 50)))
-(((-588 |#1| |#2|) (-10 -7 (-15 -3067 ((-591 |#2|) (-591 |#2|))) (-15 -1378 ((-649 |#2|) (-591 |#2|))) (-15 -2390 (|#2| (-591 |#2|)))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-29 |#1|) (-1208))) (T -588))
-((-2390 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1208))) (-5 *1 (-588 *4 *2)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1208))) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-649 *5)) (-5 *1 (-588 *4 *5)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1208))) (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-588 *3 *4)))))
-(-10 -7 (-15 -3067 ((-591 |#2|) (-591 |#2|))) (-15 -1378 ((-649 |#2|) (-591 |#2|))) (-15 -2390 (|#2| (-591 |#2|))))
-((-1344 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|)) 30)))
-(((-589 |#1| |#2|) (-10 -7 (-15 -1344 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1344 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1344 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1344 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-367) (-367)) (T -589))
-((-1344 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-589 *5 *6)))) (-1344 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-367)) (-4 *2 (-367)) (-5 *1 (-589 *5 *2)))) (-1344 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2530 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| -2530 *6) (|:| |coeff| *6))) (-5 *1 (-589 *5 *6)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6)))))
-(-10 -7 (-15 -1344 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1344 ((-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2530 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1344 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1344 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-2932 (($ (-511) (-602)) 14)) (-2741 (($ (-511) (-602) $) 16)) (-2846 (($ (-511) (-602)) 15)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ (-1188)) 7) (((-1188) $) 6)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-590) (-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -2932 ($ (-511) (-602))) (-15 -2846 ($ (-511) (-602))) (-15 -2741 ($ (-511) (-602) $))))) (T -590))
-((-2932 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-2846 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-2741 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
-(-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -2932 ($ (-511) (-602))) (-15 -2846 ($ (-511) (-602))) (-15 -2741 ($ (-511) (-602) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 76)) (-3148 ((|#1| $) NIL)) (-2530 ((|#1| $) 30)) (-3636 (((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2630 (($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2438 (((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) $) 31)) (-1550 (((-1165) $) NIL)) (-2391 (($ |#1| |#1|) 38) (($ |#1| (-1183)) 49 (|has| |#1| (-1044 (-1183))))) (-3545 (((-1126) $) NIL)) (-3530 (((-112) $) 35)) (-3514 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1183)) 89 (|has| |#1| (-906 (-1183))))) (-3793 (((-867) $) 112) (($ |#1|) 29)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 18 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) 17) (($ $ $) NIL)) (-3009 (($ $ $) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 16) (($ (-412 (-569)) $) 41) (($ $ (-412 (-569))) NIL)))
-(((-591 |#1|) (-13 (-722 (-412 (-569))) (-1044 |#1|) (-10 -8 (-15 -2630 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2530 (|#1| $)) (-15 -2438 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) $)) (-15 -3636 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3530 ((-112) $)) (-15 -2391 ($ |#1| |#1|)) (-15 -3514 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1183))) (-15 -3514 (|#1| $ (-1183))) |%noBranch|) (IF (|has| |#1| (-1044 (-1183))) (-15 -2391 ($ |#1| (-1183))) |%noBranch|))) (-367)) (T -591))
-((-2630 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *2)) (|:| |logand| (-1179 *2))))) (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-367)) (-5 *1 (-591 *2)))) (-2530 (*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *3)) (|:| |logand| (-1179 *3))))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-2391 (*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3514 (*1 *2 *1 *3) (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-591 *2)) (-5 *3 (-1183)))) (-2391 (*1 *1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *1 (-591 *2)) (-4 *2 (-1044 *3)) (-4 *2 (-367)))))
-(-13 (-722 (-412 (-569))) (-1044 |#1|) (-10 -8 (-15 -2630 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2530 (|#1| $)) (-15 -2438 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 |#1|)) (|:| |logand| (-1179 |#1|)))) $)) (-15 -3636 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3530 ((-112) $)) (-15 -2391 ($ |#1| |#1|)) (-15 -3514 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1183))) (-15 -3514 (|#1| $ (-1183))) |%noBranch|) (IF (|has| |#1| (-1044 (-1183))) (-15 -2391 ($ |#1| (-1183))) |%noBranch|)))
-((-2081 (((-112) |#1|) 16)) (-2158 (((-3 |#1| "failed") |#1|) 14)) (-1928 (((-2 (|:| -4360 |#1|) (|:| -4320 (-776))) |#1|) 39) (((-3 |#1| "failed") |#1| (-776)) 18)) (-3024 (((-112) |#1| (-776)) 19)) (-2235 ((|#1| |#1|) 43)) (-2000 ((|#1| |#1| (-776)) 46)))
-(((-592 |#1|) (-10 -7 (-15 -3024 ((-112) |#1| (-776))) (-15 -1928 ((-3 |#1| "failed") |#1| (-776))) (-15 -1928 ((-2 (|:| -4360 |#1|) (|:| -4320 (-776))) |#1|)) (-15 -2000 (|#1| |#1| (-776))) (-15 -2081 ((-112) |#1|)) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -2235 (|#1| |#1|))) (-550)) (T -592))
-((-2235 (*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2158 (*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2000 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-1928 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4360 *3) (|:| -4320 (-776)))) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-1928 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
-(-10 -7 (-15 -3024 ((-112) |#1| (-776))) (-15 -1928 ((-3 |#1| "failed") |#1| (-776))) (-15 -1928 ((-2 (|:| -4360 |#1|) (|:| -4320 (-776))) |#1|)) (-15 -2000 (|#1| |#1| (-776))) (-15 -2081 ((-112) |#1|)) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -2235 (|#1| |#1|)))
-((-2313 (((-1179 |#1|) (-927)) 44)))
-(((-593 |#1|) (-10 -7 (-15 -2313 ((-1179 |#1|) (-927)))) (-353)) (T -593))
-((-2313 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-593 *4)) (-4 *4 (-353)))))
-(-10 -7 (-15 -2313 ((-1179 |#1|) (-927))))
-((-3067 (((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|)))) 27)) (-2488 (((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1183)) 34 (|has| |#1| (-147)))) (-1378 (((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|)))) 19)) (-4412 (((-319 |#1|) (-412 (-958 |#1|)) (-1183)) 32 (|has| |#1| (-147)))) (-2390 (((-319 |#1|) (-591 (-412 (-958 |#1|)))) 21)))
-(((-594 |#1|) (-10 -7 (-15 -3067 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1378 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -2390 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2488 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -4412 ((-319 |#1|) (-412 (-958 |#1|)) (-1183)))) |%noBranch|)) (-13 (-457) (-1044 (-569)) (-644 (-569)))) (T -594))
-((-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *5)) (-5 *1 (-594 *5)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-594 *4)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-649 (-319 *4))) (-5 *1 (-594 *4)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-591 (-412 (-958 *3)))) (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-594 *3)))))
-(-10 -7 (-15 -3067 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1378 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -2390 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2488 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -4412 ((-319 |#1|) (-412 (-958 |#1|)) (-1183)))) |%noBranch|))
-((-1470 (((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569)))) 78) (((-649 (-694 (-569))) (-649 (-569))) 79) (((-694 (-569)) (-649 (-569)) (-911 (-569))) 72)) (-1370 (((-776) (-649 (-569))) 69)))
-(((-595) (-10 -7 (-15 -1370 ((-776) (-649 (-569)))) (-15 -1470 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -1470 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -1470 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569))))))) (T -595))
-((-1470 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-1470 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-595)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595)))))
-(-10 -7 (-15 -1370 ((-776) (-649 (-569)))) (-15 -1470 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -1470 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -1470 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569))))))
-((-2482 (((-649 |#5|) |#5| (-112)) 100)) (-1556 (((-112) |#5| (-649 |#5|)) 34)))
-(((-596 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2482 ((-649 |#5|) |#5| (-112))) (-15 -1556 ((-112) |#5| (-649 |#5|)))) (-13 (-310) (-147)) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3| |#4|)) (T -596))
-((-1556 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1115 *5 *6 *7 *8)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-596 *5 *6 *7 *8 *3)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-649 *3)) (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1115 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2482 ((-649 |#5|) |#5| (-112))) (-15 -1556 ((-112) |#5| (-649 |#5|))))
-((-2415 (((-112) $ $) NIL)) (-2112 (((-1141) $) 11)) (-2101 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-597) (-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))) (T -597))
-((-2101 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597)))))
-(-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))
-((-2415 (((-112) $ $) NIL (|has| (-144) (-1106)))) (-2038 (($ $) 38)) (-2127 (($ $) NIL)) (-2965 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2504 (((-112) $ $) 68)) (-2484 (((-112) $ $ (-569)) 62)) (-3067 (((-649 $) $ (-144)) 76) (((-649 $) $ (-141)) 77)) (-2031 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-3012 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| (-144) (-855))))) (-3355 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 (((-144) $ (-569) (-144)) 59 (|has| $ (-6 -4445))) (((-144) $ (-1240 (-569)) (-144)) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-1636 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3166 (($ $ (-1240 (-569)) $) 57)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-1696 (($ (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4444))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4444)))) (-3843 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4445)))) (-3773 (((-144) $ (-569)) NIL)) (-2526 (((-112) $ $) 90)) (-4034 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) 65 (|has| (-144) (-1106))) (((-569) $ $ (-569)) 63) (((-569) (-141) $ (-569)) 67)) (-2880 (((-649 (-144)) $) NIL (|has| $ (-6 -4444)))) (-4295 (($ (-776) (-144)) 9)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 32 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| (-144) (-855)))) (-2126 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-3040 (((-649 (-144)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-1535 (((-569) $) 47 (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-144) (-855)))) (-4043 (((-112) $ $ (-144)) 91)) (-4146 (((-776) $ $ (-144)) 88)) (-3831 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2215 (($ $) 41)) (-2301 (($ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1647 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-1550 (((-1165) $) 43 (|has| (-144) (-1106)))) (-4294 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) 27)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) 87 (|has| (-144) (-1106)))) (-3510 (((-144) $) NIL (|has| (-569) (-855)))) (-3123 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4420 (($ $ (-144)) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3851 (((-649 (-144)) $) NIL)) (-3218 (((-112) $) 15)) (-3597 (($) 10)) (-1866 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) 69) (($ $ (-1240 (-569))) 25) (($ $ $) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-1938 (($ $ $ (-569)) 84 (|has| $ (-6 -4445)))) (-3959 (($ $) 20)) (-1408 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3806 (($ (-649 (-144))) NIL)) (-2441 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-649 $)) 85)) (-3793 (($ (-144)) NIL) (((-867) $) 31 (|has| (-144) (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| (-144) (-1106)))) (-3037 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2919 (((-112) $ $) 17 (|has| (-144) (-1106)))) (-2964 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2942 (((-112) $ $) 18 (|has| (-144) (-855)))) (-2426 (((-776) $) 16 (|has| $ (-6 -4444)))))
-(((-598 |#1|) (-1150) (-569)) (T -598))
-NIL
-(-1150)
-((-3269 (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1100 |#4|)) 32)))
-(((-599 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3269 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1100 |#4|))) (-15 -3269 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|)) (T -599))
-((-3269 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-3269 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1100 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798)) (-4 *4 (-855)) (-4 *7 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3269 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1100 |#4|))) (-15 -3269 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 72)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-569)) 58) (($ $ (-569) (-569)) 59)) (-2009 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 65)) (-3198 (($ $) 110)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2998 (((-867) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1032 (-848 (-569))) (-1183) |#1| (-412 (-569))) 243)) (-3317 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 36)) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4091 (((-112) $) NIL)) (-3110 (((-569) $) 63) (((-569) $ (-569)) 64)) (-2623 (((-112) $) NIL)) (-2253 (($ $ (-927)) 84)) (-2598 (($ (-1 |#1| (-569)) $) 81)) (-4343 (((-112) $) 26)) (-3920 (($ |#1| (-569)) 22) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) 76)) (-2389 (($ (-1032 (-848 (-569))) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 13)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-2488 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-3316 (((-3 $ "failed") $ $ (-112)) 109)) (-3103 (($ $ $) 117)) (-3545 (((-1126) $) NIL)) (-3443 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 15)) (-3567 (((-1032 (-848 (-569))) $) 14)) (-2907 (($ $ (-569)) 47)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-1866 ((|#1| $ (-569)) 62) (($ $ $) NIL (|has| (-569) (-1118)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-3868 (((-569) $) NIL)) (-4005 (($ $) 48)) (-3793 (((-867) $) NIL) (($ (-569)) 29) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 28 (|has| |#1| (-173)))) (-4184 ((|#1| $ (-569)) 61)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) 39 T CONST)) (-2167 ((|#1| $) NIL)) (-1690 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-1517 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-1718 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-3784 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-1489 (($ $) 203 (|has| |#1| (-38 (-412 (-569)))))) (-4400 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-4069 (($ $ (-412 (-569))) 179 (|has| |#1| (-38 (-412 (-569)))))) (-4163 (($ $ |#1|) 159 (|has| |#1| (-38 (-412 (-569)))))) (-3888 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-3982 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-1403 (($ $) 205 (|has| |#1| (-38 (-412 (-569)))))) (-1871 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-1590 (($ $) 201 (|has| |#1| (-38 (-412 (-569)))))) (-1395 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-1625 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-3692 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-3792 (($ $) 211 (|has| |#1| (-38 (-412 (-569)))))) (-3303 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-2475 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-3814 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-1719 (($ $) 215 (|has| |#1| (-38 (-412 (-569)))))) (-1910 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-1652 (($ $) 217 (|has| |#1| (-38 (-412 (-569)))))) (-1820 (($ $) 193 (|has| |#1| (-38 (-412 (-569)))))) (-1811 (($ $) 213 (|has| |#1| (-38 (-412 (-569)))))) (-3540 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-2388 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-3768 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3088 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1803 (($) 30 T CONST)) (-1813 (($) 40 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2919 (((-112) $ $) 74)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) 92) (($ $ $) 73)) (-3009 (($ $ $) 89)) (** (($ $ (-927)) NIL) (($ $ (-776)) 112)) (* (($ (-927) $) 99) (($ (-776) $) 97) (($ (-569) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-600 |#1|) (-13 (-1251 |#1| (-569)) (-10 -8 (-15 -2389 ($ (-1032 (-848 (-569))) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -3567 ((-1032 (-848 (-569))) $)) (-15 -3443 ((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -3317 ($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -4343 ((-112) $)) (-15 -2598 ($ (-1 |#1| (-569)) $)) (-15 -3316 ((-3 $ "failed") $ $ (-112))) (-15 -3198 ($ $)) (-15 -3103 ($ $ $)) (-15 -2998 ((-867) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1032 (-848 (-569))) (-1183) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $)) (-15 -4163 ($ $ |#1|)) (-15 -4069 ($ $ (-412 (-569)))) (-15 -3982 ($ $)) (-15 -3888 ($ $)) (-15 -3784 ($ $)) (-15 -3692 ($ $)) (-15 -1517 ($ $)) (-15 -1395 ($ $)) (-15 -4400 ($ $)) (-15 -1871 ($ $)) (-15 -3814 ($ $)) (-15 -3768 ($ $)) (-15 -3303 ($ $)) (-15 -3540 ($ $)) (-15 -1910 ($ $)) (-15 -1820 ($ $)) (-15 -1718 ($ $)) (-15 -1625 ($ $)) (-15 -1690 ($ $)) (-15 -1590 ($ $)) (-15 -1489 ($ $)) (-15 -1403 ($ $)) (-15 -2475 ($ $)) (-15 -2388 ($ $)) (-15 -3792 ($ $)) (-15 -1811 ($ $)) (-15 -1719 ($ $)) (-15 -1652 ($ $))) |%noBranch|))) (-1055)) (T -600))
-((-4343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-2389 (*1 *1 *2 *3) (-12 (-5 *2 (-1032 (-848 (-569)))) (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1055)) (-5 *1 (-600 *4)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1032 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1055)) (-5 *1 (-600 *3)))) (-2598 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-600 *3)))) (-3316 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))) (-3198 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))) (-3103 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))) (-2998 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *6)))) (-5 *4 (-1032 (-848 (-569)))) (-5 *5 (-1183)) (-5 *7 (-412 (-569))) (-4 *6 (-1055)) (-5 *2 (-867)) (-5 *1 (-600 *6)))) (-2488 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4163 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1055)))) (-3982 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3888 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3692 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1517 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1395 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-4400 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3303 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1910 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1820 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1625 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1690 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1590 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1489 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1403 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-2475 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1811 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1719 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))) (-1652 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(-13 (-1251 |#1| (-569)) (-10 -8 (-15 -2389 ($ (-1032 (-848 (-569))) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -3567 ((-1032 (-848 (-569))) $)) (-15 -3443 ((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -3317 ($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -4343 ((-112) $)) (-15 -2598 ($ (-1 |#1| (-569)) $)) (-15 -3316 ((-3 $ "failed") $ $ (-112))) (-15 -3198 ($ $)) (-15 -3103 ($ $ $)) (-15 -2998 ((-867) (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1032 (-848 (-569))) (-1183) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $)) (-15 -4163 ($ $ |#1|)) (-15 -4069 ($ $ (-412 (-569)))) (-15 -3982 ($ $)) (-15 -3888 ($ $)) (-15 -3784 ($ $)) (-15 -3692 ($ $)) (-15 -1517 ($ $)) (-15 -1395 ($ $)) (-15 -4400 ($ $)) (-15 -1871 ($ $)) (-15 -3814 ($ $)) (-15 -3768 ($ $)) (-15 -3303 ($ $)) (-15 -3540 ($ $)) (-15 -1910 ($ $)) (-15 -1820 ($ $)) (-15 -1718 ($ $)) (-15 -1625 ($ $)) (-15 -1690 ($ $)) (-15 -1590 ($ $)) (-15 -1489 ($ $)) (-15 -1403 ($ $)) (-15 -2475 ($ $)) (-15 -2388 ($ $)) (-15 -3792 ($ $)) (-15 -1811 ($ $)) (-15 -1719 ($ $)) (-15 -1652 ($ $))) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 65)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3317 (($ (-1163 |#1|)) 9)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) 48)) (-4091 (((-112) $) 58)) (-3110 (((-776) $) 63) (((-776) $ (-776)) 62)) (-2623 (((-112) $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ $) 50 (|has| |#1| (-561)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-1163 |#1|) $) 29)) (-3302 (((-776)) 57 T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) 10 T CONST)) (-1813 (($) 14 T CONST)) (-2919 (((-112) $ $) 28)) (-3021 (($ $) 36) (($ $ $) 16)) (-3009 (($ $ $) 31)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-569)) 42)))
-(((-601 |#1|) (-13 (-1055) (-111 |#1| |#1|) (-10 -8 (-15 -2836 ((-1163 |#1|) $)) (-15 -3317 ($ (-1163 |#1|))) (-15 -4091 ((-112) $)) (-15 -3110 ((-776) $)) (-15 -3110 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|))) (-1055)) (T -601))
-((-2836 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-601 *3)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (-3110 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1055)))))
-(-13 (-1055) (-111 |#1| |#1|) (-10 -8 (-15 -2836 ((-1163 |#1|) $)) (-15 -3317 ($ (-1163 |#1|))) (-15 -4091 ((-112) $)) (-15 -3110 ((-776) $)) (-15 -3110 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-2740 (($) 8 T CONST)) (-2854 (($) 7 T CONST)) (-2497 (($ $ (-649 $)) 16)) (-1550 (((-1165) $) NIL)) (-2966 (($) 6 T CONST)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ (-1188)) 15) (((-1188) $) 10)) (-2620 (($) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-602) (-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -2966 ($) -3706) (-15 -2854 ($) -3706) (-15 -2740 ($) -3706) (-15 -2620 ($) -3706) (-15 -2497 ($ $ (-649 $)))))) (T -602))
-((-2966 (*1 *1) (-5 *1 (-602))) (-2854 (*1 *1) (-5 *1 (-602))) (-2740 (*1 *1) (-5 *1 (-602))) (-2620 (*1 *1) (-5 *1 (-602))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602)))))
-(-13 (-1106) (-495 (-1188)) (-10 -8 (-15 -2966 ($) -3706) (-15 -2854 ($) -3706) (-15 -2740 ($) -3706) (-15 -2620 ($) -3706) (-15 -2497 ($ $ (-649 $)))))
-((-1344 (((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)) 15)))
-(((-603 |#1| |#2|) (-10 -7 (-15 -1344 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) (-1223) (-1223)) (T -603))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6)))))
-(-10 -7 (-15 -1344 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|))))
-((-1344 (((-1163 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1163 |#2|)) 20) (((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-606 |#2|)) 19) (((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)) 18)))
-(((-604 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1344 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-606 |#2|))) (-15 -1344 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1163 |#2|)))) (-1223) (-1223) (-1223)) (T -604))
-((-1344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1163 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-606 *8)) (-5 *1 (-604 *6 *7 *8)))))
-(-10 -7 (-15 -1344 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1344 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-606 |#2|))) (-15 -1344 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1163 |#2|))))
-((-2284 ((|#3| |#3| (-649 (-617 |#3|)) (-649 (-1183))) 57)) (-2188 (((-170 |#2|) |#3|) 121)) (-1902 ((|#3| (-170 |#2|)) 46)) (-1991 ((|#2| |#3|) 21)) (-2090 ((|#3| |#2|) 35)))
-(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -1902 (|#3| (-170 |#2|))) (-15 -1991 (|#2| |#3|)) (-15 -2090 (|#3| |#2|)) (-15 -2188 ((-170 |#2|) |#3|)) (-15 -2284 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1183))))) (-561) (-13 (-435 |#1|) (-1008) (-1208)) (-13 (-435 (-170 |#1|)) (-1008) (-1208))) (T -605))
-((-2284 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1183))) (-4 *2 (-13 (-435 (-170 *5)) (-1008) (-1208))) (-4 *5 (-561)) (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1008) (-1208))))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))) (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208))) (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1008) (-1208))))) (-1991 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1008) (-1208))) (-5 *1 (-605 *4 *2 *3)) (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))) (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208))) (-5 *1 (-605 *4 *5 *2)))))
-(-10 -7 (-15 -1902 (|#3| (-170 |#2|))) (-15 -1991 (|#2| |#3|)) (-15 -2090 (|#3| |#2|)) (-15 -2188 ((-170 |#2|) |#3|)) (-15 -2284 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1183)))))
-((-1415 (($ (-1 (-112) |#1|) $) 17)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1338 (($ (-1 |#1| |#1|) |#1|) 9)) (-1389 (($ (-1 (-112) |#1|) $) 13)) (-1401 (($ (-1 (-112) |#1|) $) 15)) (-3806 (((-1163 |#1|) $) 18)) (-3793 (((-867) $) NIL)))
-(((-606 |#1|) (-13 (-618 (-867)) (-10 -8 (-15 -1344 ($ (-1 |#1| |#1|) $)) (-15 -1389 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)) (-15 -1415 ($ (-1 (-112) |#1|) $)) (-15 -1338 ($ (-1 |#1| |#1|) |#1|)) (-15 -3806 ((-1163 |#1|) $)))) (-1223)) (T -606))
-((-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-1338 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1223)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -1344 ($ (-1 |#1| |#1|) $)) (-15 -1389 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)) (-15 -1415 ($ (-1 (-112) |#1|) $)) (-15 -1338 ($ (-1 |#1| |#1|) |#1|)) (-15 -3806 ((-1163 |#1|) $))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3464 (($ (-776)) NIL (|has| |#1| (-23)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1365 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1878 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-2433 (((-112) $ (-776)) NIL)) (-3842 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3990 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3885 (($ $ $) NIL (|has| |#1| (-1055)))) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) NIL)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3021 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3009 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-607 |#1| |#2|) (-1271 |#1|) (-1223) (-569)) (T -607))
-NIL
-(-1271 |#1|)
-((-4321 (((-1278) $ |#2| |#2|) 35)) (-1420 ((|#2| $) 23)) (-1535 ((|#2| $) 21)) (-3831 (($ (-1 |#3| |#3|) $) 32)) (-1344 (($ (-1 |#3| |#3|) $) 30)) (-3510 ((|#3| $) 26)) (-4420 (($ $ |#3|) 33)) (-1650 (((-112) |#3| $) 17)) (-3851 (((-649 |#3|) $) 15)) (-1866 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-608 |#1| |#2| |#3|) (-10 -8 (-15 -4321 ((-1278) |#1| |#2| |#2|)) (-15 -4420 (|#1| |#1| |#3|)) (-15 -3510 (|#3| |#1|)) (-15 -1420 (|#2| |#1|)) (-15 -1535 (|#2| |#1|)) (-15 -1650 ((-112) |#3| |#1|)) (-15 -3851 ((-649 |#3|) |#1|)) (-15 -1866 (|#3| |#1| |#2|)) (-15 -1866 (|#3| |#1| |#2| |#3|)) (-15 -3831 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1344 (|#1| (-1 |#3| |#3|) |#1|))) (-609 |#2| |#3|) (-1106) (-1223)) (T -608))
-NIL
-(-10 -8 (-15 -4321 ((-1278) |#1| |#2| |#2|)) (-15 -4420 (|#1| |#1| |#3|)) (-15 -3510 (|#3| |#1|)) (-15 -1420 (|#2| |#1|)) (-15 -1535 (|#2| |#1|)) (-15 -1650 ((-112) |#3| |#1|)) (-15 -3851 ((-649 |#3|) |#1|)) (-15 -1866 (|#3| |#1| |#2|)) (-15 -1866 (|#3| |#1| |#2| |#3|)) (-15 -3831 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1344 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#2| (-1106)))) (-4321 (((-1278) $ |#1| |#1|) 41 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4445)))) (-4188 (($) 7 T CONST)) (-3843 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) 52)) (-2880 (((-649 |#2|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-1420 ((|#1| $) 44 (|has| |#1| (-855)))) (-3040 (((-649 |#2|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444))))) (-1535 ((|#1| $) 45 (|has| |#1| (-855)))) (-3831 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#2| (-1106)))) (-1755 (((-649 |#1|) $) 47)) (-3748 (((-112) |#1| $) 48)) (-3545 (((-1126) $) 21 (|has| |#2| (-1106)))) (-3510 ((|#2| $) 43 (|has| |#1| (-855)))) (-4420 (($ $ |#2|) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3558 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4444))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#2| (-1106)))) (-3037 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#2| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-609 |#1| |#2|) (-140) (-1106) (-1223)) (T -609))
-((-3851 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-649 *4)))) (-3748 (*1 *2 *3 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-112)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-649 *3)))) (-1650 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1106)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-1535 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106)) (-4 *2 (-855)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106)) (-4 *2 (-855)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1106)) (-4 *3 (-855)) (-4 *2 (-1223)))) (-4420 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223)))) (-4321 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223)) (-5 *2 (-1278)))))
-(-13 (-494 |t#2|) (-291 |t#1| |t#2|) (-10 -8 (-15 -3851 ((-649 |t#2|) $)) (-15 -3748 ((-112) |t#1| $)) (-15 -1755 ((-649 |t#1|) $)) (IF (|has| |t#2| (-1106)) (IF (|has| $ (-6 -4444)) (-15 -1650 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -1535 (|t#1| $)) (-15 -1420 (|t#1| $)) (-15 -3510 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4445)) (PROGN (-15 -4420 ($ $ |t#2|)) (-15 -4321 ((-1278) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1106)) ((-618 (-867)) -2774 (|has| |#2| (-1106)) (|has| |#2| (-618 (-867)))) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-1106) |has| |#2| (-1106)) ((-1223) . T))
-((-3793 (((-867) $) 19) (($ (-129)) 13) (((-129) $) 14)))
+((-1343 (((-1280) (-1167)) 10)))
+(((-587) (-10 -7 (-15 -1343 ((-1280) (-1167))))) (T -587))
+((-1343 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-587)))))
+(-10 -7 (-15 -1343 ((-1280) (-1167))))
+((-2241 (((-591 |#2|) (-591 |#2|)) 42)) (-1380 (((-649 |#2|) (-591 |#2|)) 44)) (-3888 ((|#2| (-591 |#2|)) 50)))
+(((-588 |#1| |#2|) (-10 -7 (-15 -2241 ((-591 |#2|) (-591 |#2|))) (-15 -1380 ((-649 |#2|) (-591 |#2|))) (-15 -3888 (|#2| (-591 |#2|)))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-29 |#1|) (-1210))) (T -588))
+((-3888 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1210))) (-5 *1 (-588 *4 *2)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1210))) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-649 *5)) (-5 *1 (-588 *4 *5)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1210))) (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-588 *3 *4)))))
+(-10 -7 (-15 -2241 ((-591 |#2|) (-591 |#2|))) (-15 -1380 ((-649 |#2|) (-591 |#2|))) (-15 -3888 (|#2| (-591 |#2|))))
+((-1346 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|)) 30)))
+(((-589 |#1| |#2|) (-10 -7 (-15 -1346 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1346 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1346 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1346 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-367) (-367)) (T -589))
+((-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-589 *5 *6)))) (-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-367)) (-4 *2 (-367)) (-5 *1 (-589 *5 *2)))) (-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2679 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| -2679 *6) (|:| |coeff| *6))) (-5 *1 (-589 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6)))))
+(-10 -7 (-15 -1346 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1346 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1346 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1346 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3430 (($ (-511) (-602)) 14)) (-4134 (($ (-511) (-602) $) 16)) (-2625 (($ (-511) (-602)) 15)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) 7) (((-1190) $) 6)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-590) (-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -3430 ($ (-511) (-602))) (-15 -2625 ($ (-511) (-602))) (-15 -4134 ($ (-511) (-602) $))))) (T -590))
+((-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-2625 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-4134 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
+(-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -3430 ($ (-511) (-602))) (-15 -2625 ($ (-511) (-602))) (-15 -4134 ($ (-511) (-602) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 76)) (-3150 ((|#1| $) NIL)) (-2679 ((|#1| $) 30)) (-2775 (((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2405 (($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-4292 (((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) $) 31)) (-3435 (((-1167) $) NIL)) (-3898 (($ |#1| |#1|) 38) (($ |#1| (-1185)) 49 (|has| |#1| (-1046 (-1185))))) (-3547 (((-1128) $) NIL)) (-4242 (((-112) $) 35)) (-3517 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1185)) 89 (|has| |#1| (-906 (-1185))))) (-3796 (((-867) $) 112) (($ |#1|) 29)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 18 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) 17) (($ $ $) NIL)) (-3012 (($ $ $) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 16) (($ (-412 (-569)) $) 41) (($ $ (-412 (-569))) NIL)))
+(((-591 |#1|) (-13 (-722 (-412 (-569))) (-1046 |#1|) (-10 -8 (-15 -2405 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2679 (|#1| $)) (-15 -4292 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) $)) (-15 -2775 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4242 ((-112) $)) (-15 -3898 ($ |#1| |#1|)) (-15 -3517 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1185))) (-15 -3517 (|#1| $ (-1185))) |%noBranch|) (IF (|has| |#1| (-1046 (-1185))) (-15 -3898 ($ |#1| (-1185))) |%noBranch|))) (-367)) (T -591))
+((-2405 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *2)) (|:| |logand| (-1181 *2))))) (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-367)) (-5 *1 (-591 *2)))) (-2679 (*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *3)) (|:| |logand| (-1181 *3))))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-3898 (*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3517 (*1 *2 *1 *3) (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-591 *2)) (-5 *3 (-1185)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *1 (-591 *2)) (-4 *2 (-1046 *3)) (-4 *2 (-367)))))
+(-13 (-722 (-412 (-569))) (-1046 |#1|) (-10 -8 (-15 -2405 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2679 (|#1| $)) (-15 -4292 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) $)) (-15 -2775 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4242 ((-112) $)) (-15 -3898 ($ |#1| |#1|)) (-15 -3517 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1185))) (-15 -3517 (|#1| $ (-1185))) |%noBranch|) (IF (|has| |#1| (-1046 (-1185))) (-15 -3898 ($ |#1| (-1185))) |%noBranch|)))
+((-3756 (((-112) |#1|) 16)) (-3270 (((-3 |#1| "failed") |#1|) 14)) (-2677 (((-2 (|:| -4363 |#1|) (|:| -1993 (-776))) |#1|) 39) (((-3 |#1| "failed") |#1| (-776)) 18)) (-1884 (((-112) |#1| (-776)) 19)) (-2826 ((|#1| |#1|) 43)) (-2222 ((|#1| |#1| (-776)) 46)))
+(((-592 |#1|) (-10 -7 (-15 -1884 ((-112) |#1| (-776))) (-15 -2677 ((-3 |#1| "failed") |#1| (-776))) (-15 -2677 ((-2 (|:| -4363 |#1|) (|:| -1993 (-776))) |#1|)) (-15 -2222 (|#1| |#1| (-776))) (-15 -3756 ((-112) |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -2826 (|#1| |#1|))) (-550)) (T -592))
+((-2826 (*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-3270 (*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-3756 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2222 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2677 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4363 *3) (|:| -1993 (-776)))) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2677 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
+(-10 -7 (-15 -1884 ((-112) |#1| (-776))) (-15 -2677 ((-3 |#1| "failed") |#1| (-776))) (-15 -2677 ((-2 (|:| -4363 |#1|) (|:| -1993 (-776))) |#1|)) (-15 -2222 (|#1| |#1| (-776))) (-15 -3756 ((-112) |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -2826 (|#1| |#1|)))
+((-2372 (((-1181 |#1|) (-927)) 44)))
+(((-593 |#1|) (-10 -7 (-15 -2372 ((-1181 |#1|) (-927)))) (-353)) (T -593))
+((-2372 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-593 *4)) (-4 *4 (-353)))))
+(-10 -7 (-15 -2372 ((-1181 |#1|) (-927))))
+((-2241 (((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|)))) 27)) (-3579 (((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1185)) 34 (|has| |#1| (-147)))) (-1380 (((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|)))) 19)) (-1605 (((-319 |#1|) (-412 (-958 |#1|)) (-1185)) 32 (|has| |#1| (-147)))) (-3888 (((-319 |#1|) (-591 (-412 (-958 |#1|)))) 21)))
+(((-594 |#1|) (-10 -7 (-15 -2241 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1380 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -3888 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3579 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1605 ((-319 |#1|) (-412 (-958 |#1|)) (-1185)))) |%noBranch|)) (-13 (-457) (-1046 (-569)) (-644 (-569)))) (T -594))
+((-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *5)) (-5 *1 (-594 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-594 *4)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-649 (-319 *4))) (-5 *1 (-594 *4)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-591 (-412 (-958 *3)))) (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-594 *3)))))
+(-10 -7 (-15 -2241 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1380 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -3888 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3579 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1605 ((-319 |#1|) (-412 (-958 |#1|)) (-1185)))) |%noBranch|))
+((-3891 (((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569)))) 78) (((-649 (-694 (-569))) (-649 (-569))) 79) (((-694 (-569)) (-649 (-569)) (-911 (-569))) 72)) (-3306 (((-776) (-649 (-569))) 69)))
+(((-595) (-10 -7 (-15 -3306 ((-776) (-649 (-569)))) (-15 -3891 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569))))))) (T -595))
+((-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-595)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595)))))
+(-10 -7 (-15 -3306 ((-776) (-649 (-569)))) (-15 -3891 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569))))))
+((-3516 (((-649 |#5|) |#5| (-112)) 100)) (-3507 (((-112) |#5| (-649 |#5|)) 34)))
+(((-596 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3516 ((-649 |#5|) |#5| (-112))) (-15 -3507 ((-112) |#5| (-649 |#5|)))) (-13 (-310) (-147)) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1117 |#1| |#2| |#3| |#4|)) (T -596))
+((-3507 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1117 *5 *6 *7 *8)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-596 *5 *6 *7 *8 *3)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-649 *3)) (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1117 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3516 ((-649 |#5|) |#5| (-112))) (-15 -3507 ((-112) |#5| (-649 |#5|))))
+((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-597) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -597))
+((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597)))))
+(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))
+((-2417 (((-112) $ $) NIL (|has| (-144) (-1108)))) (-1402 (($ $) 38)) (-4209 (($ $) NIL)) (-2455 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) 68)) (-2486 (((-112) $ $ (-569)) 62)) (-2241 (((-649 $) $ (-144)) 76) (((-649 $) $ (-141)) 77)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-144) (-855))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-144) $ (-569) (-144)) 59 (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-1637 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3903 (($ $ (-1242 (-569)) $) 57)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-1698 (($ (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) NIL)) (-2528 (((-112) $ $) 90)) (-4036 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) 65 (|has| (-144) (-1108))) (((-569) $ $ (-569)) 63) (((-569) (-141) $ (-569)) 67)) (-2882 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) 9)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 32 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3256 (((-569) $) 47 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) 91)) (-4148 (((-776) $ $ (-144)) 88)) (-3834 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2588 (($ $) 41)) (-2268 (($ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-1648 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3435 (((-1167) $) 43 (|has| (-144) (-1108)))) (-4298 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) 27)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) 87 (|has| (-144) (-1108)))) (-3513 (((-144) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1682 (($ $ (-144)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) NIL)) (-3162 (((-112) $) 15)) (-3635 (($) 10)) (-1869 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) 69) (($ $ (-1242 (-569))) 25) (($ $ $) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-2785 (($ $ $ (-569)) 84 (|has| $ (-6 -4448)))) (-3962 (($ $) 20)) (-1410 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) NIL)) (-2443 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-649 $)) 85)) (-3796 (($ (-144)) NIL) (((-867) $) 31 (|has| (-144) (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| (-144) (-1108)))) (-1980 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2920 (((-112) $ $) 17 (|has| (-144) (-1108)))) (-2966 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2944 (((-112) $ $) 18 (|has| (-144) (-855)))) (-2428 (((-776) $) 16 (|has| $ (-6 -4447)))))
+(((-598 |#1|) (-1152) (-569)) (T -598))
+NIL
+(-1152)
+((-3272 (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1102 |#4|)) 32)))
+(((-599 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1102 |#4|))) (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|)) (T -599))
+((-3272 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1102 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798)) (-4 *4 (-855)) (-4 *7 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1102 |#4|))) (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 72)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 58) (($ $ (-569) (-569)) 59)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 65)) (-4208 (($ $) 110)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2818 (((-867) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1034 (-848 (-569))) (-1185) |#1| (-412 (-569))) 243)) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 36)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-1677 (((-112) $) NIL)) (-1466 (((-569) $) 63) (((-569) $ (-569)) 64)) (-2349 (((-112) $) NIL)) (-3003 (($ $ (-927)) 84)) (-2148 (($ (-1 |#1| (-569)) $) 81)) (-2198 (((-112) $) 26)) (-3923 (($ |#1| (-569)) 22) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 76)) (-3876 (($ (-1034 (-848 (-569))) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 13)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-2847 (((-3 $ "failed") $ $ (-112)) 109)) (-1376 (($ $ $) 117)) (-3547 (((-1128) $) NIL)) (-1570 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 15)) (-3359 (((-1034 (-848 (-569))) $) 14)) (-3166 (($ $ (-569)) 47)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-1869 ((|#1| $ (-569)) 62) (($ $ $) NIL (|has| (-569) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-4339 (((-569) $) NIL)) (-2007 (($ $) 48)) (-3796 (((-867) $) NIL) (($ (-569)) 29) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 28 (|has| |#1| (-173)))) (-4383 ((|#1| $ (-569)) 61)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 39 T CONST)) (-2170 ((|#1| $) NIL)) (-2323 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-3060 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-1355 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-1777 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-4062 (($ $) 203 (|has| |#1| (-38 (-412 (-569)))))) (-1515 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-1436 (($ $ (-412 (-569))) 179 (|has| |#1| (-38 (-412 (-569)))))) (-4205 (($ $ |#1|) 159 (|has| |#1| (-38 (-412 (-569)))))) (-3295 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2971 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-1874 (($ $) 205 (|has| |#1| (-38 (-412 (-569)))))) (-3342 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-2540 (($ $) 201 (|has| |#1| (-38 (-412 (-569)))))) (-4264 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-2910 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2099 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-1851 (($ $) 211 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-3433 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-3905 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-1371 (($ $) 215 (|has| |#1| (-38 (-412 (-569)))))) (-2474 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-1975 (($ $) 217 (|has| |#1| (-38 (-412 (-569)))))) (-4137 (($ $) 193 (|has| |#1| (-38 (-412 (-569)))))) (-4067 (($ $) 213 (|has| |#1| (-38 (-412 (-569)))))) (-4334 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-3864 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-1624 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3091 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1804 (($) 30 T CONST)) (-1815 (($) 40 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2920 (((-112) $ $) 74)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) 92) (($ $ $) 73)) (-3012 (($ $ $) 89)) (** (($ $ (-927)) NIL) (($ $ (-776)) 112)) (* (($ (-927) $) 99) (($ (-776) $) 97) (($ (-569) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-600 |#1|) (-13 (-1253 |#1| (-569)) (-10 -8 (-15 -3876 ($ (-1034 (-848 (-569))) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -3359 ((-1034 (-848 (-569))) $)) (-15 -1570 ((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -3323 ($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -2198 ((-112) $)) (-15 -2148 ($ (-1 |#1| (-569)) $)) (-15 -2847 ((-3 $ "failed") $ $ (-112))) (-15 -4208 ($ $)) (-15 -1376 ($ $ $)) (-15 -2818 ((-867) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1034 (-848 (-569))) (-1185) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (-15 -4205 ($ $ |#1|)) (-15 -1436 ($ $ (-412 (-569)))) (-15 -2971 ($ $)) (-15 -3295 ($ $)) (-15 -1777 ($ $)) (-15 -2099 ($ $)) (-15 -3060 ($ $)) (-15 -4264 ($ $)) (-15 -1515 ($ $)) (-15 -3342 ($ $)) (-15 -3905 ($ $)) (-15 -1624 ($ $)) (-15 -2732 ($ $)) (-15 -4334 ($ $)) (-15 -2474 ($ $)) (-15 -4137 ($ $)) (-15 -1355 ($ $)) (-15 -2910 ($ $)) (-15 -2323 ($ $)) (-15 -2540 ($ $)) (-15 -4062 ($ $)) (-15 -1874 ($ $)) (-15 -3433 ($ $)) (-15 -3864 ($ $)) (-15 -1851 ($ $)) (-15 -4067 ($ $)) (-15 -1371 ($ $)) (-15 -1975 ($ $))) |%noBranch|))) (-1057)) (T -600))
+((-2198 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-3876 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-848 (-569)))) (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1057)) (-5 *1 (-600 *4)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1034 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1057)) (-5 *1 (-600 *3)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-600 *3)))) (-2847 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-4208 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057)))) (-1376 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057)))) (-2818 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *6)))) (-5 *4 (-1034 (-848 (-569)))) (-5 *5 (-1185)) (-5 *7 (-412 (-569))) (-4 *6 (-1057)) (-5 *2 (-867)) (-5 *1 (-600 *6)))) (-3579 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1057)))) (-2971 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1777 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2099 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3060 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4264 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1515 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3342 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2732 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4334 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2474 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1355 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2910 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2540 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4062 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3864 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1851 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4067 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1371 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(-13 (-1253 |#1| (-569)) (-10 -8 (-15 -3876 ($ (-1034 (-848 (-569))) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -3359 ((-1034 (-848 (-569))) $)) (-15 -1570 ((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -3323 ($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -2198 ((-112) $)) (-15 -2148 ($ (-1 |#1| (-569)) $)) (-15 -2847 ((-3 $ "failed") $ $ (-112))) (-15 -4208 ($ $)) (-15 -1376 ($ $ $)) (-15 -2818 ((-867) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1034 (-848 (-569))) (-1185) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (-15 -4205 ($ $ |#1|)) (-15 -1436 ($ $ (-412 (-569)))) (-15 -2971 ($ $)) (-15 -3295 ($ $)) (-15 -1777 ($ $)) (-15 -2099 ($ $)) (-15 -3060 ($ $)) (-15 -4264 ($ $)) (-15 -1515 ($ $)) (-15 -3342 ($ $)) (-15 -3905 ($ $)) (-15 -1624 ($ $)) (-15 -2732 ($ $)) (-15 -4334 ($ $)) (-15 -2474 ($ $)) (-15 -4137 ($ $)) (-15 -1355 ($ $)) (-15 -2910 ($ $)) (-15 -2323 ($ $)) (-15 -2540 ($ $)) (-15 -4062 ($ $)) (-15 -1874 ($ $)) (-15 -3433 ($ $)) (-15 -3864 ($ $)) (-15 -1851 ($ $)) (-15 -4067 ($ $)) (-15 -1371 ($ $)) (-15 -1975 ($ $))) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 65)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3323 (($ (-1165 |#1|)) 9)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) 48)) (-1677 (((-112) $) 58)) (-1466 (((-776) $) 63) (((-776) $ (-776)) 62)) (-2349 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ $) 50 (|has| |#1| (-561)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-1165 |#1|) $) 29)) (-2721 (((-776)) 57 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 10 T CONST)) (-1815 (($) 14 T CONST)) (-2920 (((-112) $ $) 28)) (-3024 (($ $) 36) (($ $ $) 16)) (-3012 (($ $ $) 31)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-569)) 42)))
+(((-601 |#1|) (-13 (-1057) (-111 |#1| |#1|) (-10 -8 (-15 -2512 ((-1165 |#1|) $)) (-15 -3323 ($ (-1165 |#1|))) (-15 -1677 ((-112) $)) (-15 -1466 ((-776) $)) (-15 -1466 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|))) (-1057)) (T -601))
+((-2512 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-601 *3)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (-1466 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))))
+(-13 (-1057) (-111 |#1| |#1|) (-10 -8 (-15 -2512 ((-1165 |#1|) $)) (-15 -3323 ($ (-1165 |#1|))) (-15 -1677 ((-112) $)) (-15 -1466 ((-776) $)) (-15 -1466 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-4123 (($) 8 T CONST)) (-2720 (($) 7 T CONST)) (-3659 (($ $ (-649 $)) 16)) (-3435 (((-1167) $) NIL)) (-2465 (($) 6 T CONST)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) 15) (((-1190) $) 10)) (-2330 (($) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-602) (-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -2465 ($) -3709) (-15 -2720 ($) -3709) (-15 -4123 ($) -3709) (-15 -2330 ($) -3709) (-15 -3659 ($ $ (-649 $)))))) (T -602))
+((-2465 (*1 *1) (-5 *1 (-602))) (-2720 (*1 *1) (-5 *1 (-602))) (-4123 (*1 *1) (-5 *1 (-602))) (-2330 (*1 *1) (-5 *1 (-602))) (-3659 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602)))))
+(-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -2465 ($) -3709) (-15 -2720 ($) -3709) (-15 -4123 ($) -3709) (-15 -2330 ($) -3709) (-15 -3659 ($ $ (-649 $)))))
+((-1346 (((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)) 15)))
+(((-603 |#1| |#2|) (-10 -7 (-15 -1346 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) (-1225) (-1225)) (T -603))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6)))))
+(-10 -7 (-15 -1346 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|))))
+((-1346 (((-1165 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1165 |#2|)) 20) (((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-606 |#2|)) 19) (((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)) 18)))
+(((-604 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1165 |#2|)))) (-1225) (-1225) (-1225)) (T -604))
+((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1165 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-606 *8)) (-5 *1 (-604 *6 *7 *8)))))
+(-10 -7 (-15 -1346 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1165 |#2|))))
+((-2104 ((|#3| |#3| (-649 (-617 |#3|)) (-649 (-1185))) 57)) (-3608 (((-170 |#2|) |#3|) 121)) (-3690 ((|#3| (-170 |#2|)) 46)) (-2135 ((|#2| |#3|) 21)) (-3851 ((|#3| |#2|) 35)))
+(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -3690 (|#3| (-170 |#2|))) (-15 -2135 (|#2| |#3|)) (-15 -3851 (|#3| |#2|)) (-15 -3608 ((-170 |#2|) |#3|)) (-15 -2104 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1185))))) (-561) (-13 (-435 |#1|) (-1010) (-1210)) (-13 (-435 (-170 |#1|)) (-1010) (-1210))) (T -605))
+((-2104 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1185))) (-4 *2 (-13 (-435 (-170 *5)) (-1010) (-1210))) (-4 *5 (-561)) (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1010) (-1210))))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3)) (-4 *5 (-13 (-435 *4) (-1010) (-1210))) (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210))))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210))) (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1010) (-1210))))) (-2135 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))) (-5 *1 (-605 *4 *2 *3)) (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210))))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210))) (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210))) (-5 *1 (-605 *4 *5 *2)))))
+(-10 -7 (-15 -3690 (|#3| (-170 |#2|))) (-15 -2135 (|#2| |#3|)) (-15 -3851 (|#3| |#2|)) (-15 -3608 ((-170 |#2|) |#3|)) (-15 -2104 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1185)))))
+((-1417 (($ (-1 (-112) |#1|) $) 17)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1340 (($ (-1 |#1| |#1|) |#1|) 9)) (-1392 (($ (-1 (-112) |#1|) $) 13)) (-1401 (($ (-1 (-112) |#1|) $) 15)) (-3809 (((-1165 |#1|) $) 18)) (-3796 (((-867) $) NIL)))
+(((-606 |#1|) (-13 (-618 (-867)) (-10 -8 (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)) (-15 -1417 ($ (-1 (-112) |#1|) $)) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3809 ((-1165 |#1|) $)))) (-1225)) (T -606))
+((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1225)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)) (-15 -1417 ($ (-1 (-112) |#1|) $)) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3809 ((-1165 |#1|) $))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776)) NIL (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) NIL (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3420 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-4254 (((-112) $ (-776)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3040 ((|#1| $ $) NIL (|has| |#1| (-1057)))) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3260 (($ $ $) NIL (|has| |#1| (-1057)))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-607 |#1| |#2|) (-1273 |#1|) (-1225) (-569)) (T -607))
+NIL
+(-1273 |#1|)
+((-2002 (((-1280) $ |#2| |#2|) 35)) (-4426 ((|#2| $) 23)) (-3256 ((|#2| $) 21)) (-3834 (($ (-1 |#3| |#3|) $) 32)) (-1346 (($ (-1 |#3| |#3|) $) 30)) (-3513 ((|#3| $) 26)) (-1682 (($ $ |#3|) 33)) (-1957 (((-112) |#3| $) 17)) (-4199 (((-649 |#3|) $) 15)) (-1869 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-608 |#1| |#2| |#3|) (-10 -8 (-15 -2002 ((-1280) |#1| |#2| |#2|)) (-15 -1682 (|#1| |#1| |#3|)) (-15 -3513 (|#3| |#1|)) (-15 -4426 (|#2| |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -1957 ((-112) |#3| |#1|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|))) (-609 |#2| |#3|) (-1108) (-1225)) (T -608))
+NIL
+(-10 -8 (-15 -2002 ((-1280) |#1| |#2| |#2|)) (-15 -1682 (|#1| |#1| |#3|)) (-15 -3513 (|#3| |#1|)) (-15 -4426 (|#2| |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -1957 ((-112) |#3| |#1|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#2| (-1108)))) (-2002 (((-1280) $ |#1| |#1|) 41 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-3846 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 52)) (-2882 (((-649 |#2|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-4426 ((|#1| $) 44 (|has| |#1| (-855)))) (-2009 (((-649 |#2|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3256 ((|#1| $) 45 (|has| |#1| (-855)))) (-3834 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#2| (-1108)))) (-1696 (((-649 |#1|) $) 47)) (-1414 (((-112) |#1| $) 48)) (-3547 (((-1128) $) 21 (|has| |#2| (-1108)))) (-3513 ((|#2| $) 43 (|has| |#1| (-855)))) (-1682 (($ $ |#2|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3560 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4447))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#2| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-609 |#1| |#2|) (-140) (-1108) (-1225)) (T -609))
+((-4199 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-649 *4)))) (-1414 (*1 *2 *3 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-649 *3)))) (-1957 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1108)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108)) (-4 *2 (-855)))) (-4426 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108)) (-4 *2 (-855)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1108)) (-4 *3 (-855)) (-4 *2 (-1225)))) (-1682 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-2002 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-1280)))))
+(-13 (-494 |t#2|) (-291 |t#1| |t#2|) (-10 -8 (-15 -4199 ((-649 |t#2|) $)) (-15 -1414 ((-112) |t#1| $)) (-15 -1696 ((-649 |t#1|) $)) (IF (|has| |t#2| (-1108)) (IF (|has| $ (-6 -4447)) (-15 -1957 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -3256 (|t#1| $)) (-15 -4426 (|t#1| $)) (-15 -3513 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4448)) (PROGN (-15 -1682 ($ $ |t#2|)) (-15 -2002 ((-1280) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1108)) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-618 (-867)))) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-1108) |has| |#2| (-1108)) ((-1225) . T))
+((-3796 (((-867) $) 19) (($ (-129)) 13) (((-129) $) 14)))
(((-610) (-13 (-618 (-867)) (-495 (-129)))) (T -610))
NIL
(-13 (-618 (-867)) (-495 (-129)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ (-1188)) NIL) (((-1188) $) NIL) (((-1222) $) 14) (($ (-649 (-1222))) 13)) (-1930 (((-649 (-1222)) $) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-611) (-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -3793 ($ (-649 (-1222)))) (-15 -1930 ((-649 (-1222)) $))))) (T -611))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611)))))
-(-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -3793 ($ (-649 (-1222)))) (-15 -1930 ((-649 (-1222)) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1934 (((-3 $ "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2870 (((-1273 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1273 (-694 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2897 (((-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-4188 (($) NIL T CONST)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1856 (((-3 $ "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-4207 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2667 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4023 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3413 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2788 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-3727 (($ $ (-927)) NIL)) (-2449 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2024 (((-1179 |#1|) $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3161 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3519 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4051 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3390 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1273 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2888 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3975 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-1816 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2760 (($ $ (-927)) NIL)) (-1325 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2317 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1575 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1949 (((-3 $ "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-4298 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2789 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4109 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3508 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2030 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-3627 (($ $ (-927)) NIL)) (-2551 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2123 (((-1179 |#1|) $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3266 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3635 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4175 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1550 (((-1165) $) NIL)) (-4342 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1452 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1699 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3545 (((-1126) $) NIL)) (-3930 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1866 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-2960 (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $) (-1273 $)) NIL (|has| |#2| (-371 |#1|))) (((-1273 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-1408 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-3146 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2292 (($ $ $) NIL)) (-3399 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3793 (((-867) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL (|has| |#2| (-422 |#1|)))) (-2220 (((-649 (-1273 |#1|))) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2358 (($ $ $ $) NIL)) (-3158 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3448 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2205 (($ $ $) NIL)) (-3264 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4284 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3821 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1803 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-612 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3793 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -612))
-((-3793 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3)))))
-(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3793 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-2523 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) 39)) (-4286 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL) (($) NIL)) (-4321 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-1165) |#1|) 49)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#1| "failed") (-1165) $) 52)) (-4188 (($) NIL T CONST)) (-2914 (($ $ (-1165)) 25)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106))))) (-3463 (((-3 |#1| "failed") (-1165) $) 53) (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (($ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (|has| $ (-6 -4444)))) (-1696 (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (($ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106))))) (-3596 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106))))) (-2625 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) 38)) (-3843 ((|#1| $ (-1165) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-1165)) NIL)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444))) (((-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-2131 (($ $) 54)) (-1717 (($ (-393)) 23) (($ (-393) (-1165)) 22)) (-3570 (((-393) $) 40)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444))) (((-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (((-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106))))) (-1535 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-2796 (((-649 (-1165)) $) 45)) (-3937 (((-112) (-1165) $) NIL)) (-2733 (((-1165) $) 41)) (-1640 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL)) (-1755 (((-649 (-1165)) $) NIL)) (-3748 (((-112) (-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 ((|#1| $) NIL (|has| (-1165) (-855)))) (-3123 (((-3 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) "failed") (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ $ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ $ (-649 (-297 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 43)) (-1866 ((|#1| $ (-1165) |#1|) NIL) ((|#1| $ (-1165)) 48)) (-1906 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL) (($) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (((-776) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (((-776) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL)) (-3793 (((-867) $) 21)) (-2839 (($ $) 26)) (-1441 (((-112) $ $) NIL)) (-4209 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20)) (-2426 (((-776) $) 47 (|has| $ (-6 -4444)))))
-(((-613 |#1|) (-13 (-368 (-393) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) (-1199 (-1165) |#1|) (-10 -8 (-6 -4444) (-15 -2131 ($ $)))) (-1106)) (T -613))
-((-2131 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1106)))))
-(-13 (-368 (-393) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) (-1199 (-1165) |#1|) (-10 -8 (-6 -4444) (-15 -2131 ($ $))))
-((-1655 (((-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) $) 16)) (-2796 (((-649 |#2|) $) 20)) (-3937 (((-112) |#2| $) 12)))
-(((-614 |#1| |#2| |#3|) (-10 -8 (-15 -2796 ((-649 |#2|) |#1|)) (-15 -3937 ((-112) |#2| |#1|)) (-15 -1655 ((-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|))) (-615 |#2| |#3|) (-1106) (-1106)) (T -614))
-NIL
-(-10 -8 (-15 -2796 ((-649 |#2|) |#1|)) (-15 -3937 ((-112) |#2| |#1|)) (-15 -1655 ((-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 56 (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) 62)) (-4188 (($) 7 T CONST)) (-3547 (($ $) 59 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 47 (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) 63)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 55 (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 57 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 54 (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 53 (|has| $ (-6 -4444)))) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-2796 (((-649 |#1|) $) 64)) (-3937 (((-112) |#1| $) 65)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 40)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 41)) (-3545 (((-1126) $) 21 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 52)) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 42)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) 27 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 26 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 25 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 24 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1906 (($) 50) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 49)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 32 (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 51)) (-3793 (((-867) $) 18 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 43)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-615 |#1| |#2|) (-140) (-1106) (-1106)) (T -615))
-((-3937 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-112)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-5 *2 (-649 *3)))) (-3463 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-2356 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
-(-13 (-230 (-2 (|:| -2003 |t#1|) (|:| -2214 |t#2|))) (-10 -8 (-15 -3937 ((-112) |t#1| $)) (-15 -2796 ((-649 |t#1|) $)) (-15 -3463 ((-3 |t#2| "failed") |t#1| $)) (-15 -2356 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((-102) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) ((-618 (-867)) -2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-312 #0#) -12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-494 #0#) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-1106) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) ((-1223) . T))
-((-4210 (((-617 |#2|) |#1|) 17)) (-3039 (((-3 |#1| "failed") (-617 |#2|)) 21)))
-(((-616 |#1| |#2|) (-10 -7 (-15 -4210 ((-617 |#2|) |#1|)) (-15 -3039 ((-3 |#1| "failed") (-617 |#2|)))) (-1106) (-1106)) (T -616))
-((-3039 (*1 *2 *3) (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1106)) (-4 *2 (-1106)) (-5 *1 (-616 *2 *4)))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))))
-(-10 -7 (-15 -4210 ((-617 |#2|) |#1|)) (-15 -3039 ((-3 |#1| "failed") (-617 |#2|))))
-((-2415 (((-112) $ $) NIL)) (-4024 (((-3 (-1183) "failed") $) 48)) (-1818 (((-1278) $ (-776)) 24)) (-4034 (((-776) $) 23)) (-3743 (((-114) $) 12)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-1352 (($ (-114) (-649 |#1|) (-776)) 34) (($ (-1183)) 35)) (-2374 (((-112) $ (-114)) 18) (((-112) $ (-1183)) 16)) (-1425 (((-776) $) 20)) (-3545 (((-1126) $) NIL)) (-1408 (((-898 (-569)) $) 96 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 103 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 89 (|has| |#1| (-619 (-541))))) (-3793 (((-867) $) 73)) (-1441 (((-112) $ $) NIL)) (-4112 (((-649 |#1|) $) 22)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 52)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 54)))
-(((-617 |#1|) (-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3743 ((-114) $)) (-15 -4112 ((-649 |#1|) $)) (-15 -1425 ((-776) $)) (-15 -1352 ($ (-114) (-649 |#1|) (-776))) (-15 -1352 ($ (-1183))) (-15 -4024 ((-3 (-1183) "failed") $)) (-15 -2374 ((-112) $ (-114))) (-15 -2374 ((-112) $ (-1183))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-1106)) (T -617))
-((-3743 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-1352 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1106)) (-5 *1 (-617 *5)))) (-1352 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-4024 (*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))) (-2374 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1106)))) (-2374 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1106)))))
-(-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3743 ((-114) $)) (-15 -4112 ((-649 |#1|) $)) (-15 -1425 ((-776) $)) (-15 -1352 ($ (-114) (-649 |#1|) (-776))) (-15 -1352 ($ (-1183))) (-15 -4024 ((-3 (-1183) "failed") $)) (-15 -2374 ((-112) $ (-114))) (-15 -2374 ((-112) $ (-1183))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
-((-3793 ((|#1| $) 6)))
-(((-618 |#1|) (-140) (-1223)) (T -618))
-((-3793 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1223)))))
-(-13 (-10 -8 (-15 -3793 (|t#1| $))))
-((-1408 ((|#1| $) 6)))
-(((-619 |#1|) (-140) (-1223)) (T -619))
-((-1408 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1223)))))
-(-13 (-10 -8 (-15 -1408 (|t#1| $))))
-((-3140 (((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)) 15) (((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 16)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -3140 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -3140 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)))) (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -620))
-((-3140 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-1179 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))) (-3140 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-1179 (-412 *5))) (-5 *1 (-620 *4 *5)) (-5 *3 (-412 *5)))))
-(-10 -7 (-15 -3140 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -3140 ((-3 (-1179 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|))))
-((-3793 (($ |#1|) 6)))
-(((-621 |#1|) (-140) (-1223)) (T -621))
-((-3793 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1223)))))
-(-13 (-10 -8 (-15 -3793 ($ |t#1|))))
-((-2415 (((-112) $ $) NIL)) (-1626 (($) 14 T CONST)) (-3015 (($) 15 T CONST)) (-1769 (($ $ $) 29)) (-1745 (($ $) 27)) (-1550 (((-1165) $) NIL)) (-2494 (($ $ $) 30)) (-3545 (((-1126) $) NIL)) (-1876 (($) 11 T CONST)) (-3689 (($ $ $) 31)) (-3793 (((-867) $) 35)) (-1792 (((-112) $ (|[\|\|]| -1876)) 24) (((-112) $ (|[\|\|]| -1626)) 26) (((-112) $ (|[\|\|]| -3015)) 21)) (-1441 (((-112) $ $) NIL)) (-1756 (($ $ $) 28)) (-2919 (((-112) $ $) 18)))
-(((-622) (-13 (-973) (-10 -8 (-15 -1626 ($) -3706) (-15 -1792 ((-112) $ (|[\|\|]| -1876))) (-15 -1792 ((-112) $ (|[\|\|]| -1626))) (-15 -1792 ((-112) $ (|[\|\|]| -3015)))))) (T -622))
-((-1626 (*1 *1) (-5 *1 (-622))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1876)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1626)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3015)) (-5 *2 (-112)) (-5 *1 (-622)))))
-(-13 (-973) (-10 -8 (-15 -1626 ($) -3706) (-15 -1792 ((-112) $ (|[\|\|]| -1876))) (-15 -1792 ((-112) $ (|[\|\|]| -1626))) (-15 -1792 ((-112) $ (|[\|\|]| -3015)))))
-((-1408 (($ |#1|) 6)))
-(((-623 |#1|) (-140) (-1223)) (T -623))
-((-1408 (*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1223)))))
-(-13 (-10 -8 (-15 -1408 ($ |t#1|))))
-((-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10)))
-(((-624 |#1| |#2|) (-10 -8 (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-625 |#2|) (-1055)) (T -624))
-NIL
-(-10 -8 (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 41)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
-(((-625 |#1|) (-140) (-1055)) (T -625))
-((-3793 (*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1055)))))
-(-13 (-1055) (-653 |t#1|) (-10 -8 (-15 -3793 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2552 (((-569) $) NIL (|has| |#1| (-853)))) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-4237 (((-112) $) NIL (|has| |#1| (-853)))) (-2623 (((-112) $) NIL)) (-4396 ((|#1| $) 13)) (-4327 (((-112) $) NIL (|has| |#1| (-853)))) (-3377 (($ $ $) NIL (|has| |#1| (-853)))) (-3969 (($ $ $) NIL (|has| |#1| (-853)))) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-4409 ((|#3| $) 15)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL)) (-3302 (((-776)) 20 T CONST)) (-1441 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| |#1| (-853)))) (-1803 (($) NIL T CONST)) (-1813 (($) 12 T CONST)) (-2976 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3032 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-626 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -3032 ($ $ |#3|)) (-15 -3032 ($ |#1| |#3|)) (-15 -4396 (|#1| $)) (-15 -4409 (|#3| $)))) (-38 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -626))
-((-3032 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-3032 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-626 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4396 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-626 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4409 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -3032 ($ $ |#3|)) (-15 -3032 ($ |#1| |#3|)) (-15 -4396 (|#1| $)) (-15 -4409 (|#3| $))))
-((-3237 ((|#2| |#2| (-1183) (-1183)) 16)))
-(((-627 |#1| |#2|) (-10 -7 (-15 -3237 (|#2| |#2| (-1183) (-1183)))) (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-965) (-29 |#1|))) (T -627))
-((-3237 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1208) (-965) (-29 *4))))))
-(-10 -7 (-15 -3237 (|#2| |#2| (-1183) (-1183))))
-((-2415 (((-112) $ $) 64)) (-3192 (((-112) $) 58)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2036 ((|#1| $) 55)) (-1678 (((-3 $ "failed") $ $) NIL)) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-1782 (((-2 (|:| -3611 $) (|:| -3511 (-412 |#2|))) (-412 |#2|)) 111 (|has| |#1| (-367)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) 27)) (-2888 (((-3 $ "failed") $) 88)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-3110 (((-569) $) 22)) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) 40)) (-3920 (($ |#1| (-569)) 24)) (-1855 ((|#1| $) 57)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) 101 (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2405 (((-3 $ "failed") $ $) 93)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1578 (((-776) $) 115 (|has| |#1| (-367)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 114 (|has| |#1| (-367)))) (-3514 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-3868 (((-569) $) 38)) (-1408 (((-412 |#2|) $) 47)) (-3793 (((-867) $) 69) (($ (-569)) 35) (($ $) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 34) (($ |#2|) 25)) (-4184 ((|#1| $ (-569)) 72)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) 9 T CONST)) (-1813 (($) 14 T CONST)) (-2830 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2919 (((-112) $ $) 21)) (-3021 (($ $) 51) (($ $ $) NIL)) (-3009 (($ $ $) 90)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 29) (($ $ $) 49)))
-(((-628 |#1| |#2|) (-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1044 |#2|) (-10 -8 (-15 -4343 ((-112) $)) (-15 -3868 ((-569) $)) (-15 -3110 ((-569) $)) (-15 -1879 ($ $)) (-15 -1855 (|#1| $)) (-15 -2036 (|#1| $)) (-15 -4184 (|#1| $ (-569))) (-15 -3920 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -1782 ((-2 (|:| -3611 $) (|:| -3511 (-412 |#2|))) (-412 |#2|)))) |%noBranch|))) (-561) (-1249 |#1|)) (T -628))
-((-4343 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1249 *3)))) (-3868 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1249 *3)))) (-3110 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1249 *3)))) (-1879 (*1 *1 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))) (-1855 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))) (-2036 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1249 *2)))) (-3920 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1249 *2)))) (-1782 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -3611 (-628 *4 *5)) (|:| -3511 (-412 *5)))) (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5)))))
-(-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1044 |#2|) (-10 -8 (-15 -4343 ((-112) $)) (-15 -3868 ((-569) $)) (-15 -3110 ((-569) $)) (-15 -1879 ($ $)) (-15 -1855 (|#1| $)) (-15 -2036 (|#1| $)) (-15 -4184 (|#1| $ (-569))) (-15 -3920 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -1782 ((-2 (|:| -3611 $) (|:| -3511 (-412 |#2|))) (-412 |#2|)))) |%noBranch|)))
-((-3465 (((-649 |#6|) (-649 |#4|) (-112)) 54)) (-2154 ((|#6| |#6|) 48)))
-(((-629 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2154 (|#6| |#6|)) (-15 -3465 ((-649 |#6|) (-649 |#4|) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|) (-1115 |#1| |#2| |#3| |#4|)) (T -629))
-((-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10)) (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *10 (-1115 *5 *6 *7 *8)))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *2 (-1115 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2154 (|#6| |#6|)) (-15 -3465 ((-649 |#6|) (-649 |#4|) (-112))))
-((-2261 (((-112) |#3| (-776) (-649 |#3|)) 32)) (-2337 (((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1179 |#3|)))) "failed") |#3| (-649 (-1179 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1411 (-649 (-2 (|:| |irr| |#4|) (|:| -3849 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)) 73)))
-(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2261 ((-112) |#3| (-776) (-649 |#3|))) (-15 -2337 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1179 |#3|)))) "failed") |#3| (-649 (-1179 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1411 (-649 (-2 (|:| |irr| |#4|) (|:| -3849 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)))) (-855) (-798) (-310) (-955 |#3| |#2| |#1|)) (T -630))
-((-2337 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1411 (-649 (-2 (|:| |irr| *10) (|:| -3849 (-569))))))) (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310)) (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798)) (-5 *2 (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3) (|:| |corrfact| (-649 (-1179 *3))))) (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1179 *3))))) (-2261 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855)) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8)) (-4 *8 (-955 *3 *7 *6)))))
-(-10 -7 (-15 -2261 ((-112) |#3| (-776) (-649 |#3|))) (-15 -2337 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1179 |#3|)))) "failed") |#3| (-649 (-1179 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1411 (-649 (-2 (|:| |irr| |#4|) (|:| -3849 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|))))
-((-2415 (((-112) $ $) NIL)) (-2112 (((-1141) $) 11)) (-2101 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-631) (-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))) (T -631))
-((-2101 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631)))))
-(-13 (-1089) (-10 -8 (-15 -2101 ((-1141) $)) (-15 -2112 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-3102 (((-649 |#1|) $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-2308 (($ $) 77)) (-2660 (((-669 |#1| |#2|) $) 60)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 81)) (-2446 (((-649 (-297 |#2|)) $ $) 42)) (-3545 (((-1126) $) NIL)) (-4386 (($ (-669 |#1| |#2|)) 56)) (-3580 (($ $ $) NIL)) (-2292 (($ $ $) NIL)) (-3793 (((-867) $) 66) (((-1288 |#1| |#2|) $) NIL) (((-1293 |#1| |#2|) $) 74)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 61 T CONST)) (-1400 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) 41)) (-1532 (((-649 (-669 |#1| |#2|)) (-649 |#1|)) 73)) (-2198 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) 46)) (-2919 (((-112) $ $) 62)) (-3032 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 52)))
-(((-632 |#1| |#2| |#3|) (-13 (-478) (-10 -8 (-15 -4386 ($ (-669 |#1| |#2|))) (-15 -2660 ((-669 |#1| |#2|) $)) (-15 -2198 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -3793 ((-1288 |#1| |#2|) $)) (-15 -3793 ((-1293 |#1| |#2|) $)) (-15 -2308 ($ $)) (-15 -3102 ((-649 |#1|) $)) (-15 -1532 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -1400 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -2446 ((-649 (-297 |#2|)) $ $)))) (-855) (-13 (-173) (-722 (-412 (-569)))) (-927)) (T -632))
-((-4386 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-5 *1 (-632 *3 *4 *5)) (-14 *5 (-927)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2308 (*1 *1 *1) (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-13 (-173) (-722 (-412 (-569))))) (-14 *4 (-927)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5))) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569))))) (-14 *6 (-927)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2446 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
-(-13 (-478) (-10 -8 (-15 -4386 ($ (-669 |#1| |#2|))) (-15 -2660 ((-669 |#1| |#2|) $)) (-15 -2198 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -3793 ((-1288 |#1| |#2|) $)) (-15 -3793 ((-1293 |#1| |#2|) $)) (-15 -2308 ($ $)) (-15 -3102 ((-649 |#1|) $)) (-15 -1532 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -1400 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -2446 ((-649 (-297 |#2|)) $ $))))
-((-3465 (((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 103) (((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 77)) (-1656 (((-112) (-649 (-785 |#1| (-869 |#2|)))) 26)) (-4040 (((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 102)) (-3934 (((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 76)) (-1908 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) 30)) (-1798 (((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|)))) 29)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -1656 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -1798 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -1908 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3934 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -4040 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -3465 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -3465 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)))) (-457) (-649 (-1183))) (T -633))
-((-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-633 *5 *6)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-633 *5 *6)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))) (-1798 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457)) (-14 *5 (-649 (-1183))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
-(-10 -7 (-15 -1656 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -1798 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -1908 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3934 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -4040 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -3465 ((-649 (-1052 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -3465 ((-649 (-1152 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))))
-((-2769 (($ $) 38)) (-2624 (($ $) 21)) (-2744 (($ $) 37)) (-2600 (($ $) 22)) (-4114 (($ $) 36)) (-2645 (($ $) 23)) (-1310 (($) 48)) (-2660 (($ $) 45)) (-4168 (($ $) 17)) (-2391 (($ $ (-1098 $)) 7) (($ $ (-1183)) 6)) (-4386 (($ $) 46)) (-2553 (($ $) 15)) (-2584 (($ $) 16)) (-4124 (($ $) 35)) (-2659 (($ $) 24)) (-2781 (($ $) 34)) (-2632 (($ $) 25)) (-2756 (($ $) 33)) (-2609 (($ $) 26)) (-4161 (($ $) 44)) (-2699 (($ $) 32)) (-4133 (($ $) 43)) (-2673 (($ $) 31)) (-4182 (($ $) 42)) (-2721 (($ $) 30)) (-1501 (($ $) 41)) (-2732 (($ $) 29)) (-4170 (($ $) 40)) (-2710 (($ $) 28)) (-4147 (($ $) 39)) (-2687 (($ $) 27)) (-4365 (($ $) 19)) (-3256 (($ $) 20)) (-4268 (($ $) 18)) (** (($ $ $) 47)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) NIL) (((-1190) $) NIL) (((-1224) $) 14) (($ (-649 (-1224))) 13)) (-1934 (((-649 (-1224)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-611) (-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -1934 ((-649 (-1224)) $))))) (T -611))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611)))))
+(-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -1934 ((-649 (-1224)) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1275 (-694 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3076 (((-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3207 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3400 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1564 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2183 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4379 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3319 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4375 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3850 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4136 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-2413 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2247 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1275 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3978 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-4095 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2411 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2399 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2904 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2999 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3339 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1866 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4059 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1308 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4167 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3674 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2761 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4307 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3703 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1869 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-2415 (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $) (-1275 $)) NIL (|has| |#2| (-371 |#1|))) (((-1275 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1410 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-1829 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3796 (((-867) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL (|has| |#2| (-422 |#1|)))) (-2643 (((-649 (-1275 |#1|))) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3451 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2887 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3967 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-612 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -612))
+((-3796 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3)))))
+(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-2617 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) 39)) (-4287 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL) (($) NIL)) (-2002 (((-1280) $ (-1167) (-1167)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-1167) |#1|) 49)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#1| "failed") (-1167) $) 52)) (-4427 (($) NIL T CONST)) (-3229 (($ $ (-1167)) 25)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-1794 (((-3 |#1| "failed") (-1167) $) 53) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (|has| $ (-6 -4447)))) (-1698 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-3598 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-2358 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) 38)) (-3846 ((|#1| $ (-1167) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-1167)) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-4248 (($ $) 54)) (-1721 (($ (-393)) 23) (($ (-393) (-1167)) 22)) (-3573 (((-393) $) 40)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1167) $) NIL (|has| (-1167) (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (((-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-3256 (((-1167) $) NIL (|has| (-1167) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2795 (((-649 (-1167)) $) 45)) (-3804 (((-112) (-1167) $) NIL)) (-4065 (((-1167) $) 41)) (-1877 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-1696 (((-649 (-1167)) $) NIL)) (-1414 (((-112) (-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 ((|#1| $) NIL (|has| (-1167) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) "failed") (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-649 (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 43)) (-1869 ((|#1| $ (-1167) |#1|) NIL) ((|#1| $ (-1167)) 48)) (-2434 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL) (($) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (((-776) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-776) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-3796 (((-867) $) 21)) (-2543 (($ $) 26)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447)))))
+(((-613 |#1|) (-13 (-368 (-393) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-1201 (-1167) |#1|) (-10 -8 (-6 -4447) (-15 -4248 ($ $)))) (-1108)) (T -613))
+((-4248 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1108)))))
+(-13 (-368 (-393) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-1201 (-1167) |#1|) (-10 -8 (-6 -4447) (-15 -4248 ($ $))))
+((-2004 (((-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 16)) (-2795 (((-649 |#2|) $) 20)) (-3804 (((-112) |#2| $) 12)))
+(((-614 |#1| |#2| |#3|) (-10 -8 (-15 -2795 ((-649 |#2|) |#1|)) (-15 -3804 ((-112) |#2| |#1|)) (-15 -2004 ((-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|))) (-615 |#2| |#3|) (-1108) (-1108)) (T -614))
+NIL
+(-10 -8 (-15 -2795 ((-649 |#2|) |#1|)) (-15 -3804 ((-112) |#2| |#1|)) (-15 -2004 ((-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 56 (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 62)) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 47 (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 63)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 55 (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 57 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 54 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2795 (((-649 |#1|) $) 64)) (-3804 (((-112) |#1| $) 65)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 40)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 41)) (-3547 (((-1128) $) 21 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 52)) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 42)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 27 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 26 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 25 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 24 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2434 (($) 50) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 49)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 32 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 51)) (-3796 (((-867) $) 18 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 43)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-615 |#1| |#2|) (-140) (-1108) (-1108)) (T -615))
+((-3804 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-112)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-649 *3)))) (-1794 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-2359 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))))
+(-13 (-230 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|))) (-10 -8 (-15 -3804 ((-112) |t#1| $)) (-15 -2795 ((-649 |t#1|) $)) (-15 -1794 ((-3 |t#2| "failed") |t#1| $)) (-15 -2359 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-102) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) ((-618 (-867)) -2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-312 #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-494 #0#) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-1108) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) ((-1225) . T))
+((-3434 (((-617 |#2|) |#1|) 17)) (-1998 (((-3 |#1| "failed") (-617 |#2|)) 21)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -3434 ((-617 |#2|) |#1|)) (-15 -1998 ((-3 |#1| "failed") (-617 |#2|)))) (-1108) (-1108)) (T -616))
+((-1998 (*1 *2 *3) (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1108)) (-4 *2 (-1108)) (-5 *1 (-616 *2 *4)))) (-3434 (*1 *2 *3) (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))))
+(-10 -7 (-15 -3434 ((-617 |#2|) |#1|)) (-15 -1998 ((-3 |#1| "failed") (-617 |#2|))))
+((-2417 (((-112) $ $) NIL)) (-2193 (((-3 (-1185) "failed") $) 48)) (-4114 (((-1280) $ (-776)) 24)) (-4036 (((-776) $) 23)) (-3746 (((-114) $) 12)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1354 (($ (-114) (-649 |#1|) (-776)) 34) (($ (-1185)) 35)) (-1825 (((-112) $ (-114)) 18) (((-112) $ (-1185)) 16)) (-1427 (((-776) $) 20)) (-3547 (((-1128) $) NIL)) (-1410 (((-898 (-569)) $) 96 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 103 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 89 (|has| |#1| (-619 (-541))))) (-3796 (((-867) $) 73)) (-1520 (((-112) $ $) NIL)) (-1899 (((-649 |#1|) $) 22)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 52)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 54)))
+(((-617 |#1|) (-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3746 ((-114) $)) (-15 -1899 ((-649 |#1|) $)) (-15 -1427 ((-776) $)) (-15 -1354 ($ (-114) (-649 |#1|) (-776))) (-15 -1354 ($ (-1185))) (-15 -2193 ((-3 (-1185) "failed") $)) (-15 -1825 ((-112) $ (-114))) (-15 -1825 ((-112) $ (-1185))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-1108)) (T -617))
+((-3746 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1354 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1108)) (-5 *1 (-617 *5)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-2193 (*1 *2 *1) (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1108)))) (-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1108)))))
+(-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3746 ((-114) $)) (-15 -1899 ((-649 |#1|) $)) (-15 -1427 ((-776) $)) (-15 -1354 ($ (-114) (-649 |#1|) (-776))) (-15 -1354 ($ (-1185))) (-15 -2193 ((-3 (-1185) "failed") $)) (-15 -1825 ((-112) $ (-114))) (-15 -1825 ((-112) $ (-1185))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
+((-3796 ((|#1| $) 6)))
+(((-618 |#1|) (-140) (-1225)) (T -618))
+((-3796 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1225)))))
+(-13 (-10 -8 (-15 -3796 (|t#1| $))))
+((-1410 ((|#1| $) 6)))
+(((-619 |#1|) (-140) (-1225)) (T -619))
+((-1410 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1225)))))
+(-13 (-10 -8 (-15 -1410 (|t#1| $))))
+((-1764 (((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)) 15) (((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 16)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)))) (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -620))
+((-1764 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-1181 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))) (-1764 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-1181 (-412 *5))) (-5 *1 (-620 *4 *5)) (-5 *3 (-412 *5)))))
+(-10 -7 (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|))))
+((-3796 (($ |#1|) 6)))
+(((-621 |#1|) (-140) (-1225)) (T -621))
+((-3796 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1225)))))
+(-13 (-10 -8 (-15 -3796 ($ |t#1|))))
+((-2417 (((-112) $ $) NIL)) (-1627 (($) 14 T CONST)) (-3018 (($) 15 T CONST)) (-1771 (($ $ $) 29)) (-1749 (($ $) 27)) (-3435 (((-1167) $) NIL)) (-3625 (($ $ $) 30)) (-3547 (((-1128) $) NIL)) (-1882 (($) 11 T CONST)) (-2069 (($ $ $) 31)) (-3796 (((-867) $) 35)) (-1795 (((-112) $ (|[\|\|]| -1882)) 24) (((-112) $ (|[\|\|]| -1627)) 26) (((-112) $ (|[\|\|]| -3018)) 21)) (-1520 (((-112) $ $) NIL)) (-1759 (($ $ $) 28)) (-2920 (((-112) $ $) 18)))
+(((-622) (-13 (-975) (-10 -8 (-15 -1627 ($) -3709) (-15 -1795 ((-112) $ (|[\|\|]| -1882))) (-15 -1795 ((-112) $ (|[\|\|]| -1627))) (-15 -1795 ((-112) $ (|[\|\|]| -3018)))))) (T -622))
+((-1627 (*1 *1) (-5 *1 (-622))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1882)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1627)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3018)) (-5 *2 (-112)) (-5 *1 (-622)))))
+(-13 (-975) (-10 -8 (-15 -1627 ($) -3709) (-15 -1795 ((-112) $ (|[\|\|]| -1882))) (-15 -1795 ((-112) $ (|[\|\|]| -1627))) (-15 -1795 ((-112) $ (|[\|\|]| -3018)))))
+((-1410 (($ |#1|) 6)))
+(((-623 |#1|) (-140) (-1225)) (T -623))
+((-1410 (*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1225)))))
+(-13 (-10 -8 (-15 -1410 ($ |t#1|))))
+((-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10)))
+(((-624 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-625 |#2|) (-1057)) (T -624))
+NIL
+(-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 41)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-625 |#1|) (-140) (-1057)) (T -625))
+((-3796 (*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1057)))))
+(-13 (-1057) (-653 |t#1|) (-10 -8 (-15 -3796 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2919 (((-569) $) NIL (|has| |#1| (-853)))) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-3712 (((-112) $) NIL (|has| |#1| (-853)))) (-2349 (((-112) $) NIL)) (-4399 ((|#1| $) 13)) (-2051 (((-112) $) NIL (|has| |#1| (-853)))) (-3380 (($ $ $) NIL (|has| |#1| (-853)))) (-2839 (($ $ $) NIL (|has| |#1| (-853)))) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4412 ((|#3| $) 15)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL)) (-2721 (((-776)) 20 T CONST)) (-1520 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| |#1| (-853)))) (-1804 (($) NIL T CONST)) (-1815 (($) 12 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3035 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-626 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $)))) (-38 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -626))
+((-3035 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-3035 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-626 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-626 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4412 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $))))
+((-3351 ((|#2| |#2| (-1185) (-1185)) 16)))
+(((-627 |#1| |#2|) (-10 -7 (-15 -3351 (|#2| |#2| (-1185) (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-29 |#1|))) (T -627))
+((-3351 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1210) (-965) (-29 *4))))))
+(-10 -7 (-15 -3351 (|#2| |#2| (-1185) (-1185))))
+((-2417 (((-112) $ $) 64)) (-4143 (((-112) $) 58)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1377 ((|#1| $) 55)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3818 (((-2 (|:| -2482 $) (|:| -4079 (-412 |#2|))) (-412 |#2|)) 111 (|has| |#1| (-367)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 27)) (-3086 (((-3 $ "failed") $) 88)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1466 (((-569) $) 22)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) 40)) (-3923 (($ |#1| (-569)) 24)) (-1857 ((|#1| $) 57)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) 101 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ $) 93)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2431 (((-776) $) 115 (|has| |#1| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 114 (|has| |#1| (-367)))) (-3517 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-4339 (((-569) $) 38)) (-1410 (((-412 |#2|) $) 47)) (-3796 (((-867) $) 69) (($ (-569)) 35) (($ $) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 34) (($ |#2|) 25)) (-4383 ((|#1| $ (-569)) 72)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 9 T CONST)) (-1815 (($) 14 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2920 (((-112) $ $) 21)) (-3024 (($ $) 51) (($ $ $) NIL)) (-3012 (($ $ $) 90)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 29) (($ $ $) 49)))
+(((-628 |#1| |#2|) (-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1046 |#2|) (-10 -8 (-15 -2198 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1466 ((-569) $)) (-15 -1883 ($ $)) (-15 -1857 (|#1| $)) (-15 -1377 (|#1| $)) (-15 -4383 (|#1| $ (-569))) (-15 -3923 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -3818 ((-2 (|:| -2482 $) (|:| -4079 (-412 |#2|))) (-412 |#2|)))) |%noBranch|))) (-561) (-1251 |#1|)) (T -628))
+((-2198 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1251 *3)))) (-4339 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1251 *3)))) (-1466 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1251 *3)))) (-1883 (*1 *1 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) (-1857 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) (-1377 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1251 *2)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1251 *2)))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2482 (-628 *4 *5)) (|:| -4079 (-412 *5)))) (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5)))))
+(-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1046 |#2|) (-10 -8 (-15 -2198 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1466 ((-569) $)) (-15 -1883 ($ $)) (-15 -1857 (|#1| $)) (-15 -1377 (|#1| $)) (-15 -4383 (|#1| $ (-569))) (-15 -3923 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -3818 ((-2 (|:| -2482 $) (|:| -4079 (-412 |#2|))) (-412 |#2|)))) |%noBranch|)))
+((-1806 (((-649 |#6|) (-649 |#4|) (-112)) 54)) (-3224 ((|#6| |#6|) 48)))
+(((-629 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3224 (|#6| |#6|)) (-15 -1806 ((-649 |#6|) (-649 |#4|) (-112)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|) (-1117 |#1| |#2| |#3| |#4|)) (T -629))
+((-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10)) (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *10 (-1117 *5 *6 *7 *8)))) (-3224 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *2 (-1117 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3224 (|#6| |#6|)) (-15 -1806 ((-649 |#6|) (-649 |#4|) (-112))))
+((-1915 (((-112) |#3| (-776) (-649 |#3|)) 32)) (-1451 (((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1181 |#3|)))) "failed") |#3| (-649 (-1181 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4360 (-649 (-2 (|:| |irr| |#4|) (|:| -4180 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)) 73)))
+(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-112) |#3| (-776) (-649 |#3|))) (-15 -1451 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1181 |#3|)))) "failed") |#3| (-649 (-1181 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4360 (-649 (-2 (|:| |irr| |#4|) (|:| -4180 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)))) (-855) (-798) (-310) (-955 |#3| |#2| |#1|)) (T -630))
+((-1451 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4360 (-649 (-2 (|:| |irr| *10) (|:| -4180 (-569))))))) (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310)) (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798)) (-5 *2 (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3) (|:| |corrfact| (-649 (-1181 *3))))) (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1181 *3))))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855)) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8)) (-4 *8 (-955 *3 *7 *6)))))
+(-10 -7 (-15 -1915 ((-112) |#3| (-776) (-649 |#3|))) (-15 -1451 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1181 |#3|)))) "failed") |#3| (-649 (-1181 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4360 (-649 (-2 (|:| |irr| |#4|) (|:| -4180 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|))))
+((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-631) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -631))
+((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631)))))
+(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-2325 (($ $) 77)) (-2662 (((-669 |#1| |#2|) $) 60)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 81)) (-3122 (((-649 (-297 |#2|)) $ $) 42)) (-3547 (((-1128) $) NIL)) (-4389 (($ (-669 |#1| |#2|)) 56)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 66) (((-1290 |#1| |#2|) $) NIL) (((-1295 |#1| |#2|) $) 74)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 61 T CONST)) (-3655 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) 41)) (-3223 (((-649 (-669 |#1| |#2|)) (-649 |#1|)) 73)) (-3717 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) 46)) (-2920 (((-112) $ $) 62)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 52)))
+(((-632 |#1| |#2| |#3|) (-13 (-478) (-10 -8 (-15 -4389 ($ (-669 |#1| |#2|))) (-15 -2662 ((-669 |#1| |#2|) $)) (-15 -3717 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1295 |#1| |#2|) $)) (-15 -2325 ($ $)) (-15 -3105 ((-649 |#1|) $)) (-15 -3223 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -3655 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -3122 ((-649 (-297 |#2|)) $ $)))) (-855) (-13 (-173) (-722 (-412 (-569)))) (-927)) (T -632))
+((-4389 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-5 *1 (-632 *3 *4 *5)) (-14 *5 (-927)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-13 (-173) (-722 (-412 (-569))))) (-14 *4 (-927)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5))) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569))))) (-14 *6 (-927)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3122 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
+(-13 (-478) (-10 -8 (-15 -4389 ($ (-669 |#1| |#2|))) (-15 -2662 ((-669 |#1| |#2|) $)) (-15 -3717 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1295 |#1| |#2|) $)) (-15 -2325 ($ $)) (-15 -3105 ((-649 |#1|) $)) (-15 -3223 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -3655 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -3122 ((-649 (-297 |#2|)) $ $))))
+((-1806 (((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 103) (((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 77)) (-2013 (((-112) (-649 (-785 |#1| (-869 |#2|)))) 26)) (-2326 (((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 102)) (-3791 (((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 76)) (-2454 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) 30)) (-3959 (((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|)))) 29)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -2013 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3959 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -2454 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3791 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -2326 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)))) (-457) (-649 (-1185))) (T -633))
+((-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-633 *5 *6)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-633 *5 *6)))) (-2454 (*1 *2 *2) (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4)))) (-3959 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457)) (-14 *5 (-649 (-1185))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+(-10 -7 (-15 -2013 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3959 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -2454 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3791 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -2326 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))))
+((-2771 (($ $) 38)) (-2626 (($ $) 21)) (-2746 (($ $) 37)) (-2601 (($ $) 22)) (-4118 (($ $) 36)) (-2647 (($ $) 23)) (-1312 (($) 48)) (-2662 (($ $) 45)) (-4171 (($ $) 17)) (-3898 (($ $ (-1100 $)) 7) (($ $ (-1185)) 6)) (-4389 (($ $) 46)) (-2555 (($ $) 15)) (-2589 (($ $) 16)) (-4128 (($ $) 35)) (-2661 (($ $) 24)) (-2783 (($ $) 34)) (-2635 (($ $) 25)) (-2758 (($ $) 33)) (-2614 (($ $) 26)) (-4161 (($ $) 44)) (-2701 (($ $) 32)) (-4140 (($ $) 43)) (-2675 (($ $) 31)) (-4183 (($ $) 42)) (-2723 (($ $) 30)) (-1503 (($ $) 41)) (-2734 (($ $) 29)) (-4175 (($ $) 40)) (-2712 (($ $) 28)) (-4151 (($ $) 39)) (-2689 (($ $) 27)) (-2370 (($ $) 19)) (-3569 (($ $) 20)) (-2717 (($ $) 18)) (** (($ $ $) 47)))
(((-634) (-140)) (T -634))
-((-3256 (*1 *1 *1) (-4 *1 (-634))) (-4365 (*1 *1 *1) (-4 *1 (-634))) (-4268 (*1 *1 *1) (-4 *1 (-634))) (-4168 (*1 *1 *1) (-4 *1 (-634))) (-2584 (*1 *1 *1) (-4 *1 (-634))) (-2553 (*1 *1 *1) (-4 *1 (-634))))
-(-13 (-965) (-1208) (-10 -8 (-15 -3256 ($ $)) (-15 -4365 ($ $)) (-15 -4268 ($ $)) (-15 -4168 ($ $)) (-15 -2584 ($ $)) (-15 -2553 ($ $))))
-(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-965) . T) ((-1208) . T) ((-1211) . T))
-((-3743 (((-114) (-114)) 88)) (-4168 ((|#2| |#2|) 28)) (-2391 ((|#2| |#2| (-1098 |#2|)) 84) ((|#2| |#2| (-1183)) 50)) (-2553 ((|#2| |#2|) 27)) (-2584 ((|#2| |#2|) 29)) (-4142 (((-112) (-114)) 33)) (-4365 ((|#2| |#2|) 24)) (-3256 ((|#2| |#2|) 26)) (-4268 ((|#2| |#2|) 25)))
-(((-635 |#1| |#2|) (-10 -7 (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3256 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -4268 (|#2| |#2|)) (-15 -4168 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2584 (|#2| |#2|)) (-15 -2391 (|#2| |#2| (-1183))) (-15 -2391 (|#2| |#2| (-1098 |#2|)))) (-561) (-13 (-435 |#1|) (-1008) (-1208))) (T -635))
-((-2391 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-1008) (-1208))) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)))) (-2391 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-435 *4) (-1008) (-1208))))) (-2584 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-2553 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-4168 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-3256 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1008) (-1208))))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-635 *3 *4)) (-4 *4 (-13 (-435 *3) (-1008) (-1208))))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))))))
-(-10 -7 (-15 -4142 ((-112) (-114))) (-15 -3743 ((-114) (-114))) (-15 -3256 (|#2| |#2|)) (-15 -4365 (|#2| |#2|)) (-15 -4268 (|#2| |#2|)) (-15 -4168 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2584 (|#2| |#2|)) (-15 -2391 (|#2| |#2| (-1183))) (-15 -2391 (|#2| |#2| (-1098 |#2|))))
-((-2023 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 66)) (-3664 (((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 92)) (-3777 (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 94) (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 93)) (-3401 (((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|))) 137)) (-2982 (((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 107)) (-3520 (((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|))) 147)) (-2742 (((-1273 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|))) 71)) (-2599 (((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 48)) (-3107 (((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 63)) (-2857 (((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 115)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -3401 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -3520 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3664 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3777 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -3777 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2599 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -2742 ((-1273 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -2857 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2982 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3107 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2023 ((-486 |#1| |#2|) (-248 |#1| |#2|)))) (-649 (-1183)) (-457)) (T -636))
-((-2023 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))) (-3107 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2982 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4)) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2857 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457)) (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1183))) (-5 *1 (-636 *5 *6)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6)) (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-1273 *6)) (-5 *1 (-636 *5 *6)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1183))) (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-3777 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))) (-3520 (*1 *2 *3) (-12 (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569))))) (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5))))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |gblist| (-649 (-248 *4 *5))) (|:| |gvlist| (-649 (-569))))) (-5 *1 (-636 *4 *5)))))
-(-10 -7 (-15 -3401 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -3520 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3664 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3777 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -3777 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2599 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -2742 ((-1273 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -2857 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2982 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -3107 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2023 ((-486 |#1| |#2|) (-248 |#1| |#2|))))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) NIL)) (-4321 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 (((-52) $ (-1165) (-52)) 16) (((-52) $ (-1183) (-52)) 17)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 (-52) "failed") (-1165) $) NIL)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106))))) (-3463 (($ (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-3 (-52) "failed") (-1165) $) NIL)) (-1696 (($ (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $ (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (((-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $ (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-3843 (((-52) $ (-1165) (-52)) NIL (|has| $ (-6 -4445)))) (-3773 (((-52) $ (-1165)) NIL)) (-2880 (((-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-649 (-52)) $) NIL (|has| $ (-6 -4444)))) (-2131 (($ $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3040 (((-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-649 (-52)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106))))) (-1535 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4445))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4215 (($ (-393)) 9)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106))))) (-2796 (((-649 (-1165)) $) NIL)) (-3937 (((-112) (-1165) $) NIL)) (-1640 (((-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) $) NIL)) (-3813 (($ (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) $) NIL)) (-1755 (((-649 (-1165)) $) NIL)) (-3748 (((-112) (-1165) $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106))))) (-3510 (((-52) $) NIL (|has| (-1165) (-855)))) (-3123 (((-3 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) "failed") (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL)) (-4420 (($ $ (-52)) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (($ $ (-297 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (($ $ (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (($ $ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106))))) (-3851 (((-649 (-52)) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 (((-52) $ (-1165)) 14) (((-52) $ (-1165) (-52)) NIL) (((-52) $ (-1183)) 15)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 (-52))) (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-637) (-13 (-1199 (-1165) (-52)) (-10 -8 (-15 -4215 ($ (-393))) (-15 -2131 ($ $)) (-15 -1866 ((-52) $ (-1183))) (-15 -3940 ((-52) $ (-1183) (-52)))))) (T -637))
-((-4215 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))) (-2131 (*1 *1 *1) (-5 *1 (-637))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-637)))) (-3940 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1183)) (-5 *1 (-637)))))
-(-13 (-1199 (-1165) (-52)) (-10 -8 (-15 -4215 ($ (-393))) (-15 -2131 ($ $)) (-15 -1866 ((-52) $ (-1183))) (-15 -3940 ((-52) $ (-1183) (-52)))))
-((-3032 (($ $ |#2|) 10)))
-(((-638 |#1| |#2|) (-10 -8 (-15 -3032 (|#1| |#1| |#2|))) (-639 |#2|) (-173)) (T -638))
-NIL
-(-10 -8 (-15 -3032 (|#1| |#1| |#2|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3806 (($ $ $) 34)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 33 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+((-3569 (*1 *1 *1) (-4 *1 (-634))) (-2370 (*1 *1 *1) (-4 *1 (-634))) (-2717 (*1 *1 *1) (-4 *1 (-634))) (-4171 (*1 *1 *1) (-4 *1 (-634))) (-2589 (*1 *1 *1) (-4 *1 (-634))) (-2555 (*1 *1 *1) (-4 *1 (-634))))
+(-13 (-965) (-1210) (-10 -8 (-15 -3569 ($ $)) (-15 -2370 ($ $)) (-15 -2717 ($ $)) (-15 -4171 ($ $)) (-15 -2589 ($ $)) (-15 -2555 ($ $))))
+(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-965) . T) ((-1210) . T) ((-1213) . T))
+((-3746 (((-114) (-114)) 88)) (-4171 ((|#2| |#2|) 28)) (-3898 ((|#2| |#2| (-1100 |#2|)) 84) ((|#2| |#2| (-1185)) 50)) (-2555 ((|#2| |#2|) 27)) (-2589 ((|#2| |#2|) 29)) (-4052 (((-112) (-114)) 33)) (-2370 ((|#2| |#2|) 24)) (-3569 ((|#2| |#2|) 26)) (-2717 ((|#2| |#2|) 25)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3569 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2717 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -2589 (|#2| |#2|)) (-15 -3898 (|#2| |#2| (-1185))) (-15 -3898 (|#2| |#2| (-1100 |#2|)))) (-561) (-13 (-435 |#1|) (-1010) (-1210))) (T -635))
+((-3898 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)))) (-3898 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))))) (-2589 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-2717 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-3569 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-635 *3 *4)) (-4 *4 (-13 (-435 *3) (-1010) (-1210))))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210))))))
+(-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3569 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2717 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -2589 (|#2| |#2|)) (-15 -3898 (|#2| |#2| (-1185))) (-15 -3898 (|#2| |#2| (-1100 |#2|))))
+((-4365 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 66)) (-3021 (((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 92)) (-1703 (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 94) (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 93)) (-2343 (((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|))) 137)) (-2627 (((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 107)) (-4150 (((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|))) 147)) (-4145 (((-1275 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|))) 71)) (-2157 (((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 48)) (-1428 (((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 63)) (-2756 (((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 115)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -2343 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -4150 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3021 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2157 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -4145 ((-1275 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -2756 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2627 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1428 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -4365 ((-486 |#1| |#2|) (-248 |#1| |#2|)))) (-649 (-1185)) (-457)) (T -636))
+((-4365 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))) (-1428 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2627 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4)) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2756 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457)) (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1185))) (-5 *1 (-636 *5 *6)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6)) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-1275 *6)) (-5 *1 (-636 *5 *6)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1185))) (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))) (-1703 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-1703 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))) (-4150 (*1 *2 *3) (-12 (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569))))) (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5))))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |gblist| (-649 (-248 *4 *5))) (|:| |gvlist| (-649 (-569))))) (-5 *1 (-636 *4 *5)))))
+(-10 -7 (-15 -2343 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -4150 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3021 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2157 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -4145 ((-1275 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -2756 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2627 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1428 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -4365 ((-486 |#1| |#2|) (-248 |#1| |#2|))))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-2002 (((-1280) $ (-1167) (-1167)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-52) $ (-1167) (-52)) 16) (((-52) $ (-1185) (-52)) 17)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 (-52) "failed") (-1167) $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-3 (-52) "failed") (-1167) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-52) $ (-1167) (-52)) NIL (|has| $ (-6 -4448)))) (-3776 (((-52) $ (-1167)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-4248 (($ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1167) $) NIL (|has| (-1167) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-3256 (((-1167) $) NIL (|has| (-1167) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4221 (($ (-393)) 9)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-2795 (((-649 (-1167)) $) NIL)) (-3804 (((-112) (-1167) $) NIL)) (-1877 (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL)) (-1696 (((-649 (-1167)) $) NIL)) (-1414 (((-112) (-1167) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-3513 (((-52) $) NIL (|has| (-1167) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) "failed") (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL)) (-1682 (($ $ (-52)) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-4199 (((-649 (-52)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-52) $ (-1167)) 14) (((-52) $ (-1167) (-52)) NIL) (((-52) $ (-1185)) 15)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-637) (-13 (-1201 (-1167) (-52)) (-10 -8 (-15 -4221 ($ (-393))) (-15 -4248 ($ $)) (-15 -1869 ((-52) $ (-1185))) (-15 -3943 ((-52) $ (-1185) (-52)))))) (T -637))
+((-4221 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))) (-4248 (*1 *1 *1) (-5 *1 (-637))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-52)) (-5 *1 (-637)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1185)) (-5 *1 (-637)))))
+(-13 (-1201 (-1167) (-52)) (-10 -8 (-15 -4221 ($ (-393))) (-15 -4248 ($ $)) (-15 -1869 ((-52) $ (-1185))) (-15 -3943 ((-52) $ (-1185) (-52)))))
+((-3035 (($ $ |#2|) 10)))
+(((-638 |#1| |#2|) (-10 -8 (-15 -3035 (|#1| |#1| |#2|))) (-639 |#2|) (-173)) (T -638))
+NIL
+(-10 -8 (-15 -3035 (|#1| |#1| |#2|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3809 (($ $ $) 34)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 33 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-639 |#1|) (-140) (-173)) (T -639))
-((-3806 (*1 *1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
-(-13 (-722 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3806 ($ $ $)) (IF (|has| |t#1| (-367)) (-15 -3032 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1934 (((-3 $ "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2870 (((-1273 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1273 (-694 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2897 (((-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-4188 (($) NIL T CONST)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1856 (((-3 $ "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-4207 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2667 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4023 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3413 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2788 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-3727 (($ $ (-927)) NIL)) (-2449 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2024 (((-1179 |#1|) $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3161 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3519 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4051 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3390 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1273 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2888 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3975 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-1816 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2760 (($ $ (-927)) NIL)) (-1325 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2317 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1575 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1949 (((-3 $ "failed")) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-4298 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2789 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4109 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3508 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2030 (((-1179 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-3627 (($ $ (-927)) NIL)) (-2551 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2123 (((-1179 |#1|) $) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3266 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-3635 (((-1179 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4175 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1550 (((-1165) $) NIL)) (-4342 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1452 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1699 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3545 (((-1126) $) NIL)) (-3930 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1866 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-2960 (((-694 |#1|) (-1273 $)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1273 $) (-1273 $)) NIL (|has| |#2| (-371 |#1|))) (((-1273 |#1|) $ (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-1408 (($ (-1273 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1273 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-3146 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1273 $)) NIL (|has| |#2| (-371 |#1|)))) (-2292 (($ $ $) NIL)) (-3399 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3793 (((-867) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL (|has| |#2| (-422 |#1|)))) (-2220 (((-649 (-1273 |#1|))) NIL (-2774 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2358 (($ $ $ $) NIL)) (-3158 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3448 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2205 (($ $ $) NIL)) (-3264 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4284 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3821 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) 20)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-640 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3793 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -640))
-((-3793 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-640 *3 *2)) (-4 *2 (-749 *3)))))
-(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3793 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
-((-2343 (((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1165)) 106) (((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|))) 131)) (-2237 (((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|))) 136)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -2343 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -2237 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -2343 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1165)))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -641))
-((-2343 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1165)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3)))) (-2237 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-297 (-838 *3))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))) (-2343 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1208) (-435 *5))) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-641 *5 *3)))))
-(-10 -7 (-15 -2343 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -2237 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -2343 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1165))))
-((-2343 (((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1165)) 86) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 20) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|)))) 35)) (-2237 (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 23) (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|)))) 43)))
-(((-642 |#1|) (-10 -7 (-15 -2343 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -2343 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2237 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -2237 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2343 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1165)))) (-457)) (T -642))
-((-2343 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1165)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3)) (-5 *1 (-642 *6)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))) (-2343 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-642 *5)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-3 (-848 (-412 (-958 *5))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))) "failed")) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))))
-(-10 -7 (-15 -2343 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -2343 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2237 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -2237 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2343 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1165))))
-((-1527 (((-3 (-1273 (-412 |#1|)) "failed") (-1273 |#2|) |#2|) 64 (-1745 (|has| |#1| (-367)))) (((-3 (-1273 |#1|) "failed") (-1273 |#2|) |#2|) 49 (|has| |#1| (-367)))) (-2451 (((-112) (-1273 |#2|)) 33)) (-1396 (((-3 (-1273 |#1|) "failed") (-1273 |#2|)) 40)))
-(((-643 |#1| |#2|) (-10 -7 (-15 -2451 ((-112) (-1273 |#2|))) (-15 -1396 ((-3 (-1273 |#1|) "failed") (-1273 |#2|))) (IF (|has| |#1| (-367)) (-15 -1527 ((-3 (-1273 |#1|) "failed") (-1273 |#2|) |#2|)) (-15 -1527 ((-3 (-1273 (-412 |#1|)) "failed") (-1273 |#2|) |#2|)))) (-561) (-644 |#1|)) (T -643))
-((-1527 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5)) (-1745 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1273 (-412 *5))) (-5 *1 (-643 *5 *4)))) (-1527 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-1273 *5)) (-5 *1 (-643 *5 *4)))) (-1396 (*1 *2 *3) (|partial| -12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-1273 *4)) (-5 *1 (-643 *4 *5)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-643 *4 *5)))))
-(-10 -7 (-15 -2451 ((-112) (-1273 |#2|))) (-15 -1396 ((-3 (-1273 |#1|) "failed") (-1273 |#2|))) (IF (|has| |#1| (-367)) (-15 -1527 ((-3 (-1273 |#1|) "failed") (-1273 |#2|) |#2|)) (-15 -1527 ((-3 (-1273 (-412 |#1|)) "failed") (-1273 |#2|) |#2|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1630 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 39)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-644 |#1|) (-140) (-1055)) (T -644))
-((-1630 (*1 *2 *3) (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1055)) (-5 *2 (-694 *4)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *1)) (-5 *4 (-1273 *1)) (-4 *1 (-644 *5)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2378 (-694 *5)) (|:| |vec| (-1273 *5)))))))
-(-13 (-1055) (-10 -8 (-15 -1630 ((-694 |t#1|) (-694 $))) (-15 -1630 ((-2 (|:| -2378 (-694 |t#1|)) (|:| |vec| (-1273 |t#1|))) (-694 $) (-1273 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 16 T CONST)) (-2919 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
-(((-645 |#1|) (-140) (-1064)) (T -645))
-NIL
-(-13 (-651 |t#1|) (-1057 |t#1|))
-(((-102) . T) ((-618 (-867)) . T) ((-651 |#1|) . T) ((-1057 |#1|) . T) ((-1106) . T))
-((-4146 ((|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|) 17) ((|#2| (-649 |#1|) (-649 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|)) 12)))
-(((-646 |#1| |#2|) (-10 -7 (-15 -4146 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4146 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4146 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4146 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4146 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4146 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)))) (-1106) (-1223)) (T -646))
-((-4146 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2)))) (-4146 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *1 (-646 *5 *6)))) (-4146 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2)))) (-4146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1106)) (-4 *5 (-1223)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5)))) (-4146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6)))))
-(-10 -7 (-15 -4146 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4146 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4146 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4146 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4146 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4146 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|))))
-((-4085 (((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 16)) (-3596 ((|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 18)) (-1344 (((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)) 13)))
-(((-647 |#1| |#2|) (-10 -7 (-15 -4085 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1344 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) (-1223) (-1223)) (T -647))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6)))) (-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-647 *5 *2)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5)))))
-(-10 -7 (-15 -4085 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1344 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|))))
-((-1344 (((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)) 21)))
-(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)))) (-1223) (-1223) (-1223)) (T -648))
-((-1344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-649 *6)) (-5 *5 (-649 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-649 *8)) (-5 *1 (-648 *6 *7 *8)))))
-(-10 -7 (-15 -1344 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) NIL)) (-2561 ((|#1| $) NIL)) (-1566 (($ $) NIL)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3012 (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-3355 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-4382 (($ $ $) NIL (|has| $ (-6 -4445)))) (-1716 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4445))) (($ $ "rest" $) NIL (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-3437 (($ $ $) 37 (|has| |#1| (-1106)))) (-3426 (($ $ $) 41 (|has| |#1| (-1106)))) (-3415 (($ $ $) 44 (|has| |#1| (-1106)))) (-4101 (($ (-1 (-112) |#1|) $) NIL)) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2548 ((|#1| $) NIL)) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3522 (($ $) 23) (($ $ (-776)) NIL)) (-3041 (($ $) NIL (|has| |#1| (-1106)))) (-3547 (($ $) 36 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) NIL (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) NIL)) (-1696 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-1677 (((-112) $) NIL)) (-4034 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106))) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1733 (((-112) $) 11)) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3053 (($) 9 T CONST)) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2616 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2126 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3379 (($ |#1|) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1722 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3813 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4294 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) 20) (($ $ (-776)) NIL)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-1807 (((-112) $) NIL)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) 39)) (-3597 (($) 38)) (-1866 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) 42) ((|#1| $ (-569) |#1|) NIL)) (-3947 (((-569) $ $) NIL)) (-4198 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-4325 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-2102 (((-112) $) NIL)) (-1750 (($ $) NIL)) (-1497 (($ $) NIL (|has| $ (-6 -4445)))) (-3754 (((-776) $) NIL)) (-3866 (($ $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) 53 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) NIL)) (-3745 (($ |#1| $) 12)) (-1621 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2441 (($ $ $) 35) (($ |#1| $) 43) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1851 (($ $ $) 13)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4195 (((-1165) $) 31 (|has| |#1| (-833))) (((-1165) $ (-112)) 32 (|has| |#1| (-833))) (((-1278) (-827) $) 33 (|has| |#1| (-833))) (((-1278) (-827) $ (-112)) 34 (|has| |#1| (-833)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-649 |#1|) (-13 (-671 |#1|) (-10 -8 (-15 -3053 ($) -3706) (-15 -1733 ((-112) $)) (-15 -3745 ($ |#1| $)) (-15 -1851 ($ $ $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -3437 ($ $ $)) (-15 -3426 ($ $ $)) (-15 -3415 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-1223)) (T -649))
-((-3053 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1223)))) (-3745 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))) (-1851 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))) (-3437 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))) (-3426 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))) (-3415 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
-(-13 (-671 |#1|) (-10 -8 (-15 -3053 ($) -3706) (-15 -1733 ((-112) $)) (-15 -3745 ($ |#1| $)) (-15 -1851 ($ $ $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -3437 ($ $ $)) (-15 -3426 ($ $ $)) (-15 -3415 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 11) (($ (-1188)) NIL) (((-1188) $) NIL) ((|#1| $) 8)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-650 |#1|) (-13 (-1089) (-618 |#1|)) (-1106)) (T -650))
-NIL
-(-13 (-1089) (-618 |#1|))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 16 T CONST)) (-2919 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
-(((-651 |#1|) (-140) (-1064)) (T -651))
-((-1803 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064)))))
-(-13 (-1106) (-10 -8 (-15 (-1803) ($) -3706) (-15 -3192 ((-112) $)) (-15 * ($ |t#1| $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3534 (($ |#1| |#1| $) 46)) (-2716 (((-112) $ (-776)) NIL)) (-4101 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-3041 (($ $) 48)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) 59 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 9 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 37)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1640 ((|#1| $) 50)) (-3813 (($ |#1| $) 29) (($ |#1| $ (-776)) 45)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1764 ((|#1| $) 53)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 23)) (-3597 (($) 28)) (-1747 (((-112) $) 57)) (-2917 (((-649 (-2 (|:| -2214 |#1|) (|:| -3558 (-776)))) $) 69)) (-1906 (($) 26) (($ (-649 |#1|)) 19)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) 66 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 20)) (-1408 (((-541) $) 34 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) NIL)) (-3793 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 24)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 71 (|has| |#1| (-1106)))) (-2426 (((-776) $) 17 (|has| $ (-6 -4444)))))
-(((-652 |#1|) (-13 (-700 |#1|) (-10 -8 (-6 -4444) (-15 -1747 ((-112) $)) (-15 -3534 ($ |#1| |#1| $)))) (-1106)) (T -652))
-((-1747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1106)))) (-3534 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1106)))))
-(-13 (-700 |#1|) (-10 -8 (-6 -4444) (-15 -1747 ((-112) $)) (-15 -3534 ($ |#1| |#1| $))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27)))
-(((-653 |#1|) (-140) (-1064)) (T -653))
+((-3809 (*1 *1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
+(-13 (-722 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3809 ($ $ $)) (IF (|has| |t#1| (-367)) (-15 -3035 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1275 (-694 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3076 (((-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3207 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3400 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1564 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2183 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4379 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3319 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4375 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3850 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4136 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-2413 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2247 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1275 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3978 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-4095 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2411 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2399 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2904 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2999 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3339 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1866 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4059 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1308 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4167 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3674 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2761 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4307 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3703 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1869 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-2415 (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $) (-1275 $)) NIL (|has| |#2| (-371 |#1|))) (((-1275 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1410 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-1829 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3796 (((-867) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL (|has| |#2| (-422 |#1|)))) (-2643 (((-649 (-1275 |#1|))) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3451 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2887 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3967 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 20)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-640 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -640))
+((-3796 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-640 *3 *2)) (-4 *2 (-749 *3)))))
+(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|)))
+((-1517 (((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1167)) 106) (((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|))) 131)) (-2848 (((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|))) 136)))
+(((-641 |#1| |#2|) (-10 -7 (-15 -1517 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -2848 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -1517 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1167)))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -641))
+((-1517 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1167)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3)))) (-2848 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-297 (-838 *3))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-641 *5 *3)))))
+(-10 -7 (-15 -1517 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -2848 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -1517 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1167))))
+((-1517 (((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1167)) 86) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 20) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|)))) 35)) (-2848 (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 23) (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|)))) 43)))
+(((-642 |#1|) (-10 -7 (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1167)))) (-457)) (T -642))
+((-1517 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1167)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3)) (-5 *1 (-642 *6)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))) (-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-642 *5)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-3 (-848 (-412 (-958 *5))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))) "failed")) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))))
+(-10 -7 (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1167))))
+((-3170 (((-3 (-1275 (-412 |#1|)) "failed") (-1275 |#2|) |#2|) 64 (-1749 (|has| |#1| (-367)))) (((-3 (-1275 |#1|) "failed") (-1275 |#2|) |#2|) 49 (|has| |#1| (-367)))) (-3178 (((-112) (-1275 |#2|)) 33)) (-4284 (((-3 (-1275 |#1|) "failed") (-1275 |#2|)) 40)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -3178 ((-112) (-1275 |#2|))) (-15 -4284 ((-3 (-1275 |#1|) "failed") (-1275 |#2|))) (IF (|has| |#1| (-367)) (-15 -3170 ((-3 (-1275 |#1|) "failed") (-1275 |#2|) |#2|)) (-15 -3170 ((-3 (-1275 (-412 |#1|)) "failed") (-1275 |#2|) |#2|)))) (-561) (-644 |#1|)) (T -643))
+((-3170 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5)) (-1749 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1275 (-412 *5))) (-5 *1 (-643 *5 *4)))) (-3170 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-1275 *5)) (-5 *1 (-643 *5 *4)))) (-4284 (*1 *2 *3) (|partial| -12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-1275 *4)) (-5 *1 (-643 *4 *5)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-643 *4 *5)))))
+(-10 -7 (-15 -3178 ((-112) (-1275 |#2|))) (-15 -4284 ((-3 (-1275 |#1|) "failed") (-1275 |#2|))) (IF (|has| |#1| (-367)) (-15 -3170 ((-3 (-1275 |#1|) "failed") (-1275 |#2|) |#2|)) (-15 -3170 ((-3 (-1275 (-412 |#1|)) "failed") (-1275 |#2|) |#2|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2957 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 39)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-644 |#1|) (-140) (-1057)) (T -644))
+((-2957 (*1 *2 *3) (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1057)) (-5 *2 (-694 *4)))) (-2957 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *1)) (-5 *4 (-1275 *1)) (-4 *1 (-644 *5)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 *5)))))))
+(-13 (-1057) (-10 -8 (-15 -2957 ((-694 |t#1|) (-694 $))) (-15 -2957 ((-2 (|:| -1863 (-694 |t#1|)) (|:| |vec| (-1275 |t#1|))) (-694 $) (-1275 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-645 |#1|) (-140) (-1066)) (T -645))
+NIL
+(-13 (-651 |t#1|) (-1059 |t#1|))
+(((-102) . T) ((-618 (-867)) . T) ((-651 |#1|) . T) ((-1059 |#1|) . T) ((-1108) . T))
+((-4148 ((|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|) 17) ((|#2| (-649 |#1|) (-649 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|)) 12)))
+(((-646 |#1| |#2|) (-10 -7 (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)))) (-1108) (-1225)) (T -646))
+((-4148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) (-4148 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *1 (-646 *5 *6)))) (-4148 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1108)) (-4 *5 (-1225)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6)))))
+(-10 -7 (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|))))
+((-1610 (((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 16)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 18)) (-1346 (((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)) 13)))
+(((-647 |#1| |#2|) (-10 -7 (-15 -1610 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) (-1225) (-1225)) (T -647))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-647 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5)))))
+(-10 -7 (-15 -1610 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|))))
+((-1346 (((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)) 21)))
+(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)))) (-1225) (-1225) (-1225)) (T -648))
+((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-649 *6)) (-5 *5 (-649 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-649 *8)) (-5 *1 (-648 *6 *7 *8)))))
+(-10 -7 (-15 -1346 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "rest" $) NIL (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-3440 (($ $ $) 37 (|has| |#1| (-1108)))) (-3429 (($ $ $) 41 (|has| |#1| (-1108)))) (-3418 (($ $ $) 44 (|has| |#1| (-1108)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3525 (($ $) 23) (($ $ (-776)) NIL)) (-2017 (($ $) NIL (|has| |#1| (-1108)))) (-3550 (($ $) 36 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108))) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1738 (((-112) $) 11)) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3057 (($) 9 T CONST)) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4198 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3382 (($ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) 20) (($ $ (-776)) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) 39)) (-3635 (($) 38)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) 42) ((|#1| $ (-569) |#1|) NIL)) (-2602 (((-569) $ $) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3966 (((-112) $) NIL)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 53 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-3748 (($ |#1| $) 12)) (-2866 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2443 (($ $ $) 35) (($ |#1| $) 43) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1854 (($ $ $) 13)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3266 (((-1167) $) 31 (|has| |#1| (-833))) (((-1167) $ (-112)) 32 (|has| |#1| (-833))) (((-1280) (-827) $) 33 (|has| |#1| (-833))) (((-1280) (-827) $ (-112)) 34 (|has| |#1| (-833)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-649 |#1|) (-13 (-671 |#1|) (-10 -8 (-15 -3057 ($) -3709) (-15 -1738 ((-112) $)) (-15 -3748 ($ |#1| $)) (-15 -1854 ($ $ $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -3440 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3418 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-1225)) (T -649))
+((-3057 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1225)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))) (-1854 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))) (-3440 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))) (-3429 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))) (-3418 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))))
+(-13 (-671 |#1|) (-10 -8 (-15 -3057 ($) -3709) (-15 -1738 ((-112) $)) (-15 -3748 ($ |#1| $)) (-15 -1854 ($ $ $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -3440 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3418 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11) (($ (-1190)) NIL) (((-1190) $) NIL) ((|#1| $) 8)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-650 |#1|) (-13 (-1091) (-618 |#1|)) (-1108)) (T -650))
+NIL
+(-13 (-1091) (-618 |#1|))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-651 |#1|) (-140) (-1066)) (T -651))
+((-1804 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066)))))
+(-13 (-1108) (-10 -8 (-15 (-1804) ($) -3709) (-15 -4143 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3537 (($ |#1| |#1| $) 46)) (-3914 (((-112) $ (-776)) NIL)) (-1796 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2017 (($ $) 48)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) 59 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 9 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 37)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 50)) (-3894 (($ |#1| $) 29) (($ |#1| $ (-776)) 45)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1781 ((|#1| $) 53)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 23)) (-3635 (($) 28)) (-1617 (((-112) $) 57)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 69)) (-2434 (($) 26) (($ (-649 |#1|)) 19)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) 66 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 20)) (-1410 (((-541) $) 34 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-3796 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 24)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 71 (|has| |#1| (-1108)))) (-2428 (((-776) $) 17 (|has| $ (-6 -4447)))))
+(((-652 |#1|) (-13 (-700 |#1|) (-10 -8 (-6 -4447) (-15 -1617 ((-112) $)) (-15 -3537 ($ |#1| |#1| $)))) (-1108)) (T -652))
+((-1617 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1108)))) (-3537 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1108)))))
+(-13 (-700 |#1|) (-10 -8 (-6 -4447) (-15 -1617 ((-112) $)) (-15 -3537 ($ |#1| |#1| $))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27)))
+(((-653 |#1|) (-140) (-1066)) (T -653))
NIL
(-13 (-21) (-651 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776) $) 17)) (-4173 (($ $ |#1|) 69)) (-4380 (($ $) 39)) (-2248 (($ $) 37)) (-4378 (((-3 |#1| "failed") $) 61)) (-3148 ((|#1| $) NIL)) (-3242 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2808 (((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569)) 56)) (-3252 ((|#1| $ (-569)) 35)) (-3372 ((|#2| $ (-569)) 34)) (-1854 (($ (-1 |#1| |#1|) $) 41)) (-3863 (($ (-1 |#2| |#2|) $) 47)) (-4282 (($) 11)) (-3623 (($ |#1| |#2|) 24)) (-3502 (($ (-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|)))) 25)) (-3732 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|))) $) 14)) (-4077 (($ |#1| $) 71)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3970 (((-112) $ $) 76)) (-3793 (((-867) $) 21) (($ |#1|) 18)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 27)))
-(((-654 |#1| |#2| |#3|) (-13 (-1106) (-1044 |#1|) (-10 -8 (-15 -2808 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -3732 ((-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|))) $)) (-15 -3623 ($ |#1| |#2|)) (-15 -3502 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|))))) (-15 -3372 (|#2| $ (-569))) (-15 -3252 (|#1| $ (-569))) (-15 -2248 ($ $)) (-15 -4380 ($ $)) (-15 -3470 ((-776) $)) (-15 -4282 ($)) (-15 -4173 ($ $ |#1|)) (-15 -4077 ($ |#1| $)) (-15 -3242 ($ |#1| |#2| $)) (-15 -3242 ($ $ $)) (-15 -3970 ((-112) $ $)) (-15 -3863 ($ (-1 |#2| |#2|) $)) (-15 -1854 ($ (-1 |#1| |#1|) $)))) (-1106) (-23) |#2|) (T -654))
-((-2808 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867)) (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1106)) (-4 *6 (-23)) (-14 *7 *6))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 *4)))) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))) (-3623 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 *4)))) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5)) (-4 *4 (-1106)) (-14 *5 *2))) (-3252 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-1106)) (-5 *1 (-654 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))) (-4282 (*1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4173 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-4077 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3242 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3242 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23)) (-14 *4 *3))) (-3970 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))) (-3863 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)))) (-1854 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-654 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1106) (-1044 |#1|) (-10 -8 (-15 -2808 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -3732 ((-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|))) $)) (-15 -3623 ($ |#1| |#2|)) (-15 -3502 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4386 |#2|))))) (-15 -3372 (|#2| $ (-569))) (-15 -3252 (|#1| $ (-569))) (-15 -2248 ($ $)) (-15 -4380 ($ $)) (-15 -3470 ((-776) $)) (-15 -4282 ($)) (-15 -4173 ($ $ |#1|)) (-15 -4077 ($ |#1| $)) (-15 -3242 ($ |#1| |#2| $)) (-15 -3242 ($ $ $)) (-15 -3970 ((-112) $ $)) (-15 -3863 ($ (-1 |#2| |#2|) $)) (-15 -1854 ($ (-1 |#1| |#1|) $))))
-((-1535 (((-569) $) 31)) (-4294 (($ |#2| $ (-569)) 27) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) 12)) (-3748 (((-112) (-569) $) 18)) (-2441 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-649 $)) NIL)))
-(((-655 |#1| |#2|) (-10 -8 (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -2441 (|#1| (-649 |#1|))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1535 ((-569) |#1|)) (-15 -1755 ((-649 (-569)) |#1|)) (-15 -3748 ((-112) (-569) |#1|))) (-656 |#2|) (-1223)) (T -655))
-NIL
-(-10 -8 (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -2441 (|#1| (-649 |#1|))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -1535 ((-569) |#1|)) (-15 -1755 ((-649 (-569)) |#1|)) (-15 -3748 ((-112) (-569) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3547 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 52)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 43 (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4420 (($ $ |#1|) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 71)) (-2441 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-656 |#1|) (-140) (-1223)) (T -656))
-((-4295 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-2441 (*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-2441 (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-1344 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-4325 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-4325 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-4294 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1223)))) (-4294 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))) (-3940 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1240 (-569))) (|has| *1 (-6 -4445)) (-4 *1 (-656 *2)) (-4 *2 (-1223)))))
-(-13 (-609 (-569) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4295 ($ (-776) |t#1|)) (-15 -2441 ($ $ |t#1|)) (-15 -2441 ($ |t#1| $)) (-15 -2441 ($ $ $)) (-15 -2441 ($ (-649 $))) (-15 -1344 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1866 ($ $ (-1240 (-569)))) (-15 -4325 ($ $ (-569))) (-15 -4325 ($ $ (-1240 (-569)))) (-15 -4294 ($ |t#1| $ (-569))) (-15 -4294 ($ $ $ (-569))) (IF (|has| $ (-6 -4445)) (-15 -3940 (|t#1| $ (-1240 (-569)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-2912 (((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-649 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) "failed") |#3| |#2| (-1183)) 44)))
-(((-657 |#1| |#2| |#3|) (-10 -7 (-15 -2912 ((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) "failed") |#3| |#2| (-1183))) (-15 -2912 ((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-649 |#2|)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965)) (-661 |#2|)) (T -657))
-((-2912 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2)))) (-2912 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1208) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1903 (-649 *4)))) (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4)))))
-(-10 -7 (-15 -2912 ((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) "failed") |#3| |#2| (-1183))) (-15 -2912 ((-3 |#2| "failed") |#3| |#2| (-1183) |#2| (-649 |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-367)))) (-2798 (($ $ $) NIL (|has| |#1| (-367)))) (-2885 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-367)))) (-1853 (($ $ $) NIL (|has| |#1| (-367)))) (-3841 (($ $ $) NIL (|has| |#1| (-367)))) (-3383 (($ $ $) NIL (|has| |#1| (-367)))) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-3499 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3326 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457)))) (-2623 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) NIL)) (-3153 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-4323 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-3712 (((-776) $) NIL)) (-4172 (($ $ $) NIL (|has| |#1| (-367)))) (-4232 (($ $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ $) NIL (|has| |#1| (-367)))) (-4008 (($ $ $) NIL (|has| |#1| (-367)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-4084 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3240 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1866 ((|#1| $ |#1|) NIL)) (-2987 (($ $ $) NIL (|has| |#1| (-367)))) (-3868 (((-776) $) NIL)) (-3479 ((|#1| $) NIL (|has| |#1| (-457)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-3448 ((|#1| $ |#1| |#1|) NIL)) (-4367 (($ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($) NIL)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776) $) 17)) (-4285 (($ $ |#1|) 69)) (-2507 (($ $) 39)) (-2251 (($ $) 37)) (-4381 (((-3 |#1| "failed") $) 61)) (-3150 ((|#1| $) NIL)) (-3245 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3548 (((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569)) 56)) (-3522 ((|#1| $ (-569)) 35)) (-2114 ((|#2| $ (-569)) 34)) (-3196 (($ (-1 |#1| |#1|) $) 41)) (-4308 (($ (-1 |#2| |#2|) $) 47)) (-2865 (($) 11)) (-2618 (($ |#1| |#2|) 24)) (-4010 (($ (-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|)))) 25)) (-2447 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $) 14)) (-1519 (($ |#1| $) 71)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2849 (((-112) $ $) 76)) (-3796 (((-867) $) 21) (($ |#1|) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 27)))
+(((-654 |#1| |#2| |#3|) (-13 (-1108) (-1046 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -2447 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $)) (-15 -2618 ($ |#1| |#2|)) (-15 -4010 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))))) (-15 -2114 (|#2| $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2251 ($ $)) (-15 -2507 ($ $)) (-15 -3473 ((-776) $)) (-15 -2865 ($)) (-15 -4285 ($ $ |#1|)) (-15 -1519 ($ |#1| $)) (-15 -3245 ($ |#1| |#2| $)) (-15 -3245 ($ $ $)) (-15 -2849 ((-112) $ $)) (-15 -4308 ($ (-1 |#2| |#2|) $)) (-15 -3196 ($ (-1 |#1| |#1|) $)))) (-1108) (-23) |#2|) (T -654))
+((-3548 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867)) (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1108)) (-4 *6 (-23)) (-14 *7 *6))) (-2447 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4))) (-2618 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5)) (-4 *4 (-1108)) (-14 *5 *2))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-1108)) (-5 *1 (-654 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2251 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-2507 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4))) (-2865 (*1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-4285 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-1519 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-3245 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-3245 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-2849 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4))) (-4308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-654 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1108) (-1046 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -2447 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $)) (-15 -2618 ($ |#1| |#2|)) (-15 -4010 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))))) (-15 -2114 (|#2| $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2251 ($ $)) (-15 -2507 ($ $)) (-15 -3473 ((-776) $)) (-15 -2865 ($)) (-15 -4285 ($ $ |#1|)) (-15 -1519 ($ |#1| $)) (-15 -3245 ($ |#1| |#2| $)) (-15 -3245 ($ $ $)) (-15 -2849 ((-112) $ $)) (-15 -4308 ($ (-1 |#2| |#2|) $)) (-15 -3196 ($ (-1 |#1| |#1|) $))))
+((-3256 (((-569) $) 31)) (-4298 (($ |#2| $ (-569)) 27) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) 12)) (-1414 (((-112) (-569) $) 18)) (-2443 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-649 $)) NIL)))
+(((-655 |#1| |#2|) (-10 -8 (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3256 ((-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -1414 ((-112) (-569) |#1|))) (-656 |#2|) (-1225)) (T -655))
+NIL
+(-10 -8 (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3256 ((-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -1414 ((-112) (-569) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-656 |#1|) (-140) (-1225)) (T -656))
+((-4300 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-2443 (*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-4298 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-4298 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1242 (-569))) (|has| *1 (-6 -4448)) (-4 *1 (-656 *2)) (-4 *2 (-1225)))))
+(-13 (-609 (-569) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4300 ($ (-776) |t#1|)) (-15 -2443 ($ $ |t#1|)) (-15 -2443 ($ |t#1| $)) (-15 -2443 ($ $ $)) (-15 -2443 ($ (-649 $))) (-15 -1346 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1869 ($ $ (-1242 (-569)))) (-15 -4328 ($ $ (-569))) (-15 -4328 ($ $ (-1242 (-569)))) (-15 -4298 ($ |t#1| $ (-569))) (-15 -4298 ($ $ $ (-569))) (IF (|has| $ (-6 -4448)) (-15 -3943 (|t#1| $ (-1242 (-569)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-3218 (((-3 |#2| "failed") |#3| |#2| (-1185) |#2| (-649 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) "failed") |#3| |#2| (-1185)) 44)))
+(((-657 |#1| |#2| |#3|) (-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) "failed") |#3| |#2| (-1185))) (-15 -3218 ((-3 |#2| "failed") |#3| |#2| (-1185) |#2| (-649 |#2|)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965)) (-661 |#2|)) (T -657))
+((-3218 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1185)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1210) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4)))) (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4)))))
+(-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) "failed") |#3| |#2| (-1185))) (-15 -3218 ((-3 |#2| "failed") |#3| |#2| (-1185) |#2| (-649 |#2|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-367)))) (-3438 (($ $ $) NIL (|has| |#1| (-367)))) (-3050 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) NIL)) (-2691 (($ $ $) NIL (|has| |#1| (-367)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) NIL)) (-2390 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-658 |#1|) (-661 |#1|) (-234)) (T -658))
NIL
(-661 |#1|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-367)))) (-2798 (($ $ $) NIL (|has| |#1| (-367)))) (-2885 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-367)))) (-1853 (($ $ $) NIL (|has| |#1| (-367)))) (-3841 (($ $ $) NIL (|has| |#1| (-367)))) (-3383 (($ $ $) NIL (|has| |#1| (-367)))) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-3499 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3326 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457)))) (-2623 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) NIL)) (-3153 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-4323 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-3712 (((-776) $) NIL)) (-4172 (($ $ $) NIL (|has| |#1| (-367)))) (-4232 (($ $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ $) NIL (|has| |#1| (-367)))) (-4008 (($ $ $) NIL (|has| |#1| (-367)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-4084 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3240 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1866 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2987 (($ $ $) NIL (|has| |#1| (-367)))) (-3868 (((-776) $) NIL)) (-3479 ((|#1| $) NIL (|has| |#1| (-457)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-3448 ((|#1| $ |#1| |#1|) NIL)) (-4367 (($ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($) NIL)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-659 |#1| |#2|) (-13 (-661 |#1|) (-289 |#2| |#2|)) (-234) (-13 (-653 |#1|) (-10 -8 (-15 -3514 ($ $))))) (T -659))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-367)))) (-3438 (($ $ $) NIL (|has| |#1| (-367)))) (-3050 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2691 (($ $ $) NIL (|has| |#1| (-367)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) NIL)) (-2390 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-659 |#1| |#2|) (-13 (-661 |#1|) (-289 |#2| |#2|)) (-234) (-13 (-653 |#1|) (-10 -8 (-15 -3517 ($ $))))) (T -659))
NIL
(-13 (-661 |#1|) (-289 |#2| |#2|))
-((-3844 (($ $) 29)) (-4367 (($ $) 27)) (-2830 (($) 13)))
-(((-660 |#1| |#2|) (-10 -8 (-15 -3844 (|#1| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 -2830 (|#1|))) (-661 |#2|) (-1055)) (T -660))
-NIL
-(-10 -8 (-15 -3844 (|#1| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 -2830 (|#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3844 (($ $) 87 (|has| |#1| (-367)))) (-2798 (($ $ $) 89 (|has| |#1| (-367)))) (-2885 (($ $ (-776)) 88 (|has| |#1| (-367)))) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1768 (($ $ $) 50 (|has| |#1| (-367)))) (-1853 (($ $ $) 51 (|has| |#1| (-367)))) (-3841 (($ $ $) 53 (|has| |#1| (-367)))) (-3383 (($ $ $) 48 (|has| |#1| (-367)))) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 47 (|has| |#1| (-367)))) (-3499 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-3326 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 52 (|has| |#1| (-367)))) (-4378 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3148 (((-569) $) 79 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 75)) (-1879 (($ $) 69)) (-2888 (((-3 $ "failed") $) 37)) (-4260 (($ $) 60 (|has| |#1| (-457)))) (-2623 (((-112) $) 35)) (-3920 (($ |#1| (-776)) 67)) (-3153 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 62 (|has| |#1| (-561)))) (-4323 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63 (|has| |#1| (-561)))) (-3712 (((-776) $) 71)) (-4172 (($ $ $) 57 (|has| |#1| (-367)))) (-4232 (($ $ $) 58 (|has| |#1| (-367)))) (-3152 (($ $ $) 46 (|has| |#1| (-367)))) (-4008 (($ $ $) 55 (|has| |#1| (-367)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 54 (|has| |#1| (-367)))) (-4084 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-3240 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 59 (|has| |#1| (-367)))) (-1855 ((|#1| $) 70)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-1866 ((|#1| $ |#1|) 92)) (-2987 (($ $ $) 86 (|has| |#1| (-367)))) (-3868 (((-776) $) 72)) (-3479 ((|#1| $) 61 (|has| |#1| (-457)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 73)) (-2836 (((-649 |#1|) $) 66)) (-4184 ((|#1| $ (-776)) 68)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-3448 ((|#1| $ |#1| |#1|) 65)) (-4367 (($ $) 90)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($) 91)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-661 |#1|) (-140) (-1055)) (T -661))
-((-2830 (*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)))) (-4367 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)))) (-2798 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1055)) (-4 *3 (-367)))) (-3844 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2987 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(-13 (-857 |t#1|) (-289 |t#1| |t#1|) (-10 -8 (-15 -2830 ($)) (-15 -4367 ($ $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -2798 ($ $ $)) (-15 -2885 ($ $ (-776))) (-15 -3844 ($ $)) (-15 -2987 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-289 |#1| |#1|) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-857 |#1|) . T))
-((-2666 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 87 (|has| |#1| (-27)))) (-3796 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 86 (|has| |#1| (-27))) (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 19)))
-(((-662 |#1| |#2|) (-10 -7 (-15 -3796 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3796 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -2666 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|)) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -662))
-((-2666 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-658 (-412 *6)))) (-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-412 *6))))))
-(-10 -7 (-15 -3796 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3796 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -2666 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-367)))) (-2798 (($ $ $) 28 (|has| |#1| (-367)))) (-2885 (($ $ (-776)) 31 (|has| |#1| (-367)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-367)))) (-1853 (($ $ $) NIL (|has| |#1| (-367)))) (-3841 (($ $ $) NIL (|has| |#1| (-367)))) (-3383 (($ $ $) NIL (|has| |#1| (-367)))) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-3499 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3326 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457)))) (-2623 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) NIL)) (-3153 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-4323 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-3712 (((-776) $) NIL)) (-4172 (($ $ $) NIL (|has| |#1| (-367)))) (-4232 (($ $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ $) NIL (|has| |#1| (-367)))) (-4008 (($ $ $) NIL (|has| |#1| (-367)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-4084 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3240 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1866 ((|#1| $ |#1|) 24)) (-2987 (($ $ $) 33 (|has| |#1| (-367)))) (-3868 (((-776) $) NIL)) (-3479 ((|#1| $) NIL (|has| |#1| (-457)))) (-3793 (((-867) $) 20) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-3448 ((|#1| $ |#1| |#1|) 23)) (-4367 (($ $) NIL)) (-1803 (($) 21 T CONST)) (-1813 (($) 8 T CONST)) (-2830 (($) NIL)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-663 |#1| |#2|) (-661 |#1|) (-1055) (-1 |#1| |#1|)) (T -663))
+((-4135 (($ $) 29)) (-2390 (($ $) 27)) (-2832 (($) 13)))
+(((-660 |#1| |#2|) (-10 -8 (-15 -4135 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2832 (|#1|))) (-661 |#2|) (-1057)) (T -660))
+NIL
+(-10 -8 (-15 -4135 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2832 (|#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-4135 (($ $) 87 (|has| |#1| (-367)))) (-3438 (($ $ $) 89 (|has| |#1| (-367)))) (-3050 (($ $ (-776)) 88 (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3708 (($ $ $) 50 (|has| |#1| (-367)))) (-3187 (($ $ $) 51 (|has| |#1| (-367)))) (-4124 (($ $ $) 53 (|has| |#1| (-367)))) (-2200 (($ $ $) 48 (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 47 (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 52 (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3150 (((-569) $) 79 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 75)) (-1883 (($ $) 69)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 60 (|has| |#1| (-457)))) (-2349 (((-112) $) 35)) (-3923 (($ |#1| (-776)) 67)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 62 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63 (|has| |#1| (-561)))) (-2272 (((-776) $) 71)) (-4276 (($ $ $) 57 (|has| |#1| (-367)))) (-3662 (($ $ $) 58 (|has| |#1| (-367)))) (-3768 (($ $ $) 46 (|has| |#1| (-367)))) (-2036 (($ $ $) 55 (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 54 (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 59 (|has| |#1| (-367)))) (-1857 ((|#1| $) 70)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) 92)) (-2691 (($ $ $) 86 (|has| |#1| (-367)))) (-4339 (((-776) $) 72)) (-3833 ((|#1| $) 61 (|has| |#1| (-457)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 73)) (-2512 (((-649 |#1|) $) 66)) (-4383 ((|#1| $ (-776)) 68)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-3451 ((|#1| $ |#1| |#1|) 65)) (-2390 (($ $) 90)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($) 91)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-661 |#1|) (-140) (-1057)) (T -661))
+((-2832 (*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)))) (-2390 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)))) (-3438 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1057)) (-4 *3 (-367)))) (-4135 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2691 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(-13 (-857 |t#1|) (-289 |t#1| |t#1|) (-10 -8 (-15 -2832 ($)) (-15 -2390 ($ $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -3438 ($ $ $)) (-15 -3050 ($ $ (-776))) (-15 -4135 ($ $)) (-15 -2691 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-289 |#1| |#1|) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-857 |#1|) . T))
+((-1554 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 87 (|has| |#1| (-27)))) (-3800 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 86 (|has| |#1| (-27))) (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 19)))
+(((-662 |#1| |#2|) (-10 -7 (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -1554 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|)) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -662))
+((-1554 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-658 (-412 *6)))) (-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-412 *6))))))
+(-10 -7 (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -1554 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-367)))) (-3438 (($ $ $) 28 (|has| |#1| (-367)))) (-3050 (($ $ (-776)) 31 (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) 24)) (-2691 (($ $ $) 33 (|has| |#1| (-367)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) 20) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) 23)) (-2390 (($ $) NIL)) (-1804 (($) 21 T CONST)) (-1815 (($) 8 T CONST)) (-2832 (($) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-663 |#1| |#2|) (-661 |#1|) (-1057) (-1 |#1| |#1|)) (T -663))
NIL
(-661 |#1|)
-((-2798 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2885 ((|#2| |#2| (-776) (-1 |#1| |#1|)) 48)) (-2987 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
-(((-664 |#1| |#2|) (-10 -7 (-15 -2798 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2885 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2987 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -664))
-((-2987 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4)))) (-2885 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5)))) (-2798 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4)))))
-(-10 -7 (-15 -2798 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2885 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2987 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3438 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-3050 ((|#2| |#2| (-776) (-1 |#1| |#1|)) 48)) (-2691 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
+(((-664 |#1| |#2|) (-10 -7 (-15 -3438 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3050 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2691 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -664))
+((-2691 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4)))) (-3050 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5)))) (-3438 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4)))))
+(-10 -7 (-15 -3438 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3050 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2691 (|#2| |#2| |#2| (-1 |#1| |#1|))))
((-4419 (($ $ $) 9)))
(((-665 |#1|) (-10 -8 (-15 -4419 (|#1| |#1| |#1|))) (-666)) (T -665))
NIL
(-10 -8 (-15 -4419 (|#1| |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-2436 (($ $) 10)) (-4419 (($ $ $) 8)) (-2919 (((-112) $ $) 6)) (-4404 (($ $ $) 9)))
+((-2417 (((-112) $ $) 7)) (-2436 (($ $) 10)) (-4419 (($ $ $) 8)) (-2920 (((-112) $ $) 6)) (-4406 (($ $ $) 9)))
(((-666) (-140)) (T -666))
-((-2436 (*1 *1 *1) (-4 *1 (-666))) (-4404 (*1 *1 *1 *1) (-4 *1 (-666))) (-4419 (*1 *1 *1 *1) (-4 *1 (-666))))
-(-13 (-102) (-10 -8 (-15 -2436 ($ $)) (-15 -4404 ($ $ $)) (-15 -4419 ($ $ $))))
+((-2436 (*1 *1 *1) (-4 *1 (-666))) (-4406 (*1 *1 *1 *1) (-4 *1 (-666))) (-4419 (*1 *1 *1 *1) (-4 *1 (-666))))
+(-13 (-102) (-10 -8 (-15 -2436 ($ $)) (-15 -4406 ($ $ $)) (-15 -4419 ($ $ $))))
(((-102) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 15)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4396 ((|#1| $) 23)) (-3377 (($ $ $) NIL (|has| |#1| (-796)))) (-3969 (($ $ $) NIL (|has| |#1| (-796)))) (-1550 (((-1165) $) 48)) (-3545 (((-1126) $) NIL)) (-4409 ((|#3| $) 24)) (-3793 (((-867) $) 43)) (-1441 (((-112) $ $) 22)) (-1803 (($) 10 T CONST)) (-2976 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2919 (((-112) $ $) 20)) (-2964 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2942 (((-112) $ $) 26 (|has| |#1| (-796)))) (-3032 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3021 (($ $) 17) (($ $ $) NIL)) (-3009 (($ $ $) 29)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-667 |#1| |#2| |#3|) (-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -3032 ($ $ |#3|)) (-15 -3032 ($ |#1| |#3|)) (-15 -4396 (|#1| $)) (-15 -4409 (|#3| $)))) (-722 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -667))
-((-3032 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-3032 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-667 *2 *4 *3)) (-4 *2 (-722 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4396 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-667 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4409 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)))))
-(-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -3032 ($ $ |#3|)) (-15 -3032 ($ |#1| |#3|)) (-15 -4396 (|#1| $)) (-15 -4409 (|#3| $))))
-((-3089 (((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|)) 33)))
-(((-668 |#1|) (-10 -7 (-15 -3089 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|)))) (-915)) (T -668))
-((-3089 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *4))) (-5 *3 (-1179 *4)) (-4 *4 (-915)) (-5 *1 (-668 *4)))))
-(-10 -7 (-15 -3089 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3102 (((-649 |#1|) $) 84)) (-3766 (($ $ (-776)) 94)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1326 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 50)) (-4378 (((-3 (-677 |#1|) "failed") $) NIL)) (-3148 (((-677 |#1|) $) NIL)) (-1879 (($ $) 93)) (-3238 (((-776) $) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3345 (($ (-677 |#1|) |#2|) 70)) (-2308 (($ $) 89)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (((-1297 |#1| |#2|) (-1297 |#1| |#2|) $) 49)) (-3239 (((-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1846 (((-677 |#1|) $) NIL)) (-1855 ((|#2| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1723 (($ $ |#1| $) 32) (($ $ (-649 |#1|) (-649 $)) 34)) (-3868 (((-776) $) 91)) (-3806 (($ $ $) 20) (($ (-677 |#1|) (-677 |#1|)) 79) (($ (-677 |#1|) $) 77) (($ $ (-677 |#1|)) 78)) (-3793 (((-867) $) NIL) (($ |#1|) 76) (((-1288 |#1| |#2|) $) 60) (((-1297 |#1| |#2|) $) 43) (($ (-677 |#1|)) 27)) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-677 |#1|)) NIL)) (-1433 ((|#2| (-1297 |#1| |#2|) $) 45)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 23 T CONST)) (-2198 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1773 (((-3 $ "failed") (-1288 |#1| |#2|)) 62)) (-2129 (($ (-677 |#1|)) 14)) (-2919 (((-112) $ $) 46)) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $) 68) (($ $ $) NIL)) (-3009 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-677 |#1|)) NIL)))
-(((-669 |#1| |#2|) (-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -1773 ((-3 $ "failed") (-1288 |#1| |#2|))) (-15 -3806 ($ (-677 |#1|) (-677 |#1|))) (-15 -3806 ($ (-677 |#1|) $)) (-15 -3806 ($ $ (-677 |#1|))))) (-855) (-173)) (T -669))
-((-1773 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-669 *3 *4)))) (-3806 (*1 *1 *2 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3806 (*1 *1 *2 *1) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))))
-(-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -1773 ((-3 $ "failed") (-1288 |#1| |#2|))) (-15 -3806 ($ (-677 |#1|) (-677 |#1|))) (-15 -3806 ($ (-677 |#1|) $)) (-15 -3806 ($ $ (-677 |#1|)))))
-((-2031 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3012 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4101 (($ (-1 (-112) |#2|) $) 29)) (-4380 (($ $) 67)) (-3041 (($ $) 78)) (-3463 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3596 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-4034 (((-569) |#2| $ (-569)) 75) (((-569) |#2| $) NIL) (((-569) (-1 (-112) |#2|) $) 56)) (-4295 (($ (-776) |#2|) 65)) (-2616 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2126 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1344 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3379 (($ |#2|) 15)) (-3813 (($ $ $ (-569)) 42) (($ |#2| $ (-569)) 40)) (-3123 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-4198 (($ $ (-1240 (-569))) 51) (($ $ (-569)) 44)) (-1938 (($ $ $ (-569)) 74)) (-3959 (($ $) 72)) (-2942 (((-112) $ $) 80)))
-(((-670 |#1| |#2|) (-10 -8 (-15 -3379 (|#1| |#2|)) (-15 -4198 (|#1| |#1| (-569))) (-15 -4198 (|#1| |#1| (-1240 (-569)))) (-15 -3463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3813 (|#1| |#2| |#1| (-569))) (-15 -3813 (|#1| |#1| |#1| (-569))) (-15 -2616 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3463 (|#1| |#2| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -2616 (|#1| |#1| |#1|)) (-15 -2126 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2031 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4034 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -4034 ((-569) |#2| |#1|)) (-15 -4034 ((-569) |#2| |#1| (-569))) (-15 -2126 (|#1| |#1| |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -1938 (|#1| |#1| |#1| (-569))) (-15 -4380 (|#1| |#1|)) (-15 -3012 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3123 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4295 (|#1| (-776) |#2|)) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1|))) (-671 |#2|) (-1223)) (T -670))
-NIL
-(-10 -8 (-15 -3379 (|#1| |#2|)) (-15 -4198 (|#1| |#1| (-569))) (-15 -4198 (|#1| |#1| (-1240 (-569)))) (-15 -3463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3813 (|#1| |#2| |#1| (-569))) (-15 -3813 (|#1| |#1| |#1| (-569))) (-15 -2616 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3463 (|#1| |#2| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -2616 (|#1| |#1| |#1|)) (-15 -2126 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2031 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4034 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -4034 ((-569) |#2| |#1|)) (-15 -4034 ((-569) |#2| |#1| (-569))) (-15 -2126 (|#1| |#1| |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -1938 (|#1| |#1| |#1| (-569))) (-15 -4380 (|#1| |#1|)) (-15 -3012 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3596 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3123 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4295 (|#1| (-776) |#2|)) (-15 -1344 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-2561 ((|#1| $) 66)) (-1566 (($ $) 68)) (-4321 (((-1278) $ (-569) (-569)) 98 (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) 53 (|has| $ (-6 -4445)))) (-2031 (((-112) $) 143 (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3012 (($ $) 147 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4445)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4445)))) (-3355 (($ $) 142 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-4382 (($ $ $) 57 (|has| $ (-6 -4445)))) (-1716 ((|#1| $ |#1|) 55 (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) 59 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4445))) (($ $ "rest" $) 56 (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 118 (|has| $ (-6 -4445))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-4101 (($ (-1 (-112) |#1|) $) 130)) (-1415 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4444)))) (-2548 ((|#1| $) 67)) (-4188 (($) 7 T CONST)) (-4380 (($ $) 145 (|has| $ (-6 -4445)))) (-2248 (($ $) 135)) (-3522 (($ $) 74) (($ $ (-776)) 72)) (-3041 (($ $) 132 (|has| |#1| (-1106)))) (-3547 (($ $) 100 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ |#1| $) 131 (|has| |#1| (-1106))) (($ (-1 (-112) |#1|) $) 126)) (-1696 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4444))) (($ |#1| $) 101 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3843 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 88)) (-1677 (((-112) $) 84)) (-4034 (((-569) |#1| $ (-569)) 140 (|has| |#1| (-1106))) (((-569) |#1| $) 139 (|has| |#1| (-1106))) (((-569) (-1 (-112) |#1|) $) 138)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-4295 (($ (-776) |#1|) 109)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 96 (|has| (-569) (-855)))) (-3377 (($ $ $) 148 (|has| |#1| (-855)))) (-2616 (($ $ $) 133 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-2126 (($ $ $) 141 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 95 (|has| (-569) (-855)))) (-3969 (($ $ $) 149 (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3379 (($ |#1|) 123)) (-2433 (((-112) $ (-776)) 10)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1722 ((|#1| $) 71) (($ $ (-776)) 69)) (-3813 (($ $ $ (-569)) 128) (($ |#1| $ (-569)) 127)) (-4294 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1755 (((-649 (-569)) $) 93)) (-3748 (((-112) (-569) $) 92)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 77) (($ $ (-776)) 75)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4420 (($ $ |#1|) 97 (|has| $ (-6 -4445)))) (-1807 (((-112) $) 85)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 91)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1240 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-3947 (((-569) $ $) 45)) (-4198 (($ $ (-1240 (-569))) 125) (($ $ (-569)) 124)) (-4325 (($ $ (-1240 (-569))) 115) (($ $ (-569)) 114)) (-2102 (((-112) $) 47)) (-1750 (($ $) 63)) (-1497 (($ $) 60 (|has| $ (-6 -4445)))) (-3754 (((-776) $) 64)) (-3866 (($ $) 65)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1938 (($ $ $ (-569)) 144 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 108)) (-1621 (($ $ $) 62) (($ $ |#1|) 61)) (-2441 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) 151 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 152 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2964 (((-112) $ $) 150 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 153 (|has| |#1| (-855)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-671 |#1|) (-140) (-1223)) (T -671))
-((-3379 (*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1223)))))
-(-13 (-1155 |t#1|) (-377 |t#1|) (-285 |t#1|) (-10 -8 (-15 -3379 ($ |t#1|))))
-(((-34) . T) ((-102) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-285 |#1|) . T) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1016 |#1|) . T) ((-1106) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1155 |#1|) . T) ((-1223) . T) ((-1261 |#1|) . T))
-((-2912 (((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|))))) (-649 (-649 |#1|)) (-649 (-1273 |#1|))) 22) (((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|))))) (-694 |#1|) (-649 (-1273 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-649 (-649 |#1|)) (-1273 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|)) 14)) (-3975 (((-776) (-694 |#1|) (-1273 |#1|)) 30)) (-4387 (((-3 (-1273 |#1|) "failed") (-694 |#1|) (-1273 |#1|)) 24)) (-1990 (((-112) (-694 |#1|) (-1273 |#1|)) 27)))
-(((-672 |#1|) (-10 -7 (-15 -2912 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|))) (-15 -2912 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-649 (-649 |#1|)) (-1273 |#1|))) (-15 -2912 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|))))) (-694 |#1|) (-649 (-1273 |#1|)))) (-15 -2912 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|))))) (-649 (-649 |#1|)) (-649 (-1273 |#1|)))) (-15 -4387 ((-3 (-1273 |#1|) "failed") (-694 |#1|) (-1273 |#1|))) (-15 -1990 ((-112) (-694 |#1|) (-1273 |#1|))) (-15 -3975 ((-776) (-694 |#1|) (-1273 |#1|)))) (-367)) (T -672))
-((-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-672 *5)))) (-1990 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-5 *2 (-112)) (-5 *1 (-672 *5)))) (-4387 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1273 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *1 (-672 *4)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -1903 (-649 (-1273 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -1903 (-649 (-1273 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -1903 (-649 (-1273 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1273 *5)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 *5) "failed")) (|:| -1903 (-649 (-1273 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1273 *5)))))
-(-10 -7 (-15 -2912 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|))) (-15 -2912 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-649 (-649 |#1|)) (-1273 |#1|))) (-15 -2912 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|))))) (-694 |#1|) (-649 (-1273 |#1|)))) (-15 -2912 ((-649 (-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|))))) (-649 (-649 |#1|)) (-649 (-1273 |#1|)))) (-15 -4387 ((-3 (-1273 |#1|) "failed") (-694 |#1|) (-1273 |#1|))) (-15 -1990 ((-112) (-694 |#1|) (-1273 |#1|))) (-15 -3975 ((-776) (-694 |#1|) (-1273 |#1|))))
-((-2912 (((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|)))) |#4| (-649 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|))) |#4| |#3|) 60)) (-3975 (((-776) |#4| |#3|) 18)) (-4387 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1990 (((-112) |#4| |#3|) 14)))
-(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2912 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|))) |#4| |#3|)) (-15 -2912 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -4387 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1990 ((-112) |#4| |#3|)) (-15 -3975 ((-776) |#4| |#3|))) (-367) (-13 (-377 |#1|) (-10 -7 (-6 -4445))) (-13 (-377 |#1|) (-10 -7 (-6 -4445))) (-692 |#1| |#2| |#3|)) (T -673))
-((-3975 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-5 *2 (-776)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-1990 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-5 *2 (-112)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-4387 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-367)) (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4445)))) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445)))) (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2)))) (-2912 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-5 *2 (-649 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1903 (-649 *7))))) (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7)) (-4 *3 (-692 *5 *6 *7)))) (-2912 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
-(-10 -7 (-15 -2912 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|))) |#4| |#3|)) (-15 -2912 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -4387 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1990 ((-112) |#4| |#3|)) (-15 -3975 ((-776) |#4| |#3|)))
-((-2058 (((-2 (|:| |particular| (-3 (-1273 (-412 |#4|)) "failed")) (|:| -1903 (-649 (-1273 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)) 52)))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2058 ((-2 (|:| |particular| (-3 (-1273 (-412 |#4|)) "failed")) (|:| -1903 (-649 (-1273 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)))) (-561) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -674))
-((-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 (-412 *8)) "failed")) (|:| -1903 (-649 (-1273 (-412 *8)))))) (-5 *1 (-674 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2058 ((-2 (|:| |particular| (-3 (-1273 (-412 |#4|)) "failed")) (|:| -1903 (-649 (-1273 (-412 |#4|))))) (-649 |#4|) (-649 |#3|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1934 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-3136 ((|#2| $) NIL)) (-4080 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2870 (((-1273 (-694 |#2|))) NIL) (((-1273 (-694 |#2|)) (-1273 $)) NIL)) (-4317 (((-112) $) NIL)) (-2897 (((-1273 $)) 44)) (-2716 (((-112) $ (-776)) NIL)) (-2931 (($ |#2|) NIL)) (-4188 (($) NIL T CONST)) (-4372 (($ $) NIL (|has| |#2| (-310)))) (-1486 (((-241 |#1| |#2|) $ (-569)) NIL)) (-2225 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-1856 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-4207 (((-694 |#2|)) NIL) (((-694 |#2|) (-1273 $)) NIL)) (-2667 ((|#2| $) NIL)) (-4023 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1273 $)) NIL)) (-3413 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-2788 (((-1179 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-3727 (($ $ (-927)) NIL)) (-2449 ((|#2| $) NIL)) (-2024 (((-1179 |#2|) $) NIL (|has| |#2| (-561)))) (-3161 ((|#2|) NIL) ((|#2| (-1273 $)) NIL)) (-3519 (((-1179 |#2|) $) NIL)) (-4051 (((-112)) NIL)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) NIL)) (-3390 (($ (-1273 |#2|)) NIL) (($ (-1273 |#2|) (-1273 $)) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3975 (((-776) $) NIL (|has| |#2| (-561))) (((-927)) 45)) (-3773 ((|#2| $ (-569) (-569)) NIL)) (-1816 (((-112)) NIL)) (-2760 (($ $ (-927)) NIL)) (-2880 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL)) (-2345 (((-776) $) NIL (|has| |#2| (-561)))) (-2250 (((-649 (-241 |#1| |#2|)) $) NIL (|has| |#2| (-561)))) (-3221 (((-776) $) NIL)) (-1325 (((-112)) NIL)) (-3234 (((-776) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3647 ((|#2| $) NIL (|has| |#2| (-6 (-4446 "*"))))) (-3856 (((-569) $) NIL)) (-1738 (((-569) $) NIL)) (-3040 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3744 (((-569) $) NIL)) (-1609 (((-569) $) NIL)) (-2428 (($ (-649 (-649 |#2|))) NIL)) (-3831 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3005 (((-649 (-649 |#2|)) $) NIL)) (-2317 (((-112)) NIL)) (-1575 (((-112)) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-2321 (((-3 (-2 (|:| |particular| $) (|:| -1903 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-1949 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-4298 (((-694 |#2|)) NIL) (((-694 |#2|) (-1273 $)) NIL)) (-2789 ((|#2| $) NIL)) (-4109 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1273 $)) NIL)) (-3508 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-2030 (((-1179 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-3627 (($ $ (-927)) NIL)) (-2551 ((|#2| $) NIL)) (-2123 (((-1179 |#2|) $) NIL (|has| |#2| (-561)))) (-3266 ((|#2|) NIL) ((|#2| (-1273 $)) NIL)) (-3635 (((-1179 |#2|) $) NIL)) (-4175 (((-112)) NIL)) (-1550 (((-1165) $) NIL)) (-4342 (((-112)) NIL)) (-1452 (((-112)) NIL)) (-1699 (((-112)) NIL)) (-1933 (((-3 $ "failed") $) NIL (|has| |#2| (-367)))) (-3545 (((-1126) $) NIL)) (-3930 (((-112)) NIL)) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-2911 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) 30) ((|#2| $ (-569)) NIL)) (-3514 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2572 ((|#2| $) NIL)) (-2823 (($ (-649 |#2|)) NIL)) (-4206 (((-112) $) NIL)) (-2706 (((-241 |#1| |#2|) $) NIL)) (-2458 ((|#2| $) NIL (|has| |#2| (-6 (-4446 "*"))))) (-3558 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3959 (($ $) NIL)) (-2960 (((-694 |#2|) (-1273 $)) NIL) (((-1273 |#2|) $) NIL) (((-694 |#2|) (-1273 $) (-1273 $)) NIL) (((-1273 |#2|) $ (-1273 $)) 33)) (-1408 (($ (-1273 |#2|)) NIL) (((-1273 |#2|) $) NIL)) (-3146 (((-649 (-958 |#2|))) NIL) (((-649 (-958 |#2|)) (-1273 $)) NIL)) (-2292 (($ $ $) NIL)) (-3399 (((-112)) NIL)) (-1363 (((-241 |#1| |#2|) $ (-569)) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) 43)) (-2220 (((-649 (-1273 |#2|))) NIL (|has| |#2| (-561)))) (-2358 (($ $ $ $) NIL)) (-3158 (((-112)) NIL)) (-3448 (($ (-694 |#2|) $) NIL)) (-3037 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3962 (((-112) $) NIL)) (-2205 (($ $ $) NIL)) (-3264 (((-112)) NIL)) (-4284 (((-112)) NIL)) (-3821 (((-112)) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) NIL) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-675 |#1| |#2|) (-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|)) (-927) (-173)) (T -675))
-NIL
-(-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3857 (((-649 (-1141)) $) 10)) (-3793 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-676) (-13 (-1089) (-10 -8 (-15 -3857 ((-649 (-1141)) $))))) (T -676))
-((-3857 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-676)))))
-(-13 (-1089) (-10 -8 (-15 -3857 ((-649 (-1141)) $))))
-((-2415 (((-112) $ $) NIL)) (-3102 (((-649 |#1|) $) NIL)) (-4407 (($ $) 62)) (-2120 (((-112) $) NIL)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-2938 (((-3 $ "failed") (-824 |#1|)) 27)) (-1968 (((-112) (-824 |#1|)) 17)) (-1869 (($ (-824 |#1|)) 28)) (-4032 (((-112) $ $) 36)) (-3842 (((-927) $) 43)) (-4395 (($ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3796 (((-649 $) (-824 |#1|)) 19)) (-3793 (((-867) $) 51) (($ |#1|) 40) (((-824 |#1|) $) 47) (((-682 |#1|) $) 52)) (-1441 (((-112) $ $) NIL)) (-2233 (((-59 (-649 $)) (-649 |#1|) (-927)) 67)) (-2146 (((-649 $) (-649 |#1|) (-927)) 72)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 63)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 46)))
-(((-677 |#1|) (-13 (-855) (-1044 |#1|) (-10 -8 (-15 -2120 ((-112) $)) (-15 -4395 ($ $)) (-15 -4407 ($ $)) (-15 -3842 ((-927) $)) (-15 -4032 ((-112) $ $)) (-15 -3793 ((-824 |#1|) $)) (-15 -3793 ((-682 |#1|) $)) (-15 -3796 ((-649 $) (-824 |#1|))) (-15 -1968 ((-112) (-824 |#1|))) (-15 -1869 ($ (-824 |#1|))) (-15 -2938 ((-3 $ "failed") (-824 |#1|))) (-15 -3102 ((-649 |#1|) $)) (-15 -2233 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -2146 ((-649 $) (-649 |#1|) (-927))))) (-855)) (T -677))
-((-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4395 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-4407 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4032 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-677 *4))) (-5 *1 (-677 *4)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112)) (-5 *1 (-677 *4)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-2938 (*1 *1 *2) (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2233 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5)))))
-(-13 (-855) (-1044 |#1|) (-10 -8 (-15 -2120 ((-112) $)) (-15 -4395 ($ $)) (-15 -4407 ($ $)) (-15 -3842 ((-927) $)) (-15 -4032 ((-112) $ $)) (-15 -3793 ((-824 |#1|) $)) (-15 -3793 ((-682 |#1|) $)) (-15 -3796 ((-649 $) (-824 |#1|))) (-15 -1968 ((-112) (-824 |#1|))) (-15 -1869 ($ (-824 |#1|))) (-15 -2938 ((-3 $ "failed") (-824 |#1|))) (-15 -3102 ((-649 |#1|) $)) (-15 -2233 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -2146 ((-649 $) (-649 |#1|) (-927)))))
-((-2185 ((|#2| $) 103)) (-1566 (($ $) 124)) (-2716 (((-112) $ (-776)) 35)) (-3522 (($ $) 112) (($ $ (-776)) 115)) (-1677 (((-112) $) 125)) (-4035 (((-649 $) $) 99)) (-3759 (((-112) $ $) 95)) (-1689 (((-112) $ (-776)) 33)) (-1420 (((-569) $) 69)) (-1535 (((-569) $) 68)) (-2433 (((-112) $ (-776)) 31)) (-2703 (((-112) $) 101)) (-1722 ((|#2| $) 116) (($ $ (-776)) 120)) (-4294 (($ $ $ (-569)) 86) (($ |#2| $ (-569)) 85)) (-1755 (((-649 (-569)) $) 67)) (-3748 (((-112) (-569) $) 61)) (-3510 ((|#2| $) NIL) (($ $ (-776)) 111)) (-2907 (($ $ (-569)) 128)) (-1807 (((-112) $) 127)) (-2911 (((-112) (-1 (-112) |#2|) $) 44)) (-3851 (((-649 |#2|) $) 48)) (-1866 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1240 (-569))) 82) ((|#2| $ (-569)) 59) ((|#2| $ (-569) |#2|) 60)) (-3947 (((-569) $ $) 94)) (-4325 (($ $ (-1240 (-569))) 81) (($ $ (-569)) 75)) (-2102 (((-112) $) 90)) (-1750 (($ $) 108)) (-3754 (((-776) $) 107)) (-3866 (($ $) 106)) (-3806 (($ (-649 |#2|)) 55)) (-4005 (($ $) 129)) (-3500 (((-649 $) $) 93)) (-3860 (((-112) $ $) 92)) (-3037 (((-112) (-1 (-112) |#2|) $) 43)) (-2919 (((-112) $ $) 20)) (-2426 (((-776) $) 41)))
-(((-678 |#1| |#2|) (-10 -8 (-15 -4005 (|#1| |#1|)) (-15 -2907 (|#1| |#1| (-569))) (-15 -1677 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -1866 (|#2| |#1| (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569))) (-15 -3851 ((-649 |#2|) |#1|)) (-15 -3748 ((-112) (-569) |#1|)) (-15 -1755 ((-649 (-569)) |#1|)) (-15 -1535 ((-569) |#1|)) (-15 -1420 ((-569) |#1|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -4325 (|#1| |#1| (-569))) (-15 -4325 (|#1| |#1| (-1240 (-569)))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -1750 (|#1| |#1|)) (-15 -3754 ((-776) |#1|)) (-15 -3866 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1722 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "last")) (-15 -1722 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-776))) (-15 -1866 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -3510 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -3759 ((-112) |#1| |#1|)) (-15 -3860 ((-112) |#1| |#1|)) (-15 -3947 ((-569) |#1| |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1866 (|#2| |#1| "value")) (-15 -2185 (|#2| |#1|)) (-15 -2703 ((-112) |#1|)) (-15 -4035 ((-649 |#1|) |#1|)) (-15 -3500 ((-649 |#1|) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776)))) (-679 |#2|) (-1223)) (T -678))
-NIL
-(-10 -8 (-15 -4005 (|#1| |#1|)) (-15 -2907 (|#1| |#1| (-569))) (-15 -1677 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -1866 (|#2| |#1| (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569))) (-15 -3851 ((-649 |#2|) |#1|)) (-15 -3748 ((-112) (-569) |#1|)) (-15 -1755 ((-649 (-569)) |#1|)) (-15 -1535 ((-569) |#1|)) (-15 -1420 ((-569) |#1|)) (-15 -3806 (|#1| (-649 |#2|))) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -4325 (|#1| |#1| (-569))) (-15 -4325 (|#1| |#1| (-1240 (-569)))) (-15 -4294 (|#1| |#2| |#1| (-569))) (-15 -4294 (|#1| |#1| |#1| (-569))) (-15 -1750 (|#1| |#1|)) (-15 -3754 ((-776) |#1|)) (-15 -3866 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1722 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "last")) (-15 -1722 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-776))) (-15 -1866 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -3510 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -3759 ((-112) |#1| |#1|)) (-15 -3860 ((-112) |#1| |#1|)) (-15 -3947 ((-569) |#1| |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1866 (|#2| |#1| "value")) (-15 -2185 (|#2| |#1|)) (-15 -2703 ((-112) |#1|)) (-15 -4035 ((-649 |#1|) |#1|)) (-15 -3500 ((-649 |#1|) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -2911 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776))))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-2561 ((|#1| $) 66)) (-1566 (($ $) 68)) (-4321 (((-1278) $ (-569) (-569)) 98 (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) 53 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-4382 (($ $ $) 57 (|has| $ (-6 -4445)))) (-1716 ((|#1| $ |#1|) 55 (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) 59 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4445))) (($ $ "rest" $) 56 (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 118 (|has| $ (-6 -4445))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 103)) (-2548 ((|#1| $) 67)) (-4188 (($) 7 T CONST)) (-2143 (($ $) 125)) (-3522 (($ $) 74) (($ $ (-776)) 72)) (-3547 (($ $) 100 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#1| $) 101 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 104)) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3843 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 88)) (-1677 (((-112) $) 84)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-2044 (((-776) $) 124)) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-4295 (($ (-776) |#1|) 109)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 96 (|has| (-569) (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 95 (|has| (-569) (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2433 (((-112) $ (-776)) 10)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-2336 (($ $) 127)) (-4363 (((-112) $) 128)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1722 ((|#1| $) 71) (($ $ (-776)) 69)) (-4294 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1755 (((-649 (-569)) $) 93)) (-3748 (((-112) (-569) $) 92)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-2239 ((|#1| $) 126)) (-3510 ((|#1| $) 77) (($ $ (-776)) 75)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4420 (($ $ |#1|) 97 (|has| $ (-6 -4445)))) (-2907 (($ $ (-569)) 123)) (-1807 (((-112) $) 85)) (-1348 (((-112) $) 129)) (-1474 (((-112) $) 130)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 91)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1240 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-3947 (((-569) $ $) 45)) (-4325 (($ $ (-1240 (-569))) 115) (($ $ (-569)) 114)) (-2102 (((-112) $) 47)) (-1750 (($ $) 63)) (-1497 (($ $) 60 (|has| $ (-6 -4445)))) (-3754 (((-776) $) 64)) (-3866 (($ $) 65)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 108)) (-1621 (($ $ $) 62 (|has| $ (-6 -4445))) (($ $ |#1|) 61 (|has| $ (-6 -4445)))) (-2441 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-4005 (($ $) 122)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-679 |#1|) (-140) (-1223)) (T -679))
-((-1696 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223)))) (-1415 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-2336 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))) (-2143 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-2907 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1223)))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
-(-13 (-1155 |t#1|) (-10 -8 (-15 -1696 ($ (-1 (-112) |t#1|) $)) (-15 -1415 ($ (-1 (-112) |t#1|) $)) (-15 -1474 ((-112) $)) (-15 -1348 ((-112) $)) (-15 -4363 ((-112) $)) (-15 -2336 ($ $)) (-15 -2239 (|t#1| $)) (-15 -2143 ($ $)) (-15 -2044 ((-776) $)) (-15 -2907 ($ $ (-569))) (-15 -4005 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1155 |#1|) . T) ((-1223) . T) ((-1261 |#1|) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3952 (($ (-776) (-776) (-776)) 55 (|has| |#1| (-1055)))) (-2716 (((-112) $ (-776)) NIL)) (-1837 ((|#1| $ (-776) (-776) (-776) |#1|) 49)) (-4188 (($) NIL T CONST)) (-3242 (($ $ $) 60 (|has| |#1| (-1055)))) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1599 (((-1273 (-776)) $) 12)) (-1727 (($ (-1183) $ $) 37)) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3847 (($ (-776)) 57 (|has| |#1| (-1055)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-776) (-776) (-776)) 46)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3806 (($ (-649 (-649 (-649 |#1|)))) 70)) (-3793 (($ (-964 (-964 (-964 |#1|)))) 23) (((-964 (-964 (-964 |#1|))) $) 19) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-680 |#1|) (-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1055)) (PROGN (-15 -3952 ($ (-776) (-776) (-776))) (-15 -3847 ($ (-776))) (-15 -3242 ($ $ $))) |%noBranch|) (-15 -3806 ($ (-649 (-649 (-649 |#1|))))) (-15 -1866 (|#1| $ (-776) (-776) (-776))) (-15 -1837 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -3793 ($ (-964 (-964 (-964 |#1|))))) (-15 -3793 ((-964 (-964 (-964 |#1|))) $)) (-15 -1727 ($ (-1183) $ $)) (-15 -1599 ((-1273 (-776)) $)))) (-1106)) (T -680))
-((-3952 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1106)))) (-3847 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055)) (-4 *3 (-1106)))) (-3242 (*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1055)) (-4 *2 (-1106)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1106)) (-5 *1 (-680 *3)))) (-1866 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106)))) (-1837 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1106)) (-5 *1 (-680 *3)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3)) (-4 *3 (-1106)))) (-1727 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-680 *3)) (-4 *3 (-1106)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-1273 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1106)))))
-(-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1055)) (PROGN (-15 -3952 ($ (-776) (-776) (-776))) (-15 -3847 ($ (-776))) (-15 -3242 ($ $ $))) |%noBranch|) (-15 -3806 ($ (-649 (-649 (-649 |#1|))))) (-15 -1866 (|#1| $ (-776) (-776) (-776))) (-15 -1837 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -3793 ($ (-964 (-964 (-964 |#1|))))) (-15 -3793 ((-964 (-964 (-964 |#1|))) $)) (-15 -1727 ($ (-1183) $ $)) (-15 -1599 ((-1273 (-776)) $))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-1669 (((-488) $) 10)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 19) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-1141) $) 12)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-681) (-13 (-1089) (-10 -8 (-15 -1669 ((-488) $)) (-15 -3583 ((-1141) $))))) (T -681))
-((-1669 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-681)))))
-(-13 (-1089) (-10 -8 (-15 -1669 ((-488) $)) (-15 -3583 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-3102 (((-649 |#1|) $) 15)) (-4407 (($ $) 19)) (-2120 (((-112) $) 20)) (-4378 (((-3 |#1| "failed") $) 23)) (-3148 ((|#1| $) 21)) (-3522 (($ $) 37)) (-2308 (($ $) 25)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-4032 (((-112) $ $) 47)) (-3842 (((-927) $) 40)) (-4395 (($ $) 18)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 ((|#1| $) 36)) (-3793 (((-867) $) 32) (($ |#1|) 24) (((-824 |#1|) $) 28)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 13)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-682 |#1|) (-13 (-855) (-1044 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3793 ((-824 |#1|) $)) (-15 -3510 (|#1| $)) (-15 -4395 ($ $)) (-15 -3842 ((-927) $)) (-15 -4032 ((-112) $ $)) (-15 -2308 ($ $)) (-15 -3522 ($ $)) (-15 -2120 ((-112) $)) (-15 -4407 ($ $)) (-15 -3102 ((-649 |#1|) $)))) (-855)) (T -682))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-3510 (*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4395 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-4032 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-2308 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-4407 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))))
-(-13 (-855) (-1044 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3793 ((-824 |#1|) $)) (-15 -3510 (|#1| $)) (-15 -4395 ($ $)) (-15 -3842 ((-927) $)) (-15 -4032 ((-112) $ $)) (-15 -2308 ($ $)) (-15 -3522 ($ $)) (-15 -2120 ((-112) $)) (-15 -4407 ($ $)) (-15 -3102 ((-649 |#1|) $))))
-((-3179 ((|#1| (-1 |#1| (-776) |#1|) (-776) |#1|) 14)) (-4319 ((|#1| (-1 |#1| |#1|) (-776) |#1|) 12)))
-(((-683 |#1|) (-10 -7 (-15 -4319 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -3179 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|))) (-1106)) (T -683))
-((-3179 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1106)) (-5 *1 (-683 *2)))) (-4319 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1106)) (-5 *1 (-683 *2)))))
-(-10 -7 (-15 -4319 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -3179 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|)))
-((-4113 ((|#2| |#1| |#2|) 9)) (-4102 ((|#1| |#1| |#2|) 8)))
-(((-684 |#1| |#2|) (-10 -7 (-15 -4102 (|#1| |#1| |#2|)) (-15 -4113 (|#2| |#1| |#2|))) (-1106) (-1106)) (T -684))
-((-4113 (*1 *2 *3 *2) (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-4102 (*1 *2 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(-10 -7 (-15 -4102 (|#1| |#1| |#2|)) (-15 -4113 (|#2| |#1| |#2|)))
-((-3329 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3329 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1106) (-1106) (-1106)) (T -685))
-((-3329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)) (-5 *1 (-685 *5 *6 *2)))))
-(-10 -7 (-15 -3329 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3865 (((-1222) $) 21)) (-3810 (((-649 (-1222)) $) 19)) (-4071 (($ (-649 (-1222)) (-1222)) 14)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 29) (($ (-1188)) NIL) (((-1188) $) NIL) (((-1222) $) 22) (($ (-1124)) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-686) (-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -3793 ($ (-1124))) (-15 -4071 ($ (-649 (-1222)) (-1222))) (-15 -3810 ((-649 (-1222)) $)) (-15 -3865 ((-1222) $))))) (T -686))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-686)))) (-4071 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1222))) (-5 *3 (-1222)) (-5 *1 (-686)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-686)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-686)))))
-(-13 (-1089) (-618 (-1222)) (-10 -8 (-15 -3793 ($ (-1124))) (-15 -4071 ($ (-649 (-1222)) (-1222))) (-15 -3810 ((-649 (-1222)) $)) (-15 -3865 ((-1222) $))))
-((-3179 (((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)) 29)) (-4185 (((-1 |#1|) |#1|) 8)) (-4264 ((|#1| |#1|) 23)) (-4306 (((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3793 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-776)) 26)))
-(((-687 |#1|) (-10 -7 (-15 -4185 ((-1 |#1|) |#1|)) (-15 -3793 ((-1 |#1|) |#1|)) (-15 -4306 (|#1| (-1 |#1| |#1|))) (-15 -4306 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4264 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -3179 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)))) (-1106)) (T -687))
-((-3179 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1106)) (-5 *1 (-687 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1106)) (-5 *1 (-687 *4)))) (-4264 (*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1106)))) (-4306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569)) (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1106)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1106)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106)))) (-4185 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106)))))
-(-10 -7 (-15 -4185 ((-1 |#1|) |#1|)) (-15 -3793 ((-1 |#1|) |#1|)) (-15 -4306 (|#1| (-1 |#1| |#1|))) (-15 -4306 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4264 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -3179 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|))))
-((-3542 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3412 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3706 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3290 (((-1 |#2| |#1|) |#2|) 11)))
-(((-688 |#1| |#2|) (-10 -7 (-15 -3290 ((-1 |#2| |#1|) |#2|)) (-15 -3412 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3706 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3542 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1106) (-1106)) (T -688))
-((-3542 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1106)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)) (-4 *4 (-1106)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))) (-3290 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1106)) (-4 *3 (-1106)))))
-(-10 -7 (-15 -3290 ((-1 |#2| |#1|) |#2|)) (-15 -3412 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3706 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3542 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2811 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3661 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2459 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2573 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2694 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -3661 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2459 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2573 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2694 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2811 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1106) (-1106) (-1106)) (T -689))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-1 *7 *5)) (-5 *1 (-689 *5 *6 *7)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1106)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1106)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1106)) (-4 *4 (-1106)) (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
-(-10 -7 (-15 -3661 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2459 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2573 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2694 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2811 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3596 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1344 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-690 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1344 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1344 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3596 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1055) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-1055) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -690))
-((-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1055)) (-4 *2 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *8 (-377 *2)) (-4 *9 (-377 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-692 *5 *6 *7)) (-4 *10 (-692 *2 *8 *9)))) (-1344 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1055)) (-4 *8 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))))
-(-10 -7 (-15 -1344 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1344 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3596 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3464 (($ (-776) (-776)) 43)) (-2149 (($ $ $) 71)) (-2873 (($ |#3|) 66) (($ $) 67)) (-4080 (((-112) $) 38)) (-2050 (($ $ (-569) (-569)) 82)) (-1956 (($ $ (-569) (-569)) 83)) (-3034 (($ $ (-569) (-569) (-569) (-569)) 88)) (-2332 (($ $) 69)) (-4317 (((-112) $) 15)) (-2922 (($ $ (-569) (-569) $) 89)) (-3940 ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) 87)) (-2931 (($ (-776) |#2|) 53)) (-2428 (($ (-649 (-649 |#2|))) 51)) (-3005 (((-649 (-649 |#2|)) $) 78)) (-2236 (($ $ $) 70)) (-2405 (((-3 $ "failed") $ |#2|) 121)) (-1866 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-2823 (($ (-649 |#2|)) 54) (($ (-649 $)) 56)) (-4206 (((-112) $) 28)) (-3793 (($ |#4|) 61) (((-867) $) NIL)) (-3962 (((-112) $) 40)) (-3032 (($ $ |#2|) 123)) (-3021 (($ $ $) 93) (($ $) 96)) (-3009 (($ $ $) 91)) (** (($ $ (-776)) 110) (($ $ (-569)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-569) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
-(((-691 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3793 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3032 (|#1| |#1| |#2|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -2922 (|#1| |#1| (-569) (-569) |#1|)) (-15 -3034 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -1956 (|#1| |#1| (-569) (-569))) (-15 -2050 (|#1| |#1| (-569) (-569))) (-15 -3940 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1866 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -3005 ((-649 (-649 |#2|)) |#1|)) (-15 -2149 (|#1| |#1| |#1|)) (-15 -2236 (|#1| |#1| |#1|)) (-15 -2332 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -2873 (|#1| |#3|)) (-15 -3793 (|#1| |#4|)) (-15 -2823 (|#1| (-649 |#1|))) (-15 -2823 (|#1| (-649 |#2|))) (-15 -2931 (|#1| (-776) |#2|)) (-15 -2428 (|#1| (-649 (-649 |#2|)))) (-15 -3464 (|#1| (-776) (-776))) (-15 -3962 ((-112) |#1|)) (-15 -4080 ((-112) |#1|)) (-15 -4206 ((-112) |#1|)) (-15 -4317 ((-112) |#1|)) (-15 -3940 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) (-569)))) (-692 |#2| |#3| |#4|) (-1055) (-377 |#2|) (-377 |#2|)) (T -691))
-NIL
-(-10 -8 (-15 -3793 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3032 (|#1| |#1| |#2|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -2922 (|#1| |#1| (-569) (-569) |#1|)) (-15 -3034 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -1956 (|#1| |#1| (-569) (-569))) (-15 -2050 (|#1| |#1| (-569) (-569))) (-15 -3940 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1866 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -3005 ((-649 (-649 |#2|)) |#1|)) (-15 -2149 (|#1| |#1| |#1|)) (-15 -2236 (|#1| |#1| |#1|)) (-15 -2332 (|#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -2873 (|#1| |#3|)) (-15 -3793 (|#1| |#4|)) (-15 -2823 (|#1| (-649 |#1|))) (-15 -2823 (|#1| (-649 |#2|))) (-15 -2931 (|#1| (-776) |#2|)) (-15 -2428 (|#1| (-649 (-649 |#2|)))) (-15 -3464 (|#1| (-776) (-776))) (-15 -3962 ((-112) |#1|)) (-15 -4080 ((-112) |#1|)) (-15 -4206 ((-112) |#1|)) (-15 -4317 ((-112) |#1|)) (-15 -3940 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) (-569))))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3464 (($ (-776) (-776)) 98)) (-2149 (($ $ $) 88)) (-2873 (($ |#2|) 92) (($ $) 91)) (-4080 (((-112) $) 100)) (-2050 (($ $ (-569) (-569)) 84)) (-1956 (($ $ (-569) (-569)) 83)) (-3034 (($ $ (-569) (-569) (-569) (-569)) 82)) (-2332 (($ $) 90)) (-4317 (((-112) $) 102)) (-2716 (((-112) $ (-776)) 8)) (-2922 (($ $ (-569) (-569) $) 81)) (-3940 ((|#1| $ (-569) (-569) |#1|) 45) (($ $ (-649 (-569)) (-649 (-569)) $) 85)) (-2316 (($ $ (-569) |#2|) 43)) (-2782 (($ $ (-569) |#3|) 42)) (-2931 (($ (-776) |#1|) 96)) (-4188 (($) 7 T CONST)) (-4372 (($ $) 68 (|has| |#1| (-310)))) (-1486 ((|#2| $ (-569)) 47)) (-3975 (((-776) $) 67 (|has| |#1| (-561)))) (-3843 ((|#1| $ (-569) (-569) |#1|) 44)) (-3773 ((|#1| $ (-569) (-569)) 49)) (-2880 (((-649 |#1|) $) 31)) (-2345 (((-776) $) 66 (|has| |#1| (-561)))) (-2250 (((-649 |#3|) $) 65 (|has| |#1| (-561)))) (-3221 (((-776) $) 52)) (-4295 (($ (-776) (-776) |#1|) 58)) (-3234 (((-776) $) 51)) (-1689 (((-112) $ (-776)) 9)) (-3647 ((|#1| $) 63 (|has| |#1| (-6 (-4446 "*"))))) (-3856 (((-569) $) 56)) (-1738 (((-569) $) 54)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3744 (((-569) $) 55)) (-1609 (((-569) $) 53)) (-2428 (($ (-649 (-649 |#1|))) 97)) (-3831 (($ (-1 |#1| |#1|) $) 35)) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3005 (((-649 (-649 |#1|)) $) 87)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1933 (((-3 $ "failed") $) 62 (|has| |#1| (-367)))) (-2236 (($ $ $) 89)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) 57)) (-2405 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-561)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-2823 (($ (-649 |#1|)) 95) (($ (-649 $)) 94)) (-4206 (((-112) $) 101)) (-2458 ((|#1| $) 64 (|has| |#1| (-6 (-4446 "*"))))) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1363 ((|#3| $ (-569)) 46)) (-3793 (($ |#3|) 93) (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-3962 (((-112) $) 99)) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-3032 (($ $ |#1|) 69 (|has| |#1| (-367)))) (-3021 (($ $ $) 79) (($ $) 78)) (-3009 (($ $ $) 80)) (** (($ $ (-776)) 71) (($ $ (-569)) 61 (|has| |#1| (-367)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-569) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-692 |#1| |#2| |#3|) (-140) (-1055) (-377 |t#1|) (-377 |t#1|)) (T -692))
-((-4317 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3464 (*1 *1 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2428 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2931 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2823 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2823 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3793 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (-2873 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2332 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2236 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2149 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3))))) (-1866 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3940 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2050 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1956 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3034 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2922 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3009 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1055)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2405 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-561)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (-4372 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-310)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055)))) (-1933 (*1 *1 *1) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-367)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4445) (-6 -4444) (-15 -4317 ((-112) $)) (-15 -4206 ((-112) $)) (-15 -4080 ((-112) $)) (-15 -3962 ((-112) $)) (-15 -3464 ($ (-776) (-776))) (-15 -2428 ($ (-649 (-649 |t#1|)))) (-15 -2931 ($ (-776) |t#1|)) (-15 -2823 ($ (-649 |t#1|))) (-15 -2823 ($ (-649 $))) (-15 -3793 ($ |t#3|)) (-15 -2873 ($ |t#2|)) (-15 -2873 ($ $)) (-15 -2332 ($ $)) (-15 -2236 ($ $ $)) (-15 -2149 ($ $ $)) (-15 -3005 ((-649 (-649 |t#1|)) $)) (-15 -1866 ($ $ (-649 (-569)) (-649 (-569)))) (-15 -3940 ($ $ (-649 (-569)) (-649 (-569)) $)) (-15 -2050 ($ $ (-569) (-569))) (-15 -1956 ($ $ (-569) (-569))) (-15 -3034 ($ $ (-569) (-569) (-569) (-569))) (-15 -2922 ($ $ (-569) (-569) $)) (-15 -3009 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3021 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-569) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-776))) (IF (|has| |t#1| (-561)) (-15 -2405 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -3032 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-310)) (-15 -4372 ($ $)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3975 ((-776) $)) (-15 -2345 ((-776) $)) (-15 -2250 ((-649 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4446 "*"))) (PROGN (-15 -2458 (|t#1| $)) (-15 -3647 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -1933 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-57 |#1| |#2| |#3|) . T) ((-1223) . T))
-((-4372 ((|#4| |#4|) 97 (|has| |#1| (-310)))) (-3975 (((-776) |#4|) 125 (|has| |#1| (-561)))) (-2345 (((-776) |#4|) 101 (|has| |#1| (-561)))) (-2250 (((-649 |#3|) |#4|) 108 (|has| |#1| (-561)))) (-2941 (((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|) 140 (|has| |#1| (-310)))) (-3647 ((|#1| |#4|) 57)) (-1734 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-561)))) (-1933 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-367)))) (-1606 ((|#4| |#4|) 93 (|has| |#1| (-561)))) (-1354 ((|#4| |#4| |#1| (-569) (-569)) 65)) (-4375 ((|#4| |#4| (-569) (-569)) 60)) (-1491 ((|#4| |#4| |#1| (-569) (-569)) 70)) (-2458 ((|#1| |#4|) 103)) (-4367 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-561)))))
-(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2458 (|#1| |#4|)) (-15 -3647 (|#1| |#4|)) (-15 -4375 (|#4| |#4| (-569) (-569))) (-15 -1354 (|#4| |#4| |#1| (-569) (-569))) (-15 -1491 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3975 ((-776) |#4|)) (-15 -2345 ((-776) |#4|)) (-15 -2250 ((-649 |#3|) |#4|)) (-15 -1606 (|#4| |#4|)) (-15 -1734 ((-3 |#4| "failed") |#4|)) (-15 -4367 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -4372 (|#4| |#4|)) (-15 -2941 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -1933 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-173) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -693))
-((-1933 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2941 (*1 *2 *3 *3) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-4367 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1734 (*1 *2 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2250 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-2345 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1491 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-1354 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-4375 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2)) (-4 *2 (-692 *4 *5 *6)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-2458 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))))
-(-10 -7 (-15 -2458 (|#1| |#4|)) (-15 -3647 (|#1| |#4|)) (-15 -4375 (|#4| |#4| (-569) (-569))) (-15 -1354 (|#4| |#4| |#1| (-569) (-569))) (-15 -1491 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3975 ((-776) |#4|)) (-15 -2345 ((-776) |#4|)) (-15 -2250 ((-649 |#3|) |#4|)) (-15 -1606 (|#4| |#4|)) (-15 -1734 ((-3 |#4| "failed") |#4|)) (-15 -4367 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -4372 (|#4| |#4|)) (-15 -2941 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -1933 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3464 (($ (-776) (-776)) 64)) (-2149 (($ $ $) NIL)) (-2873 (($ (-1273 |#1|)) NIL) (($ $) NIL)) (-4080 (((-112) $) NIL)) (-2050 (($ $ (-569) (-569)) 22)) (-1956 (($ $ (-569) (-569)) NIL)) (-3034 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-2332 (($ $) NIL)) (-4317 (((-112) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-2922 (($ $ (-569) (-569) $) NIL)) (-3940 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2316 (($ $ (-569) (-1273 |#1|)) NIL)) (-2782 (($ $ (-569) (-1273 |#1|)) NIL)) (-2931 (($ (-776) |#1|) 37)) (-4188 (($) NIL T CONST)) (-4372 (($ $) 46 (|has| |#1| (-310)))) (-1486 (((-1273 |#1|) $ (-569)) NIL)) (-3975 (((-776) $) 48 (|has| |#1| (-561)))) (-3843 ((|#1| $ (-569) (-569) |#1|) 69)) (-3773 ((|#1| $ (-569) (-569)) NIL)) (-2880 (((-649 |#1|) $) NIL)) (-2345 (((-776) $) 50 (|has| |#1| (-561)))) (-2250 (((-649 (-1273 |#1|)) $) 53 (|has| |#1| (-561)))) (-3221 (((-776) $) 32)) (-4295 (($ (-776) (-776) |#1|) 28)) (-3234 (((-776) $) 33)) (-1689 (((-112) $ (-776)) NIL)) (-3647 ((|#1| $) 44 (|has| |#1| (-6 (-4446 "*"))))) (-3856 (((-569) $) 10)) (-1738 (((-569) $) 11)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3744 (((-569) $) 14)) (-1609 (((-569) $) 65)) (-2428 (($ (-649 (-649 |#1|))) NIL)) (-3831 (($ (-1 |#1| |#1|) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3005 (((-649 (-649 |#1|)) $) 76)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1933 (((-3 $ "failed") $) 60 (|has| |#1| (-367)))) (-2236 (($ $ $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-4420 (($ $ |#1|) NIL)) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-2823 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL) (($ (-1273 |#1|)) 70)) (-4206 (((-112) $) NIL)) (-2458 ((|#1| $) 42 (|has| |#1| (-6 (-4446 "*"))))) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-1408 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-1363 (((-1273 |#1|) $ (-569)) NIL)) (-3793 (($ (-1273 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3962 (((-112) $) NIL)) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $ $) NIL) (($ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) 38) (($ $ (-569)) 62 (|has| |#1| (-367)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1273 |#1|) $ (-1273 |#1|)) NIL) (((-1273 |#1|) (-1273 |#1|) $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-694 |#1|) (-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 -2823 ($ (-1273 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -1933 ((-3 $ "failed") $)) |%noBranch|))) (-1055)) (T -694))
-((-1933 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1055)))) (-2823 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-694 *3)))))
-(-13 (-692 |#1| (-1273 |#1|) (-1273 |#1|)) (-10 -8 (-15 -2823 ($ (-1273 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -1933 ((-3 $ "failed") $)) |%noBranch|)))
-((-4289 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 37)) (-4181 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 34)) (-3164 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776)) 43)) (-3861 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 27)) (-3968 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 31) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 29)) (-4056 (((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|)) 33)) (-1852 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 25)) (** (((-694 |#1|) (-694 |#1|) (-776)) 46)))
-(((-695 |#1|) (-10 -7 (-15 -1852 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3861 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3968 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3968 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4056 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -4181 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -4289 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3164 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776)))) (-1055)) (T -695))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4)))) (-3164 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-695 *4)))) (-4289 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-4181 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-4056 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3968 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3968 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-3861 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))) (-1852 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(-10 -7 (-15 -1852 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3861 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3968 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3968 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4056 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -4181 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -4289 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3164 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776))))
-((-4378 (((-3 |#1| "failed") $) 18)) (-3148 ((|#1| $) NIL)) (-1586 (($) 7 T CONST)) (-3262 (($ |#1|) 8)) (-3793 (($ |#1|) 16) (((-867) $) 23)) (-1792 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1586)) 11)) (-3988 ((|#1| $) 15)))
-(((-696 |#1|) (-13 (-1268) (-1044 |#1|) (-618 (-867)) (-10 -8 (-15 -3262 ($ |#1|)) (-15 -1792 ((-112) $ (|[\|\|]| |#1|))) (-15 -1792 ((-112) $ (|[\|\|]| -1586))) (-15 -3988 (|#1| $)) (-15 -1586 ($) -3706))) (-618 (-867))) (T -696))
-((-3262 (*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-867))) (-5 *2 (-112)) (-5 *1 (-696 *4)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1586)) (-5 *2 (-112)) (-5 *1 (-696 *4)) (-4 *4 (-618 (-867))))) (-3988 (*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-1586 (*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
-(-13 (-1268) (-1044 |#1|) (-618 (-867)) (-10 -8 (-15 -3262 ($ |#1|)) (-15 -1792 ((-112) $ (|[\|\|]| |#1|))) (-15 -1792 ((-112) $ (|[\|\|]| -1586))) (-15 -3988 (|#1| $)) (-15 -1586 ($) -3706)))
-((-3621 ((|#2| |#2| |#4|) 33)) (-2691 (((-694 |#2|) |#3| |#4|) 39)) (-3738 (((-694 |#2|) |#2| |#4|) 38)) (-3395 (((-1273 |#2|) |#2| |#4|) 16)) (-3513 ((|#2| |#3| |#4|) 32)) (-2795 (((-694 |#2|) |#3| |#4| (-776) (-776)) 48)) (-2559 (((-694 |#2|) |#2| |#4| (-776)) 47)))
-(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3395 ((-1273 |#2|) |#2| |#4|)) (-15 -3513 (|#2| |#3| |#4|)) (-15 -3621 (|#2| |#2| |#4|)) (-15 -3738 ((-694 |#2|) |#2| |#4|)) (-15 -2559 ((-694 |#2|) |#2| |#4| (-776))) (-15 -2691 ((-694 |#2|) |#3| |#4|)) (-15 -2795 ((-694 |#2|) |#3| |#4| (-776) (-776)))) (-1106) (-906 |#1|) (-377 |#2|) (-13 (-377 |#1|) (-10 -7 (-6 -4444)))) (T -697))
-((-2795 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *7 (-906 *6)) (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4444)))))) (-2691 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6)) (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))) (-2559 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *3 (-906 *6)) (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4444)))))) (-3738 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))) (-3621 (*1 *2 *2 *3) (-12 (-4 *4 (-1106)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4444)))))) (-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))) (-3395 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-1273 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))))
-(-10 -7 (-15 -3395 ((-1273 |#2|) |#2| |#4|)) (-15 -3513 (|#2| |#3| |#4|)) (-15 -3621 (|#2| |#2| |#4|)) (-15 -3738 ((-694 |#2|) |#2| |#4|)) (-15 -2559 ((-694 |#2|) |#2| |#4| (-776))) (-15 -2691 ((-694 |#2|) |#3| |#4|)) (-15 -2795 ((-694 |#2|) |#3| |#4| (-776) (-776))))
-((-3014 (((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)) 20)) (-2768 ((|#1| (-694 |#2|)) 9)) (-2890 (((-694 |#1|) (-694 |#2|)) 18)))
-(((-698 |#1| |#2|) (-10 -7 (-15 -2768 (|#1| (-694 |#2|))) (-15 -2890 ((-694 |#1|) (-694 |#2|))) (-15 -3014 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)))) (-561) (-998 |#1|)) (T -698))
-((-3014 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4))) (-5 *1 (-698 *4 *5)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561)) (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-698 *2 *4)))))
-(-10 -7 (-15 -2768 (|#1| (-694 |#2|))) (-15 -2890 ((-694 |#1|) (-694 |#2|))) (-15 -3014 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1739 (((-694 (-704))) NIL) (((-694 (-704)) (-1273 $)) NIL)) (-3136 (((-704) $) NIL)) (-2769 (($ $) NIL (|has| (-704) (-1208)))) (-2624 (($ $) NIL (|has| (-704) (-1208)))) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-704) (-353)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-2078 (($ $) NIL (-2774 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-2508 (((-423 $) $) NIL (-2774 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3807 (($ $) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208))))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-1680 (((-112) $ $) NIL (|has| (-704) (-310)))) (-3470 (((-776)) NIL (|has| (-704) (-372)))) (-2744 (($ $) NIL (|has| (-704) (-1208)))) (-2600 (($ $) NIL (|has| (-704) (-1208)))) (-4114 (($ $) NIL (|has| (-704) (-1208)))) (-2645 (($ $) NIL (|has| (-704) (-1208)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-704) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-1044 (-412 (-569)))))) (-3148 (((-569) $) NIL) (((-704) $) NIL) (((-412 (-569)) $) NIL (|has| (-704) (-1044 (-412 (-569)))))) (-3390 (($ (-1273 (-704))) NIL) (($ (-1273 (-704)) (-1273 $)) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-704) (-353)))) (-2366 (($ $ $) NIL (|has| (-704) (-310)))) (-1635 (((-694 (-704)) $) NIL) (((-694 (-704)) $ (-1273 $)) NIL)) (-1630 (((-694 (-704)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-704))) (|:| |vec| (-1273 (-704)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-704) (-644 (-569)))) (((-694 (-569)) (-694 $)) NIL (|has| (-704) (-644 (-569))))) (-3596 (((-3 $ "failed") (-412 (-1179 (-704)))) NIL (|has| (-704) (-367))) (($ (-1179 (-704))) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3822 (((-704) $) 29)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-550)))) (-1434 (((-112) $) NIL (|has| (-704) (-550)))) (-1311 (((-412 (-569)) $) NIL (|has| (-704) (-550)))) (-3975 (((-927)) NIL)) (-3403 (($) NIL (|has| (-704) (-372)))) (-2373 (($ $ $) NIL (|has| (-704) (-310)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| (-704) (-310)))) (-1312 (($) NIL (|has| (-704) (-353)))) (-1940 (((-112) $) NIL (|has| (-704) (-353)))) (-2501 (($ $) NIL (|has| (-704) (-353))) (($ $ (-776)) NIL (|has| (-704) (-353)))) (-4073 (((-112) $) NIL (-2774 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-4338 (((-2 (|:| |r| (-704)) (|:| |phi| (-704))) $) NIL (-12 (|has| (-704) (-1066)) (|has| (-704) (-1208))))) (-1310 (($) NIL (|has| (-704) (-1208)))) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-704) (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-704) (-892 (-569))))) (-3110 (((-838 (-927)) $) NIL (|has| (-704) (-353))) (((-927) $) NIL (|has| (-704) (-353)))) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208))))) (-2707 (((-704) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| (-704) (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-2091 (((-1179 (-704)) $) NIL (|has| (-704) (-367)))) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1344 (($ (-1 (-704) (-704)) $) NIL)) (-2855 (((-927) $) NIL (|has| (-704) (-372)))) (-2660 (($ $) NIL (|has| (-704) (-1208)))) (-3582 (((-1179 (-704)) $) NIL)) (-1835 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| (-704) (-367)))) (-2305 (($) NIL (|has| (-704) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-704) (-372)))) (-1323 (($) NIL)) (-3834 (((-704) $) 31)) (-3545 (((-1126) $) NIL)) (-2330 (($) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| (-704) (-310)))) (-1864 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| (-704) (-353)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-3796 (((-423 $) $) NIL (-2774 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-704) (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| (-704) (-310)))) (-2405 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-704)) NIL (|has| (-704) (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-4386 (($ $) NIL (|has| (-704) (-1208)))) (-1723 (($ $ (-1183) (-704)) NIL (|has| (-704) (-519 (-1183) (-704)))) (($ $ (-649 (-1183)) (-649 (-704))) NIL (|has| (-704) (-519 (-1183) (-704)))) (($ $ (-649 (-297 (-704)))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-297 (-704))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-704) (-704)) NIL (|has| (-704) (-312 (-704)))) (($ $ (-649 (-704)) (-649 (-704))) NIL (|has| (-704) (-312 (-704))))) (-1578 (((-776) $) NIL (|has| (-704) (-310)))) (-1866 (($ $ (-704)) NIL (|has| (-704) (-289 (-704) (-704))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| (-704) (-310)))) (-4304 (((-704)) NIL) (((-704) (-1273 $)) NIL)) (-2601 (((-3 (-776) "failed") $ $) NIL (|has| (-704) (-353))) (((-776) $) NIL (|has| (-704) (-353)))) (-3514 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2520 (((-694 (-704)) (-1273 $) (-1 (-704) (-704))) NIL (|has| (-704) (-367)))) (-4143 (((-1179 (-704))) NIL)) (-4124 (($ $) NIL (|has| (-704) (-1208)))) (-2659 (($ $) NIL (|has| (-704) (-1208)))) (-2430 (($) NIL (|has| (-704) (-353)))) (-2781 (($ $) NIL (|has| (-704) (-1208)))) (-2632 (($ $) NIL (|has| (-704) (-1208)))) (-2756 (($ $) NIL (|has| (-704) (-1208)))) (-2609 (($ $) NIL (|has| (-704) (-1208)))) (-2960 (((-694 (-704)) (-1273 $)) NIL) (((-1273 (-704)) $) NIL) (((-694 (-704)) (-1273 $) (-1273 $)) NIL) (((-1273 (-704)) $ (-1273 $)) NIL)) (-1408 (((-541) $) NIL (|has| (-704) (-619 (-541)))) (((-170 (-226)) $) NIL (|has| (-704) (-1028))) (((-170 (-383)) $) NIL (|has| (-704) (-1028))) (((-898 (-383)) $) NIL (|has| (-704) (-619 (-898 (-383))))) (((-898 (-569)) $) NIL (|has| (-704) (-619 (-898 (-569))))) (($ (-1179 (-704))) NIL) (((-1179 (-704)) $) NIL) (($ (-1273 (-704))) NIL) (((-1273 (-704)) $) NIL)) (-3580 (($ $) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-2774 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-353))))) (-3098 (($ (-704) (-704)) 12)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-704)) NIL) (($ (-170 (-383))) 13) (($ (-170 (-569))) 19) (($ (-170 (-704))) 28) (($ (-170 (-706))) 25) (((-170 (-383)) $) 33) (($ (-412 (-569))) NIL (-2774 (|has| (-704) (-1044 (-412 (-569)))) (|has| (-704) (-367))))) (-4030 (($ $) NIL (|has| (-704) (-353))) (((-3 $ "failed") $) NIL (-2774 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-145))))) (-3798 (((-1179 (-704)) $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL)) (-4161 (($ $) NIL (|has| (-704) (-1208)))) (-2699 (($ $) NIL (|has| (-704) (-1208)))) (-2985 (((-112) $ $) NIL)) (-4133 (($ $) NIL (|has| (-704) (-1208)))) (-2673 (($ $) NIL (|has| (-704) (-1208)))) (-4182 (($ $) NIL (|has| (-704) (-1208)))) (-2721 (($ $) NIL (|has| (-704) (-1208)))) (-4112 (((-704) $) NIL (|has| (-704) (-1208)))) (-1501 (($ $) NIL (|has| (-704) (-1208)))) (-2732 (($ $) NIL (|has| (-704) (-1208)))) (-4170 (($ $) NIL (|has| (-704) (-1208)))) (-2710 (($ $) NIL (|has| (-704) (-1208)))) (-4147 (($ $) NIL (|has| (-704) (-1208)))) (-2687 (($ $) NIL (|has| (-704) (-1208)))) (-3070 (($ $) NIL (|has| (-704) (-1066)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-1183)) NIL (|has| (-704) (-906 (-1183)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL (|has| (-704) (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| (-704) (-1208))) (($ $ (-412 (-569))) NIL (-12 (|has| (-704) (-1008)) (|has| (-704) (-1208)))) (($ $ (-569)) NIL (|has| (-704) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ (-704) $) NIL) (($ $ (-704)) NIL) (($ (-412 (-569)) $) NIL (|has| (-704) (-367))) (($ $ (-412 (-569))) NIL (|has| (-704) (-367)))))
-(((-699) (-13 (-392) (-166 (-704)) (-10 -8 (-15 -3793 ($ (-170 (-383)))) (-15 -3793 ($ (-170 (-569)))) (-15 -3793 ($ (-170 (-704)))) (-15 -3793 ($ (-170 (-706)))) (-15 -3793 ((-170 (-383)) $))))) (T -699))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-170 (-569))) (-5 *1 (-699)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-170 (-704))) (-5 *1 (-699)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-170 (-706))) (-5 *1 (-699)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))))
-(-13 (-392) (-166 (-704)) (-10 -8 (-15 -3793 ($ (-170 (-383)))) (-15 -3793 ($ (-170 (-569)))) (-15 -3793 ($ (-170 (-704)))) (-15 -3793 ($ (-170 (-706)))) (-15 -3793 ((-170 (-383)) $))))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4101 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3041 (($ $) 63)) (-3547 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ |#1| $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-2917 (((-649 (-2 (|:| -2214 |#1|) (|:| -3558 (-776)))) $) 62)) (-1906 (($) 50) (($ (-649 |#1|)) 49)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 51)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-700 |#1|) (-140) (-1106)) (T -700))
-((-3813 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1106)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1106)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-700 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-2 (|:| -2214 *3) (|:| -3558 (-776))))))))
-(-13 (-236 |t#1|) (-10 -8 (-15 -3813 ($ |t#1| $ (-776))) (-15 -3041 ($ $)) (-15 -2917 ((-649 (-2 (|:| -2214 |t#1|) (|:| -3558 (-776)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-3165 (((-649 |#1|) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))) (-569)) 65)) (-4240 ((|#1| |#1| (-569)) 62)) (-1864 ((|#1| |#1| |#1| (-569)) 46)) (-3796 (((-649 |#1|) |#1| (-569)) 49)) (-3228 ((|#1| |#1| (-569) |#1| (-569)) 40)) (-4312 (((-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))) |#1| (-569)) 61)))
-(((-701 |#1|) (-10 -7 (-15 -1864 (|#1| |#1| |#1| (-569))) (-15 -4240 (|#1| |#1| (-569))) (-15 -3796 ((-649 |#1|) |#1| (-569))) (-15 -4312 ((-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))) |#1| (-569))) (-15 -3165 ((-649 |#1|) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))) (-569))) (-15 -3228 (|#1| |#1| (-569) |#1| (-569)))) (-1249 (-569))) (T -701))
-((-3228 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| -3796 *5) (|:| -3868 (-569))))) (-5 *4 (-569)) (-4 *5 (-1249 *4)) (-5 *2 (-649 *5)) (-5 *1 (-701 *5)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3796 *3) (|:| -3868 *4)))) (-5 *1 (-701 *3)) (-4 *3 (-1249 *4)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1249 *4)))) (-4240 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))) (-1864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))))
-(-10 -7 (-15 -1864 (|#1| |#1| |#1| (-569))) (-15 -4240 (|#1| |#1| (-569))) (-15 -3796 ((-649 |#1|) |#1| (-569))) (-15 -4312 ((-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))) |#1| (-569))) (-15 -3165 ((-649 |#1|) (-649 (-2 (|:| -3796 |#1|) (|:| -3868 (-569)))) (-569))) (-15 -3228 (|#1| |#1| (-569) |#1| (-569))))
-((-3631 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 17)) (-3341 (((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 56) (((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 58) (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 60)) (-3537 (((-1139 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-649 (-265))) NIL)) (-3441 (((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265))) 61)))
-(((-702) (-10 -7 (-15 -3341 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3341 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3341 ((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3441 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3537 ((-1139 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3631 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -702))
-((-3631 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1 (-226) (-226) (-226) (-226))) (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))) (-3537 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-3441 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-3341 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702)))) (-3341 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-226))) (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))) (-3341 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702)))))
-(-10 -7 (-15 -3341 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3341 ((-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3341 ((-1139 (-226)) (-1139 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3441 ((-1139 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1100 (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3537 ((-1139 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1100 (-226)) (-649 (-265)))) (-15 -3631 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
-((-3796 (((-423 (-1179 |#4|)) (-1179 |#4|)) 86) (((-423 |#4|) |#4|) 269)))
-(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-423 |#4|) |#4|)) (-15 -3796 ((-423 (-1179 |#4|)) (-1179 |#4|)))) (-855) (-798) (-353) (-955 |#3| |#2| |#1|)) (T -703))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
-(-10 -7 (-15 -3796 ((-423 |#4|) |#4|)) (-15 -3796 ((-423 (-1179 |#4|)) (-1179 |#4|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 97)) (-3673 (((-569) $) 34)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-3008 (($ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-3807 (($ $) NIL)) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL)) (-4188 (($) NIL T CONST)) (-3434 (($ $) NIL)) (-4378 (((-3 (-569) "failed") $) 85) (((-3 (-412 (-569)) "failed") $) 28) (((-3 (-383) "failed") $) 82)) (-3148 (((-569) $) 87) (((-412 (-569)) $) 79) (((-383) $) 80)) (-2366 (($ $ $) 109)) (-2888 (((-3 $ "failed") $) 100)) (-2373 (($ $ $) 108)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-3497 (((-927)) 89) (((-927) (-927)) 88)) (-4237 (((-112) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-3110 (((-569) $) NIL)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL)) (-2707 (($ $) NIL)) (-4327 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3730 (((-569) (-569)) 94) (((-569)) 95)) (-3377 (($ $ $) NIL) (($) NIL (-12 (-1745 (|has| $ (-6 -4427))) (-1745 (|has| $ (-6 -4435)))))) (-2513 (((-569) (-569)) 92) (((-569)) 93)) (-3969 (($ $ $) NIL) (($) NIL (-12 (-1745 (|has| $ (-6 -4427))) (-1745 (|has| $ (-6 -4435)))))) (-3031 (((-569) $) 17)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 104)) (-2815 (((-927) (-569)) NIL (|has| $ (-6 -4435)))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL)) (-2478 (($ $) NIL)) (-2555 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) 105)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4320 (((-569) $) 24)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 107)) (-3380 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4435)))) (-2713 (((-927) (-569)) NIL (|has| $ (-6 -4435)))) (-1408 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) NIL)) (-3793 (((-867) $) 63) (($ (-569)) 75) (($ $) NIL) (($ (-412 (-569))) 78) (($ (-569)) 75) (($ (-412 (-569))) 78) (($ (-383)) 72) (((-383) $) 61) (($ (-706)) 66)) (-3302 (((-776)) 119 T CONST)) (-4176 (($ (-569) (-569) (-927)) 54)) (-2586 (($ $) NIL)) (-2916 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4435)))) (-1441 (((-112) $ $) NIL)) (-4360 (((-927)) 91) (((-927) (-927)) 90)) (-2985 (((-112) $ $) NIL)) (-3070 (($ $) NIL)) (-1803 (($) 37 T CONST)) (-1813 (($) 18 T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 96)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 118)) (-3032 (($ $ $) 77)) (-3021 (($ $) 115) (($ $ $) 116)) (-3009 (($ $ $) 114)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
-(((-704) (-13 (-409) (-392) (-367) (-1044 (-383)) (-1044 (-412 (-569))) (-147) (-10 -8 (-15 -3497 ((-927) (-927))) (-15 -3497 ((-927))) (-15 -4360 ((-927) (-927))) (-15 -2513 ((-569) (-569))) (-15 -2513 ((-569))) (-15 -3730 ((-569) (-569))) (-15 -3730 ((-569))) (-15 -3793 ((-383) $)) (-15 -3793 ($ (-706))) (-15 -3031 ((-569) $)) (-15 -4320 ((-569) $)) (-15 -4176 ($ (-569) (-569) (-927)))))) (T -704))
-((-4320 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3497 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-4360 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2513 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3730 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3730 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-383)) (-5 *1 (-704)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704)))) (-4176 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704)))))
-(-13 (-409) (-392) (-367) (-1044 (-383)) (-1044 (-412 (-569))) (-147) (-10 -8 (-15 -3497 ((-927) (-927))) (-15 -3497 ((-927))) (-15 -4360 ((-927) (-927))) (-15 -2513 ((-569) (-569))) (-15 -2513 ((-569))) (-15 -3730 ((-569) (-569))) (-15 -3730 ((-569))) (-15 -3793 ((-383) $)) (-15 -3793 ($ (-706))) (-15 -3031 ((-569) $)) (-15 -4320 ((-569) $)) (-15 -4176 ($ (-569) (-569) (-927)))))
-((-2842 (((-694 |#1|) (-694 |#1|) |#1| |#1|) 88)) (-4372 (((-694 |#1|) (-694 |#1|) |#1|) 67)) (-2735 (((-694 |#1|) (-694 |#1|) |#1|) 89)) (-2627 (((-694 |#1|) (-694 |#1|)) 68)) (-2941 (((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|) 87)))
-(((-705 |#1|) (-10 -7 (-15 -2627 ((-694 |#1|) (-694 |#1|))) (-15 -4372 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2735 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2842 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -2941 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|))) (-310)) (T -705))
-((-2941 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-705 *3)) (-4 *3 (-310)))) (-2842 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2735 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-4372 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(-10 -7 (-15 -2627 ((-694 |#1|) (-694 |#1|))) (-15 -4372 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2735 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2842 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -2941 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-4122 (($ $ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3956 (($ $ $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL)) (-3081 (($ $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) 31)) (-3148 (((-569) $) 29)) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL)) (-1434 (((-112) $) NIL)) (-1311 (((-412 (-569)) $) NIL)) (-3403 (($ $) NIL) (($) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2481 (($ $ $ $) NIL)) (-4190 (($ $ $) NIL)) (-4237 (((-112) $) NIL)) (-1841 (($ $ $) NIL)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2623 (((-112) $) NIL)) (-1607 (((-112) $) NIL)) (-3812 (((-3 $ "failed") $) NIL)) (-4327 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2604 (($ $ $ $) NIL)) (-3377 (($ $ $) NIL)) (-3030 (((-927) (-927)) 10) (((-927)) 9)) (-3969 (($ $ $) NIL)) (-2605 (($ $) NIL)) (-3842 (($ $) NIL)) (-1835 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3678 (($ $ $) NIL)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1649 (($ $) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2108 (((-112) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL) (($ $ (-776)) NIL)) (-2431 (($ $) NIL)) (-3959 (($ $) NIL)) (-1408 (((-226) $) NIL) (((-383) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (((-569) $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) 28) (($ $) NIL) (($ (-569)) 28) (((-319 $) (-319 (-569))) 18)) (-3302 (((-776)) NIL T CONST)) (-4271 (((-112) $ $) NIL)) (-2950 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-4360 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-4048 (($ $ $ $) NIL)) (-3070 (($ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $) NIL) (($ $ (-776)) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
-(((-706) (-13 (-392) (-550) (-10 -8 (-15 -3030 ((-927) (-927))) (-15 -3030 ((-927))) (-15 -3793 ((-319 $) (-319 (-569))))))) (T -706))
-((-3030 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-3030 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-319 (-569))) (-5 *2 (-319 (-706))) (-5 *1 (-706)))))
-(-13 (-392) (-550) (-10 -8 (-15 -3030 ((-927) (-927))) (-15 -3030 ((-927))) (-15 -3793 ((-319 $) (-319 (-569))))))
-((-2231 (((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183)) 19)) (-1951 (((-1 |#4| |#2| |#3|) (-1183)) 12)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1951 ((-1 |#4| |#2| |#3|) (-1183))) (-15 -2231 ((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183)))) (-619 (-541)) (-1223) (-1223) (-1223)) (T -707))
-((-2231 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7)) (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)) (-4 *7 (-1223)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)) (-4 *7 (-1223)))))
-(-10 -7 (-15 -1951 ((-1 |#4| |#2| |#3|) (-1183))) (-15 -2231 ((-1 |#4| |#2| |#3|) |#1| (-1183) (-1183))))
-((-2046 (((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183)) 43) (((-1 (-226) (-226)) |#1| (-1183)) 48)))
-(((-708 |#1|) (-10 -7 (-15 -2046 ((-1 (-226) (-226)) |#1| (-1183))) (-15 -2046 ((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183)))) (-619 (-541))) (T -708))
-((-2046 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))) (-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))))
-(-10 -7 (-15 -2046 ((-1 (-226) (-226)) |#1| (-1183))) (-15 -2046 ((-1 (-226) (-226) (-226)) |#1| (-1183) (-1183))))
-((-1691 (((-1183) |#1| (-1183) (-649 (-1183))) 10) (((-1183) |#1| (-1183) (-1183) (-1183)) 13) (((-1183) |#1| (-1183) (-1183)) 12) (((-1183) |#1| (-1183)) 11)))
-(((-709 |#1|) (-10 -7 (-15 -1691 ((-1183) |#1| (-1183))) (-15 -1691 ((-1183) |#1| (-1183) (-1183))) (-15 -1691 ((-1183) |#1| (-1183) (-1183) (-1183))) (-15 -1691 ((-1183) |#1| (-1183) (-649 (-1183))))) (-619 (-541))) (T -709))
-((-1691 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1691 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1691 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1691 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))))
-(-10 -7 (-15 -1691 ((-1183) |#1| (-1183))) (-15 -1691 ((-1183) |#1| (-1183) (-1183))) (-15 -1691 ((-1183) |#1| (-1183) (-1183) (-1183))) (-15 -1691 ((-1183) |#1| (-1183) (-649 (-1183)))))
-((-1484 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-710 |#1| |#2|) (-10 -7 (-15 -1484 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1223) (-1223)) (T -710))
-((-1484 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1223)) (-4 *4 (-1223)))))
-(-10 -7 (-15 -1484 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2144 (((-1 |#3| |#2|) (-1183)) 11)) (-2231 (((-1 |#3| |#2|) |#1| (-1183)) 21)))
-(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -2144 ((-1 |#3| |#2|) (-1183))) (-15 -2231 ((-1 |#3| |#2|) |#1| (-1183)))) (-619 (-541)) (-1223) (-1223)) (T -711))
-((-2231 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6)) (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6)) (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))))
-(-10 -7 (-15 -2144 ((-1 |#3| |#2|) (-1183))) (-15 -2231 ((-1 |#3| |#2|) |#1| (-1183))))
-((-1308 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1273 (-649 (-1179 |#3|))) |#3|) 95)) (-2403 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|) 113)) (-2318 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1179 |#4|)) (-1273 (-649 (-1179 |#3|))) |#3|) 47)))
-(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2318 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1179 |#4|)) (-1273 (-649 (-1179 |#3|))) |#3|)) (-15 -2403 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -1308 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1273 (-649 (-1179 |#3|))) |#3|))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -712))
-((-1308 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-649 (-1179 *13))) (-5 *3 (-1179 *13)) (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13)) (-5 *7 (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| *13))))) (-5 *8 (-649 (-776))) (-5 *9 (-1273 (-649 (-1179 *10)))) (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12)) (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))) (-2403 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1179 *9))) (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776))) (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11)) (-4 *10 (-798)) (-5 *2 (-649 (-1179 *12))) (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1179 *12)))) (-2318 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-649 (-1179 *11))) (-5 *3 (-1179 *11)) (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776))) (-5 *7 (-1273 (-649 (-1179 *8)))) (-4 *10 (-855)) (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798)) (-5 *1 (-712 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2318 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1179 |#4|)) (-1273 (-649 (-1179 |#3|))) |#3|)) (-15 -2403 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -1308 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-649 |#2|) (-649 (-1179 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1273 (-649 (-1179 |#3|))) |#3|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1879 (($ $) 48)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-3920 (($ |#1| (-776)) 46)) (-3712 (((-776) $) 50)) (-1855 ((|#1| $) 49)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3868 (((-776) $) 51)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45 (|has| |#1| (-173)))) (-4184 ((|#1| $ (-776)) 47)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
-(((-713 |#1|) (-140) (-1055)) (T -713))
-((-3868 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055)))) (-3920 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055)))))
-(-13 (-1055) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3868 ((-776) $)) (-15 -3712 ((-776) $)) (-15 -1855 (|t#1| $)) (-15 -1879 ($ $)) (-15 -4184 (|t#1| $ (-776))) (-15 -3920 ($ |t#1| (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-1344 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-714 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1344 (|#6| (-1 |#4| |#1|) |#3|))) (-561) (-1249 |#1|) (-1249 (-412 |#2|)) (-561) (-1249 |#4|) (-1249 (-412 |#5|))) (T -714))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561)) (-4 *6 (-1249 *5)) (-4 *2 (-1249 (-412 *8))) (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1249 (-412 *6))) (-4 *8 (-1249 *7)))))
-(-10 -7 (-15 -1344 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1444 (((-1165) (-867)) 38)) (-4155 (((-1278) (-1165)) 31)) (-1657 (((-1165) (-867)) 28)) (-1553 (((-1165) (-867)) 29)) (-3793 (((-867) $) NIL) (((-1165) (-867)) 27)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-715) (-13 (-1106) (-10 -7 (-15 -3793 ((-1165) (-867))) (-15 -1657 ((-1165) (-867))) (-15 -1553 ((-1165) (-867))) (-15 -1444 ((-1165) (-867))) (-15 -4155 ((-1278) (-1165)))))) (T -715))
-((-3793 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-715)))))
-(-13 (-1106) (-10 -7 (-15 -3793 ((-1165) (-867))) (-15 -1657 ((-1165) (-867))) (-15 -1553 ((-1165) (-867))) (-15 -1444 ((-1165) (-867))) (-15 -4155 ((-1278) (-1165)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) NIL)) (-3596 (($ |#1| |#2|) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3283 ((|#2| $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3182 (((-3 $ "failed") $ $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) ((|#1| $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
-(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-367) (-10 -8 (-15 -3283 (|#2| $)) (-15 -3793 (|#1| $)) (-15 -3596 ($ |#1| |#2|)) (-15 -3182 ((-3 $ "failed") $ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716))
-((-3283 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3793 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3182 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-367) (-10 -8 (-15 -3283 (|#2| $)) (-15 -3793 (|#1| $)) (-15 -3596 ($ |#1| |#2|)) (-15 -3182 ((-3 $ "failed") $ $))))
-((-2415 (((-112) $ $) 90)) (-3192 (((-112) $) 36)) (-2822 (((-1273 |#1|) $ (-776)) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2571 (($ (-1179 |#1|)) NIL)) (-3763 (((-1179 $) $ (-1088)) NIL) (((-1179 |#1|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4095 (($ $ $) NIL (|has| |#1| (-561)))) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3470 (((-776)) 56 (|has| |#1| (-372)))) (-3409 (($ $ (-776)) NIL)) (-3274 (($ $ (-776)) NIL)) (-4228 ((|#2| |#2|) 52)) (-1782 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1088) $) NIL)) (-4202 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) NIL (|has| |#1| (-173)))) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) 40)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3596 (($ |#2|) 50)) (-2888 (((-3 $ "failed") $) 100)) (-3403 (($) 61 (|has| |#1| (-372)))) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-4401 (($ $ $) NIL)) (-3897 (($ $ $) NIL (|has| |#1| (-561)))) (-1887 (((-2 (|:| -1433 |#1|) (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3849 (((-964 $)) 92)) (-3972 (($ $ |#1| (-776) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3110 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-1697 (($ (-1179 |#1|) (-1088)) NIL) (($ (-1179 $) (-1088)) NIL)) (-2253 (($ $ (-776)) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) 88) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-1088)) NIL) (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3283 ((|#2|) 53)) (-3712 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-4059 (($ (-1 (-776) (-776)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2704 (((-1179 |#1|) $) NIL)) (-3397 (((-3 (-1088) "failed") $) NIL)) (-2855 (((-927) $) NIL (|has| |#1| (-372)))) (-3582 ((|#2| $) 49)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) 34)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-3528 (((-2 (|:| -2726 $) (|:| -3365 $)) $ (-776)) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-1088)) (|:| -4320 (-776))) "failed") $) NIL)) (-2488 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2305 (($) NIL (|has| |#1| (-1158)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1751 (($ $) 91 (|has| |#1| (-353)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-649 (-1088)) (-649 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-3762 (((-3 $ "failed") $ (-776)) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 101 (|has| |#1| (-367)))) (-4304 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3514 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3868 (((-776) $) 38) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-1848 (((-964 $)) 42)) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3793 (((-867) $) 71) (($ (-569)) NIL) (($ |#1|) 68) (($ (-1088)) NIL) (($ |#2|) 78) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) 73) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) 25 T CONST)) (-4132 (((-1273 |#1|) $) 86)) (-4044 (($ (-1273 |#1|)) 60)) (-1813 (($) 8 T CONST)) (-2830 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3945 (((-1273 |#1|) $) NIL)) (-2919 (((-112) $ $) 79)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) 82) (($ $ $) NIL)) (-3009 (($ $ $) 39)) (** (($ $ (-927)) NIL) (($ $ (-776)) 95)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 67) (($ $ $) 85) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
-(((-717 |#1| |#2|) (-13 (-1249 |#1|) (-621 |#2|) (-10 -8 (-15 -4228 (|#2| |#2|)) (-15 -3283 (|#2|)) (-15 -3596 ($ |#2|)) (-15 -3582 (|#2| $)) (-15 -4132 ((-1273 |#1|) $)) (-15 -4044 ($ (-1273 |#1|))) (-15 -3945 ((-1273 |#1|) $)) (-15 -3849 ((-964 $))) (-15 -1848 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -1751 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|))) (-1055) (-1249 |#1|)) (T -717))
-((-4228 (*1 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3)))) (-3283 (*1 *2) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055)))) (-3596 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3)))) (-3582 (*1 *2 *1) (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055)))) (-4132 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-3945 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-3849 (*1 *2) (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-1848 (*1 *2) (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1249 *3)))) (-1751 (*1 *1 *1) (-12 (-4 *2 (-353)) (-4 *2 (-1055)) (-5 *1 (-717 *2 *3)) (-4 *3 (-1249 *2)))))
-(-13 (-1249 |#1|) (-621 |#2|) (-10 -8 (-15 -4228 (|#2| |#2|)) (-15 -3283 (|#2|)) (-15 -3596 ($ |#2|)) (-15 -3582 (|#2| $)) (-15 -4132 ((-1273 |#1|) $)) (-15 -4044 ($ (-1273 |#1|))) (-15 -3945 ((-1273 |#1|) $)) (-15 -3849 ((-964 $))) (-15 -1848 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -1751 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 ((|#1| $) 13)) (-3545 (((-1126) $) NIL)) (-4320 ((|#2| $) 12)) (-3806 (($ |#1| |#2|) 16)) (-3793 (((-867) $) NIL) (($ (-2 (|:| -2150 |#1|) (|:| -4320 |#2|))) 15) (((-2 (|:| -2150 |#1|) (|:| -4320 |#2|)) $) 14)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 11)))
-(((-718 |#1| |#2| |#3|) (-13 (-855) (-495 (-2 (|:| -2150 |#1|) (|:| -4320 |#2|))) (-10 -8 (-15 -4320 (|#2| $)) (-15 -2150 (|#1| $)) (-15 -3806 ($ |#1| |#2|)))) (-855) (-1106) (-1 (-112) (-2 (|:| -2150 |#1|) (|:| -4320 |#2|)) (-2 (|:| -2150 |#1|) (|:| -4320 |#2|)))) (T -718))
-((-4320 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *3) (|:| -4320 *2)) (-2 (|:| -2150 *3) (|:| -4320 *2)))))) (-2150 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1106)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *3)) (-2 (|:| -2150 *2) (|:| -4320 *3)))))) (-3806 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1106)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *3)) (-2 (|:| -2150 *2) (|:| -4320 *3)))))))
-(-13 (-855) (-495 (-2 (|:| -2150 |#1|) (|:| -4320 |#2|))) (-10 -8 (-15 -4320 (|#2| $)) (-15 -2150 (|#1| $)) (-15 -3806 ($ |#1| |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 66)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3148 ((|#1| $) NIL) (((-114) $) 39)) (-2888 (((-3 $ "failed") $) 106)) (-2039 ((|#2| (-114) |#2|) 93)) (-2623 (((-112) $) NIL)) (-1947 (($ |#1| (-365 (-114))) 14)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2139 (($ $ (-1 |#2| |#2|)) 65)) (-2244 (($ $ (-1 |#2| |#2|)) 44)) (-1866 ((|#2| $ |#2|) 33)) (-2342 ((|#1| |#1|) 121 (|has| |#1| (-173)))) (-3793 (((-867) $) 73) (($ (-569)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) 37 T CONST)) (-1441 (((-112) $ $) NIL)) (-4367 (($ $) 115 (|has| |#1| (-173))) (($ $ $) 119 (|has| |#1| (-173)))) (-1803 (($) 21 T CONST)) (-1813 (($) 9 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) 48) (($ $ $) NIL)) (-3009 (($ $ $) 83)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) 64)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-173))) (($ $ |#1|) 113 (|has| |#1| (-173)))))
-(((-719 |#1| |#2|) (-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -4367 ($ $)) (-15 -4367 ($ $ $)) (-15 -2342 (|#1| |#1|))) |%noBranch|) (-15 -2244 ($ $ (-1 |#2| |#2|))) (-15 -2139 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -2039 (|#2| (-114) |#2|)) (-15 -1947 ($ |#1| (-365 (-114)))))) (-1055) (-653 |#1|)) (T -719))
-((-4367 (*1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-4367 (*1 *1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2342 (*1 *2 *2) (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2244 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4)) (-4 *4 (-653 *3)))) (-2039 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *2)) (-4 *2 (-653 *4)))) (-1947 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1055)) (-5 *1 (-719 *2 *4)) (-4 *4 (-653 *2)))))
-(-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -4367 ($ $)) (-15 -4367 ($ $ $)) (-15 -2342 (|#1| |#1|))) |%noBranch|) (-15 -2244 ($ $ (-1 |#2| |#2|))) (-15 -2139 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -2039 (|#2| (-114) |#2|)) (-15 -1947 ($ |#1| (-365 (-114))))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 33)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-3596 (($ |#1| |#2|) 25)) (-2888 (((-3 $ "failed") $) 51)) (-2623 (((-112) $) 35)) (-3283 ((|#2| $) 12)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 52)) (-3545 (((-1126) $) NIL)) (-3182 (((-3 $ "failed") $ $) 50)) (-3793 (((-867) $) 24) (($ (-569)) 19) ((|#1| $) 13)) (-3302 (((-776)) 28 T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 16 T CONST)) (-1813 (($) 30 T CONST)) (-2919 (((-112) $ $) 41)) (-3021 (($ $) 46) (($ $ $) 40)) (-3009 (($ $ $) 43)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21) (($ $ $) 20)))
-(((-720 |#1| |#2| |#3| |#4| |#5|) (-13 (-1055) (-10 -8 (-15 -3283 (|#2| $)) (-15 -3793 (|#1| $)) (-15 -3596 ($ |#1| |#2|)) (-15 -3182 ((-3 $ "failed") $ $)) (-15 -2888 ((-3 $ "failed") $)) (-15 -1814 ($ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -720))
-((-2888 (*1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3283 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3793 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3182 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1814 (*1 *1 *1) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1055) (-10 -8 (-15 -3283 (|#2| $)) (-15 -3793 (|#1| $)) (-15 -3596 ($ |#1| |#2|)) (-15 -3182 ((-3 $ "failed") $ $)) (-15 -2888 ((-3 $ "failed") $)) (-15 -1814 ($ $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 15)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4399 ((|#1| $) 23)) (-3380 (($ $ $) NIL (|has| |#1| (-796)))) (-2839 (($ $ $) NIL (|has| |#1| (-796)))) (-3435 (((-1167) $) 48)) (-3547 (((-1128) $) NIL)) (-4412 ((|#3| $) 24)) (-3796 (((-867) $) 43)) (-1520 (((-112) $ $) 22)) (-1804 (($) 10 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2920 (((-112) $ $) 20)) (-2966 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2944 (((-112) $ $) 26 (|has| |#1| (-796)))) (-3035 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3024 (($ $) 17) (($ $ $) NIL)) (-3012 (($ $ $) 29)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-667 |#1| |#2| |#3|) (-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $)))) (-722 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -667))
+((-3035 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-3035 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-667 *2 *4 *3)) (-4 *2 (-722 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-667 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4412 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)))))
+(-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $))))
+((-4366 (((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|)) 33)))
+(((-668 |#1|) (-10 -7 (-15 -4366 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|)))) (-915)) (T -668))
+((-4366 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *4))) (-5 *3 (-1181 *4)) (-4 *4 (-915)) (-5 *1 (-668 *4)))))
+(-10 -7 (-15 -4366 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 84)) (-1604 (($ $ (-776)) 94)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1768 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 50)) (-4381 (((-3 (-677 |#1|) "failed") $) NIL)) (-3150 (((-677 |#1|) $) NIL)) (-1883 (($ $) 93)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-677 |#1|) |#2|) 70)) (-2325 (($ $) 89)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-3714 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 49)) (-3379 (((-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1849 (((-677 |#1|) $) NIL)) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1725 (($ $ |#1| $) 32) (($ $ (-649 |#1|) (-649 $)) 34)) (-4339 (((-776) $) 91)) (-3809 (($ $ $) 20) (($ (-677 |#1|) (-677 |#1|)) 79) (($ (-677 |#1|) $) 77) (($ $ (-677 |#1|)) 78)) (-3796 (((-867) $) NIL) (($ |#1|) 76) (((-1290 |#1| |#2|) $) 60) (((-1299 |#1| |#2|) $) 43) (($ (-677 |#1|)) 27)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-677 |#1|)) NIL)) (-1435 ((|#2| (-1299 |#1| |#2|) $) 45)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 23 T CONST)) (-3717 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3740 (((-3 $ "failed") (-1290 |#1| |#2|)) 62)) (-4229 (($ (-677 |#1|)) 14)) (-2920 (((-112) $ $) 46)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) 68) (($ $ $) NIL)) (-3012 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-677 |#1|)) NIL)))
+(((-669 |#1| |#2|) (-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -3740 ((-3 $ "failed") (-1290 |#1| |#2|))) (-15 -3809 ($ (-677 |#1|) (-677 |#1|))) (-15 -3809 ($ (-677 |#1|) $)) (-15 -3809 ($ $ (-677 |#1|))))) (-855) (-173)) (T -669))
+((-3740 (*1 *1 *2) (|partial| -12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-669 *3 *4)))) (-3809 (*1 *1 *2 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))))
+(-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -3740 ((-3 $ "failed") (-1290 |#1| |#2|))) (-15 -3809 ($ (-677 |#1|) (-677 |#1|))) (-15 -3809 ($ (-677 |#1|) $)) (-15 -3809 ($ $ (-677 |#1|)))))
+((-1317 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-2951 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1796 (($ (-1 (-112) |#2|) $) 29)) (-2507 (($ $) 67)) (-2017 (($ $) 78)) (-1794 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3598 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-4036 (((-569) |#2| $ (-569)) 75) (((-569) |#2| $) NIL) (((-569) (-1 (-112) |#2|) $) 56)) (-4300 (($ (-776) |#2|) 65)) (-2292 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4198 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1346 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3382 (($ |#2|) 15)) (-3894 (($ $ $ (-569)) 42) (($ |#2| $ (-569)) 40)) (-1574 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3301 (($ $ (-1242 (-569))) 51) (($ $ (-569)) 44)) (-2785 (($ $ $ (-569)) 74)) (-3962 (($ $) 72)) (-2944 (((-112) $ $) 80)))
+(((-670 |#1| |#2|) (-10 -8 (-15 -3382 (|#1| |#2|)) (-15 -3301 (|#1| |#1| (-569))) (-15 -3301 (|#1| |#1| (-1242 (-569)))) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3894 (|#1| |#2| |#1| (-569))) (-15 -3894 (|#1| |#1| |#1| (-569))) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4198 (|#1| |#1| |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -2507 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| (-776) |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|))) (-671 |#2|) (-1225)) (T -670))
+NIL
+(-10 -8 (-15 -3382 (|#1| |#2|)) (-15 -3301 (|#1| |#1| (-569))) (-15 -3301 (|#1| |#1| (-1242 (-569)))) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3894 (|#1| |#2| |#1| (-569))) (-15 -3894 (|#1| |#1| |#1| (-569))) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4198 (|#1| |#1| |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -2507 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| (-776) |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2002 (((-1280) $ (-569) (-569)) 98 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-1317 (((-112) $) 143 (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-2951 (($ $) 147 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4448)))) (-3358 (($ $) 142 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 118 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) 130)) (-1417 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4447)))) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-2507 (($ $) 145 (|has| $ (-6 -4448)))) (-2251 (($ $) 135)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-2017 (($ $) 132 (|has| |#1| (-1108)))) (-3550 (($ $) 100 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 131 (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) 126)) (-1698 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4447))) (($ |#1| $) 101 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3846 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 88)) (-2199 (((-112) $) 84)) (-4036 (((-569) |#1| $ (-569)) 140 (|has| |#1| (-1108))) (((-569) |#1| $) 139 (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) 138)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) 109)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 96 (|has| (-569) (-855)))) (-3380 (($ $ $) 148 (|has| |#1| (-855)))) (-2292 (($ $ $) 133 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-4198 (($ $ $) 141 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 95 (|has| (-569) (-855)))) (-2839 (($ $ $) 149 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3382 (($ |#1|) 123)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-3894 (($ $ $ (-569)) 128) (($ |#1| $ (-569)) 127)) (-4298 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1696 (((-649 (-569)) $) 93)) (-1414 (((-112) (-569) $) 92)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1682 (($ $ |#1|) 97 (|has| $ (-6 -4448)))) (-4038 (((-112) $) 85)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 91)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1242 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-2602 (((-569) $ $) 45)) (-3301 (($ $ (-1242 (-569))) 125) (($ $ (-569)) 124)) (-4328 (($ $ (-1242 (-569))) 115) (($ $ (-569)) 114)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 144 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 108)) (-2866 (($ $ $) 62) (($ $ |#1|) 61)) (-2443 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 151 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 152 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 150 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 153 (|has| |#1| (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-671 |#1|) (-140) (-1225)) (T -671))
+((-3382 (*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1225)))))
+(-13 (-1157 |t#1|) (-377 |t#1|) (-285 |t#1|) (-10 -8 (-15 -3382 ($ |t#1|))))
+(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-285 |#1|) . T) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1018 |#1|) . T) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1157 |#1|) . T) ((-1225) . T) ((-1263 |#1|) . T))
+((-3218 (((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-649 (-649 |#1|)) (-649 (-1275 |#1|))) 22) (((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-694 |#1|) (-649 (-1275 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-649 (-649 |#1|)) (-1275 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|)) 14)) (-3978 (((-776) (-694 |#1|) (-1275 |#1|)) 30)) (-1393 (((-3 (-1275 |#1|) "failed") (-694 |#1|) (-1275 |#1|)) 24)) (-2126 (((-112) (-694 |#1|) (-1275 |#1|)) 27)))
+(((-672 |#1|) (-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|))) (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-649 (-649 |#1|)) (-1275 |#1|))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-694 |#1|) (-649 (-1275 |#1|)))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-649 (-649 |#1|)) (-649 (-1275 |#1|)))) (-15 -1393 ((-3 (-1275 |#1|) "failed") (-694 |#1|) (-1275 |#1|))) (-15 -2126 ((-112) (-694 |#1|) (-1275 |#1|))) (-15 -3978 ((-776) (-694 |#1|) (-1275 |#1|)))) (-367)) (T -672))
+((-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-672 *5)))) (-2126 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-5 *2 (-112)) (-5 *1 (-672 *5)))) (-1393 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1275 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *1 (-672 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1275 *5)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1275 *5)))))
+(-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|))) (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-649 (-649 |#1|)) (-1275 |#1|))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-694 |#1|) (-649 (-1275 |#1|)))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-649 (-649 |#1|)) (-649 (-1275 |#1|)))) (-15 -1393 ((-3 (-1275 |#1|) "failed") (-694 |#1|) (-1275 |#1|))) (-15 -2126 ((-112) (-694 |#1|) (-1275 |#1|))) (-15 -3978 ((-776) (-694 |#1|) (-1275 |#1|))))
+((-3218 (((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|)))) |#4| (-649 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|) 60)) (-3978 (((-776) |#4| |#3|) 18)) (-1393 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2126 (((-112) |#4| |#3|) 14)))
+(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|)) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -1393 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2126 ((-112) |#4| |#3|)) (-15 -3978 ((-776) |#4| |#3|))) (-367) (-13 (-377 |#1|) (-10 -7 (-6 -4448))) (-13 (-377 |#1|) (-10 -7 (-6 -4448))) (-692 |#1| |#2| |#3|)) (T -673))
+((-3978 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-776)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-2126 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-112)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-1393 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-367)) (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4448)))) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))) (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2)))) (-3218 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-649 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2403 (-649 *7))))) (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7)) (-4 *3 (-692 *5 *6 *7)))) (-3218 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
+(-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|)) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -1393 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2126 ((-112) |#4| |#3|)) (-15 -3978 ((-776) |#4| |#3|)))
+((-1611 (((-2 (|:| |particular| (-3 (-1275 (-412 |#4|)) "failed")) (|:| -2403 (-649 (-1275 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)) 52)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1611 ((-2 (|:| |particular| (-3 (-1275 (-412 |#4|)) "failed")) (|:| -2403 (-649 (-1275 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)))) (-561) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -674))
+((-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 (-412 *8)) "failed")) (|:| -2403 (-649 (-1275 (-412 *8)))))) (-5 *1 (-674 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1611 ((-2 (|:| |particular| (-3 (-1275 (-412 |#4|)) "failed")) (|:| -2403 (-649 (-1275 (-412 |#4|))))) (-649 |#4|) (-649 |#3|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-3140 ((|#2| $) NIL)) (-1551 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#2|))) NIL) (((-1275 (-694 |#2|)) (-1275 $)) NIL)) (-3169 (((-112) $) NIL)) (-3076 (((-1275 $)) 44)) (-3914 (((-112) $ (-776)) NIL)) (-3419 (($ |#2|) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) NIL (|has| |#2| (-310)))) (-4044 (((-241 |#1| |#2|) $ (-569)) NIL)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-3207 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-3400 (((-694 |#2|)) NIL) (((-694 |#2|) (-1275 $)) NIL)) (-1564 ((|#2| $) NIL)) (-2183 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1275 $)) NIL)) (-4379 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-3319 (((-1181 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#2| $) NIL)) (-4375 (((-1181 |#2|) $) NIL (|has| |#2| (-561)))) (-3850 ((|#2|) NIL) ((|#2| (-1275 $)) NIL)) (-4136 (((-1181 |#2|) $) NIL)) (-2413 (((-112)) NIL)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) NIL)) (-2247 (($ (-1275 |#2|)) NIL) (($ (-1275 |#2|) (-1275 $)) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3978 (((-776) $) NIL (|has| |#2| (-561))) (((-927)) 45)) (-3776 ((|#2| $ (-569) (-569)) NIL)) (-4095 (((-112)) NIL)) (-4311 (($ $ (-927)) NIL)) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL)) (-1539 (((-776) $) NIL (|has| |#2| (-561)))) (-2970 (((-649 (-241 |#1| |#2|)) $) NIL (|has| |#2| (-561)))) (-3225 (((-776) $) NIL)) (-1756 (((-112)) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#2| $) NIL (|has| |#2| (-6 (-4449 "*"))))) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#2|))) NIL)) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2884 (((-649 (-649 |#2|)) $) NIL)) (-2411 (((-112)) NIL)) (-2399 (((-112)) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-2904 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-2999 (((-694 |#2|)) NIL) (((-694 |#2|) (-1275 $)) NIL)) (-3339 ((|#2| $) NIL)) (-1866 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1275 $)) NIL)) (-4059 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-1308 (((-1181 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#2| $) NIL)) (-4167 (((-1181 |#2|) $) NIL (|has| |#2| (-561)))) (-3674 ((|#2|) NIL) ((|#2| (-1275 $)) NIL)) (-2761 (((-1181 |#2|) $) NIL)) (-4307 (((-112)) NIL)) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL)) (-3703 (((-112)) NIL)) (-4324 (((-112)) NIL)) (-2725 (((-3 $ "failed") $) NIL (|has| |#2| (-367)))) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) NIL)) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) 30) ((|#2| $ (-569)) NIL)) (-3517 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-1928 ((|#2| $) NIL)) (-3687 (($ (-649 |#2|)) NIL)) (-3387 (((-112) $) NIL)) (-1912 (((-241 |#1| |#2|) $) NIL)) (-3242 ((|#2| $) NIL (|has| |#2| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-2415 (((-694 |#2|) (-1275 $)) NIL) (((-1275 |#2|) $) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $ (-1275 $)) 33)) (-1410 (($ (-1275 |#2|)) NIL) (((-1275 |#2|) $) NIL)) (-1829 (((-649 (-958 |#2|))) NIL) (((-649 (-958 |#2|)) (-1275 $)) NIL)) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL)) (-3041 (((-241 |#1| |#2|) $ (-569)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 43)) (-2643 (((-649 (-1275 |#2|))) NIL (|has| |#2| (-561)))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL)) (-3451 (($ (-694 |#2|) $) NIL)) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL)) (-2887 (((-112)) NIL)) (-3967 (((-112)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) NIL) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-675 |#1| |#2|) (-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|)) (-927) (-173)) (T -675))
+NIL
+(-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4251 (((-649 (-1143)) $) 10)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-676) (-13 (-1091) (-10 -8 (-15 -4251 ((-649 (-1143)) $))))) (T -676))
+((-4251 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-676)))))
+(-13 (-1091) (-10 -8 (-15 -4251 ((-649 (-1143)) $))))
+((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) NIL)) (-4410 (($ $) 62)) (-4132 (((-112) $) NIL)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3487 (((-3 $ "failed") (-824 |#1|)) 27)) (-1935 (((-112) (-824 |#1|)) 17)) (-3311 (($ (-824 |#1|)) 28)) (-2259 (((-112) $ $) 36)) (-3845 (((-927) $) 43)) (-4398 (($ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3800 (((-649 $) (-824 |#1|)) 19)) (-3796 (((-867) $) 51) (($ |#1|) 40) (((-824 |#1|) $) 47) (((-682 |#1|) $) 52)) (-1520 (((-112) $ $) NIL)) (-2803 (((-59 (-649 $)) (-649 |#1|) (-927)) 67)) (-3149 (((-649 $) (-649 |#1|) (-927)) 72)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 63)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 46)))
+(((-677 |#1|) (-13 (-855) (-1046 |#1|) (-10 -8 (-15 -4132 ((-112) $)) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ((-682 |#1|) $)) (-15 -3800 ((-649 $) (-824 |#1|))) (-15 -1935 ((-112) (-824 |#1|))) (-15 -3311 ($ (-824 |#1|))) (-15 -3487 ((-3 $ "failed") (-824 |#1|))) (-15 -3105 ((-649 |#1|) $)) (-15 -2803 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -3149 ((-649 $) (-649 |#1|) (-927))))) (-855)) (T -677))
+((-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4398 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-677 *4))) (-5 *1 (-677 *4)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112)) (-5 *1 (-677 *4)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-3487 (*1 *1 *2) (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5)))))
+(-13 (-855) (-1046 |#1|) (-10 -8 (-15 -4132 ((-112) $)) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ((-682 |#1|) $)) (-15 -3800 ((-649 $) (-824 |#1|))) (-15 -1935 ((-112) (-824 |#1|))) (-15 -3311 ($ (-824 |#1|))) (-15 -3487 ((-3 $ "failed") (-824 |#1|))) (-15 -3105 ((-649 |#1|) $)) (-15 -2803 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -3149 ((-649 $) (-649 |#1|) (-927)))))
+((-2188 ((|#2| $) 103)) (-1568 (($ $) 124)) (-3914 (((-112) $ (-776)) 35)) (-3525 (($ $) 112) (($ $ (-776)) 115)) (-2199 (((-112) $) 125)) (-2280 (((-649 $) $) 99)) (-1534 (((-112) $ $) 95)) (-2314 (((-112) $ (-776)) 33)) (-4426 (((-569) $) 69)) (-3256 (((-569) $) 68)) (-4254 (((-112) $ (-776)) 31)) (-1887 (((-112) $) 101)) (-1724 ((|#2| $) 116) (($ $ (-776)) 120)) (-4298 (($ $ $ (-569)) 86) (($ |#2| $ (-569)) 85)) (-1696 (((-649 (-569)) $) 67)) (-1414 (((-112) (-569) $) 61)) (-3513 ((|#2| $) NIL) (($ $ (-776)) 111)) (-3166 (($ $ (-569)) 128)) (-4038 (((-112) $) 127)) (-3208 (((-112) (-1 (-112) |#2|) $) 44)) (-4199 (((-649 |#2|) $) 48)) (-1869 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1242 (-569))) 82) ((|#2| $ (-569)) 59) ((|#2| $ (-569) |#2|) 60)) (-2602 (((-569) $ $) 94)) (-4328 (($ $ (-1242 (-569))) 81) (($ $ (-569)) 75)) (-3966 (((-112) $) 90)) (-1641 (($ $) 108)) (-1490 (((-776) $) 107)) (-4322 (($ $) 106)) (-3809 (($ (-649 |#2|)) 55)) (-2007 (($ $) 129)) (-4001 (((-649 $) $) 93)) (-4280 (((-112) $ $) 92)) (-1980 (((-112) (-1 (-112) |#2|) $) 43)) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 41)))
+(((-678 |#1| |#2|) (-10 -8 (-15 -2007 (|#1| |#1|)) (-15 -3166 (|#1| |#1| (-569))) (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -4199 ((-649 |#2|) |#1|)) (-15 -1414 ((-112) (-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -3256 ((-569) |#1|)) (-15 -4426 ((-569) |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -2602 ((-569) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776)))) (-679 |#2|) (-1225)) (T -678))
+NIL
+(-10 -8 (-15 -2007 (|#1| |#1|)) (-15 -3166 (|#1| |#1| (-569))) (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -4199 ((-649 |#2|) |#1|)) (-15 -1414 ((-112) (-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -3256 ((-569) |#1|)) (-15 -4426 ((-569) |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -2602 ((-569) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2002 (((-1280) $ (-569) (-569)) 98 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 118 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 103)) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-3115 (($ $) 125)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-3550 (($ $) 100 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 101 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 104)) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3846 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 88)) (-2199 (((-112) $) 84)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1465 (((-776) $) 124)) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) 109)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 96 (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 95 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-1438 (($ $) 127)) (-2350 (((-112) $) 128)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-4298 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1696 (((-649 (-569)) $) 93)) (-1414 (((-112) (-569) $) 92)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-2867 ((|#1| $) 126)) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1682 (($ $ |#1|) 97 (|has| $ (-6 -4448)))) (-3166 (($ $ (-569)) 123)) (-4038 (((-112) $) 85)) (-1949 (((-112) $) 129)) (-3934 (((-112) $) 130)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 91)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1242 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-2602 (((-569) $ $) 45)) (-4328 (($ $ (-1242 (-569))) 115) (($ $ (-569)) 114)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 108)) (-2866 (($ $ $) 62 (|has| $ (-6 -4448))) (($ $ |#1|) 61 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-2007 (($ $) 122)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-679 |#1|) (-140) (-1225)) (T -679))
+((-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-1438 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) (-2007 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))))
+(-13 (-1157 |t#1|) (-10 -8 (-15 -1698 ($ (-1 (-112) |t#1|) $)) (-15 -1417 ($ (-1 (-112) |t#1|) $)) (-15 -3934 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -2350 ((-112) $)) (-15 -1438 ($ $)) (-15 -2867 (|t#1| $)) (-15 -3115 ($ $)) (-15 -1465 ((-776) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1157 |#1|) . T) ((-1225) . T) ((-1263 |#1|) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2656 (($ (-776) (-776) (-776)) 55 (|has| |#1| (-1057)))) (-3914 (((-112) $ (-776)) NIL)) (-4281 ((|#1| $ (-776) (-776) (-776) |#1|) 49)) (-4427 (($) NIL T CONST)) (-3245 (($ $ $) 60 (|has| |#1| (-1057)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2622 (((-1275 (-776)) $) 12)) (-1437 (($ (-1185) $ $) 37)) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4154 (($ (-776)) 57 (|has| |#1| (-1057)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-776) (-776) (-776)) 46)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3809 (($ (-649 (-649 (-649 |#1|)))) 70)) (-3796 (($ (-964 (-964 (-964 |#1|)))) 23) (((-964 (-964 (-964 |#1|))) $) 19) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-680 |#1|) (-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1057)) (PROGN (-15 -2656 ($ (-776) (-776) (-776))) (-15 -4154 ($ (-776))) (-15 -3245 ($ $ $))) |%noBranch|) (-15 -3809 ($ (-649 (-649 (-649 |#1|))))) (-15 -1869 (|#1| $ (-776) (-776) (-776))) (-15 -4281 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -3796 ($ (-964 (-964 (-964 |#1|))))) (-15 -3796 ((-964 (-964 (-964 |#1|))) $)) (-15 -1437 ($ (-1185) $ $)) (-15 -2622 ((-1275 (-776)) $)))) (-1108)) (T -680))
+((-2656 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057)) (-4 *3 (-1108)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057)) (-4 *3 (-1108)))) (-3245 (*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1057)) (-4 *2 (-1108)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1108)) (-5 *1 (-680 *3)))) (-1869 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108)))) (-4281 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1108)) (-5 *1 (-680 *3)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3)) (-4 *3 (-1108)))) (-1437 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-680 *3)) (-4 *3 (-1108)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-1275 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1108)))))
+(-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1057)) (PROGN (-15 -2656 ($ (-776) (-776) (-776))) (-15 -4154 ($ (-776))) (-15 -3245 ($ $ $))) |%noBranch|) (-15 -3809 ($ (-649 (-649 (-649 |#1|))))) (-15 -1869 (|#1| $ (-776) (-776) (-776))) (-15 -4281 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -3796 ($ (-964 (-964 (-964 |#1|))))) (-15 -3796 ((-964 (-964 (-964 |#1|))) $)) (-15 -1437 ($ (-1185) $ $)) (-15 -2622 ((-1275 (-776)) $))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2122 (((-488) $) 10)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-681) (-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -3586 ((-1143) $))))) (T -681))
+((-2122 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-681)))))
+(-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -3586 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) 15)) (-4410 (($ $) 19)) (-4132 (((-112) $) 20)) (-4381 (((-3 |#1| "failed") $) 23)) (-3150 ((|#1| $) 21)) (-3525 (($ $) 37)) (-2325 (($ $) 25)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2259 (((-112) $ $) 47)) (-3845 (((-927) $) 40)) (-4398 (($ $) 18)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 ((|#1| $) 36)) (-3796 (((-867) $) 32) (($ |#1|) 24) (((-824 |#1|) $) 28)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 13)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-682 |#1|) (-13 (-855) (-1046 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3513 (|#1| $)) (-15 -4398 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -2325 ($ $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -4410 ($ $)) (-15 -3105 ((-649 |#1|) $)))) (-855)) (T -682))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-3513 (*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4398 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))))
+(-13 (-855) (-1046 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3513 (|#1| $)) (-15 -4398 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -2325 ($ $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -4410 ($ $)) (-15 -3105 ((-649 |#1|) $))))
+((-4023 ((|#1| (-1 |#1| (-776) |#1|) (-776) |#1|) 14)) (-4320 ((|#1| (-1 |#1| |#1|) (-776) |#1|) 12)))
+(((-683 |#1|) (-10 -7 (-15 -4320 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -4023 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|))) (-1108)) (T -683))
+((-4023 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1108)) (-5 *1 (-683 *2)))) (-4320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1108)) (-5 *1 (-683 *2)))))
+(-10 -7 (-15 -4320 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -4023 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|)))
+((-4116 ((|#2| |#1| |#2|) 9)) (-4104 ((|#1| |#1| |#2|) 8)))
+(((-684 |#1| |#2|) (-10 -7 (-15 -4104 (|#1| |#1| |#2|)) (-15 -4116 (|#2| |#1| |#2|))) (-1108) (-1108)) (T -684))
+((-4116 (*1 *2 *3 *2) (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-4104 (*1 *2 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -4104 (|#1| |#1| |#2|)) (-15 -4116 (|#2| |#1| |#2|)))
+((-3332 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1108) (-1108) (-1108)) (T -685))
+((-3332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-685 *5 *6 *2)))))
+(-10 -7 (-15 -3332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 21)) (-3815 (((-649 (-1224)) $) 19)) (-1463 (($ (-649 (-1224)) (-1224)) 14)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 29) (($ (-1190)) NIL) (((-1190) $) NIL) (((-1224) $) 22) (($ (-1126)) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-686) (-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-1126))) (-15 -1463 ($ (-649 (-1224)) (-1224))) (-15 -3815 ((-649 (-1224)) $)) (-15 -3870 ((-1224) $))))) (T -686))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-686)))) (-1463 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1224))) (-5 *3 (-1224)) (-5 *1 (-686)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-686)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-686)))))
+(-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-1126))) (-15 -1463 ($ (-649 (-1224)) (-1224))) (-15 -3815 ((-649 (-1224)) $)) (-15 -3870 ((-1224) $))))
+((-4023 (((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)) 29)) (-4394 (((-1 |#1|) |#1|) 8)) (-4267 ((|#1| |#1|) 23)) (-3079 (((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3796 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-776)) 26)))
+(((-687 |#1|) (-10 -7 (-15 -4394 ((-1 |#1|) |#1|)) (-15 -3796 ((-1 |#1|) |#1|)) (-15 -3079 (|#1| (-1 |#1| |#1|))) (-15 -3079 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4267 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -4023 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)))) (-1108)) (T -687))
+((-4023 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1108)) (-5 *1 (-687 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1108)) (-5 *1 (-687 *4)))) (-4267 (*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1108)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569)) (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1108)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1108)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108)))) (-4394 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -4394 ((-1 |#1|) |#1|)) (-15 -3796 ((-1 |#1|) |#1|)) (-15 -3079 (|#1| (-1 |#1| |#1|))) (-15 -3079 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4267 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -4023 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|))))
+((-4351 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4370 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3709 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2587 (((-1 |#2| |#1|) |#2|) 11)))
+(((-688 |#1| |#2|) (-10 -7 (-15 -2587 ((-1 |#2| |#1|) |#2|)) (-15 -4370 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3709 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4351 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1108) (-1108)) (T -688))
+((-4351 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)) (-4 *4 (-1108)))) (-4370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))) (-2587 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1108)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -2587 ((-1 |#2| |#1|) |#2|)) (-15 -4370 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3709 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4351 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3583 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2988 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3254 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1937 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1800 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -2988 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3254 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1937 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1800 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3583 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1108) (-1108) (-1108)) (T -689))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-1 *7 *5)) (-5 *1 (-689 *5 *6 *7)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1108)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1108)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))) (-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1108)) (-4 *4 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
+(-10 -7 (-15 -2988 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3254 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1937 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1800 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3583 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3598 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1346 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-690 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1346 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3598 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1057) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-1057) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -690))
+((-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1057)) (-4 *2 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *8 (-377 *2)) (-4 *9 (-377 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-692 *5 *6 *7)) (-4 *10 (-692 *2 *8 *9)))) (-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1057)) (-4 *8 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1057)) (-4 *8 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))))
+(-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1346 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3598 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3467 (($ (-776) (-776)) 43)) (-3182 (($ $ $) 71)) (-2937 (($ |#3|) 66) (($ $) 67)) (-1551 (((-112) $) 38)) (-1532 (($ $ (-569) (-569)) 82)) (-2986 (($ $ (-569) (-569)) 83)) (-1952 (($ $ (-569) (-569) (-569) (-569)) 88)) (-1383 (($ $) 69)) (-3169 (((-112) $) 15)) (-3312 (($ $ (-569) (-569) $) 89)) (-3943 ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) 87)) (-3419 (($ (-776) |#2|) 53)) (-2430 (($ (-649 (-649 |#2|))) 51)) (-2884 (((-649 (-649 |#2|)) $) 78)) (-2838 (($ $ $) 70)) (-2407 (((-3 $ "failed") $ |#2|) 121)) (-1869 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-3687 (($ (-649 |#2|)) 54) (($ (-649 $)) 56)) (-3387 (((-112) $) 28)) (-3796 (($ |#4|) 61) (((-867) $) NIL)) (-2768 (((-112) $) 40)) (-3035 (($ $ |#2|) 123)) (-3024 (($ $ $) 93) (($ $) 96)) (-3012 (($ $ $) 91)) (** (($ $ (-776)) 110) (($ $ (-569)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-569) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
+(((-691 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#2|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3312 (|#1| |#1| (-569) (-569) |#1|)) (-15 -1952 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -2986 (|#1| |#1| (-569) (-569))) (-15 -1532 (|#1| |#1| (-569) (-569))) (-15 -3943 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1869 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -2884 ((-649 (-649 |#2|)) |#1|)) (-15 -3182 (|#1| |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1|)) (-15 -2937 (|#1| |#1|)) (-15 -2937 (|#1| |#3|)) (-15 -3796 (|#1| |#4|)) (-15 -3687 (|#1| (-649 |#1|))) (-15 -3687 (|#1| (-649 |#2|))) (-15 -3419 (|#1| (-776) |#2|)) (-15 -2430 (|#1| (-649 (-649 |#2|)))) (-15 -3467 (|#1| (-776) (-776))) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569)))) (-692 |#2| |#3| |#4|) (-1057) (-377 |#2|) (-377 |#2|)) (T -691))
+NIL
+(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#2|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3312 (|#1| |#1| (-569) (-569) |#1|)) (-15 -1952 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -2986 (|#1| |#1| (-569) (-569))) (-15 -1532 (|#1| |#1| (-569) (-569))) (-15 -3943 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1869 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -2884 ((-649 (-649 |#2|)) |#1|)) (-15 -3182 (|#1| |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1|)) (-15 -2937 (|#1| |#1|)) (-15 -2937 (|#1| |#3|)) (-15 -3796 (|#1| |#4|)) (-15 -3687 (|#1| (-649 |#1|))) (-15 -3687 (|#1| (-649 |#2|))) (-15 -3419 (|#1| (-776) |#2|)) (-15 -2430 (|#1| (-649 (-649 |#2|)))) (-15 -3467 (|#1| (-776) (-776))) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569))))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) 98)) (-3182 (($ $ $) 88)) (-2937 (($ |#2|) 92) (($ $) 91)) (-1551 (((-112) $) 100)) (-1532 (($ $ (-569) (-569)) 84)) (-2986 (($ $ (-569) (-569)) 83)) (-1952 (($ $ (-569) (-569) (-569) (-569)) 82)) (-1383 (($ $) 90)) (-3169 (((-112) $) 102)) (-3914 (((-112) $ (-776)) 8)) (-3312 (($ $ (-569) (-569) $) 81)) (-3943 ((|#1| $ (-569) (-569) |#1|) 45) (($ $ (-649 (-569)) (-649 (-569)) $) 85)) (-2400 (($ $ (-569) |#2|) 43)) (-3259 (($ $ (-569) |#3|) 42)) (-3419 (($ (-776) |#1|) 96)) (-4427 (($) 7 T CONST)) (-2439 (($ $) 68 (|has| |#1| (-310)))) (-4044 ((|#2| $ (-569)) 47)) (-3978 (((-776) $) 67 (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) 44)) (-3776 ((|#1| $ (-569) (-569)) 49)) (-2882 (((-649 |#1|) $) 31)) (-1539 (((-776) $) 66 (|has| |#1| (-561)))) (-2970 (((-649 |#3|) $) 65 (|has| |#1| (-561)))) (-3225 (((-776) $) 52)) (-4300 (($ (-776) (-776) |#1|) 58)) (-3236 (((-776) $) 51)) (-2314 (((-112) $ (-776)) 9)) (-2874 ((|#1| $) 63 (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) 56)) (-1537 (((-569) $) 54)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 55)) (-2742 (((-569) $) 53)) (-2430 (($ (-649 (-649 |#1|))) 97)) (-3834 (($ (-1 |#1| |#1|) $) 35)) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2884 (((-649 (-649 |#1|)) $) 87)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) 62 (|has| |#1| (-367)))) (-2838 (($ $ $) 89)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) 57)) (-2407 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-3687 (($ (-649 |#1|)) 95) (($ (-649 $)) 94)) (-3387 (((-112) $) 101)) (-3242 ((|#1| $) 64 (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3041 ((|#3| $ (-569)) 46)) (-3796 (($ |#3|) 93) (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2768 (((-112) $) 99)) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) 69 (|has| |#1| (-367)))) (-3024 (($ $ $) 79) (($ $) 78)) (-3012 (($ $ $) 80)) (** (($ $ (-776)) 71) (($ $ (-569)) 61 (|has| |#1| (-367)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-569) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-692 |#1| |#2| |#3|) (-140) (-1057) (-377 |t#1|) (-377 |t#1|)) (T -692))
+((-3169 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3467 (*1 *1 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3419 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (-2937 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (-2937 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-1383 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2838 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3182 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3))))) (-1869 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3943 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1532 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2986 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1952 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3312 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1057)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-561)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (-2439 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-310)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2725 (*1 *1 *1) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-367)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3169 ((-112) $)) (-15 -3387 ((-112) $)) (-15 -1551 ((-112) $)) (-15 -2768 ((-112) $)) (-15 -3467 ($ (-776) (-776))) (-15 -2430 ($ (-649 (-649 |t#1|)))) (-15 -3419 ($ (-776) |t#1|)) (-15 -3687 ($ (-649 |t#1|))) (-15 -3687 ($ (-649 $))) (-15 -3796 ($ |t#3|)) (-15 -2937 ($ |t#2|)) (-15 -2937 ($ $)) (-15 -1383 ($ $)) (-15 -2838 ($ $ $)) (-15 -3182 ($ $ $)) (-15 -2884 ((-649 (-649 |t#1|)) $)) (-15 -1869 ($ $ (-649 (-569)) (-649 (-569)))) (-15 -3943 ($ $ (-649 (-569)) (-649 (-569)) $)) (-15 -1532 ($ $ (-569) (-569))) (-15 -2986 ($ $ (-569) (-569))) (-15 -1952 ($ $ (-569) (-569) (-569) (-569))) (-15 -3312 ($ $ (-569) (-569) $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3024 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-569) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-776))) (IF (|has| |t#1| (-561)) (-15 -2407 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -3035 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-310)) (-15 -2439 ($ $)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3978 ((-776) $)) (-15 -1539 ((-776) $)) (-15 -2970 ((-649 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4449 "*"))) (PROGN (-15 -3242 (|t#1| $)) (-15 -2874 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -2725 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-57 |#1| |#2| |#3|) . T) ((-1225) . T))
+((-2439 ((|#4| |#4|) 97 (|has| |#1| (-310)))) (-3978 (((-776) |#4|) 125 (|has| |#1| (-561)))) (-1539 (((-776) |#4|) 101 (|has| |#1| (-561)))) (-2970 (((-649 |#3|) |#4|) 108 (|has| |#1| (-561)))) (-3512 (((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|) 140 (|has| |#1| (-310)))) (-2874 ((|#1| |#4|) 57)) (-1492 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-561)))) (-2725 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-367)))) (-2708 ((|#4| |#4|) 93 (|has| |#1| (-561)))) (-3530 ((|#4| |#4| |#1| (-569) (-569)) 65)) (-2468 ((|#4| |#4| (-569) (-569)) 60)) (-4081 ((|#4| |#4| |#1| (-569) (-569)) 70)) (-3242 ((|#1| |#4|) 103)) (-2390 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-561)))))
+(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3242 (|#1| |#4|)) (-15 -2874 (|#1| |#4|)) (-15 -2468 (|#4| |#4| (-569) (-569))) (-15 -3530 (|#4| |#4| |#1| (-569) (-569))) (-15 -4081 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (-15 -2970 ((-649 |#3|) |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1492 ((-3 |#4| "failed") |#4|)) (-15 -2390 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -2439 (|#4| |#4|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-173) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -693))
+((-2725 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3512 (*1 *2 *3 *3) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1492 (*1 *2 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2970 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1539 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3978 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-4081 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-3530 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-2468 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2)) (-4 *2 (-692 *4 *5 *6)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))))
+(-10 -7 (-15 -3242 (|#1| |#4|)) (-15 -2874 (|#1| |#4|)) (-15 -2468 (|#4| |#4| (-569) (-569))) (-15 -3530 (|#4| |#4| |#1| (-569) (-569))) (-15 -4081 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (-15 -2970 ((-649 |#3|) |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1492 ((-3 |#4| "failed") |#4|)) (-15 -2390 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -2439 (|#4| |#4|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) 64)) (-3182 (($ $ $) NIL)) (-2937 (($ (-1275 |#1|)) NIL) (($ $) NIL)) (-1551 (((-112) $) NIL)) (-1532 (($ $ (-569) (-569)) 22)) (-2986 (($ $ (-569) (-569)) NIL)) (-1952 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-1383 (($ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3312 (($ $ (-569) (-569) $) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2400 (($ $ (-569) (-1275 |#1|)) NIL)) (-3259 (($ $ (-569) (-1275 |#1|)) NIL)) (-3419 (($ (-776) |#1|) 37)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 46 (|has| |#1| (-310)))) (-4044 (((-1275 |#1|) $ (-569)) NIL)) (-3978 (((-776) $) 48 (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) 69)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-1539 (((-776) $) 50 (|has| |#1| (-561)))) (-2970 (((-649 (-1275 |#1|)) $) 53 (|has| |#1| (-561)))) (-3225 (((-776) $) 32)) (-4300 (($ (-776) (-776) |#1|) 28)) (-3236 (((-776) $) 33)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#1| $) 44 (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) 10)) (-1537 (((-569) $) 11)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) 14)) (-2742 (((-569) $) 65)) (-2430 (($ (-649 (-649 |#1|))) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2884 (((-649 (-649 |#1|)) $) 76)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) 60 (|has| |#1| (-367)))) (-2838 (($ $ $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-3687 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL) (($ (-1275 |#1|)) 70)) (-3387 (((-112) $) NIL)) (-3242 ((|#1| $) 42 (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3041 (((-1275 |#1|) $ (-569)) NIL)) (-3796 (($ (-1275 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) 38) (($ $ (-569)) 62 (|has| |#1| (-367)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1275 |#1|) $ (-1275 |#1|)) NIL) (((-1275 |#1|) (-1275 |#1|) $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-694 |#1|) (-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 -3687 ($ (-1275 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 $ "failed") $)) |%noBranch|))) (-1057)) (T -694))
+((-2725 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1057)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-694 *3)))))
+(-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 -3687 ($ (-1275 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 $ "failed") $)) |%noBranch|)))
+((-2932 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 37)) (-4362 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 34)) (-3882 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776)) 43)) (-4290 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 27)) (-2828 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 31) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 29)) (-2463 (((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|)) 33)) (-3175 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 25)) (** (((-694 |#1|) (-694 |#1|) (-776)) 46)))
+(((-695 |#1|) (-10 -7 (-15 -3175 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4290 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2463 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -4362 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2932 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3882 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776)))) (-1057)) (T -695))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-695 *4)))) (-3882 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-695 *4)))) (-2932 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-4362 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-2463 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-2828 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-2828 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-4290 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-3175 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))))
+(-10 -7 (-15 -3175 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4290 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2463 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -4362 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2932 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3882 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776))))
+((-4381 (((-3 |#1| "failed") $) 18)) (-3150 ((|#1| $) NIL)) (-1587 (($) 7 T CONST)) (-3629 (($ |#1|) 8)) (-3796 (($ |#1|) 16) (((-867) $) 23)) (-1795 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1587)) 11)) (-3993 ((|#1| $) 15)))
+(((-696 |#1|) (-13 (-1270) (-1046 |#1|) (-618 (-867)) (-10 -8 (-15 -3629 ($ |#1|)) (-15 -1795 ((-112) $ (|[\|\|]| |#1|))) (-15 -1795 ((-112) $ (|[\|\|]| -1587))) (-15 -3993 (|#1| $)) (-15 -1587 ($) -3709))) (-618 (-867))) (T -696))
+((-3629 (*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-867))) (-5 *2 (-112)) (-5 *1 (-696 *4)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1587)) (-5 *2 (-112)) (-5 *1 (-696 *4)) (-4 *4 (-618 (-867))))) (-3993 (*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-1587 (*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
+(-13 (-1270) (-1046 |#1|) (-618 (-867)) (-10 -8 (-15 -3629 ($ |#1|)) (-15 -1795 ((-112) $ (|[\|\|]| |#1|))) (-15 -1795 ((-112) $ (|[\|\|]| -1587))) (-15 -3993 (|#1| $)) (-15 -1587 ($) -3709)))
+((-2591 ((|#2| |#2| |#4|) 33)) (-1765 (((-694 |#2|) |#3| |#4|) 39)) (-1320 (((-694 |#2|) |#2| |#4|) 38)) (-2287 (((-1275 |#2|) |#2| |#4|) 16)) (-4096 ((|#2| |#3| |#4|) 32)) (-3416 (((-694 |#2|) |#3| |#4| (-776) (-776)) 48)) (-2975 (((-694 |#2|) |#2| |#4| (-776)) 47)))
+(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2287 ((-1275 |#2|) |#2| |#4|)) (-15 -4096 (|#2| |#3| |#4|)) (-15 -2591 (|#2| |#2| |#4|)) (-15 -1320 ((-694 |#2|) |#2| |#4|)) (-15 -2975 ((-694 |#2|) |#2| |#4| (-776))) (-15 -1765 ((-694 |#2|) |#3| |#4|)) (-15 -3416 ((-694 |#2|) |#3| |#4| (-776) (-776)))) (-1108) (-906 |#1|) (-377 |#2|) (-13 (-377 |#1|) (-10 -7 (-6 -4447)))) (T -697))
+((-3416 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *7 (-906 *6)) (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447)))))) (-1765 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6)) (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))) (-2975 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *3 (-906 *6)) (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447)))))) (-1320 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))) (-2591 (*1 *2 *2 *3) (-12 (-4 *4 (-1108)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4447)))))) (-4096 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))) (-2287 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-1275 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))))
+(-10 -7 (-15 -2287 ((-1275 |#2|) |#2| |#4|)) (-15 -4096 (|#2| |#3| |#4|)) (-15 -2591 (|#2| |#2| |#4|)) (-15 -1320 ((-694 |#2|) |#2| |#4|)) (-15 -2975 ((-694 |#2|) |#2| |#4| (-776))) (-15 -1765 ((-694 |#2|) |#3| |#4|)) (-15 -3416 ((-694 |#2|) |#3| |#4| (-776) (-776))))
+((-2974 (((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)) 20)) (-4377 ((|#1| (-694 |#2|)) 9)) (-3110 (((-694 |#1|) (-694 |#2|)) 18)))
+(((-698 |#1| |#2|) (-10 -7 (-15 -4377 (|#1| (-694 |#2|))) (-15 -3110 ((-694 |#1|) (-694 |#2|))) (-15 -2974 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)))) (-561) (-1000 |#1|)) (T -698))
+((-2974 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4))) (-5 *1 (-698 *4 *5)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561)) (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-698 *2 *4)))))
+(-10 -7 (-15 -4377 (|#1| (-694 |#2|))) (-15 -3110 ((-694 |#1|) (-694 |#2|))) (-15 -2974 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1547 (((-694 (-704))) NIL) (((-694 (-704)) (-1275 $)) NIL)) (-3140 (((-704) $) NIL)) (-2771 (($ $) NIL (|has| (-704) (-1210)))) (-2626 (($ $) NIL (|has| (-704) (-1210)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-704) (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-1830 (($ $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3764 (((-423 $) $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3813 (($ $) NIL (-12 (|has| (-704) (-1010)) (|has| (-704) (-1210))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-2227 (((-112) $ $) NIL (|has| (-704) (-310)))) (-3473 (((-776)) NIL (|has| (-704) (-372)))) (-2746 (($ $) NIL (|has| (-704) (-1210)))) (-2601 (($ $) NIL (|has| (-704) (-1210)))) (-4118 (($ $) NIL (|has| (-704) (-1210)))) (-2647 (($ $) NIL (|has| (-704) (-1210)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-704) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-1046 (-412 (-569)))))) (-3150 (((-569) $) NIL) (((-704) $) NIL) (((-412 (-569)) $) NIL (|has| (-704) (-1046 (-412 (-569)))))) (-2247 (($ (-1275 (-704))) NIL) (($ (-1275 (-704)) (-1275 $)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-704) (-353)))) (-2368 (($ $ $) NIL (|has| (-704) (-310)))) (-1833 (((-694 (-704)) $) NIL) (((-694 (-704)) $ (-1275 $)) NIL)) (-2957 (((-694 (-704)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-704))) (|:| |vec| (-1275 (-704)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-704) (-644 (-569)))) (((-694 (-569)) (-694 $)) NIL (|has| (-704) (-644 (-569))))) (-3598 (((-3 $ "failed") (-412 (-1181 (-704)))) NIL (|has| (-704) (-367))) (($ (-1181 (-704))) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3824 (((-704) $) 29)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-550)))) (-1441 (((-112) $) NIL (|has| (-704) (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| (-704) (-550)))) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| (-704) (-372)))) (-2379 (($ $ $) NIL (|has| (-704) (-310)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| (-704) (-310)))) (-1616 (($) NIL (|has| (-704) (-353)))) (-2807 (((-112) $) NIL (|has| (-704) (-353)))) (-3701 (($ $) NIL (|has| (-704) (-353))) (($ $ (-776)) NIL (|has| (-704) (-353)))) (-1473 (((-112) $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-2149 (((-2 (|:| |r| (-704)) (|:| |phi| (-704))) $) NIL (-12 (|has| (-704) (-1068)) (|has| (-704) (-1210))))) (-1312 (($) NIL (|has| (-704) (-1210)))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-704) (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-704) (-892 (-569))))) (-1466 (((-838 (-927)) $) NIL (|has| (-704) (-353))) (((-927) $) NIL (|has| (-704) (-353)))) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (-12 (|has| (-704) (-1010)) (|has| (-704) (-1210))))) (-3829 (((-704) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-704) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-3859 (((-1181 (-704)) $) NIL (|has| (-704) (-367)))) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 (-704) (-704)) $) NIL)) (-2731 (((-927) $) NIL (|has| (-704) (-372)))) (-2662 (($ $) NIL (|has| (-704) (-1210)))) (-3585 (((-1181 (-704)) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| (-704) (-367)))) (-2307 (($) NIL (|has| (-704) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-704) (-372)))) (-1734 (($) NIL)) (-3836 (((-704) $) 31)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| (-704) (-310)))) (-1870 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-704) (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-3800 (((-423 $) $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-704) (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| (-704) (-310)))) (-2407 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-704)) NIL (|has| (-704) (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-4389 (($ $) NIL (|has| (-704) (-1210)))) (-1725 (($ $ (-1185) (-704)) NIL (|has| (-704) (-519 (-1185) (-704)))) (($ $ (-649 (-1185)) (-649 (-704))) NIL (|has| (-704) (-519 (-1185) (-704)))) (($ $ (-649 (-297 (-704)))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-297 (-704))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-704) (-704)) NIL (|has| (-704) (-312 (-704)))) (($ $ (-649 (-704)) (-649 (-704))) NIL (|has| (-704) (-312 (-704))))) (-2431 (((-776) $) NIL (|has| (-704) (-310)))) (-1869 (($ $ (-704)) NIL (|has| (-704) (-289 (-704) (-704))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| (-704) (-310)))) (-3059 (((-704)) NIL) (((-704) (-1275 $)) NIL)) (-2166 (((-3 (-776) "failed") $ $) NIL (|has| (-704) (-353))) (((-776) $) NIL (|has| (-704) (-353)))) (-3517 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2594 (((-694 (-704)) (-1275 $) (-1 (-704) (-704))) NIL (|has| (-704) (-367)))) (-4061 (((-1181 (-704))) NIL)) (-4128 (($ $) NIL (|has| (-704) (-1210)))) (-2661 (($ $) NIL (|has| (-704) (-1210)))) (-4234 (($) NIL (|has| (-704) (-353)))) (-2783 (($ $) NIL (|has| (-704) (-1210)))) (-2635 (($ $) NIL (|has| (-704) (-1210)))) (-2758 (($ $) NIL (|has| (-704) (-1210)))) (-2614 (($ $) NIL (|has| (-704) (-1210)))) (-2415 (((-694 (-704)) (-1275 $)) NIL) (((-1275 (-704)) $) NIL) (((-694 (-704)) (-1275 $) (-1275 $)) NIL) (((-1275 (-704)) $ (-1275 $)) NIL)) (-1410 (((-541) $) NIL (|has| (-704) (-619 (-541)))) (((-170 (-226)) $) NIL (|has| (-704) (-1030))) (((-170 (-383)) $) NIL (|has| (-704) (-1030))) (((-898 (-383)) $) NIL (|has| (-704) (-619 (-898 (-383))))) (((-898 (-569)) $) NIL (|has| (-704) (-619 (-898 (-569))))) (($ (-1181 (-704))) NIL) (((-1181 (-704)) $) NIL) (($ (-1275 (-704))) NIL) (((-1275 (-704)) $) NIL)) (-3476 (($ $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-353))))) (-3101 (($ (-704) (-704)) 12)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-704)) NIL) (($ (-170 (-383))) 13) (($ (-170 (-569))) 19) (($ (-170 (-704))) 28) (($ (-170 (-706))) 25) (((-170 (-383)) $) 33) (($ (-412 (-569))) NIL (-2776 (|has| (-704) (-1046 (-412 (-569)))) (|has| (-704) (-367))))) (-2239 (($ $) NIL (|has| (-704) (-353))) (((-3 $ "failed") $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-145))))) (-1886 (((-1181 (-704)) $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-4161 (($ $) NIL (|has| (-704) (-1210)))) (-2701 (($ $) NIL (|has| (-704) (-1210)))) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) NIL (|has| (-704) (-1210)))) (-2675 (($ $) NIL (|has| (-704) (-1210)))) (-4183 (($ $) NIL (|has| (-704) (-1210)))) (-2723 (($ $) NIL (|has| (-704) (-1210)))) (-1899 (((-704) $) NIL (|has| (-704) (-1210)))) (-1503 (($ $) NIL (|has| (-704) (-1210)))) (-2734 (($ $) NIL (|has| (-704) (-1210)))) (-4175 (($ $) NIL (|has| (-704) (-1210)))) (-2712 (($ $) NIL (|has| (-704) (-1210)))) (-4151 (($ $) NIL (|has| (-704) (-1210)))) (-2689 (($ $) NIL (|has| (-704) (-1210)))) (-2271 (($ $) NIL (|has| (-704) (-1068)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| (-704) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| (-704) (-1210))) (($ $ (-412 (-569))) NIL (-12 (|has| (-704) (-1010)) (|has| (-704) (-1210)))) (($ $ (-569)) NIL (|has| (-704) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ (-704) $) NIL) (($ $ (-704)) NIL) (($ (-412 (-569)) $) NIL (|has| (-704) (-367))) (($ $ (-412 (-569))) NIL (|has| (-704) (-367)))))
+(((-699) (-13 (-392) (-166 (-704)) (-10 -8 (-15 -3796 ($ (-170 (-383)))) (-15 -3796 ($ (-170 (-569)))) (-15 -3796 ($ (-170 (-704)))) (-15 -3796 ($ (-170 (-706)))) (-15 -3796 ((-170 (-383)) $))))) (T -699))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-569))) (-5 *1 (-699)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-704))) (-5 *1 (-699)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-706))) (-5 *1 (-699)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))))
+(-13 (-392) (-166 (-704)) (-10 -8 (-15 -3796 ($ (-170 (-383)))) (-15 -3796 ($ (-170 (-569)))) (-15 -3796 ($ (-170 (-704)))) (-15 -3796 ($ (-170 (-706)))) (-15 -3796 ((-170 (-383)) $))))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 63)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 62)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-700 |#1|) (-140) (-1108)) (T -700))
+((-3894 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1108)))) (-2017 (*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1108)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-700 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-2 (|:| -2216 *3) (|:| -3560 (-776))))))))
+(-13 (-236 |t#1|) (-10 -8 (-15 -3894 ($ |t#1| $ (-776))) (-15 -2017 ($ $)) (-15 -3262 ((-649 (-2 (|:| -2216 |t#1|) (|:| -3560 (-776)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-3893 (((-649 |#1|) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) (-569)) 65)) (-3744 ((|#1| |#1| (-569)) 62)) (-1870 ((|#1| |#1| |#1| (-569)) 46)) (-3800 (((-649 |#1|) |#1| (-569)) 49)) (-3247 ((|#1| |#1| (-569) |#1| (-569)) 40)) (-3126 (((-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) |#1| (-569)) 61)))
+(((-701 |#1|) (-10 -7 (-15 -1870 (|#1| |#1| |#1| (-569))) (-15 -3744 (|#1| |#1| (-569))) (-15 -3800 ((-649 |#1|) |#1| (-569))) (-15 -3126 ((-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) |#1| (-569))) (-15 -3893 ((-649 |#1|) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) (-569))) (-15 -3247 (|#1| |#1| (-569) |#1| (-569)))) (-1251 (-569))) (T -701))
+((-3247 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| -3800 *5) (|:| -4339 (-569))))) (-5 *4 (-569)) (-4 *5 (-1251 *4)) (-5 *2 (-649 *5)) (-5 *1 (-701 *5)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -4339 *4)))) (-5 *1 (-701 *3)) (-4 *3 (-1251 *4)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1251 *4)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))) (-1870 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))))
+(-10 -7 (-15 -1870 (|#1| |#1| |#1| (-569))) (-15 -3744 (|#1| |#1| (-569))) (-15 -3800 ((-649 |#1|) |#1| (-569))) (-15 -3126 ((-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) |#1| (-569))) (-15 -3893 ((-649 |#1|) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) (-569))) (-15 -3247 (|#1| |#1| (-569) |#1| (-569))))
+((-2715 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 17)) (-1897 (((-1141 (-226)) (-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 56) (((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 58) (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 60)) (-4305 (((-1141 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-649 (-265))) NIL)) (-1549 (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 61)))
+(((-702) (-10 -7 (-15 -1897 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1549 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -4305 ((-1141 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -2715 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -702))
+((-2715 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1 (-226) (-226) (-226) (-226))) (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))) (-4305 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))) (-1549 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))) (-1897 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702)))) (-1897 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-226))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))) (-1897 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))))
+(-10 -7 (-15 -1897 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1549 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -4305 ((-1141 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -2715 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))
+((-3800 (((-423 (-1181 |#4|)) (-1181 |#4|)) 86) (((-423 |#4|) |#4|) 269)))
+(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|)))) (-855) (-798) (-353) (-955 |#3| |#2| |#1|)) (T -703))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 97)) (-1938 (((-569) $) 34)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2917 (($ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-4427 (($) NIL T CONST)) (-1482 (($ $) NIL)) (-4381 (((-3 (-569) "failed") $) 85) (((-3 (-412 (-569)) "failed") $) 28) (((-3 (-383) "failed") $) 82)) (-3150 (((-569) $) 87) (((-412 (-569)) $) 79) (((-383) $) 80)) (-2368 (($ $ $) 109)) (-3086 (((-3 $ "failed") $) 100)) (-2379 (($ $ $) 108)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3500 (((-927)) 89) (((-927) (-927)) 88)) (-3712 (((-112) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-1466 (((-569) $) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL)) (-3829 (($ $) NIL)) (-2051 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2426 (((-569) (-569)) 94) (((-569)) 95)) (-3380 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-2516 (((-569) (-569)) 92) (((-569)) 93)) (-2839 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-3034 (((-569) $) 17)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 104)) (-3630 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL)) (-3465 (($ $) NIL)) (-2557 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) 105)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1993 (((-569) $) 24)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 107)) (-2171 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-3884 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-1410 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) NIL)) (-3796 (((-867) $) 63) (($ (-569)) 75) (($ $) NIL) (($ (-412 (-569))) 78) (($ (-569)) 75) (($ (-412 (-569))) 78) (($ (-383)) 72) (((-383) $) 61) (($ (-706)) 66)) (-2721 (((-776)) 119 T CONST)) (-4318 (($ (-569) (-569) (-927)) 54)) (-2040 (($ $) NIL)) (-3251 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) NIL)) (-4363 (((-927)) 91) (((-927) (-927)) 90)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) 37 T CONST)) (-1815 (($) 18 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 96)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 118)) (-3035 (($ $ $) 77)) (-3024 (($ $) 115) (($ $ $) 116)) (-3012 (($ $ $) 114)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-704) (-13 (-409) (-392) (-367) (-1046 (-383)) (-1046 (-412 (-569))) (-147) (-10 -8 (-15 -3500 ((-927) (-927))) (-15 -3500 ((-927))) (-15 -4363 ((-927) (-927))) (-15 -2516 ((-569) (-569))) (-15 -2516 ((-569))) (-15 -2426 ((-569) (-569))) (-15 -2426 ((-569))) (-15 -3796 ((-383) $)) (-15 -3796 ($ (-706))) (-15 -3034 ((-569) $)) (-15 -1993 ((-569) $)) (-15 -4318 ($ (-569) (-569) (-927)))))) (T -704))
+((-1993 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3500 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-4363 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2516 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2426 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2426 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-383)) (-5 *1 (-704)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704)))) (-4318 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704)))))
+(-13 (-409) (-392) (-367) (-1046 (-383)) (-1046 (-412 (-569))) (-147) (-10 -8 (-15 -3500 ((-927) (-927))) (-15 -3500 ((-927))) (-15 -4363 ((-927) (-927))) (-15 -2516 ((-569) (-569))) (-15 -2516 ((-569))) (-15 -2426 ((-569) (-569))) (-15 -2426 ((-569))) (-15 -3796 ((-383) $)) (-15 -3796 ($ (-706))) (-15 -3034 ((-569) $)) (-15 -1993 ((-569) $)) (-15 -4318 ($ (-569) (-569) (-927)))))
+((-2577 (((-694 |#1|) (-694 |#1|) |#1| |#1|) 88)) (-2439 (((-694 |#1|) (-694 |#1|) |#1|) 67)) (-4085 (((-694 |#1|) (-694 |#1|) |#1|) 89)) (-2378 (((-694 |#1|) (-694 |#1|)) 68)) (-3512 (((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|) 87)))
+(((-705 |#1|) (-10 -7 (-15 -2378 ((-694 |#1|) (-694 |#1|))) (-15 -2439 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -4085 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2577 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|))) (-310)) (T -705))
+((-3512 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-705 *3)) (-4 *3 (-310)))) (-2577 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-4085 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2439 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(-10 -7 (-15 -2378 ((-694 |#1|) (-694 |#1|))) (-15 -2439 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -4085 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2577 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) 31)) (-3150 (((-569) $) 29)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($ $) NIL) (($) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) NIL)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) NIL)) (-3380 (($ $ $) NIL)) (-1936 (((-927) (-927)) 10) (((-927)) 9)) (-2839 (($ $ $) NIL)) (-2606 (($ $) NIL)) (-3845 (($ $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-3593 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL) (($ $ (-776)) NIL)) (-2432 (($ $) NIL)) (-3962 (($ $) NIL)) (-1410 (((-226) $) NIL) (((-383) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (((-569) $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) 28) (($ $) NIL) (($ (-569)) 28) (((-319 $) (-319 (-569))) 18)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) NIL)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL) (($ $ (-776)) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+(((-706) (-13 (-392) (-550) (-10 -8 (-15 -1936 ((-927) (-927))) (-15 -1936 ((-927))) (-15 -3796 ((-319 $) (-319 (-569))))))) (T -706))
+((-1936 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-1936 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-319 (-569))) (-5 *2 (-319 (-706))) (-5 *1 (-706)))))
+(-13 (-392) (-550) (-10 -8 (-15 -1936 ((-927) (-927))) (-15 -1936 ((-927))) (-15 -3796 ((-319 $) (-319 (-569))))))
+((-2778 (((-1 |#4| |#2| |#3|) |#1| (-1185) (-1185)) 19)) (-2927 (((-1 |#4| |#2| |#3|) (-1185)) 12)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2927 ((-1 |#4| |#2| |#3|) (-1185))) (-15 -2778 ((-1 |#4| |#2| |#3|) |#1| (-1185) (-1185)))) (-619 (-541)) (-1225) (-1225) (-1225)) (T -707))
+((-2778 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7)) (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)) (-4 *7 (-1225)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)) (-4 *7 (-1225)))))
+(-10 -7 (-15 -2927 ((-1 |#4| |#2| |#3|) (-1185))) (-15 -2778 ((-1 |#4| |#2| |#3|) |#1| (-1185) (-1185))))
+((-1485 (((-1 (-226) (-226) (-226)) |#1| (-1185) (-1185)) 43) (((-1 (-226) (-226)) |#1| (-1185)) 48)))
+(((-708 |#1|) (-10 -7 (-15 -1485 ((-1 (-226) (-226)) |#1| (-1185))) (-15 -1485 ((-1 (-226) (-226) (-226)) |#1| (-1185) (-1185)))) (-619 (-541))) (T -708))
+((-1485 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))) (-1485 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))))
+(-10 -7 (-15 -1485 ((-1 (-226) (-226)) |#1| (-1185))) (-15 -1485 ((-1 (-226) (-226) (-226)) |#1| (-1185) (-1185))))
+((-1699 (((-1185) |#1| (-1185) (-649 (-1185))) 10) (((-1185) |#1| (-1185) (-1185) (-1185)) 13) (((-1185) |#1| (-1185) (-1185)) 12) (((-1185) |#1| (-1185)) 11)))
+(((-709 |#1|) (-10 -7 (-15 -1699 ((-1185) |#1| (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-649 (-1185))))) (-619 (-541))) (T -709))
+((-1699 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1699 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1699 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1699 (*1 *2 *3 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))))
+(-10 -7 (-15 -1699 ((-1185) |#1| (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-649 (-1185)))))
+((-1486 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-710 |#1| |#2|) (-10 -7 (-15 -1486 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1225) (-1225)) (T -710))
+((-1486 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1225)) (-4 *4 (-1225)))))
+(-10 -7 (-15 -1486 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3129 (((-1 |#3| |#2|) (-1185)) 11)) (-2778 (((-1 |#3| |#2|) |#1| (-1185)) 21)))
+(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-1 |#3| |#2|) (-1185))) (-15 -2778 ((-1 |#3| |#2|) |#1| (-1185)))) (-619 (-541)) (-1225) (-1225)) (T -711))
+((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6)) (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6)) (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)))))
+(-10 -7 (-15 -3129 ((-1 |#3| |#2|) (-1185))) (-15 -2778 ((-1 |#3| |#2|) |#1| (-1185))))
+((-1581 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1275 (-649 (-1181 |#3|))) |#3|) 95)) (-4011 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|) 113)) (-2422 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1181 |#4|)) (-1275 (-649 (-1181 |#3|))) |#3|) 47)))
+(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1181 |#4|)) (-1275 (-649 (-1181 |#3|))) |#3|)) (-15 -4011 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -1581 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1275 (-649 (-1181 |#3|))) |#3|))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -712))
+((-1581 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-649 (-1181 *13))) (-5 *3 (-1181 *13)) (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13)) (-5 *7 (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *13))))) (-5 *8 (-649 (-776))) (-5 *9 (-1275 (-649 (-1181 *10)))) (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12)) (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))) (-4011 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1181 *9))) (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776))) (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11)) (-4 *10 (-798)) (-5 *2 (-649 (-1181 *12))) (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1181 *12)))) (-2422 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-649 (-1181 *11))) (-5 *3 (-1181 *11)) (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776))) (-5 *7 (-1275 (-649 (-1181 *8)))) (-4 *10 (-855)) (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798)) (-5 *1 (-712 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2422 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1181 |#4|)) (-1275 (-649 (-1181 |#3|))) |#3|)) (-15 -4011 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -1581 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1275 (-649 (-1181 |#3|))) |#3|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 48)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3923 (($ |#1| (-776)) 46)) (-2272 (((-776) $) 50)) (-1857 ((|#1| $) 49)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 (((-776) $) 51)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45 (|has| |#1| (-173)))) (-4383 ((|#1| $ (-776)) 47)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+(((-713 |#1|) (-140) (-1057)) (T -713))
+((-4339 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057)))))
+(-13 (-1057) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4339 ((-776) $)) (-15 -2272 ((-776) $)) (-15 -1857 (|t#1| $)) (-15 -1883 ($ $)) (-15 -4383 (|t#1| $ (-776))) (-15 -3923 ($ |t#1| (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-1346 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-714 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1346 (|#6| (-1 |#4| |#1|) |#3|))) (-561) (-1251 |#1|) (-1251 (-412 |#2|)) (-561) (-1251 |#4|) (-1251 (-412 |#5|))) (T -714))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561)) (-4 *6 (-1251 *5)) (-4 *2 (-1251 (-412 *8))) (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1251 (-412 *6))) (-4 *8 (-1251 *7)))))
+(-10 -7 (-15 -1346 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1550 (((-1167) (-867)) 38)) (-4158 (((-1280) (-1167)) 31)) (-2023 (((-1167) (-867)) 28)) (-3468 (((-1167) (-867)) 29)) (-3796 (((-867) $) NIL) (((-1167) (-867)) 27)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-715) (-13 (-1108) (-10 -7 (-15 -3796 ((-1167) (-867))) (-15 -2023 ((-1167) (-867))) (-15 -3468 ((-1167) (-867))) (-15 -1550 ((-1167) (-867))) (-15 -4158 ((-1280) (-1167)))))) (T -715))
+((-3796 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-715)))))
+(-13 (-1108) (-10 -7 (-15 -3796 ((-1167) (-867))) (-15 -2023 ((-1167) (-867))) (-15 -3468 ((-1167) (-867))) (-15 -1550 ((-1167) (-867))) (-15 -4158 ((-1280) (-1167)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-3598 (($ |#1| |#2|) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 ((|#2| $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4054 (((-3 $ "failed") $ $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) ((|#1| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-367) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716))
+((-2520 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4054 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-367) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $))))
+((-2417 (((-112) $ $) 90)) (-4143 (((-112) $) 36)) (-3678 (((-1275 |#1|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#1|)) NIL)) (-3767 (((-1181 $) $ (-1090)) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) NIL (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3473 (((-776)) 56 (|has| |#1| (-372)))) (-2401 (($ $ (-776)) NIL)) (-2452 (($ $ (-776)) NIL)) (-3616 ((|#2| |#2|) 52)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1090) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $ $) NIL (|has| |#1| (-173)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 40)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3598 (($ |#2|) 50)) (-3086 (((-3 $ "failed") $) 100)) (-3406 (($) 61 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1525 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-4180 (((-964 $)) 92)) (-2870 (($ $ |#1| (-776) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) NIL) (($ (-1181 $) (-1090)) NIL)) (-3003 (($ $ (-776)) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 88) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2520 ((|#2|) 53)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-1181 |#1|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3585 ((|#2| $) 49)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) 34)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1652 (($ $) 91 (|has| |#1| (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-649 (-1090)) (-649 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 101 (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4339 (((-776) $) 38) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3144 (((-964 $)) 42)) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3796 (((-867) $) 71) (($ (-569)) NIL) (($ |#1|) 68) (($ (-1090)) NIL) (($ |#2|) 78) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) 73) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 25 T CONST)) (-3973 (((-1275 |#1|) $) 86)) (-2354 (($ (-1275 |#1|)) 60)) (-1815 (($) 8 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2578 (((-1275 |#1|) $) NIL)) (-2920 (((-112) $ $) 79)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) 82) (($ $ $) NIL)) (-3012 (($ $ $) 39)) (** (($ $ (-927)) NIL) (($ $ (-776)) 95)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 67) (($ $ $) 85) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
+(((-717 |#1| |#2|) (-13 (-1251 |#1|) (-621 |#2|) (-10 -8 (-15 -3616 (|#2| |#2|)) (-15 -2520 (|#2|)) (-15 -3598 ($ |#2|)) (-15 -3585 (|#2| $)) (-15 -3973 ((-1275 |#1|) $)) (-15 -2354 ($ (-1275 |#1|))) (-15 -2578 ((-1275 |#1|) $)) (-15 -4180 ((-964 $))) (-15 -3144 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -1652 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|))) (-1057) (-1251 |#1|)) (T -717))
+((-3616 (*1 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3)))) (-2520 (*1 *2) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057)))) (-3598 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3)))) (-3585 (*1 *2 *1) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057)))) (-3973 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-2578 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-4180 (*1 *2) (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-3144 (*1 *2) (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-1652 (*1 *1 *1) (-12 (-4 *2 (-353)) (-4 *2 (-1057)) (-5 *1 (-717 *2 *3)) (-4 *3 (-1251 *2)))))
+(-13 (-1251 |#1|) (-621 |#2|) (-10 -8 (-15 -3616 (|#2| |#2|)) (-15 -2520 (|#2|)) (-15 -3598 ($ |#2|)) (-15 -3585 (|#2| $)) (-15 -3973 ((-1275 |#1|) $)) (-15 -2354 ($ (-1275 |#1|))) (-15 -2578 ((-1275 |#1|) $)) (-15 -4180 ((-964 $))) (-15 -3144 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -1652 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 ((|#1| $) 13)) (-3547 (((-1128) $) NIL)) (-1993 ((|#2| $) 12)) (-3809 (($ |#1| |#2|) 16)) (-3796 (((-867) $) NIL) (($ (-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) 15) (((-2 (|:| -2150 |#1|) (|:| -1993 |#2|)) $) 14)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 11)))
+(((-718 |#1| |#2| |#3|) (-13 (-855) (-495 (-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) (-10 -8 (-15 -1993 (|#2| $)) (-15 -2150 (|#1| $)) (-15 -3809 ($ |#1| |#2|)))) (-855) (-1108) (-1 (-112) (-2 (|:| -2150 |#1|) (|:| -1993 |#2|)) (-2 (|:| -2150 |#1|) (|:| -1993 |#2|)))) (T -718))
+((-1993 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *2)) (-2 (|:| -2150 *3) (|:| -1993 *2)))))) (-2150 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3)) (-2 (|:| -2150 *2) (|:| -1993 *3)))))) (-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1108)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3)) (-2 (|:| -2150 *2) (|:| -1993 *3)))))))
+(-13 (-855) (-495 (-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) (-10 -8 (-15 -1993 (|#2| $)) (-15 -2150 (|#1| $)) (-15 -3809 ($ |#1| |#2|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 66)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3150 ((|#1| $) NIL) (((-114) $) 39)) (-3086 (((-3 $ "failed") $) 106)) (-1416 ((|#2| (-114) |#2|) 93)) (-2349 (((-112) $) NIL)) (-2883 (($ |#1| (-365 (-114))) 14)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4321 (($ $ (-1 |#2| |#2|)) 65)) (-2924 (($ $ (-1 |#2| |#2|)) 44)) (-1869 ((|#2| $ |#2|) 33)) (-1506 ((|#1| |#1|) 121 (|has| |#1| (-173)))) (-3796 (((-867) $) 73) (($ (-569)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 37 T CONST)) (-1520 (((-112) $ $) NIL)) (-2390 (($ $) 115 (|has| |#1| (-173))) (($ $ $) 119 (|has| |#1| (-173)))) (-1804 (($) 21 T CONST)) (-1815 (($) 9 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) 48) (($ $ $) NIL)) (-3012 (($ $ $) 83)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) 64)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-173))) (($ $ |#1|) 113 (|has| |#1| (-173)))))
+(((-719 |#1| |#2|) (-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#2| |#2|))) (-15 -4321 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#2| (-114) |#2|)) (-15 -2883 ($ |#1| (-365 (-114)))))) (-1057) (-653 |#1|)) (T -719))
+((-2390 (*1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2390 (*1 *1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-1506 (*1 *2 *2) (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4)) (-4 *4 (-653 *3)))) (-1416 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1057)) (-5 *1 (-719 *4 *2)) (-4 *2 (-653 *4)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1057)) (-5 *1 (-719 *2 *4)) (-4 *4 (-653 *2)))))
+(-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#2| |#2|))) (-15 -4321 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#2| (-114) |#2|)) (-15 -2883 ($ |#1| (-365 (-114))))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 33)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ |#1| |#2|) 25)) (-3086 (((-3 $ "failed") $) 51)) (-2349 (((-112) $) 35)) (-2520 ((|#2| $) 12)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 52)) (-3547 (((-1128) $) NIL)) (-4054 (((-3 $ "failed") $ $) 50)) (-3796 (((-867) $) 24) (($ (-569)) 19) ((|#1| $) 13)) (-2721 (((-776)) 28 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 16 T CONST)) (-1815 (($) 30 T CONST)) (-2920 (((-112) $ $) 41)) (-3024 (($ $) 46) (($ $ $) 40)) (-3012 (($ $ $) 43)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21) (($ $ $) 20)))
+(((-720 |#1| |#2| |#3| |#4| |#5|) (-13 (-1057) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -720))
+((-3086 (*1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2520 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4054 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1817 (*1 *1 *1) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1057) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $))))
((* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
(((-721 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-722 |#2|) (-173)) (T -721))
NIL
(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
(((-722 |#1|) (-140) (-173)) (T -722))
NIL
(-13 (-111 |t#1| |t#1|) (-645 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3081 (($ |#1|) 17) (($ $ |#1|) 20)) (-3186 (($ |#1|) 18) (($ $ |#1|) 21)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2623 (((-112) $) NIL)) (-3291 (($ |#1| |#1| |#1| |#1|) 8)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 16)) (-3545 (((-1126) $) NIL)) (-1723 ((|#1| $ |#1|) 24) (((-838 |#1|) $ (-838 |#1|)) 32)) (-3580 (($ $ $) NIL)) (-2292 (($ $ $) NIL)) (-3793 (((-867) $) 39)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 9 T CONST)) (-2919 (((-112) $ $) 48)) (-3032 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 14)))
-(((-723 |#1|) (-13 (-478) (-10 -8 (-15 -3291 ($ |#1| |#1| |#1| |#1|)) (-15 -3081 ($ |#1|)) (-15 -3186 ($ |#1|)) (-15 -2888 ($)) (-15 -3081 ($ $ |#1|)) (-15 -3186 ($ $ |#1|)) (-15 -2888 ($ $)) (-15 -1723 (|#1| $ |#1|)) (-15 -1723 ((-838 |#1|) $ (-838 |#1|))))) (-367)) (T -723))
-((-3291 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3081 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3186 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-2888 (*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3186 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-2888 (*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1723 (*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1723 (*1 *2 *1 *2) (-12 (-5 *2 (-838 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3)))))
-(-13 (-478) (-10 -8 (-15 -3291 ($ |#1| |#1| |#1| |#1|)) (-15 -3081 ($ |#1|)) (-15 -3186 ($ |#1|)) (-15 -2888 ($)) (-15 -3081 ($ $ |#1|)) (-15 -3186 ($ $ |#1|)) (-15 -2888 ($ $)) (-15 -1723 (|#1| $ |#1|)) (-15 -1723 ((-838 |#1|) $ (-838 |#1|)))))
-((-3727 (($ $ (-927)) 21)) (-3627 (($ $ (-927)) 22)) (** (($ $ (-927)) 10)))
-(((-724 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -3627 (|#1| |#1| (-927))) (-15 -3727 (|#1| |#1| (-927)))) (-725)) (T -724))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -3627 (|#1| |#1| (-927))) (-15 -3727 (|#1| |#1| (-927))))
-((-2415 (((-112) $ $) 7)) (-3727 (($ $ (-927)) 16)) (-3627 (($ $ (-927)) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 17)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3084 (($ |#1|) 17) (($ $ |#1|) 20)) (-4092 (($ |#1|) 18) (($ $ |#1|) 21)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2349 (((-112) $) NIL)) (-2600 (($ |#1| |#1| |#1| |#1|) 8)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 16)) (-3547 (((-1128) $) NIL)) (-1725 ((|#1| $ |#1|) 24) (((-838 |#1|) $ (-838 |#1|)) 32)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 39)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 9 T CONST)) (-2920 (((-112) $ $) 48)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 14)))
+(((-723 |#1|) (-13 (-478) (-10 -8 (-15 -2600 ($ |#1| |#1| |#1| |#1|)) (-15 -3084 ($ |#1|)) (-15 -4092 ($ |#1|)) (-15 -3086 ($)) (-15 -3084 ($ $ |#1|)) (-15 -4092 ($ $ |#1|)) (-15 -3086 ($ $)) (-15 -1725 (|#1| $ |#1|)) (-15 -1725 ((-838 |#1|) $ (-838 |#1|))))) (-367)) (T -723))
+((-2600 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3084 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4092 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3086 (*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3084 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4092 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3086 (*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1725 (*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1725 (*1 *2 *1 *2) (-12 (-5 *2 (-838 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3)))))
+(-13 (-478) (-10 -8 (-15 -2600 ($ |#1| |#1| |#1| |#1|)) (-15 -3084 ($ |#1|)) (-15 -4092 ($ |#1|)) (-15 -3086 ($)) (-15 -3084 ($ $ |#1|)) (-15 -4092 ($ $ |#1|)) (-15 -3086 ($ $)) (-15 -1725 (|#1| $ |#1|)) (-15 -1725 ((-838 |#1|) $ (-838 |#1|)))))
+((-2395 (($ $ (-927)) 21)) (-2667 (($ $ (-927)) 22)) (** (($ $ (-927)) 10)))
+(((-724 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927)))) (-725)) (T -724))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927))))
+((-2417 (((-112) $ $) 7)) (-2395 (($ $ (-927)) 16)) (-2667 (($ $ (-927)) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 17)))
(((-725) (-140)) (T -725))
-((* (*1 *1 *1 *1) (-4 *1 (-725))) (-3727 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (-3627 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))))
-(-13 (-1106) (-10 -8 (-15 * ($ $ $)) (-15 -3727 ($ $ (-927))) (-15 -3627 ($ $ (-927))) (-15 ** ($ $ (-927)))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-3727 (($ $ (-927)) NIL) (($ $ (-776)) 21)) (-2623 (((-112) $) 10)) (-3627 (($ $ (-927)) NIL) (($ $ (-776)) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) 16)))
-(((-726 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -3627 (|#1| |#1| (-776))) (-15 -3727 (|#1| |#1| (-776))) (-15 -2623 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3627 (|#1| |#1| (-927))) (-15 -3727 (|#1| |#1| (-927)))) (-727)) (T -726))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -3627 (|#1| |#1| (-776))) (-15 -3727 (|#1| |#1| (-776))) (-15 -2623 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3627 (|#1| |#1| (-927))) (-15 -3727 (|#1| |#1| (-927))))
-((-2415 (((-112) $ $) 7)) (-3413 (((-3 $ "failed") $) 18)) (-3727 (($ $ (-927)) 16) (($ $ (-776)) 23)) (-2888 (((-3 $ "failed") $) 20)) (-2623 (((-112) $) 24)) (-3508 (((-3 $ "failed") $) 19)) (-3627 (($ $ (-927)) 15) (($ $ (-776)) 22)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1813 (($) 25 T CONST)) (-2919 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 21)) (* (($ $ $) 17)))
+((* (*1 *1 *1 *1) (-4 *1 (-725))) (-2395 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))))
+(-13 (-1108) (-10 -8 (-15 * ($ $ $)) (-15 -2395 ($ $ (-927))) (-15 -2667 ($ $ (-927))) (-15 ** ($ $ (-927)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2395 (($ $ (-927)) NIL) (($ $ (-776)) 21)) (-2349 (((-112) $) 10)) (-2667 (($ $ (-927)) NIL) (($ $ (-776)) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) 16)))
+(((-726 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2667 (|#1| |#1| (-776))) (-15 -2395 (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927)))) (-727)) (T -726))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2667 (|#1| |#1| (-776))) (-15 -2395 (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927))))
+((-2417 (((-112) $ $) 7)) (-4379 (((-3 $ "failed") $) 18)) (-2395 (($ $ (-927)) 16) (($ $ (-776)) 23)) (-3086 (((-3 $ "failed") $) 20)) (-2349 (((-112) $) 24)) (-4059 (((-3 $ "failed") $) 19)) (-2667 (($ $ (-927)) 15) (($ $ (-776)) 22)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 25 T CONST)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 21)) (* (($ $ $) 17)))
(((-727) (-140)) (T -727))
-((-1813 (*1 *1) (-4 *1 (-727))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (-3727 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-3627 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-2888 (*1 *1 *1) (|partial| -4 *1 (-727))) (-3508 (*1 *1 *1) (|partial| -4 *1 (-727))) (-3413 (*1 *1 *1) (|partial| -4 *1 (-727))))
-(-13 (-725) (-10 -8 (-15 (-1813) ($) -3706) (-15 -2623 ((-112) $)) (-15 -3727 ($ $ (-776))) (-15 -3627 ($ $ (-776))) (-15 ** ($ $ (-776))) (-15 -2888 ((-3 $ "failed") $)) (-15 -3508 ((-3 $ "failed") $)) (-15 -3413 ((-3 $ "failed") $))))
-(((-102) . T) ((-618 (-867)) . T) ((-725) . T) ((-1106) . T))
-((-3470 (((-776)) 42)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3148 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 23)) (-3596 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) 52)) (-2888 (((-3 $ "failed") $) 72)) (-3403 (($) 46)) (-2707 ((|#2| $) 21)) (-2330 (($) 18)) (-3514 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2520 (((-694 |#2|) (-1273 $) (-1 |#2| |#2|)) 67)) (-1408 (((-1273 |#2|) $) NIL) (($ (-1273 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3798 ((|#3| $) 39)) (-1903 (((-1273 $)) 36)))
-(((-728 |#1| |#2| |#3|) (-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3403 (|#1|)) (-15 -3470 ((-776))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2520 ((-694 |#2|) (-1273 |#1|) (-1 |#2| |#2|))) (-15 -3596 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1408 (|#1| |#3|)) (-15 -3596 (|#1| |#3|)) (-15 -2330 (|#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -1408 (|#3| |#1|)) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -1903 ((-1273 |#1|))) (-15 -3798 (|#3| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|))) (-729 |#2| |#3|) (-173) (-1249 |#2|)) (T -728))
-((-3470 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-776)) (-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5)))))
-(-10 -8 (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3403 (|#1|)) (-15 -3470 ((-776))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2520 ((-694 |#2|) (-1273 |#1|) (-1 |#2| |#2|))) (-15 -3596 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1408 (|#1| |#3|)) (-15 -3596 (|#1| |#3|)) (-15 -2330 (|#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -1408 (|#3| |#1|)) (-15 -1408 (|#1| (-1273 |#2|))) (-15 -1408 ((-1273 |#2|) |#1|)) (-15 -1903 ((-1273 |#1|))) (-15 -3798 (|#3| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -2888 ((-3 |#1| "failed") |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 102 (|has| |#1| (-367)))) (-3087 (($ $) 103 (|has| |#1| (-367)))) (-2883 (((-112) $) 105 (|has| |#1| (-367)))) (-1739 (((-694 |#1|) (-1273 $)) 53) (((-694 |#1|)) 68)) (-3136 ((|#1| $) 59)) (-1372 (((-1196 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 122 (|has| |#1| (-367)))) (-2508 (((-423 $) $) 123 (|has| |#1| (-367)))) (-1680 (((-112) $ $) 113 (|has| |#1| (-367)))) (-3470 (((-776)) 96 (|has| |#1| (-372)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3148 (((-569) $) 177 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 174)) (-3390 (($ (-1273 |#1|) (-1273 $)) 55) (($ (-1273 |#1|)) 71)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2366 (($ $ $) 117 (|has| |#1| (-367)))) (-1635 (((-694 |#1|) $ (-1273 $)) 60) (((-694 |#1|) $) 66)) (-1630 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3596 (($ |#2|) 166) (((-3 $ "failed") (-412 |#2|)) 163 (|has| |#1| (-367)))) (-2888 (((-3 $ "failed") $) 37)) (-3975 (((-927)) 61)) (-3403 (($) 99 (|has| |#1| (-372)))) (-2373 (($ $ $) 116 (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 111 (|has| |#1| (-367)))) (-1312 (($) 157 (|has| |#1| (-353)))) (-1940 (((-112) $) 158 (|has| |#1| (-353)))) (-2501 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-4073 (((-112) $) 124 (|has| |#1| (-367)))) (-3110 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2623 (((-112) $) 35)) (-2707 ((|#1| $) 58)) (-3812 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-367)))) (-2091 ((|#2| $) 51 (|has| |#1| (-367)))) (-2855 (((-927) $) 98 (|has| |#1| (-372)))) (-3582 ((|#2| $) 164)) (-1835 (($ (-649 $)) 109 (|has| |#1| (-367))) (($ $ $) 108 (|has| |#1| (-367)))) (-1550 (((-1165) $) 10)) (-1814 (($ $) 125 (|has| |#1| (-367)))) (-2305 (($) 151 (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| |#1| (-372)))) (-3545 (((-1126) $) 11)) (-2330 (($) 168)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 110 (|has| |#1| (-367)))) (-1864 (($ (-649 $)) 107 (|has| |#1| (-367))) (($ $ $) 106 (|has| |#1| (-367)))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) 154 (|has| |#1| (-353)))) (-3796 (((-423 $) $) 121 (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 118 (|has| |#1| (-367)))) (-2405 (((-3 $ "failed") $ $) 101 (|has| |#1| (-367)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-367)))) (-1578 (((-776) $) 114 (|has| |#1| (-367)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 115 (|has| |#1| (-367)))) (-4304 ((|#1| (-1273 $)) 54) ((|#1|) 67)) (-2601 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3514 (($ $) 145 (-2774 (-1756 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 143 (-2774 (-1756 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) 141 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183))) 140 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1183) (-776)) 139 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-776))) 138 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 131 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-367)))) (-2520 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-4143 ((|#2|) 167)) (-2430 (($) 156 (|has| |#1| (-353)))) (-2960 (((-1273 |#1|) $ (-1273 $)) 57) (((-694 |#1|) (-1273 $) (-1273 $)) 56) (((-1273 |#1|) $) 73) (((-694 |#1|) (-1273 $)) 72)) (-1408 (((-1273 |#1|) $) 70) (($ (-1273 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 153 (|has| |#1| (-353)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-367))) (($ (-412 (-569))) 95 (-2774 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-4030 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-3798 ((|#2| $) 52)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1903 (((-1273 $)) 74)) (-2985 (((-112) $ $) 104 (|has| |#1| (-367)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $) 144 (-2774 (-1756 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 142 (-2774 (-1756 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) 137 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183))) 136 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1183) (-776)) 135 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-776))) 134 (-1756 (|has| |#1| (-906 (-1183))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 133 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-367)))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 129 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367)))))
-(((-729 |#1| |#2|) (-140) (-173) (-1249 |t#1|)) (T -729))
-((-2330 (*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1249 *2)))) (-4143 (*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3)))) (-3596 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3)))) (-1408 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3)))) (-3596 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-367)) (-4 *3 (-173)) (-4 *1 (-729 *3 *4)))) (-2520 (*1 *2 *3 *4) (-12 (-5 *3 (-1273 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1249 *5)) (-5 *2 (-694 *5)))))
-(-13 (-414 |t#1| |t#2|) (-173) (-619 |t#2|) (-416 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2330 ($)) (-15 -4143 (|t#2|)) (-15 -3596 ($ |t#2|)) (-15 -1408 ($ |t#2|)) (-15 -3582 (|t#2| $)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-6 (-232 |t#1|)) (-15 -3596 ((-3 $ "failed") (-412 |t#2|))) (-15 -2520 ((-694 |t#1|) (-1273 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-102) . T) ((-111 #0# #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2774 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#2|) . T) ((-232 |#1|) |has| |#1| (-367)) ((-234) -2774 (|has| |#1| (-353)) (-12 (|has| |#1| (-234)) (|has| |#1| (-367)))) ((-244) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-293) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-310) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-367) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2774 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| |#2|) . T) ((-414 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-561) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183)))) ((-926) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-353)) ((-1227) -2774 (|has| |#1| (-353)) (|has| |#1| (-367))))
-((-4188 (($) 11)) (-2888 (((-3 $ "failed") $) 14)) (-2623 (((-112) $) 10)) (** (($ $ (-927)) NIL) (($ $ (-776)) 20)))
-(((-730 |#1|) (-10 -8 (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2623 ((-112) |#1|)) (-15 -4188 (|#1|)) (-15 ** (|#1| |#1| (-927)))) (-731)) (T -730))
-NIL
-(-10 -8 (-15 -2888 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2623 ((-112) |#1|)) (-15 -4188 (|#1|)) (-15 ** (|#1| |#1| (-927))))
-((-2415 (((-112) $ $) 7)) (-4188 (($) 19 T CONST)) (-2888 (((-3 $ "failed") $) 16)) (-2623 (((-112) $) 18)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1813 (($) 20 T CONST)) (-2919 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 17)) (* (($ $ $) 15)))
+((-1815 (*1 *1) (-4 *1 (-727))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (-2395 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-3086 (*1 *1 *1) (|partial| -4 *1 (-727))) (-4059 (*1 *1 *1) (|partial| -4 *1 (-727))) (-4379 (*1 *1 *1) (|partial| -4 *1 (-727))))
+(-13 (-725) (-10 -8 (-15 (-1815) ($) -3709) (-15 -2349 ((-112) $)) (-15 -2395 ($ $ (-776))) (-15 -2667 ($ $ (-776))) (-15 ** ($ $ (-776))) (-15 -3086 ((-3 $ "failed") $)) (-15 -4059 ((-3 $ "failed") $)) (-15 -4379 ((-3 $ "failed") $))))
+(((-102) . T) ((-618 (-867)) . T) ((-725) . T) ((-1108) . T))
+((-3473 (((-776)) 42)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 23)) (-3598 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) 52)) (-3086 (((-3 $ "failed") $) 72)) (-3406 (($) 46)) (-3829 ((|#2| $) 21)) (-2332 (($) 18)) (-3517 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2594 (((-694 |#2|) (-1275 $) (-1 |#2| |#2|)) 67)) (-1410 (((-1275 |#2|) $) NIL) (($ (-1275 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1886 ((|#3| $) 39)) (-2403 (((-1275 $)) 36)))
+(((-728 |#1| |#2| |#3|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3406 (|#1|)) (-15 -3473 ((-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2594 ((-694 |#2|) (-1275 |#1|) (-1 |#2| |#2|))) (-15 -3598 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1410 (|#1| |#3|)) (-15 -3598 (|#1| |#3|)) (-15 -2332 (|#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 (|#3| |#1|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2403 ((-1275 |#1|))) (-15 -1886 (|#3| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|))) (-729 |#2| |#3|) (-173) (-1251 |#2|)) (T -728))
+((-3473 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-776)) (-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5)))))
+(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3406 (|#1|)) (-15 -3473 ((-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2594 ((-694 |#2|) (-1275 |#1|) (-1 |#2| |#2|))) (-15 -3598 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1410 (|#1| |#3|)) (-15 -3598 (|#1| |#3|)) (-15 -2332 (|#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 (|#3| |#1|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2403 ((-1275 |#1|))) (-15 -1886 (|#3| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102 (|has| |#1| (-367)))) (-4355 (($ $) 103 (|has| |#1| (-367)))) (-3039 (((-112) $) 105 (|has| |#1| (-367)))) (-1547 (((-694 |#1|) (-1275 $)) 53) (((-694 |#1|)) 68)) (-3140 ((|#1| $) 59)) (-3715 (((-1198 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 122 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 123 (|has| |#1| (-367)))) (-2227 (((-112) $ $) 113 (|has| |#1| (-367)))) (-3473 (((-776)) 96 (|has| |#1| (-372)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3150 (((-569) $) 177 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 174)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55) (($ (-1275 |#1|)) 71)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2368 (($ $ $) 117 (|has| |#1| (-367)))) (-1833 (((-694 |#1|) $ (-1275 $)) 60) (((-694 |#1|) $) 66)) (-2957 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3598 (($ |#2|) 166) (((-3 $ "failed") (-412 |#2|)) 163 (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-927)) 61)) (-3406 (($) 99 (|has| |#1| (-372)))) (-2379 (($ $ $) 116 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111 (|has| |#1| (-367)))) (-1616 (($) 157 (|has| |#1| (-353)))) (-2807 (((-112) $) 158 (|has| |#1| (-353)))) (-3701 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-1473 (((-112) $) 124 (|has| |#1| (-367)))) (-1466 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 58)) (-3885 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-367)))) (-3859 ((|#2| $) 51 (|has| |#1| (-367)))) (-2731 (((-927) $) 98 (|has| |#1| (-372)))) (-3585 ((|#2| $) 164)) (-1839 (($ (-649 $)) 109 (|has| |#1| (-367))) (($ $ $) 108 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 125 (|has| |#1| (-367)))) (-2307 (($) 151 (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| |#1| (-372)))) (-3547 (((-1128) $) 11)) (-2332 (($) 168)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 107 (|has| |#1| (-367))) (($ $ $) 106 (|has| |#1| (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 154 (|has| |#1| (-353)))) (-3800 (((-423 $) $) 121 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118 (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ $) 101 (|has| |#1| (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-367)))) (-2431 (((-776) $) 114 (|has| |#1| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115 (|has| |#1| (-367)))) (-3059 ((|#1| (-1275 $)) 54) ((|#1|) 67)) (-2166 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3517 (($ $) 145 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 143 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) 141 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185))) 140 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1185) (-776)) 139 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-776))) 138 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 131 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-367)))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-4061 ((|#2|) 167)) (-4234 (($) 156 (|has| |#1| (-353)))) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56) (((-1275 |#1|) $) 73) (((-694 |#1|) (-1275 $)) 72)) (-1410 (((-1275 |#1|) $) 70) (($ (-1275 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 153 (|has| |#1| (-353)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-367))) (($ (-412 (-569))) 95 (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1886 ((|#2| $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-2664 (((-112) $ $) 104 (|has| |#1| (-367)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 144 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 142 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) 137 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185))) 136 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1185) (-776)) 135 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-776))) 134 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 133 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-367)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 129 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367)))))
+(((-729 |#1| |#2|) (-140) (-173) (-1251 |t#1|)) (T -729))
+((-2332 (*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1251 *2)))) (-4061 (*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) (-3598 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3)))) (-1410 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) (-3598 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-367)) (-4 *3 (-173)) (-4 *1 (-729 *3 *4)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-1275 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1251 *5)) (-5 *2 (-694 *5)))))
+(-13 (-414 |t#1| |t#2|) (-173) (-619 |t#2|) (-416 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2332 ($)) (-15 -4061 (|t#2|)) (-15 -3598 ($ |t#2|)) (-15 -1410 ($ |t#2|)) (-15 -3585 (|t#2| $)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-6 (-232 |t#1|)) (-15 -3598 ((-3 $ "failed") (-412 |t#2|))) (-15 -2594 ((-694 |t#1|) (-1275 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-102) . T) ((-111 #0# #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#2|) . T) ((-232 |#1|) |has| |#1| (-367)) ((-234) -2776 (|has| |#1| (-353)) (-12 (|has| |#1| (-234)) (|has| |#1| (-367)))) ((-244) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-293) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-310) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-367) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2776 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| |#2|) . T) ((-414 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-561) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185)))) ((-926) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-353)) ((-1229) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))))
+((-4427 (($) 11)) (-3086 (((-3 $ "failed") $) 14)) (-2349 (((-112) $) 10)) (** (($ $ (-927)) NIL) (($ $ (-776)) 20)))
+(((-730 |#1|) (-10 -8 (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 ** (|#1| |#1| (-927)))) (-731)) (T -730))
+NIL
+(-10 -8 (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 ** (|#1| |#1| (-927))))
+((-2417 (((-112) $ $) 7)) (-4427 (($) 19 T CONST)) (-3086 (((-3 $ "failed") $) 16)) (-2349 (((-112) $) 18)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 17)) (* (($ $ $) 15)))
(((-731) (-140)) (T -731))
-((-1813 (*1 *1) (-4 *1 (-731))) (-4188 (*1 *1) (-4 *1 (-731))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776)))) (-2888 (*1 *1 *1) (|partial| -4 *1 (-731))))
-(-13 (-1118) (-10 -8 (-15 (-1813) ($) -3706) (-15 -4188 ($) -3706) (-15 -2623 ((-112) $)) (-15 ** ($ $ (-776))) (-15 -2888 ((-3 $ "failed") $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1118) . T) ((-1106) . T))
-((-2730 (((-2 (|:| -3361 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3067 (((-2 (|:| -3361 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2838 ((|#2| (-412 |#2|) (-1 |#2| |#2|)) 13)) (-2307 (((-2 (|:| |poly| |#2|) (|:| -3361 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)) 48)))
-(((-732 |#1| |#2|) (-10 -7 (-15 -3067 ((-2 (|:| -3361 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2730 ((-2 (|:| -3361 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2838 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -2307 ((-2 (|:| |poly| |#2|) (|:| -3361 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1249 |#1|)) (T -732))
-((-2307 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3361 (-412 *6)) (|:| |special| (-412 *6)))) (-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6)))) (-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1249 *5)) (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3361 (-423 *3)) (|:| |special| (-423 *3)))) (-5 *1 (-732 *5 *3)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3361 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3)))))
-(-10 -7 (-15 -3067 ((-2 (|:| -3361 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2730 ((-2 (|:| -3361 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2838 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -2307 ((-2 (|:| |poly| |#2|) (|:| -3361 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|))))
-((-3935 ((|#7| (-649 |#5|) |#6|) NIL)) (-1344 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-733 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1344 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3935 (|#7| (-649 |#5|) |#6|))) (-855) (-798) (-798) (-1055) (-1055) (-955 |#4| |#2| |#1|) (-955 |#5| |#3| |#1|)) (T -733))
-((-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *9)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-1055)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1055)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5)))))
-(-10 -7 (-15 -1344 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3935 (|#7| (-649 |#5|) |#6|)))
-((-1344 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-734 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1344 (|#7| (-1 |#2| |#1|) |#6|))) (-855) (-855) (-798) (-798) (-1055) (-955 |#5| |#3| |#1|) (-955 |#5| |#4| |#2|)) (T -734))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798)) (-4 *9 (-1055)) (-4 *2 (-955 *9 *8 *6)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798)) (-4 *4 (-955 *9 *7 *5)))))
-(-10 -7 (-15 -1344 (|#7| (-1 |#2| |#1|) |#6|)))
-((-3796 (((-423 |#4|) |#4|) 42)))
-(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183))))) (-310) (-955 (-958 |#3|) |#1| |#2|)) (T -735))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183)))))) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-955 (-958 *6) *4 *5)))))
-(-10 -7 (-15 -3796 ((-423 |#4|) |#4|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-869 |#1|)) $) NIL)) (-3763 (((-1179 $) $ (-869 |#1|)) NIL) (((-1179 |#2|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-3087 (($ $) NIL (|has| |#2| (-561)))) (-2883 (((-112) $) NIL (|has| |#2| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-2078 (($ $) NIL (|has| |#2| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#2| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3148 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-869 |#1|) $) NIL)) (-4202 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#2| (-915)))) (-3972 (($ $ |#2| (-536 (-869 |#1|)) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-1697 (($ (-1179 |#2|) (-869 |#1|)) NIL) (($ (-1179 $) (-869 |#1|)) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#2| (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-869 |#1|)) NIL)) (-3712 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-4059 (($ (-1 (-536 (-869 |#1|)) (-536 (-869 |#1|))) $) NIL)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-3397 (((-3 (-869 |#1|) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#2| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1550 (((-1165) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -4320 (-776))) "failed") $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#2| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-4304 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3514 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-3868 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3479 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ $) NIL (|has| |#2| (-561))) (($ (-412 (-569))) NIL (-2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569))))))) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-736 |#1| |#2|) (-955 |#2| (-536 (-869 |#1|)) (-869 |#1|)) (-649 (-1183)) (-1055)) (T -736))
+((-1815 (*1 *1) (-4 *1 (-731))) (-4427 (*1 *1) (-4 *1 (-731))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776)))) (-3086 (*1 *1 *1) (|partial| -4 *1 (-731))))
+(-13 (-1120) (-10 -8 (-15 (-1815) ($) -3709) (-15 -4427 ($) -3709) (-15 -2349 ((-112) $)) (-15 ** ($ $ (-776))) (-15 -3086 ((-3 $ "failed") $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1120) . T) ((-1108) . T))
+((-4043 (((-2 (|:| -3364 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2241 (((-2 (|:| -3364 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2534 ((|#2| (-412 |#2|) (-1 |#2| |#2|)) 13)) (-2316 (((-2 (|:| |poly| |#2|) (|:| -3364 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)) 48)))
+(((-732 |#1| |#2|) (-10 -7 (-15 -2241 ((-2 (|:| -3364 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4043 ((-2 (|:| -3364 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2534 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| |poly| |#2|) (|:| -3364 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1251 |#1|)) (T -732))
+((-2316 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3364 (-412 *6)) (|:| |special| (-412 *6)))) (-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1251 *5)) (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3364 (-423 *3)) (|:| |special| (-423 *3)))) (-5 *1 (-732 *5 *3)))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3364 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3)))))
+(-10 -7 (-15 -2241 ((-2 (|:| -3364 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4043 ((-2 (|:| -3364 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2534 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| |poly| |#2|) (|:| -3364 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|))))
+((-3935 ((|#7| (-649 |#5|) |#6|) NIL)) (-1346 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-733 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1346 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3935 (|#7| (-649 |#5|) |#6|))) (-855) (-798) (-798) (-1057) (-1057) (-955 |#4| |#2| |#1|) (-955 |#5| |#3| |#1|)) (T -733))
+((-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *9)) (-4 *9 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-1057)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1057)) (-4 *9 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5)))))
+(-10 -7 (-15 -1346 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3935 (|#7| (-649 |#5|) |#6|)))
+((-1346 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-734 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1346 (|#7| (-1 |#2| |#1|) |#6|))) (-855) (-855) (-798) (-798) (-1057) (-955 |#5| |#3| |#1|) (-955 |#5| |#4| |#2|)) (T -734))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798)) (-4 *9 (-1057)) (-4 *2 (-955 *9 *8 *6)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798)) (-4 *4 (-955 *9 *7 *5)))))
+(-10 -7 (-15 -1346 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3800 (((-423 |#4|) |#4|) 42)))
+(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185))))) (-310) (-955 (-958 |#3|) |#1| |#2|)) (T -735))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-955 (-958 *6) *4 *5)))))
+(-10 -7 (-15 -3800 ((-423 |#4|) |#4|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-869 |#1|)) $) NIL)) (-3767 (((-1181 $) $ (-869 |#1|)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-536 (-869 |#1|)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) NIL) (($ (-1181 $) (-869 |#1|)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-2492 (($ (-1 (-536 (-869 |#1|)) (-536 (-869 |#1|))) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ $) NIL (|has| |#2| (-561))) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-736 |#1| |#2|) (-955 |#2| (-536 (-869 |#1|)) (-869 |#1|)) (-649 (-1185)) (-1057)) (T -736))
NIL
(-955 |#2| (-536 (-869 |#1|)) (-869 |#1|))
-((-2947 (((-2 (|:| -3217 (-958 |#3|)) (|:| -2569 (-958 |#3|))) |#4|) 14)) (-1918 ((|#4| |#4| |#2|) 33)) (-3141 ((|#4| (-412 (-958 |#3|)) |#2|) 64)) (-3051 ((|#4| (-1179 (-958 |#3|)) |#2|) 77)) (-3060 ((|#4| (-1179 |#4|) |#2|) 51)) (-1831 ((|#4| |#4| |#2|) 54)) (-3796 (((-423 |#4|) |#4|) 40)))
-(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2947 ((-2 (|:| -3217 (-958 |#3|)) (|:| -2569 (-958 |#3|))) |#4|)) (-15 -1831 (|#4| |#4| |#2|)) (-15 -3060 (|#4| (-1179 |#4|) |#2|)) (-15 -1918 (|#4| |#4| |#2|)) (-15 -3051 (|#4| (-1179 (-958 |#3|)) |#2|)) (-15 -3141 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3796 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)))) (-561) (-955 (-412 (-958 |#3|)) |#1| |#2|)) (T -737))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *6 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))) (-3141 (*1 *2 *3 *4) (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 (-958 *6))) (-4 *6 (-561)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))))) (-1918 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *6 (-561)))) (-1831 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-2947 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *6 (-561)) (-5 *2 (-2 (|:| -3217 (-958 *6)) (|:| -2569 (-958 *6)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))))
-(-10 -7 (-15 -2947 ((-2 (|:| -3217 (-958 |#3|)) (|:| -2569 (-958 |#3|))) |#4|)) (-15 -1831 (|#4| |#4| |#2|)) (-15 -3060 (|#4| (-1179 |#4|) |#2|)) (-15 -1918 (|#4| |#4| |#2|)) (-15 -3051 (|#4| (-1179 (-958 |#3|)) |#2|)) (-15 -3141 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3796 ((-423 |#4|) |#4|)))
-((-3796 (((-423 |#4|) |#4|) 54)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-423 |#4|) |#4|))) (-798) (-855) (-13 (-310) (-147)) (-955 (-412 |#3|) |#1| |#2|)) (T -738))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-955 (-412 *6) *4 *5)))))
-(-10 -7 (-15 -3796 ((-423 |#4|) |#4|)))
-((-1344 (((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)) 18)))
-(((-739 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)))) (-1055) (-1055) (-731)) (T -739))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7)) (-5 *1 (-739 *5 *6 *7)))))
-(-10 -7 (-15 -1344 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 38)) (-2009 (((-649 (-2 (|:| -1433 |#1|) (|:| -3345 |#2|))) $) 39)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3470 (((-776)) 22 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3148 ((|#2| $) NIL) ((|#1| $) NIL)) (-1879 (($ $) 104 (|has| |#2| (-855)))) (-2888 (((-3 $ "failed") $) 87)) (-3403 (($) 50 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) 72)) (-2518 (((-649 $) $) 54)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| |#2|) 17)) (-1344 (($ (-1 |#1| |#1|) $) 70)) (-2855 (((-927) $) 45 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-1846 ((|#2| $) 103 (|has| |#2| (-855)))) (-1855 ((|#1| $) 102 (|has| |#2| (-855)))) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) 37 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 101) (($ (-569)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-649 (-2 (|:| -1433 |#1|) (|:| -3345 |#2|)))) 11)) (-2836 (((-649 |#1|) $) 56)) (-4184 ((|#1| $ |#2|) 117)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 12 T CONST)) (-1813 (($) 46 T CONST)) (-2919 (((-112) $ $) 107)) (-3021 (($ $) 63) (($ $ $) NIL)) (-3009 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-740 |#1| |#2|) (-13 (-1055) (-1044 |#2|) (-1044 |#1|) (-10 -8 (-15 -3920 ($ |#1| |#2|)) (-15 -4184 (|#1| $ |#2|)) (-15 -3793 ($ (-649 (-2 (|:| -1433 |#1|) (|:| -3345 |#2|))))) (-15 -2009 ((-649 (-2 (|:| -1433 |#1|) (|:| -3345 |#2|))) $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (-15 -4343 ((-112) $)) (-15 -2836 ((-649 |#1|) $)) (-15 -2518 ((-649 $) $)) (-15 -3238 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1846 (|#2| $)) (-15 -1855 (|#1| $)) (-15 -1879 ($ $))) |%noBranch|))) (-1055) (-731)) (T -740))
-((-3920 (*1 *1 *2 *3) (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-731)))) (-4184 (*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1433 *3) (|:| -3345 *4)))) (-4 *3 (-1055)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -1433 *3) (|:| -3345 *4)))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-740 *3 *4)) (-4 *4 (-731)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731)))) (-1846 (*1 *2 *1) (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2)) (-4 *3 (-1055)))) (-1855 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *3 (-731)))) (-1879 (*1 *1 *1) (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1055)) (-4 *3 (-731)))))
-(-13 (-1055) (-1044 |#2|) (-1044 |#1|) (-10 -8 (-15 -3920 ($ |#1| |#2|)) (-15 -4184 (|#1| $ |#2|)) (-15 -3793 ($ (-649 (-2 (|:| -1433 |#1|) (|:| -3345 |#2|))))) (-15 -2009 ((-649 (-2 (|:| -1433 |#1|) (|:| -3345 |#2|))) $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (-15 -4343 ((-112) $)) (-15 -2836 ((-649 |#1|) $)) (-15 -2518 ((-649 $) $)) (-15 -3238 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1846 (|#2| $)) (-15 -1855 (|#1| $)) (-15 -1879 ($ $))) |%noBranch|)))
-((-2415 (((-112) $ $) 19)) (-3966 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2210 (($ $ $) 73)) (-2124 (((-112) $ $) 74)) (-2716 (((-112) $ (-776)) 8)) (-4255 (($ (-649 |#1|)) 69) (($) 68)) (-4101 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3041 (($ $) 63)) (-3547 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ |#1| $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1315 (((-112) $ $) 65)) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22)) (-4333 (($ $ $) 70)) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3545 (((-1126) $) 21)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-2917 (((-649 (-2 (|:| -2214 |#1|) (|:| -3558 (-776)))) $) 62)) (-2298 (($ $ |#1|) 72) (($ $ $) 71)) (-1906 (($) 50) (($ (-649 |#1|)) 49)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 51)) (-3793 (((-867) $) 18)) (-3864 (($ (-649 |#1|)) 67) (($) 66)) (-1441 (((-112) $ $) 23)) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20)) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-741 |#1|) (-140) (-1106)) (T -741))
-NIL
-(-13 (-700 |t#1|) (-1104 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-700 |#1|) . T) ((-1104 |#1|) . T) ((-1106) . T) ((-1223) . T))
-((-2415 (((-112) $ $) NIL)) (-3966 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2210 (($ $ $) 99)) (-2124 (((-112) $ $) 107)) (-2716 (((-112) $ (-776)) NIL)) (-4255 (($ (-649 |#1|)) 26) (($) 17)) (-4101 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-3041 (($ $) 85)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) 70 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4444))) (($ |#1| $ (-569)) 75) (($ (-1 (-112) |#1|) $ (-569)) 78)) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (($ |#1| $ (-569)) 80) (($ (-1 (-112) |#1|) $ (-569)) 81)) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 32 (|has| $ (-6 -4444)))) (-1315 (((-112) $ $) 106)) (-3369 (($) 15) (($ |#1|) 28) (($ (-649 |#1|)) 23)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) 38)) (-1655 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 89)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-4333 (($ $ $) 97)) (-1640 ((|#1| $) 62)) (-3813 (($ |#1| $) 63) (($ |#1| $ (-776)) 86)) (-3545 (((-1126) $) NIL)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1764 ((|#1| $) 61)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 56)) (-3597 (($) 14)) (-2917 (((-649 (-2 (|:| -2214 |#1|) (|:| -3558 (-776)))) $) 55)) (-2298 (($ $ |#1|) NIL) (($ $ $) 98)) (-1906 (($) 16) (($ (-649 |#1|)) 25)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) 68 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 79)) (-1408 (((-541) $) 36 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 22)) (-3793 (((-867) $) 49)) (-3864 (($ (-649 |#1|)) 27) (($) 18)) (-1441 (((-112) $ $) NIL)) (-4209 (($ (-649 |#1|)) 24)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 103)) (-2426 (((-776) $) 67 (|has| $ (-6 -4444)))))
-(((-742 |#1|) (-13 (-741 |#1|) (-10 -8 (-6 -4444) (-6 -4445) (-15 -3369 ($)) (-15 -3369 ($ |#1|)) (-15 -3369 ($ (-649 |#1|))) (-15 -3040 ((-649 |#1|) $)) (-15 -1696 ($ |#1| $ (-569))) (-15 -1696 ($ (-1 (-112) |#1|) $ (-569))) (-15 -3463 ($ |#1| $ (-569))) (-15 -3463 ($ (-1 (-112) |#1|) $ (-569))))) (-1106)) (T -742))
-((-3369 (*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-3369 (*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-742 *3)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1106)))) (-1696 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-1696 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106)) (-5 *1 (-742 *4)))) (-3463 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106)))) (-3463 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106)) (-5 *1 (-742 *4)))))
-(-13 (-741 |#1|) (-10 -8 (-6 -4444) (-6 -4445) (-15 -3369 ($)) (-15 -3369 ($ |#1|)) (-15 -3369 ($ (-649 |#1|))) (-15 -3040 ((-649 |#1|) $)) (-15 -1696 ($ |#1| $ (-569))) (-15 -1696 ($ (-1 (-112) |#1|) $ (-569))) (-15 -3463 ($ |#1| $ (-569))) (-15 -3463 ($ (-1 (-112) |#1|) $ (-569)))))
-((-3315 (((-1278) (-1165)) 8)))
-(((-743) (-10 -7 (-15 -3315 ((-1278) (-1165))))) (T -743))
-((-3315 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-743)))))
-(-10 -7 (-15 -3315 ((-1278) (-1165))))
-((-3460 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 15)))
-(((-744 |#1|) (-10 -7 (-15 -3460 ((-649 |#1|) (-649 |#1|) (-649 |#1|)))) (-855)) (T -744))
-((-3460 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
-(-10 -7 (-15 -3460 ((-649 |#1|) (-649 |#1|) (-649 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 |#2|) $) 148)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 141 (|has| |#1| (-561)))) (-3087 (($ $) 140 (|has| |#1| (-561)))) (-2883 (((-112) $) 138 (|has| |#1| (-561)))) (-2769 (($ $) 97 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 80 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) 20)) (-3807 (($ $) 79 (|has| |#1| (-38 (-412 (-569)))))) (-2744 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-4114 (($ $) 95 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) 18 T CONST)) (-1879 (($ $) 132)) (-2888 (((-3 $ "failed") $) 37)) (-3275 (((-958 |#1|) $ (-776)) 110) (((-958 |#1|) $ (-776) (-776)) 109)) (-4091 (((-112) $) 149)) (-1310 (($) 107 (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-776) $ |#2|) 112) (((-776) $ |#2| (-776)) 111)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 78 (|has| |#1| (-38 (-412 (-569)))))) (-4343 (((-112) $) 130)) (-3920 (($ $ (-649 |#2|) (-649 (-536 |#2|))) 147) (($ $ |#2| (-536 |#2|)) 146) (($ |#1| (-536 |#2|)) 131) (($ $ |#2| (-776)) 114) (($ $ (-649 |#2|) (-649 (-776))) 113)) (-1344 (($ (-1 |#1| |#1|) $) 129)) (-2660 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) 127)) (-1855 ((|#1| $) 126)) (-1550 (((-1165) $) 10)) (-2488 (($ $ |#2|) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) 11)) (-2907 (($ $ (-776)) 115)) (-2405 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-4386 (($ $) 105 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (($ $ |#2| $) 123) (($ $ (-649 |#2|) (-649 $)) 122) (($ $ (-649 (-297 $))) 121) (($ $ (-297 $)) 120) (($ $ $ $) 119) (($ $ (-649 $) (-649 $)) 118)) (-3514 (($ $ |#2|) 46) (($ $ (-649 |#2|)) 45) (($ $ |#2| (-776)) 44) (($ $ (-649 |#2|) (-649 (-776))) 43)) (-3868 (((-536 |#2|) $) 128)) (-4124 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 83 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 93 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 84 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 85 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 150)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 145 (|has| |#1| (-173))) (($ $) 143 (|has| |#1| (-561))) (($ (-412 (-569))) 135 (|has| |#1| (-38 (-412 (-569)))))) (-4184 ((|#1| $ (-536 |#2|)) 133) (($ $ |#2| (-776)) 117) (($ $ (-649 |#2|) (-649 (-776))) 116)) (-4030 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-4161 (($ $) 103 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 91 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) 139 (|has| |#1| (-561)))) (-4133 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 101 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 89 (|has| |#1| (-38 (-412 (-569)))))) (-1501 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 99 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 87 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 86 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ |#2|) 42) (($ $ (-649 |#2|)) 41) (($ $ |#2| (-776)) 40) (($ $ (-649 |#2|) (-649 (-776))) 39)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 134 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 77 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 136 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
-(((-745 |#1| |#2|) (-140) (-1055) (-855)) (T -745))
-((-4184 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855)))) (-4184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-2907 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-855)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055)) (-4 *2 (-855)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-3110 (*1 *2 *1 *3) (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3110 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855)))) (-3275 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-3275 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-2488 (*1 *1 *1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855)) (-4 *3 (-38 (-412 (-569)))))))
-(-13 (-906 |t#2|) (-979 |t#1| (-536 |t#2|) |t#2|) (-519 |t#2| $) (-312 $) (-10 -8 (-15 -4184 ($ $ |t#2| (-776))) (-15 -4184 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -2907 ($ $ (-776))) (-15 -3920 ($ $ |t#2| (-776))) (-15 -3920 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -3110 ((-776) $ |t#2|)) (-15 -3110 ((-776) $ |t#2| (-776))) (-15 -3275 ((-958 |t#1|) $ (-776))) (-15 -3275 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $ |t#2|)) (-6 (-1008)) (-6 (-1208))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-536 |#2|)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-293) |has| |#1| (-561)) ((-312 $) . T) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 |#2| $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 |#2|) . T) ((-979 |#1| #0# |#2|) . T) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))))
-((-3796 (((-423 (-1179 |#4|)) (-1179 |#4|)) 30) (((-423 |#4|) |#4|) 26)))
-(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-423 |#4|) |#4|)) (-15 -3796 ((-423 (-1179 |#4|)) (-1179 |#4|)))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -746))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
-(-10 -7 (-15 -3796 ((-423 |#4|) |#4|)) (-15 -3796 ((-423 (-1179 |#4|)) (-1179 |#4|))))
-((-2471 (((-423 |#4|) |#4| |#2|) 142)) (-3574 (((-423 |#4|) |#4|) NIL)) (-2508 (((-423 (-1179 |#4|)) (-1179 |#4|)) 127) (((-423 |#4|) |#4|) 52)) (-2649 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3796 (-1179 |#4|)) (|:| -4320 (-569)))))) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 81)) (-2662 (((-1179 |#3|) (-1179 |#3|) (-569)) 168)) (-2556 (((-649 (-776)) (-1179 |#4|) (-649 |#2|) (-776)) 75)) (-3582 (((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-1179 |#3|) (-1179 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|)) 79)) (-2759 (((-2 (|:| |upol| (-1179 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569))))) (|:| |ctpol| |#3|)) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 27)) (-2543 (((-2 (|:| -3466 (-1179 |#4|)) (|:| |polval| (-1179 |#3|))) (-1179 |#4|) (-1179 |#3|) (-569)) 72)) (-3676 (((-569) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569))))) 164)) (-2463 ((|#4| (-569) (-423 |#4|)) 73)) (-3498 (((-112) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569)))) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569))))) NIL)))
-(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2508 ((-423 |#4|) |#4|)) (-15 -2508 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -3574 ((-423 |#4|) |#4|)) (-15 -3676 ((-569) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569)))))) (-15 -2471 ((-423 |#4|) |#4| |#2|)) (-15 -2543 ((-2 (|:| -3466 (-1179 |#4|)) (|:| |polval| (-1179 |#3|))) (-1179 |#4|) (-1179 |#3|) (-569))) (-15 -2649 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3796 (-1179 |#4|)) (|:| -4320 (-569)))))) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -2759 ((-2 (|:| |upol| (-1179 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569))))) (|:| |ctpol| |#3|)) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -2463 (|#4| (-569) (-423 |#4|))) (-15 -3498 ((-112) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569)))) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569)))))) (-15 -3582 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-1179 |#3|) (-1179 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -2556 ((-649 (-776)) (-1179 |#4|) (-649 |#2|) (-776))) (-15 -2662 ((-1179 |#3|) (-1179 |#3|) (-569)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -747))
-((-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-2556 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))) (-3582 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1179 *11)) (-5 *6 (-649 *10)) (-5 *7 (-649 (-776))) (-5 *8 (-649 *11)) (-4 *10 (-855)) (-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-955 *11 *9 *10)) (-5 *2 (-649 (-1179 *5))) (-5 *1 (-747 *9 *10 *11 *5)) (-5 *3 (-1179 *5)))) (-3498 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-2 (|:| -3796 (-1179 *6)) (|:| -4320 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6)) (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-310)))) (-2759 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |upol| (-1179 *8)) (|:| |Lval| (-649 *8)) (|:| |Lfact| (-649 (-2 (|:| -3796 (-1179 *8)) (|:| -4320 (-569))))) (|:| |ctpol| *8))) (-5 *1 (-747 *6 *7 *8 *9)))) (-2649 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-649 (-2 (|:| -3796 (-1179 *9)) (|:| -4320 (-569))))))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)))) (-2543 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| -3466 (-1179 *9)) (|:| |polval| (-1179 *8)))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)) (-5 *4 (-1179 *8)))) (-2471 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3796 (-1179 *6)) (|:| -4320 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))))
-(-10 -7 (-15 -2508 ((-423 |#4|) |#4|)) (-15 -2508 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -3574 ((-423 |#4|) |#4|)) (-15 -3676 ((-569) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569)))))) (-15 -2471 ((-423 |#4|) |#4| |#2|)) (-15 -2543 ((-2 (|:| -3466 (-1179 |#4|)) (|:| |polval| (-1179 |#3|))) (-1179 |#4|) (-1179 |#3|) (-569))) (-15 -2649 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3796 (-1179 |#4|)) (|:| -4320 (-569)))))) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -2759 ((-2 (|:| |upol| (-1179 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569))))) (|:| |ctpol| |#3|)) (-1179 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -2463 (|#4| (-569) (-423 |#4|))) (-15 -3498 ((-112) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569)))) (-649 (-2 (|:| -3796 (-1179 |#3|)) (|:| -4320 (-569)))))) (-15 -3582 ((-3 (-649 (-1179 |#4|)) "failed") (-1179 |#4|) (-1179 |#3|) (-1179 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -2556 ((-649 (-776)) (-1179 |#4|) (-649 |#2|) (-776))) (-15 -2662 ((-1179 |#3|) (-1179 |#3|) (-569))))
-((-2760 (($ $ (-927)) 17)))
-(((-748 |#1| |#2|) (-10 -8 (-15 -2760 (|#1| |#1| (-927)))) (-749 |#2|) (-173)) (T -748))
-NIL
-(-10 -8 (-15 -2760 (|#1| |#1| (-927))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-3727 (($ $ (-927)) 31)) (-2760 (($ $ (-927)) 38)) (-3627 (($ $ (-927)) 32)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2292 (($ $ $) 28)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2358 (($ $ $ $) 29)) (-2205 (($ $ $) 27)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3577 (((-2 (|:| -3151 (-958 |#3|)) (|:| -3078 (-958 |#3|))) |#4|) 14)) (-2559 ((|#4| |#4| |#2|) 33)) (-1776 ((|#4| (-412 (-958 |#3|)) |#2|) 64)) (-2108 ((|#4| (-1181 (-958 |#3|)) |#2|) 77)) (-2185 ((|#4| (-1181 |#4|) |#2|) 51)) (-4243 ((|#4| |#4| |#2|) 54)) (-3800 (((-423 |#4|) |#4|) 40)))
+(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3577 ((-2 (|:| -3151 (-958 |#3|)) (|:| -3078 (-958 |#3|))) |#4|)) (-15 -4243 (|#4| |#4| |#2|)) (-15 -2185 (|#4| (-1181 |#4|) |#2|)) (-15 -2559 (|#4| |#4| |#2|)) (-15 -2108 (|#4| (-1181 (-958 |#3|)) |#2|)) (-15 -1776 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3800 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)))) (-561) (-955 (-412 (-958 |#3|)) |#1| |#2|)) (T -737))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-958 *6))) (-4 *6 (-561)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))))) (-2559 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-2185 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)))) (-4243 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-3577 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)) (-5 *2 (-2 (|:| -3151 (-958 *6)) (|:| -3078 (-958 *6)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))))
+(-10 -7 (-15 -3577 ((-2 (|:| -3151 (-958 |#3|)) (|:| -3078 (-958 |#3|))) |#4|)) (-15 -4243 (|#4| |#4| |#2|)) (-15 -2185 (|#4| (-1181 |#4|) |#2|)) (-15 -2559 (|#4| |#4| |#2|)) (-15 -2108 (|#4| (-1181 (-958 |#3|)) |#2|)) (-15 -1776 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3800 ((-423 |#4|) |#4|)))
+((-3800 (((-423 |#4|) |#4|) 54)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|))) (-798) (-855) (-13 (-310) (-147)) (-955 (-412 |#3|) |#1| |#2|)) (T -738))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-955 (-412 *6) *4 *5)))))
+(-10 -7 (-15 -3800 ((-423 |#4|) |#4|)))
+((-1346 (((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)) 18)))
+(((-739 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)))) (-1057) (-1057) (-731)) (T -739))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7)) (-5 *1 (-739 *5 *6 *7)))))
+(-10 -7 (-15 -1346 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 38)) (-2300 (((-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))) $) 39)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776)) 22 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3150 ((|#2| $) NIL) ((|#1| $) NIL)) (-1883 (($ $) 104 (|has| |#2| (-855)))) (-3086 (((-3 $ "failed") $) 87)) (-3406 (($) 50 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 72)) (-2572 (((-649 $) $) 54)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| |#2|) 17)) (-1346 (($ (-1 |#1| |#1|) $) 70)) (-2731 (((-927) $) 45 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-1849 ((|#2| $) 103 (|has| |#2| (-855)))) (-1857 ((|#1| $) 102 (|has| |#2| (-855)))) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 37 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 101) (($ (-569)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|)))) 11)) (-2512 (((-649 |#1|) $) 56)) (-4383 ((|#1| $ |#2|) 117)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 12 T CONST)) (-1815 (($) 46 T CONST)) (-2920 (((-112) $ $) 107)) (-3024 (($ $) 63) (($ $ $) NIL)) (-3012 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-740 |#1| |#2|) (-13 (-1057) (-1046 |#2|) (-1046 |#1|) (-10 -8 (-15 -3923 ($ |#1| |#2|)) (-15 -4383 (|#1| $ |#2|)) (-15 -3796 ($ (-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))))) (-15 -2300 ((-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))) $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -2198 ((-112) $)) (-15 -2512 ((-649 |#1|) $)) (-15 -2572 ((-649 $) $)) (-15 -3366 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1849 (|#2| $)) (-15 -1857 (|#1| $)) (-15 -1883 ($ $))) |%noBranch|))) (-1057) (-731)) (T -740))
+((-3923 (*1 *1 *2 *3) (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-731)))) (-4383 (*1 *2 *1 *3) (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4)))) (-4 *3 (-1057)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4)))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-740 *3 *4)) (-4 *4 (-731)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-1849 (*1 *2 *1) (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2)) (-4 *3 (-1057)))) (-1857 (*1 *2 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *3 (-731)))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1057)) (-4 *3 (-731)))))
+(-13 (-1057) (-1046 |#2|) (-1046 |#1|) (-10 -8 (-15 -3923 ($ |#1| |#2|)) (-15 -4383 (|#1| $ |#2|)) (-15 -3796 ($ (-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))))) (-15 -2300 ((-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))) $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -2198 ((-112) $)) (-15 -2512 ((-649 |#1|) $)) (-15 -2572 ((-649 $) $)) (-15 -3366 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1849 (|#2| $)) (-15 -1857 (|#1| $)) (-15 -1883 ($ $))) |%noBranch|)))
+((-2417 (((-112) $ $) 19)) (-3969 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2541 (($ $ $) 73)) (-4179 (((-112) $ $) 74)) (-3914 (((-112) $ (-776)) 8)) (-4257 (($ (-649 |#1|)) 69) (($) 68)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 63)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 65)) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22)) (-2101 (($ $ $) 70)) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3547 (((-1128) $) 21)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 62)) (-2237 (($ $ |#1|) 72) (($ $ $) 71)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18)) (-3868 (($ (-649 |#1|)) 67) (($) 66)) (-1520 (((-112) $ $) 23)) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-741 |#1|) (-140) (-1108)) (T -741))
+NIL
+(-13 (-700 |t#1|) (-1106 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-700 |#1|) . T) ((-1106 |#1|) . T) ((-1108) . T) ((-1225) . T))
+((-2417 (((-112) $ $) NIL)) (-3969 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2541 (($ $ $) 99)) (-4179 (((-112) $ $) 107)) (-3914 (((-112) $ (-776)) NIL)) (-4257 (($ (-649 |#1|)) 26) (($) 17)) (-1796 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2017 (($ $) 85)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) 70 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4447))) (($ |#1| $ (-569)) 75) (($ (-1 (-112) |#1|) $ (-569)) 78)) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $ (-569)) 80) (($ (-1 (-112) |#1|) $ (-569)) 81)) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 32 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 106)) (-2083 (($) 15) (($ |#1|) 28) (($ (-649 |#1|)) 23)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) 38)) (-2004 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 89)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 97)) (-1877 ((|#1| $) 62)) (-3894 (($ |#1| $) 63) (($ |#1| $ (-776)) 86)) (-3547 (((-1128) $) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1781 ((|#1| $) 61)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 56)) (-3635 (($) 14)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 55)) (-2237 (($ $ |#1|) NIL) (($ $ $) 98)) (-2434 (($) 16) (($ (-649 |#1|)) 25)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) 68 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 79)) (-1410 (((-541) $) 36 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 22)) (-3796 (((-867) $) 49)) (-3868 (($ (-649 |#1|)) 27) (($) 18)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 |#1|)) 24)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 103)) (-2428 (((-776) $) 67 (|has| $ (-6 -4447)))))
+(((-742 |#1|) (-13 (-741 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2083 ($)) (-15 -2083 ($ |#1|)) (-15 -2083 ($ (-649 |#1|))) (-15 -2009 ((-649 |#1|) $)) (-15 -1698 ($ |#1| $ (-569))) (-15 -1698 ($ (-1 (-112) |#1|) $ (-569))) (-15 -1794 ($ |#1| $ (-569))) (-15 -1794 ($ (-1 (-112) |#1|) $ (-569))))) (-1108)) (T -742))
+((-2083 (*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-2083 (*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-742 *3)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1108)))) (-1698 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-1698 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108)) (-5 *1 (-742 *4)))) (-1794 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-1794 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108)) (-5 *1 (-742 *4)))))
+(-13 (-741 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2083 ($)) (-15 -2083 ($ |#1|)) (-15 -2083 ($ (-649 |#1|))) (-15 -2009 ((-649 |#1|) $)) (-15 -1698 ($ |#1| $ (-569))) (-15 -1698 ($ (-1 (-112) |#1|) $ (-569))) (-15 -1794 ($ |#1| $ (-569))) (-15 -1794 ($ (-1 (-112) |#1|) $ (-569)))))
+((-3318 (((-1280) (-1167)) 8)))
+(((-743) (-10 -7 (-15 -3318 ((-1280) (-1167))))) (T -743))
+((-3318 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-743)))))
+(-10 -7 (-15 -3318 ((-1280) (-1167))))
+((-1757 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 15)))
+(((-744 |#1|) (-10 -7 (-15 -1757 ((-649 |#1|) (-649 |#1|) (-649 |#1|)))) (-855)) (T -744))
+((-1757 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
+(-10 -7 (-15 -1757 ((-649 |#1|) (-649 |#1|) (-649 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#2|) $) 148)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 141 (|has| |#1| (-561)))) (-4355 (($ $) 140 (|has| |#1| (-561)))) (-3039 (((-112) $) 138 (|has| |#1| (-561)))) (-2771 (($ $) 97 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 80 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $) 79 (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-4118 (($ $) 95 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-1883 (($ $) 132)) (-3086 (((-3 $ "failed") $) 37)) (-3278 (((-958 |#1|) $ (-776)) 110) (((-958 |#1|) $ (-776) (-776)) 109)) (-1677 (((-112) $) 149)) (-1312 (($) 107 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $ |#2|) 112) (((-776) $ |#2| (-776)) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 78 (|has| |#1| (-38 (-412 (-569)))))) (-2198 (((-112) $) 130)) (-3923 (($ $ (-649 |#2|) (-649 (-536 |#2|))) 147) (($ $ |#2| (-536 |#2|)) 146) (($ |#1| (-536 |#2|)) 131) (($ $ |#2| (-776)) 114) (($ $ (-649 |#2|) (-649 (-776))) 113)) (-1346 (($ (-1 |#1| |#1|) $) 129)) (-2662 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 127)) (-1857 ((|#1| $) 126)) (-3435 (((-1167) $) 10)) (-3579 (($ $ |#2|) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) 11)) (-3166 (($ $ (-776)) 115)) (-2407 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-4389 (($ $) 105 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (($ $ |#2| $) 123) (($ $ (-649 |#2|) (-649 $)) 122) (($ $ (-649 (-297 $))) 121) (($ $ (-297 $)) 120) (($ $ $ $) 119) (($ $ (-649 $) (-649 $)) 118)) (-3517 (($ $ |#2|) 46) (($ $ (-649 |#2|)) 45) (($ $ |#2| (-776)) 44) (($ $ (-649 |#2|) (-649 (-776))) 43)) (-4339 (((-536 |#2|) $) 128)) (-4128 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 83 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 93 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 84 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 85 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 150)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 145 (|has| |#1| (-173))) (($ $) 143 (|has| |#1| (-561))) (($ (-412 (-569))) 135 (|has| |#1| (-38 (-412 (-569)))))) (-4383 ((|#1| $ (-536 |#2|)) 133) (($ $ |#2| (-776)) 117) (($ $ (-649 |#2|) (-649 (-776))) 116)) (-2239 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 103 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 91 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 139 (|has| |#1| (-561)))) (-4140 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 101 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 89 (|has| |#1| (-38 (-412 (-569)))))) (-1503 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 99 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 87 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 86 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#2|) 42) (($ $ (-649 |#2|)) 41) (($ $ |#2| (-776)) 40) (($ $ (-649 |#2|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 134 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 77 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 136 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
+(((-745 |#1| |#2|) (-140) (-1057) (-855)) (T -745))
+((-4383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057)) (-4 *2 (-855)))) (-4383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057)) (-4 *2 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)))) (-1466 (*1 *2 *1 *3) (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1057)) (-4 *3 (-855)) (-5 *2 (-776)))) (-1466 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1057)) (-4 *3 (-855)))) (-3278 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-3278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-3579 (*1 *1 *1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855)) (-4 *3 (-38 (-412 (-569)))))))
+(-13 (-906 |t#2|) (-981 |t#1| (-536 |t#2|) |t#2|) (-519 |t#2| $) (-312 $) (-10 -8 (-15 -4383 ($ $ |t#2| (-776))) (-15 -4383 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -3166 ($ $ (-776))) (-15 -3923 ($ $ |t#2| (-776))) (-15 -3923 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -1466 ((-776) $ |t#2|)) (-15 -1466 ((-776) $ |t#2| (-776))) (-15 -3278 ((-958 |t#1|) $ (-776))) (-15 -3278 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ |t#2|)) (-6 (-1010)) (-6 (-1210))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-536 |#2|)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-293) |has| |#1| (-561)) ((-312 $) . T) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 |#2| $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 |#2|) . T) ((-981 |#1| #0# |#2|) . T) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))))
+((-3800 (((-423 (-1181 |#4|)) (-1181 |#4|)) 30) (((-423 |#4|) |#4|) 26)))
+(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|)))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -746))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|))))
+((-3385 (((-423 |#4|) |#4| |#2|) 142)) (-3411 (((-423 |#4|) |#4|) NIL)) (-3764 (((-423 (-1181 |#4|)) (-1181 |#4|)) 127) (((-423 |#4|) |#4|) 52)) (-1400 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 |#4|)) (|:| -1993 (-569)))))) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 81)) (-1514 (((-1181 |#3|) (-1181 |#3|) (-569)) 168)) (-2942 (((-649 (-776)) (-1181 |#4|) (-649 |#2|) (-776)) 75)) (-3585 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-1181 |#3|) (-1181 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|)) 79)) (-4301 (((-2 (|:| |upol| (-1181 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) (|:| |ctpol| |#3|)) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 27)) (-2833 (((-2 (|:| -1814 (-1181 |#4|)) (|:| |polval| (-1181 |#3|))) (-1181 |#4|) (-1181 |#3|) (-569)) 72)) (-1955 (((-569) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) 164)) (-3287 ((|#4| (-569) (-423 |#4|)) 73)) (-3982 (((-112) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) NIL)))
+(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3764 ((-423 |#4|) |#4|)) (-15 -3764 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -3411 ((-423 |#4|) |#4|)) (-15 -1955 ((-569) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3385 ((-423 |#4|) |#4| |#2|)) (-15 -2833 ((-2 (|:| -1814 (-1181 |#4|)) (|:| |polval| (-1181 |#3|))) (-1181 |#4|) (-1181 |#3|) (-569))) (-15 -1400 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 |#4|)) (|:| -1993 (-569)))))) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -4301 ((-2 (|:| |upol| (-1181 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) (|:| |ctpol| |#3|)) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -3287 (|#4| (-569) (-423 |#4|))) (-15 -3982 ((-112) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3585 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-1181 |#3|) (-1181 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -2942 ((-649 (-776)) (-1181 |#4|) (-649 |#2|) (-776))) (-15 -1514 ((-1181 |#3|) (-1181 |#3|) (-569)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -747))
+((-1514 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-2942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))) (-3585 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1181 *11)) (-5 *6 (-649 *10)) (-5 *7 (-649 (-776))) (-5 *8 (-649 *11)) (-4 *10 (-855)) (-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-955 *11 *9 *10)) (-5 *2 (-649 (-1181 *5))) (-5 *1 (-747 *9 *10 *11 *5)) (-5 *3 (-1181 *5)))) (-3982 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6)) (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-310)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |upol| (-1181 *8)) (|:| |Lval| (-649 *8)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 *8)) (|:| -1993 (-569))))) (|:| |ctpol| *8))) (-5 *1 (-747 *6 *7 *8 *9)))) (-1400 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 *9)) (|:| -1993 (-569))))))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9)))) (-2833 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| -1814 (-1181 *9)) (|:| |polval| (-1181 *8)))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9)) (-5 *4 (-1181 *8)))) (-3385 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))))
+(-10 -7 (-15 -3764 ((-423 |#4|) |#4|)) (-15 -3764 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -3411 ((-423 |#4|) |#4|)) (-15 -1955 ((-569) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3385 ((-423 |#4|) |#4| |#2|)) (-15 -2833 ((-2 (|:| -1814 (-1181 |#4|)) (|:| |polval| (-1181 |#3|))) (-1181 |#4|) (-1181 |#3|) (-569))) (-15 -1400 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 |#4|)) (|:| -1993 (-569)))))) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -4301 ((-2 (|:| |upol| (-1181 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) (|:| |ctpol| |#3|)) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -3287 (|#4| (-569) (-423 |#4|))) (-15 -3982 ((-112) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3585 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-1181 |#3|) (-1181 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -2942 ((-649 (-776)) (-1181 |#4|) (-649 |#2|) (-776))) (-15 -1514 ((-1181 |#3|) (-1181 |#3|) (-569))))
+((-4311 (($ $ (-927)) 17)))
+(((-748 |#1| |#2|) (-10 -8 (-15 -4311 (|#1| |#1| (-927)))) (-749 |#2|) (-173)) (T -748))
+NIL
+(-10 -8 (-15 -4311 (|#1| |#1| (-927))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2395 (($ $ (-927)) 31)) (-4311 (($ $ (-927)) 38)) (-2667 (($ $ (-927)) 32)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2180 (($ $ $) 28)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1676 (($ $ $ $) 29)) (-2489 (($ $ $) 27)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-749 |#1|) (-140) (-173)) (T -749))
-((-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
-(-13 (-766) (-722 |t#1|) (-10 -8 (-15 -2760 ($ $ (-927)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-766) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
-((-2949 (((-1041) (-694 (-226)) (-569) (-112) (-569)) 25)) (-2859 (((-1041) (-694 (-226)) (-569) (-112) (-569)) 24)))
-(((-750) (-10 -7 (-15 -2859 ((-1041) (-694 (-226)) (-569) (-112) (-569))) (-15 -2949 ((-1041) (-694 (-226)) (-569) (-112) (-569))))) (T -750))
-((-2949 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-750)))) (-2859 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-750)))))
-(-10 -7 (-15 -2859 ((-1041) (-694 (-226)) (-569) (-112) (-569))) (-15 -2949 ((-1041) (-694 (-226)) (-569) (-112) (-569))))
-((-2025 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) 43)) (-1942 (((-1041) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) 39)) (-1870 (((-1041) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) 32)))
-(((-751) (-10 -7 (-15 -1870 ((-1041) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -1942 ((-1041) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -2025 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))) (T -751))
-((-2025 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1041)) (-5 *1 (-751)))) (-1942 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1041)) (-5 *1 (-751)))) (-1870 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) (-5 *2 (-1041)) (-5 *1 (-751)))))
-(-10 -7 (-15 -1870 ((-1041) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -1942 ((-1041) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -2025 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))
-((-3943 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 34)) (-3848 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 33)) (-3740 (((-1041) (-569) (-694 (-226)) (-569)) 32)) (-1737 (((-1041) (-569) (-694 (-226)) (-569)) 31)) (-1644 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 30)) (-1540 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-1412 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-1306 (((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-2384 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-2288 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-2201 (((-1041) (-569) (-694 (-226)) (-569)) 22)) (-2114 (((-1041) (-569) (-694 (-226)) (-569)) 21)))
-(((-752) (-10 -7 (-15 -2114 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2201 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2288 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2384 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1306 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1412 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1540 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1644 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1737 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -3740 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -3848 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -3943 ((-1041) (-569) (-569) (-694 (-226)) (-569))))) (T -752))
-((-3943 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-3848 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-3740 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-1737 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-1644 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-1540 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-1412 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-1306 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2384 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2288 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2201 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))) (-2114 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-752)))))
-(-10 -7 (-15 -2114 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2201 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -2288 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2384 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1306 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1412 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1540 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1644 ((-1041) (-569) (-569) (-1165) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1737 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -3740 ((-1041) (-569) (-694 (-226)) (-569))) (-15 -3848 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -3943 ((-1041) (-569) (-569) (-694 (-226)) (-569))))
-((-2585 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2487 (((-1041) (-694 (-226)) (-694 (-226)) (-569) (-569)) 51)) (-3694 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3595 (((-1041) (-226) (-226) (-569) (-569) (-569) (-569)) 46)) (-3478 (((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 45)) (-3375 (((-1041) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 44)) (-3254 (((-1041) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 43)) (-3147 (((-1041) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 42)) (-4307 (((-1041) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) 38)) (-4217 (((-1041) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) 37)) (-4119 (((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) 33)) (-4029 (((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) 32)))
-(((-753) (-10 -7 (-15 -4029 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -4119 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -4217 ((-1041) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -4307 ((-1041) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -3147 ((-1041) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3254 ((-1041) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3375 ((-1041) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3478 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3595 ((-1041) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -3694 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -2487 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2585 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))))) (T -753))
-((-2585 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-2487 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-3694 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-3595 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-3478 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-3375 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-3254 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-3147 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-4307 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-4217 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-753)))) (-4119 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) (-5 *2 (-1041)) (-5 *1 (-753)))) (-4029 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) (-5 *2 (-1041)) (-5 *1 (-753)))))
-(-10 -7 (-15 -4029 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -4119 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -4217 ((-1041) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -4307 ((-1041) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))) (-15 -3147 ((-1041) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3254 ((-1041) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3375 ((-1041) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3478 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3595 ((-1041) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -3694 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -2487 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2585 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))))
-((-2130 (((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2051 (((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393)) 69) (((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1974 (((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) 57)) (-1904 (((-1041) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 50)) (-2989 (((-1041) (-226) (-569) (-569) (-1165) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2898 (((-1041) (-226) (-569) (-569) (-226) (-1165) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2799 (((-1041) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 42)) (-2696 (((-1041) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-754) (-10 -7 (-15 -2696 ((-1041) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2799 ((-1041) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -2898 ((-1041) (-226) (-569) (-569) (-226) (-1165) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2989 ((-1041) (-226) (-569) (-569) (-1165) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -1904 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -1974 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -2051 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -2051 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -2130 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -754))
-((-2130 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2051 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-393)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2051 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1041)) (-5 *1 (-754)))) (-1974 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-1904 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2989 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2898 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2799 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))) (-2696 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(-10 -7 (-15 -2696 ((-1041) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2799 ((-1041) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -2898 ((-1041) (-226) (-569) (-569) (-226) (-1165) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2989 ((-1041) (-226) (-569) (-569) (-1165) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -1904 ((-1041) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -1974 ((-1041) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -2051 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -2051 ((-1041) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -2130 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2359 (((-1041) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569)) 45)) (-2286 (((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1165) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) 41)) (-2207 (((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 23)))
-(((-755) (-10 -7 (-15 -2207 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2286 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1165) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -2359 ((-1041) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569))))) (T -755))
-((-2359 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226))) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))) (-2286 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1041)) (-5 *1 (-755)))) (-2207 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))))
-(-10 -7 (-15 -2207 ((-1041) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2286 ((-1041) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1165) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -2359 ((-1041) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569))))
-((-3927 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569)) 35)) (-3852 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569)) 34)) (-1861 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569)) 33)) (-1779 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-1683 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-1616 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569)) 27)) (-1515 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 24)) (-1422 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 23)) (-1343 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569)) 22)) (-4377 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 21)))
-(((-756) (-10 -7 (-15 -4377 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1343 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1422 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1515 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1616 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -1683 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1779 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1861 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -3852 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -3927 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569))))) (T -756))
-((-3927 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-3852 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-1861 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-1779 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-1683 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-1616 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-756)))) (-1515 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-1422 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-1343 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))) (-4377 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(-10 -7 (-15 -4377 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1343 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1422 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1515 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -1616 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -1683 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1779 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1861 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -3852 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -3927 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569))))
-((-3742 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 45)) (-1596 (((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569)) 44)) (-1481 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 43)) (-1356 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 42)) (-4369 (((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569)) 41)) (-4291 (((-1041) (-1165) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 40)) (-3592 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569)) 39)) (-2988 (((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569))) 38)) (-3038 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569)) 35)) (-1953 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569)) 34)) (-1874 (((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569)) 33)) (-1788 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 32)) (-1671 (((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569)) 31)) (-1591 (((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569)) 30)) (-1658 (((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 29)) (-1554 (((-1041) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569)) 28)) (-4094 (((-1041) (-569) (-694 (-226)) (-226) (-569)) 24)) (-4016 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 21)))
-(((-757) (-10 -7 (-15 -4016 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4094 ((-1041) (-569) (-694 (-226)) (-226) (-569))) (-15 -1554 ((-1041) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -1658 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -1591 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -1671 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -1788 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1874 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -1953 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -3038 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2988 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -3592 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -4291 ((-1041) (-1165) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -4369 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1356 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1481 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1596 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3742 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))))) (T -757))
-((-3742 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1596 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1481 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1356 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-4369 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-4291 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-3592 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-2988 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-3038 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1953 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1874 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1788 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1671 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1591 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1658 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-1554 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-4094 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))) (-4016 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(-10 -7 (-15 -4016 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4094 ((-1041) (-569) (-694 (-226)) (-226) (-569))) (-15 -1554 ((-1041) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -1658 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -1591 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -1671 ((-1041) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -1788 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1874 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -1953 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -3038 ((-1041) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2988 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -3592 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -4291 ((-1041) (-1165) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -4369 ((-1041) (-1165) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1356 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1481 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1596 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3742 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))))
-((-3265 (((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569)) 63)) (-3167 (((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3068 (((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) 58)) (-4225 (((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569)) 51)) (-4127 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) 50)) (-4041 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3951 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3846 (((-1041) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-758) (-10 -7 (-15 -3846 ((-1041) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3951 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -4041 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -4127 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -4225 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -3068 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -3167 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3265 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569))))) (T -758))
-((-3265 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-3167 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-3068 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-4225 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-758)))) (-4127 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-4041 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-3951 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1041)) (-5 *1 (-758)))) (-3846 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
-(-10 -7 (-15 -3846 ((-1041) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3951 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -4041 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -4127 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -4225 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -3068 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -3167 ((-1041) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3265 ((-1041) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569))))
-((-1954 (((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 47)) (-1862 (((-1041) (-1165) (-1165) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569)) 46)) (-2920 (((-1041) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 45)) (-2810 (((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 40)) (-2680 (((-1041) (-1165) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569)) 39)) (-2550 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-569)) 36)) (-2448 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569)) 35)) (-3634 (((-1041) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569)) 34)) (-3517 (((-1041) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569)) 33)) (-3398 (((-1041) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569)) 32)))
-(((-759) (-10 -7 (-15 -3398 ((-1041) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -3517 ((-1041) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -3634 ((-1041) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -2448 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -2550 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -2680 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -2810 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2920 ((-1041) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1862 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1954 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -759))
-((-1954 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-1862 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2920 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2810 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2680 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2550 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-759)))) (-2448 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-3634 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-3517 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226))) (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-759)))) (-3398 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226))) (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1041)) (-5 *1 (-759)))))
-(-10 -7 (-15 -3398 ((-1041) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -3517 ((-1041) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -3634 ((-1041) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -2448 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -2550 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -2680 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -2810 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2920 ((-1041) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1862 ((-1041) (-1165) (-1165) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1954 ((-1041) (-1165) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))
-((-4169 (((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 79)) (-4074 (((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 68)) (-3987 (((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393)) 56) (((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) 55)) (-3904 (((-1041) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 37)) (-3803 (((-1041) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569)) 33)) (-1801 (((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 30)) (-1707 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-1605 (((-1041) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-1490 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-1369 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569)) 26)) (-4376 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 25)) (-2340 (((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-2243 (((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-2148 (((-1041) (-694 (-226)) (-569) (-569) (-569) (-569)) 22)) (-2049 (((-1041) (-569) (-569) (-694 (-226)) (-569)) 21)))
-(((-760) (-10 -7 (-15 -2049 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -2148 ((-1041) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2243 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2340 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4376 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -1369 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1490 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1605 ((-1041) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1707 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1801 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -3803 ((-1041) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -3904 ((-1041) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3987 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -3987 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -4074 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4169 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -760))
-((-4169 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-4074 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-3987 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-3987 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-3904 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-3803 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1801 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1707 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1605 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1490 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-1369 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-4376 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2340 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2243 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2148 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-760)))) (-2049 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(-10 -7 (-15 -2049 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -2148 ((-1041) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2243 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2340 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4376 ((-1041) (-569) (-569) (-694 (-226)) (-569))) (-15 -1369 ((-1041) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1490 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1605 ((-1041) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1707 ((-1041) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1801 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -3803 ((-1041) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -3904 ((-1041) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3987 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -3987 ((-1041) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -4074 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4169 ((-1041) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))
-((-1611 (((-1041) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) 64)) (-1487 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569)) 60)) (-1350 (((-1041) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2414 (((-1041) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 37)) (-3598 (((-1041) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569)) 36)) (-3483 (((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 33)) (-3393 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226))) 32)) (-3294 (((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569)) 28)) (-3193 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 27)) (-3096 (((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 26)) (-4249 (((-1041) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 22)))
-(((-761) (-10 -7 (-15 -4249 ((-1041) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -3096 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3193 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3294 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -3393 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -3483 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3598 ((-1041) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2414 ((-1041) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1350 ((-1041) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -1487 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -1611 ((-1041) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))) (T -761))
-((-1611 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1487 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-1350 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-2414 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3598 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3483 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3393 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3294 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3193 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-3096 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-761)))) (-4249 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041)) (-5 *1 (-761)))))
-(-10 -7 (-15 -4249 ((-1041) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -3096 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3193 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3294 ((-1041) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -3393 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -3483 ((-1041) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3598 ((-1041) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2414 ((-1041) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1350 ((-1041) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -1487 ((-1041) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -1611 ((-1041) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))
-((-4004 (((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226))) 29)) (-3892 (((-1041) (-1165) (-569) (-569) (-694 (-226))) 28)) (-1872 (((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226))) 27)) (-1752 (((-1041) (-569) (-569) (-569) (-694 (-226))) 21)))
-(((-762) (-10 -7 (-15 -1752 ((-1041) (-569) (-569) (-569) (-694 (-226)))) (-15 -1872 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3892 ((-1041) (-1165) (-569) (-569) (-694 (-226)))) (-15 -4004 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)))))) (T -762))
-((-4004 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))) (-3892 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))) (-1872 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-762)))) (-1752 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041)) (-5 *1 (-762)))))
-(-10 -7 (-15 -1752 ((-1041) (-569) (-569) (-569) (-694 (-226)))) (-15 -1872 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3892 ((-1041) (-1165) (-569) (-569) (-694 (-226)))) (-15 -4004 ((-1041) (-1165) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)))))
-((-2853 (((-1041) (-226) (-226) (-226) (-226) (-569)) 62)) (-2750 (((-1041) (-226) (-226) (-226) (-569)) 61)) (-2617 (((-1041) (-226) (-226) (-226) (-569)) 60)) (-3794 (((-1041) (-226) (-226) (-569)) 59)) (-3699 (((-1041) (-226) (-569)) 58)) (-3577 (((-1041) (-226) (-569)) 57)) (-3453 (((-1041) (-226) (-569)) 56)) (-3330 (((-1041) (-226) (-569)) 55)) (-3208 (((-1041) (-226) (-569)) 54)) (-4341 (((-1041) (-226) (-569)) 53)) (-4243 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 52)) (-4138 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 51)) (-4038 (((-1041) (-226) (-569)) 50)) (-3929 (((-1041) (-226) (-569)) 49)) (-1921 (((-1041) (-226) (-569)) 48)) (-1825 (((-1041) (-226) (-569)) 47)) (-1709 (((-1041) (-569) (-226) (-170 (-226)) (-569) (-1165) (-569)) 46)) (-1597 (((-1041) (-1165) (-170 (-226)) (-1165) (-569)) 45)) (-1482 (((-1041) (-1165) (-170 (-226)) (-1165) (-569)) 44)) (-1345 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 43)) (-2411 (((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569)) 42)) (-2306 (((-1041) (-226) (-569)) 39)) (-2200 (((-1041) (-226) (-569)) 38)) (-2093 (((-1041) (-226) (-569)) 37)) (-1985 (((-1041) (-226) (-569)) 36)) (-3061 (((-1041) (-226) (-569)) 35)) (-2924 (((-1041) (-226) (-569)) 34)) (-2803 (((-1041) (-226) (-569)) 33)) (-2681 (((-1041) (-226) (-569)) 32)) (-2554 (((-1041) (-226) (-569)) 31)) (-3735 (((-1041) (-226) (-569)) 30)) (-3617 (((-1041) (-226) (-226) (-226) (-569)) 29)) (-3468 (((-1041) (-226) (-569)) 28)) (-3336 (((-1041) (-226) (-569)) 27)) (-3212 (((-1041) (-226) (-569)) 26)) (-4336 (((-1041) (-226) (-569)) 25)) (-4229 (((-1041) (-226) (-569)) 24)) (-4110 (((-1041) (-170 (-226)) (-569)) 21)))
-(((-763) (-10 -7 (-15 -4110 ((-1041) (-170 (-226)) (-569))) (-15 -4229 ((-1041) (-226) (-569))) (-15 -4336 ((-1041) (-226) (-569))) (-15 -3212 ((-1041) (-226) (-569))) (-15 -3336 ((-1041) (-226) (-569))) (-15 -3468 ((-1041) (-226) (-569))) (-15 -3617 ((-1041) (-226) (-226) (-226) (-569))) (-15 -3735 ((-1041) (-226) (-569))) (-15 -2554 ((-1041) (-226) (-569))) (-15 -2681 ((-1041) (-226) (-569))) (-15 -2803 ((-1041) (-226) (-569))) (-15 -2924 ((-1041) (-226) (-569))) (-15 -3061 ((-1041) (-226) (-569))) (-15 -1985 ((-1041) (-226) (-569))) (-15 -2093 ((-1041) (-226) (-569))) (-15 -2200 ((-1041) (-226) (-569))) (-15 -2306 ((-1041) (-226) (-569))) (-15 -2411 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -1345 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -1482 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -1597 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -1709 ((-1041) (-569) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -1825 ((-1041) (-226) (-569))) (-15 -1921 ((-1041) (-226) (-569))) (-15 -3929 ((-1041) (-226) (-569))) (-15 -4038 ((-1041) (-226) (-569))) (-15 -4138 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4243 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4341 ((-1041) (-226) (-569))) (-15 -3208 ((-1041) (-226) (-569))) (-15 -3330 ((-1041) (-226) (-569))) (-15 -3453 ((-1041) (-226) (-569))) (-15 -3577 ((-1041) (-226) (-569))) (-15 -3699 ((-1041) (-226) (-569))) (-15 -3794 ((-1041) (-226) (-226) (-569))) (-15 -2617 ((-1041) (-226) (-226) (-226) (-569))) (-15 -2750 ((-1041) (-226) (-226) (-226) (-569))) (-15 -2853 ((-1041) (-226) (-226) (-226) (-226) (-569))))) (T -763))
-((-2853 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2750 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2617 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3794 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3208 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4243 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4138 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4038 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-1709 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1165)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-1597 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-1482 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-1345 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2411 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165)) (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2306 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2093 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3617 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-3212 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))) (-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(-10 -7 (-15 -4110 ((-1041) (-170 (-226)) (-569))) (-15 -4229 ((-1041) (-226) (-569))) (-15 -4336 ((-1041) (-226) (-569))) (-15 -3212 ((-1041) (-226) (-569))) (-15 -3336 ((-1041) (-226) (-569))) (-15 -3468 ((-1041) (-226) (-569))) (-15 -3617 ((-1041) (-226) (-226) (-226) (-569))) (-15 -3735 ((-1041) (-226) (-569))) (-15 -2554 ((-1041) (-226) (-569))) (-15 -2681 ((-1041) (-226) (-569))) (-15 -2803 ((-1041) (-226) (-569))) (-15 -2924 ((-1041) (-226) (-569))) (-15 -3061 ((-1041) (-226) (-569))) (-15 -1985 ((-1041) (-226) (-569))) (-15 -2093 ((-1041) (-226) (-569))) (-15 -2200 ((-1041) (-226) (-569))) (-15 -2306 ((-1041) (-226) (-569))) (-15 -2411 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -1345 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -1482 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -1597 ((-1041) (-1165) (-170 (-226)) (-1165) (-569))) (-15 -1709 ((-1041) (-569) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -1825 ((-1041) (-226) (-569))) (-15 -1921 ((-1041) (-226) (-569))) (-15 -3929 ((-1041) (-226) (-569))) (-15 -4038 ((-1041) (-226) (-569))) (-15 -4138 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4243 ((-1041) (-226) (-170 (-226)) (-569) (-1165) (-569))) (-15 -4341 ((-1041) (-226) (-569))) (-15 -3208 ((-1041) (-226) (-569))) (-15 -3330 ((-1041) (-226) (-569))) (-15 -3453 ((-1041) (-226) (-569))) (-15 -3577 ((-1041) (-226) (-569))) (-15 -3699 ((-1041) (-226) (-569))) (-15 -3794 ((-1041) (-226) (-226) (-569))) (-15 -2617 ((-1041) (-226) (-226) (-226) (-569))) (-15 -2750 ((-1041) (-226) (-226) (-226) (-569))) (-15 -2853 ((-1041) (-226) (-226) (-226) (-226) (-569))))
-((-2118 (((-1278)) 20)) (-3043 (((-1165)) 31)) (-2953 (((-1165)) 30)) (-2029 (((-1110) (-1183) (-694 (-569))) 45) (((-1110) (-1183) (-694 (-226))) 41)) (-2076 (((-112)) 19)) (-3155 (((-1165) (-1165)) 34)))
-(((-764) (-10 -7 (-15 -2953 ((-1165))) (-15 -3043 ((-1165))) (-15 -3155 ((-1165) (-1165))) (-15 -2029 ((-1110) (-1183) (-694 (-226)))) (-15 -2029 ((-1110) (-1183) (-694 (-569)))) (-15 -2076 ((-112))) (-15 -2118 ((-1278))))) (T -764))
-((-2118 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-764)))) (-2076 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-569))) (-5 *2 (-1110)) (-5 *1 (-764)))) (-2029 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-226))) (-5 *2 (-1110)) (-5 *1 (-764)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))) (-3043 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))) (-2953 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
-(-10 -7 (-15 -2953 ((-1165))) (-15 -3043 ((-1165))) (-15 -3155 ((-1165) (-1165))) (-15 -2029 ((-1110) (-1183) (-694 (-226)))) (-15 -2029 ((-1110) (-1183) (-694 (-569)))) (-15 -2076 ((-112))) (-15 -2118 ((-1278))))
-((-2292 (($ $ $) 10)) (-2358 (($ $ $ $) 9)) (-2205 (($ $ $) 12)))
-(((-765 |#1|) (-10 -8 (-15 -2205 (|#1| |#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1| |#1|))) (-766)) (T -765))
-NIL
-(-10 -8 (-15 -2205 (|#1| |#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-3727 (($ $ (-927)) 31)) (-3627 (($ $ (-927)) 32)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2292 (($ $ $) 28)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2358 (($ $ $ $) 29)) (-2205 (($ $ $) 27)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30)))
+((-4311 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
+(-13 (-766) (-722 |t#1|) (-10 -8 (-15 -4311 ($ $ (-927)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-766) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T))
+((-3602 (((-1043) (-694 (-226)) (-569) (-112) (-569)) 25)) (-2780 (((-1043) (-694 (-226)) (-569) (-112) (-569)) 24)))
+(((-750) (-10 -7 (-15 -2780 ((-1043) (-694 (-226)) (-569) (-112) (-569))) (-15 -3602 ((-1043) (-694 (-226)) (-569) (-112) (-569))))) (T -750))
+((-3602 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-750)))) (-2780 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-750)))))
+(-10 -7 (-15 -2780 ((-1043) (-694 (-226)) (-569) (-112) (-569))) (-15 -3602 ((-1043) (-694 (-226)) (-569) (-112) (-569))))
+((-4385 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) 43)) (-2830 (((-1043) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) 39)) (-3328 (((-1043) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 32)))
+(((-751) (-10 -7 (-15 -3328 ((-1043) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -2830 ((-1043) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -4385 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))) (T -751))
+((-4385 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1043)) (-5 *1 (-751)))) (-2830 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1043)) (-5 *1 (-751)))) (-3328 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-751)))))
+(-10 -7 (-15 -3328 ((-1043) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -2830 ((-1043) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -4385 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))
+((-2556 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 34)) (-4169 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 33)) (-1337 (((-1043) (-569) (-694 (-226)) (-569)) 32)) (-1526 (((-1043) (-569) (-694 (-226)) (-569)) 31)) (-1913 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 30)) (-3303 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-4372 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-4286 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-3819 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-2142 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-2451 (((-1043) (-569) (-694 (-226)) (-569)) 22)) (-4073 (((-1043) (-569) (-694 (-226)) (-569)) 21)))
+(((-752) (-10 -7 (-15 -4073 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2451 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2142 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3819 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4286 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4372 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3303 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1913 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1526 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -1337 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -4169 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -2556 ((-1043) (-569) (-569) (-694 (-226)) (-569))))) (T -752))
+((-2556 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4169 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-1337 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-1526 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-1913 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-3303 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4372 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4286 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-3819 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-2142 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-2451 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4073 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))))
+(-10 -7 (-15 -4073 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2451 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2142 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3819 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4286 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4372 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3303 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1913 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1526 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -1337 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -4169 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -2556 ((-1043) (-569) (-569) (-694 (-226)) (-569))))
+((-2030 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3563 (((-1043) (-694 (-226)) (-694 (-226)) (-569) (-569)) 51)) (-2120 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3624 (((-1043) (-226) (-226) (-569) (-569) (-569) (-569)) 46)) (-3820 (((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 45)) (-2143 (((-1043) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 44)) (-3546 (((-1043) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 43)) (-1841 (((-1043) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 42)) (-3092 (((-1043) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 38)) (-3478 (((-1043) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 37)) (-1943 (((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 33)) (-2230 (((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 32)))
+(((-753) (-10 -7 (-15 -2230 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1943 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3478 ((-1043) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3092 ((-1043) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1841 ((-1043) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3546 ((-1043) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2143 ((-1043) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3820 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3624 ((-1043) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -2120 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -3563 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2030 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))))) (T -753))
+((-2030 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3563 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-753)))) (-2120 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3624 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3820 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-2143 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3546 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-1841 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3092 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3478 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-753)))) (-1943 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-2230 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-753)))))
+(-10 -7 (-15 -2230 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1943 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3478 ((-1043) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3092 ((-1043) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1841 ((-1043) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3546 ((-1043) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2143 ((-1043) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3820 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3624 ((-1043) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -2120 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -3563 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2030 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))))
+((-4239 (((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1543 (((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393)) 69) (((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1981 (((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) 57)) (-2414 (((-1043) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 50)) (-2713 (((-1043) (-226) (-569) (-569) (-1167) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3088 (((-1043) (-226) (-569) (-569) (-226) (-1167) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3450 (((-1043) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 42)) (-1821 (((-1043) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-754) (-10 -7 (-15 -1821 ((-1043) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -3450 ((-1043) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -3088 ((-1043) (-226) (-569) (-569) (-226) (-1167) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2713 ((-1043) (-226) (-569) (-569) (-1167) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2414 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -1981 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -4239 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -754))
+((-4239 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1543 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-393)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1543 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1981 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-2414 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1043)) (-5 *1 (-754)))) (-2713 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-3088 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-3450 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1821 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))))
+(-10 -7 (-15 -1821 ((-1043) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -3450 ((-1043) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -3088 ((-1043) (-226) (-569) (-569) (-226) (-1167) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2713 ((-1043) (-226) (-569) (-569) (-1167) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2414 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -1981 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -4239 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-1685 (((-1043) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569)) 45)) (-2124 (((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1167) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) 41)) (-2510 (((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 23)))
+(((-755) (-10 -7 (-15 -2510 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2124 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1167) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -1685 ((-1043) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569))))) (T -755))
+((-1685 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-755)))) (-2124 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1043)) (-5 *1 (-755)))) (-2510 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-755)))))
+(-10 -7 (-15 -2510 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2124 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1167) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -1685 ((-1043) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569))))
+((-3718 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569)) 35)) (-4210 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569)) 34)) (-3263 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569)) 33)) (-3807 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-2256 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-2825 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569)) 27)) (-3036 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 24)) (-1326 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 23)) (-1914 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569)) 22)) (-2487 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 21)))
+(((-756) (-10 -7 (-15 -2487 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1914 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1326 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3036 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2825 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2256 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3807 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3263 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -4210 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -3718 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569))))) (T -756))
+((-3718 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-4210 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-3263 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-3807 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-2256 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-2825 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-3036 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-1326 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-1914 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-2487 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))))
+(-10 -7 (-15 -2487 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1914 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1326 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3036 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2825 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2256 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3807 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3263 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -4210 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -3718 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569))))
+((-1363 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 45)) (-2598 (((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569)) 44)) (-4004 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 43)) (-2076 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 42)) (-2408 (((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569)) 41)) (-2955 (((-1043) (-1167) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 40)) (-3591 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569)) 39)) (-2702 (((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569))) 38)) (-1989 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569)) 35)) (-2952 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569)) 34)) (-3383 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569)) 33)) (-3886 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 32)) (-2141 (((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569)) 31)) (-2552 (((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569)) 30)) (-2033 (((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 29)) (-3481 (((-1043) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569)) 28)) (-1711 (((-1043) (-569) (-694 (-226)) (-226) (-569)) 24)) (-2116 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 21)))
+(((-757) (-10 -7 (-15 -2116 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1711 ((-1043) (-569) (-694 (-226)) (-226) (-569))) (-15 -3481 ((-1043) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -2033 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -2552 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -2141 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -3886 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3383 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -2952 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -1989 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2702 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -3591 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -2955 ((-1043) (-1167) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -2408 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2076 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4004 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -2598 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1363 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))))) (T -757))
+((-1363 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2598 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-4004 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2076 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2408 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2955 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3591 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2702 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-1989 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2952 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3383 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3886 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2141 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2552 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2033 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3481 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-1711 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2116 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))))
+(-10 -7 (-15 -2116 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1711 ((-1043) (-569) (-694 (-226)) (-226) (-569))) (-15 -3481 ((-1043) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -2033 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -2552 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -2141 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -3886 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3383 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -2952 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -1989 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2702 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -3591 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -2955 ((-1043) (-1167) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -2408 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2076 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4004 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -2598 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1363 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))))
+((-3664 (((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569)) 63)) (-3913 (((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2252 (((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) 58)) (-3580 (((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569)) 51)) (-3932 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2336 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2645 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4146 (((-1043) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-758) (-10 -7 (-15 -4146 ((-1043) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -2645 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -2336 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -3932 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -3580 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -2252 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -3913 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3664 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569))))) (T -758))
+((-3664 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-3913 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-2252 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-3580 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-3932 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1043)) (-5 *1 (-758)))) (-2336 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1043)) (-5 *1 (-758)))) (-2645 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1043)) (-5 *1 (-758)))) (-4146 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758)))))
+(-10 -7 (-15 -4146 ((-1043) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -2645 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -2336 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -3932 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -3580 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -2252 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -3913 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3664 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569))))
+((-2962 (((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 47)) (-3274 (((-1043) (-1167) (-1167) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569)) 46)) (-3285 (((-1043) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 45)) (-3572 (((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 40)) (-1681 (((-1043) (-1167) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569)) 39)) (-2895 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-569)) 36)) (-3145 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569)) 35)) (-2750 (((-1043) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569)) 34)) (-4117 (((-1043) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569)) 33)) (-2315 (((-1043) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569)) 32)))
+(((-759) (-10 -7 (-15 -2315 ((-1043) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -4117 ((-1043) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -2750 ((-1043) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -3145 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -2895 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1681 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -3572 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3285 ((-1043) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -3274 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -2962 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -759))
+((-2962 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3274 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3285 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3572 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-1681 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-2895 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3145 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-759)))) (-2750 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-759)))) (-4117 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226))) (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-759)))) (-2315 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226))) (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-759)))))
+(-10 -7 (-15 -2315 ((-1043) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -4117 ((-1043) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -2750 ((-1043) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -3145 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -2895 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1681 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -3572 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3285 ((-1043) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -3274 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -2962 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))
+((-4255 (((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 79)) (-1483 (((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 68)) (-3017 (((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393)) 56) (((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) 55)) (-3471 (((-1043) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 37)) (-3828 (((-1043) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569)) 33)) (-3991 (((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 30)) (-4390 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-2697 (((-1043) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-4072 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-3357 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569)) 26)) (-2477 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 25)) (-1481 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-2912 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-3172 (((-1043) (-694 (-226)) (-569) (-569) (-569) (-569)) 22)) (-1521 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 21)))
+(((-760) (-10 -7 (-15 -1521 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3172 ((-1043) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2912 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1481 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2477 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3357 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -4072 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2697 ((-1043) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4390 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3991 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -3828 ((-1043) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -3471 ((-1043) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -1483 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4255 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -760))
+((-4255 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-1483 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3017 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3017 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3471 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3828 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3991 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-4390 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-2697 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-4072 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3357 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-2477 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-1481 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-2912 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3172 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-1521 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))))
+(-10 -7 (-15 -1521 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3172 ((-1043) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2912 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1481 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2477 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3357 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -4072 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2697 ((-1043) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4390 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3991 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -3828 ((-1043) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -3471 ((-1043) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -1483 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4255 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))
+((-2767 (((-1043) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) 64)) (-4053 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569)) 60)) (-1966 (((-1043) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) 59)) (-4097 (((-1043) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 37)) (-3642 (((-1043) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569)) 36)) (-3865 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 33)) (-2267 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226))) 32)) (-2634 (((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569)) 28)) (-4155 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 27)) (-1318 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 26)) (-3835 (((-1043) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 22)))
+(((-761) (-10 -7 (-15 -3835 ((-1043) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1318 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -4155 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2634 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -2267 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -3865 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3642 ((-1043) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4097 ((-1043) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1966 ((-1043) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -4053 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2767 ((-1043) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))) (T -761))
+((-2767 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-4053 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-1966 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-4097 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-3642 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-3865 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-2267 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-2634 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-4155 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-1318 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-3835 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-761)))))
+(-10 -7 (-15 -3835 ((-1043) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1318 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -4155 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2634 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -2267 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -3865 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3642 ((-1043) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4097 ((-1043) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1966 ((-1043) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -4053 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2767 ((-1043) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))
+((-1997 (((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226))) 29)) (-3353 (((-1043) (-1167) (-569) (-569) (-694 (-226))) 28)) (-3360 (((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226))) 27)) (-1662 (((-1043) (-569) (-569) (-569) (-694 (-226))) 21)))
+(((-762) (-10 -7 (-15 -1662 ((-1043) (-569) (-569) (-569) (-694 (-226)))) (-15 -3360 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3353 ((-1043) (-1167) (-569) (-569) (-694 (-226)))) (-15 -1997 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)))))) (T -762))
+((-1997 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-762)))) (-3353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-762)))) (-3360 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-762)))) (-1662 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-762)))))
+(-10 -7 (-15 -1662 ((-1043) (-569) (-569) (-569) (-694 (-226)))) (-15 -3360 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3353 ((-1043) (-1167) (-569) (-569) (-694 (-226)))) (-15 -1997 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)))))
+((-2711 (((-1043) (-226) (-226) (-226) (-226) (-569)) 62)) (-4222 (((-1043) (-226) (-226) (-226) (-569)) 61)) (-2302 (((-1043) (-226) (-226) (-226) (-569)) 60)) (-1862 (((-1043) (-226) (-226) (-569)) 59)) (-2167 (((-1043) (-226) (-569)) 58)) (-3444 (((-1043) (-226) (-569)) 57)) (-1675 (((-1043) (-226) (-569)) 56)) (-2958 (((-1043) (-226) (-569)) 55)) (-4299 (((-1043) (-226) (-569)) 54)) (-2178 (((-1043) (-226) (-569)) 53)) (-3765 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 52)) (-4012 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 51)) (-2308 (((-1043) (-226) (-569)) 50)) (-3738 (((-1043) (-226) (-569)) 49)) (-2592 (((-1043) (-226) (-569)) 48)) (-4182 (((-1043) (-226) (-569)) 47)) (-4413 (((-1043) (-569) (-226) (-170 (-226)) (-569) (-1167) (-569)) 46)) (-2610 (((-1043) (-1167) (-170 (-226)) (-1167) (-569)) 45)) (-4013 (((-1043) (-1167) (-170 (-226)) (-1167) (-569)) 44)) (-1920 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 43)) (-4069 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 42)) (-2305 (((-1043) (-226) (-569)) 39)) (-2440 (((-1043) (-226) (-569)) 38)) (-3883 (((-1043) (-226) (-569)) 37)) (-2077 (((-1043) (-226) (-569)) 36)) (-2195 (((-1043) (-226) (-569)) 35)) (-3343 (((-1043) (-226) (-569)) 34)) (-3484 (((-1043) (-226) (-569)) 33)) (-1691 (((-1043) (-226) (-569)) 32)) (-2931 (((-1043) (-226) (-569)) 31)) (-4407 (((-1043) (-226) (-569)) 30)) (-2547 (((-1043) (-226) (-226) (-226) (-569)) 29)) (-1836 (((-1043) (-226) (-569)) 28)) (-3027 (((-1043) (-226) (-569)) 27)) (-3094 (((-1043) (-226) (-569)) 26)) (-2130 (((-1043) (-226) (-569)) 25)) (-3626 (((-1043) (-226) (-569)) 24)) (-1881 (((-1043) (-170 (-226)) (-569)) 21)))
+(((-763) (-10 -7 (-15 -1881 ((-1043) (-170 (-226)) (-569))) (-15 -3626 ((-1043) (-226) (-569))) (-15 -2130 ((-1043) (-226) (-569))) (-15 -3094 ((-1043) (-226) (-569))) (-15 -3027 ((-1043) (-226) (-569))) (-15 -1836 ((-1043) (-226) (-569))) (-15 -2547 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4407 ((-1043) (-226) (-569))) (-15 -2931 ((-1043) (-226) (-569))) (-15 -1691 ((-1043) (-226) (-569))) (-15 -3484 ((-1043) (-226) (-569))) (-15 -3343 ((-1043) (-226) (-569))) (-15 -2195 ((-1043) (-226) (-569))) (-15 -2077 ((-1043) (-226) (-569))) (-15 -3883 ((-1043) (-226) (-569))) (-15 -2440 ((-1043) (-226) (-569))) (-15 -2305 ((-1043) (-226) (-569))) (-15 -4069 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -1920 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4013 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -2610 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -4413 ((-1043) (-569) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4182 ((-1043) (-226) (-569))) (-15 -2592 ((-1043) (-226) (-569))) (-15 -3738 ((-1043) (-226) (-569))) (-15 -2308 ((-1043) (-226) (-569))) (-15 -4012 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -3765 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -2178 ((-1043) (-226) (-569))) (-15 -4299 ((-1043) (-226) (-569))) (-15 -2958 ((-1043) (-226) (-569))) (-15 -1675 ((-1043) (-226) (-569))) (-15 -3444 ((-1043) (-226) (-569))) (-15 -2167 ((-1043) (-226) (-569))) (-15 -1862 ((-1043) (-226) (-226) (-569))) (-15 -2302 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4222 ((-1043) (-226) (-226) (-226) (-569))) (-15 -2711 ((-1043) (-226) (-226) (-226) (-226) (-569))))) (T -763))
+((-2711 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4222 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2302 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1862 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4299 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3765 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4012 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4413 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1167)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2610 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4013 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1920 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4069 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2077 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4407 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2547 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1836 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3027 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2130 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3626 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(-10 -7 (-15 -1881 ((-1043) (-170 (-226)) (-569))) (-15 -3626 ((-1043) (-226) (-569))) (-15 -2130 ((-1043) (-226) (-569))) (-15 -3094 ((-1043) (-226) (-569))) (-15 -3027 ((-1043) (-226) (-569))) (-15 -1836 ((-1043) (-226) (-569))) (-15 -2547 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4407 ((-1043) (-226) (-569))) (-15 -2931 ((-1043) (-226) (-569))) (-15 -1691 ((-1043) (-226) (-569))) (-15 -3484 ((-1043) (-226) (-569))) (-15 -3343 ((-1043) (-226) (-569))) (-15 -2195 ((-1043) (-226) (-569))) (-15 -2077 ((-1043) (-226) (-569))) (-15 -3883 ((-1043) (-226) (-569))) (-15 -2440 ((-1043) (-226) (-569))) (-15 -2305 ((-1043) (-226) (-569))) (-15 -4069 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -1920 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4013 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -2610 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -4413 ((-1043) (-569) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4182 ((-1043) (-226) (-569))) (-15 -2592 ((-1043) (-226) (-569))) (-15 -3738 ((-1043) (-226) (-569))) (-15 -2308 ((-1043) (-226) (-569))) (-15 -4012 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -3765 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -2178 ((-1043) (-226) (-569))) (-15 -4299 ((-1043) (-226) (-569))) (-15 -2958 ((-1043) (-226) (-569))) (-15 -1675 ((-1043) (-226) (-569))) (-15 -3444 ((-1043) (-226) (-569))) (-15 -2167 ((-1043) (-226) (-569))) (-15 -1862 ((-1043) (-226) (-226) (-569))) (-15 -2302 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4222 ((-1043) (-226) (-226) (-226) (-569))) (-15 -2711 ((-1043) (-226) (-226) (-226) (-226) (-569))))
+((-4111 (((-1280)) 20)) (-2038 (((-1167)) 31)) (-3643 (((-1167)) 30)) (-4420 (((-1112) (-1185) (-694 (-569))) 45) (((-1112) (-1185) (-694 (-226))) 41)) (-2079 (((-112)) 19)) (-3789 (((-1167) (-1167)) 34)))
+(((-764) (-10 -7 (-15 -3643 ((-1167))) (-15 -2038 ((-1167))) (-15 -3789 ((-1167) (-1167))) (-15 -4420 ((-1112) (-1185) (-694 (-226)))) (-15 -4420 ((-1112) (-1185) (-694 (-569)))) (-15 -2079 ((-112))) (-15 -4111 ((-1280))))) (T -764))
+((-4111 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-764)))) (-2079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))) (-4420 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-569))) (-5 *2 (-1112)) (-5 *1 (-764)))) (-4420 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-226))) (-5 *2 (-1112)) (-5 *1 (-764)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))) (-2038 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))) (-3643 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))))
+(-10 -7 (-15 -3643 ((-1167))) (-15 -2038 ((-1167))) (-15 -3789 ((-1167) (-1167))) (-15 -4420 ((-1112) (-1185) (-694 (-226)))) (-15 -4420 ((-1112) (-1185) (-694 (-569)))) (-15 -2079 ((-112))) (-15 -4111 ((-1280))))
+((-2180 (($ $ $) 10)) (-1676 (($ $ $ $) 9)) (-2489 (($ $ $) 12)))
+(((-765 |#1|) (-10 -8 (-15 -2489 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -1676 (|#1| |#1| |#1| |#1|))) (-766)) (T -765))
+NIL
+(-10 -8 (-15 -2489 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -1676 (|#1| |#1| |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2395 (($ $ (-927)) 31)) (-2667 (($ $ (-927)) 32)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2180 (($ $ $) 28)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1676 (($ $ $ $) 29)) (-2489 (($ $ $) 27)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30)))
(((-766) (-140)) (T -766))
-((-2358 (*1 *1 *1 *1 *1) (-4 *1 (-766))) (-2292 (*1 *1 *1 *1) (-4 *1 (-766))) (-2205 (*1 *1 *1 *1) (-4 *1 (-766))))
-(-13 (-21) (-725) (-10 -8 (-15 -2358 ($ $ $ $)) (-15 -2292 ($ $ $)) (-15 -2205 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-1106) . T))
-((-3793 (((-867) $) NIL) (($ (-569)) 10)))
-(((-767 |#1|) (-10 -8 (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-768)) (T -767))
-NIL
-(-10 -8 (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-3413 (((-3 $ "failed") $) 43)) (-3727 (($ $ (-927)) 31) (($ $ (-776)) 38)) (-2888 (((-3 $ "failed") $) 41)) (-2623 (((-112) $) 37)) (-3508 (((-3 $ "failed") $) 42)) (-3627 (($ $ (-927)) 32) (($ $ (-776)) 39)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2292 (($ $ $) 28)) (-3793 (((-867) $) 12) (($ (-569)) 34)) (-3302 (((-776)) 35 T CONST)) (-1441 (((-112) $ $) 9)) (-2358 (($ $ $ $) 29)) (-2205 (($ $ $) 27)) (-1803 (($) 19 T CONST)) (-1813 (($) 36 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 33) (($ $ (-776)) 40)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30)))
+((-1676 (*1 *1 *1 *1 *1) (-4 *1 (-766))) (-2180 (*1 *1 *1 *1) (-4 *1 (-766))) (-2489 (*1 *1 *1 *1) (-4 *1 (-766))))
+(-13 (-21) (-725) (-10 -8 (-15 -1676 ($ $ $ $)) (-15 -2180 ($ $ $)) (-15 -2489 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-1108) . T))
+((-3796 (((-867) $) NIL) (($ (-569)) 10)))
+(((-767 |#1|) (-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-768)) (T -767))
+NIL
+(-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4379 (((-3 $ "failed") $) 43)) (-2395 (($ $ (-927)) 31) (($ $ (-776)) 38)) (-3086 (((-3 $ "failed") $) 41)) (-2349 (((-112) $) 37)) (-4059 (((-3 $ "failed") $) 42)) (-2667 (($ $ (-927)) 32) (($ $ (-776)) 39)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2180 (($ $ $) 28)) (-3796 (((-867) $) 12) (($ (-569)) 34)) (-2721 (((-776)) 35 T CONST)) (-1520 (((-112) $ $) 9)) (-1676 (($ $ $ $) 29)) (-2489 (($ $ $) 27)) (-1804 (($) 19 T CONST)) (-1815 (($) 36 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33) (($ $ (-776)) 40)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30)))
(((-768) (-140)) (T -768))
-((-3302 (*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-768)))))
-(-13 (-766) (-727) (-10 -8 (-15 -3302 ((-776)) -3706) (-15 -3793 ($ (-569)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-727) . T) ((-766) . T) ((-1106) . T))
-((-1366 (((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|) 33)) (-2447 (((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|) 23)) (-3798 (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1183)) 20) (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569))))) 19)))
-(((-769 |#1|) (-10 -7 (-15 -3798 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -3798 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1183))) (-15 -2447 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -1366 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|))) (-13 (-367) (-853))) (T -769))
-((-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 *4))))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1183)) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5)) (-4 *5 (-13 (-367) (-853))))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -3798 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -3798 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1183))) (-15 -2447 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -1366 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|)))
-((-3471 (((-175 (-569)) |#1|) 27)))
-(((-770 |#1|) (-10 -7 (-15 -3471 ((-175 (-569)) |#1|))) (-409)) (T -770))
-((-3471 (*1 *2 *3) (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409)))))
-(-10 -7 (-15 -3471 ((-175 (-569)) |#1|)))
-((-4172 ((|#1| |#1| |#1|) 28)) (-4232 ((|#1| |#1| |#1|) 27)) (-3152 ((|#1| |#1| |#1|) 38)) (-4008 ((|#1| |#1| |#1|) 34)) (-4084 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3240 (((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|) 26)))
-(((-771 |#1| |#2|) (-10 -7 (-15 -3240 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1| |#1|)) (-15 -4084 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4008 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#1|))) (-713 |#2|) (-367)) (T -771))
-((-3152 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-4008 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-4084 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-4172 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-4232 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-3240 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4)))))
-(-10 -7 (-15 -3240 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1| |#1|)) (-15 -4084 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4008 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#1|)))
-((-2525 (((-696 (-1231)) $ (-1231)) 26)) (-2615 (((-696 (-554)) $ (-554)) 25)) (-3719 (((-776) $ (-128)) 27)) (-2725 (((-696 (-129)) $ (-129)) 24)) (-4235 (((-696 (-1231)) $) 12)) (-3776 (((-696 (-1229)) $) 8)) (-4002 (((-696 (-1228)) $) 10)) (-3104 (((-696 (-554)) $) 13)) (-3887 (((-696 (-552)) $) 9)) (-4118 (((-696 (-551)) $) 11)) (-1772 (((-776) $ (-128)) 7)) (-3219 (((-696 (-129)) $) 14)) (-2104 (((-112) $) 31)) (-2202 (((-696 $) |#1| (-960)) 32)) (-2839 (($ $) 6)))
-(((-772 |#1|) (-140) (-1106)) (T -772))
-((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-960)) (-4 *3 (-1106)) (-5 *2 (-696 *1)) (-4 *1 (-772 *3)))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(-13 (-581) (-10 -8 (-15 -2202 ((-696 $) |t#1| (-960))) (-15 -2104 ((-112) $))))
+((-2721 (*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-768)))))
+(-13 (-766) (-727) (-10 -8 (-15 -2721 ((-776)) -3709) (-15 -3796 ($ (-569)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-727) . T) ((-766) . T) ((-1108) . T))
+((-3341 (((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|) 33)) (-3134 (((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|) 23)) (-1886 (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1185)) 20) (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569))))) 19)))
+(((-769 |#1|) (-10 -7 (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1185))) (-15 -3134 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -3341 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|))) (-13 (-367) (-853))) (T -769))
+((-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 *4))))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-3134 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1185)) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5)) (-4 *5 (-13 (-367) (-853))))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1185))) (-15 -3134 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -3341 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|)))
+((-1855 (((-175 (-569)) |#1|) 27)))
+(((-770 |#1|) (-10 -7 (-15 -1855 ((-175 (-569)) |#1|))) (-409)) (T -770))
+((-1855 (*1 *2 *3) (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409)))))
+(-10 -7 (-15 -1855 ((-175 (-569)) |#1|)))
+((-4276 ((|#1| |#1| |#1|) 28)) (-3662 ((|#1| |#1| |#1|) 27)) (-3768 ((|#1| |#1| |#1|) 38)) (-2036 ((|#1| |#1| |#1|) 34)) (-1598 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3391 (((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|) 26)))
+(((-771 |#1| |#2|) (-10 -7 (-15 -3391 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| |#1|))) (-713 |#2|) (-367)) (T -771))
+((-3768 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2036 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-1598 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-4276 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-3662 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-3391 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4)))))
+(-10 -7 (-15 -3391 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| |#1|)))
+((-2641 (((-696 (-1233)) $ (-1233)) 26)) (-2283 (((-696 (-554)) $ (-554)) 25)) (-2340 (((-776) $ (-128)) 27)) (-3998 (((-696 (-129)) $ (-129)) 24)) (-3694 (((-696 (-1233)) $) 12)) (-1690 (((-696 (-1231)) $) 8)) (-1979 (((-696 (-1230)) $) 10)) (-1389 (((-696 (-554)) $) 13)) (-3281 (((-696 (-552)) $) 9)) (-1933 (((-696 (-551)) $) 11)) (-3732 (((-776) $ (-128)) 7)) (-3171 (((-696 (-129)) $) 14)) (-3986 (((-112) $) 31)) (-2462 (((-696 $) |#1| (-960)) 32)) (-2543 (($ $) 6)))
+(((-772 |#1|) (-140) (-1108)) (T -772))
+((-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-960)) (-4 *3 (-1108)) (-5 *2 (-696 *1)) (-4 *1 (-772 *3)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))))
+(-13 (-581) (-10 -8 (-15 -2462 ((-696 $) |t#1| (-960))) (-15 -3986 ((-112) $))))
(((-174) . T) ((-532) . T) ((-581) . T) ((-865) . T))
-((-2493 (((-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)) 71)) (-2402 (((-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) 69)) (-4304 (((-569)) 85)))
-(((-773 |#1| |#2|) (-10 -7 (-15 -4304 ((-569))) (-15 -2402 ((-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -2493 ((-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)))) (-1249 (-569)) (-414 (-569) |#1|)) (T -773))
-((-2493 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1249 *3)) (-5 *2 (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2402 (*1 *2) (-12 (-4 *3 (-1249 (-569))) (-5 *2 (-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3)))) (-4304 (*1 *2) (-12 (-4 *3 (-1249 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 *2 *3)))))
-(-10 -7 (-15 -4304 ((-569))) (-15 -2402 ((-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -2493 ((-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569))))
-((-2415 (((-112) $ $) NIL)) (-3148 (((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $) 21)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 20) (($ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 13) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) 18)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-774) (-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3793 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3793 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3148 ((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))) (T -774))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))))
-(-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3793 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3793 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3148 ((-3 (|:| |nia| (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))
-((-1785 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 18) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183))) 17)) (-2912 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 20) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183))) 19)))
-(((-775 |#1|) (-10 -7 (-15 -1785 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -1785 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))))) (-561)) (T -775))
-((-2912 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))))
-(-10 -7 (-15 -1785 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -1785 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3217 (($ $ $) 10)) (-1678 (((-3 $ "failed") $ $) 15)) (-3081 (($ $ (-569)) 11)) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($ $) NIL)) (-2373 (($ $ $) NIL)) (-2623 (((-112) $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1864 (($ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 6 T CONST)) (-1813 (($) NIL T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ $ $) NIL)))
-(((-776) (-13 (-798) (-731) (-10 -8 (-15 -2373 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -1864 ($ $ $)) (-15 -2282 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -2405 ((-3 $ "failed") $ $)) (-15 -3081 ($ $ (-569))) (-15 -3403 ($ $)) (-6 (-4446 "*"))))) (T -776))
-((-2373 (*1 *1 *1 *1) (-5 *1 (-776))) (-2366 (*1 *1 *1 *1) (-5 *1 (-776))) (-1864 (*1 *1 *1 *1) (-5 *1 (-776))) (-2282 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2726 (-776)) (|:| -3365 (-776)))) (-5 *1 (-776)))) (-2405 (*1 *1 *1 *1) (|partial| -5 *1 (-776))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-776)))) (-3403 (*1 *1 *1) (-5 *1 (-776))))
-(-13 (-798) (-731) (-10 -8 (-15 -2373 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -1864 ($ $ $)) (-15 -2282 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -2405 ((-3 $ "failed") $ $)) (-15 -3081 ($ $ (-569))) (-15 -3403 ($ $)) (-6 (-4446 "*"))))
+((-3615 (((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)) 71)) (-4002 (((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) 69)) (-3059 (((-569)) 85)))
+(((-773 |#1| |#2|) (-10 -7 (-15 -3059 ((-569))) (-15 -4002 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -3615 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)))) (-1251 (-569)) (-414 (-569) |#1|)) (T -773))
+((-3615 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4002 (*1 *2) (-12 (-4 *3 (-1251 (-569))) (-5 *2 (-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3)))) (-3059 (*1 *2) (-12 (-4 *3 (-1251 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 *2 *3)))))
+(-10 -7 (-15 -3059 ((-569))) (-15 -4002 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -3615 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569))))
+((-2417 (((-112) $ $) NIL)) (-3150 (((-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $) 21)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 13) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-774) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3150 ((-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))) (T -774))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))))
+(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3150 ((-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))
+((-3855 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 18) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185))) 17)) (-3218 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 20) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185))) 19)))
+(((-775 |#1|) (-10 -7 (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))))) (-561)) (T -775))
+((-3218 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))))
+(-10 -7 (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3151 (($ $ $) 10)) (-2208 (((-3 $ "failed") $ $) 15)) (-3084 (($ $ (-569)) 11)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($ $) NIL)) (-2379 (($ $ $) NIL)) (-2349 (((-112) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1870 (($ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 6 T CONST)) (-1815 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ $ $) NIL)))
+(((-776) (-13 (-798) (-731) (-10 -8 (-15 -2379 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -2084 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2407 ((-3 $ "failed") $ $)) (-15 -3084 ($ $ (-569))) (-15 -3406 ($ $)) (-6 (-4449 "*"))))) (T -776))
+((-2379 (*1 *1 *1 *1) (-5 *1 (-776))) (-2368 (*1 *1 *1 *1) (-5 *1 (-776))) (-1870 (*1 *1 *1 *1) (-5 *1 (-776))) (-2084 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4007 (-776)) (|:| -2054 (-776)))) (-5 *1 (-776)))) (-2407 (*1 *1 *1 *1) (|partial| -5 *1 (-776))) (-3084 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-776)))) (-3406 (*1 *1 *1) (-5 *1 (-776))))
+(-13 (-798) (-731) (-10 -8 (-15 -2379 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -2084 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2407 ((-3 $ "failed") $ $)) (-15 -3084 ($ $ (-569))) (-15 -3406 ($ $)) (-6 (-4449 "*"))))
((|Integer|) (>= |#1| 0))
-((-2912 (((-3 |#2| "failed") |#2| |#2| (-114) (-1183)) 37)))
-(((-777 |#1| |#2|) (-10 -7 (-15 -2912 ((-3 |#2| "failed") |#2| |#2| (-114) (-1183)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965))) (T -777))
-((-2912 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1208) (-965))))))
-(-10 -7 (-15 -2912 ((-3 |#2| "failed") |#2| |#2| (-114) (-1183))))
-((-3793 (((-779) |#1|) 8)))
-(((-778 |#1|) (-10 -7 (-15 -3793 ((-779) |#1|))) (-1223)) (T -778))
-((-3793 (*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1223)))))
-(-10 -7 (-15 -3793 ((-779) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 7)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 9)))
-(((-779) (-1106)) (T -779))
-NIL
-(-1106)
-((-2707 ((|#2| |#4|) 35)))
-(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 (|#2| |#4|))) (-457) (-1249 |#1|) (-729 |#1| |#2|) (-1249 |#3|)) (T -780))
-((-2707 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1249 *5)))))
-(-10 -7 (-15 -2707 (|#2| |#4|)))
-((-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1307 (((-1278) (-1165) (-1165) |#4| |#5|) 33)) (-2297 ((|#4| |#4| |#5|) 74)) (-2385 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|) 79)) (-1428 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|) 16)))
-(((-781 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2888 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2297 (|#4| |#4| |#5|)) (-15 -2385 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -1307 ((-1278) (-1165) (-1165) |#4| |#5|)) (-15 -1428 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -781))
-((-1428 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1307 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1165)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *4 (-1071 *6 *7 *8)) (-5 *2 (-1278)) (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1077 *6 *7 *8 *4)))) (-2385 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2297 (*1 *2 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *2 (-1071 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3)) (-4 *3 (-1077 *4 *5 *6 *2)))) (-2888 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2888 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2297 (|#4| |#4| |#5|)) (-15 -2385 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -1307 ((-1278) (-1165) (-1165) |#4| |#5|)) (-15 -1428 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)))
-((-4378 (((-3 (-1179 (-1179 |#1|)) "failed") |#4|) 53)) (-1541 (((-649 |#4|) |#4|) 24)) (-2064 ((|#4| |#4|) 19)))
-(((-782 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1541 ((-649 |#4|) |#4|)) (-15 -4378 ((-3 (-1179 (-1179 |#1|)) "failed") |#4|)) (-15 -2064 (|#4| |#4|))) (-353) (-332 |#1|) (-1249 |#2|) (-1249 |#3|) (-927)) (T -782))
-((-2064 (*1 *2 *2) (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1249 *4)) (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1249 *5)) (-14 *6 (-927)))) (-4378 (*1 *2 *3) (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1249 *6)) (-14 *7 (-927)))) (-1541 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5)) (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1249 *6)) (-14 *7 (-927)))))
-(-10 -7 (-15 -1541 ((-649 |#4|) |#4|)) (-15 -4378 ((-3 (-1179 (-1179 |#1|)) "failed") |#4|)) (-15 -2064 (|#4| |#4|)))
-((-1665 (((-2 (|:| |deter| (-649 (-1179 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1179 |#5|) (-649 |#1|) (-649 |#5|)) 75)) (-1784 (((-649 (-776)) |#1|) 20)))
-(((-783 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1665 ((-2 (|:| |deter| (-649 (-1179 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1179 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -1784 ((-649 (-776)) |#1|))) (-1249 |#4|) (-798) (-855) (-310) (-955 |#4| |#2| |#3|)) (T -783))
-((-1784 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7)) (-4 *3 (-1249 *6)) (-4 *7 (-955 *6 *4 *5)))) (-1665 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1249 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310)) (-4 *10 (-955 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-649 (-1179 *10))) (|:| |dterm| (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| *10))))) (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10)))) (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1179 *10)) (-5 *4 (-649 *6)) (-5 *5 (-649 *10)))))
-(-10 -7 (-15 -1665 ((-2 (|:| |deter| (-649 (-1179 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1179 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -1784 ((-649 (-776)) |#1|)))
-((-4020 (((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|) 31)) (-3909 (((-649 |#1|) (-694 (-412 (-569))) |#1|) 21)) (-3798 (((-958 (-412 (-569))) (-694 (-412 (-569))) (-1183)) 18) (((-958 (-412 (-569))) (-694 (-412 (-569)))) 17)))
-(((-784 |#1|) (-10 -7 (-15 -3798 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -3798 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1183))) (-15 -3909 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -4020 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|))) (-13 (-367) (-853))) (T -784))
-((-4020 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 (-2 (|:| |outval| *4) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *4)))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-3909 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1183)) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-367) (-853))))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
-(-10 -7 (-15 -3798 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -3798 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1183))) (-15 -3909 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -4020 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 36)) (-1710 (((-649 |#2|) $) NIL)) (-3763 (((-1179 $) $ |#2|) NIL) (((-1179 |#1|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 |#2|)) NIL)) (-1566 (($ $) 30)) (-2951 (((-112) $ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4095 (($ $ $) 110 (|has| |#1| (-561)))) (-2807 (((-649 $) $ $) 123 (|has| |#1| (-561)))) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))))) (((-3 $ "failed") (-958 (-569))) NIL (-2774 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183)))))) (((-3 $ "failed") (-958 |#1|)) NIL (-2774 (-12 (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-38 (-412 (-569))))) (-1745 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-38 (-412 (-569))))) (-1745 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-998 (-569))))))) (((-3 (-1131 |#1| |#2|) "failed") $) 21)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) ((|#2| $) NIL) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))))) (($ (-958 (-569))) NIL (-2774 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183)))))) (($ (-958 |#1|)) NIL (-2774 (-12 (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-38 (-412 (-569))))) (-1745 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-38 (-412 (-569))))) (-1745 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-998 (-569))))))) (((-1131 |#1| |#2|) $) NIL)) (-4202 (($ $ $ |#2|) NIL (|has| |#1| (-173))) (($ $ $) 121 (|has| |#1| (-561)))) (-1879 (($ $) NIL) (($ $ |#2|) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2303 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2328 (((-112) $) NIL)) (-1887 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 81)) (-3632 (($ $) 136 (|has| |#1| (-457)))) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3251 (($ $) NIL (|has| |#1| (-561)))) (-3357 (($ $) NIL (|has| |#1| (-561)))) (-2852 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2748 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3972 (($ $ |#1| (-536 |#2|) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2623 (((-112) $) 57)) (-3238 (((-776) $) NIL)) (-4337 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-3749 (($ $ $ $ $) 107 (|has| |#1| (-561)))) (-1873 ((|#2| $) 22)) (-1697 (($ (-1179 |#1|) |#2|) NIL) (($ (-1179 $) |#2|) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 38) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-3551 (($ $ $) 63)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |#2|) NIL)) (-2416 (((-112) $) NIL)) (-3712 (((-536 |#2|) $) NIL) (((-776) $ |#2|) NIL) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-1775 (((-776) $) 23)) (-4059 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (((-3 |#2| "failed") $) NIL)) (-3273 (($ $) NIL (|has| |#1| (-457)))) (-3407 (($ $) NIL (|has| |#1| (-457)))) (-1961 (((-649 $) $) NIL)) (-2241 (($ $) 39)) (-3526 (($ $) NIL (|has| |#1| (-457)))) (-2057 (((-649 $) $) 43)) (-2155 (($ $) 41)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3452 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-776))) $ $) 96)) (-3641 (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $) 78) (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $ |#2|) NIL)) (-3739 (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $) NIL) (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $ |#2|) NIL)) (-2638 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2537 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1550 (((-1165) $) NIL)) (-3425 (($ $ $) 125 (|has| |#1| (-561)))) (-1455 (((-649 $) $) 32)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| |#2|) (|:| -4320 (-776))) "failed") $) NIL)) (-2010 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-2642 (($ $ $) NIL)) (-2305 (($ $) 24)) (-1672 (((-112) $ $) NIL)) (-2110 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-2765 (($ $ $) NIL)) (-1669 (($ $) 26)) (-3545 (((-1126) $) NIL)) (-2929 (((-2 (|:| -1864 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-561)))) (-3054 (((-2 (|:| -1864 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-561)))) (-1824 (((-112) $) 56)) (-1833 ((|#1| $) 58)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 ((|#1| |#1| $) 133 (|has| |#1| (-457))) (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-4251 (((-2 (|:| -1864 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-561)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-561)))) (-4331 (($ $ |#1|) 129 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-3175 (($ $ |#1|) 128 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-649 |#2|) (-649 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-649 |#2|) (-649 $)) NIL)) (-4304 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3514 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-3868 (((-536 |#2|) $) NIL) (((-776) $ |#2|) 45) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-1563 (($ $) NIL)) (-1328 (($ $) 35)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541))))) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183))))) (($ (-958 (-569))) NIL (-2774 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1183))) (-1745 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1183)))))) (($ (-958 |#1|)) NIL (|has| |#2| (-619 (-1183)))) (((-1165) $) NIL (-12 (|has| |#1| (-1044 (-569))) (|has| |#2| (-619 (-1183))))) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1183))))) (-3479 ((|#1| $) 132 (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1183)))) (((-1131 |#1| |#2|) $) 18) (($ (-1131 |#1| |#2|)) 19) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) 47) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) 13 T CONST)) (-3055 (((-3 (-112) "failed") $ $) NIL)) (-1813 (($) 37 T CONST)) (-2570 (($ $ $ $ (-776)) 105 (|has| |#1| (-561)))) (-2702 (($ $ $ (-776)) 104 (|has| |#1| (-561)))) (-2830 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) 75)) (-3009 (($ $ $) 85)) (** (($ $ (-927)) NIL) (($ $ (-776)) 70)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 62) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
-(((-785 |#1| |#2|) (-13 (-1071 |#1| (-536 |#2|) |#2|) (-618 (-1131 |#1| |#2|)) (-1044 (-1131 |#1| |#2|))) (-1055) (-855)) (T -785))
-NIL
-(-13 (-1071 |#1| (-536 |#2|) |#2|) (-618 (-1131 |#1| |#2|)) (-1044 (-1131 |#1| |#2|)))
-((-1344 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 13)))
-(((-786 |#1| |#2|) (-10 -7 (-15 -1344 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1055) (-1055)) (T -786))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))))
-(-10 -7 (-15 -1344 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 12)) (-2822 (((-1273 |#1|) $ (-776)) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2571 (($ (-1179 |#1|)) NIL)) (-3763 (((-1179 $) $ (-1088)) NIL) (((-1179 |#1|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3244 (((-649 $) $ $) 54 (|has| |#1| (-561)))) (-4095 (($ $ $) 50 (|has| |#1| (-561)))) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3409 (($ $ (-776)) NIL)) (-3274 (($ $ (-776)) NIL)) (-1782 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL) (((-3 (-1179 |#1|) "failed") $) 10)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1088) $) NIL) (((-1179 |#1|) $) NIL)) (-4202 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) 58 (|has| |#1| (-173)))) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-4401 (($ $ $) NIL)) (-3897 (($ $ $) 87 (|has| |#1| (-561)))) (-1887 (((-2 (|:| -1433 |#1|) (|:| -2726 $) (|:| -3365 $)) $ $) 86 (|has| |#1| (-561)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-776) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3110 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-1697 (($ (-1179 |#1|) (-1088)) NIL) (($ (-1179 $) (-1088)) NIL)) (-2253 (($ $ (-776)) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-3551 (($ $ $) 27)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-1088)) NIL) (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3712 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-4059 (($ (-1 (-776) (-776)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2704 (((-1179 |#1|) $) NIL)) (-3397 (((-3 (-1088) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3452 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-776))) $ $) 37)) (-3492 (($ $ $) 41)) (-3376 (($ $ $) 47)) (-3641 (((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $) 46)) (-1550 (((-1165) $) NIL)) (-3425 (($ $ $) 56 (|has| |#1| (-561)))) (-3528 (((-2 (|:| -2726 $) (|:| -3365 $)) $ (-776)) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-1088)) (|:| -4320 (-776))) "failed") $) NIL)) (-2488 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2305 (($) NIL (|has| |#1| (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-2929 (((-2 (|:| -1864 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-561)))) (-3054 (((-2 (|:| -1864 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-561)))) (-4140 (((-2 (|:| -4202 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-561)))) (-4254 (((-2 (|:| -4202 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-561)))) (-1824 (((-112) $) 13)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2635 (($ $ (-776) |#1| $) 26)) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-4251 (((-2 (|:| -1864 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-561)))) (-3125 (((-2 (|:| -4202 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-561)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-649 (-1088)) (-649 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-3762 (((-3 $ "failed") $ (-776)) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-4304 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3514 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3868 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1088)) NIL) (((-1179 |#1|) $) 7) (($ (-1179 |#1|)) 8) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) 28 T CONST)) (-1813 (($) 32 T CONST)) (-2830 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) 40) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-787 |#1|) (-13 (-1249 |#1|) (-618 (-1179 |#1|)) (-1044 (-1179 |#1|)) (-10 -8 (-15 -2635 ($ $ (-776) |#1| $)) (-15 -3551 ($ $ $)) (-15 -3452 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-776))) $ $)) (-15 -3492 ($ $ $)) (-15 -3641 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -3376 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3244 ((-649 $) $ $)) (-15 -3425 ($ $ $)) (-15 -4251 ((-2 (|:| -1864 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3054 ((-2 (|:| -1864 $) (|:| |coef1| $)) $ $)) (-15 -2929 ((-2 (|:| -1864 $) (|:| |coef2| $)) $ $)) (-15 -3125 ((-2 (|:| -4202 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4254 ((-2 (|:| -4202 |#1|) (|:| |coef1| $)) $ $)) (-15 -4140 ((-2 (|:| -4202 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1055)) (T -787))
-((-2635 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1055)))) (-3551 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))) (-3452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -3830 (-776)))) (-5 *1 (-787 *3)) (-4 *3 (-1055)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))) (-3641 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1433 *3) (|:| |gap| (-776)) (|:| -2726 (-787 *3)) (|:| -3365 (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-1055)))) (-3376 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))) (-3244 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3425 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1055)))) (-4251 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1864 (-787 *3)) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3054 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1864 (-787 *3)) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-2929 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1864 (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-3125 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4202 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-4254 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4202 *3) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))) (-4140 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4202 *3) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
-(-13 (-1249 |#1|) (-618 (-1179 |#1|)) (-1044 (-1179 |#1|)) (-10 -8 (-15 -2635 ($ $ (-776) |#1| $)) (-15 -3551 ($ $ $)) (-15 -3452 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-776))) $ $)) (-15 -3492 ($ $ $)) (-15 -3641 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -3376 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3244 ((-649 $) $ $)) (-15 -3425 ($ $ $)) (-15 -4251 ((-2 (|:| -1864 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3054 ((-2 (|:| -1864 $) (|:| |coef1| $)) $ $)) (-15 -2929 ((-2 (|:| -1864 $) (|:| |coef2| $)) $ $)) (-15 -3125 ((-2 (|:| -4202 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4254 ((-2 (|:| -4202 |#1|) (|:| |coef1| $)) $ $)) (-15 -4140 ((-2 (|:| -4202 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-3726 ((|#1| (-776) |#1|) 33 (|has| |#1| (-38 (-412 (-569)))))) (-2193 ((|#1| (-776) |#1|) 23)) (-3615 ((|#1| (-776) |#1|) 35 (|has| |#1| (-38 (-412 (-569)))))))
-(((-788 |#1|) (-10 -7 (-15 -2193 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3615 (|#1| (-776) |#1|)) (-15 -3726 (|#1| (-776) |#1|))) |%noBranch|)) (-173)) (T -788))
-((-3726 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-3615 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-2193 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173)))))
-(-10 -7 (-15 -2193 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3615 (|#1| (-776) |#1|)) (-15 -3726 (|#1| (-776) |#1|))) |%noBranch|))
-((-2415 (((-112) $ $) 7)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) 86)) (-3465 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1710 (((-649 |#3|) $) 34)) (-2686 (((-112) $) 27)) (-4276 (((-112) $) 18 (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) 102) (((-112) $) 98)) (-2874 ((|#4| |#4| $) 93)) (-2078 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| $) 127)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) 28)) (-2716 (((-112) $ (-776)) 45)) (-1415 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) 80)) (-4188 (($) 46 T CONST)) (-3584 (((-112) $) 23 (|has| |#1| (-561)))) (-3778 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3685 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2576 (((-112) $) 26 (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4374 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) 37)) (-3148 (($ (-649 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2516 ((|#4| |#4| $) 90)) (-3547 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3593 ((|#4| |#4| $) 88)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) 106)) (-2848 (((-112) |#4| $) 137)) (-2634 (((-112) |#4| $) 134)) (-2959 (((-112) |#4| $) 138) (((-112) $) 135)) (-2880 (((-649 |#4|) $) 53 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) 105) (((-112) $) 104)) (-1873 ((|#3| $) 35)) (-1689 (((-112) $ (-776)) 44)) (-3040 (((-649 |#4|) $) 54 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 48)) (-3097 (((-649 |#3|) $) 33)) (-3116 (((-112) |#3| $) 32)) (-2433 (((-112) $ (-776)) 43)) (-1550 (((-1165) $) 10)) (-3533 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-3425 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| |#4| $) 128)) (-1722 (((-3 |#4| "failed") $) 84)) (-3638 (((-649 $) |#4| $) 130)) (-2533 (((-3 (-112) (-649 $)) |#4| $) 133)) (-3736 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4333 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-1551 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1447 (((-649 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-2642 ((|#4| |#4| $) 91)) (-1672 (((-112) $ $) 111)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) 101) (((-112) $) 97)) (-2765 ((|#4| |#4| $) 92)) (-3545 (((-1126) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3124 (((-3 $ "failed") $ |#4|) 79)) (-2907 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-2911 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) 39)) (-3218 (((-112) $) 42)) (-3597 (($) 41)) (-3868 (((-776) $) 107)) (-3558 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4444)))) (-3959 (($ $) 40)) (-1408 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 61)) (-2792 (($ $ |#3|) 29)) (-3013 (($ $ |#3|) 31)) (-2408 (($ $) 89)) (-2900 (($ $ |#3|) 30)) (-3793 (((-867) $) 12) (((-649 |#4|) $) 38)) (-3023 (((-776) $) 77 (|has| |#3| (-372)))) (-1441 (((-112) $ $) 9)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-3304 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3037 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) 82)) (-2743 (((-112) |#4| $) 136)) (-2133 (((-112) |#3| $) 81)) (-2919 (((-112) $ $) 6)) (-2426 (((-776) $) 47 (|has| $ (-6 -4444)))))
-(((-789 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -789))
-NIL
-(-13 (-1077 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
-((-2531 (((-3 (-383) "failed") (-319 |#1|) (-927)) 62 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-319 |#1|)) 54 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-412 (-958 |#1|)) (-927)) 41 (|has| |#1| (-561))) (((-3 (-383) "failed") (-412 (-958 |#1|))) 40 (|has| |#1| (-561))) (((-3 (-383) "failed") (-958 |#1|) (-927)) 31 (|has| |#1| (-1055))) (((-3 (-383) "failed") (-958 |#1|)) 30 (|has| |#1| (-1055)))) (-3476 (((-383) (-319 |#1|) (-927)) 99 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-319 |#1|)) 94 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-412 (-958 |#1|)) (-927)) 91 (|has| |#1| (-561))) (((-383) (-412 (-958 |#1|))) 90 (|has| |#1| (-561))) (((-383) (-958 |#1|) (-927)) 86 (|has| |#1| (-1055))) (((-383) (-958 |#1|)) 85 (|has| |#1| (-1055))) (((-383) |#1| (-927)) 76) (((-383) |#1|) 22)) (-2643 (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)) 71 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|))) 70 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|) (-927)) 63 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|)) 61 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927)) 46 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|)))) 45 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927)) 39 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|))) 38 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)) 28 (|has| |#1| (-1055))) (((-3 (-170 (-383)) "failed") (-958 |#1|)) 26 (|has| |#1| (-1055))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)) 18 (|has| |#1| (-173))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|))) 15 (|has| |#1| (-173)))) (-3710 (((-170 (-383)) (-319 (-170 |#1|)) (-927)) 102 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 (-170 |#1|))) 101 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|) (-927)) 100 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|)) 98 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927)) 93 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 (-170 |#1|)))) 92 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|)) (-927)) 89 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|))) 88 (|has| |#1| (-561))) (((-170 (-383)) (-958 |#1|) (-927)) 84 (|has| |#1| (-1055))) (((-170 (-383)) (-958 |#1|)) 83 (|has| |#1| (-1055))) (((-170 (-383)) (-958 (-170 |#1|)) (-927)) 78 (|has| |#1| (-173))) (((-170 (-383)) (-958 (-170 |#1|))) 77 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|) (-927)) 80 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|)) 79 (|has| |#1| (-173))) (((-170 (-383)) |#1| (-927)) 27) (((-170 (-383)) |#1|) 25)))
-(((-790 |#1|) (-10 -7 (-15 -3476 ((-383) |#1|)) (-15 -3476 ((-383) |#1| (-927))) (-15 -3710 ((-170 (-383)) |#1|)) (-15 -3710 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3710 ((-170 (-383)) (-170 |#1|))) (-15 -3710 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3710 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -3476 ((-383) (-958 |#1|))) (-15 -3476 ((-383) (-958 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-958 |#1|))) (-15 -3710 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3476 ((-383) (-412 (-958 |#1|)))) (-15 -3476 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3710 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3710 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3710 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3710 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3476 ((-383) (-319 |#1|))) (-15 -3476 ((-383) (-319 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-319 |#1|))) (-15 -3710 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3710 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -2531 ((-3 (-383) "failed") (-958 |#1|))) (-15 -2531 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2531 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -2531 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -2531 ((-3 (-383) "failed") (-319 |#1|))) (-15 -2531 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|)) (-619 (-383))) (T -790))
-((-2643 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-2643 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2643 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-2643 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2531 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-2643 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-2643 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2643 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-2643 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2531 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-2643 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-2643 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2531 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2531 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-2643 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-2643 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-170 *5)) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-170 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3710 (*1 *2 *3) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))))
-(-10 -7 (-15 -3476 ((-383) |#1|)) (-15 -3476 ((-383) |#1| (-927))) (-15 -3710 ((-170 (-383)) |#1|)) (-15 -3710 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3710 ((-170 (-383)) (-170 |#1|))) (-15 -3710 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3710 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -3476 ((-383) (-958 |#1|))) (-15 -3476 ((-383) (-958 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-958 |#1|))) (-15 -3710 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3476 ((-383) (-412 (-958 |#1|)))) (-15 -3476 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3710 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3710 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3710 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3710 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3476 ((-383) (-319 |#1|))) (-15 -3476 ((-383) (-319 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-319 |#1|))) (-15 -3710 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3710 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3710 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1055)) (PROGN (-15 -2531 ((-3 (-383) "failed") (-958 |#1|))) (-15 -2531 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2531 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -2531 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -2531 ((-3 (-383) "failed") (-319 |#1|))) (-15 -2531 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -2643 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|))
-((-1912 (((-927) (-1165)) 92)) (-2111 (((-3 (-383) "failed") (-1165)) 36)) (-2002 (((-383) (-1165)) 34)) (-2876 (((-927) (-1165)) 63)) (-2990 (((-1165) (-927)) 75)) (-2766 (((-1165) (-927)) 62)))
-(((-791) (-10 -7 (-15 -2766 ((-1165) (-927))) (-15 -2876 ((-927) (-1165))) (-15 -2990 ((-1165) (-927))) (-15 -1912 ((-927) (-1165))) (-15 -2002 ((-383) (-1165))) (-15 -2111 ((-3 (-383) "failed") (-1165))))) (T -791))
-((-2111 (*1 *2 *3) (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))))
-(-10 -7 (-15 -2766 ((-1165) (-927))) (-15 -2876 ((-927) (-1165))) (-15 -2990 ((-1165) (-927))) (-15 -1912 ((-927) (-1165))) (-15 -2002 ((-383) (-1165))) (-15 -2111 ((-3 (-383) "failed") (-1165))))
-((-2415 (((-112) $ $) 7)) (-2208 (((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 16) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)) 14)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 17) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
+((-3218 (((-3 |#2| "failed") |#2| |#2| (-114) (-1185)) 37)))
+(((-777 |#1| |#2|) (-10 -7 (-15 -3218 ((-3 |#2| "failed") |#2| |#2| (-114) (-1185)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965))) (T -777))
+((-3218 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1210) (-965))))))
+(-10 -7 (-15 -3218 ((-3 |#2| "failed") |#2| |#2| (-114) (-1185))))
+((-3796 (((-779) |#1|) 8)))
+(((-778 |#1|) (-10 -7 (-15 -3796 ((-779) |#1|))) (-1225)) (T -778))
+((-3796 (*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1225)))))
+(-10 -7 (-15 -3796 ((-779) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 7)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)))
+(((-779) (-1108)) (T -779))
+NIL
+(-1108)
+((-3829 ((|#2| |#4|) 35)))
+(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#2| |#4|))) (-457) (-1251 |#1|) (-729 |#1| |#2|) (-1251 |#3|)) (T -780))
+((-3829 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1251 *5)))))
+(-10 -7 (-15 -3829 (|#2| |#4|)))
+((-3086 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1567 (((-1280) (-1167) (-1167) |#4| |#5|) 33)) (-2228 ((|#4| |#4| |#5|) 74)) (-3832 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|) 79)) (-1385 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 16)))
+(((-781 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3086 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2228 (|#4| |#4| |#5|)) (-15 -3832 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1567 ((-1280) (-1167) (-1167) |#4| |#5|)) (-15 -1385 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -781))
+((-1385 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-1567 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1167)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *4 (-1073 *6 *7 *8)) (-5 *2 (-1280)) (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1079 *6 *7 *8 *4)))) (-3832 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2228 (*1 *2 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *2 (-1073 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3)) (-4 *3 (-1079 *4 *5 *6 *2)))) (-3086 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3086 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2228 (|#4| |#4| |#5|)) (-15 -3832 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1567 ((-1280) (-1167) (-1167) |#4| |#5|)) (-15 -1385 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)))
+((-4381 (((-3 (-1181 (-1181 |#1|)) "failed") |#4|) 53)) (-3320 (((-649 |#4|) |#4|) 24)) (-1679 ((|#4| |#4|) 19)))
+(((-782 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3320 ((-649 |#4|) |#4|)) (-15 -4381 ((-3 (-1181 (-1181 |#1|)) "failed") |#4|)) (-15 -1679 (|#4| |#4|))) (-353) (-332 |#1|) (-1251 |#2|) (-1251 |#3|) (-927)) (T -782))
+((-1679 (*1 *2 *2) (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1251 *4)) (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1251 *5)) (-14 *6 (-927)))) (-4381 (*1 *2 *3) (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1251 *6)) (-14 *7 (-927)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5)) (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1251 *6)) (-14 *7 (-927)))))
+(-10 -7 (-15 -3320 ((-649 |#4|) |#4|)) (-15 -4381 ((-3 (-1181 (-1181 |#1|)) "failed") |#4|)) (-15 -1679 (|#4| |#4|)))
+((-2093 (((-2 (|:| |deter| (-649 (-1181 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1181 |#5|) (-649 |#1|) (-649 |#5|)) 75)) (-3843 (((-649 (-776)) |#1|) 20)))
+(((-783 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2093 ((-2 (|:| |deter| (-649 (-1181 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1181 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -3843 ((-649 (-776)) |#1|))) (-1251 |#4|) (-798) (-855) (-310) (-955 |#4| |#2| |#3|)) (T -783))
+((-3843 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *6)) (-4 *7 (-955 *6 *4 *5)))) (-2093 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1251 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310)) (-4 *10 (-955 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-649 (-1181 *10))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *10))))) (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10)))) (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1181 *10)) (-5 *4 (-649 *6)) (-5 *5 (-649 *10)))))
+(-10 -7 (-15 -2093 ((-2 (|:| |deter| (-649 (-1181 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1181 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -3843 ((-649 (-776)) |#1|)))
+((-2154 (((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|) 31)) (-3535 (((-649 |#1|) (-694 (-412 (-569))) |#1|) 21)) (-1886 (((-958 (-412 (-569))) (-694 (-412 (-569))) (-1185)) 18) (((-958 (-412 (-569))) (-694 (-412 (-569)))) 17)))
+(((-784 |#1|) (-10 -7 (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1185))) (-15 -3535 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -2154 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|))) (-13 (-367) (-853))) (T -784))
+((-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 (-2 (|:| |outval| *4) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *4)))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1185)) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-367) (-853))))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
+(-10 -7 (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1185))) (-15 -3535 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -2154 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 36)) (-1712 (((-649 |#2|) $) NIL)) (-3767 (((-1181 $) $ |#2|) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 |#2|)) NIL)) (-1568 (($ $) 30)) (-3623 (((-112) $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) 110 (|has| |#1| (-561)))) (-3536 (((-649 $) $ $) 123 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))))) (((-3 $ "failed") (-958 (-569))) NIL (-2776 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185)))))) (((-3 $ "failed") (-958 |#1|)) NIL (-2776 (-12 (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-1000 (-569))))))) (((-3 (-1133 |#1| |#2|) "failed") $) 21)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) ((|#2| $) NIL) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))))) (($ (-958 (-569))) NIL (-2776 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185)))))) (($ (-958 |#1|)) NIL (-2776 (-12 (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-1000 (-569))))))) (((-1133 |#1| |#2|) $) NIL)) (-3346 (($ $ $ |#2|) NIL (|has| |#1| (-173))) (($ $ $) 121 (|has| |#1| (-561)))) (-1883 (($ $) NIL) (($ $ |#2|) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2288 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-1345 (((-112) $) NIL)) (-3514 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 81)) (-2727 (($ $) 136 (|has| |#1| (-457)))) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-3508 (($ $) NIL (|has| |#1| (-561)))) (-1996 (($ $) NIL (|has| |#1| (-561)))) (-2700 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4200 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2870 (($ $ |#1| (-536 |#2|) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) 57)) (-3366 (((-776) $) NIL)) (-2140 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-1430 (($ $ $ $ $) 107 (|has| |#1| (-561)))) (-3372 ((|#2| $) 22)) (-1700 (($ (-1181 |#1|) |#2|) NIL) (($ (-1181 $) |#2|) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 38) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-3189 (($ $ $) 63)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#2|) NIL)) (-4107 (((-112) $) NIL)) (-2272 (((-536 |#2|) $) NIL) (((-776) $ |#2|) NIL) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-3762 (((-776) $) 23)) (-2492 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2306 (((-3 |#2| "failed") $) NIL)) (-2442 (($ $) NIL (|has| |#1| (-457)))) (-2382 (($ $) NIL (|has| |#1| (-457)))) (-1872 (((-649 $) $) NIL)) (-2890 (($ $) 39)) (-4203 (($ $) NIL (|has| |#1| (-457)))) (-1602 (((-649 $) $) 43)) (-3237 (($ $) 41)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $) 96)) (-2834 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 78) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |#2|) NIL)) (-1330 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $) NIL) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |#2|) NIL)) (-4421 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2763 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3435 (((-1167) $) NIL)) (-1384 (($ $ $) 125 (|has| |#1| (-561)))) (-3737 (((-649 $) $) 32)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-776))) "failed") $) NIL)) (-2310 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-1341 (($ $ $) NIL)) (-2307 (($ $) 24)) (-2151 (((-112) $ $) NIL)) (-4046 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-4348 (($ $ $) NIL)) (-2122 (($ $) 26)) (-3547 (((-1128) $) NIL)) (-3396 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-561)))) (-2127 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-561)))) (-1828 (((-112) $) 56)) (-1835 ((|#1| $) 58)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 ((|#1| |#1| $) 133 (|has| |#1| (-457))) (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2549 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-561)))) (-2081 (($ $ |#1|) 129 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-3997 (($ $ |#1|) 128 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-649 |#2|) (-649 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-649 |#2|) (-649 $)) NIL)) (-3059 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3517 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4339 (((-536 |#2|) $) NIL) (((-776) $ |#2|) 45) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-3596 (($ $) NIL)) (-1791 (($ $) 35)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541))))) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))))) (($ (-958 (-569))) NIL (-2776 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185)))))) (($ (-958 |#1|)) NIL (|has| |#2| (-619 (-1185)))) (((-1167) $) NIL (-12 (|has| |#1| (-1046 (-569))) (|has| |#2| (-619 (-1185))))) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1185))))) (-3833 ((|#1| $) 132 (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1185)))) (((-1133 |#1| |#2|) $) 18) (($ (-1133 |#1| |#2|)) 19) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) 47) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 13 T CONST)) (-2136 (((-3 (-112) "failed") $ $) NIL)) (-1815 (($) 37 T CONST)) (-3089 (($ $ $ $ (-776)) 105 (|has| |#1| (-561)))) (-1876 (($ $ $ (-776)) 104 (|has| |#1| (-561)))) (-2832 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 75)) (-3012 (($ $ $) 85)) (** (($ $ (-927)) NIL) (($ $ (-776)) 70)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 62) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+(((-785 |#1| |#2|) (-13 (-1073 |#1| (-536 |#2|) |#2|) (-618 (-1133 |#1| |#2|)) (-1046 (-1133 |#1| |#2|))) (-1057) (-855)) (T -785))
+NIL
+(-13 (-1073 |#1| (-536 |#2|) |#2|) (-618 (-1133 |#1| |#2|)) (-1046 (-1133 |#1| |#2|)))
+((-1346 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 13)))
+(((-786 |#1| |#2|) (-10 -7 (-15 -1346 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1057) (-1057)) (T -786))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))))
+(-10 -7 (-15 -1346 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 12)) (-3678 (((-1275 |#1|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#1|)) NIL)) (-3767 (((-1181 $) $ (-1090)) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3426 (((-649 $) $ $) 54 (|has| |#1| (-561)))) (-1726 (($ $ $) 50 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2401 (($ $ (-776)) NIL)) (-2452 (($ $ (-776)) NIL)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL) (((-3 (-1181 |#1|) "failed") $) 10)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1090) $) NIL) (((-1181 |#1|) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $ $) 58 (|has| |#1| (-173)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1525 (($ $ $) NIL)) (-3405 (($ $ $) 87 (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) 86 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-776) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) NIL) (($ (-1181 $) (-1090)) NIL)) (-3003 (($ $ (-776)) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-3189 (($ $ $) 27)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-1181 |#1|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4037 (-776))) $ $) 37)) (-3940 (($ $ $) 41)) (-2152 (($ $ $) 47)) (-2834 (((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 46)) (-3435 (((-1167) $) NIL)) (-1384 (($ $ $) 56 (|has| |#1| (-561)))) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-3396 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-561)))) (-2127 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-561)))) (-4031 (((-2 (|:| -3346 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-561)))) (-2584 (((-2 (|:| -3346 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-561)))) (-1828 (((-112) $) 13)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2448 (($ $ (-776) |#1| $) 26)) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2549 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-561)))) (-1601 (((-2 (|:| -3346 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-561)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-649 (-1090)) (-649 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4339 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1090)) NIL) (((-1181 |#1|) $) 7) (($ (-1181 |#1|)) 8) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 28 T CONST)) (-1815 (($) 32 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) 40) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-787 |#1|) (-13 (-1251 |#1|) (-618 (-1181 |#1|)) (-1046 (-1181 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#1| $)) (-15 -3189 ($ $ $)) (-15 -1664 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4037 (-776))) $ $)) (-15 -3940 ($ $ $)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2152 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3426 ((-649 $) $ $)) (-15 -1384 ($ $ $)) (-15 -2549 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2127 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -3396 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -1601 ((-2 (|:| -3346 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2584 ((-2 (|:| -3346 |#1|) (|:| |coef1| $)) $ $)) (-15 -4031 ((-2 (|:| -3346 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1057)) (T -787))
+((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1057)))) (-3189 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))) (-1664 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -4037 (-776)))) (-5 *1 (-787 *3)) (-4 *3 (-1057)))) (-3940 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))) (-2834 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1435 *3) (|:| |gap| (-776)) (|:| -4007 (-787 *3)) (|:| -2054 (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-1057)))) (-2152 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))) (-3426 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-1384 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1057)))) (-2549 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-2127 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-3396 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-1601 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-2584 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-4031 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))))
+(-13 (-1251 |#1|) (-618 (-1181 |#1|)) (-1046 (-1181 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#1| $)) (-15 -3189 ($ $ $)) (-15 -1664 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4037 (-776))) $ $)) (-15 -3940 ($ $ $)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2152 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3426 ((-649 $) $ $)) (-15 -1384 ($ $ $)) (-15 -2549 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2127 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -3396 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -1601 ((-2 (|:| -3346 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2584 ((-2 (|:| -3346 |#1|) (|:| |coef1| $)) $ $)) (-15 -4031 ((-2 (|:| -3346 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2388 ((|#1| (-776) |#1|) 33 (|has| |#1| (-38 (-412 (-569)))))) (-3665 ((|#1| (-776) |#1|) 23)) (-2526 ((|#1| (-776) |#1|) 35 (|has| |#1| (-38 (-412 (-569)))))))
+(((-788 |#1|) (-10 -7 (-15 -3665 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2526 (|#1| (-776) |#1|)) (-15 -2388 (|#1| (-776) |#1|))) |%noBranch|)) (-173)) (T -788))
+((-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-2526 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-3665 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173)))))
+(-10 -7 (-15 -3665 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2526 (|#1| (-776) |#1|)) (-15 -2388 (|#1| (-776) |#1|))) |%noBranch|))
+((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447)))))
+(((-789 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -789))
+NIL
+(-13 (-1079 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1079 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T))
+((-2694 (((-3 (-383) "failed") (-319 |#1|) (-927)) 62 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-319 |#1|)) 54 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-412 (-958 |#1|)) (-927)) 41 (|has| |#1| (-561))) (((-3 (-383) "failed") (-412 (-958 |#1|))) 40 (|has| |#1| (-561))) (((-3 (-383) "failed") (-958 |#1|) (-927)) 31 (|has| |#1| (-1057))) (((-3 (-383) "failed") (-958 |#1|)) 30 (|has| |#1| (-1057)))) (-3479 (((-383) (-319 |#1|) (-927)) 99 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-319 |#1|)) 94 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-412 (-958 |#1|)) (-927)) 91 (|has| |#1| (-561))) (((-383) (-412 (-958 |#1|))) 90 (|has| |#1| (-561))) (((-383) (-958 |#1|) (-927)) 86 (|has| |#1| (-1057))) (((-383) (-958 |#1|)) 85 (|has| |#1| (-1057))) (((-383) |#1| (-927)) 76) (((-383) |#1|) 22)) (-1351 (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)) 71 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|))) 70 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|) (-927)) 63 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|)) 61 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927)) 46 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|)))) 45 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927)) 39 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|))) 38 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)) 28 (|has| |#1| (-1057))) (((-3 (-170 (-383)) "failed") (-958 |#1|)) 26 (|has| |#1| (-1057))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)) 18 (|has| |#1| (-173))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|))) 15 (|has| |#1| (-173)))) (-3713 (((-170 (-383)) (-319 (-170 |#1|)) (-927)) 102 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 (-170 |#1|))) 101 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|) (-927)) 100 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|)) 98 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927)) 93 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 (-170 |#1|)))) 92 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|)) (-927)) 89 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|))) 88 (|has| |#1| (-561))) (((-170 (-383)) (-958 |#1|) (-927)) 84 (|has| |#1| (-1057))) (((-170 (-383)) (-958 |#1|)) 83 (|has| |#1| (-1057))) (((-170 (-383)) (-958 (-170 |#1|)) (-927)) 78 (|has| |#1| (-173))) (((-170 (-383)) (-958 (-170 |#1|))) 77 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|) (-927)) 80 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|)) 79 (|has| |#1| (-173))) (((-170 (-383)) |#1| (-927)) 27) (((-170 (-383)) |#1|) 25)))
+(((-790 |#1|) (-10 -7 (-15 -3479 ((-383) |#1|)) (-15 -3479 ((-383) |#1| (-927))) (-15 -3713 ((-170 (-383)) |#1|)) (-15 -3713 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3713 ((-170 (-383)) (-170 |#1|))) (-15 -3713 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -3479 ((-383) (-958 |#1|))) (-15 -3479 ((-383) (-958 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 |#1|))) (-15 -3713 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3479 ((-383) (-412 (-958 |#1|)))) (-15 -3479 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3479 ((-383) (-319 |#1|))) (-15 -3479 ((-383) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 |#1|))) (-15 -3713 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-958 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-319 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|)) (-619 (-383))) (T -790))
+((-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-170 *5)) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-170 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3713 (*1 *2 *3) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))))
+(-10 -7 (-15 -3479 ((-383) |#1|)) (-15 -3479 ((-383) |#1| (-927))) (-15 -3713 ((-170 (-383)) |#1|)) (-15 -3713 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3713 ((-170 (-383)) (-170 |#1|))) (-15 -3713 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -3479 ((-383) (-958 |#1|))) (-15 -3479 ((-383) (-958 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 |#1|))) (-15 -3713 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3479 ((-383) (-412 (-958 |#1|)))) (-15 -3479 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3479 ((-383) (-319 |#1|))) (-15 -3479 ((-383) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 |#1|))) (-15 -3713 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-958 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-319 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|))
+((-2493 (((-927) (-1167)) 92)) (-4055 (((-3 (-383) "failed") (-1167)) 36)) (-2240 (((-383) (-1167)) 34)) (-2972 (((-927) (-1167)) 63)) (-2724 (((-1167) (-927)) 75)) (-4357 (((-1167) (-927)) 62)))
+(((-791) (-10 -7 (-15 -4357 ((-1167) (-927))) (-15 -2972 ((-927) (-1167))) (-15 -2724 ((-1167) (-927))) (-15 -2493 ((-927) (-1167))) (-15 -2240 ((-383) (-1167))) (-15 -4055 ((-3 (-383) "failed") (-1167))))) (T -791))
+((-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791)))))
+(-10 -7 (-15 -4357 ((-1167) (-927))) (-15 -2972 ((-927) (-1167))) (-15 -2724 ((-1167) (-927))) (-15 -2493 ((-927) (-1167))) (-15 -2240 ((-383) (-1167))) (-15 -4055 ((-3 (-383) "failed") (-1167))))
+((-2417 (((-112) $ $) 7)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 16) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 14)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 17) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
(((-792) (-140)) (T -792))
-((-1331 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041)))))) (-2208 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1041)) (-5 *3 (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-1331 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041)))))) (-2208 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1041)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
-(-13 (-1106) (-10 -7 (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2208 ((-1041) (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226))) (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)) (|:| |extra| (-1041))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2208 ((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1041)))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-1322 (((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383))) 55) (((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 52)) (-1448 (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 61)) (-2398 (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 50)) (-2304 (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383))) 63) (((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383))) 62)))
-(((-793) (-10 -7 (-15 -2304 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -2304 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -2398 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -1322 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -1322 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -1448 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))))) (T -793))
-((-1448 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-1322 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383)))) (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-1322 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383)))) (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2398 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2304 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))) (-2304 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383))) (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278)) (-5 *1 (-793)))))
-(-10 -7 (-15 -2304 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -2304 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -2398 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -1322 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))) (-15 -1322 ((-1278) (-1273 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))) (-383) (-1273 (-383)) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)) (-1273 (-383)))) (-15 -1448 ((-1278) (-1273 (-383)) (-569) (-383) (-383) (-569) (-1 (-1278) (-1273 (-383)) (-1273 (-383)) (-383)))))
-((-3120 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 66)) (-4025 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 42)) (-4250 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 65)) (-3928 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 40)) (-4125 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 64)) (-3816 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 26)) (-1812 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 43)) (-1684 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 41)) (-1557 (((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 39)))
-(((-794) (-10 -7 (-15 -1557 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -1684 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -1812 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3816 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3928 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -4025 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -4125 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -4250 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3120 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))))) (T -794))
-((-3120 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-4250 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-4125 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-4025 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3928 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3816 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-1812 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-1684 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-1557 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))))
-(-10 -7 (-15 -1557 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -1684 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -1812 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3816 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3928 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -4025 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -4125 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -4250 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3120 ((-2 (|:| -2185 (-383)) (|:| -3645 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))))
-((-4135 (((-1218 |#1|) |#1| (-226) (-569)) 69)))
-(((-795 |#1|) (-10 -7 (-15 -4135 ((-1218 |#1|) |#1| (-226) (-569)))) (-980)) (T -795))
-((-4135 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1218 *3)) (-5 *1 (-795 *3)) (-4 *3 (-980)))))
-(-10 -7 (-15 -4135 ((-1218 |#1|) |#1| (-226) (-569))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 25)) (-1678 (((-3 $ "failed") $ $) 27)) (-4188 (($) 24 T CONST)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 23 T CONST)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (-3021 (($ $ $) 31) (($ $) 30)) (-3009 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29)))
+((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043)))))) (-2519 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1043)) (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043)))))) (-2519 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1043)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
+(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2519 ((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2519 ((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-1720 (((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383))) 55) (((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 52)) (-1599 (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 61)) (-3960 (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 50)) (-2296 (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383))) 63) (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 62)))
+(((-793) (-10 -7 (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -3960 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -1599 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))))) (T -793))
+((-1599 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-1720 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383)))) (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-1720 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383)))) (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-3960 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-2296 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-2296 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))))
+(-10 -7 (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -3960 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -1599 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))))
+((-1552 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 66)) (-2202 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 42)) (-3847 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 65)) (-3730 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 40)) (-3910 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 64)) (-3927 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 26)) (-4077 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 43)) (-2266 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 41)) (-3520 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 39)))
+(((-794) (-10 -7 (-15 -3520 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -2266 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -4077 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3927 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3730 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -2202 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3910 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3847 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -1552 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))))) (T -794))
+((-1552 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3847 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3910 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-2202 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3730 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3927 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-4077 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-2266 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3520 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))))
+(-10 -7 (-15 -3520 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -2266 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -4077 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3927 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3730 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -2202 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3910 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3847 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -1552 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))))
+((-3983 (((-1220 |#1|) |#1| (-226) (-569)) 69)))
+(((-795 |#1|) (-10 -7 (-15 -3983 ((-1220 |#1|) |#1| (-226) (-569)))) (-982)) (T -795))
+((-3983 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1220 *3)) (-5 *1 (-795 *3)) (-4 *3 (-982)))))
+(-10 -7 (-15 -3983 ((-1220 |#1|) |#1| (-226) (-569))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-2208 (((-3 $ "failed") $ $) 27)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3024 (($ $ $) 31) (($ $) 30)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29)))
(((-796) (-140)) (T -796))
NIL
(-13 (-800) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 25)) (-4188 (($) 24 T CONST)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 23 T CONST)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (-3009 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
(((-797) (-140)) (T -797))
NIL
(-13 (-799) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-799) . T) ((-855) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 25)) (-3217 (($ $ $) 28)) (-1678 (((-3 $ "failed") $ $) 27)) (-4188 (($) 24 T CONST)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 23 T CONST)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (-3009 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-799) . T) ((-855) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-3151 (($ $ $) 28)) (-2208 (((-3 $ "failed") $ $) 27)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
(((-798) (-140)) (T -798))
-((-3217 (*1 *1 *1 *1) (-4 *1 (-798))))
-(-13 (-800) (-10 -8 (-15 -3217 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (-3009 (($ $ $) 21)) (* (($ (-927) $) 22)))
+((-3151 (*1 *1 *1 *1) (-4 *1 (-798))))
+(-13 (-800) (-10 -8 (-15 -3151 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22)))
(((-799) (-140)) (T -799))
NIL
(-13 (-855) (-25))
-(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 25)) (-1678 (((-3 $ "failed") $ $) 27)) (-4188 (($) 24 T CONST)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 23 T CONST)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (-3009 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
+(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-2208 (((-3 $ "failed") $ $) 27)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26)))
(((-800) (-140)) (T -800))
NIL
(-13 (-797) (-131))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-855) . T) ((-1106) . T))
-((-3192 (((-112) $) 42)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3148 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 43)) (-1545 (((-3 (-412 (-569)) "failed") $) 78)) (-1434 (((-112) $) 72)) (-1311 (((-412 (-569)) $) 76)) (-2707 ((|#2| $) 26)) (-1344 (($ (-1 |#2| |#2|) $) 23)) (-1814 (($ $) 58)) (-1408 (((-541) $) 67)) (-3580 (($ $) 21)) (-3793 (((-867) $) 53) (($ (-569)) 40) (($ |#2|) 38) (($ (-412 (-569))) NIL)) (-3302 (((-776)) 10)) (-3070 ((|#2| $) 71)) (-2919 (((-112) $ $) 30)) (-2942 (((-112) $ $) 69)) (-3021 (($ $) 32) (($ $ $) NIL)) (-3009 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-801 |#1| |#2|) (-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -3070 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3580 (|#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|))) (-802 |#2|) (-173)) (T -801))
-((-3302 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4)) (-4 *3 (-802 *4)))))
-(-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -3070 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3580 (|#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-3470 (((-776)) 58 (|has| |#1| (-372)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 94)) (-3148 (((-569) $) 99 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 96 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 95)) (-2888 (((-3 $ "failed") $) 37)) (-3822 ((|#1| $) 84)) (-1545 (((-3 (-412 (-569)) "failed") $) 71 (|has| |#1| (-550)))) (-1434 (((-112) $) 73 (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) 72 (|has| |#1| (-550)))) (-3403 (($) 61 (|has| |#1| (-372)))) (-2623 (((-112) $) 35)) (-2503 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2707 ((|#1| $) 76)) (-3377 (($ $ $) 67 (|has| |#1| (-855)))) (-3969 (($ $ $) 66 (|has| |#1| (-855)))) (-1344 (($ (-1 |#1| |#1|) $) 86)) (-2855 (((-927) $) 60 (|has| |#1| (-372)))) (-1550 (((-1165) $) 10)) (-1814 (($ $) 70 (|has| |#1| (-367)))) (-2150 (($ (-927)) 59 (|has| |#1| (-372)))) (-3462 ((|#1| $) 81)) (-3600 ((|#1| $) 82)) (-3697 ((|#1| $) 83)) (-3209 ((|#1| $) 77)) (-3332 ((|#1| $) 78)) (-3454 ((|#1| $) 79)) (-3342 ((|#1| $) 80)) (-3545 (((-1126) $) 11)) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) 92 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 90 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 89 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 88 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 87 (|has| |#1| (-519 (-1183) |#1|)))) (-1866 (($ $ |#1|) 93 (|has| |#1| (-289 |#1| |#1|)))) (-1408 (((-541) $) 68 (|has| |#1| (-619 (-541))))) (-3580 (($ $) 85)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 98 (|has| |#1| (-1044 (-412 (-569)))))) (-4030 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-3070 ((|#1| $) 74 (|has| |#1| (-1066)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2976 (((-112) $ $) 64 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 63 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 65 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 62 (|has| |#1| (-855)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-855) . T) ((-1108) . T))
+((-4143 (((-112) $) 42)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 43)) (-3377 (((-3 (-412 (-569)) "failed") $) 78)) (-1441 (((-112) $) 72)) (-1606 (((-412 (-569)) $) 76)) (-3829 ((|#2| $) 26)) (-1346 (($ (-1 |#2| |#2|) $) 23)) (-1817 (($ $) 58)) (-1410 (((-541) $) 67)) (-3476 (($ $) 21)) (-3796 (((-867) $) 53) (($ (-569)) 40) (($ |#2|) 38) (($ (-412 (-569))) NIL)) (-2721 (((-776)) 10)) (-2271 ((|#2| $) 71)) (-2920 (((-112) $ $) 30)) (-2944 (((-112) $ $) 69)) (-3024 (($ $) 32) (($ $ $) NIL)) (-3012 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-801 |#1| |#2|) (-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-802 |#2|) (-173)) (T -801))
+((-2721 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4)) (-4 *3 (-802 *4)))))
+(-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-3473 (((-776)) 58 (|has| |#1| (-372)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 94)) (-3150 (((-569) $) 99 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 96 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 95)) (-3086 (((-3 $ "failed") $) 37)) (-3824 ((|#1| $) 84)) (-3377 (((-3 (-412 (-569)) "failed") $) 71 (|has| |#1| (-550)))) (-1441 (((-112) $) 73 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 72 (|has| |#1| (-550)))) (-3406 (($) 61 (|has| |#1| (-372)))) (-2349 (((-112) $) 35)) (-3721 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3829 ((|#1| $) 76)) (-3380 (($ $ $) 67 (|has| |#1| (-855)))) (-2839 (($ $ $) 66 (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) 86)) (-2731 (((-927) $) 60 (|has| |#1| (-372)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 70 (|has| |#1| (-367)))) (-2150 (($ (-927)) 59 (|has| |#1| (-372)))) (-1782 ((|#1| $) 81)) (-3671 ((|#1| $) 82)) (-2147 ((|#1| $) 83)) (-4310 ((|#1| $) 77)) (-2982 ((|#1| $) 78)) (-1686 ((|#1| $) 79)) (-1907 ((|#1| $) 80)) (-3547 (((-1128) $) 11)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 92 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 90 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 89 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 88 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 87 (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) 93 (|has| |#1| (-289 |#1| |#1|)))) (-1410 (((-541) $) 68 (|has| |#1| (-619 (-541))))) (-3476 (($ $) 85)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 98 (|has| |#1| (-1046 (-412 (-569)))))) (-2239 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2271 ((|#1| $) 74 (|has| |#1| (-1068)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 64 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 63 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 65 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 62 (|has| |#1| (-855)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-802 |#1|) (-140) (-173)) (T -802))
-((-3580 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2503 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1545 (*1 *2 *1) (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1814 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
-(-13 (-38 |t#1|) (-416 |t#1|) (-342 |t#1|) (-10 -8 (-15 -3580 ($ $)) (-15 -3822 (|t#1| $)) (-15 -3697 (|t#1| $)) (-15 -3600 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -3342 (|t#1| $)) (-15 -3454 (|t#1| $)) (-15 -3332 (|t#1| $)) (-15 -3209 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -2503 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3070 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -1814 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-372) |has| |#1| (-372)) ((-342 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-1344 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#3| (-1 |#4| |#2|) |#1|))) (-802 |#2|) (-173) (-802 |#4|) (-173)) (T -803))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-802 *6)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *4 (-802 *5)))))
-(-10 -7 (-15 -1344 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3470 (((-776)) NIL (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-1005 |#1|) "failed") $) 35) (((-3 (-569) "failed") $) NIL (-2774 (|has| (-1005 |#1|) (-1044 (-569))) (|has| |#1| (-1044 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL (-2774 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-3148 ((|#1| $) NIL) (((-1005 |#1|) $) 33) (((-569) $) NIL (-2774 (|has| (-1005 |#1|) (-1044 (-569))) (|has| |#1| (-1044 (-569))))) (((-412 (-569)) $) NIL (-2774 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-2888 (((-3 $ "failed") $) NIL)) (-3822 ((|#1| $) 16)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1434 (((-112) $) NIL (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3403 (($) NIL (|has| |#1| (-372)))) (-2623 (((-112) $) NIL)) (-2503 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1005 |#1|) (-1005 |#1|)) 29)) (-2707 ((|#1| $) NIL)) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2855 (((-927) $) NIL (|has| |#1| (-372)))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3462 ((|#1| $) 22)) (-3600 ((|#1| $) 20)) (-3697 ((|#1| $) 18)) (-3209 ((|#1| $) 26)) (-3332 ((|#1| $) 25)) (-3454 ((|#1| $) 24)) (-3342 ((|#1| $) 23)) (-3545 (((-1126) $) NIL)) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1866 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3580 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1005 |#1|)) 30) (($ (-412 (-569))) NIL (-2774 (|has| (-1005 |#1|) (-1044 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-3070 ((|#1| $) NIL (|has| |#1| (-1066)))) (-1803 (($) 8 T CONST)) (-1813 (($) 12 T CONST)) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-804 |#1|) (-13 (-802 |#1|) (-416 (-1005 |#1|)) (-10 -8 (-15 -2503 ($ (-1005 |#1|) (-1005 |#1|))))) (-173)) (T -804))
-((-2503 (*1 *1 *2 *2) (-12 (-5 *2 (-1005 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3)))))
-(-13 (-802 |#1|) (-416 (-1005 |#1|)) (-10 -8 (-15 -2503 ($ (-1005 |#1|) (-1005 |#1|)))))
-((-2415 (((-112) $ $) 7)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2628 (((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 14)) (-2919 (((-112) $ $) 6)))
+((-3476 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3721 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1817 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
+(-13 (-38 |t#1|) (-416 |t#1|) (-342 |t#1|) (-10 -8 (-15 -3476 ($ $)) (-15 -3824 (|t#1| $)) (-15 -2147 (|t#1| $)) (-15 -3671 (|t#1| $)) (-15 -1782 (|t#1| $)) (-15 -1907 (|t#1| $)) (-15 -1686 (|t#1| $)) (-15 -2982 (|t#1| $)) (-15 -4310 (|t#1| $)) (-15 -3829 (|t#1| $)) (-15 -3721 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2271 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -1817 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-372) |has| |#1| (-372)) ((-342 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-1346 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) (-802 |#2|) (-173) (-802 |#4|) (-173)) (T -803))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-802 *6)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *4 (-802 *5)))))
+(-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-1007 |#1|) "failed") $) 35) (((-3 (-569) "failed") $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-569))) (|has| |#1| (-1046 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 ((|#1| $) NIL) (((-1007 |#1|) $) 33) (((-569) $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-569))) (|has| |#1| (-1046 (-569))))) (((-412 (-569)) $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-3086 (((-3 $ "failed") $) NIL)) (-3824 ((|#1| $) 16)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1441 (((-112) $) NIL (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3406 (($) NIL (|has| |#1| (-372)))) (-2349 (((-112) $) NIL)) (-3721 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1007 |#1|) (-1007 |#1|)) 29)) (-3829 ((|#1| $) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1782 ((|#1| $) 22)) (-3671 ((|#1| $) 20)) (-2147 ((|#1| $) 18)) (-4310 ((|#1| $) 26)) (-2982 ((|#1| $) 25)) (-1686 ((|#1| $) 24)) (-1907 ((|#1| $) 23)) (-3547 (((-1128) $) NIL)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3476 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1007 |#1|)) 30) (($ (-412 (-569))) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2271 ((|#1| $) NIL (|has| |#1| (-1068)))) (-1804 (($) 8 T CONST)) (-1815 (($) 12 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-804 |#1|) (-13 (-802 |#1|) (-416 (-1007 |#1|)) (-10 -8 (-15 -3721 ($ (-1007 |#1|) (-1007 |#1|))))) (-173)) (T -804))
+((-3721 (*1 *1 *2 *2) (-12 (-5 *2 (-1007 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3)))))
+(-13 (-802 |#1|) (-416 (-1007 |#1|)) (-10 -8 (-15 -3721 ($ (-1007 |#1|) (-1007 |#1|)))))
+((-2417 (((-112) $ $) 7)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 14)) (-2920 (((-112) $ $) 6)))
(((-805) (-140)) (T -805))
-((-1331 (*1 *2 *3 *4) (-12 (-4 *1 (-805)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)))))) (-2628 (*1 *2 *3) (-12 (-4 *1 (-805)) (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1041)))))
-(-13 (-1106) (-10 -7 (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2628 ((-1041) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2736 (((-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#3| |#2| (-1183)) 19)))
-(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2736 ((-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#3| |#2| (-1183)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965)) (-661 |#2|)) (T -806))
-((-2736 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1208) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1903 (-649 *4)))) (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4)))))
-(-10 -7 (-15 -2736 ((-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#3| |#2| (-1183))))
-((-2912 (((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)) 28) (((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1183)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1183)) 18) (((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1183)) 24) (((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1183)) 26) (((-3 (-649 (-1273 |#2|)) "failed") (-694 |#2|) (-1183)) 37) (((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-694 |#2|) (-1273 |#2|) (-1183)) 35)))
-(((-807 |#1| |#2|) (-10 -7 (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-694 |#2|) (-1273 |#2|) (-1183))) (-15 -2912 ((-3 (-649 (-1273 |#2|)) "failed") (-694 |#2|) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1183))) (-15 -2912 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -2912 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965))) (T -807))
-((-2912 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-807 *6 *2)))) (-2912 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-5 *1 (-807 *6 *2)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1183)) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1903 (-649 *3))) *3 "failed")) (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1208) (-965))))) (-2912 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1903 (-649 *7))) *7 "failed")) (-5 *1 (-807 *6 *7)))) (-2912 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1273 *7)) (|:| -1903 (-649 (-1273 *7))))) (-5 *1 (-807 *6 *7)))) (-2912 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1273 *7)) (|:| -1903 (-649 (-1273 *7))))) (-5 *1 (-807 *6 *7)))) (-2912 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1183)) (-4 *6 (-13 (-29 *5) (-1208) (-965))) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-1273 *6))) (-5 *1 (-807 *5 *6)))) (-2912 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965))) (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1273 *7)) (|:| -1903 (-649 (-1273 *7))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1273 *7)))))
-(-10 -7 (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-694 |#2|) (-1273 |#2|) (-1183))) (-15 -2912 ((-3 (-649 (-1273 |#2|)) "failed") (-694 |#2|) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#2|)) (|:| -1903 (-649 (-1273 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1183))) (-15 -2912 ((-3 (-2 (|:| |particular| |#2|) (|:| -1903 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1183))) (-15 -2912 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -2912 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|))))
-((-2861 (($) 9)) (-2007 (((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 30)) (-2796 (((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 27)) (-3813 (($ (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) 24)) (-1924 (($ (-649 (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) 22)) (-2986 (((-1278)) 11)))
-(((-808) (-10 -8 (-15 -2861 ($)) (-15 -2986 ((-1278))) (-15 -2796 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -1924 ($ (-649 (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -3813 ($ (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -2007 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -808))
-((-2007 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *1 (-808)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) (-5 *1 (-808)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-5 *1 (-808)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-808)))) (-2986 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-808)))) (-2861 (*1 *1) (-5 *1 (-808))))
-(-10 -8 (-15 -2861 ($)) (-15 -2986 ((-1278))) (-15 -2796 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -1924 ($ (-649 (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -3813 ($ (-2 (|:| -2003 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2214 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -2007 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
-((-3802 ((|#2| |#2| (-1183)) 17)) (-2116 ((|#2| |#2| (-1183)) 56)) (-2222 (((-1 |#2| |#2|) (-1183)) 11)))
-(((-809 |#1| |#2|) (-10 -7 (-15 -3802 (|#2| |#2| (-1183))) (-15 -2116 (|#2| |#2| (-1183))) (-15 -2222 ((-1 |#2| |#2|) (-1183)))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1208) (-965))) (T -809))
-((-2222 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5)) (-4 *5 (-13 (-29 *4) (-1208) (-965))))) (-2116 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965))))) (-3802 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965))))))
-(-10 -7 (-15 -3802 (|#2| |#2| (-1183))) (-15 -2116 (|#2| |#2| (-1183))) (-15 -2222 ((-1 |#2| |#2|) (-1183))))
-((-2912 (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383)) 131) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383)) 132) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383)) 134) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383)) 136) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383)) 137) (((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383))) 139) (((-1041) (-813) (-1069)) 123) (((-1041) (-813)) 124)) (-1331 (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813) (-1069)) 83) (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813)) 85)))
-(((-810) (-10 -7 (-15 -2912 ((-1041) (-813))) (-15 -2912 ((-1041) (-813) (-1069))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813) (-1069))))) (T -810))
-((-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-810)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-810)))) (-2912 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2912 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2912 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2912 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2912 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2912 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-810)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1041)) (-5 *1 (-810)))))
-(-10 -7 (-15 -2912 ((-1041) (-813))) (-15 -2912 ((-1041) (-813) (-1069))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -2912 ((-1041) (-1273 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-813) (-1069))))
-((-3731 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1903 (-649 |#4|))) (-658 |#4|) |#4|) 33)))
-(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1903 (-649 |#4|))) (-658 |#4|) |#4|))) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -811))
-((-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-811 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3731 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1903 (-649 |#4|))) (-658 |#4|) |#4|)))
-((-3014 (((-2 (|:| -4309 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))) 53)) (-2665 (((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#4| |#2|) 62) (((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#4|) 61) (((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#3| |#2|) 20) (((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#3|) 21)) (-2773 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2536 ((|#2| |#3| (-649 (-412 |#2|))) 111) (((-3 |#2| "failed") |#3| (-412 |#2|)) 107)))
-(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2536 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#3|)) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#3| |#2|)) (-15 -2773 (|#2| |#3| |#1|)) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#4|)) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#4| |#2|)) (-15 -2773 (|#2| |#4| |#1|)) (-15 -3014 ((-2 (|:| -4309 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-412 (-569)))) (-1249 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -812))
-((-3014 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-2 (|:| -4309 *7) (|:| |rh| (-649 (-412 *6))))) (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6))) (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6))))) (-2773 (*1 *2 *3 *4) (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *5 *3)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-661 *2)) (-4 *3 (-661 (-412 *2))))) (-2665 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2167 *4) (|:| -3494 *4)))) (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4)) (-4 *3 (-661 (-412 *4))))) (-2665 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2167 *5) (|:| -3494 *5)))) (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 (-412 *5))))) (-2773 (*1 *2 *3 *4) (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2))))) (-2665 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2167 *4) (|:| -3494 *4)))) (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4)) (-4 *6 (-661 (-412 *4))))) (-2665 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2167 *5) (|:| -3494 *5)))) (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-2536 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1249 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 (-412 *2))))) (-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1249 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 *4)))))
-(-10 -7 (-15 -2536 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2536 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#3|)) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#3| |#2|)) (-15 -2773 (|#2| |#3| |#1|)) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#4|)) (-15 -2665 ((-649 (-2 (|:| -2167 |#2|) (|:| -3494 |#2|))) |#4| |#2|)) (-15 -2773 (|#2| |#4| |#1|)) (-15 -3014 ((-2 (|:| -4309 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|)))))
-((-2415 (((-112) $ $) NIL)) (-3148 (((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $) 13)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 15) (($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 12)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-813) (-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3148 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))) (T -813))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))))
-(-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3148 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))
-((-2454 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4309 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1179 |#2|)) (-1 (-423 |#2|) |#2|)) 157)) (-1388 (((-649 (-2 (|:| |poly| |#2|) (|:| -4309 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 54)) (-3019 (((-649 (-2 (|:| |deg| (-776)) (|:| -4309 |#2|))) |#3|) 126)) (-2893 ((|#2| |#3|) 45)) (-1952 (((-649 (-2 (|:| -3706 |#1|) (|:| -4309 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 103)) (-2047 ((|#3| |#3| (-412 |#2|)) 74) ((|#3| |#3| |#2|) 100)))
-(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2893 (|#2| |#3|)) (-15 -3019 ((-649 (-2 (|:| |deg| (-776)) (|:| -4309 |#2|))) |#3|)) (-15 -1952 ((-649 (-2 (|:| -3706 |#1|) (|:| -4309 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -1388 ((-649 (-2 (|:| |poly| |#2|) (|:| -4309 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -2454 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4309 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1179 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -2047 (|#3| |#3| |#2|)) (-15 -2047 (|#3| |#3| (-412 |#2|)))) (-13 (-367) (-147) (-1044 (-412 (-569)))) (-1249 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -814))
-((-2047 (*1 *2 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))) (-2047 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-1249 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3)) (-4 *5 (-661 (-412 *3))))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-649 *7) *7 (-1179 *7))) (-5 *5 (-1 (-423 *7) *7)) (-4 *7 (-1249 *6)) (-4 *6 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4309 *3)))) (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7)) (-4 *8 (-661 (-412 *7))))) (-1388 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4309 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-1952 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -3706 *5) (|:| -4309 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4309 *5)))) (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-2893 (*1 *2 *3) (-12 (-4 *2 (-1249 *4)) (-5 *1 (-814 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2))))))
-(-10 -7 (-15 -2893 (|#2| |#3|)) (-15 -3019 ((-649 (-2 (|:| |deg| (-776)) (|:| -4309 |#2|))) |#3|)) (-15 -1952 ((-649 (-2 (|:| -3706 |#1|) (|:| -4309 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -1388 ((-649 (-2 (|:| |poly| |#2|) (|:| -4309 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -2454 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4309 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1179 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -2047 (|#3| |#3| |#2|)) (-15 -2047 (|#3| |#3| (-412 |#2|))))
-((-2145 (((-2 (|:| -1903 (-649 (-412 |#2|))) (|:| -2378 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|))) 149) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -1903 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|)) 148) (((-2 (|:| -1903 (-649 (-412 |#2|))) (|:| -2378 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|))) 143) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -1903 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|)) 141)) (-2251 ((|#2| (-659 |#2| (-412 |#2|))) 89) ((|#2| (-658 (-412 |#2|))) 92)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -2145 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -1903 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -2145 ((-2 (|:| -1903 (-649 (-412 |#2|))) (|:| -2378 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2145 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -1903 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -2145 ((-2 (|:| -1903 (-649 (-412 |#2|))) (|:| -2378 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2251 (|#2| (-658 (-412 |#2|)))) (-15 -2251 (|#2| (-659 |#2| (-412 |#2|))))) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -815))
-((-2251 (*1 *2 *3) (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| -1903 (-649 (-412 *6))) (|:| -2378 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-815 *5 *6)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| -1903 (-649 (-412 *6))) (|:| -2378 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-815 *5 *6)))))
-(-10 -7 (-15 -2145 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -1903 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -2145 ((-2 (|:| -1903 (-649 (-412 |#2|))) (|:| -2378 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2145 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -1903 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -2145 ((-2 (|:| -1903 (-649 (-412 |#2|))) (|:| -2378 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2251 (|#2| (-658 (-412 |#2|)))) (-15 -2251 (|#2| (-659 |#2| (-412 |#2|)))))
-((-2347 (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) |#5| |#4|) 52)))
-(((-816 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2347 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) |#5| |#4|))) (-367) (-661 |#1|) (-1249 |#1|) (-729 |#1| |#3|) (-661 |#4|)) (T -816))
-((-2347 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *7 (-1249 *5)) (-4 *4 (-729 *5 *7)) (-5 *2 (-2 (|:| -2378 (-694 *6)) (|:| |vec| (-1273 *5)))) (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4)))))
-(-10 -7 (-15 -2347 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) |#5| |#4|)))
-((-2454 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4309 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 47)) (-1522 (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|))) 168 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|))) 170 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 38) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 39) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 36) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 37)) (-1388 (((-649 (-2 (|:| |poly| |#2|) (|:| -4309 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 99)))
-(((-817 |#1| |#2|) (-10 -7 (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -2454 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4309 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1388 ((-649 (-2 (|:| |poly| |#2|) (|:| -4309 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|)) (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))) (-1249 |#1|)) (T -817))
-((-1522 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-1522 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4309 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4309 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-1522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-1522 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-1522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-1522 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))))
-(-10 -7 (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -2454 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4309 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1388 ((-649 (-2 (|:| |poly| |#2|) (|:| -4309 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -1522 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -1522 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|))
-((-1645 (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) (-694 |#2|) (-1273 |#1|)) 110) (((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)) (|:| -4309 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1273 |#1|)) 15)) (-1785 (((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-694 |#2|) (-1273 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1903 (-649 |#1|))) |#2| |#1|)) 116)) (-2912 (((-3 (-2 (|:| |particular| (-1273 |#1|)) (|:| -1903 (-694 |#1|))) "failed") (-694 |#1|) (-1273 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1903 (-649 |#1|))) "failed") |#2| |#1|)) 52)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -1645 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)) (|:| -4309 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1273 |#1|))) (-15 -1645 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) (-694 |#2|) (-1273 |#1|))) (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#1|)) (|:| -1903 (-694 |#1|))) "failed") (-694 |#1|) (-1273 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1903 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -1785 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-694 |#2|) (-1273 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1903 (-649 |#1|))) |#2| |#1|)))) (-367) (-661 |#1|)) (T -818))
-((-1785 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1903 (-649 *6))) *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1273 *6) "failed")) (|:| -1903 (-649 (-1273 *6))))) (-5 *1 (-818 *6 *7)) (-5 *4 (-1273 *6)))) (-2912 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1903 (-649 *6))) "failed") *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-1273 *6)) (|:| -1903 (-694 *6)))) (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *6)))) (-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-661 *5)) (-5 *2 (-2 (|:| -2378 (-694 *6)) (|:| |vec| (-1273 *5)))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *5)))) (-1645 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| A (-694 *5)) (|:| |eqs| (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5)) (|:| -4309 *6) (|:| |rh| *5)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *6 (-661 *5)))))
-(-10 -7 (-15 -1645 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)) (|:| -4309 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1273 |#1|))) (-15 -1645 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#1|))) (-694 |#2|) (-1273 |#1|))) (-15 -2912 ((-3 (-2 (|:| |particular| (-1273 |#1|)) (|:| -1903 (-694 |#1|))) "failed") (-694 |#1|) (-1273 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1903 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -1785 ((-2 (|:| |particular| (-3 (-1273 |#1|) "failed")) (|:| -1903 (-649 (-1273 |#1|)))) (-694 |#2|) (-1273 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1903 (-649 |#1|))) |#2| |#1|))))
-((-1900 (((-694 |#1|) (-649 |#1|) (-776)) 14) (((-694 |#1|) (-649 |#1|)) 15)) (-3923 (((-3 (-1273 |#1|) "failed") |#2| |#1| (-649 |#1|)) 39)) (-4387 (((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)) 46)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -1900 ((-694 |#1|) (-649 |#1|))) (-15 -1900 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3923 ((-3 (-1273 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -4387 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -819))
-((-4387 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367)) (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2)))) (-3923 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1273 *4)) (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)) (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4)))))
-(-10 -7 (-15 -1900 ((-694 |#1|) (-649 |#1|))) (-15 -1900 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3923 ((-3 (-1273 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -4387 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|))))
-((-2415 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3192 (((-112) $) NIL (|has| |#2| (-131)))) (-4230 (($ (-927)) NIL (|has| |#2| (-1055)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-3217 (($ $ $) NIL (|has| |#2| (-798)))) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2716 (((-112) $ (-776)) NIL)) (-3470 (((-776)) NIL (|has| |#2| (-372)))) (-2552 (((-569) $) NIL (|has| |#2| (-853)))) (-3940 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1106)))) (-3148 (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) ((|#2| $) NIL (|has| |#2| (-1106)))) (-1630 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1055)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#2| (-1055))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1055)))) (-2888 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3403 (($) NIL (|has| |#2| (-372)))) (-3843 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ (-569)) NIL)) (-4237 (((-112) $) NIL (|has| |#2| (-853)))) (-2880 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL (|has| |#2| (-731)))) (-4327 (((-112) $) NIL (|has| |#2| (-853)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3040 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3831 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-2855 (((-927) $) NIL (|has| |#2| (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#2| (-1106)))) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3545 (((-1126) $) NIL (|has| |#2| (-1106)))) (-3510 ((|#2| $) NIL (|has| (-569) (-855)))) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3990 ((|#2| $ $) NIL (|has| |#2| (-1055)))) (-3845 (($ (-1273 |#2|)) NIL)) (-3083 (((-134)) NIL (|has| |#2| (-367)))) (-3514 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-3558 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-1273 |#2|) $) NIL) (($ (-569)) NIL (-2774 (-12 (|has| |#2| (-1044 (-569))) (|has| |#2| (-1106))) (|has| |#2| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1044 (-412 (-569)))) (|has| |#2| (-1106)))) (($ |#2|) NIL (|has| |#2| (-1106))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-3302 (((-776)) NIL (|has| |#2| (-1055)) CONST)) (-1441 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-3037 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3070 (($ $) NIL (|has| |#2| (-853)))) (-1803 (($) NIL (|has| |#2| (-131)) CONST)) (-1813 (($) NIL (|has| |#2| (-731)) CONST)) (-2830 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1183))) (|has| |#2| (-1055)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1055))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1055)))) (-2976 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2954 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2919 (((-112) $ $) NIL (|has| |#2| (-1106)))) (-2964 (((-112) $ $) NIL (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2942 (((-112) $ $) 11 (-2774 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $ $) NIL (|has| |#2| (-1055))) (($ $) NIL (|has| |#2| (-1055)))) (-3009 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1055))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-820 |#1| |#2| |#3|) (-239 |#1| |#2|) (-776) (-798) (-1 (-112) (-1273 |#2|) (-1273 |#2|))) (T -820))
+((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-805)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-2389 (*1 *2 *3) (-12 (-4 *1 (-805)) (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1043)))))
+(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2389 ((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-4094 (((-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#3| |#2| (-1185)) 19)))
+(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -4094 ((-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#3| |#2| (-1185)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965)) (-661 |#2|)) (T -806))
+((-4094 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1185)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1210) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4)))) (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4)))))
+(-10 -7 (-15 -4094 ((-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#3| |#2| (-1185))))
+((-3218 (((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)) 28) (((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1185)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1185)) 18) (((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1185)) 24) (((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1185)) 26) (((-3 (-649 (-1275 |#2|)) "failed") (-694 |#2|) (-1185)) 37) (((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-694 |#2|) (-1275 |#2|) (-1185)) 35)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-694 |#2|) (-1275 |#2|) (-1185))) (-15 -3218 ((-3 (-649 (-1275 |#2|)) "failed") (-694 |#2|) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1185))) (-15 -3218 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -3218 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965))) (T -807))
+((-3218 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-807 *6 *2)))) (-3218 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-5 *1 (-807 *6 *2)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))))) (-3218 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1185)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2403 (-649 *3))) *3 "failed")) (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1210) (-965))))) (-3218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2403 (-649 *7))) *7 "failed")) (-5 *1 (-807 *6 *7)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) (-5 *1 (-807 *6 *7)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) (-5 *1 (-807 *6 *7)))) (-3218 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1185)) (-4 *6 (-13 (-29 *5) (-1210) (-965))) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-1275 *6))) (-5 *1 (-807 *5 *6)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1275 *7)))))
+(-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-694 |#2|) (-1275 |#2|) (-1185))) (-15 -3218 ((-3 (-649 (-1275 |#2|)) "failed") (-694 |#2|) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1185))) (-15 -3218 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -3218 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|))))
+((-2805 (($) 9)) (-2282 (((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 30)) (-2795 (((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 27)) (-3894 (($ (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) 24)) (-2628 (($ (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) 22)) (-2678 (((-1280)) 11)))
+(((-808) (-10 -8 (-15 -2805 ($)) (-15 -2678 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2628 ($ (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -2282 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -808))
+((-2282 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *1 (-808)))) (-3894 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) (-5 *1 (-808)))) (-2628 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-5 *1 (-808)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-808)))) (-2678 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-808)))) (-2805 (*1 *1) (-5 *1 (-808))))
+(-10 -8 (-15 -2805 ($)) (-15 -2678 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2628 ($ (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -2282 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))
+((-3805 ((|#2| |#2| (-1185)) 17)) (-4091 ((|#2| |#2| (-1185)) 56)) (-2673 (((-1 |#2| |#2|) (-1185)) 11)))
+(((-809 |#1| |#2|) (-10 -7 (-15 -3805 (|#2| |#2| (-1185))) (-15 -4091 (|#2| |#2| (-1185))) (-15 -2673 ((-1 |#2| |#2|) (-1185)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965))) (T -809))
+((-2673 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5)) (-4 *5 (-13 (-29 *4) (-1210) (-965))))) (-4091 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965))))) (-3805 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965))))))
+(-10 -7 (-15 -3805 (|#2| |#2| (-1185))) (-15 -4091 (|#2| |#2| (-1185))) (-15 -2673 ((-1 |#2| |#2|) (-1185))))
+((-3218 (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383)) 131) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383)) 132) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383)) 134) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383)) 136) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383)) 137) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383))) 139) (((-1043) (-813) (-1071)) 123) (((-1043) (-813)) 124)) (-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813) (-1071)) 83) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813)) 85)))
+(((-810) (-10 -7 (-15 -3218 ((-1043) (-813))) (-15 -3218 ((-1043) (-813) (-1071))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813) (-1071))))) (T -810))
+((-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-810)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1043)) (-5 *1 (-810)))))
+(-10 -7 (-15 -3218 ((-1043) (-813))) (-15 -3218 ((-1043) (-813) (-1071))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813) (-1071))))
+((-2437 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2403 (-649 |#4|))) (-658 |#4|) |#4|) 33)))
+(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2403 (-649 |#4|))) (-658 |#4|) |#4|))) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -811))
+((-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-811 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2437 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2403 (-649 |#4|))) (-658 |#4|) |#4|)))
+((-2974 (((-2 (|:| -4312 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))) 53)) (-1545 (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4| |#2|) 62) (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4|) 61) (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3| |#2|) 20) (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3|) 21)) (-3185 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2751 ((|#2| |#3| (-649 (-412 |#2|))) 111) (((-3 |#2| "failed") |#3| (-412 |#2|)) 107)))
+(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2751 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3| |#2|)) (-15 -3185 (|#2| |#3| |#1|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4| |#2|)) (-15 -3185 (|#2| |#4| |#1|)) (-15 -2974 ((-2 (|:| -4312 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1046 (-412 (-569)))) (-1251 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -812))
+((-2974 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-2 (|:| -4312 *7) (|:| |rh| (-649 (-412 *6))))) (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6))) (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6))))) (-3185 (*1 *2 *3 *4) (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *5 *3)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-661 *2)) (-4 *3 (-661 (-412 *2))))) (-1545 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4)))) (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4)) (-4 *3 (-661 (-412 *4))))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5)))) (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 (-412 *5))))) (-3185 (*1 *2 *3 *4) (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2))))) (-1545 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4)))) (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4)) (-4 *6 (-661 (-412 *4))))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5)))) (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1251 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 (-412 *2))))) (-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1251 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 *4)))))
+(-10 -7 (-15 -2751 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2751 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3| |#2|)) (-15 -3185 (|#2| |#3| |#1|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4| |#2|)) (-15 -3185 (|#2| |#4| |#1|)) (-15 -2974 ((-2 (|:| -4312 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|)))))
+((-2417 (((-112) $ $) NIL)) (-3150 (((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-813) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3150 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))) (T -813))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))))
+(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3150 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))
+((-3210 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1181 |#2|)) (-1 (-423 |#2|) |#2|)) 157)) (-1429 (((-649 (-2 (|:| |poly| |#2|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 54)) (-3019 (((-649 (-2 (|:| |deg| (-776)) (|:| -4312 |#2|))) |#3|) 126)) (-3142 ((|#2| |#3|) 45)) (-2941 (((-649 (-2 (|:| -3709 |#1|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 103)) (-1498 ((|#3| |#3| (-412 |#2|)) 74) ((|#3| |#3| |#2|) 100)))
+(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3142 (|#2| |#3|)) (-15 -3019 ((-649 (-2 (|:| |deg| (-776)) (|:| -4312 |#2|))) |#3|)) (-15 -2941 ((-649 (-2 (|:| -3709 |#1|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1181 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1498 (|#3| |#3| |#2|)) (-15 -1498 (|#3| |#3| (-412 |#2|)))) (-13 (-367) (-147) (-1046 (-412 (-569)))) (-1251 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -814))
+((-1498 (*1 *2 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))) (-1498 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-1251 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3)) (-4 *5 (-661 (-412 *3))))) (-3210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-649 *7) *7 (-1181 *7))) (-5 *5 (-1 (-423 *7) *7)) (-4 *7 (-1251 *6)) (-4 *6 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4312 *3)))) (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7)) (-4 *8 (-661 (-412 *7))))) (-1429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-2941 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -3709 *5) (|:| -4312 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4312 *5)))) (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-3142 (*1 *2 *3) (-12 (-4 *2 (-1251 *4)) (-5 *1 (-814 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2))))))
+(-10 -7 (-15 -3142 (|#2| |#3|)) (-15 -3019 ((-649 (-2 (|:| |deg| (-776)) (|:| -4312 |#2|))) |#3|)) (-15 -2941 ((-649 (-2 (|:| -3709 |#1|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1181 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1498 (|#3| |#3| |#2|)) (-15 -1498 (|#3| |#3| (-412 |#2|))))
+((-3139 (((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|))) 149) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|)) 148) (((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|))) 143) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|)) 141)) (-2981 ((|#2| (-659 |#2| (-412 |#2|))) 89) ((|#2| (-658 (-412 |#2|))) 92)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2981 (|#2| (-658 (-412 |#2|)))) (-15 -2981 (|#2| (-659 |#2| (-412 |#2|))))) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -815))
+((-2981 (*1 *2 *3) (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-815 *5 *6)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-815 *5 *6)))))
+(-10 -7 (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2981 (|#2| (-658 (-412 |#2|)))) (-15 -2981 (|#2| (-659 |#2| (-412 |#2|)))))
+((-1558 (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) |#5| |#4|) 52)))
+(((-816 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1558 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) |#5| |#4|))) (-367) (-661 |#1|) (-1251 |#1|) (-729 |#1| |#3|) (-661 |#4|)) (T -816))
+((-1558 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *7 (-1251 *5)) (-4 *4 (-729 *5 *7)) (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5)))) (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4)))))
+(-10 -7 (-15 -1558 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) |#5| |#4|)))
+((-3210 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 47)) (-3116 (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|))) 168 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|))) 170 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 38) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 39) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 36) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 37)) (-1429 (((-649 (-2 (|:| |poly| |#2|) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 99)))
+(((-817 |#1| |#2|) (-10 -7 (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|)) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -817))
+((-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-1429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4312 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-3116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))))
+(-10 -7 (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|))
+((-1921 (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) (-694 |#2|) (-1275 |#1|)) 110) (((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)) (|:| -4312 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1275 |#1|)) 15)) (-3855 (((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#2|) (-1275 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2403 (-649 |#1|))) |#2| |#1|)) 116)) (-3218 (((-3 (-2 (|:| |particular| (-1275 |#1|)) (|:| -2403 (-694 |#1|))) "failed") (-694 |#1|) (-1275 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed") |#2| |#1|)) 52)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -1921 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)) (|:| -4312 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1275 |#1|))) (-15 -1921 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) (-694 |#2|) (-1275 |#1|))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#1|)) (|:| -2403 (-694 |#1|))) "failed") (-694 |#1|) (-1275 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -3855 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#2|) (-1275 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2403 (-649 |#1|))) |#2| |#1|)))) (-367) (-661 |#1|)) (T -818))
+((-3855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2403 (-649 *6))) *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 *6) "failed")) (|:| -2403 (-649 (-1275 *6))))) (-5 *1 (-818 *6 *7)) (-5 *4 (-1275 *6)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2403 (-649 *6))) "failed") *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-1275 *6)) (|:| -2403 (-694 *6)))) (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *6)))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-661 *5)) (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5)))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *5)))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| A (-694 *5)) (|:| |eqs| (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5)) (|:| -4312 *6) (|:| |rh| *5)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *6 (-661 *5)))))
+(-10 -7 (-15 -1921 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)) (|:| -4312 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1275 |#1|))) (-15 -1921 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) (-694 |#2|) (-1275 |#1|))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#1|)) (|:| -2403 (-694 |#1|))) "failed") (-694 |#1|) (-1275 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -3855 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#2|) (-1275 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2403 (-649 |#1|))) |#2| |#1|))))
+((-3669 (((-694 |#1|) (-649 |#1|) (-776)) 14) (((-694 |#1|) (-649 |#1|)) 15)) (-3677 (((-3 (-1275 |#1|) "failed") |#2| |#1| (-649 |#1|)) 39)) (-1393 (((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)) 46)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -3669 ((-694 |#1|) (-649 |#1|))) (-15 -3669 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3677 ((-3 (-1275 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -1393 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -819))
+((-1393 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367)) (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2)))) (-3677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1275 *4)) (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)) (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4)))))
+(-10 -7 (-15 -3669 ((-694 |#1|) (-649 |#1|))) (-15 -3669 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3677 ((-3 (-1275 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -1393 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|))))
+((-2417 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-4143 (((-112) $) NIL (|has| |#2| (-131)))) (-3636 (($ (-927)) NIL (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#2| (-372)))) (-2919 (((-569) $) NIL (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) NIL (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3406 (($) NIL (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) NIL)) (-3712 (((-112) $) NIL (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#2| (-731)))) (-2051 (((-112) $) NIL (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3547 (((-1128) $) NIL (|has| |#2| (-1108)))) (-3513 ((|#2| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3040 ((|#2| $ $) NIL (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) NIL)) (-2377 (((-134)) NIL (|has| |#2| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#2|) $) NIL) (($ (-569)) NIL (-2776 (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) NIL (|has| |#2| (-1108))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#2| (-853)))) (-1804 (($) NIL (|has| |#2| (-131)) CONST)) (-1815 (($) NIL (|has| |#2| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2920 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2944 (((-112) $ $) 11 (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $ $) NIL (|has| |#2| (-1057))) (($ $) NIL (|has| |#2| (-1057)))) (-3012 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1057))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-820 |#1| |#2| |#3|) (-239 |#1| |#2|) (-776) (-798) (-1 (-112) (-1275 |#2|) (-1275 |#2|))) (T -820))
NIL
(-239 |#1| |#2|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3993 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1183)) NIL)) (-1458 (((-776) $) NIL) (((-776) $ (-1183)) NIL)) (-1710 (((-649 (-823 (-1183))) $) NIL)) (-3763 (((-1179 $) $ (-823 (-1183))) NIL) (((-1179 |#1|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-823 (-1183)))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3765 (($ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-823 (-1183)) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL) (((-3 (-1131 |#1| (-1183)) "failed") $) NIL)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-823 (-1183)) $) NIL) (((-1183) $) NIL) (((-1131 |#1| (-1183)) $) NIL)) (-4202 (($ $ $ (-823 (-1183))) NIL (|has| |#1| (-173)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1183))) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-536 (-823 (-1183))) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-823 (-1183)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-823 (-1183)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3110 (((-776) $ (-1183)) NIL) (((-776) $) NIL)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-1697 (($ (-1179 |#1|) (-823 (-1183))) NIL) (($ (-1179 $) (-823 (-1183))) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-536 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-823 (-1183))) NIL)) (-3712 (((-536 (-823 (-1183))) $) NIL) (((-776) $ (-823 (-1183))) NIL) (((-649 (-776)) $ (-649 (-823 (-1183)))) NIL)) (-4059 (($ (-1 (-536 (-823 (-1183))) (-536 (-823 (-1183)))) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1546 (((-1 $ (-776)) (-1183)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-3397 (((-3 (-823 (-1183)) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-3149 (((-823 (-1183)) $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-3876 (((-112) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-823 (-1183))) (|:| -4320 (-776))) "failed") $) NIL)) (-1508 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-823 (-1183)) |#1|) NIL) (($ $ (-649 (-823 (-1183))) (-649 |#1|)) NIL) (($ $ (-823 (-1183)) $) NIL) (($ $ (-649 (-823 (-1183))) (-649 $)) NIL) (($ $ (-1183) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-4304 (($ $ (-823 (-1183))) NIL (|has| |#1| (-173)))) (-3514 (($ $ (-823 (-1183))) NIL) (($ $ (-649 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4107 (((-649 (-1183)) $) NIL)) (-3868 (((-536 (-823 (-1183))) $) NIL) (((-776) $ (-823 (-1183))) NIL) (((-649 (-776)) $ (-649 (-823 (-1183)))) NIL) (((-776) $ (-1183)) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-823 (-1183)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1183))) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-823 (-1183))) NIL) (($ (-1183)) NIL) (($ (-1131 |#1| (-1183))) NIL) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-536 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-823 (-1183))) NIL) (($ $ (-649 (-823 (-1183)))) NIL) (($ $ (-823 (-1183)) (-776)) NIL) (($ $ (-649 (-823 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-821 |#1|) (-13 (-255 |#1| (-1183) (-823 (-1183)) (-536 (-823 (-1183)))) (-1044 (-1131 |#1| (-1183)))) (-1055)) (T -821))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3072 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1185)) NIL)) (-3766 (((-776) $) NIL) (((-776) $ (-1185)) NIL)) (-1712 (((-649 (-823 (-1185))) $) NIL)) (-3767 (((-1181 $) $ (-823 (-1185))) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-823 (-1185)))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1590 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-823 (-1185)) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL) (((-3 (-1133 |#1| (-1185)) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-823 (-1185)) $) NIL) (((-1185) $) NIL) (((-1133 |#1| (-1185)) $) NIL)) (-3346 (($ $ $ (-823 (-1185))) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1185))) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 (-823 (-1185))) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-823 (-1185)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-823 (-1185)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ (-1185)) NIL) (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) (-823 (-1185))) NIL) (($ (-1181 $) (-823 (-1185))) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-823 (-1185))) NIL)) (-2272 (((-536 (-823 (-1185))) $) NIL) (((-776) $ (-823 (-1185))) NIL) (((-649 (-776)) $ (-649 (-823 (-1185)))) NIL)) (-2492 (($ (-1 (-536 (-823 (-1185))) (-536 (-823 (-1185)))) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3389 (((-1 $ (-776)) (-1185)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-2306 (((-3 (-823 (-1185)) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3152 (((-823 (-1185)) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-3173 (((-112) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-823 (-1185))) (|:| -1993 (-776))) "failed") $) NIL)) (-1510 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-823 (-1185)) |#1|) NIL) (($ $ (-649 (-823 (-1185))) (-649 |#1|)) NIL) (($ $ (-823 (-1185)) $) NIL) (($ $ (-649 (-823 (-1185))) (-649 $)) NIL) (($ $ (-1185) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-3059 (($ $ (-823 (-1185))) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-823 (-1185))) NIL) (($ $ (-649 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1848 (((-649 (-1185)) $) NIL)) (-4339 (((-536 (-823 (-1185))) $) NIL) (((-776) $ (-823 (-1185))) NIL) (((-649 (-776)) $ (-649 (-823 (-1185)))) NIL) (((-776) $ (-1185)) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-823 (-1185)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-823 (-1185)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-823 (-1185)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1185))) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-823 (-1185))) NIL) (($ (-1185)) NIL) (($ (-1133 |#1| (-1185))) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-823 (-1185))) NIL) (($ $ (-649 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-821 |#1|) (-13 (-255 |#1| (-1185) (-823 (-1185)) (-536 (-823 (-1185)))) (-1046 (-1133 |#1| (-1185)))) (-1057)) (T -821))
NIL
-(-13 (-255 |#1| (-1183) (-823 (-1183)) (-536 (-823 (-1183)))) (-1044 (-1131 |#1| (-1183))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#2| (-367)))) (-3087 (($ $) NIL (|has| |#2| (-367)))) (-2883 (((-112) $) NIL (|has| |#2| (-367)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#2| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#2| (-367)))) (-1680 (((-112) $ $) NIL (|has| |#2| (-367)))) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) NIL (|has| |#2| (-367)))) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL (|has| |#2| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-4073 (((-112) $) NIL (|has| |#2| (-367)))) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1835 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 20 (|has| |#2| (-367)))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-3796 (((-423 $) $) NIL (|has| |#2| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#2| (-367)))) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1578 (((-776) $) NIL (|has| |#2| (-367)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#2| (-367)))) (-3514 (($ $ (-776)) NIL) (($ $) 13)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-412 (-569))) NIL (|has| |#2| (-367))) (($ $) NIL (|has| |#2| (-367)))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#2| (-367)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) 15 (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ (-569)) 18 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-412 (-569)) $) NIL (|has| |#2| (-367))) (($ $ (-412 (-569))) NIL (|has| |#2| (-367)))))
-(((-822 |#1| |#2| |#3|) (-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|))) (-1106) (-906 |#1|) |#1|) (T -822))
+(-13 (-255 |#1| (-1185) (-823 (-1185)) (-536 (-823 (-1185)))) (-1046 (-1133 |#1| (-1185))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-367)))) (-4355 (($ $) NIL (|has| |#2| (-367)))) (-3039 (((-112) $) NIL (|has| |#2| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#2| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-367)))) (-2227 (((-112) $ $) NIL (|has| |#2| (-367)))) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL (|has| |#2| (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#2| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-1473 (((-112) $) NIL (|has| |#2| (-367)))) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1839 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 20 (|has| |#2| (-367)))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-2431 (((-776) $) NIL (|has| |#2| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-3517 (($ $ (-776)) NIL) (($ $) 13)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-412 (-569))) NIL (|has| |#2| (-367))) (($ $) NIL (|has| |#2| (-367)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-367)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) 15 (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ (-569)) 18 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-412 (-569)) $) NIL (|has| |#2| (-367))) (($ $ (-412 (-569))) NIL (|has| |#2| (-367)))))
+(((-822 |#1| |#2| |#3|) (-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|))) (-1108) (-906 |#1|) |#1|) (T -822))
NIL
(-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-1458 (((-776) $) NIL)) (-2671 ((|#1| $) 10)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3110 (((-776) $) 11)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1546 (($ |#1| (-776)) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3514 (($ $) NIL) (($ $ (-776)) NIL)) (-3793 (((-867) $) NIL) (($ |#1|) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
+((-2417 (((-112) $ $) NIL)) (-3766 (((-776) $) NIL)) (-2672 ((|#1| $) 10)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-1466 (((-776) $) 11)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3389 (($ |#1| (-776)) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3517 (($ $) NIL) (($ $ (-776)) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
(((-823 |#1|) (-268 |#1|) (-855)) (T -823))
NIL
(-268 |#1|)
-((-2415 (((-112) $ $) NIL)) (-3102 (((-649 |#1|) $) 38)) (-3470 (((-776) $) NIL)) (-4188 (($) NIL T CONST)) (-1326 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3522 (($ $) 42)) (-2888 (((-3 $ "failed") $) NIL)) (-3371 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2623 (((-112) $) NIL)) (-3252 ((|#1| $ (-569)) NIL)) (-3372 (((-776) $ (-569)) NIL)) (-2308 (($ $) 54)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1854 (($ (-1 |#1| |#1|) $) NIL)) (-3863 (($ (-1 (-776) (-776)) $) NIL)) (-1453 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4032 (((-112) $ $) 51)) (-3842 (((-776) $) 34)) (-1550 (((-1165) $) NIL)) (-3485 (($ $ $) NIL)) (-1754 (($ $ $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 ((|#1| $) 41)) (-1411 (((-649 (-2 (|:| |gen| |#1|) (|:| -4386 (-776)))) $) NIL)) (-2282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2394 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3793 (((-867) $) NIL) (($ |#1|) NIL)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 20 T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 53)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-824 |#1|) (-13 (-390 |#1|) (-851) (-10 -8 (-15 -3510 (|#1| $)) (-15 -3522 ($ $)) (-15 -2308 ($ $)) (-15 -4032 ((-112) $ $)) (-15 -1453 ((-3 $ "failed") $ |#1|)) (-15 -1326 ((-3 $ "failed") $ |#1|)) (-15 -2394 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3842 ((-776) $)) (-15 -3102 ((-649 |#1|) $)))) (-855)) (T -824))
-((-3510 (*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2308 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-4032 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-1453 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-1326 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2394 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3)))) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
-(-13 (-390 |#1|) (-851) (-10 -8 (-15 -3510 (|#1| $)) (-15 -3522 ($ $)) (-15 -2308 ($ $)) (-15 -4032 ((-112) $ $)) (-15 -1453 ((-3 $ "failed") $ |#1|)) (-15 -1326 ((-3 $ "failed") $ |#1|)) (-15 -2394 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3842 ((-776) $)) (-15 -3102 ((-649 |#1|) $))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-2552 (((-569) $) 59)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-4237 (((-112) $) 57)) (-2623 (((-112) $) 35)) (-4327 (((-112) $) 58)) (-3377 (($ $ $) 56)) (-3969 (($ $ $) 55)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ $) 48)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-3070 (($ $) 60)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2976 (((-112) $ $) 53)) (-2954 (((-112) $ $) 52)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 54)) (-2942 (((-112) $ $) 51)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) 38)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-1768 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3525 (($ $) 42)) (-3086 (((-3 $ "failed") $) NIL)) (-2102 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2349 (((-112) $) NIL)) (-3522 ((|#1| $ (-569)) NIL)) (-2114 (((-776) $ (-569)) NIL)) (-2325 (($ $) 54)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3196 (($ (-1 |#1| |#1|) $) NIL)) (-4308 (($ (-1 (-776) (-776)) $) NIL)) (-3714 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2259 (((-112) $ $) 51)) (-3845 (((-776) $) 34)) (-3435 (((-1167) $) NIL)) (-3887 (($ $ $) NIL)) (-1684 (($ $ $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 ((|#1| $) 41)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) NIL)) (-2084 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2396 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 20 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 53)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-824 |#1|) (-13 (-390 |#1|) (-851) (-10 -8 (-15 -3513 (|#1| $)) (-15 -3525 ($ $)) (-15 -2325 ($ $)) (-15 -2259 ((-112) $ $)) (-15 -3714 ((-3 $ "failed") $ |#1|)) (-15 -1768 ((-3 $ "failed") $ |#1|)) (-15 -2396 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3845 ((-776) $)) (-15 -3105 ((-649 |#1|) $)))) (-855)) (T -824))
+((-3513 (*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3714 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-1768 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2396 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3)))) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
+(-13 (-390 |#1|) (-851) (-10 -8 (-15 -3513 (|#1| $)) (-15 -3525 ($ $)) (-15 -2325 ($ $)) (-15 -2259 ((-112) $ $)) (-15 -3714 ((-3 $ "failed") $ |#1|)) (-15 -1768 ((-3 $ "failed") $ |#1|)) (-15 -2396 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3845 ((-776) $)) (-15 -3105 ((-649 |#1|) $))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-2919 (((-569) $) 59)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-3712 (((-112) $) 57)) (-2349 (((-112) $) 35)) (-2051 (((-112) $) 58)) (-3380 (($ $ $) 56)) (-2839 (($ $ $) 55)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 60)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 53)) (-2956 (((-112) $ $) 52)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 54)) (-2944 (((-112) $ $) 51)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-825) (-140)) (T -825))
NIL
(-13 (-561) (-853))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-4153 (($ (-1126)) 7)) (-3391 (((-112) $ (-1165) (-1126)) 15)) (-3246 (((-827) $) 12)) (-4373 (((-827) $) 11)) (-4257 (((-1278) $) 9)) (-3532 (((-112) $ (-1126)) 16)))
-(((-826) (-10 -8 (-15 -4153 ($ (-1126))) (-15 -4257 ((-1278) $)) (-15 -4373 ((-827) $)) (-15 -3246 ((-827) $)) (-15 -3391 ((-112) $ (-1165) (-1126))) (-15 -3532 ((-112) $ (-1126))))) (T -826))
-((-3532 (*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3391 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-4373 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-826)))) (-4153 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-826)))))
-(-10 -8 (-15 -4153 ($ (-1126))) (-15 -4257 ((-1278) $)) (-15 -4373 ((-827) $)) (-15 -3246 ((-827) $)) (-15 -3391 ((-112) $ (-1165) (-1126))) (-15 -3532 ((-112) $ (-1126))))
-((-2731 (((-1278) $ (-828)) 12)) (-4183 (((-1278) $ (-1183)) 32)) (-4370 (((-1278) $ (-1165) (-1165)) 34)) (-4273 (((-1278) $ (-1165)) 33)) (-2334 (((-1278) $) 19)) (-3980 (((-1278) $ (-569)) 28)) (-4067 (((-1278) $ (-226)) 30)) (-2228 (((-1278) $) 18)) (-3875 (((-1278) $) 26)) (-1868 (((-1278) $) 25)) (-1642 (((-1278) $) 23)) (-1758 (((-1278) $) 24)) (-1518 (((-1278) $) 22)) (-1384 (((-1278) $) 21)) (-2442 (((-1278) $) 20)) (-2013 (((-1278) $) 16)) (-2122 (((-1278) $) 17)) (-3095 (((-1278) $) 15)) (-2969 (((-1278) $) 14)) (-2847 (((-1278) $) 13)) (-3769 (($ (-1165) (-828)) 9)) (-3650 (($ (-1165) (-1165) (-828)) 8)) (-1881 (((-1183) $) 51)) (-2132 (((-1183) $) 55)) (-2034 (((-2 (|:| |cd| (-1165)) (|:| -3570 (-1165))) $) 54)) (-1958 (((-1165) $) 52)) (-2653 (((-1278) $) 41)) (-2849 (((-569) $) 49)) (-2926 (((-226) $) 50)) (-3832 (((-1278) $) 40)) (-2746 (((-1278) $) 48)) (-2637 (((-1278) $) 47)) (-2464 (((-1278) $) 45)) (-2535 (((-1278) $) 46)) (-3666 (((-1278) $) 44)) (-3560 (((-1278) $) 43)) (-2787 (((-1278) $) 42)) (-3613 (((-1278) $) 38)) (-3741 (((-1278) $) 39)) (-3487 (((-1278) $) 37)) (-3384 (((-1278) $) 36)) (-3241 (((-1278) $) 35)) (-2587 (((-1278) $) 11)))
-(((-827) (-10 -8 (-15 -3650 ($ (-1165) (-1165) (-828))) (-15 -3769 ($ (-1165) (-828))) (-15 -2587 ((-1278) $)) (-15 -2731 ((-1278) $ (-828))) (-15 -2847 ((-1278) $)) (-15 -2969 ((-1278) $)) (-15 -3095 ((-1278) $)) (-15 -2013 ((-1278) $)) (-15 -2122 ((-1278) $)) (-15 -2228 ((-1278) $)) (-15 -2334 ((-1278) $)) (-15 -2442 ((-1278) $)) (-15 -1384 ((-1278) $)) (-15 -1518 ((-1278) $)) (-15 -1642 ((-1278) $)) (-15 -1758 ((-1278) $)) (-15 -1868 ((-1278) $)) (-15 -3875 ((-1278) $)) (-15 -3980 ((-1278) $ (-569))) (-15 -4067 ((-1278) $ (-226))) (-15 -4183 ((-1278) $ (-1183))) (-15 -4273 ((-1278) $ (-1165))) (-15 -4370 ((-1278) $ (-1165) (-1165))) (-15 -3241 ((-1278) $)) (-15 -3384 ((-1278) $)) (-15 -3487 ((-1278) $)) (-15 -3613 ((-1278) $)) (-15 -3741 ((-1278) $)) (-15 -3832 ((-1278) $)) (-15 -2653 ((-1278) $)) (-15 -2787 ((-1278) $)) (-15 -3560 ((-1278) $)) (-15 -3666 ((-1278) $)) (-15 -2464 ((-1278) $)) (-15 -2535 ((-1278) $)) (-15 -2637 ((-1278) $)) (-15 -2746 ((-1278) $)) (-15 -2849 ((-569) $)) (-15 -2926 ((-226) $)) (-15 -1881 ((-1183) $)) (-15 -1958 ((-1165) $)) (-15 -2034 ((-2 (|:| |cd| (-1165)) (|:| -3570 (-1165))) $)) (-15 -2132 ((-1183) $)))) (T -827))
-((-2132 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1165)) (|:| -3570 (-1165)))) (-5 *1 (-827)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-827)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-4370 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4273 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4183 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-2731 (*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1278)) (-5 *1 (-827)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))) (-3769 (*1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))) (-3650 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))))
-(-10 -8 (-15 -3650 ($ (-1165) (-1165) (-828))) (-15 -3769 ($ (-1165) (-828))) (-15 -2587 ((-1278) $)) (-15 -2731 ((-1278) $ (-828))) (-15 -2847 ((-1278) $)) (-15 -2969 ((-1278) $)) (-15 -3095 ((-1278) $)) (-15 -2013 ((-1278) $)) (-15 -2122 ((-1278) $)) (-15 -2228 ((-1278) $)) (-15 -2334 ((-1278) $)) (-15 -2442 ((-1278) $)) (-15 -1384 ((-1278) $)) (-15 -1518 ((-1278) $)) (-15 -1642 ((-1278) $)) (-15 -1758 ((-1278) $)) (-15 -1868 ((-1278) $)) (-15 -3875 ((-1278) $)) (-15 -3980 ((-1278) $ (-569))) (-15 -4067 ((-1278) $ (-226))) (-15 -4183 ((-1278) $ (-1183))) (-15 -4273 ((-1278) $ (-1165))) (-15 -4370 ((-1278) $ (-1165) (-1165))) (-15 -3241 ((-1278) $)) (-15 -3384 ((-1278) $)) (-15 -3487 ((-1278) $)) (-15 -3613 ((-1278) $)) (-15 -3741 ((-1278) $)) (-15 -3832 ((-1278) $)) (-15 -2653 ((-1278) $)) (-15 -2787 ((-1278) $)) (-15 -3560 ((-1278) $)) (-15 -3666 ((-1278) $)) (-15 -2464 ((-1278) $)) (-15 -2535 ((-1278) $)) (-15 -2637 ((-1278) $)) (-15 -2746 ((-1278) $)) (-15 -2849 ((-569) $)) (-15 -2926 ((-226) $)) (-15 -1881 ((-1183) $)) (-15 -1958 ((-1165) $)) (-15 -2034 ((-2 (|:| |cd| (-1165)) (|:| -3570 (-1165))) $)) (-15 -2132 ((-1183) $)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 13)) (-1441 (((-112) $ $) NIL)) (-4353 (($) 16)) (-1337 (($) 14)) (-2326 (($) 17)) (-2230 (($) 15)) (-2919 (((-112) $ $) 9)))
-(((-828) (-13 (-1106) (-10 -8 (-15 -1337 ($)) (-15 -4353 ($)) (-15 -2326 ($)) (-15 -2230 ($))))) (T -828))
-((-1337 (*1 *1) (-5 *1 (-828))) (-4353 (*1 *1) (-5 *1 (-828))) (-2326 (*1 *1) (-5 *1 (-828))) (-2230 (*1 *1) (-5 *1 (-828))))
-(-13 (-1106) (-10 -8 (-15 -1337 ($)) (-15 -4353 ($)) (-15 -2326 ($)) (-15 -2230 ($))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 23) (($ (-1183)) 19)) (-1441 (((-112) $ $) NIL)) (-3835 (((-112) $) 10)) (-3944 (((-112) $) 9)) (-1827 (((-112) $) 11)) (-4061 (((-112) $) 8)) (-2919 (((-112) $ $) 21)))
-(((-829) (-13 (-1106) (-10 -8 (-15 -3793 ($ (-1183))) (-15 -4061 ((-112) $)) (-15 -3944 ((-112) $)) (-15 -3835 ((-112) $)) (-15 -1827 ((-112) $))))) (T -829))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-829)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
-(-13 (-1106) (-10 -8 (-15 -3793 ($ (-1183))) (-15 -4061 ((-112) $)) (-15 -3944 ((-112) $)) (-15 -3835 ((-112) $)) (-15 -1827 ((-112) $))))
-((-2415 (((-112) $ $) NIL)) (-1464 (($ (-829) (-649 (-1183))) 32)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1712 (((-829) $) 33)) (-1587 (((-649 (-1183)) $) 34)) (-3793 (((-867) $) 31)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-830) (-13 (-1106) (-10 -8 (-15 -1712 ((-829) $)) (-15 -1587 ((-649 (-1183)) $)) (-15 -1464 ($ (-829) (-649 (-1183))))))) (T -830))
-((-1712 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-830)))) (-1464 (*1 *1 *2 *3) (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1183))) (-5 *1 (-830)))))
-(-13 (-1106) (-10 -8 (-15 -1712 ((-829) $)) (-15 -1587 ((-649 (-1183)) $)) (-15 -1464 ($ (-829) (-649 (-1183))))))
-((-4195 (((-1278) (-827) (-319 |#1|) (-112)) 23) (((-1278) (-827) (-319 |#1|)) 89) (((-1165) (-319 |#1|) (-112)) 88) (((-1165) (-319 |#1|)) 87)))
-(((-831 |#1|) (-10 -7 (-15 -4195 ((-1165) (-319 |#1|))) (-15 -4195 ((-1165) (-319 |#1|) (-112))) (-15 -4195 ((-1278) (-827) (-319 |#1|))) (-15 -4195 ((-1278) (-827) (-319 |#1|) (-112)))) (-13 (-833) (-1055))) (T -831))
-((-4195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-833) (-1055))) (-5 *2 (-1278)) (-5 *1 (-831 *6)))) (-4195 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1055))) (-5 *2 (-1278)) (-5 *1 (-831 *5)))) (-4195 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1055))) (-5 *2 (-1165)) (-5 *1 (-831 *5)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1055))) (-5 *2 (-1165)) (-5 *1 (-831 *4)))))
-(-10 -7 (-15 -4195 ((-1165) (-319 |#1|))) (-15 -4195 ((-1165) (-319 |#1|) (-112))) (-15 -4195 ((-1278) (-827) (-319 |#1|))) (-15 -4195 ((-1278) (-827) (-319 |#1|) (-112))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4296 ((|#1| $) 10)) (-3903 (($ |#1|) 9)) (-2623 (((-112) $) NIL)) (-3920 (($ |#2| (-776)) NIL)) (-3712 (((-776) $) NIL)) (-1855 ((|#2| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3514 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-3868 (((-776) $) NIL)) (-3793 (((-867) $) 17) (($ (-569)) NIL) (($ |#2|) NIL (|has| |#2| (-173)))) (-4184 ((|#2| $ (-776)) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-832 |#1| |#2|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3903 ($ |#1|)) (-15 -4296 (|#1| $)))) (-713 |#2|) (-1055)) (T -832))
-((-3903 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3)))) (-4296 (*1 *2 *1) (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1055)))))
-(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3903 ($ |#1|)) (-15 -4296 (|#1| $))))
-((-4195 (((-1278) (-827) $ (-112)) 9) (((-1278) (-827) $) 8) (((-1165) $ (-112)) 7) (((-1165) $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-4129 (($ (-1128)) 7)) (-2258 (((-112) $ (-1167) (-1128)) 15)) (-3448 (((-827) $) 12)) (-2449 (((-827) $) 11)) (-2608 (((-1280) $) 9)) (-4263 (((-112) $ (-1128)) 16)))
+(((-826) (-10 -8 (-15 -4129 ($ (-1128))) (-15 -2608 ((-1280) $)) (-15 -2449 ((-827) $)) (-15 -3448 ((-827) $)) (-15 -2258 ((-112) $ (-1167) (-1128))) (-15 -4263 ((-112) $ (-1128))))) (T -826))
+((-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-112)) (-5 *1 (-826)))) (-2258 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-1128)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-826)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-826)))))
+(-10 -8 (-15 -4129 ($ (-1128))) (-15 -2608 ((-1280) $)) (-15 -2449 ((-827) $)) (-15 -3448 ((-827) $)) (-15 -2258 ((-112) $ (-1167) (-1128))) (-15 -4263 ((-112) $ (-1128))))
+((-4057 (((-1280) $ (-828)) 12)) (-4373 (((-1280) $ (-1185)) 32)) (-2419 (((-1280) $ (-1167) (-1167)) 34)) (-2765 (((-1280) $ (-1167)) 33)) (-1408 (((-1280) $) 19)) (-2949 (((-1280) $ (-569)) 28)) (-1411 (((-1280) $ (-226)) 30)) (-2743 (((-1280) $) 18)) (-3163 (((-1280) $) 26)) (-3298 (((-1280) $) 25)) (-1896 (((-1280) $) 23)) (-1722 (((-1280) $) 24)) (-3071 (((-1280) $) 22)) (-3336 (((-1280) $) 21)) (-4326 (((-1280) $) 20)) (-2337 (((-1280) $) 16)) (-4157 (((-1280) $) 17)) (-1309 (((-1280) $) 15)) (-2494 (((-1280) $) 14)) (-2636 (((-1280) $) 13)) (-1634 (($ (-1167) (-828)) 9)) (-2896 (($ (-1167) (-1167) (-828)) 8)) (-3441 (((-1185) $) 51)) (-4256 (((-1185) $) 55)) (-1349 (((-2 (|:| |cd| (-1167)) (|:| -3573 (-1167))) $) 54)) (-3008 (((-1167) $) 52)) (-1445 (((-1280) $) 41)) (-2658 (((-569) $) 49)) (-3371 (((-226) $) 50)) (-4048 (((-1280) $) 40)) (-4181 (((-1280) $) 48)) (-4409 (((-1280) $) 47)) (-3299 (((-1280) $) 45)) (-2737 (((-1280) $) 46)) (-3044 (((-1280) $) 44)) (-3275 (((-1280) $) 43)) (-3307 (((-1280) $) 42)) (-2502 (((-1280) $) 38)) (-1352 (((-1280) $) 39)) (-3909 (((-1280) $) 37)) (-2209 (((-1280) $) 36)) (-3402 (((-1280) $) 35)) (-2050 (((-1280) $) 11)))
+(((-827) (-10 -8 (-15 -2896 ($ (-1167) (-1167) (-828))) (-15 -1634 ($ (-1167) (-828))) (-15 -2050 ((-1280) $)) (-15 -4057 ((-1280) $ (-828))) (-15 -2636 ((-1280) $)) (-15 -2494 ((-1280) $)) (-15 -1309 ((-1280) $)) (-15 -2337 ((-1280) $)) (-15 -4157 ((-1280) $)) (-15 -2743 ((-1280) $)) (-15 -1408 ((-1280) $)) (-15 -4326 ((-1280) $)) (-15 -3336 ((-1280) $)) (-15 -3071 ((-1280) $)) (-15 -1896 ((-1280) $)) (-15 -1722 ((-1280) $)) (-15 -3298 ((-1280) $)) (-15 -3163 ((-1280) $)) (-15 -2949 ((-1280) $ (-569))) (-15 -1411 ((-1280) $ (-226))) (-15 -4373 ((-1280) $ (-1185))) (-15 -2765 ((-1280) $ (-1167))) (-15 -2419 ((-1280) $ (-1167) (-1167))) (-15 -3402 ((-1280) $)) (-15 -2209 ((-1280) $)) (-15 -3909 ((-1280) $)) (-15 -2502 ((-1280) $)) (-15 -1352 ((-1280) $)) (-15 -4048 ((-1280) $)) (-15 -1445 ((-1280) $)) (-15 -3307 ((-1280) $)) (-15 -3275 ((-1280) $)) (-15 -3044 ((-1280) $)) (-15 -3299 ((-1280) $)) (-15 -2737 ((-1280) $)) (-15 -4409 ((-1280) $)) (-15 -4181 ((-1280) $)) (-15 -2658 ((-569) $)) (-15 -3371 ((-226) $)) (-15 -3441 ((-1185) $)) (-15 -3008 ((-1167) $)) (-15 -1349 ((-2 (|:| |cd| (-1167)) (|:| -3573 (-1167))) $)) (-15 -4256 ((-1185) $)))) (T -827))
+((-4256 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1167)) (|:| -3573 (-1167)))) (-5 *1 (-827)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-827)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2419 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-2765 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-4373 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-1411 (*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4057 (*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1634 (*1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827)))) (-2896 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827)))))
+(-10 -8 (-15 -2896 ($ (-1167) (-1167) (-828))) (-15 -1634 ($ (-1167) (-828))) (-15 -2050 ((-1280) $)) (-15 -4057 ((-1280) $ (-828))) (-15 -2636 ((-1280) $)) (-15 -2494 ((-1280) $)) (-15 -1309 ((-1280) $)) (-15 -2337 ((-1280) $)) (-15 -4157 ((-1280) $)) (-15 -2743 ((-1280) $)) (-15 -1408 ((-1280) $)) (-15 -4326 ((-1280) $)) (-15 -3336 ((-1280) $)) (-15 -3071 ((-1280) $)) (-15 -1896 ((-1280) $)) (-15 -1722 ((-1280) $)) (-15 -3298 ((-1280) $)) (-15 -3163 ((-1280) $)) (-15 -2949 ((-1280) $ (-569))) (-15 -1411 ((-1280) $ (-226))) (-15 -4373 ((-1280) $ (-1185))) (-15 -2765 ((-1280) $ (-1167))) (-15 -2419 ((-1280) $ (-1167) (-1167))) (-15 -3402 ((-1280) $)) (-15 -2209 ((-1280) $)) (-15 -3909 ((-1280) $)) (-15 -2502 ((-1280) $)) (-15 -1352 ((-1280) $)) (-15 -4048 ((-1280) $)) (-15 -1445 ((-1280) $)) (-15 -3307 ((-1280) $)) (-15 -3275 ((-1280) $)) (-15 -3044 ((-1280) $)) (-15 -3299 ((-1280) $)) (-15 -2737 ((-1280) $)) (-15 -4409 ((-1280) $)) (-15 -4181 ((-1280) $)) (-15 -2658 ((-569) $)) (-15 -3371 ((-226) $)) (-15 -3441 ((-1185) $)) (-15 -3008 ((-1167) $)) (-15 -1349 ((-2 (|:| |cd| (-1167)) (|:| -3573 (-1167))) $)) (-15 -4256 ((-1185) $)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 13)) (-1520 (((-112) $ $) NIL)) (-2285 (($) 16)) (-1878 (($) 14)) (-1324 (($) 17)) (-2769 (($) 15)) (-2920 (((-112) $ $) 9)))
+(((-828) (-13 (-1108) (-10 -8 (-15 -1878 ($)) (-15 -2285 ($)) (-15 -1324 ($)) (-15 -2769 ($))))) (T -828))
+((-1878 (*1 *1) (-5 *1 (-828))) (-2285 (*1 *1) (-5 *1 (-828))) (-1324 (*1 *1) (-5 *1 (-828))) (-2769 (*1 *1) (-5 *1 (-828))))
+(-13 (-1108) (-10 -8 (-15 -1878 ($)) (-15 -2285 ($)) (-15 -1324 ($)) (-15 -2769 ($))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 23) (($ (-1185)) 19)) (-1520 (((-112) $ $) NIL)) (-4066 (((-112) $) 10)) (-2568 (((-112) $) 9)) (-4202 (((-112) $) 11)) (-1336 (((-112) $) 8)) (-2920 (((-112) $ $) 21)))
+(((-829) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -1336 ((-112) $)) (-15 -2568 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4202 ((-112) $))))) (T -829))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-829)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(-13 (-1108) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -1336 ((-112) $)) (-15 -2568 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4202 ((-112) $))))
+((-2417 (((-112) $ $) NIL)) (-3825 (($ (-829) (-649 (-1185))) 32)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4423 (((-829) $) 33)) (-2508 (((-649 (-1185)) $) 34)) (-3796 (((-867) $) 31)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-830) (-13 (-1108) (-10 -8 (-15 -4423 ((-829) $)) (-15 -2508 ((-649 (-1185)) $)) (-15 -3825 ($ (-829) (-649 (-1185))))))) (T -830))
+((-4423 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-830)))) (-3825 (*1 *1 *2 *3) (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1185))) (-5 *1 (-830)))))
+(-13 (-1108) (-10 -8 (-15 -4423 ((-829) $)) (-15 -2508 ((-649 (-1185)) $)) (-15 -3825 ($ (-829) (-649 (-1185))))))
+((-3266 (((-1280) (-827) (-319 |#1|) (-112)) 23) (((-1280) (-827) (-319 |#1|)) 89) (((-1167) (-319 |#1|) (-112)) 88) (((-1167) (-319 |#1|)) 87)))
+(((-831 |#1|) (-10 -7 (-15 -3266 ((-1167) (-319 |#1|))) (-15 -3266 ((-1167) (-319 |#1|) (-112))) (-15 -3266 ((-1280) (-827) (-319 |#1|))) (-15 -3266 ((-1280) (-827) (-319 |#1|) (-112)))) (-13 (-833) (-1057))) (T -831))
+((-3266 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-833) (-1057))) (-5 *2 (-1280)) (-5 *1 (-831 *6)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1057))) (-5 *2 (-1280)) (-5 *1 (-831 *5)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1057))) (-5 *2 (-1167)) (-5 *1 (-831 *5)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1057))) (-5 *2 (-1167)) (-5 *1 (-831 *4)))))
+(-10 -7 (-15 -3266 ((-1167) (-319 |#1|))) (-15 -3266 ((-1167) (-319 |#1|) (-112))) (-15 -3266 ((-1280) (-827) (-319 |#1|))) (-15 -3266 ((-1280) (-827) (-319 |#1|) (-112))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2977 ((|#1| $) 10)) (-3906 (($ |#1|) 9)) (-2349 (((-112) $) NIL)) (-3923 (($ |#2| (-776)) NIL)) (-2272 (((-776) $) NIL)) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3517 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-4339 (((-776) $) NIL)) (-3796 (((-867) $) 17) (($ (-569)) NIL) (($ |#2|) NIL (|has| |#2| (-173)))) (-4383 ((|#2| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-832 |#1| |#2|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3906 ($ |#1|)) (-15 -2977 (|#1| $)))) (-713 |#2|) (-1057)) (T -832))
+((-3906 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3)))) (-2977 (*1 *2 *1) (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1057)))))
+(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3906 ($ |#1|)) (-15 -2977 (|#1| $))))
+((-3266 (((-1280) (-827) $ (-112)) 9) (((-1280) (-827) $) 8) (((-1167) $ (-112)) 7) (((-1167) $) 6)))
(((-833) (-140)) (T -833))
-((-4195 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1278)))) (-4195 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1278)))) (-4195 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1165)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1165)))))
-(-13 (-10 -8 (-15 -4195 ((-1165) $)) (-15 -4195 ((-1165) $ (-112))) (-15 -4195 ((-1278) (-827) $)) (-15 -4195 ((-1278) (-827) $ (-112)))))
-((-2684 (((-315) (-1165) (-1165)) 12)) (-2564 (((-112) (-1165) (-1165)) 34)) (-2469 (((-112) (-1165)) 33)) (-3423 (((-52) (-1165)) 25)) (-3278 (((-52) (-1165)) 23)) (-3168 (((-52) (-827)) 17)) (-3646 (((-649 (-1165)) (-1165)) 28)) (-3531 (((-649 (-1165))) 27)))
-(((-834) (-10 -7 (-15 -3168 ((-52) (-827))) (-15 -3278 ((-52) (-1165))) (-15 -3423 ((-52) (-1165))) (-15 -3531 ((-649 (-1165)))) (-15 -3646 ((-649 (-1165)) (-1165))) (-15 -2469 ((-112) (-1165))) (-15 -2564 ((-112) (-1165) (-1165))) (-15 -2684 ((-315) (-1165) (-1165))))) (T -834))
-((-2684 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-834)))) (-2564 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))) (-3646 (*1 *2 *3) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)) (-5 *3 (-1165)))) (-3531 (*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834)))))
-(-10 -7 (-15 -3168 ((-52) (-827))) (-15 -3278 ((-52) (-1165))) (-15 -3423 ((-52) (-1165))) (-15 -3531 ((-649 (-1165)))) (-15 -3646 ((-649 (-1165)) (-1165))) (-15 -2469 ((-112) (-1165))) (-15 -2564 ((-112) (-1165) (-1165))) (-15 -2684 ((-315) (-1165) (-1165))))
-((-2415 (((-112) $ $) 19)) (-3966 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2210 (($ $ $) 73)) (-2124 (((-112) $ $) 74)) (-2716 (((-112) $ (-776)) 8)) (-4255 (($ (-649 |#1|)) 69) (($) 68)) (-4101 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-3041 (($ $) 63)) (-3547 (($ $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ |#1| $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1315 (((-112) $ $) 65)) (-1689 (((-112) $ (-776)) 9)) (-3377 ((|#1| $) 79)) (-2616 (($ $ $) 82)) (-2126 (($ $ $) 81)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3969 ((|#1| $) 80)) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22)) (-4333 (($ $ $) 70)) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3545 (((-1126) $) 21)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-2917 (((-649 (-2 (|:| -2214 |#1|) (|:| -3558 (-776)))) $) 62)) (-2298 (($ $ |#1|) 72) (($ $ $) 71)) (-1906 (($) 50) (($ (-649 |#1|)) 49)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 51)) (-3793 (((-867) $) 18)) (-3864 (($ (-649 |#1|)) 67) (($) 66)) (-1441 (((-112) $ $) 23)) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20)) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
+((-3266 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1280)))) (-3266 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1280)))) (-3266 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1167)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1167)))))
+(-13 (-10 -8 (-15 -3266 ((-1167) $)) (-15 -3266 ((-1167) $ (-112))) (-15 -3266 ((-1280) (-827) $)) (-15 -3266 ((-1280) (-827) $ (-112)))))
+((-1704 (((-315) (-1167) (-1167)) 12)) (-3022 (((-112) (-1167) (-1167)) 34)) (-3361 (((-112) (-1167)) 33)) (-1357 (((-52) (-1167)) 25)) (-2479 (((-52) (-1167)) 23)) (-3924 (((-52) (-827)) 17)) (-2863 (((-649 (-1167)) (-1167)) 28)) (-4253 (((-649 (-1167))) 27)))
+(((-834) (-10 -7 (-15 -3924 ((-52) (-827))) (-15 -2479 ((-52) (-1167))) (-15 -1357 ((-52) (-1167))) (-15 -4253 ((-649 (-1167)))) (-15 -2863 ((-649 (-1167)) (-1167))) (-15 -3361 ((-112) (-1167))) (-15 -3022 ((-112) (-1167) (-1167))) (-15 -1704 ((-315) (-1167) (-1167))))) (T -834))
+((-1704 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-834)))) (-3022 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834)))) (-2863 (*1 *2 *3) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834)) (-5 *3 (-1167)))) (-4253 (*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834)))))
+(-10 -7 (-15 -3924 ((-52) (-827))) (-15 -2479 ((-52) (-1167))) (-15 -1357 ((-52) (-1167))) (-15 -4253 ((-649 (-1167)))) (-15 -2863 ((-649 (-1167)) (-1167))) (-15 -3361 ((-112) (-1167))) (-15 -3022 ((-112) (-1167) (-1167))) (-15 -1704 ((-315) (-1167) (-1167))))
+((-2417 (((-112) $ $) 19)) (-3969 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2541 (($ $ $) 73)) (-4179 (((-112) $ $) 74)) (-3914 (((-112) $ (-776)) 8)) (-4257 (($ (-649 |#1|)) 69) (($) 68)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 63)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 65)) (-2314 (((-112) $ (-776)) 9)) (-3380 ((|#1| $) 79)) (-2292 (($ $ $) 82)) (-4198 (($ $ $) 81)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2839 ((|#1| $) 80)) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22)) (-2101 (($ $ $) 70)) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3547 (((-1128) $) 21)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 62)) (-2237 (($ $ |#1|) 72) (($ $ $) 71)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18)) (-3868 (($ (-649 |#1|)) 67) (($) 66)) (-1520 (((-112) $ $) 23)) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
(((-835 |#1|) (-140) (-855)) (T -835))
-((-3377 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855)))))
-(-13 (-741 |t#1|) (-974 |t#1|) (-10 -8 (-15 -3377 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-700 |#1|) . T) ((-741 |#1|) . T) ((-974 |#1|) . T) ((-1104 |#1|) . T) ((-1106) . T) ((-1223) . T))
-((-3025 (((-1278) (-1126) (-1126)) 48)) (-2909 (((-1278) (-826) (-52)) 45)) (-2801 (((-52) (-826)) 16)))
-(((-836) (-10 -7 (-15 -2801 ((-52) (-826))) (-15 -2909 ((-1278) (-826) (-52))) (-15 -3025 ((-1278) (-1126) (-1126))))) (T -836))
-((-3025 (*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1278)) (-5 *1 (-836)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1278)) (-5 *1 (-836)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836)))))
-(-10 -7 (-15 -2801 ((-52) (-826))) (-15 -2909 ((-1278) (-826) (-52))) (-15 -3025 ((-1278) (-1126) (-1126))))
-((-1344 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)) 12) (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 13)))
-(((-837 |#1| |#2|) (-10 -7 (-15 -1344 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1344 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)))) (-1106) (-1106)) (T -837))
-((-1344 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-837 *5 *6)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))))
-(-10 -7 (-15 -1344 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1344 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL (|has| |#1| (-21)))) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2552 (((-569) $) NIL (|has| |#1| (-853)))) (-4188 (($) NIL (|has| |#1| (-21)) CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 15)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 9)) (-2888 (((-3 $ "failed") $) 42 (|has| |#1| (-853)))) (-1545 (((-3 (-412 (-569)) "failed") $) 52 (|has| |#1| (-550)))) (-1434 (((-112) $) 46 (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) 49 (|has| |#1| (-550)))) (-4237 (((-112) $) NIL (|has| |#1| (-853)))) (-2623 (((-112) $) NIL (|has| |#1| (-853)))) (-4327 (((-112) $) NIL (|has| |#1| (-853)))) (-3377 (($ $ $) NIL (|has| |#1| (-853)))) (-3969 (($ $ $) NIL (|has| |#1| (-853)))) (-1550 (((-1165) $) NIL)) (-1319 (($) 13)) (-3853 (((-112) $) 12)) (-3545 (((-1126) $) NIL)) (-3958 (((-112) $) 11)) (-3793 (((-867) $) 18) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2774 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))))) (-3302 (((-776)) 36 (|has| |#1| (-853)) CONST)) (-1441 (((-112) $ $) 54)) (-3070 (($ $) NIL (|has| |#1| (-853)))) (-1803 (($) 23 (|has| |#1| (-21)) CONST)) (-1813 (($) 33 (|has| |#1| (-853)) CONST)) (-2976 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2919 (((-112) $ $) 21)) (-2964 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2942 (((-112) $ $) 45 (|has| |#1| (-853)))) (-3021 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3009 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 39 (|has| |#1| (-853))) (($ (-569) $) 27 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21)))))
-(((-838 |#1|) (-13 (-1106) (-416 |#1|) (-10 -8 (-15 -1319 ($)) (-15 -3958 ((-112) $)) (-15 -3853 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1106)) (T -838))
-((-1319 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1106)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106)))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1545 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))))
-(-13 (-1106) (-416 |#1|) (-10 -8 (-15 -1319 ($)) (-15 -3958 ((-112) $)) (-15 -3853 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
-((-2374 (((-112) $ |#2|) 14)) (-3793 (((-867) $) 11)))
-(((-839 |#1| |#2|) (-10 -8 (-15 -2374 ((-112) |#1| |#2|)) (-15 -3793 ((-867) |#1|))) (-840 |#2|) (-1106)) (T -839))
-NIL
-(-10 -8 (-15 -2374 ((-112) |#1| |#2|)) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3570 ((|#1| $) 16)) (-1550 (((-1165) $) 10)) (-2374 (((-112) $ |#1|) 14)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1371 (((-55) $) 15)) (-2919 (((-112) $ $) 6)))
-(((-840 |#1|) (-140) (-1106)) (T -840))
-((-3570 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1106)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-55)))) (-2374 (*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(-13 (-1106) (-10 -8 (-15 -3570 (|t#1| $)) (-15 -1371 ((-55) $)) (-15 -2374 ((-112) $ |t#1|))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3148 ((|#1| $) NIL) (((-114) $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2039 ((|#1| (-114) |#1|) NIL)) (-2623 (((-112) $) NIL)) (-1947 (($ |#1| (-365 (-114))) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2139 (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (($ $ (-1 |#1| |#1|)) NIL)) (-1866 ((|#1| $ |#1|) NIL)) (-2342 ((|#1| |#1|) NIL (|has| |#1| (-173)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-4367 (($ $) NIL (|has| |#1| (-173))) (($ $ $) NIL (|has| |#1| (-173)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-841 |#1|) (-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -4367 ($ $)) (-15 -4367 ($ $ $)) (-15 -2342 (|#1| |#1|))) |%noBranch|) (-15 -2244 ($ $ (-1 |#1| |#1|))) (-15 -2139 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -2039 (|#1| (-114) |#1|)) (-15 -1947 ($ |#1| (-365 (-114)))))) (-1055)) (T -841))
-((-4367 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-4367 (*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-2342 (*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))) (-2244 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1055)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1055)))) (-2039 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1055)))) (-1947 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1055)))))
-(-13 (-1055) (-1044 |#1|) (-1044 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -4367 ($ $)) (-15 -4367 ($ $ $)) (-15 -2342 (|#1| |#1|))) |%noBranch|) (-15 -2244 ($ $ (-1 |#1| |#1|))) (-15 -2139 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -2039 (|#1| (-114) |#1|)) (-15 -1947 ($ |#1| (-365 (-114))))))
-((-1479 (((-215 (-507)) (-1165)) 9)))
-(((-842) (-10 -7 (-15 -1479 ((-215 (-507)) (-1165))))) (T -842))
-((-1479 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
-(-10 -7 (-15 -1479 ((-215 (-507)) (-1165))))
-((-2415 (((-112) $ $) NIL)) (-4328 (((-1124) $) 10)) (-3570 (((-511) $) 9)) (-1550 (((-1165) $) NIL)) (-2374 (((-112) $ (-511)) NIL)) (-3545 (((-1126) $) NIL)) (-3806 (($ (-511) (-1124)) 8)) (-3793 (((-867) $) 25)) (-1441 (((-112) $ $) NIL)) (-1371 (((-55) $) 20)) (-2919 (((-112) $ $) 12)))
-(((-843) (-13 (-840 (-511)) (-10 -8 (-15 -4328 ((-1124) $)) (-15 -3806 ($ (-511) (-1124)))))) (T -843))
-((-4328 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-843)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-843)))))
-(-13 (-840 (-511)) (-10 -8 (-15 -4328 ((-1124) $)) (-15 -3806 ($ (-511) (-1124)))))
-((-2415 (((-112) $ $) 7)) (-1595 (((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 15) (((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 17) (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 16)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
+((-3380 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855)))))
+(-13 (-741 |t#1|) (-976 |t#1|) (-10 -8 (-15 -3380 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-700 |#1|) . T) ((-741 |#1|) . T) ((-976 |#1|) . T) ((-1106 |#1|) . T) ((-1108) . T) ((-1225) . T))
+((-1891 (((-1280) (-1128) (-1128)) 48)) (-3186 (((-1280) (-826) (-52)) 45)) (-3472 (((-52) (-826)) 16)))
+(((-836) (-10 -7 (-15 -3472 ((-52) (-826))) (-15 -3186 ((-1280) (-826) (-52))) (-15 -1891 ((-1280) (-1128) (-1128))))) (T -836))
+((-1891 (*1 *2 *3 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-1280)) (-5 *1 (-836)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1280)) (-5 *1 (-836)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836)))))
+(-10 -7 (-15 -3472 ((-52) (-826))) (-15 -3186 ((-1280) (-826) (-52))) (-15 -1891 ((-1280) (-1128) (-1128))))
+((-1346 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)) 12) (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 13)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)))) (-1108) (-1108)) (T -837))
+((-1346 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-837 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))))
+(-10 -7 (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL (|has| |#1| (-21)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2919 (((-569) $) NIL (|has| |#1| (-853)))) (-4427 (($) NIL (|has| |#1| (-21)) CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 15)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 9)) (-3086 (((-3 $ "failed") $) 42 (|has| |#1| (-853)))) (-3377 (((-3 (-412 (-569)) "failed") $) 52 (|has| |#1| (-550)))) (-1441 (((-112) $) 46 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 49 (|has| |#1| (-550)))) (-3712 (((-112) $) NIL (|has| |#1| (-853)))) (-2349 (((-112) $) NIL (|has| |#1| (-853)))) (-2051 (((-112) $) NIL (|has| |#1| (-853)))) (-3380 (($ $ $) NIL (|has| |#1| (-853)))) (-2839 (($ $ $) NIL (|has| |#1| (-853)))) (-3435 (((-1167) $) NIL)) (-1321 (($) 13)) (-4223 (((-112) $) 12)) (-3547 (((-1128) $) NIL)) (-2733 (((-112) $) 11)) (-3796 (((-867) $) 18) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))))) (-2721 (((-776)) 36 (|has| |#1| (-853)) CONST)) (-1520 (((-112) $ $) 54)) (-2271 (($ $) NIL (|has| |#1| (-853)))) (-1804 (($) 23 (|has| |#1| (-21)) CONST)) (-1815 (($) 33 (|has| |#1| (-853)) CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2920 (((-112) $ $) 21)) (-2966 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2944 (((-112) $ $) 45 (|has| |#1| (-853)))) (-3024 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3012 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 39 (|has| |#1| (-853))) (($ (-569) $) 27 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21)))))
+(((-838 |#1|) (-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1321 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1108)) (T -838))
+((-1321 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1108)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-3377 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))))
+(-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1321 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
+((-1825 (((-112) $ |#2|) 14)) (-3796 (((-867) $) 11)))
+(((-839 |#1| |#2|) (-10 -8 (-15 -1825 ((-112) |#1| |#2|)) (-15 -3796 ((-867) |#1|))) (-840 |#2|) (-1108)) (T -839))
+NIL
+(-10 -8 (-15 -1825 ((-112) |#1| |#2|)) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-3573 ((|#1| $) 16)) (-3435 (((-1167) $) 10)) (-1825 (((-112) $ |#1|) 14)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-3324 (((-55) $) 15)) (-2920 (((-112) $ $) 6)))
+(((-840 |#1|) (-140) (-1108)) (T -840))
+((-3573 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1108)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-55)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))))
+(-13 (-1108) (-10 -8 (-15 -3573 (|t#1| $)) (-15 -3324 ((-55) $)) (-15 -1825 ((-112) $ |t#1|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-114) $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-1416 ((|#1| (-114) |#1|) NIL)) (-2349 (((-112) $) NIL)) (-2883 (($ |#1| (-365 (-114))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4321 (($ $ (-1 |#1| |#1|)) NIL)) (-2924 (($ $ (-1 |#1| |#1|)) NIL)) (-1869 ((|#1| $ |#1|) NIL)) (-1506 ((|#1| |#1|) NIL (|has| |#1| (-173)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2390 (($ $) NIL (|has| |#1| (-173))) (($ $ $) NIL (|has| |#1| (-173)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-841 |#1|) (-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#1| |#1|))) (-15 -4321 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#1| (-114) |#1|)) (-15 -2883 ($ |#1| (-365 (-114)))))) (-1057)) (T -841))
+((-2390 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))) (-2390 (*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))) (-1506 (*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1057)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1057)))) (-1416 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1057)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1057)))))
+(-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#1| |#1|))) (-15 -4321 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#1| (-114) |#1|)) (-15 -2883 ($ |#1| (-365 (-114))))))
+((-3985 (((-215 (-507)) (-1167)) 9)))
+(((-842) (-10 -7 (-15 -3985 ((-215 (-507)) (-1167))))) (T -842))
+((-3985 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
+(-10 -7 (-15 -3985 ((-215 (-507)) (-1167))))
+((-2417 (((-112) $ $) NIL)) (-4331 (((-1126) $) 10)) (-3573 (((-511) $) 9)) (-3435 (((-1167) $) NIL)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-3809 (($ (-511) (-1126)) 8)) (-3796 (((-867) $) 25)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) 20)) (-2920 (((-112) $ $) 12)))
+(((-843) (-13 (-840 (-511)) (-10 -8 (-15 -4331 ((-1126) $)) (-15 -3809 ($ (-511) (-1126)))))) (T -843))
+((-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-843)))) (-3809 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-843)))))
+(-13 (-840 (-511)) (-10 -8 (-15 -4331 ((-1126) $)) (-15 -3809 ($ (-511) (-1126)))))
+((-2417 (((-112) $ $) 7)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 15) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 17) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 16)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
(((-844) (-140)) (T -844))
-((-1331 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)))))) (-1331 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)))))) (-1595 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) (-5 *2 (-1041)))) (-1595 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-1041)))))
-(-13 (-1106) (-10 -7 (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -1595 ((-1041) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -1595 ((-1041) (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2902 (((-1041) (-649 (-319 (-383))) (-649 (-383))) 169) (((-1041) (-319 (-383)) (-649 (-383))) 167) (((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383)))) 165) (((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383)))) 163) (((-1041) (-846)) 128) (((-1041) (-846) (-1069)) 127)) (-1331 (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846) (-1069)) 88) (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846)) 90)) (-1721 (((-1041) (-649 (-319 (-383))) (-649 (-383))) 170) (((-1041) (-846)) 153)))
-(((-845) (-10 -7 (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846) (-1069))) (-15 -2902 ((-1041) (-846) (-1069))) (-15 -2902 ((-1041) (-846))) (-15 -1721 ((-1041) (-846))) (-15 -2902 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2902 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2902 ((-1041) (-319 (-383)) (-649 (-383)))) (-15 -2902 ((-1041) (-649 (-319 (-383))) (-649 (-383)))) (-15 -1721 ((-1041) (-649 (-319 (-383))) (-649 (-383)))))) (T -845))
-((-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2902 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2902 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1041)) (-5 *1 (-845)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-845)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-845)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-845)))))
-(-10 -7 (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-846) (-1069))) (-15 -2902 ((-1041) (-846) (-1069))) (-15 -2902 ((-1041) (-846))) (-15 -1721 ((-1041) (-846))) (-15 -2902 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2902 ((-1041) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2902 ((-1041) (-319 (-383)) (-649 (-383)))) (-15 -2902 ((-1041) (-649 (-319 (-383))) (-649 (-383)))) (-15 -1721 ((-1041) (-649 (-319 (-383))) (-649 (-383)))))
-((-2415 (((-112) $ $) NIL)) (-3148 (((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) $) 21)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 20) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14) (($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))))) 18)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-846) (-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3793 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -3793 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))))) (-15 -3148 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) $))))) (T -846))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-846)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))) (-5 *1 (-846)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))))) (-5 *1 (-846)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226))))))) (-5 *1 (-846)))))
-(-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3793 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) (-15 -3793 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))))) (-15 -3148 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))) $))))
-((-1344 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)) 13) (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14)))
-(((-847 |#1| |#2|) (-10 -7 (-15 -1344 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1344 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)))) (-1106) (-1106)) (T -847))
-((-1344 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-848 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-847 *5 *6)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))))
-(-10 -7 (-15 -1344 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1344 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL (|has| |#1| (-21)))) (-1844 (((-1126) $) 31)) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2552 (((-569) $) NIL (|has| |#1| (-853)))) (-4188 (($) NIL (|has| |#1| (-21)) CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 18)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 9)) (-2888 (((-3 $ "failed") $) 58 (|has| |#1| (-853)))) (-1545 (((-3 (-412 (-569)) "failed") $) 65 (|has| |#1| (-550)))) (-1434 (((-112) $) 60 (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) 63 (|has| |#1| (-550)))) (-4237 (((-112) $) NIL (|has| |#1| (-853)))) (-1971 (($) 14)) (-2623 (((-112) $) NIL (|has| |#1| (-853)))) (-4327 (((-112) $) NIL (|has| |#1| (-853)))) (-1981 (($) 16)) (-3377 (($ $ $) NIL (|has| |#1| (-853)))) (-3969 (($ $ $) NIL (|has| |#1| (-853)))) (-1550 (((-1165) $) NIL)) (-3853 (((-112) $) 12)) (-3545 (((-1126) $) NIL)) (-3958 (((-112) $) 11)) (-3793 (((-867) $) 24) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2774 (|has| |#1| (-853)) (|has| |#1| (-1044 (-569)))))) (-3302 (((-776)) 51 (|has| |#1| (-853)) CONST)) (-1441 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| |#1| (-853)))) (-1803 (($) 37 (|has| |#1| (-21)) CONST)) (-1813 (($) 48 (|has| |#1| (-853)) CONST)) (-2976 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2919 (((-112) $ $) 35)) (-2964 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2942 (((-112) $ $) 59 (|has| |#1| (-853)))) (-3021 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3009 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 55 (|has| |#1| (-853))) (($ (-569) $) 42 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21)))))
-(((-848 |#1|) (-13 (-1106) (-416 |#1|) (-10 -8 (-15 -1971 ($)) (-15 -1981 ($)) (-15 -3958 ((-112) $)) (-15 -3853 ((-112) $)) (-15 -1844 ((-1126) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1106)) (T -848))
-((-1971 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))) (-1981 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))) (-1545 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106)))))
-(-13 (-1106) (-416 |#1|) (-10 -8 (-15 -1971 ($)) (-15 -1981 ($)) (-15 -3958 ((-112) $)) (-15 -3853 ((-112) $)) (-15 -1844 ((-1126) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
-((-2415 (((-112) $ $) 7)) (-3470 (((-776)) 23)) (-3403 (($) 26)) (-3377 (($ $ $) 14) (($) 22 T CONST)) (-3969 (($ $ $) 15) (($) 21 T CONST)) (-2855 (((-927) $) 25)) (-1550 (((-1165) $) 10)) (-2150 (($ (-927)) 24)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)))
+((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-2586 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-1043)))) (-2586 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-1043)))))
+(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2586 ((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2586 ((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2905 (((-1043) (-649 (-319 (-383))) (-649 (-383))) 169) (((-1043) (-319 (-383)) (-649 (-383))) 167) (((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383)))) 165) (((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383)))) 163) (((-1043) (-846)) 128) (((-1043) (-846) (-1071)) 127)) (-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846) (-1071)) 88) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846)) 90)) (-1394 (((-1043) (-649 (-319 (-383))) (-649 (-383))) 170) (((-1043) (-846)) 153)))
+(((-845) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846) (-1071))) (-15 -2905 ((-1043) (-846) (-1071))) (-15 -2905 ((-1043) (-846))) (-15 -1394 ((-1043) (-846))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)))) (-15 -2905 ((-1043) (-649 (-319 (-383))) (-649 (-383)))) (-15 -1394 ((-1043) (-649 (-319 (-383))) (-649 (-383)))))) (T -845))
+((-1394 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-845)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-845)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-845)))))
+(-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846) (-1071))) (-15 -2905 ((-1043) (-846) (-1071))) (-15 -2905 ((-1043) (-846))) (-15 -1394 ((-1043) (-846))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)))) (-15 -2905 ((-1043) (-649 (-319 (-383))) (-649 (-383)))) (-15 -1394 ((-1043) (-649 (-319 (-383))) (-649 (-383)))))
+((-2417 (((-112) $ $) NIL)) (-3150 (((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) $) 21)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14) (($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-846) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3796 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3796 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))))) (-15 -3150 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) $))))) (T -846))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-846)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *1 (-846)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) (-5 *1 (-846)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) (-5 *1 (-846)))))
+(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3796 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3796 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))))) (-15 -3150 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) $))))
+((-1346 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)) 13) (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14)))
+(((-847 |#1| |#2|) (-10 -7 (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)))) (-1108) (-1108)) (T -847))
+((-1346 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-848 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-847 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))))
+(-10 -7 (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL (|has| |#1| (-21)))) (-3111 (((-1128) $) 31)) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2919 (((-569) $) NIL (|has| |#1| (-853)))) (-4427 (($) NIL (|has| |#1| (-21)) CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 18)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 9)) (-3086 (((-3 $ "failed") $) 58 (|has| |#1| (-853)))) (-3377 (((-3 (-412 (-569)) "failed") $) 65 (|has| |#1| (-550)))) (-1441 (((-112) $) 60 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 63 (|has| |#1| (-550)))) (-3712 (((-112) $) NIL (|has| |#1| (-853)))) (-1974 (($) 14)) (-2349 (((-112) $) NIL (|has| |#1| (-853)))) (-2051 (((-112) $) NIL (|has| |#1| (-853)))) (-1984 (($) 16)) (-3380 (($ $ $) NIL (|has| |#1| (-853)))) (-2839 (($ $ $) NIL (|has| |#1| (-853)))) (-3435 (((-1167) $) NIL)) (-4223 (((-112) $) 12)) (-3547 (((-1128) $) NIL)) (-2733 (((-112) $) 11)) (-3796 (((-867) $) 24) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))))) (-2721 (((-776)) 51 (|has| |#1| (-853)) CONST)) (-1520 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| |#1| (-853)))) (-1804 (($) 37 (|has| |#1| (-21)) CONST)) (-1815 (($) 48 (|has| |#1| (-853)) CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2920 (((-112) $ $) 35)) (-2966 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2944 (((-112) $ $) 59 (|has| |#1| (-853)))) (-3024 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3012 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 55 (|has| |#1| (-853))) (($ (-569) $) 42 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21)))))
+(((-848 |#1|) (-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1974 ($)) (-15 -1984 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (-15 -3111 ((-1128) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1108)) (T -848))
+((-1974 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108)))) (-1984 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-3377 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))))
+(-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1974 ($)) (-15 -1984 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (-15 -3111 ((-1128) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
+((-2417 (((-112) $ $) 7)) (-3473 (((-776)) 23)) (-3406 (($) 26)) (-3380 (($ $ $) 14) (($) 22 T CONST)) (-2839 (($ $ $) 15) (($) 21 T CONST)) (-2731 (((-927) $) 25)) (-3435 (((-1167) $) 10)) (-2150 (($ (-927)) 24)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)))
(((-849) (-140)) (T -849))
-((-3377 (*1 *1) (-4 *1 (-849))) (-3969 (*1 *1) (-4 *1 (-849))))
-(-13 (-855) (-372) (-10 -8 (-15 -3377 ($) -3706) (-15 -3969 ($) -3706)))
-(((-102) . T) ((-618 (-867)) . T) ((-372) . T) ((-855) . T) ((-1106) . T))
-((-4171 (((-112) (-1273 |#2|) (-1273 |#2|)) 23)) (-4279 (((-112) (-1273 |#2|) (-1273 |#2|)) 24)) (-4065 (((-112) (-1273 |#2|) (-1273 |#2|)) 20)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -4065 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -4171 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -4279 ((-112) (-1273 |#2|) (-1273 |#2|)))) (-776) (-797)) (T -850))
-((-4279 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-4171 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-4065 (*1 *2 *3 *3) (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
-(-10 -7 (-15 -4065 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -4171 ((-112) (-1273 |#2|) (-1273 |#2|))) (-15 -4279 ((-112) (-1273 |#2|) (-1273 |#2|))))
-((-2415 (((-112) $ $) 7)) (-4188 (($) 24 T CONST)) (-2888 (((-3 $ "failed") $) 27)) (-2623 (((-112) $) 25)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1813 (($) 23 T CONST)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (** (($ $ (-927)) 22) (($ $ (-776)) 26)) (* (($ $ $) 21)))
+((-3380 (*1 *1) (-4 *1 (-849))) (-2839 (*1 *1) (-4 *1 (-849))))
+(-13 (-855) (-372) (-10 -8 (-15 -3380 ($) -3709) (-15 -2839 ($) -3709)))
+(((-102) . T) ((-618 (-867)) . T) ((-372) . T) ((-855) . T) ((-1108) . T))
+((-4265 (((-112) (-1275 |#2|) (-1275 |#2|)) 23)) (-2835 (((-112) (-1275 |#2|) (-1275 |#2|)) 24)) (-1386 (((-112) (-1275 |#2|) (-1275 |#2|)) 20)))
+(((-850 |#1| |#2|) (-10 -7 (-15 -1386 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -4265 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -2835 ((-112) (-1275 |#2|) (-1275 |#2|)))) (-776) (-797)) (T -850))
+((-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-4265 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-1386 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+(-10 -7 (-15 -1386 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -4265 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -2835 ((-112) (-1275 |#2|) (-1275 |#2|))))
+((-2417 (((-112) $ $) 7)) (-4427 (($) 24 T CONST)) (-3086 (((-3 $ "failed") $) 27)) (-2349 (((-112) $) 25)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (** (($ $ (-927)) 22) (($ $ (-776)) 26)) (* (($ $ $) 21)))
(((-851) (-140)) (T -851))
NIL
(-13 (-862) (-731))
-(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-862) . T) ((-855) . T) ((-1118) . T) ((-1106) . T))
-((-2552 (((-569) $) 21)) (-4237 (((-112) $) 10)) (-4327 (((-112) $) 12)) (-3070 (($ $) 23)))
-(((-852 |#1|) (-10 -8 (-15 -3070 (|#1| |#1|)) (-15 -2552 ((-569) |#1|)) (-15 -4327 ((-112) |#1|)) (-15 -4237 ((-112) |#1|))) (-853)) (T -852))
+(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-862) . T) ((-855) . T) ((-1120) . T) ((-1108) . T))
+((-2919 (((-569) $) 21)) (-3712 (((-112) $) 10)) (-2051 (((-112) $) 12)) (-2271 (($ $) 23)))
+(((-852 |#1|) (-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2919 ((-569) |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -3712 ((-112) |#1|))) (-853)) (T -852))
NIL
-(-10 -8 (-15 -3070 (|#1| |#1|)) (-15 -2552 ((-569) |#1|)) (-15 -4327 ((-112) |#1|)) (-15 -4237 ((-112) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 25)) (-1678 (((-3 $ "failed") $ $) 27)) (-2552 (((-569) $) 37)) (-4188 (($) 24 T CONST)) (-2888 (((-3 $ "failed") $) 42)) (-4237 (((-112) $) 39)) (-2623 (((-112) $) 44)) (-4327 (((-112) $) 38)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 46)) (-3302 (((-776)) 47 T CONST)) (-1441 (((-112) $ $) 9)) (-3070 (($ $) 36)) (-1803 (($) 23 T CONST)) (-1813 (($) 45 T CONST)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (-3021 (($ $ $) 31) (($ $) 30)) (-3009 (($ $ $) 21)) (** (($ $ (-776)) 43) (($ $ (-927)) 40)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29) (($ $ $) 41)))
+(-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2919 ((-569) |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -3712 ((-112) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-2208 (((-3 $ "failed") $ $) 27)) (-2919 (((-569) $) 37)) (-4427 (($) 24 T CONST)) (-3086 (((-3 $ "failed") $) 42)) (-3712 (((-112) $) 39)) (-2349 (((-112) $) 44)) (-2051 (((-112) $) 38)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 46)) (-2721 (((-776)) 47 T CONST)) (-1520 (((-112) $ $) 9)) (-2271 (($ $) 36)) (-1804 (($) 23 T CONST)) (-1815 (($) 45 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3024 (($ $ $) 31) (($ $) 30)) (-3012 (($ $ $) 21)) (** (($ $ (-776)) 43) (($ $ (-927)) 40)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29) (($ $ $) 41)))
(((-853) (-140)) (T -853))
-((-4237 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-4327 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569)))) (-3070 (*1 *1 *1) (-4 *1 (-853))))
-(-13 (-796) (-1055) (-731) (-10 -8 (-15 -4237 ((-112) $)) (-15 -4327 ((-112) $)) (-15 -2552 ((-569) $)) (-15 -3070 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-3377 (($ $ $) 12)) (-3969 (($ $ $) 11)) (-1441 (((-112) $ $) 9)) (-2976 (((-112) $ $) 15)) (-2954 (((-112) $ $) 13)) (-2964 (((-112) $ $) 16)))
-(((-854 |#1|) (-10 -8 (-15 -3377 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -2976 ((-112) |#1| |#1|)) (-15 -2954 ((-112) |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|))) (-855)) (T -854))
-NIL
-(-10 -8 (-15 -3377 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -2964 ((-112) |#1| |#1|)) (-15 -2976 ((-112) |#1| |#1|)) (-15 -2954 ((-112) |#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)))
+((-3712 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569)))) (-2271 (*1 *1 *1) (-4 *1 (-853))))
+(-13 (-796) (-1057) (-731) (-10 -8 (-15 -3712 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -2919 ((-569) $)) (-15 -2271 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3380 (($ $ $) 12)) (-2839 (($ $ $) 11)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 15)) (-2956 (((-112) $ $) 13)) (-2966 (((-112) $ $) 16)))
+(((-854 |#1|) (-10 -8 (-15 -3380 (|#1| |#1| |#1|)) (-15 -2839 (|#1| |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2956 ((-112) |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|))) (-855)) (T -854))
+NIL
+(-10 -8 (-15 -3380 (|#1| |#1| |#1|)) (-15 -2839 (|#1| |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2956 ((-112) |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)))
(((-855) (-140)) (T -855))
-((-2942 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2954 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2976 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-3969 (*1 *1 *1 *1) (-4 *1 (-855))) (-3377 (*1 *1 *1 *1) (-4 *1 (-855))))
-(-13 (-1106) (-10 -8 (-15 -2942 ((-112) $ $)) (-15 -2954 ((-112) $ $)) (-15 -2976 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -3969 ($ $ $)) (-15 -3377 ($ $ $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-1768 (($ $ $) 49)) (-1853 (($ $ $) 48)) (-3841 (($ $ $) 46)) (-3383 (($ $ $) 55)) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 50)) (-3499 (((-3 $ "failed") $ $) 53)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-4260 (($ $) 39)) (-4172 (($ $ $) 43)) (-4232 (($ $ $) 42)) (-3152 (($ $ $) 51)) (-4008 (($ $ $) 57)) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 45)) (-4084 (((-3 $ "failed") $ $) 52)) (-2405 (((-3 $ "failed") $ |#2|) 32)) (-3479 ((|#2| $) 36)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#2|) 13)) (-2836 (((-649 |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-856 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| |#1| |#1|)) (-15 -3250 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2330 |#1|)) |#1| |#1|)) (-15 -3383 (|#1| |#1| |#1|)) (-15 -3499 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2330 |#1|)) |#1| |#1|)) (-15 -4008 (|#1| |#1| |#1|)) (-15 -4084 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4172 (|#1| |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2836 ((-649 |#2|) |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3793 ((-867) |#1|))) (-857 |#2|) (-1055)) (T -856))
-NIL
-(-10 -8 (-15 -3152 (|#1| |#1| |#1|)) (-15 -3250 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2330 |#1|)) |#1| |#1|)) (-15 -3383 (|#1| |#1| |#1|)) (-15 -3499 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2330 |#1|)) |#1| |#1|)) (-15 -4008 (|#1| |#1| |#1|)) (-15 -4084 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4172 (|#1| |#1| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -2405 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2836 ((-649 |#2|) |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1768 (($ $ $) 50 (|has| |#1| (-367)))) (-1853 (($ $ $) 51 (|has| |#1| (-367)))) (-3841 (($ $ $) 53 (|has| |#1| (-367)))) (-3383 (($ $ $) 48 (|has| |#1| (-367)))) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 47 (|has| |#1| (-367)))) (-3499 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-3326 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 52 (|has| |#1| (-367)))) (-4378 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3148 (((-569) $) 79 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 75)) (-1879 (($ $) 69)) (-2888 (((-3 $ "failed") $) 37)) (-4260 (($ $) 60 (|has| |#1| (-457)))) (-2623 (((-112) $) 35)) (-3920 (($ |#1| (-776)) 67)) (-3153 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 62 (|has| |#1| (-561)))) (-4323 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63 (|has| |#1| (-561)))) (-3712 (((-776) $) 71)) (-4172 (($ $ $) 57 (|has| |#1| (-367)))) (-4232 (($ $ $) 58 (|has| |#1| (-367)))) (-3152 (($ $ $) 46 (|has| |#1| (-367)))) (-4008 (($ $ $) 55 (|has| |#1| (-367)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 54 (|has| |#1| (-367)))) (-4084 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-3240 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 59 (|has| |#1| (-367)))) (-1855 ((|#1| $) 70)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-3868 (((-776) $) 72)) (-3479 ((|#1| $) 61 (|has| |#1| (-457)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) 73)) (-2836 (((-649 |#1|) $) 66)) (-4184 ((|#1| $ (-776)) 68)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-3448 ((|#1| $ |#1| |#1|) 65)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-857 |#1|) (-140) (-1055)) (T -857))
-((-3868 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-3920 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-649 *3)))) (-3448 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)))) (-2405 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-4323 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-4260 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457)))) (-3240 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3)))) (-4232 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-4172 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-4084 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-4008 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3915 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2330 *1))) (-4 *1 (-857 *3)))) (-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3326 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3)))) (-1853 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-1768 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3499 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3383 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-3250 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2330 *1))) (-4 *1 (-857 *3)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(-13 (-1055) (-111 |t#1| |t#1|) (-416 |t#1|) (-10 -8 (-15 -3868 ((-776) $)) (-15 -3712 ((-776) $)) (-15 -1855 (|t#1| $)) (-15 -1879 ($ $)) (-15 -4184 (|t#1| $ (-776))) (-15 -3920 ($ |t#1| (-776))) (-15 -2836 ((-649 |t#1|) $)) (-15 -3448 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -2405 ((-3 $ "failed") $ |t#1|)) (-15 -4323 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -3153 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3479 (|t#1| $)) (-15 -4260 ($ $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -3240 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -4232 ($ $ $)) (-15 -4172 ($ $ $)) (-15 -4084 ((-3 $ "failed") $ $)) (-15 -4008 ($ $ $)) (-15 -3915 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $)) (-15 -3841 ($ $ $)) (-15 -3326 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -1853 ($ $ $)) (-15 -1768 ($ $ $)) (-15 -3499 ((-3 $ "failed") $ $)) (-15 -3383 ($ $ $)) (-15 -3250 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $)) (-15 -3152 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1044 #0#) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-3287 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3326 (((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-367)))) (-3153 (((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-561)))) (-4323 (((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-561)))) (-3240 (((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-367)))) (-3448 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
-(((-858 |#1| |#2|) (-10 -7 (-15 -3287 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3448 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -4323 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3153 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3240 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3326 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1055) (-857 |#1|)) (T -858))
-((-3326 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3240 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3153 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-4323 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3448 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1055)) (-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2)))) (-3287 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1055)) (-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5)))))
-(-10 -7 (-15 -3287 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3448 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -4323 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3153 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3240 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3326 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-367)))) (-1853 (($ $ $) NIL (|has| |#1| (-367)))) (-3841 (($ $ $) NIL (|has| |#1| (-367)))) (-3383 (($ $ $) NIL (|has| |#1| (-367)))) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-3499 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3326 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 34 (|has| |#1| (-367)))) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457)))) (-2808 (((-867) $ (-867)) NIL)) (-2623 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) NIL)) (-3153 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 30 (|has| |#1| (-561)))) (-4323 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 28 (|has| |#1| (-561)))) (-3712 (((-776) $) NIL)) (-4172 (($ $ $) NIL (|has| |#1| (-367)))) (-4232 (($ $ $) NIL (|has| |#1| (-367)))) (-3152 (($ $ $) NIL (|has| |#1| (-367)))) (-4008 (($ $ $) NIL (|has| |#1| (-367)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-4084 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3240 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 32 (|has| |#1| (-367)))) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3868 (((-776) $) NIL)) (-3479 ((|#1| $) NIL (|has| |#1| (-457)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1044 (-412 (-569))))) (($ |#1|) NIL)) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-3448 ((|#1| $ |#1| |#1|) 15)) (-1803 (($) NIL T CONST)) (-1813 (($) 23 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) 19) (($ $ (-776)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-859 |#1| |#2| |#3|) (-13 (-857 |#1|) (-10 -8 (-15 -2808 ((-867) $ (-867))))) (-1055) (-99 |#1|) (-1 |#1| |#1|)) (T -859))
-((-2808 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-857 |#1|) (-10 -8 (-15 -2808 ((-867) $ (-867)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#2| (-367)))) (-1853 (($ $ $) NIL (|has| |#2| (-367)))) (-3841 (($ $ $) NIL (|has| |#2| (-367)))) (-3383 (($ $ $) NIL (|has| |#2| (-367)))) (-3250 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#2| (-367)))) (-3499 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-3326 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#2| (-367)))) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) NIL)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#2| (-457)))) (-2623 (((-112) $) NIL)) (-3920 (($ |#2| (-776)) 17)) (-3153 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#2| (-561)))) (-4323 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#2| (-561)))) (-3712 (((-776) $) NIL)) (-4172 (($ $ $) NIL (|has| |#2| (-367)))) (-4232 (($ $ $) NIL (|has| |#2| (-367)))) (-3152 (($ $ $) NIL (|has| |#2| (-367)))) (-4008 (($ $ $) NIL (|has| |#2| (-367)))) (-3915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#2| (-367)))) (-4084 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-3240 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#2| (-367)))) (-1855 ((|#2| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-3868 (((-776) $) NIL)) (-3479 ((|#2| $) NIL (|has| |#2| (-457)))) (-3793 (((-867) $) 24) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) NIL) (($ (-1269 |#1|)) 19)) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-776)) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-3448 ((|#2| $ |#2| |#2|) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) 13 T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-860 |#1| |#2| |#3| |#4|) (-13 (-857 |#2|) (-621 (-1269 |#1|))) (-1183) (-1055) (-99 |#2|) (-1 |#2| |#2|)) (T -860))
-NIL
-(-13 (-857 |#2|) (-621 (-1269 |#1|)))
-((-3622 ((|#1| (-776) |#1|) 48 (|has| |#1| (-38 (-412 (-569)))))) (-3525 ((|#1| (-776) (-776) |#1|) 39) ((|#1| (-776) |#1|) 27)) (-3430 ((|#1| (-776) |#1|) 43)) (-2095 ((|#1| (-776) |#1|) 41)) (-2015 ((|#1| (-776) |#1|) 40)))
-(((-861 |#1|) (-10 -7 (-15 -2015 (|#1| (-776) |#1|)) (-15 -2095 (|#1| (-776) |#1|)) (-15 -3430 (|#1| (-776) |#1|)) (-15 -3525 (|#1| (-776) |#1|)) (-15 -3525 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3622 (|#1| (-776) |#1|)) |%noBranch|)) (-173)) (T -861))
-((-3622 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-3525 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3525 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3430 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2095 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2015 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
-(-10 -7 (-15 -2015 (|#1| (-776) |#1|)) (-15 -2095 (|#1| (-776) |#1|)) (-15 -3430 (|#1| (-776) |#1|)) (-15 -3525 (|#1| (-776) |#1|)) (-15 -3525 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3622 (|#1| (-776) |#1|)) |%noBranch|))
-((-2415 (((-112) $ $) 7)) (-3377 (($ $ $) 14)) (-3969 (($ $ $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2976 (((-112) $ $) 17)) (-2954 (((-112) $ $) 18)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 16)) (-2942 (((-112) $ $) 19)) (** (($ $ (-927)) 22)) (* (($ $ $) 21)))
+((-2944 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2956 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2978 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2839 (*1 *1 *1 *1) (-4 *1 (-855))) (-3380 (*1 *1 *1 *1) (-4 *1 (-855))))
+(-13 (-1108) (-10 -8 (-15 -2944 ((-112) $ $)) (-15 -2956 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -2839 ($ $ $)) (-15 -3380 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-3708 (($ $ $) 49)) (-3187 (($ $ $) 48)) (-4124 (($ $ $) 46)) (-2200 (($ $ $) 55)) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 50)) (-3992 (((-3 $ "failed") $ $) 53)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2642 (($ $) 39)) (-4276 (($ $ $) 43)) (-3662 (($ $ $) 42)) (-3768 (($ $ $) 51)) (-2036 (($ $ $) 57)) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 45)) (-1598 (((-3 $ "failed") $ $) 52)) (-2407 (((-3 $ "failed") $ |#2|) 32)) (-3833 ((|#2| $) 36)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#2|) 13)) (-2512 (((-649 |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-856 |#1| |#2|) (-10 -8 (-15 -3768 (|#1| |#1| |#1|)) (-15 -3496 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2200 (|#1| |#1| |#1|)) (-15 -3992 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3708 (|#1| |#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -4124 (|#1| |#1| |#1|)) (-15 -3611 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3796 ((-867) |#1|))) (-857 |#2|) (-1057)) (T -856))
+NIL
+(-10 -8 (-15 -3768 (|#1| |#1| |#1|)) (-15 -3496 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2200 (|#1| |#1| |#1|)) (-15 -3992 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3708 (|#1| |#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -4124 (|#1| |#1| |#1|)) (-15 -3611 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3708 (($ $ $) 50 (|has| |#1| (-367)))) (-3187 (($ $ $) 51 (|has| |#1| (-367)))) (-4124 (($ $ $) 53 (|has| |#1| (-367)))) (-2200 (($ $ $) 48 (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 47 (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 52 (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3150 (((-569) $) 79 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 75)) (-1883 (($ $) 69)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 60 (|has| |#1| (-457)))) (-2349 (((-112) $) 35)) (-3923 (($ |#1| (-776)) 67)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 62 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63 (|has| |#1| (-561)))) (-2272 (((-776) $) 71)) (-4276 (($ $ $) 57 (|has| |#1| (-367)))) (-3662 (($ $ $) 58 (|has| |#1| (-367)))) (-3768 (($ $ $) 46 (|has| |#1| (-367)))) (-2036 (($ $ $) 55 (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 54 (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 59 (|has| |#1| (-367)))) (-1857 ((|#1| $) 70)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-4339 (((-776) $) 72)) (-3833 ((|#1| $) 61 (|has| |#1| (-457)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 73)) (-2512 (((-649 |#1|) $) 66)) (-4383 ((|#1| $ (-776)) 68)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-3451 ((|#1| $ |#1| |#1|) 65)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-857 |#1|) (-140) (-1057)) (T -857))
+((-4339 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-649 *3)))) (-3451 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-2021 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3779 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457)))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457)))) (-3391 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3662 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-4276 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-1598 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2036 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3611 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) (-4 *1 (-857 *3)))) (-4124 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2934 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3708 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3992 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2200 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3496 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) (-4 *1 (-857 *3)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(-13 (-1057) (-111 |t#1| |t#1|) (-416 |t#1|) (-10 -8 (-15 -4339 ((-776) $)) (-15 -2272 ((-776) $)) (-15 -1857 (|t#1| $)) (-15 -1883 ($ $)) (-15 -4383 (|t#1| $ (-776))) (-15 -3923 ($ |t#1| (-776))) (-15 -2512 ((-649 |t#1|) $)) (-15 -3451 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -2407 ((-3 $ "failed") $ |t#1|)) (-15 -2021 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3779 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3833 (|t#1| $)) (-15 -2642 ($ $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -3391 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3662 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -1598 ((-3 $ "failed") $ $)) (-15 -2036 ($ $ $)) (-15 -3611 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $)) (-15 -4124 ($ $ $)) (-15 -2934 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3187 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3992 ((-3 $ "failed") $ $)) (-15 -2200 ($ $ $)) (-15 -3496 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $)) (-15 -3768 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3290 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2934 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-367)))) (-3779 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-561)))) (-3391 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-367)))) (-3451 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -3290 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3451 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2021 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3779 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3391 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2934 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1057) (-857 |#1|)) (T -858))
+((-2934 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3391 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3779 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2021 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3451 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1057)) (-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2)))) (-3290 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1057)) (-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5)))))
+(-10 -7 (-15 -3290 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3451 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2021 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3779 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3391 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2934 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 34 (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-3548 (((-867) $ (-867)) NIL)) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 30 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 28 (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 32 (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) 15)) (-1804 (($) NIL T CONST)) (-1815 (($) 23 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 19) (($ $ (-776)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-859 |#1| |#2| |#3|) (-13 (-857 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867))))) (-1057) (-99 |#1|) (-1 |#1| |#1|)) (T -859))
+((-3548 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-857 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#2| (-367)))) (-3187 (($ $ $) NIL (|has| |#2| (-367)))) (-4124 (($ $ $) NIL (|has| |#2| (-367)))) (-2200 (($ $ $) NIL (|has| |#2| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#2| (-776)) 17)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#2| (-367)))) (-3662 (($ $ $) NIL (|has| |#2| (-367)))) (-3768 (($ $ $) NIL (|has| |#2| (-367)))) (-2036 (($ $ $) NIL (|has| |#2| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-4339 (((-776) $) NIL)) (-3833 ((|#2| $) NIL (|has| |#2| (-457)))) (-3796 (((-867) $) 24) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) NIL) (($ (-1271 |#1|)) 19)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#2| $ |#2| |#2|) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) 13 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-860 |#1| |#2| |#3| |#4|) (-13 (-857 |#2|) (-621 (-1271 |#1|))) (-1185) (-1057) (-99 |#2|) (-1 |#2| |#2|)) (T -860))
+NIL
+(-13 (-857 |#2|) (-621 (-1271 |#1|)))
+((-2607 ((|#1| (-776) |#1|) 48 (|has| |#1| (-38 (-412 (-569)))))) (-4193 ((|#1| (-776) (-776) |#1|) 39) ((|#1| (-776) |#1|) 27)) (-1439 ((|#1| (-776) |#1|) 43)) (-3902 ((|#1| (-776) |#1|) 41)) (-2356 ((|#1| (-776) |#1|) 40)))
+(((-861 |#1|) (-10 -7 (-15 -2356 (|#1| (-776) |#1|)) (-15 -3902 (|#1| (-776) |#1|)) (-15 -1439 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2607 (|#1| (-776) |#1|)) |%noBranch|)) (-173)) (T -861))
+((-2607 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-4193 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-4193 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-1439 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3902 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2356 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
+(-10 -7 (-15 -2356 (|#1| (-776) |#1|)) (-15 -3902 (|#1| (-776) |#1|)) (-15 -1439 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2607 (|#1| (-776) |#1|)) |%noBranch|))
+((-2417 (((-112) $ $) 7)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (** (($ $ (-927)) 22)) (* (($ $ $) 21)))
(((-862) (-140)) (T -862))
NIL
-(-13 (-855) (-1118))
-(((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-2185 (((-569) $) 14)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 20) (($ (-569)) 13)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 9)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 11)))
-(((-863) (-13 (-855) (-10 -8 (-15 -3793 ($ (-569))) (-15 -2185 ((-569) $))))) (T -863))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-863)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-863)))))
-(-13 (-855) (-10 -8 (-15 -3793 ($ (-569))) (-15 -2185 ((-569) $))))
-((-2525 (((-696 (-1231)) $ (-1231)) 15)) (-2615 (((-696 (-554)) $ (-554)) 12)) (-3719 (((-776) $ (-128)) 30)))
-(((-864 |#1|) (-10 -8 (-15 -3719 ((-776) |#1| (-128))) (-15 -2525 ((-696 (-1231)) |#1| (-1231))) (-15 -2615 ((-696 (-554)) |#1| (-554)))) (-865)) (T -864))
-NIL
-(-10 -8 (-15 -3719 ((-776) |#1| (-128))) (-15 -2525 ((-696 (-1231)) |#1| (-1231))) (-15 -2615 ((-696 (-554)) |#1| (-554))))
-((-2525 (((-696 (-1231)) $ (-1231)) 8)) (-2615 (((-696 (-554)) $ (-554)) 9)) (-3719 (((-776) $ (-128)) 7)) (-2725 (((-696 (-129)) $ (-129)) 10)) (-2839 (($ $) 6)))
+(-13 (-855) (-1120))
+(((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-2188 (((-569) $) 14)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-569)) 13)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 11)))
+(((-863) (-13 (-855) (-10 -8 (-15 -3796 ($ (-569))) (-15 -2188 ((-569) $))))) (T -863))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-863)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-863)))))
+(-13 (-855) (-10 -8 (-15 -3796 ($ (-569))) (-15 -2188 ((-569) $))))
+((-2641 (((-696 (-1233)) $ (-1233)) 15)) (-2283 (((-696 (-554)) $ (-554)) 12)) (-2340 (((-776) $ (-128)) 30)))
+(((-864 |#1|) (-10 -8 (-15 -2340 ((-776) |#1| (-128))) (-15 -2641 ((-696 (-1233)) |#1| (-1233))) (-15 -2283 ((-696 (-554)) |#1| (-554)))) (-865)) (T -864))
+NIL
+(-10 -8 (-15 -2340 ((-776) |#1| (-128))) (-15 -2641 ((-696 (-1233)) |#1| (-1233))) (-15 -2283 ((-696 (-554)) |#1| (-554))))
+((-2641 (((-696 (-1233)) $ (-1233)) 8)) (-2283 (((-696 (-554)) $ (-554)) 9)) (-2340 (((-776) $ (-128)) 7)) (-3998 (((-696 (-129)) $ (-129)) 10)) (-2543 (($ $) 6)))
(((-865) (-140)) (T -865))
-((-2725 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129)))) (-2615 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554)))) (-2525 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1231))) (-5 *3 (-1231)))) (-3719 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776)))))
-(-13 (-174) (-10 -8 (-15 -2725 ((-696 (-129)) $ (-129))) (-15 -2615 ((-696 (-554)) $ (-554))) (-15 -2525 ((-696 (-1231)) $ (-1231))) (-15 -3719 ((-776) $ (-128)))))
+((-3998 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129)))) (-2283 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1233))) (-5 *3 (-1233)))) (-2340 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(-13 (-174) (-10 -8 (-15 -3998 ((-696 (-129)) $ (-129))) (-15 -2283 ((-696 (-554)) $ (-554))) (-15 -2641 ((-696 (-1233)) $ (-1233))) (-15 -2340 ((-776) $ (-128)))))
(((-174) . T))
-((-2525 (((-696 (-1231)) $ (-1231)) NIL)) (-2615 (((-696 (-554)) $ (-554)) NIL)) (-3719 (((-776) $ (-128)) NIL)) (-2725 (((-696 (-129)) $ (-129)) 22)) (-2928 (($ (-393)) 12) (($ (-1165)) 14)) (-2832 (((-112) $) 19)) (-3793 (((-867) $) 26)) (-2839 (($ $) 23)))
-(((-866) (-13 (-865) (-618 (-867)) (-10 -8 (-15 -2928 ($ (-393))) (-15 -2928 ($ (-1165))) (-15 -2832 ((-112) $))))) (T -866))
-((-2928 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866)))) (-2928 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-866)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866)))))
-(-13 (-865) (-618 (-867)) (-10 -8 (-15 -2928 ($ (-393))) (-15 -2928 ($ (-1165))) (-15 -2832 ((-112) $))))
-((-2415 (((-112) $ $) NIL) (($ $ $) 85)) (-3170 (($ $ $) 125)) (-3480 (((-569) $) 31) (((-569)) 36)) (-2509 (($ (-569)) 53)) (-3521 (($ $ $) 54) (($ (-649 $)) 84)) (-1762 (($ $ (-649 $)) 82)) (-2720 (((-569) $) 34)) (-3568 (($ $ $) 73)) (-3269 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2826 (((-569) $) 33)) (-3955 (($ $ $) 72)) (-3387 (($ $) 114)) (-4219 (($ $ $) 129)) (-1944 (($ (-649 $)) 61)) (-3854 (($ $ (-649 $)) 79)) (-3716 (($ (-569) (-569)) 55)) (-3354 (($ $) 126) (($ $ $) 127)) (-4407 (($ $ (-569)) 43) (($ $) 46)) (-2366 (($ $ $) 97)) (-4033 (($ $ $) 132)) (-1646 (($ $) 115)) (-2373 (($ $ $) 98)) (-2395 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2927 (((-1278) $) 10)) (-1542 (($ $) 118) (($ $ (-776)) 122)) (-1858 (($ $ $) 75)) (-3859 (($ $ $) 74)) (-4311 (($ $ (-649 $)) 110)) (-3280 (($ $ $) 113)) (-2135 (($ (-649 $)) 59)) (-2223 (($ $) 70) (($ (-649 $)) 71)) (-1318 (($ $ $) 123)) (-1430 (($ $) 116)) (-4308 (($ $ $) 128)) (-2808 (($ (-569)) 21) (($ (-1183)) 23) (($ (-1165)) 30) (($ (-226)) 25)) (-1769 (($ $ $) 101)) (-1745 (($ $) 102)) (-3047 (((-1278) (-1165)) 15)) (-1790 (($ (-1165)) 14)) (-2428 (($ (-649 (-649 $))) 58)) (-4395 (($ $ (-569)) 42) (($ $) 45)) (-1550 (((-1165) $) NIL)) (-1502 (($ $ $) 131)) (-3802 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2593 (((-112) $) 108)) (-3402 (($ $ (-649 $)) 111) (($ $ $ $) 112)) (-2611 (($ (-569)) 39)) (-1425 (((-569) $) 32) (((-569)) 35)) (-3618 (($ $ $) 40) (($ (-649 $)) 83)) (-3545 (((-1126) $) NIL)) (-2405 (($ $ $) 99)) (-3597 (($) 13)) (-1866 (($ $ (-649 $)) 109)) (-2934 (((-1165) (-1165)) 8)) (-3990 (($ $) 117) (($ $ (-776)) 121)) (-2394 (($ $ $) 96)) (-3514 (($ $ (-776)) 139)) (-2037 (($ (-649 $)) 60)) (-3793 (((-867) $) 19)) (-2167 (($ $ (-569)) 41) (($ $) 44)) (-2310 (($ $) 68) (($ (-649 $)) 69)) (-3864 (($ $) 66) (($ (-649 $)) 67)) (-4211 (($ $) 124)) (-3042 (($ (-649 $)) 65)) (-2950 (($ $ $) 105)) (-1441 (((-112) $ $) NIL)) (-4120 (($ $ $) 130)) (-1756 (($ $ $) 100)) (-3642 (($ $ $) 103) (($ $) 104)) (-2976 (($ $ $) 89)) (-2954 (($ $ $) 87)) (-2919 (((-112) $ $) 16) (($ $ $) 17)) (-2964 (($ $ $) 88)) (-2942 (($ $ $) 86)) (-3032 (($ $ $) 94)) (-3021 (($ $ $) 91) (($ $) 92)) (-3009 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-867) (-13 (-1106) (-10 -8 (-15 -2927 ((-1278) $)) (-15 -1790 ($ (-1165))) (-15 -3047 ((-1278) (-1165))) (-15 -2808 ($ (-569))) (-15 -2808 ($ (-1183))) (-15 -2808 ($ (-1165))) (-15 -2808 ($ (-226))) (-15 -3597 ($)) (-15 -2934 ((-1165) (-1165))) (-15 -3480 ((-569) $)) (-15 -1425 ((-569) $)) (-15 -3480 ((-569))) (-15 -1425 ((-569))) (-15 -2826 ((-569) $)) (-15 -2720 ((-569) $)) (-15 -2611 ($ (-569))) (-15 -2509 ($ (-569))) (-15 -3716 ($ (-569) (-569))) (-15 -4395 ($ $ (-569))) (-15 -4407 ($ $ (-569))) (-15 -2167 ($ $ (-569))) (-15 -4395 ($ $)) (-15 -4407 ($ $)) (-15 -2167 ($ $)) (-15 -3618 ($ $ $)) (-15 -3521 ($ $ $)) (-15 -3618 ($ (-649 $))) (-15 -3521 ($ (-649 $))) (-15 -4311 ($ $ (-649 $))) (-15 -3402 ($ $ (-649 $))) (-15 -3402 ($ $ $ $)) (-15 -3280 ($ $ $)) (-15 -2593 ((-112) $)) (-15 -1866 ($ $ (-649 $))) (-15 -3387 ($ $)) (-15 -1502 ($ $ $)) (-15 -4211 ($ $)) (-15 -2428 ($ (-649 (-649 $)))) (-15 -3170 ($ $ $)) (-15 -3354 ($ $)) (-15 -3354 ($ $ $)) (-15 -4308 ($ $ $)) (-15 -4219 ($ $ $)) (-15 -4120 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -3514 ($ $ (-776))) (-15 -2950 ($ $ $)) (-15 -3955 ($ $ $)) (-15 -3568 ($ $ $)) (-15 -3859 ($ $ $)) (-15 -1858 ($ $ $)) (-15 -3854 ($ $ (-649 $))) (-15 -1762 ($ $ (-649 $))) (-15 -1646 ($ $)) (-15 -3990 ($ $)) (-15 -3990 ($ $ (-776))) (-15 -1542 ($ $)) (-15 -1542 ($ $ (-776))) (-15 -1430 ($ $)) (-15 -1318 ($ $ $)) (-15 -3269 ($ $)) (-15 -3269 ($ $ $)) (-15 -3269 ($ $ $ $)) (-15 -2395 ($ $)) (-15 -2395 ($ $ $)) (-15 -2395 ($ $ $ $)) (-15 -3802 ($ $)) (-15 -3802 ($ $ $)) (-15 -3802 ($ $ $ $)) (-15 -3864 ($ $)) (-15 -3864 ($ (-649 $))) (-15 -2310 ($ $)) (-15 -2310 ($ (-649 $))) (-15 -2223 ($ $)) (-15 -2223 ($ (-649 $))) (-15 -2135 ($ (-649 $))) (-15 -2037 ($ (-649 $))) (-15 -1944 ($ (-649 $))) (-15 -3042 ($ (-649 $))) (-15 -2919 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2976 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3021 ($ $)) (-15 * ($ $ $)) (-15 -3032 ($ $ $)) (-15 ** ($ $ $)) (-15 -2394 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -2405 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -1745 ($ $)) (-15 -3642 ($ $ $)) (-15 -3642 ($ $))))) (T -867))
-((-2927 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-867)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-867)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-867)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867)))) (-3597 (*1 *1) (-5 *1 (-867))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3480 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1425 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2611 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2509 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3716 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4395 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4407 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4395 (*1 *1 *1) (-5 *1 (-867))) (-4407 (*1 *1 *1) (-5 *1 (-867))) (-2167 (*1 *1 *1) (-5 *1 (-867))) (-3618 (*1 *1 *1 *1) (-5 *1 (-867))) (-3521 (*1 *1 *1 *1) (-5 *1 (-867))) (-3618 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4311 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3402 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3402 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3280 (*1 *1 *1 *1) (-5 *1 (-867))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3387 (*1 *1 *1) (-5 *1 (-867))) (-1502 (*1 *1 *1 *1) (-5 *1 (-867))) (-4211 (*1 *1 *1) (-5 *1 (-867))) (-2428 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-867)))) (-3170 (*1 *1 *1 *1) (-5 *1 (-867))) (-3354 (*1 *1 *1) (-5 *1 (-867))) (-3354 (*1 *1 *1 *1) (-5 *1 (-867))) (-4308 (*1 *1 *1 *1) (-5 *1 (-867))) (-4219 (*1 *1 *1 *1) (-5 *1 (-867))) (-4120 (*1 *1 *1 *1) (-5 *1 (-867))) (-4033 (*1 *1 *1 *1) (-5 *1 (-867))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-2950 (*1 *1 *1 *1) (-5 *1 (-867))) (-3955 (*1 *1 *1 *1) (-5 *1 (-867))) (-3568 (*1 *1 *1 *1) (-5 *1 (-867))) (-3859 (*1 *1 *1 *1) (-5 *1 (-867))) (-1858 (*1 *1 *1 *1) (-5 *1 (-867))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1762 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1646 (*1 *1 *1) (-5 *1 (-867))) (-3990 (*1 *1 *1) (-5 *1 (-867))) (-3990 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-1542 (*1 *1 *1) (-5 *1 (-867))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-1430 (*1 *1 *1) (-5 *1 (-867))) (-1318 (*1 *1 *1 *1) (-5 *1 (-867))) (-3269 (*1 *1 *1) (-5 *1 (-867))) (-3269 (*1 *1 *1 *1) (-5 *1 (-867))) (-3269 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-2395 (*1 *1 *1) (-5 *1 (-867))) (-2395 (*1 *1 *1 *1) (-5 *1 (-867))) (-2395 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3802 (*1 *1 *1) (-5 *1 (-867))) (-3802 (*1 *1 *1 *1) (-5 *1 (-867))) (-3802 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3864 (*1 *1 *1) (-5 *1 (-867))) (-3864 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2310 (*1 *1 *1) (-5 *1 (-867))) (-2310 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2223 (*1 *1 *1) (-5 *1 (-867))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2037 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1944 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3042 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2919 (*1 *1 *1 *1) (-5 *1 (-867))) (-2415 (*1 *1 *1 *1) (-5 *1 (-867))) (-2942 (*1 *1 *1 *1) (-5 *1 (-867))) (-2954 (*1 *1 *1 *1) (-5 *1 (-867))) (-2964 (*1 *1 *1 *1) (-5 *1 (-867))) (-2976 (*1 *1 *1 *1) (-5 *1 (-867))) (-3009 (*1 *1 *1 *1) (-5 *1 (-867))) (-3021 (*1 *1 *1 *1) (-5 *1 (-867))) (-3021 (*1 *1 *1) (-5 *1 (-867))) (* (*1 *1 *1 *1) (-5 *1 (-867))) (-3032 (*1 *1 *1 *1) (-5 *1 (-867))) (** (*1 *1 *1 *1) (-5 *1 (-867))) (-2394 (*1 *1 *1 *1) (-5 *1 (-867))) (-2366 (*1 *1 *1 *1) (-5 *1 (-867))) (-2373 (*1 *1 *1 *1) (-5 *1 (-867))) (-2405 (*1 *1 *1 *1) (-5 *1 (-867))) (-1756 (*1 *1 *1 *1) (-5 *1 (-867))) (-1769 (*1 *1 *1 *1) (-5 *1 (-867))) (-1745 (*1 *1 *1) (-5 *1 (-867))) (-3642 (*1 *1 *1 *1) (-5 *1 (-867))) (-3642 (*1 *1 *1) (-5 *1 (-867))))
-(-13 (-1106) (-10 -8 (-15 -2927 ((-1278) $)) (-15 -1790 ($ (-1165))) (-15 -3047 ((-1278) (-1165))) (-15 -2808 ($ (-569))) (-15 -2808 ($ (-1183))) (-15 -2808 ($ (-1165))) (-15 -2808 ($ (-226))) (-15 -3597 ($)) (-15 -2934 ((-1165) (-1165))) (-15 -3480 ((-569) $)) (-15 -1425 ((-569) $)) (-15 -3480 ((-569))) (-15 -1425 ((-569))) (-15 -2826 ((-569) $)) (-15 -2720 ((-569) $)) (-15 -2611 ($ (-569))) (-15 -2509 ($ (-569))) (-15 -3716 ($ (-569) (-569))) (-15 -4395 ($ $ (-569))) (-15 -4407 ($ $ (-569))) (-15 -2167 ($ $ (-569))) (-15 -4395 ($ $)) (-15 -4407 ($ $)) (-15 -2167 ($ $)) (-15 -3618 ($ $ $)) (-15 -3521 ($ $ $)) (-15 -3618 ($ (-649 $))) (-15 -3521 ($ (-649 $))) (-15 -4311 ($ $ (-649 $))) (-15 -3402 ($ $ (-649 $))) (-15 -3402 ($ $ $ $)) (-15 -3280 ($ $ $)) (-15 -2593 ((-112) $)) (-15 -1866 ($ $ (-649 $))) (-15 -3387 ($ $)) (-15 -1502 ($ $ $)) (-15 -4211 ($ $)) (-15 -2428 ($ (-649 (-649 $)))) (-15 -3170 ($ $ $)) (-15 -3354 ($ $)) (-15 -3354 ($ $ $)) (-15 -4308 ($ $ $)) (-15 -4219 ($ $ $)) (-15 -4120 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -3514 ($ $ (-776))) (-15 -2950 ($ $ $)) (-15 -3955 ($ $ $)) (-15 -3568 ($ $ $)) (-15 -3859 ($ $ $)) (-15 -1858 ($ $ $)) (-15 -3854 ($ $ (-649 $))) (-15 -1762 ($ $ (-649 $))) (-15 -1646 ($ $)) (-15 -3990 ($ $)) (-15 -3990 ($ $ (-776))) (-15 -1542 ($ $)) (-15 -1542 ($ $ (-776))) (-15 -1430 ($ $)) (-15 -1318 ($ $ $)) (-15 -3269 ($ $)) (-15 -3269 ($ $ $)) (-15 -3269 ($ $ $ $)) (-15 -2395 ($ $)) (-15 -2395 ($ $ $)) (-15 -2395 ($ $ $ $)) (-15 -3802 ($ $)) (-15 -3802 ($ $ $)) (-15 -3802 ($ $ $ $)) (-15 -3864 ($ $)) (-15 -3864 ($ (-649 $))) (-15 -2310 ($ $)) (-15 -2310 ($ (-649 $))) (-15 -2223 ($ $)) (-15 -2223 ($ (-649 $))) (-15 -2135 ($ (-649 $))) (-15 -2037 ($ (-649 $))) (-15 -1944 ($ (-649 $))) (-15 -3042 ($ (-649 $))) (-15 -2919 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2942 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2976 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3021 ($ $)) (-15 * ($ $ $)) (-15 -3032 ($ $ $)) (-15 ** ($ $ $)) (-15 -2394 ($ $ $)) (-15 -2366 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -2405 ($ $ $)) (-15 -1756 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -1745 ($ $)) (-15 -3642 ($ $ $)) (-15 -3642 ($ $))))
-((-4408 (((-1278) (-649 (-52))) 23)) (-1867 (((-1278) (-1165) (-867)) 13) (((-1278) (-867)) 8) (((-1278) (-1165)) 10)))
-(((-868) (-10 -7 (-15 -1867 ((-1278) (-1165))) (-15 -1867 ((-1278) (-867))) (-15 -1867 ((-1278) (-1165) (-867))) (-15 -4408 ((-1278) (-649 (-52)))))) (T -868))
-((-4408 (*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1278)) (-5 *1 (-868)))) (-1867 (*1 *2 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-868)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-868)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-868)))))
-(-10 -7 (-15 -1867 ((-1278) (-1165))) (-15 -1867 ((-1278) (-867))) (-15 -1867 ((-1278) (-1165) (-867))) (-15 -4408 ((-1278) (-649 (-52)))))
-((-2415 (((-112) $ $) NIL)) (-2671 (((-3 $ "failed") (-1183)) 39)) (-3470 (((-776)) 32)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) 29)) (-1550 (((-1165) $) 46)) (-2150 (($ (-927)) 28)) (-3545 (((-1126) $) NIL)) (-1408 (((-1183) $) 13) (((-541) $) 19) (((-898 (-383)) $) 26) (((-898 (-569)) $) 22)) (-3793 (((-867) $) 16)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 43)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 41)))
-(((-869 |#1|) (-13 (-849) (-619 (-1183)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2671 ((-3 $ "failed") (-1183))))) (-649 (-1183))) (T -869))
-((-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2)))))
-(-13 (-849) (-619 (-1183)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2671 ((-3 $ "failed") (-1183)))))
-((-2415 (((-112) $ $) NIL)) (-3570 (((-511) $) 9)) (-3040 (((-649 (-444)) $) 13)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 21)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 16)))
-(((-870) (-13 (-1106) (-10 -8 (-15 -3570 ((-511) $)) (-15 -3040 ((-649 (-444)) $))))) (T -870))
-((-3570 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870)))))
-(-13 (-1106) (-10 -8 (-15 -3570 ((-511) $)) (-15 -3040 ((-649 (-444)) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-958 |#1|)) NIL) (((-958 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-173)))) (-3302 (((-776)) NIL T CONST)) (-2784 (((-1278) (-776)) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-871 |#1| |#2| |#3| |#4|) (-13 (-1055) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3032 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2784 ((-1278) (-776))))) (-1055) (-649 (-1183)) (-649 (-776)) (-776)) (T -871))
-((-3032 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-776))) (-14 *5 (-776)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-871 *4 *5 *6 *7)) (-4 *4 (-1055)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 *3)) (-14 *7 *3))))
-(-13 (-1055) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3032 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2784 ((-1278) (-776)))))
-((-3130 (((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|) 43)) (-3227 (((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|) 34)))
-(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -3227 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -3130 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|))) (-367) (-1264 |#1|) (-1249 |#1|)) (T -872))
-((-3130 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5)))) (-3227 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5)))))
-(-10 -7 (-15 -3227 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -3130 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|)))
-((-3227 (((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|)) 30) (((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) 28)))
-(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -3227 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (-15 -3227 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|)))) (-367) (-1183) |#1|) (T -873))
-((-3227 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5))) (-5 *1 (-873 *5 *6 *7)))) (-3227 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5))) (-5 *1 (-873 *5 *6 *7)))))
-(-10 -7 (-15 -3227 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (-15 -3227 ((-3 (-412 (-1246 |#2| |#1|)) "failed") (-776) (-776) (-1265 |#1| |#2| |#3|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-3807 (($ $ (-569)) 68)) (-1680 (((-112) $ $) 65)) (-4188 (($) 18 T CONST)) (-3354 (($ (-1179 (-569)) (-569)) 67)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-3085 (($ $) 70)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-3110 (((-776) $) 75)) (-2623 (((-112) $) 35)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3283 (((-569)) 72)) (-3184 (((-569) $) 71)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2907 (($ $ (-569)) 74)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-3380 (((-1163 (-569)) $) 76)) (-4005 (($ $) 73)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-3088 (((-569) $ (-569)) 69)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-2641 (((-696 (-1233)) $ (-1233)) NIL)) (-2283 (((-696 (-554)) $ (-554)) NIL)) (-2340 (((-776) $ (-128)) NIL)) (-3998 (((-696 (-129)) $ (-129)) 22)) (-3384 (($ (-393)) 12) (($ (-1167)) 14)) (-3771 (((-112) $) 19)) (-3796 (((-867) $) 26)) (-2543 (($ $) 23)))
+(((-866) (-13 (-865) (-618 (-867)) (-10 -8 (-15 -3384 ($ (-393))) (-15 -3384 ($ (-1167))) (-15 -3771 ((-112) $))))) (T -866))
+((-3384 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-866)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866)))))
+(-13 (-865) (-618 (-867)) (-10 -8 (-15 -3384 ($ (-393))) (-15 -3384 ($ (-1167))) (-15 -3771 ((-112) $))))
+((-2417 (((-112) $ $) NIL) (($ $ $) 85)) (-3946 (($ $ $) 125)) (-3485 (((-569) $) 31) (((-569)) 36)) (-2475 (($ (-569)) 53)) (-4163 (($ $ $) 54) (($ (-649 $)) 84)) (-1758 (($ $ (-649 $)) 82)) (-3958 (((-569) $) 34)) (-3570 (($ $ $) 73)) (-3272 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3719 (((-569) $) 33)) (-2699 (($ $ $) 72)) (-3390 (($ $) 114)) (-3505 (($ $ $) 129)) (-2852 (($ (-649 $)) 61)) (-3857 (($ $ (-649 $)) 79)) (-2312 (($ (-569) (-569)) 55)) (-1978 (($ $) 126) (($ $ $) 127)) (-4410 (($ $ (-569)) 43) (($ $) 46)) (-2368 (($ $ $) 97)) (-2269 (($ $ $) 132)) (-1929 (($ $) 115)) (-2379 (($ $ $) 98)) (-3931 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2929 (((-1280) $) 10)) (-3335 (($ $) 118) (($ $ (-776)) 122)) (-3230 (($ $ $) 75)) (-4270 (($ $ $) 74)) (-4313 (($ $ (-649 $)) 110)) (-2500 (($ $ $) 113)) (-4288 (($ (-649 $)) 59)) (-2687 (($ $) 70) (($ (-649 $)) 71)) (-1683 (($ $ $) 123)) (-1412 (($ $) 116)) (-3104 (($ $ $) 128)) (-3548 (($ (-569)) 21) (($ (-1185)) 23) (($ (-1167)) 30) (($ (-226)) 25)) (-1771 (($ $ $) 101)) (-1749 (($ $) 102)) (-2078 (((-1280) (-1167)) 15)) (-1793 (($ (-1167)) 14)) (-2430 (($ (-649 (-649 $))) 58)) (-4398 (($ $ (-569)) 42) (($ $) 45)) (-3435 (((-1167) $) NIL)) (-1504 (($ $ $) 131)) (-3805 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2595 (((-112) $) 108)) (-2353 (($ $ (-649 $)) 111) (($ $ $ $) 112)) (-2242 (($ (-569)) 39)) (-1427 (((-569) $) 32) (((-569)) 35)) (-2561 (($ $ $) 40) (($ (-649 $)) 83)) (-3547 (((-1128) $) NIL)) (-2407 (($ $ $) 99)) (-3635 (($) 13)) (-1869 (($ $ (-649 $)) 109)) (-3452 (((-1167) (-1167)) 8)) (-3040 (($ $) 117) (($ $ (-776)) 121)) (-2396 (($ $ $) 96)) (-3517 (($ $ (-776)) 139)) (-1390 (($ (-649 $)) 60)) (-3796 (((-867) $) 19)) (-2170 (($ $ (-569)) 41) (($ $) 44)) (-2344 (($ $) 68) (($ (-649 $)) 69)) (-3868 (($ $) 66) (($ (-649 $)) 67)) (-4213 (($ $) 124)) (-2028 (($ (-649 $)) 65)) (-3613 (($ $ $) 105)) (-1520 (((-112) $ $) NIL)) (-3866 (($ $ $) 130)) (-1759 (($ $ $) 100)) (-3645 (($ $ $) 103) (($ $) 104)) (-2978 (($ $ $) 89)) (-2956 (($ $ $) 87)) (-2920 (((-112) $ $) 16) (($ $ $) 17)) (-2966 (($ $ $) 88)) (-2944 (($ $ $) 86)) (-3035 (($ $ $) 94)) (-3024 (($ $ $) 91) (($ $) 92)) (-3012 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-867) (-13 (-1108) (-10 -8 (-15 -2929 ((-1280) $)) (-15 -1793 ($ (-1167))) (-15 -2078 ((-1280) (-1167))) (-15 -3548 ($ (-569))) (-15 -3548 ($ (-1185))) (-15 -3548 ($ (-1167))) (-15 -3548 ($ (-226))) (-15 -3635 ($)) (-15 -3452 ((-1167) (-1167))) (-15 -3485 ((-569) $)) (-15 -1427 ((-569) $)) (-15 -3485 ((-569))) (-15 -1427 ((-569))) (-15 -3719 ((-569) $)) (-15 -3958 ((-569) $)) (-15 -2242 ($ (-569))) (-15 -2475 ($ (-569))) (-15 -2312 ($ (-569) (-569))) (-15 -4398 ($ $ (-569))) (-15 -4410 ($ $ (-569))) (-15 -2170 ($ $ (-569))) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -2170 ($ $)) (-15 -2561 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -2561 ($ (-649 $))) (-15 -4163 ($ (-649 $))) (-15 -4313 ($ $ (-649 $))) (-15 -2353 ($ $ (-649 $))) (-15 -2353 ($ $ $ $)) (-15 -2500 ($ $ $)) (-15 -2595 ((-112) $)) (-15 -1869 ($ $ (-649 $))) (-15 -3390 ($ $)) (-15 -1504 ($ $ $)) (-15 -4213 ($ $)) (-15 -2430 ($ (-649 (-649 $)))) (-15 -3946 ($ $ $)) (-15 -1978 ($ $)) (-15 -1978 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3505 ($ $ $)) (-15 -3866 ($ $ $)) (-15 -2269 ($ $ $)) (-15 -3517 ($ $ (-776))) (-15 -3613 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -4270 ($ $ $)) (-15 -3230 ($ $ $)) (-15 -3857 ($ $ (-649 $))) (-15 -1758 ($ $ (-649 $))) (-15 -1929 ($ $)) (-15 -3040 ($ $)) (-15 -3040 ($ $ (-776))) (-15 -3335 ($ $)) (-15 -3335 ($ $ (-776))) (-15 -1412 ($ $)) (-15 -1683 ($ $ $)) (-15 -3272 ($ $)) (-15 -3272 ($ $ $)) (-15 -3272 ($ $ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -3805 ($ $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ $ $ $)) (-15 -3868 ($ $)) (-15 -3868 ($ (-649 $))) (-15 -2344 ($ $)) (-15 -2344 ($ (-649 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-649 $))) (-15 -4288 ($ (-649 $))) (-15 -1390 ($ (-649 $))) (-15 -2852 ($ (-649 $))) (-15 -2028 ($ (-649 $))) (-15 -2920 ($ $ $)) (-15 -2417 ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3024 ($ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2407 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1749 ($ $)) (-15 -3645 ($ $ $)) (-15 -3645 ($ $))))) (T -867))
+((-2929 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-867)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867)))) (-3635 (*1 *1) (-5 *1 (-867))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3485 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1427 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2242 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2475 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2312 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4410 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2170 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4398 (*1 *1 *1) (-5 *1 (-867))) (-4410 (*1 *1 *1) (-5 *1 (-867))) (-2170 (*1 *1 *1) (-5 *1 (-867))) (-2561 (*1 *1 *1 *1) (-5 *1 (-867))) (-4163 (*1 *1 *1 *1) (-5 *1 (-867))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2353 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2353 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-2500 (*1 *1 *1 *1) (-5 *1 (-867))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3390 (*1 *1 *1) (-5 *1 (-867))) (-1504 (*1 *1 *1 *1) (-5 *1 (-867))) (-4213 (*1 *1 *1) (-5 *1 (-867))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-867)))) (-3946 (*1 *1 *1 *1) (-5 *1 (-867))) (-1978 (*1 *1 *1) (-5 *1 (-867))) (-1978 (*1 *1 *1 *1) (-5 *1 (-867))) (-3104 (*1 *1 *1 *1) (-5 *1 (-867))) (-3505 (*1 *1 *1 *1) (-5 *1 (-867))) (-3866 (*1 *1 *1 *1) (-5 *1 (-867))) (-2269 (*1 *1 *1 *1) (-5 *1 (-867))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-3613 (*1 *1 *1 *1) (-5 *1 (-867))) (-2699 (*1 *1 *1 *1) (-5 *1 (-867))) (-3570 (*1 *1 *1 *1) (-5 *1 (-867))) (-4270 (*1 *1 *1 *1) (-5 *1 (-867))) (-3230 (*1 *1 *1 *1) (-5 *1 (-867))) (-3857 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1929 (*1 *1 *1) (-5 *1 (-867))) (-3040 (*1 *1 *1) (-5 *1 (-867))) (-3040 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-3335 (*1 *1 *1) (-5 *1 (-867))) (-3335 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-1412 (*1 *1 *1) (-5 *1 (-867))) (-1683 (*1 *1 *1 *1) (-5 *1 (-867))) (-3272 (*1 *1 *1) (-5 *1 (-867))) (-3272 (*1 *1 *1 *1) (-5 *1 (-867))) (-3272 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3931 (*1 *1 *1) (-5 *1 (-867))) (-3931 (*1 *1 *1 *1) (-5 *1 (-867))) (-3931 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3805 (*1 *1 *1) (-5 *1 (-867))) (-3805 (*1 *1 *1 *1) (-5 *1 (-867))) (-3805 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3868 (*1 *1 *1) (-5 *1 (-867))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2344 (*1 *1 *1) (-5 *1 (-867))) (-2344 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2687 (*1 *1 *1) (-5 *1 (-867))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4288 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1390 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2852 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2920 (*1 *1 *1 *1) (-5 *1 (-867))) (-2417 (*1 *1 *1 *1) (-5 *1 (-867))) (-2944 (*1 *1 *1 *1) (-5 *1 (-867))) (-2956 (*1 *1 *1 *1) (-5 *1 (-867))) (-2966 (*1 *1 *1 *1) (-5 *1 (-867))) (-2978 (*1 *1 *1 *1) (-5 *1 (-867))) (-3012 (*1 *1 *1 *1) (-5 *1 (-867))) (-3024 (*1 *1 *1 *1) (-5 *1 (-867))) (-3024 (*1 *1 *1) (-5 *1 (-867))) (* (*1 *1 *1 *1) (-5 *1 (-867))) (-3035 (*1 *1 *1 *1) (-5 *1 (-867))) (** (*1 *1 *1 *1) (-5 *1 (-867))) (-2396 (*1 *1 *1 *1) (-5 *1 (-867))) (-2368 (*1 *1 *1 *1) (-5 *1 (-867))) (-2379 (*1 *1 *1 *1) (-5 *1 (-867))) (-2407 (*1 *1 *1 *1) (-5 *1 (-867))) (-1759 (*1 *1 *1 *1) (-5 *1 (-867))) (-1771 (*1 *1 *1 *1) (-5 *1 (-867))) (-1749 (*1 *1 *1) (-5 *1 (-867))) (-3645 (*1 *1 *1 *1) (-5 *1 (-867))) (-3645 (*1 *1 *1) (-5 *1 (-867))))
+(-13 (-1108) (-10 -8 (-15 -2929 ((-1280) $)) (-15 -1793 ($ (-1167))) (-15 -2078 ((-1280) (-1167))) (-15 -3548 ($ (-569))) (-15 -3548 ($ (-1185))) (-15 -3548 ($ (-1167))) (-15 -3548 ($ (-226))) (-15 -3635 ($)) (-15 -3452 ((-1167) (-1167))) (-15 -3485 ((-569) $)) (-15 -1427 ((-569) $)) (-15 -3485 ((-569))) (-15 -1427 ((-569))) (-15 -3719 ((-569) $)) (-15 -3958 ((-569) $)) (-15 -2242 ($ (-569))) (-15 -2475 ($ (-569))) (-15 -2312 ($ (-569) (-569))) (-15 -4398 ($ $ (-569))) (-15 -4410 ($ $ (-569))) (-15 -2170 ($ $ (-569))) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -2170 ($ $)) (-15 -2561 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -2561 ($ (-649 $))) (-15 -4163 ($ (-649 $))) (-15 -4313 ($ $ (-649 $))) (-15 -2353 ($ $ (-649 $))) (-15 -2353 ($ $ $ $)) (-15 -2500 ($ $ $)) (-15 -2595 ((-112) $)) (-15 -1869 ($ $ (-649 $))) (-15 -3390 ($ $)) (-15 -1504 ($ $ $)) (-15 -4213 ($ $)) (-15 -2430 ($ (-649 (-649 $)))) (-15 -3946 ($ $ $)) (-15 -1978 ($ $)) (-15 -1978 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3505 ($ $ $)) (-15 -3866 ($ $ $)) (-15 -2269 ($ $ $)) (-15 -3517 ($ $ (-776))) (-15 -3613 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -4270 ($ $ $)) (-15 -3230 ($ $ $)) (-15 -3857 ($ $ (-649 $))) (-15 -1758 ($ $ (-649 $))) (-15 -1929 ($ $)) (-15 -3040 ($ $)) (-15 -3040 ($ $ (-776))) (-15 -3335 ($ $)) (-15 -3335 ($ $ (-776))) (-15 -1412 ($ $)) (-15 -1683 ($ $ $)) (-15 -3272 ($ $)) (-15 -3272 ($ $ $)) (-15 -3272 ($ $ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -3805 ($ $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ $ $ $)) (-15 -3868 ($ $)) (-15 -3868 ($ (-649 $))) (-15 -2344 ($ $)) (-15 -2344 ($ (-649 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-649 $))) (-15 -4288 ($ (-649 $))) (-15 -1390 ($ (-649 $))) (-15 -2852 ($ (-649 $))) (-15 -2028 ($ (-649 $))) (-15 -2920 ($ $ $)) (-15 -2417 ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3024 ($ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2407 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1749 ($ $)) (-15 -3645 ($ $ $)) (-15 -3645 ($ $))))
+((-4411 (((-1280) (-649 (-52))) 23)) (-1871 (((-1280) (-1167) (-867)) 13) (((-1280) (-867)) 8) (((-1280) (-1167)) 10)))
+(((-868) (-10 -7 (-15 -1871 ((-1280) (-1167))) (-15 -1871 ((-1280) (-867))) (-15 -1871 ((-1280) (-1167) (-867))) (-15 -4411 ((-1280) (-649 (-52)))))) (T -868))
+((-4411 (*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1280)) (-5 *1 (-868)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-868)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-868)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-868)))))
+(-10 -7 (-15 -1871 ((-1280) (-1167))) (-15 -1871 ((-1280) (-867))) (-15 -1871 ((-1280) (-1167) (-867))) (-15 -4411 ((-1280) (-649 (-52)))))
+((-2417 (((-112) $ $) NIL)) (-2672 (((-3 $ "failed") (-1185)) 39)) (-3473 (((-776)) 32)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) 29)) (-3435 (((-1167) $) 46)) (-2150 (($ (-927)) 28)) (-3547 (((-1128) $) NIL)) (-1410 (((-1185) $) 13) (((-541) $) 19) (((-898 (-383)) $) 26) (((-898 (-569)) $) 22)) (-3796 (((-867) $) 16)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 43)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 41)))
+(((-869 |#1|) (-13 (-849) (-619 (-1185)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2672 ((-3 $ "failed") (-1185))))) (-649 (-1185))) (T -869))
+((-2672 (*1 *1 *2) (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2)))))
+(-13 (-849) (-619 (-1185)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2672 ((-3 $ "failed") (-1185)))))
+((-2417 (((-112) $ $) NIL)) (-3573 (((-511) $) 9)) (-2009 (((-649 (-444)) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 21)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 16)))
+(((-870) (-13 (-1108) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2009 ((-649 (-444)) $))))) (T -870))
+((-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870)))))
+(-13 (-1108) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2009 ((-649 (-444)) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-958 |#1|)) NIL) (((-958 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-173)))) (-2721 (((-776)) NIL T CONST)) (-3284 (((-1280) (-776)) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-871 |#1| |#2| |#3| |#4|) (-13 (-1057) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776))))) (-1057) (-649 (-1185)) (-649 (-776)) (-776)) (T -871))
+((-3035 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-776))) (-14 *5 (-776)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-871 *4 *5 *6 *7)) (-4 *4 (-1057)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 *3)) (-14 *7 *3))))
+(-13 (-1057) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776)))))
+((-1657 (((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|) 43)) (-3235 (((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|) 34)))
+(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -3235 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -1657 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|))) (-367) (-1266 |#1|) (-1251 |#1|)) (T -872))
+((-1657 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5)))) (-3235 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5)))))
+(-10 -7 (-15 -3235 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -1657 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|)))
+((-3235 (((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|)) 30) (((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) 28)))
+(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|)))) (-367) (-1185) |#1|) (T -873))
+((-3235 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5))) (-5 *1 (-873 *5 *6 *7)))) (-3235 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5))) (-5 *1 (-873 *5 *6 *7)))))
+(-10 -7 (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $ (-569)) 68)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-1978 (($ (-1181 (-569)) (-569)) 67)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-4337 (($ $) 70)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1466 (((-776) $) 75)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2520 (((-569)) 72)) (-4074 (((-569) $) 71)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3166 (($ $ (-569)) 74)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2171 (((-1165 (-569)) $) 76)) (-2007 (($ $) 73)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-3091 (((-569) $ (-569)) 69)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-874 |#1|) (-140) (-569)) (T -874))
-((-3380 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1163 (-569))))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-4005 (*1 *1 *1) (-4 *1 (-874 *2))) (-3283 (*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-3085 (*1 *1 *1) (-4 *1 (-874 *2))) (-3088 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-3807 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-3354 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4)))))
-(-13 (-310) (-147) (-10 -8 (-15 -3380 ((-1163 (-569)) $)) (-15 -3110 ((-776) $)) (-15 -2907 ($ $ (-569))) (-15 -4005 ($ $)) (-15 -3283 ((-569))) (-15 -3184 ((-569) $)) (-15 -3085 ($ $)) (-15 -3088 ((-569) $ (-569))) (-15 -3807 ($ $ (-569))) (-15 -3354 ($ (-1179 (-569)) (-569)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $ (-569)) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-3354 (($ (-1179 (-569)) (-569)) NIL)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3085 (($ $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-3110 (((-776) $) NIL)) (-2623 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3283 (((-569)) NIL)) (-3184 (((-569) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2907 (($ $ (-569)) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3380 (((-1163 (-569)) $) NIL)) (-4005 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3088 (((-569) $ (-569)) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+((-2171 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1165 (-569))))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-2007 (*1 *1 *1) (-4 *1 (-874 *2))) (-2520 (*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-4337 (*1 *1 *1) (-4 *1 (-874 *2))) (-3091 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-1978 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4)))))
+(-13 (-310) (-147) (-10 -8 (-15 -2171 ((-1165 (-569)) $)) (-15 -1466 ((-776) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $)) (-15 -2520 ((-569))) (-15 -4074 ((-569) $)) (-15 -4337 ($ $)) (-15 -3091 ((-569) $ (-569))) (-15 -3813 ($ $ (-569))) (-15 -1978 ($ (-1181 (-569)) (-569)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ (-569)) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1978 (($ (-1181 (-569)) (-569)) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-4337 (($ $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1466 (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 (((-569)) NIL)) (-4074 (((-569) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3166 (($ $ (-569)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-1165 (-569)) $) NIL)) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-569) $ (-569)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
(((-875 |#1|) (-874 |#1|) (-569)) (T -875))
NIL
(-874 |#1|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| (-875 |#1|) (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-875 |#1|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| (-875 |#1|) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-875 |#1|) (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-875 |#1|) (-1044 (-569))))) (-3148 (((-875 |#1|) $) NIL) (((-1183) $) NIL (|has| (-875 |#1|) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-875 |#1|) (-1044 (-569)))) (((-569) $) NIL (|has| (-875 |#1|) (-1044 (-569))))) (-3292 (($ $) NIL) (($ (-569) $) NIL)) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-875 |#1|))) (|:| |vec| (-1273 (-875 |#1|)))) (-694 $) (-1273 $)) NIL) (((-694 (-875 |#1|)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-875 |#1|) (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-875 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-875 |#1|) (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 (((-875 |#1|) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| (-875 |#1|) (-1158)))) (-4327 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-3969 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-1344 (($ (-1 (-875 |#1|) (-875 |#1|)) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-875 |#1|) (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| (-875 |#1|) (-310)))) (-2478 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-875 |#1|) (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 (-875 |#1|)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-875 |#1|) (-875 |#1|)) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-297 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-297 (-875 |#1|)))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-1183)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-519 (-1183) (-875 |#1|)))) (($ $ (-1183) (-875 |#1|)) NIL (|has| (-875 |#1|) (-519 (-1183) (-875 |#1|))))) (-1578 (((-776) $) NIL)) (-1866 (($ $ (-875 |#1|)) NIL (|has| (-875 |#1|) (-289 (-875 |#1|) (-875 |#1|))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-1528 (($ $) NIL)) (-4409 (((-875 |#1|) $) NIL)) (-1408 (((-898 (-569)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-875 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-875 |#1|) (-1028))) (((-226) $) NIL (|has| (-875 |#1|) (-1028)))) (-3471 (((-175 (-412 (-569))) $) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-875 |#1|)) NIL) (($ (-1183)) NIL (|has| (-875 |#1|) (-1044 (-1183))))) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))) (|has| (-875 |#1|) (-145))))) (-3302 (((-776)) NIL T CONST)) (-2586 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3088 (((-412 (-569)) $ (-569)) NIL)) (-3070 (($ $) NIL (|has| (-875 |#1|) (-825)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1183)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1183)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-2976 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-3032 (($ $ $) NIL) (($ (-875 |#1|) (-875 |#1|)) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-875 |#1|) $) NIL) (($ $ (-875 |#1|)) NIL)))
-(((-876 |#1|) (-13 (-998 (-875 |#1|)) (-10 -8 (-15 -3088 ((-412 (-569)) $ (-569))) (-15 -3471 ((-175 (-412 (-569))) $)) (-15 -3292 ($ $)) (-15 -3292 ($ (-569) $)))) (-569)) (T -876))
-((-3088 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-876 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569)))) (-3292 (*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569)))) (-3292 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2))))
-(-13 (-998 (-875 |#1|)) (-10 -8 (-15 -3088 ((-412 (-569)) $ (-569))) (-15 -3471 ((-175 (-412 (-569))) $)) (-15 -3292 ($ $)) (-15 -3292 ($ (-569) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 ((|#2| $) NIL (|has| |#2| (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| |#2| (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (|has| |#2| (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569))))) (-3148 ((|#2| $) NIL) (((-1183) $) NIL (|has| |#2| (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-569)))) (((-569) $) NIL (|has| |#2| (-1044 (-569))))) (-3292 (($ $) 35) (($ (-569) $) 38)) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) 64)) (-3403 (($) NIL (|has| |#2| (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) NIL (|has| |#2| (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#2| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#2| (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 ((|#2| $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| |#2| (-1158)))) (-4327 (((-112) $) NIL (|has| |#2| (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| |#2| (-855)))) (-3969 (($ $ $) NIL (|has| |#2| (-855)))) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 60)) (-2305 (($) NIL (|has| |#2| (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| |#2| (-310)))) (-2478 ((|#2| $) NIL (|has| |#2| (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 |#2|) (-649 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-312 |#2|))) (($ $ (-297 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-297 |#2|))) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-1183)) (-649 |#2|)) NIL (|has| |#2| (-519 (-1183) |#2|))) (($ $ (-1183) |#2|) NIL (|has| |#2| (-519 (-1183) |#2|)))) (-1578 (((-776) $) NIL)) (-1866 (($ $ |#2|) NIL (|has| |#2| (-289 |#2| |#2|)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1528 (($ $) NIL)) (-4409 ((|#2| $) NIL)) (-1408 (((-898 (-569)) $) NIL (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#2| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#2| (-619 (-541)))) (((-383) $) NIL (|has| |#2| (-1028))) (((-226) $) NIL (|has| |#2| (-1028)))) (-3471 (((-175 (-412 (-569))) $) 78)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3793 (((-867) $) 108) (($ (-569)) 20) (($ $) NIL) (($ (-412 (-569))) 25) (($ |#2|) 19) (($ (-1183)) NIL (|has| |#2| (-1044 (-1183))))) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3302 (((-776)) NIL T CONST)) (-2586 ((|#2| $) NIL (|has| |#2| (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3088 (((-412 (-569)) $ (-569)) 71)) (-3070 (($ $) NIL (|has| |#2| (-825)))) (-1803 (($) 15 T CONST)) (-1813 (($) 17 T CONST)) (-2830 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2976 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2919 (((-112) $ $) 46)) (-2964 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#2| (-855)))) (-3032 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3021 (($ $) 50) (($ $ $) 52)) (-3009 (($ $ $) 48)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 53) (($ $ $) 55) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-877 |#1| |#2|) (-13 (-998 |#2|) (-10 -8 (-15 -3088 ((-412 (-569)) $ (-569))) (-15 -3471 ((-175 (-412 (-569))) $)) (-15 -3292 ($ $)) (-15 -3292 ($ (-569) $)))) (-569) (-874 |#1|)) (T -877))
-((-3088 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-412 (-569))) (-5 *1 (-877 *4 *5)) (-5 *3 (-569)) (-4 *5 (-874 *4)))) (-3471 (*1 *2 *1) (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))) (-3292 (*1 *1 *1) (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2)))) (-3292 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))))
-(-13 (-998 |#2|) (-10 -8 (-15 -3088 ((-412 (-569)) $ (-569))) (-15 -3471 ((-175 (-412 (-569))) $)) (-15 -3292 ($ $)) (-15 -3292 ($ (-569) $))))
-((-2415 (((-112) $ $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-2548 ((|#2| $) 12)) (-2178 (($ |#1| |#2|) 9)) (-1550 (((-1165) $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-3545 (((-1126) $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#1| $) 11)) (-3806 (($ |#1| |#2|) 10)) (-3793 (((-867) $) 18 (-2774 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106)))))) (-1441 (((-112) $ $) NIL (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))) (-2919 (((-112) $ $) 23 (-12 (|has| |#1| (-1106)) (|has| |#2| (-1106))))))
-(((-878 |#1| |#2|) (-13 (-1223) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1106)) (IF (|has| |#2| (-1106)) (-6 (-1106)) |%noBranch|) |%noBranch|) (-15 -2178 ($ |#1| |#2|)) (-15 -3806 ($ |#1| |#2|)) (-15 -3510 (|#1| $)) (-15 -2548 (|#2| $)))) (-1223) (-1223)) (T -878))
-((-2178 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223)))) (-3510 (*1 *2 *1) (-12 (-4 *2 (-1223)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1223)))) (-2548 (*1 *2 *1) (-12 (-4 *2 (-1223)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1223)))))
-(-13 (-1223) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1106)) (IF (|has| |#2| (-1106)) (-6 (-1106)) |%noBranch|) |%noBranch|) (-15 -2178 ($ |#1| |#2|)) (-15 -3806 ($ |#1| |#2|)) (-15 -3510 (|#1| $)) (-15 -2548 (|#2| $))))
-((-2415 (((-112) $ $) NIL)) (-2644 (((-569) $) 16)) (-3677 (($ (-157)) 13)) (-3585 (($ (-157)) 14)) (-1550 (((-1165) $) NIL)) (-2539 (((-157) $) 15)) (-3545 (((-1126) $) NIL)) (-2406 (($ (-157)) 11)) (-2453 (($ (-157)) 10)) (-3793 (((-867) $) 24) (($ (-157)) 17)) (-4157 (($ (-157)) 12)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-879) (-13 (-1106) (-10 -8 (-15 -2453 ($ (-157))) (-15 -2406 ($ (-157))) (-15 -4157 ($ (-157))) (-15 -3677 ($ (-157))) (-15 -3585 ($ (-157))) (-15 -2539 ((-157) $)) (-15 -2644 ((-569) $)) (-15 -3793 ($ (-157)))))) (T -879))
-((-2453 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3677 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(-13 (-1106) (-10 -8 (-15 -2453 ($ (-157))) (-15 -2406 ($ (-157))) (-15 -4157 ($ (-157))) (-15 -3677 ($ (-157))) (-15 -3585 ($ (-157))) (-15 -2539 ((-157) $)) (-15 -2644 ((-569) $)) (-15 -3793 ($ (-157)))))
-((-3793 (((-319 (-569)) (-412 (-958 (-48)))) 23) (((-319 (-569)) (-958 (-48))) 18)))
-(((-880) (-10 -7 (-15 -3793 ((-319 (-569)) (-958 (-48)))) (-15 -3793 ((-319 (-569)) (-412 (-958 (-48))))))) (T -880))
-((-3793 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-48)))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-958 (-48))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))))
-(-10 -7 (-15 -3793 ((-319 (-569)) (-958 (-48)))) (-15 -3793 ((-319 (-569)) (-412 (-958 (-48))))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 18) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1792 (((-112) $ (|[\|\|]| (-511))) 9) (((-112) $ (|[\|\|]| (-1165))) 13)) (-1441 (((-112) $ $) NIL)) (-3988 (((-511) $) 10) (((-1165) $) 14)) (-2919 (((-112) $ $) 15)))
-(((-881) (-13 (-1089) (-1268) (-10 -8 (-15 -1792 ((-112) $ (|[\|\|]| (-511)))) (-15 -3988 ((-511) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3988 ((-1165) $))))) (T -881))
-((-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-881)))))
-(-13 (-1089) (-1268) (-10 -8 (-15 -1792 ((-112) $ (|[\|\|]| (-511)))) (-15 -3988 ((-511) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3988 ((-1165) $))))
-((-1344 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15)))
-(((-882 |#1| |#2|) (-10 -7 (-15 -1344 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1223) (-1223)) (T -882))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))))
-(-10 -7 (-15 -1344 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|))))
-((-4344 (($ |#1| |#1|) 8)) (-2747 ((|#1| $ (-776)) 15)))
-(((-883 |#1|) (-10 -8 (-15 -4344 ($ |#1| |#1|)) (-15 -2747 (|#1| $ (-776)))) (-1223)) (T -883))
-((-2747 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1223)))) (-4344 (*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1223)))))
-(-10 -8 (-15 -4344 ($ |#1| |#1|)) (-15 -2747 (|#1| $ (-776))))
-((-1344 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 15)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -1344 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1223) (-1223)) (T -884))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))))
-(-10 -7 (-15 -1344 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
-((-4344 (($ |#1| |#1| |#1|) 8)) (-2747 ((|#1| $ (-776)) 15)))
-(((-885 |#1|) (-10 -8 (-15 -4344 ($ |#1| |#1| |#1|)) (-15 -2747 (|#1| $ (-776)))) (-1223)) (T -885))
-((-2747 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1223)))) (-4344 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1223)))))
-(-10 -8 (-15 -4344 ($ |#1| |#1| |#1|)) (-15 -2747 (|#1| $ (-776))))
-((-2544 (((-649 (-1188)) (-1165)) 9)))
-(((-886) (-10 -7 (-15 -2544 ((-649 (-1188)) (-1165))))) (T -886))
-((-2544 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-886)))))
-(-10 -7 (-15 -2544 ((-649 (-1188)) (-1165))))
-((-1344 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -1344 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1223) (-1223)) (T -887))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -1344 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
-((-2650 (($ |#1| |#1| |#1|) 8)) (-2747 ((|#1| $ (-776)) 15)))
-(((-888 |#1|) (-10 -8 (-15 -2650 ($ |#1| |#1| |#1|)) (-15 -2747 (|#1| $ (-776)))) (-1223)) (T -888))
-((-2747 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1223)))) (-2650 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1223)))))
-(-10 -8 (-15 -2650 ($ |#1| |#1| |#1|)) (-15 -2747 (|#1| $ (-776))))
-((-1932 (((-1163 (-649 (-569))) (-649 (-569)) (-1163 (-649 (-569)))) 48)) (-1857 (((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569))) 44)) (-2014 (((-1163 (-649 (-569))) (-649 (-569))) 58) (((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569))) 56)) (-2105 (((-1163 (-649 (-569))) (-569)) 59)) (-2850 (((-1163 (-649 (-569))) (-569) (-569)) 34) (((-1163 (-649 (-569))) (-569)) 23) (((-1163 (-649 (-569))) (-569) (-569) (-569)) 19)) (-2939 (((-1163 (-649 (-569))) (-1163 (-649 (-569)))) 42)) (-3580 (((-649 (-569)) (-649 (-569))) 41)))
-(((-889) (-10 -7 (-15 -2850 ((-1163 (-649 (-569))) (-569) (-569) (-569))) (-15 -2850 ((-1163 (-649 (-569))) (-569))) (-15 -2850 ((-1163 (-649 (-569))) (-569) (-569))) (-15 -3580 ((-649 (-569)) (-649 (-569)))) (-15 -2939 ((-1163 (-649 (-569))) (-1163 (-649 (-569))))) (-15 -1857 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -1932 ((-1163 (-649 (-569))) (-649 (-569)) (-1163 (-649 (-569))))) (-15 -2014 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2014 ((-1163 (-649 (-569))) (-649 (-569)))) (-15 -2105 ((-1163 (-649 (-569))) (-569))))) (T -889))
-((-2105 (*1 *2 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2014 (*1 *2 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-2014 (*1 *2 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-1932 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *3 (-649 (-569))) (-5 *1 (-889)))) (-1857 (*1 *2 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889)))) (-2850 (*1 *2 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2850 (*1 *2 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2850 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
-(-10 -7 (-15 -2850 ((-1163 (-649 (-569))) (-569) (-569) (-569))) (-15 -2850 ((-1163 (-649 (-569))) (-569))) (-15 -2850 ((-1163 (-649 (-569))) (-569) (-569))) (-15 -3580 ((-649 (-569)) (-649 (-569)))) (-15 -2939 ((-1163 (-649 (-569))) (-1163 (-649 (-569))))) (-15 -1857 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -1932 ((-1163 (-649 (-569))) (-649 (-569)) (-1163 (-649 (-569))))) (-15 -2014 ((-1163 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2014 ((-1163 (-649 (-569))) (-649 (-569)))) (-15 -2105 ((-1163 (-649 (-569))) (-569))))
-((-1408 (((-898 (-383)) $) 9 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 8 (|has| |#1| (-619 (-898 (-569)))))))
-(((-890 |#1|) (-140) (-1223)) (T -890))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-875 |#1|) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-875 |#1|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-875 |#1|) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-875 |#1|) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-875 |#1|) (-1046 (-569))))) (-3150 (((-875 |#1|) $) NIL) (((-1185) $) NIL (|has| (-875 |#1|) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-875 |#1|) (-1046 (-569)))) (((-569) $) NIL (|has| (-875 |#1|) (-1046 (-569))))) (-2612 (($ $) NIL) (($ (-569) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-875 |#1|))) (|:| |vec| (-1275 (-875 |#1|)))) (-694 $) (-1275 $)) NIL) (((-694 (-875 |#1|)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-875 |#1|) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-875 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-875 |#1|) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-875 |#1|) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-875 |#1|) (-1160)))) (-2051 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-2839 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-1346 (($ (-1 (-875 |#1|) (-875 |#1|)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-875 |#1|) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-875 |#1|) (-310)))) (-3465 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-875 |#1|)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-875 |#1|) (-875 |#1|)) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-297 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-297 (-875 |#1|)))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-1185)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-519 (-1185) (-875 |#1|)))) (($ $ (-1185) (-875 |#1|)) NIL (|has| (-875 |#1|) (-519 (-1185) (-875 |#1|))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-875 |#1|)) NIL (|has| (-875 |#1|) (-289 (-875 |#1|) (-875 |#1|))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-875 |#1|) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-875 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-875 |#1|) (-1030))) (((-226) $) NIL (|has| (-875 |#1|) (-1030)))) (-1855 (((-175 (-412 (-569))) $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-875 |#1|)) NIL) (($ (-1185)) NIL (|has| (-875 |#1|) (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))) (|has| (-875 |#1|) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ (-569)) NIL)) (-2271 (($ $) NIL (|has| (-875 |#1|) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-3035 (($ $ $) NIL) (($ (-875 |#1|) (-875 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-875 |#1|) $) NIL) (($ $ (-875 |#1|)) NIL)))
+(((-876 |#1|) (-13 (-1000 (-875 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) (-569)) (T -876))
+((-3091 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-876 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569)))) (-2612 (*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2))))
+(-13 (-1000 (-875 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 ((|#2| $) NIL (|has| |#2| (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| |#2| (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| |#2| (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569))))) (-3150 ((|#2| $) NIL) (((-1185) $) NIL (|has| |#2| (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-569)))) (((-569) $) NIL (|has| |#2| (-1046 (-569))))) (-2612 (($ $) 35) (($ (-569) $) 38)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 64)) (-3406 (($) NIL (|has| |#2| (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| |#2| (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#2| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#2| (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 ((|#2| $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#2| (-1160)))) (-2051 (((-112) $) NIL (|has| |#2| (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| |#2| (-855)))) (-2839 (($ $ $) NIL (|has| |#2| (-855)))) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 60)) (-2307 (($) NIL (|has| |#2| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| |#2| (-310)))) (-3465 ((|#2| $) NIL (|has| |#2| (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 |#2|) (-649 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-312 |#2|))) (($ $ (-297 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-297 |#2|))) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-1185)) (-649 |#2|)) NIL (|has| |#2| (-519 (-1185) |#2|))) (($ $ (-1185) |#2|) NIL (|has| |#2| (-519 (-1185) |#2|)))) (-2431 (((-776) $) NIL)) (-1869 (($ $ |#2|) NIL (|has| |#2| (-289 |#2| |#2|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3181 (($ $) NIL)) (-4412 ((|#2| $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#2| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#2| (-619 (-541)))) (((-383) $) NIL (|has| |#2| (-1030))) (((-226) $) NIL (|has| |#2| (-1030)))) (-1855 (((-175 (-412 (-569))) $) 78)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) 108) (($ (-569)) 20) (($ $) NIL) (($ (-412 (-569))) 25) (($ |#2|) 19) (($ (-1185)) NIL (|has| |#2| (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 ((|#2| $) NIL (|has| |#2| (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ (-569)) 71)) (-2271 (($ $) NIL (|has| |#2| (-825)))) (-1804 (($) 15 T CONST)) (-1815 (($) 17 T CONST)) (-2832 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2978 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2920 (((-112) $ $) 46)) (-2966 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#2| (-855)))) (-3035 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3024 (($ $) 50) (($ $ $) 52)) (-3012 (($ $ $) 48)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 53) (($ $ $) 55) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-877 |#1| |#2|) (-13 (-1000 |#2|) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) (-569) (-874 |#1|)) (T -877))
+((-3091 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-412 (-569))) (-5 *1 (-877 *4 *5)) (-5 *3 (-569)) (-4 *5 (-874 *4)))) (-1855 (*1 *2 *1) (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))) (-2612 (*1 *1 *1) (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))))
+(-13 (-1000 |#2|) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $))))
+((-2417 (((-112) $ $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-2550 ((|#2| $) 12)) (-2181 (($ |#1| |#2|) 9)) (-3435 (((-1167) $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-3547 (((-1128) $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#1| $) 11)) (-3809 (($ |#1| |#2|) 10)) (-3796 (((-867) $) 18 (-2776 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108)))))) (-1520 (((-112) $ $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-2920 (((-112) $ $) 23 (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))))
+(((-878 |#1| |#2|) (-13 (-1225) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1108)) (IF (|has| |#2| (-1108)) (-6 (-1108)) |%noBranch|) |%noBranch|) (-15 -2181 ($ |#1| |#2|)) (-15 -3809 ($ |#1| |#2|)) (-15 -3513 (|#1| $)) (-15 -2550 (|#2| $)))) (-1225) (-1225)) (T -878))
+((-2181 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225)))) (-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225)))) (-3513 (*1 *2 *1) (-12 (-4 *2 (-1225)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1225)))) (-2550 (*1 *2 *1) (-12 (-4 *2 (-1225)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1225)))))
+(-13 (-1225) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1108)) (IF (|has| |#2| (-1108)) (-6 (-1108)) |%noBranch|) |%noBranch|) (-15 -2181 ($ |#1| |#2|)) (-15 -3809 ($ |#1| |#2|)) (-15 -3513 (|#1| $)) (-15 -2550 (|#2| $))))
+((-2417 (((-112) $ $) NIL)) (-1366 (((-569) $) 16)) (-1963 (($ (-157)) 13)) (-3515 (($ (-157)) 14)) (-3435 (((-1167) $) NIL)) (-2787 (((-157) $) 15)) (-3547 (((-1128) $) NIL)) (-2409 (($ (-157)) 11)) (-3199 (($ (-157)) 10)) (-3796 (((-867) $) 24) (($ (-157)) 17)) (-4160 (($ (-157)) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-879) (-13 (-1108) (-10 -8 (-15 -3199 ($ (-157))) (-15 -2409 ($ (-157))) (-15 -4160 ($ (-157))) (-15 -1963 ($ (-157))) (-15 -3515 ($ (-157))) (-15 -2787 ((-157) $)) (-15 -1366 ((-569) $)) (-15 -3796 ($ (-157)))))) (T -879))
+((-3199 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-1963 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(-13 (-1108) (-10 -8 (-15 -3199 ($ (-157))) (-15 -2409 ($ (-157))) (-15 -4160 ($ (-157))) (-15 -1963 ($ (-157))) (-15 -3515 ($ (-157))) (-15 -2787 ((-157) $)) (-15 -1366 ((-569) $)) (-15 -3796 ($ (-157)))))
+((-3796 (((-319 (-569)) (-412 (-958 (-48)))) 23) (((-319 (-569)) (-958 (-48))) 18)))
+(((-880) (-10 -7 (-15 -3796 ((-319 (-569)) (-958 (-48)))) (-15 -3796 ((-319 (-569)) (-412 (-958 (-48))))))) (T -880))
+((-3796 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-48)))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-958 (-48))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))))
+(-10 -7 (-15 -3796 ((-319 (-569)) (-958 (-48)))) (-15 -3796 ((-319 (-569)) (-412 (-958 (-48))))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 18) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1795 (((-112) $ (|[\|\|]| (-511))) 9) (((-112) $ (|[\|\|]| (-1167))) 13)) (-1520 (((-112) $ $) NIL)) (-3993 (((-511) $) 10) (((-1167) $) 14)) (-2920 (((-112) $ $) 15)))
+(((-881) (-13 (-1091) (-1270) (-10 -8 (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -3993 ((-511) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1167)))) (-15 -3993 ((-1167) $))))) (T -881))
+((-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-881)))))
+(-13 (-1091) (-1270) (-10 -8 (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -3993 ((-511) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1167)))) (-15 -3993 ((-1167) $))))
+((-1346 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15)))
+(((-882 |#1| |#2|) (-10 -7 (-15 -1346 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1225) (-1225)) (T -882))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))))
+(-10 -7 (-15 -1346 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|))))
+((-2207 (($ |#1| |#1|) 8)) (-4190 ((|#1| $ (-776)) 15)))
+(((-883 |#1|) (-10 -8 (-15 -2207 ($ |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) (-1225)) (T -883))
+((-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1225)))) (-2207 (*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1225)))))
+(-10 -8 (-15 -2207 ($ |#1| |#1|)) (-15 -4190 (|#1| $ (-776))))
+((-1346 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 15)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -1346 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1225) (-1225)) (T -884))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))))
+(-10 -7 (-15 -1346 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
+((-2207 (($ |#1| |#1| |#1|) 8)) (-4190 ((|#1| $ (-776)) 15)))
+(((-885 |#1|) (-10 -8 (-15 -2207 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) (-1225)) (T -885))
+((-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1225)))) (-2207 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1225)))))
+(-10 -8 (-15 -2207 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776))))
+((-2843 (((-649 (-1190)) (-1167)) 9)))
+(((-886) (-10 -7 (-15 -2843 ((-649 (-1190)) (-1167))))) (T -886))
+((-2843 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-886)))))
+(-10 -7 (-15 -2843 ((-649 (-1190)) (-1167))))
+((-1346 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -1346 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1225) (-1225)) (T -887))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
+(-10 -7 (-15 -1346 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
+((-1415 (($ |#1| |#1| |#1|) 8)) (-4190 ((|#1| $ (-776)) 15)))
+(((-888 |#1|) (-10 -8 (-15 -1415 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) (-1225)) (T -888))
+((-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1225)))) (-1415 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1225)))))
+(-10 -8 (-15 -1415 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776))))
+((-2714 (((-1165 (-649 (-569))) (-649 (-569)) (-1165 (-649 (-569)))) 48)) (-3217 (((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569))) 44)) (-2346 (((-1165 (-649 (-569))) (-649 (-569))) 58) (((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569))) 56)) (-3996 (((-1165 (-649 (-569))) (-569)) 59)) (-2671 (((-1165 (-649 (-569))) (-569) (-569)) 34) (((-1165 (-649 (-569))) (-569)) 23) (((-1165 (-649 (-569))) (-569) (-569) (-569)) 19)) (-3501 (((-1165 (-649 (-569))) (-1165 (-649 (-569)))) 42)) (-3476 (((-649 (-569)) (-649 (-569))) 41)))
+(((-889) (-10 -7 (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569))) (-15 -3476 ((-649 (-569)) (-649 (-569)))) (-15 -3501 ((-1165 (-649 (-569))) (-1165 (-649 (-569))))) (-15 -3217 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2714 ((-1165 (-649 (-569))) (-649 (-569)) (-1165 (-649 (-569))))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)))) (-15 -3996 ((-1165 (-649 (-569))) (-569))))) (T -889))
+((-3996 (*1 *2 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-2346 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-2714 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *3 (-649 (-569))) (-5 *1 (-889)))) (-3217 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889)))) (-2671 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2671 (*1 *2 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2671 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
+(-10 -7 (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569))) (-15 -3476 ((-649 (-569)) (-649 (-569)))) (-15 -3501 ((-1165 (-649 (-569))) (-1165 (-649 (-569))))) (-15 -3217 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2714 ((-1165 (-649 (-569))) (-649 (-569)) (-1165 (-649 (-569))))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)))) (-15 -3996 ((-1165 (-649 (-569))) (-569))))
+((-1410 (((-898 (-383)) $) 9 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 8 (|has| |#1| (-619 (-898 (-569)))))))
+(((-890 |#1|) (-140) (-1225)) (T -890))
NIL
(-13 (-10 -7 (IF (|has| |t#1| (-619 (-898 (-569)))) (-6 (-619 (-898 (-569)))) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-383)))) (-6 (-619 (-898 (-383)))) |%noBranch|)))
(((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))))
-((-2415 (((-112) $ $) NIL)) (-4295 (($) 14)) (-2280 (($ (-895 |#1| |#2|) (-895 |#1| |#3|)) 28)) (-4045 (((-895 |#1| |#3|) $) 16)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1838 (((-112) $) 22)) (-2492 (($) 19)) (-3793 (((-867) $) 31)) (-1441 (((-112) $ $) NIL)) (-2192 (((-895 |#1| |#2|) $) 15)) (-2919 (((-112) $ $) 26)))
-(((-891 |#1| |#2| |#3|) (-13 (-1106) (-10 -8 (-15 -1838 ((-112) $)) (-15 -2492 ($)) (-15 -4295 ($)) (-15 -2280 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -2192 ((-895 |#1| |#2|) $)) (-15 -4045 ((-895 |#1| |#3|) $)))) (-1106) (-1106) (-671 |#2|)) (T -891))
-((-1838 (*1 *2 *1) (-12 (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1106)) (-4 *5 (-671 *4)))) (-2492 (*1 *1) (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106)) (-4 *4 (-671 *3)))) (-4295 (*1 *1) (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106)) (-4 *4 (-671 *3)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))) (-2192 (*1 *2 *1) (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1106)) (-4 *5 (-671 *4)))) (-4045 (*1 *2 *1) (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1106)) (-4 *5 (-671 *4)))))
-(-13 (-1106) (-10 -8 (-15 -1838 ((-112) $)) (-15 -2492 ($)) (-15 -4295 ($)) (-15 -2280 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -2192 ((-895 |#1| |#2|) $)) (-15 -4045 ((-895 |#1| |#3|) $))))
-((-2415 (((-112) $ $) 7)) (-2892 (((-895 |#1| $) $ (-898 |#1|) (-895 |#1| $)) 14)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
-(((-892 |#1|) (-140) (-1106)) (T -892))
-((-2892 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4)) (-4 *4 (-1106)))))
-(-13 (-1106) (-10 -8 (-15 -2892 ((-895 |t#1| $) $ (-898 |t#1|) (-895 |t#1| $)))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2374 (((-112) (-649 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-4416 (((-895 |#1| |#2|) |#2| |#3|) 45 (-12 (-1745 (|has| |#2| (-1044 (-1183)))) (-1745 (|has| |#2| (-1055))))) (((-649 (-297 (-958 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1055)) (-1745 (|has| |#2| (-1044 (-1183)))))) (((-649 (-297 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1044 (-1183)))) (((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|) 21)))
-(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -2374 ((-112) |#2| |#3|)) (-15 -2374 ((-112) (-649 |#2|) |#3|)) (-15 -4416 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1044 (-1183))) (-15 -4416 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1055)) (-15 -4416 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -4416 ((-895 |#1| |#2|) |#2| |#3|))))) (-1106) (-892 |#1|) (-619 (-898 |#1|))) (T -893))
-((-4416 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4)) (-1745 (-4 *3 (-1044 (-1183)))) (-1745 (-4 *3 (-1055))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-4416 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 (-958 *3)))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1055)) (-1745 (-4 *3 (-1044 (-1183)))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-4416 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1044 (-1183))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-4416 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6))) (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5))))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5))))) (-2374 (*1 *2 *3 *4) (-12 (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))))
-(-10 -7 (-15 -2374 ((-112) |#2| |#3|)) (-15 -2374 ((-112) (-649 |#2|) |#3|)) (-15 -4416 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1044 (-1183))) (-15 -4416 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1055)) (-15 -4416 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -4416 ((-895 |#1| |#2|) |#2| |#3|)))))
-((-1344 (((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)) 22)))
-(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)))) (-1106) (-1106) (-1106)) (T -894))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-895 *5 *7)) (-5 *1 (-894 *5 *6 *7)))))
-(-10 -7 (-15 -1344 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|))))
-((-2415 (((-112) $ $) NIL)) (-3966 (($ $ $) 40)) (-1895 (((-3 (-112) "failed") $ (-898 |#1|)) 37)) (-4295 (($) 12)) (-1550 (((-1165) $) NIL)) (-1529 (($ (-898 |#1|) |#2| $) 20)) (-3545 (((-1126) $) NIL)) (-1749 (((-3 |#2| "failed") (-898 |#1|) $) 51)) (-1838 (((-112) $) 15)) (-2492 (($) 13)) (-3878 (((-649 (-2 (|:| -2003 (-1183)) (|:| -2214 |#2|))) $) 25)) (-3806 (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 |#2|)))) 23)) (-3793 (((-867) $) 45)) (-1441 (((-112) $ $) NIL)) (-1429 (($ (-898 |#1|) |#2| $ |#2|) 49)) (-1634 (($ (-898 |#1|) |#2| $) 48)) (-2919 (((-112) $ $) 42)))
-(((-895 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -1838 ((-112) $)) (-15 -2492 ($)) (-15 -4295 ($)) (-15 -3966 ($ $ $)) (-15 -1749 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -1634 ($ (-898 |#1|) |#2| $)) (-15 -1529 ($ (-898 |#1|) |#2| $)) (-15 -1429 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3878 ((-649 (-2 (|:| -2003 (-1183)) (|:| -2214 |#2|))) $)) (-15 -3806 ($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 |#2|))))) (-15 -1895 ((-3 (-112) "failed") $ (-898 |#1|))))) (-1106) (-1106)) (T -895))
-((-1838 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2492 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-4295 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-3966 (*1 *1 *1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-1749 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-4 *2 (-1106)) (-5 *1 (-895 *4 *2)))) (-1634 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1106)))) (-1529 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1106)))) (-1429 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1106)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 *4)))) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 *4)))) (-4 *4 (-1106)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)))) (-1895 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1106)))))
-(-13 (-1106) (-10 -8 (-15 -1838 ((-112) $)) (-15 -2492 ($)) (-15 -4295 ($)) (-15 -3966 ($ $ $)) (-15 -1749 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -1634 ($ (-898 |#1|) |#2| $)) (-15 -1529 ($ (-898 |#1|) |#2| $)) (-15 -1429 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3878 ((-649 (-2 (|:| -2003 (-1183)) (|:| -2214 |#2|))) $)) (-15 -3806 ($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 |#2|))))) (-15 -1895 ((-3 (-112) "failed") $ (-898 |#1|)))))
-((-4272 (((-898 |#1|) (-898 |#1|) (-649 (-1183)) (-1 (-112) (-649 |#2|))) 32) (((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|))) 46) (((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|)) 35)) (-1895 (((-112) (-649 |#2|) (-898 |#1|)) 42) (((-112) |#2| (-898 |#1|)) 36)) (-3724 (((-1 (-112) |#2|) (-898 |#1|)) 16)) (-2041 (((-649 |#2|) (-898 |#1|)) 24)) (-1964 (((-898 |#1|) (-898 |#1|) |#2|) 20)))
-(((-896 |#1| |#2|) (-10 -7 (-15 -4272 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4272 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4272 ((-898 |#1|) (-898 |#1|) (-649 (-1183)) (-1 (-112) (-649 |#2|)))) (-15 -3724 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -1895 ((-112) |#2| (-898 |#1|))) (-15 -1895 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -1964 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -2041 ((-649 |#2|) (-898 |#1|)))) (-1106) (-1223)) (T -896))
-((-2041 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-649 *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1223)))) (-1964 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1223)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3)) (-4 *3 (-1223)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1223)))) (-4272 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1183))) (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *1 (-896 *5 *6)))) (-4272 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1106)) (-4 *5 (-1223)) (-5 *1 (-896 *4 *5)))) (-4272 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1106)) (-4 *5 (-1223)) (-5 *1 (-896 *4 *5)))))
-(-10 -7 (-15 -4272 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4272 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4272 ((-898 |#1|) (-898 |#1|) (-649 (-1183)) (-1 (-112) (-649 |#2|)))) (-15 -3724 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -1895 ((-112) |#2| (-898 |#1|))) (-15 -1895 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -1964 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -2041 ((-649 |#2|) (-898 |#1|))))
-((-1344 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 19)))
-(((-897 |#1| |#2|) (-10 -7 (-15 -1344 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1106) (-1106)) (T -897))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))))
-(-10 -7 (-15 -1344 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|))))
-((-2415 (((-112) $ $) NIL)) (-3245 (($ $ (-649 (-52))) 74)) (-1710 (((-649 $) $) 138)) (-4205 (((-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))) $) 30)) (-4318 (((-112) $) 35)) (-4297 (($ $ (-649 (-1183)) (-52)) 31)) (-3363 (($ $ (-649 (-52))) 73)) (-4378 (((-3 |#1| "failed") $) 71) (((-3 (-1183) "failed") $) 162)) (-3148 ((|#1| $) 68) (((-1183) $) NIL)) (-4021 (($ $) 126)) (-2685 (((-112) $) 55)) (-3467 (((-649 (-52)) $) 50)) (-3159 (($ (-1183) (-112) (-112) (-112)) 75)) (-3836 (((-3 (-649 $) "failed") (-649 $)) 82)) (-3682 (((-112) $) 58)) (-2477 (((-112) $) 57)) (-1550 (((-1165) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) 41)) (-1359 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2980 (((-3 (-2 (|:| |val| $) (|:| -4320 $)) "failed") $) 97)) (-2633 (((-3 (-649 $) "failed") $) 40)) (-2979 (((-3 (-649 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -3903 (-114)) (|:| |arg| (-649 $))) "failed") $) 107)) (-2887 (((-3 (-649 $) "failed") $) 42)) (-2865 (((-3 (-2 (|:| |val| $) (|:| -4320 (-776))) "failed") $) 45)) (-2790 (((-112) $) 34)) (-3545 (((-1126) $) NIL)) (-4108 (((-112) $) 28)) (-3581 (((-112) $) 52)) (-3933 (((-649 (-52)) $) 130)) (-2574 (((-112) $) 56)) (-1866 (($ (-114) (-649 $)) 104)) (-2802 (((-776) $) 33)) (-3959 (($ $) 72)) (-1408 (($ (-649 $)) 69)) (-4141 (((-112) $) 32)) (-3793 (((-867) $) 63) (($ |#1|) 23) (($ (-1183)) 76)) (-1441 (((-112) $ $) NIL)) (-1964 (($ $ (-52)) 129)) (-1803 (($) 103 T CONST)) (-1813 (($) 83 T CONST)) (-2919 (((-112) $ $) 93)) (-3032 (($ $ $) 117)) (-3009 (($ $ $) 121)) (** (($ $ (-776)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-898 |#1|) (-13 (-1106) (-1044 |#1|) (-1044 (-1183)) (-10 -8 (-15 0 ($) -3706) (-15 1 ($) -3706) (-15 -2633 ((-3 (-649 $) "failed") $)) (-15 -2753 ((-3 (-649 $) "failed") $)) (-15 -2979 ((-3 (-649 $) "failed") $ (-114))) (-15 -2979 ((-3 (-2 (|:| -3903 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -2865 ((-3 (-2 (|:| |val| $) (|:| -4320 (-776))) "failed") $)) (-15 -1359 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2887 ((-3 (-649 $) "failed") $)) (-15 -2980 ((-3 (-2 (|:| |val| $) (|:| -4320 $)) "failed") $)) (-15 -1866 ($ (-114) (-649 $))) (-15 -3009 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -3032 ($ $ $)) (-15 -2802 ((-776) $)) (-15 -1408 ($ (-649 $))) (-15 -3959 ($ $)) (-15 -2790 ((-112) $)) (-15 -2685 ((-112) $)) (-15 -4318 ((-112) $)) (-15 -4141 ((-112) $)) (-15 -2574 ((-112) $)) (-15 -2477 ((-112) $)) (-15 -3682 ((-112) $)) (-15 -3581 ((-112) $)) (-15 -3467 ((-649 (-52)) $)) (-15 -3363 ($ $ (-649 (-52)))) (-15 -3245 ($ $ (-649 (-52)))) (-15 -3159 ($ (-1183) (-112) (-112) (-112))) (-15 -4297 ($ $ (-649 (-1183)) (-52))) (-15 -4205 ((-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))) $)) (-15 -4108 ((-112) $)) (-15 -4021 ($ $)) (-15 -1964 ($ $ (-52))) (-15 -3933 ((-649 (-52)) $)) (-15 -1710 ((-649 $) $)) (-15 -3836 ((-3 (-649 $) "failed") (-649 $))))) (-1106)) (T -898))
-((-1803 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-1813 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-2633 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2753 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2979 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-2979 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3903 (-114)) (|:| |arg| (-649 (-898 *3))))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2865 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -4320 (-776)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-1359 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-898 *3)) (|:| |den| (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2887 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2980 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -4320 (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-3009 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-3032 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3159 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-112)) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-4297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-52)) (-5 *1 (-898 *4)) (-4 *4 (-1106)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52)))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-4021 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))) (-1964 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))) (-3836 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(-13 (-1106) (-1044 |#1|) (-1044 (-1183)) (-10 -8 (-15 (-1803) ($) -3706) (-15 (-1813) ($) -3706) (-15 -2633 ((-3 (-649 $) "failed") $)) (-15 -2753 ((-3 (-649 $) "failed") $)) (-15 -2979 ((-3 (-649 $) "failed") $ (-114))) (-15 -2979 ((-3 (-2 (|:| -3903 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -2865 ((-3 (-2 (|:| |val| $) (|:| -4320 (-776))) "failed") $)) (-15 -1359 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2887 ((-3 (-649 $) "failed") $)) (-15 -2980 ((-3 (-2 (|:| |val| $) (|:| -4320 $)) "failed") $)) (-15 -1866 ($ (-114) (-649 $))) (-15 -3009 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -3032 ($ $ $)) (-15 -2802 ((-776) $)) (-15 -1408 ($ (-649 $))) (-15 -3959 ($ $)) (-15 -2790 ((-112) $)) (-15 -2685 ((-112) $)) (-15 -4318 ((-112) $)) (-15 -4141 ((-112) $)) (-15 -2574 ((-112) $)) (-15 -2477 ((-112) $)) (-15 -3682 ((-112) $)) (-15 -3581 ((-112) $)) (-15 -3467 ((-649 (-52)) $)) (-15 -3363 ($ $ (-649 (-52)))) (-15 -3245 ($ $ (-649 (-52)))) (-15 -3159 ($ (-1183) (-112) (-112) (-112))) (-15 -4297 ($ $ (-649 (-1183)) (-52))) (-15 -4205 ((-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))) $)) (-15 -4108 ((-112) $)) (-15 -4021 ($ $)) (-15 -1964 ($ $ (-52))) (-15 -3933 ((-649 (-52)) $)) (-15 -1710 ((-649 $) $)) (-15 -3836 ((-3 (-649 $) "failed") (-649 $)))))
-((-2415 (((-112) $ $) NIL)) (-3102 (((-649 |#1|) $) 19)) (-2120 (((-112) $) 49)) (-4378 (((-3 (-677 |#1|) "failed") $) 56)) (-3148 (((-677 |#1|) $) 54)) (-3522 (($ $) 23)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-3842 (((-776) $) 61)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-677 |#1|) $) 21)) (-3793 (((-867) $) 47) (($ (-677 |#1|)) 26) (((-824 |#1|) $) 36) (($ |#1|) 25)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 9 T CONST)) (-2198 (((-649 (-677 |#1|)) $) 28)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 12)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 67)))
-(((-899 |#1|) (-13 (-855) (-1044 (-677 |#1|)) (-10 -8 (-15 1 ($) -3706) (-15 -3793 ((-824 |#1|) $)) (-15 -3793 ($ |#1|)) (-15 -3510 ((-677 |#1|) $)) (-15 -3842 ((-776) $)) (-15 -2198 ((-649 (-677 |#1|)) $)) (-15 -3522 ($ $)) (-15 -2120 ((-112) $)) (-15 -3102 ((-649 |#1|) $)))) (-855)) (T -899))
-((-1813 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3793 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
-(-13 (-855) (-1044 (-677 |#1|)) (-10 -8 (-15 (-1813) ($) -3706) (-15 -3793 ((-824 |#1|) $)) (-15 -3793 ($ |#1|)) (-15 -3510 ((-677 |#1|) $)) (-15 -3842 ((-776) $)) (-15 -2198 ((-649 (-677 |#1|)) $)) (-15 -3522 ($ $)) (-15 -2120 ((-112) $)) (-15 -3102 ((-649 |#1|) $))))
-((-2314 ((|#1| |#1| |#1|) 19)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -2314 (|#1| |#1| |#1|))) (-1249 |#2|) (-1055)) (T -900))
-((-2314 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1249 *3)))))
-(-10 -7 (-15 -2314 (|#1| |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-1331 (((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2277 (((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 14)) (-2919 (((-112) $ $) 6)))
+((-2417 (((-112) $ $) NIL)) (-4300 (($) 14)) (-2063 (($ (-895 |#1| |#2|) (-895 |#1| |#3|)) 28)) (-4047 (((-895 |#1| |#3|) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3042 (((-112) $) 22)) (-2495 (($) 19)) (-3796 (((-867) $) 31)) (-1520 (((-112) $ $) NIL)) (-3652 (((-895 |#1| |#2|) $) 15)) (-2920 (((-112) $ $) 26)))
+(((-891 |#1| |#2| |#3|) (-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -2063 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -3652 ((-895 |#1| |#2|) $)) (-15 -4047 ((-895 |#1| |#3|) $)))) (-1108) (-1108) (-671 |#2|)) (T -891))
+((-3042 (*1 *2 *1) (-12 (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1108)) (-4 *5 (-671 *4)))) (-2495 (*1 *1) (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108)) (-4 *4 (-671 *3)))) (-4300 (*1 *1) (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108)) (-4 *4 (-671 *3)))) (-2063 (*1 *1 *2 *3) (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))) (-3652 (*1 *2 *1) (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1108)) (-4 *5 (-671 *4)))) (-4047 (*1 *2 *1) (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1108)) (-4 *5 (-671 *4)))))
+(-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -2063 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -3652 ((-895 |#1| |#2|) $)) (-15 -4047 ((-895 |#1| |#3|) $))))
+((-2417 (((-112) $ $) 7)) (-3131 (((-895 |#1| $) $ (-898 |#1|) (-895 |#1| $)) 14)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
+(((-892 |#1|) (-140) (-1108)) (T -892))
+((-3131 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4)) (-4 *4 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -3131 ((-895 |t#1| $) $ (-898 |t#1|) (-895 |t#1| $)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-1825 (((-112) (-649 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1650 (((-895 |#1| |#2|) |#2| |#3|) 45 (-12 (-1749 (|has| |#2| (-1046 (-1185)))) (-1749 (|has| |#2| (-1057))))) (((-649 (-297 (-958 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1057)) (-1749 (|has| |#2| (-1046 (-1185)))))) (((-649 (-297 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1046 (-1185)))) (((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|) 21)))
+(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -1825 ((-112) |#2| |#3|)) (-15 -1825 ((-112) (-649 |#2|) |#3|)) (-15 -1650 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1650 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1057)) (-15 -1650 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -1650 ((-895 |#1| |#2|) |#2| |#3|))))) (-1108) (-892 |#1|) (-619 (-898 |#1|))) (T -893))
+((-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4)) (-1749 (-4 *3 (-1046 (-1185)))) (-1749 (-4 *3 (-1057))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 (-958 *3)))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1057)) (-1749 (-4 *3 (-1046 (-1185)))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1046 (-1185))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6))) (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5))))) (-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5))))) (-1825 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))))
+(-10 -7 (-15 -1825 ((-112) |#2| |#3|)) (-15 -1825 ((-112) (-649 |#2|) |#3|)) (-15 -1650 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1650 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1057)) (-15 -1650 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -1650 ((-895 |#1| |#2|) |#2| |#3|)))))
+((-1346 (((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)) 22)))
+(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)))) (-1108) (-1108) (-1108)) (T -894))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-895 *5 *7)) (-5 *1 (-894 *5 *6 *7)))))
+(-10 -7 (-15 -1346 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|))))
+((-2417 (((-112) $ $) NIL)) (-3969 (($ $ $) 40)) (-3612 (((-3 (-112) "failed") $ (-898 |#1|)) 37)) (-4300 (($) 12)) (-3435 (((-1167) $) NIL)) (-3191 (($ (-898 |#1|) |#2| $) 20)) (-3547 (((-1128) $) NIL)) (-1629 (((-3 |#2| "failed") (-898 |#1|) $) 51)) (-3042 (((-112) $) 15)) (-2495 (($) 13)) (-3881 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))) $) 25)) (-3809 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|)))) 23)) (-3796 (((-867) $) 45)) (-1520 (((-112) $ $) NIL)) (-1398 (($ (-898 |#1|) |#2| $ |#2|) 49)) (-1823 (($ (-898 |#1|) |#2| $) 48)) (-2920 (((-112) $ $) 42)))
+(((-895 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -3969 ($ $ $)) (-15 -1629 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -1823 ($ (-898 |#1|) |#2| $)) (-15 -3191 ($ (-898 |#1|) |#2| $)) (-15 -1398 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3881 ((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))))) (-15 -3612 ((-3 (-112) "failed") $ (-898 |#1|))))) (-1108) (-1108)) (T -895))
+((-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2495 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-4300 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-3969 (*1 *1 *1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-1629 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-4 *2 (-1108)) (-5 *1 (-895 *4 *2)))) (-1823 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1108)))) (-3191 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1108)))) (-1398 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1108)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4)))) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4)))) (-4 *4 (-1108)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)))) (-3612 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -3969 ($ $ $)) (-15 -1629 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -1823 ($ (-898 |#1|) |#2| $)) (-15 -3191 ($ (-898 |#1|) |#2| $)) (-15 -1398 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3881 ((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))))) (-15 -3612 ((-3 (-112) "failed") $ (-898 |#1|)))))
+((-4274 (((-898 |#1|) (-898 |#1|) (-649 (-1185)) (-1 (-112) (-649 |#2|))) 32) (((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|))) 46) (((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|)) 35)) (-3612 (((-112) (-649 |#2|) (-898 |#1|)) 42) (((-112) |#2| (-898 |#1|)) 36)) (-3727 (((-1 (-112) |#2|) (-898 |#1|)) 16)) (-1443 (((-649 |#2|) (-898 |#1|)) 24)) (-1901 (((-898 |#1|) (-898 |#1|) |#2|) 20)))
+(((-896 |#1| |#2|) (-10 -7 (-15 -4274 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1185)) (-1 (-112) (-649 |#2|)))) (-15 -3727 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -3612 ((-112) |#2| (-898 |#1|))) (-15 -3612 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -1901 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -1443 ((-649 |#2|) (-898 |#1|)))) (-1108) (-1225)) (T -896))
+((-1443 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-649 *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1225)))) (-1901 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1225)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3)) (-4 *3 (-1225)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1225)))) (-4274 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1185))) (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *1 (-896 *5 *6)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1108)) (-4 *5 (-1225)) (-5 *1 (-896 *4 *5)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1108)) (-4 *5 (-1225)) (-5 *1 (-896 *4 *5)))))
+(-10 -7 (-15 -4274 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1185)) (-1 (-112) (-649 |#2|)))) (-15 -3727 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -3612 ((-112) |#2| (-898 |#1|))) (-15 -3612 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -1901 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -1443 ((-649 |#2|) (-898 |#1|))))
+((-1346 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 19)))
+(((-897 |#1| |#2|) (-10 -7 (-15 -1346 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1108) (-1108)) (T -897))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))))
+(-10 -7 (-15 -1346 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|))))
+((-2417 (((-112) $ $) NIL)) (-3436 (($ $ (-649 (-52))) 74)) (-1712 (((-649 $) $) 138)) (-3375 (((-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52))) $) 30)) (-3179 (((-112) $) 35)) (-2989 (($ $ (-649 (-1185)) (-52)) 31)) (-2034 (($ $ (-649 (-52))) 73)) (-4381 (((-3 |#1| "failed") $) 71) (((-3 (-1185) "failed") $) 162)) (-3150 ((|#1| $) 68) (((-1185) $) NIL)) (-2163 (($ $) 126)) (-1716 (((-112) $) 55)) (-1826 (((-649 (-52)) $) 50)) (-3839 (($ (-1185) (-112) (-112) (-112)) 75)) (-4076 (((-3 (-649 $) "failed") (-649 $)) 82)) (-2011 (((-112) $) 58)) (-3455 (((-112) $) 57)) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) 41)) (-1361 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 $)) "failed") $) 97)) (-2427 (((-3 (-649 $) "failed") $) 40)) (-2593 (((-3 (-649 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 $))) "failed") $) 107)) (-3073 (((-3 (-649 $) "failed") $) 42)) (-2850 (((-3 (-2 (|:| |val| $) (|:| -1993 (-776))) "failed") $) 45)) (-3354 (((-112) $) 34)) (-3547 (((-1128) $) NIL)) (-1858 (((-112) $) 28)) (-3489 (((-112) $) 52)) (-3781 (((-649 (-52)) $) 130)) (-1946 (((-112) $) 56)) (-1869 (($ (-114) (-649 $)) 104)) (-2804 (((-776) $) 33)) (-3962 (($ $) 72)) (-1410 (($ (-649 $)) 69)) (-4041 (((-112) $) 32)) (-3796 (((-867) $) 63) (($ |#1|) 23) (($ (-1185)) 76)) (-1520 (((-112) $ $) NIL)) (-1901 (($ $ (-52)) 129)) (-1804 (($) 103 T CONST)) (-1815 (($) 83 T CONST)) (-2920 (((-112) $ $) 93)) (-3035 (($ $ $) 117)) (-3012 (($ $ $) 121)) (** (($ $ (-776)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-898 |#1|) (-13 (-1108) (-1046 |#1|) (-1046 (-1185)) (-10 -8 (-15 0 ($) -3709) (-15 1 ($) -3709) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2593 ((-3 (-649 $) "failed") $ (-114))) (-15 -2593 ((-3 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |val| $) (|:| -1993 (-776))) "failed") $)) (-15 -1361 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3073 ((-3 (-649 $) "failed") $)) (-15 -2605 ((-3 (-2 (|:| |val| $) (|:| -1993 $)) "failed") $)) (-15 -1869 ($ (-114) (-649 $))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -3035 ($ $ $)) (-15 -2804 ((-776) $)) (-15 -1410 ($ (-649 $))) (-15 -3962 ($ $)) (-15 -3354 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -4041 ((-112) $)) (-15 -1946 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -3489 ((-112) $)) (-15 -1826 ((-649 (-52)) $)) (-15 -2034 ($ $ (-649 (-52)))) (-15 -3436 ($ $ (-649 (-52)))) (-15 -3839 ($ (-1185) (-112) (-112) (-112))) (-15 -2989 ($ $ (-649 (-1185)) (-52))) (-15 -3375 ((-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52))) $)) (-15 -1858 ((-112) $)) (-15 -2163 ($ $)) (-15 -1901 ($ $ (-52))) (-15 -3781 ((-649 (-52)) $)) (-15 -1712 ((-649 $) $)) (-15 -4076 ((-3 (-649 $) "failed") (-649 $))))) (-1108)) (T -898))
+((-1804 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-1815 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-2427 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-4250 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2593 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-2593 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 (-898 *3))))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2850 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-776)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1361 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-898 *3)) (|:| |den| (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3073 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2605 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1869 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-3012 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-3035 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2034 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3436 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3839 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-112)) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-2989 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-52)) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-1901 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-4076 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(-13 (-1108) (-1046 |#1|) (-1046 (-1185)) (-10 -8 (-15 (-1804) ($) -3709) (-15 (-1815) ($) -3709) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2593 ((-3 (-649 $) "failed") $ (-114))) (-15 -2593 ((-3 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |val| $) (|:| -1993 (-776))) "failed") $)) (-15 -1361 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3073 ((-3 (-649 $) "failed") $)) (-15 -2605 ((-3 (-2 (|:| |val| $) (|:| -1993 $)) "failed") $)) (-15 -1869 ($ (-114) (-649 $))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -3035 ($ $ $)) (-15 -2804 ((-776) $)) (-15 -1410 ($ (-649 $))) (-15 -3962 ($ $)) (-15 -3354 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -4041 ((-112) $)) (-15 -1946 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -3489 ((-112) $)) (-15 -1826 ((-649 (-52)) $)) (-15 -2034 ($ $ (-649 (-52)))) (-15 -3436 ($ $ (-649 (-52)))) (-15 -3839 ($ (-1185) (-112) (-112) (-112))) (-15 -2989 ($ $ (-649 (-1185)) (-52))) (-15 -3375 ((-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52))) $)) (-15 -1858 ((-112) $)) (-15 -2163 ($ $)) (-15 -1901 ($ $ (-52))) (-15 -3781 ((-649 (-52)) $)) (-15 -1712 ((-649 $) $)) (-15 -4076 ((-3 (-649 $) "failed") (-649 $)))))
+((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) 19)) (-4132 (((-112) $) 49)) (-4381 (((-3 (-677 |#1|) "failed") $) 56)) (-3150 (((-677 |#1|) $) 54)) (-3525 (($ $) 23)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3845 (((-776) $) 61)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-677 |#1|) $) 21)) (-3796 (((-867) $) 47) (($ (-677 |#1|)) 26) (((-824 |#1|) $) 36) (($ |#1|) 25)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 9 T CONST)) (-3717 (((-649 (-677 |#1|)) $) 28)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 12)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 67)))
+(((-899 |#1|) (-13 (-855) (-1046 (-677 |#1|)) (-10 -8 (-15 1 ($) -3709) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ($ |#1|)) (-15 -3513 ((-677 |#1|) $)) (-15 -3845 ((-776) $)) (-15 -3717 ((-649 (-677 |#1|)) $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -3105 ((-649 |#1|) $)))) (-855)) (T -899))
+((-1815 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3796 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
+(-13 (-855) (-1046 (-677 |#1|)) (-10 -8 (-15 (-1815) ($) -3709) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ($ |#1|)) (-15 -3513 ((-677 |#1|) $)) (-15 -3845 ((-776) $)) (-15 -3717 ((-649 (-677 |#1|)) $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -3105 ((-649 |#1|) $))))
+((-2383 ((|#1| |#1| |#1|) 19)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -2383 (|#1| |#1| |#1|))) (-1251 |#2|) (-1057)) (T -900))
+((-2383 (*1 *2 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1251 *3)))))
+(-10 -7 (-15 -2383 (|#1| |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2035 (((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 14)) (-2920 (((-112) $ $) 6)))
(((-901) (-140)) (T -901))
-((-1331 (*1 *2 *3 *4) (-12 (-4 *1 (-901)) (-5 *3 (-1069)) (-5 *4 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165)))))) (-2277 (*1 *2 *3) (-12 (-4 *1 (-901)) (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *2 (-1041)))))
-(-13 (-1106) (-10 -7 (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))) (-1069) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -2277 ((-1041) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-4368 ((|#1| |#1| (-776)) 29)) (-2350 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2307 (((-3 (-2 (|:| -4395 |#1|) (|:| -4407 |#1|)) "failed") |#1| (-776) (-776)) 32) (((-649 |#1|) |#1|) 39)))
-(((-902 |#1| |#2|) (-10 -7 (-15 -2307 ((-649 |#1|) |#1|)) (-15 -2307 ((-3 (-2 (|:| -4395 |#1|) (|:| -4407 |#1|)) "failed") |#1| (-776) (-776))) (-15 -2350 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4368 (|#1| |#1| (-776)))) (-1249 |#2|) (-367)) (T -902))
-((-4368 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4)) (-4 *2 (-1249 *4)))) (-2350 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3)) (-4 *2 (-1249 *3)))) (-2307 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -4395 *3) (|:| -4407 *3))) (-5 *1 (-902 *3 *5)) (-4 *3 (-1249 *5)))) (-2307 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -2307 ((-649 |#1|) |#1|)) (-15 -2307 ((-3 (-2 (|:| -4395 |#1|) (|:| -4407 |#1|)) "failed") |#1| (-776) (-776))) (-15 -2350 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4368 (|#1| |#1| (-776))))
-((-2912 (((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165)) 106) (((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165) (-226)) 102) (((-1041) (-904) (-1069)) 94) (((-1041) (-904)) 95)) (-1331 (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904) (-1069)) 65) (((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904)) 67)))
-(((-903) (-10 -7 (-15 -2912 ((-1041) (-904))) (-15 -2912 ((-1041) (-904) (-1069))) (-15 -2912 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165) (-226))) (-15 -2912 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904) (-1069))))) (T -903))
-((-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-903)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165))))) (-5 *1 (-903)))) (-2912 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-2912 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165)) (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-903)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1041)) (-5 *1 (-903)))))
-(-10 -7 (-15 -2912 ((-1041) (-904))) (-15 -2912 ((-1041) (-904) (-1069))) (-15 -2912 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165) (-226))) (-15 -2912 ((-1041) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1165))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904))) (-15 -1331 ((-2 (|:| -1331 (-383)) (|:| -3570 (-1165)) (|:| |explanations| (-649 (-1165)))) (-904) (-1069))))
-((-2415 (((-112) $ $) NIL)) (-3148 (((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $) 19)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 21) (($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) 18)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-904) (-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -3148 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $))))) (T -904))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *1 (-904)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226)))) (-5 *1 (-904)))))
-(-13 (-1106) (-10 -8 (-15 -3793 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))))) (-15 -3148 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165)) (|:| |tol| (-226))) $))))
-((-3514 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) 10) (($ $ |#2| (-776)) 15) (($ $ (-649 |#2|) (-649 (-776))) 18)) (-2830 (($ $ |#2|) 19) (($ $ (-649 |#2|)) 21) (($ $ |#2| (-776)) 22) (($ $ (-649 |#2|) (-649 (-776))) 24)))
-(((-905 |#1| |#2|) (-10 -8 (-15 -2830 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2830 (|#1| |#1| |#2| (-776))) (-15 -2830 (|#1| |#1| (-649 |#2|))) (-15 -2830 (|#1| |#1| |#2|)) (-15 -3514 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3514 (|#1| |#1| |#2| (-776))) (-15 -3514 (|#1| |#1| (-649 |#2|))) (-15 -3514 (|#1| |#1| |#2|))) (-906 |#2|) (-1106)) (T -905))
-NIL
-(-10 -8 (-15 -2830 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2830 (|#1| |#1| |#2| (-776))) (-15 -2830 (|#1| |#1| (-649 |#2|))) (-15 -2830 (|#1| |#1| |#2|)) (-15 -3514 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3514 (|#1| |#1| |#2| (-776))) (-15 -3514 (|#1| |#1| (-649 |#2|))) (-15 -3514 (|#1| |#1| |#2|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3514 (($ $ |#1|) 46) (($ $ (-649 |#1|)) 45) (($ $ |#1| (-776)) 44) (($ $ (-649 |#1|) (-649 (-776))) 43)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ |#1|) 42) (($ $ (-649 |#1|)) 41) (($ $ |#1| (-776)) 40) (($ $ (-649 |#1|) (-649 (-776))) 39)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-906 |#1|) (-140) (-1106)) (T -906))
-((-3514 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1106)))) (-2830 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106)))) (-2830 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106)))) (-2830 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1106)))))
-(-13 (-1055) (-10 -8 (-15 -3514 ($ $ |t#1|)) (-15 -3514 ($ $ (-649 |t#1|))) (-15 -3514 ($ $ |t#1| (-776))) (-15 -3514 ($ $ (-649 |t#1|) (-649 (-776)))) (-15 -2830 ($ $ |t#1|)) (-15 -2830 ($ $ (-649 |t#1|))) (-15 -2830 ($ $ |t#1| (-776))) (-15 -2830 ($ $ (-649 |t#1|) (-649 (-776))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) 26)) (-2716 (((-112) $ (-776)) NIL)) (-1660 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-1419 (($ $ $) NIL (|has| $ (-6 -4445)))) (-4423 (($ $ $) NIL (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) (($ $ "left" $) NIL (|has| $ (-6 -4445))) (($ $ "right" $) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4407 (($ $) 25)) (-3869 (($ |#1|) 12) (($ $ $) 17)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-4395 (($ $) 23)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) 20)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3947 (((-569) $ $) NIL)) (-2102 (((-112) $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-1209 |#1|) $) 9) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 21 (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-907 |#1|) (-13 (-119 |#1|) (-618 (-1209 |#1|)) (-10 -8 (-15 -3869 ($ |#1|)) (-15 -3869 ($ $ $)))) (-1106)) (T -907))
-((-3869 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106)))) (-3869 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106)))))
-(-13 (-119 |#1|) (-618 (-1209 |#1|)) (-10 -8 (-15 -3869 ($ |#1|)) (-15 -3869 ($ $ $))))
-((-1467 ((|#2| (-1148 |#1| |#2|)) 50)))
-(((-908 |#1| |#2|) (-10 -7 (-15 -1467 (|#2| (-1148 |#1| |#2|)))) (-927) (-13 (-1055) (-10 -7 (-6 (-4446 "*"))))) (T -908))
-((-1467 (*1 *2 *3) (-12 (-5 *3 (-1148 *4 *2)) (-14 *4 (-927)) (-4 *2 (-13 (-1055) (-10 -7 (-6 (-4446 "*"))))) (-5 *1 (-908 *4 *2)))))
-(-10 -7 (-15 -1467 (|#2| (-1148 |#1| |#2|))))
-((-2415 (((-112) $ $) 7)) (-4188 (($) 19 T CONST)) (-2888 (((-3 $ "failed") $) 16)) (-3050 (((-1108 |#1|) $ |#1|) 33)) (-2623 (((-112) $) 18)) (-3377 (($ $ $) 31 (-2774 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-3969 (($ $ $) 30 (-2774 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-1550 (((-1165) $) 10)) (-1814 (($ $) 25)) (-3545 (((-1126) $) 11)) (-1723 ((|#1| $ |#1|) 35)) (-1866 ((|#1| $ |#1|) 34)) (-1544 (($ (-649 (-649 |#1|))) 36)) (-1648 (($ (-649 |#1|)) 37)) (-3580 (($ $ $) 22)) (-2292 (($ $ $) 21)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1813 (($) 20 T CONST)) (-2976 (((-112) $ $) 28 (-2774 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2954 (((-112) $ $) 27 (-2774 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 29 (-2774 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2942 (((-112) $ $) 32)) (-3032 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15)))
-(((-909 |#1|) (-140) (-1106)) (T -909))
-((-1648 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-909 *3)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-4 *1 (-909 *3)))) (-1723 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106)))) (-1866 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106)))) (-3050 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-1108 *3)))) (-2942 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(-13 (-478) (-10 -8 (-15 -1648 ($ (-649 |t#1|))) (-15 -1544 ($ (-649 (-649 |t#1|)))) (-15 -1723 (|t#1| $ |t#1|)) (-15 -1866 (|t#1| $ |t#1|)) (-15 -3050 ((-1108 |t#1|) $ |t#1|)) (-15 -2942 ((-112) $ $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-855)) |%noBranch|)))
-(((-102) . T) ((-618 (-867)) . T) ((-478) . T) ((-731) . T) ((-855) -2774 (|has| |#1| (-855)) (|has| |#1| (-372))) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-1427 (((-649 (-649 (-776))) $) 164)) (-1886 (((-649 (-776)) (-911 |#1|) $) 192)) (-1776 (((-649 (-776)) (-911 |#1|) $) 193)) (-3880 (((-649 (-911 |#1|)) $) 153)) (-3403 (((-911 |#1|) $ (-569)) 158) (((-911 |#1|) $) 159)) (-2758 (($ (-649 (-911 |#1|))) 166)) (-3110 (((-776) $) 160)) (-1963 (((-1108 (-1108 |#1|)) $) 190)) (-3050 (((-1108 |#1|) $ |#1|) 181) (((-1108 (-1108 |#1|)) $ (-1108 |#1|)) 201) (((-1108 (-649 |#1|)) $ (-649 |#1|)) 204)) (-1681 (((-1108 |#1|) $) 156)) (-1655 (((-112) (-911 |#1|) $) 141)) (-1550 (((-1165) $) NIL)) (-1579 (((-1278) $) 146) (((-1278) $ (-569) (-569)) 205)) (-3545 (((-1126) $) NIL)) (-4357 (((-649 (-911 |#1|)) $) 147)) (-1866 (((-911 |#1|) $ (-776)) 154)) (-3868 (((-776) $) 161)) (-3793 (((-867) $) 178) (((-649 (-911 |#1|)) $) 28) (($ (-649 (-911 |#1|))) 165)) (-1441 (((-112) $ $) NIL)) (-4360 (((-649 |#1|) $) 163)) (-2919 (((-112) $ $) 198)) (-2964 (((-112) $ $) 196)) (-2942 (((-112) $ $) 195)))
-(((-910 |#1|) (-13 (-1106) (-10 -8 (-15 -3793 ((-649 (-911 |#1|)) $)) (-15 -4357 ((-649 (-911 |#1|)) $)) (-15 -1866 ((-911 |#1|) $ (-776))) (-15 -3403 ((-911 |#1|) $ (-569))) (-15 -3403 ((-911 |#1|) $)) (-15 -3110 ((-776) $)) (-15 -3868 ((-776) $)) (-15 -4360 ((-649 |#1|) $)) (-15 -3880 ((-649 (-911 |#1|)) $)) (-15 -1427 ((-649 (-649 (-776))) $)) (-15 -3793 ($ (-649 (-911 |#1|)))) (-15 -2758 ($ (-649 (-911 |#1|)))) (-15 -3050 ((-1108 |#1|) $ |#1|)) (-15 -1963 ((-1108 (-1108 |#1|)) $)) (-15 -3050 ((-1108 (-1108 |#1|)) $ (-1108 |#1|))) (-15 -3050 ((-1108 (-649 |#1|)) $ (-649 |#1|))) (-15 -1655 ((-112) (-911 |#1|) $)) (-15 -1886 ((-649 (-776)) (-911 |#1|) $)) (-15 -1776 ((-649 (-776)) (-911 |#1|) $)) (-15 -1681 ((-1108 |#1|) $)) (-15 -2942 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -1579 ((-1278) $)) (-15 -1579 ((-1278) $ (-569) (-569))))) (-1106)) (T -910))
-((-3793 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-4357 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1106)))) (-3403 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1106)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3)))) (-3050 (*1 *2 *1 *3) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1108 (-1108 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-3050 (*1 *2 *1 *3) (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-1108 *4))) (-5 *1 (-910 *4)) (-5 *3 (-1108 *4)))) (-3050 (*1 *2 *1 *3) (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-649 *4))) (-5 *1 (-910 *4)) (-5 *3 (-649 *4)))) (-1655 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-910 *4)))) (-1886 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-1776 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-2942 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-2964 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))) (-1579 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-910 *4)) (-4 *4 (-1106)))))
-(-13 (-1106) (-10 -8 (-15 -3793 ((-649 (-911 |#1|)) $)) (-15 -4357 ((-649 (-911 |#1|)) $)) (-15 -1866 ((-911 |#1|) $ (-776))) (-15 -3403 ((-911 |#1|) $ (-569))) (-15 -3403 ((-911 |#1|) $)) (-15 -3110 ((-776) $)) (-15 -3868 ((-776) $)) (-15 -4360 ((-649 |#1|) $)) (-15 -3880 ((-649 (-911 |#1|)) $)) (-15 -1427 ((-649 (-649 (-776))) $)) (-15 -3793 ($ (-649 (-911 |#1|)))) (-15 -2758 ($ (-649 (-911 |#1|)))) (-15 -3050 ((-1108 |#1|) $ |#1|)) (-15 -1963 ((-1108 (-1108 |#1|)) $)) (-15 -3050 ((-1108 (-1108 |#1|)) $ (-1108 |#1|))) (-15 -3050 ((-1108 (-649 |#1|)) $ (-649 |#1|))) (-15 -1655 ((-112) (-911 |#1|) $)) (-15 -1886 ((-649 (-776)) (-911 |#1|) $)) (-15 -1776 ((-649 (-776)) (-911 |#1|) $)) (-15 -1681 ((-1108 |#1|) $)) (-15 -2942 ((-112) $ $)) (-15 -2964 ((-112) $ $)) (-15 -1579 ((-1278) $)) (-15 -1579 ((-1278) $ (-569) (-569)))))
-((-2415 (((-112) $ $) NIL)) (-3355 (((-649 $) (-649 $)) 103)) (-2552 (((-569) $) 84)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-3110 (((-776) $) 81)) (-3050 (((-1108 |#1|) $ |#1|) 72)) (-2623 (((-112) $) NIL)) (-1607 (((-112) $) 88)) (-2196 (((-776) $) 85)) (-1681 (((-1108 |#1|) $) 61)) (-3377 (($ $ $) NIL (-2774 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-3969 (($ $ $) NIL (-2774 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2528 (((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $) 56)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 131)) (-3545 (((-1126) $) NIL)) (-1526 (((-1108 |#1|) $) 139 (|has| |#1| (-372)))) (-2108 (((-112) $) 82)) (-1723 ((|#1| $ |#1|) 70)) (-1866 ((|#1| $ |#1|) 133)) (-3868 (((-776) $) 63)) (-1544 (($ (-649 (-649 |#1|))) 118)) (-2283 (((-977) $) 76)) (-1648 (($ (-649 |#1|)) 33)) (-3580 (($ $ $) NIL)) (-2292 (($ $ $) NIL)) (-2437 (($ (-649 (-649 |#1|))) 58)) (-2348 (($ (-649 (-649 |#1|))) 123)) (-1436 (($ (-649 |#1|)) 135)) (-3793 (((-867) $) 117) (($ (-649 (-649 |#1|))) 91) (($ (-649 |#1|)) 92)) (-1441 (((-112) $ $) NIL)) (-1813 (($) 24 T CONST)) (-2976 (((-112) $ $) NIL (-2774 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2954 (((-112) $ $) NIL (-2774 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2919 (((-112) $ $) 68)) (-2964 (((-112) $ $) NIL (-2774 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2942 (((-112) $ $) 90)) (-3032 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 34)))
-(((-911 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -2528 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -2437 ($ (-649 (-649 |#1|)))) (-15 -3793 ($ (-649 (-649 |#1|)))) (-15 -3793 ($ (-649 |#1|))) (-15 -2348 ($ (-649 (-649 |#1|)))) (-15 -3868 ((-776) $)) (-15 -1681 ((-1108 |#1|) $)) (-15 -2283 ((-977) $)) (-15 -3110 ((-776) $)) (-15 -2196 ((-776) $)) (-15 -2552 ((-569) $)) (-15 -2108 ((-112) $)) (-15 -1607 ((-112) $)) (-15 -3355 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -1526 ((-1108 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1436 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -1436 ($ (-649 |#1|))) |%noBranch|)))) (-1106)) (T -911))
-((-2528 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-2348 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-977)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1106)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372)) (-4 *3 (-1106)))) (-1436 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
-(-13 (-909 |#1|) (-10 -8 (-15 -2528 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -2437 ($ (-649 (-649 |#1|)))) (-15 -3793 ($ (-649 (-649 |#1|)))) (-15 -3793 ($ (-649 |#1|))) (-15 -2348 ($ (-649 (-649 |#1|)))) (-15 -3868 ((-776) $)) (-15 -1681 ((-1108 |#1|) $)) (-15 -2283 ((-977) $)) (-15 -3110 ((-776) $)) (-15 -2196 ((-776) $)) (-15 -2552 ((-569) $)) (-15 -2108 ((-112) $)) (-15 -1607 ((-112) $)) (-15 -3355 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -1526 ((-1108 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1436 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -1436 ($ (-649 |#1|))) |%noBranch|))))
-((-1472 (((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|)) 159)) (-3855 ((|#1|) 97)) (-3752 (((-423 (-1179 |#4|)) (-1179 |#4|)) 168)) (-3942 (((-423 (-1179 |#4|)) (-649 |#3|) (-1179 |#4|)) 84)) (-1584 (((-423 (-1179 |#4|)) (-1179 |#4|)) 178)) (-1346 (((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|) |#3|) 113)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1472 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|))) (-15 -1584 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -3752 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -3855 (|#1|)) (-15 -1346 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|) |#3|)) (-15 -3942 ((-423 (-1179 |#4|)) (-649 |#3|) (-1179 |#4|)))) (-915) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -912))
-((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1179 *8))) (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1179 *8)))) (-1346 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7)) (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7)))) (-3855 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-1584 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7)))) (-1472 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1472 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|))) (-15 -1584 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -3752 ((-423 (-1179 |#4|)) (-1179 |#4|))) (-15 -3855 (|#1|)) (-15 -1346 ((-3 (-649 (-1179 |#4|)) "failed") (-649 (-1179 |#4|)) (-1179 |#4|) |#3|)) (-15 -3942 ((-423 (-1179 |#4|)) (-649 |#3|) (-1179 |#4|))))
-((-1472 (((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|)) 41)) (-3855 ((|#1|) 75)) (-3752 (((-423 (-1179 |#2|)) (-1179 |#2|)) 124)) (-3942 (((-423 (-1179 |#2|)) (-1179 |#2|)) 108)) (-1584 (((-423 (-1179 |#2|)) (-1179 |#2|)) 135)))
-(((-913 |#1| |#2|) (-10 -7 (-15 -1472 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|))) (-15 -1584 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -3752 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -3855 (|#1|)) (-15 -3942 ((-423 (-1179 |#2|)) (-1179 |#2|)))) (-915) (-1249 |#1|)) (T -913))
-((-3942 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))) (-3855 (*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1249 *2)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))) (-1584 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))) (-1472 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5)))))
-(-10 -7 (-15 -1472 ((-3 (-649 (-1179 |#2|)) "failed") (-649 (-1179 |#2|)) (-1179 |#2|))) (-15 -1584 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -3752 ((-423 (-1179 |#2|)) (-1179 |#2|))) (-15 -3855 (|#1|)) (-15 -3942 ((-423 (-1179 |#2|)) (-1179 |#2|))))
-((-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 42)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 18)) (-4030 (((-3 $ "failed") $) 36)))
-(((-914 |#1|) (-10 -8 (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)))) (-915)) (T -914))
-NIL
-(-10 -8 (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-3253 (((-423 (-1179 $)) (-1179 $)) 66)) (-2078 (($ $) 57)) (-2508 (((-423 $) $) 58)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 63)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-4073 (((-112) $) 59)) (-2623 (((-112) $) 35)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3057 (((-423 (-1179 $)) (-1179 $)) 64)) (-3157 (((-423 (-1179 $)) (-1179 $)) 65)) (-3796 (((-423 $) $) 56)) (-2405 (((-3 $ "failed") $ $) 48)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 62 (|has| $ (-145)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-4030 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-901)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-2035 (*1 *2 *3) (-12 (-4 *1 (-901)) (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *2 (-1043)))))
+(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))) (-15 -2035 ((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2398 ((|#1| |#1| (-776)) 29)) (-1596 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2316 (((-3 (-2 (|:| -4398 |#1|) (|:| -4410 |#1|)) "failed") |#1| (-776) (-776)) 32) (((-649 |#1|) |#1|) 39)))
+(((-902 |#1| |#2|) (-10 -7 (-15 -2316 ((-649 |#1|) |#1|)) (-15 -2316 ((-3 (-2 (|:| -4398 |#1|) (|:| -4410 |#1|)) "failed") |#1| (-776) (-776))) (-15 -1596 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2398 (|#1| |#1| (-776)))) (-1251 |#2|) (-367)) (T -902))
+((-2398 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4)) (-4 *2 (-1251 *4)))) (-1596 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3)) (-4 *2 (-1251 *3)))) (-2316 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-902 *3 *5)) (-4 *3 (-1251 *5)))) (-2316 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -2316 ((-649 |#1|) |#1|)) (-15 -2316 ((-3 (-2 (|:| -4398 |#1|) (|:| -4410 |#1|)) "failed") |#1| (-776) (-776))) (-15 -1596 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2398 (|#1| |#1| (-776))))
+((-3218 (((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167)) 106) (((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167) (-226)) 102) (((-1043) (-904) (-1071)) 94) (((-1043) (-904)) 95)) (-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904) (-1071)) 65) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904)) 67)))
+(((-903) (-10 -7 (-15 -3218 ((-1043) (-904))) (-15 -3218 ((-1043) (-904) (-1071))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167) (-226))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904) (-1071))))) (T -903))
+((-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-903)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-903)))) (-3218 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1043)) (-5 *1 (-903)))) (-3218 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167)) (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1043)) (-5 *1 (-903)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-903)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1043)) (-5 *1 (-903)))))
+(-10 -7 (-15 -3218 ((-1043) (-904))) (-15 -3218 ((-1043) (-904) (-1071))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167) (-226))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904) (-1071))))
+((-2417 (((-112) $ $) NIL)) (-3150 (((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))) $) 19)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 21) (($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-904) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))) (-15 -3150 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))) $))))) (T -904))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *1 (-904)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *1 (-904)))))
+(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))) (-15 -3150 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))) $))))
+((-3517 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) 10) (($ $ |#2| (-776)) 15) (($ $ (-649 |#2|) (-649 (-776))) 18)) (-2832 (($ $ |#2|) 19) (($ $ (-649 |#2|)) 21) (($ $ |#2| (-776)) 22) (($ $ (-649 |#2|) (-649 (-776))) 24)))
+(((-905 |#1| |#2|) (-10 -8 (-15 -2832 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2832 (|#1| |#1| |#2| (-776))) (-15 -2832 (|#1| |#1| (-649 |#2|))) (-15 -2832 (|#1| |#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#2| (-776))) (-15 -3517 (|#1| |#1| (-649 |#2|))) (-15 -3517 (|#1| |#1| |#2|))) (-906 |#2|) (-1108)) (T -905))
+NIL
+(-10 -8 (-15 -2832 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2832 (|#1| |#1| |#2| (-776))) (-15 -2832 (|#1| |#1| (-649 |#2|))) (-15 -2832 (|#1| |#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#2| (-776))) (-15 -3517 (|#1| |#1| (-649 |#2|))) (-15 -3517 (|#1| |#1| |#2|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $ |#1|) 46) (($ $ (-649 |#1|)) 45) (($ $ |#1| (-776)) 44) (($ $ (-649 |#1|) (-649 (-776))) 43)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#1|) 42) (($ $ (-649 |#1|)) 41) (($ $ |#1| (-776)) 40) (($ $ (-649 |#1|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-906 |#1|) (-140) (-1108)) (T -906))
+((-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1108)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108)))) (-2832 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-2832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1108)))))
+(-13 (-1057) (-10 -8 (-15 -3517 ($ $ |t#1|)) (-15 -3517 ($ $ (-649 |t#1|))) (-15 -3517 ($ $ |t#1| (-776))) (-15 -3517 ($ $ (-649 |t#1|) (-649 (-776)))) (-15 -2832 ($ $ |t#1|)) (-15 -2832 ($ $ (-649 |t#1|))) (-15 -2832 ($ $ |t#1| (-776))) (-15 -2832 ($ $ (-649 |t#1|) (-649 (-776))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 26)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-4416 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1718 (($ $ $) NIL (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 25)) (-3872 (($ |#1|) 12) (($ $ $) 17)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 23)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) 20)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1211 |#1|) $) 9) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 21 (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-907 |#1|) (-13 (-119 |#1|) (-618 (-1211 |#1|)) (-10 -8 (-15 -3872 ($ |#1|)) (-15 -3872 ($ $ $)))) (-1108)) (T -907))
+((-3872 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108)))) (-3872 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108)))))
+(-13 (-119 |#1|) (-618 (-1211 |#1|)) (-10 -8 (-15 -3872 ($ |#1|)) (-15 -3872 ($ $ $))))
+((-3858 ((|#2| (-1150 |#1| |#2|)) 50)))
+(((-908 |#1| |#2|) (-10 -7 (-15 -3858 (|#2| (-1150 |#1| |#2|)))) (-927) (-13 (-1057) (-10 -7 (-6 (-4449 "*"))))) (T -908))
+((-3858 (*1 *2 *3) (-12 (-5 *3 (-1150 *4 *2)) (-14 *4 (-927)) (-4 *2 (-13 (-1057) (-10 -7 (-6 (-4449 "*"))))) (-5 *1 (-908 *4 *2)))))
+(-10 -7 (-15 -3858 (|#2| (-1150 |#1| |#2|))))
+((-2417 (((-112) $ $) 7)) (-4427 (($) 19 T CONST)) (-3086 (((-3 $ "failed") $) 16)) (-2097 (((-1110 |#1|) $ |#1|) 33)) (-2349 (((-112) $) 18)) (-3380 (($ $ $) 31 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2839 (($ $ $) 30 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 25)) (-3547 (((-1128) $) 11)) (-1725 ((|#1| $ |#1|) 35)) (-1869 ((|#1| $ |#1|) 34)) (-3365 (($ (-649 (-649 |#1|))) 36)) (-1940 (($ (-649 |#1|)) 37)) (-3476 (($ $ $) 22)) (-2180 (($ $ $) 21)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2978 (((-112) $ $) 28 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2956 (((-112) $ $) 27 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 29 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2944 (((-112) $ $) 32)) (-3035 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15)))
+(((-909 |#1|) (-140) (-1108)) (T -909))
+((-1940 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-909 *3)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-4 *1 (-909 *3)))) (-1725 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108)))) (-1869 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108)))) (-2097 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-1110 *3)))) (-2944 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))))
+(-13 (-478) (-10 -8 (-15 -1940 ($ (-649 |t#1|))) (-15 -3365 ($ (-649 (-649 |t#1|)))) (-15 -1725 (|t#1| $ |t#1|)) (-15 -1869 (|t#1| $ |t#1|)) (-15 -2097 ((-1110 |t#1|) $ |t#1|)) (-15 -2944 ((-112) $ $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-855)) |%noBranch|)))
+(((-102) . T) ((-618 (-867)) . T) ((-478) . T) ((-731) . T) ((-855) -2776 (|has| |#1| (-855)) (|has| |#1| (-372))) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-1375 (((-649 (-649 (-776))) $) 164)) (-3502 (((-649 (-776)) (-911 |#1|) $) 192)) (-3773 (((-649 (-776)) (-911 |#1|) $) 193)) (-3205 (((-649 (-911 |#1|)) $) 153)) (-3406 (((-911 |#1|) $ (-569)) 158) (((-911 |#1|) $) 159)) (-4291 (($ (-649 (-911 |#1|))) 166)) (-1466 (((-776) $) 160)) (-1892 (((-1110 (-1110 |#1|)) $) 190)) (-2097 (((-1110 |#1|) $ |#1|) 181) (((-1110 (-1110 |#1|)) $ (-1110 |#1|)) 201) (((-1110 (-649 |#1|)) $ (-649 |#1|)) 204)) (-2236 (((-1110 |#1|) $) 156)) (-2004 (((-112) (-911 |#1|) $) 141)) (-3435 (((-1167) $) NIL)) (-2441 (((-1280) $) 146) (((-1280) $ (-569) (-569)) 205)) (-3547 (((-1128) $) NIL)) (-2322 (((-649 (-911 |#1|)) $) 147)) (-1869 (((-911 |#1|) $ (-776)) 154)) (-4339 (((-776) $) 161)) (-3796 (((-867) $) 178) (((-649 (-911 |#1|)) $) 28) (($ (-649 (-911 |#1|))) 165)) (-1520 (((-112) $ $) NIL)) (-4363 (((-649 |#1|) $) 163)) (-2920 (((-112) $ $) 198)) (-2966 (((-112) $ $) 196)) (-2944 (((-112) $ $) 195)))
+(((-910 |#1|) (-13 (-1108) (-10 -8 (-15 -3796 ((-649 (-911 |#1|)) $)) (-15 -2322 ((-649 (-911 |#1|)) $)) (-15 -1869 ((-911 |#1|) $ (-776))) (-15 -3406 ((-911 |#1|) $ (-569))) (-15 -3406 ((-911 |#1|) $)) (-15 -1466 ((-776) $)) (-15 -4339 ((-776) $)) (-15 -4363 ((-649 |#1|) $)) (-15 -3205 ((-649 (-911 |#1|)) $)) (-15 -1375 ((-649 (-649 (-776))) $)) (-15 -3796 ($ (-649 (-911 |#1|)))) (-15 -4291 ($ (-649 (-911 |#1|)))) (-15 -2097 ((-1110 |#1|) $ |#1|)) (-15 -1892 ((-1110 (-1110 |#1|)) $)) (-15 -2097 ((-1110 (-1110 |#1|)) $ (-1110 |#1|))) (-15 -2097 ((-1110 (-649 |#1|)) $ (-649 |#1|))) (-15 -2004 ((-112) (-911 |#1|) $)) (-15 -3502 ((-649 (-776)) (-911 |#1|) $)) (-15 -3773 ((-649 (-776)) (-911 |#1|) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2944 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -2441 ((-1280) $)) (-15 -2441 ((-1280) $ (-569) (-569))))) (-1108)) (T -910))
+((-3796 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1108)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1108)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3)))) (-2097 (*1 *2 *1 *3) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1110 (-1110 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2097 (*1 *2 *1 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-1110 *4))) (-5 *1 (-910 *4)) (-5 *3 (-1110 *4)))) (-2097 (*1 *2 *1 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-649 *4))) (-5 *1 (-910 *4)) (-5 *3 (-649 *4)))) (-2004 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-910 *4)))) (-3502 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-3773 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2944 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2966 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2441 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-910 *4)) (-4 *4 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -3796 ((-649 (-911 |#1|)) $)) (-15 -2322 ((-649 (-911 |#1|)) $)) (-15 -1869 ((-911 |#1|) $ (-776))) (-15 -3406 ((-911 |#1|) $ (-569))) (-15 -3406 ((-911 |#1|) $)) (-15 -1466 ((-776) $)) (-15 -4339 ((-776) $)) (-15 -4363 ((-649 |#1|) $)) (-15 -3205 ((-649 (-911 |#1|)) $)) (-15 -1375 ((-649 (-649 (-776))) $)) (-15 -3796 ($ (-649 (-911 |#1|)))) (-15 -4291 ($ (-649 (-911 |#1|)))) (-15 -2097 ((-1110 |#1|) $ |#1|)) (-15 -1892 ((-1110 (-1110 |#1|)) $)) (-15 -2097 ((-1110 (-1110 |#1|)) $ (-1110 |#1|))) (-15 -2097 ((-1110 (-649 |#1|)) $ (-649 |#1|))) (-15 -2004 ((-112) (-911 |#1|) $)) (-15 -3502 ((-649 (-776)) (-911 |#1|) $)) (-15 -3773 ((-649 (-776)) (-911 |#1|) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2944 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -2441 ((-1280) $)) (-15 -2441 ((-1280) $ (-569) (-569)))))
+((-2417 (((-112) $ $) NIL)) (-3358 (((-649 $) (-649 $)) 103)) (-2919 (((-569) $) 84)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-1466 (((-776) $) 81)) (-2097 (((-1110 |#1|) $ |#1|) 72)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) 88)) (-3696 (((-776) $) 85)) (-2236 (((-1110 |#1|) $) 61)) (-3380 (($ $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2839 (($ $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2652 (((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $) 56)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 131)) (-3547 (((-1128) $) NIL)) (-3160 (((-1110 |#1|) $) 139 (|has| |#1| (-372)))) (-4024 (((-112) $) 82)) (-1725 ((|#1| $ |#1|) 70)) (-1869 ((|#1| $ |#1|) 133)) (-4339 (((-776) $) 63)) (-3365 (($ (-649 (-649 |#1|))) 118)) (-2095 (((-979) $) 76)) (-1940 (($ (-649 |#1|)) 33)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-4283 (($ (-649 (-649 |#1|))) 58)) (-1571 (($ (-649 (-649 |#1|))) 123)) (-1464 (($ (-649 |#1|)) 135)) (-3796 (((-867) $) 117) (($ (-649 (-649 |#1|))) 91) (($ (-649 |#1|)) 92)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 24 T CONST)) (-2978 (((-112) $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2920 (((-112) $ $) 68)) (-2966 (((-112) $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2944 (((-112) $ $) 90)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 34)))
+(((-911 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -2652 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -4283 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 |#1|))) (-15 -1571 ($ (-649 (-649 |#1|)))) (-15 -4339 ((-776) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2095 ((-979) $)) (-15 -1466 ((-776) $)) (-15 -3696 ((-776) $)) (-15 -2919 ((-569) $)) (-15 -4024 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -3358 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -3160 ((-1110 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1464 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -1464 ($ (-649 |#1|))) |%noBranch|)))) (-1108)) (T -911))
+((-2652 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-979)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-3358 (*1 *2 *2) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372)) (-4 *3 (-1108)))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3)))))
+(-13 (-909 |#1|) (-10 -8 (-15 -2652 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -4283 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 |#1|))) (-15 -1571 ($ (-649 (-649 |#1|)))) (-15 -4339 ((-776) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2095 ((-979) $)) (-15 -1466 ((-776) $)) (-15 -3696 ((-776) $)) (-15 -2919 ((-569) $)) (-15 -4024 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -3358 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -3160 ((-1110 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1464 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -1464 ($ (-649 |#1|))) |%noBranch|))))
+((-3911 (((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|)) 159)) (-4231 ((|#1|) 97)) (-1468 (((-423 (-1181 |#4|)) (-1181 |#4|)) 168)) (-2544 (((-423 (-1181 |#4|)) (-649 |#3|) (-1181 |#4|)) 84)) (-2488 (((-423 (-1181 |#4|)) (-1181 |#4|)) 178)) (-1930 (((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|) |#3|) 113)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|))) (-15 -2488 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -1468 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -4231 (|#1|)) (-15 -1930 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|) |#3|)) (-15 -2544 ((-423 (-1181 |#4|)) (-649 |#3|) (-1181 |#4|)))) (-915) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -912))
+((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1181 *8))) (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1181 *8)))) (-1930 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7)) (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7)))) (-4231 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-1468 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-2488 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3911 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|))) (-15 -2488 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -1468 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -4231 (|#1|)) (-15 -1930 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|) |#3|)) (-15 -2544 ((-423 (-1181 |#4|)) (-649 |#3|) (-1181 |#4|))))
+((-3911 (((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|)) 41)) (-4231 ((|#1|) 75)) (-1468 (((-423 (-1181 |#2|)) (-1181 |#2|)) 124)) (-2544 (((-423 (-1181 |#2|)) (-1181 |#2|)) 108)) (-2488 (((-423 (-1181 |#2|)) (-1181 |#2|)) 135)))
+(((-913 |#1| |#2|) (-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|))) (-15 -2488 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -1468 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -4231 (|#1|)) (-15 -2544 ((-423 (-1181 |#2|)) (-1181 |#2|)))) (-915) (-1251 |#1|)) (T -913))
+((-2544 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))) (-4231 (*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1251 *2)))) (-1468 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))) (-2488 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))) (-3911 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5)))))
+(-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|))) (-15 -2488 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -1468 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -4231 (|#1|)) (-15 -2544 ((-423 (-1181 |#2|)) (-1181 |#2|))))
+((-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 42)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 18)) (-2239 (((-3 $ "failed") $) 36)))
+(((-914 |#1|) (-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)))) (-915)) (T -914))
+NIL
+(-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 66)) (-1830 (($ $) 57)) (-3764 (((-423 $) $) 58)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 63)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-1473 (((-112) $) 59)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2156 (((-423 (-1181 $)) (-1181 $)) 64)) (-3814 (((-423 (-1181 $)) (-1181 $)) 65)) (-3800 (((-423 $) $) 56)) (-2407 (((-3 $ "failed") $ $) 48)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 62 (|has| $ (-145)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2239 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-915) (-140)) (T -915))
-((-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-915)))) (-3253 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))) (-3157 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))) (-3057 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))) (-4216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1179 *1))) (-5 *3 (-1179 *1)) (-4 *1 (-915)))) (-4117 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915)) (-5 *2 (-1273 *1)))) (-4030 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915)))))
-(-13 (-1227) (-10 -8 (-15 -3253 ((-423 (-1179 $)) (-1179 $))) (-15 -3157 ((-423 (-1179 $)) (-1179 $))) (-15 -3057 ((-423 (-1179 $)) (-1179 $))) (-15 -3386 ((-1179 $) (-1179 $) (-1179 $))) (-15 -4216 ((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $))) (IF (|has| $ (-145)) (PROGN (-15 -4117 ((-3 (-1273 $) "failed") (-694 $))) (-15 -4030 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-2045 (((-112) $) NIL)) (-2162 (((-776)) NIL)) (-3136 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-1372 (((-1196 (-927) (-776)) (-569)) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 $ "failed") $) NIL)) (-3148 (($ $) NIL)) (-3390 (($ (-1273 $)) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-1312 (($) NIL)) (-1940 (((-112) $) NIL)) (-2501 (($ $) NIL) (($ $ (-776)) NIL)) (-4073 (((-112) $) NIL)) (-3110 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2623 (((-112) $) NIL)) (-1993 (($) NIL (|has| $ (-372)))) (-2968 (((-112) $) NIL (|has| $ (-372)))) (-2707 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3812 (((-3 $ "failed") $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2091 (((-1179 $) $ (-927)) NIL (|has| $ (-372))) (((-1179 $) $) NIL)) (-2855 (((-927) $) NIL)) (-4244 (((-1179 $) $) NIL (|has| $ (-372)))) (-4151 (((-3 (-1179 $) "failed") $ $) NIL (|has| $ (-372))) (((-1179 $) $) NIL (|has| $ (-372)))) (-3091 (($ $ (-1179 $)) NIL (|has| $ (-372)))) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL T CONST)) (-2150 (($ (-927)) NIL)) (-1959 (((-112) $) NIL)) (-3545 (((-1126) $) NIL)) (-2330 (($) NIL (|has| $ (-372)))) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL)) (-3796 (((-423 $) $) NIL)) (-2259 (((-927)) NIL) (((-838 (-927))) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-2601 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-3083 (((-134)) NIL)) (-3514 (($ $ (-776)) NIL) (($ $) NIL)) (-3868 (((-927) $) NIL) (((-838 (-927)) $) NIL)) (-4143 (((-1179 $)) NIL)) (-2430 (($) NIL)) (-3188 (($) NIL (|has| $ (-372)))) (-2960 (((-694 $) (-1273 $)) NIL) (((-1273 $) $) NIL)) (-1408 (((-569) $) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL)) (-4030 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $) (-927)) NIL) (((-1273 $)) NIL)) (-2985 (((-112) $ $) NIL)) (-2133 (((-112) $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2064 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+((-2219 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-915)))) (-3534 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))) (-3814 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))) (-2156 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))) (-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *1))) (-5 *3 (-1181 *1)) (-4 *1 (-915)))) (-1924 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915)) (-5 *2 (-1275 *1)))) (-2239 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915)))))
+(-13 (-1229) (-10 -8 (-15 -3534 ((-423 (-1181 $)) (-1181 $))) (-15 -3814 ((-423 (-1181 $)) (-1181 $))) (-15 -2156 ((-423 (-1181 $)) (-1181 $))) (-15 -2219 ((-1181 $) (-1181 $) (-1181 $))) (-15 -3466 ((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $))) (IF (|has| $ (-145)) (PROGN (-15 -1924 ((-3 (-1275 $) "failed") (-694 $))) (-15 -2239 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 $ "failed") $) NIL)) (-3150 (($ $) NIL)) (-2247 (($ (-1275 $)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL)) (-2807 (((-112) $) NIL)) (-3701 (($ $) NIL) (($ $ (-776)) NIL)) (-1473 (((-112) $) NIL)) (-1466 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| $ (-372)))) (-2483 (((-112) $) NIL (|has| $ (-372)))) (-3829 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 $) $ (-927)) NIL (|has| $ (-372))) (((-1181 $) $) NIL)) (-2731 (((-927) $) NIL)) (-3775 (((-1181 $) $) NIL (|has| $ (-372)))) (-4119 (((-3 (-1181 $) "failed") $ $) NIL (|has| $ (-372))) (((-1181 $) $) NIL (|has| $ (-372)))) (-4384 (($ $ (-1181 $)) NIL (|has| $ (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL T CONST)) (-2150 (($ (-927)) NIL)) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| $ (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL)) (-3800 (((-423 $) $) NIL)) (-1898 (((-927)) NIL) (((-838 (-927))) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-2377 (((-134)) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-4339 (((-927) $) NIL) (((-838 (-927)) $) NIL)) (-4061 (((-1181 $)) NIL)) (-4234 (($) NIL)) (-4110 (($) NIL (|has| $ (-372)))) (-2415 (((-694 $) (-1275 $)) NIL) (((-1275 $) $) NIL)) (-1410 (((-569) $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $) (-927)) NIL) (((-1275 $)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
(((-916 |#1|) (-13 (-353) (-332 $) (-619 (-569))) (-927)) (T -916))
NIL
(-13 (-353) (-332 $) (-619 (-569)))
-((-3624 (((-3 (-2 (|:| -3110 (-776)) (|:| -1691 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)) 77)) (-3504 (((-112) (-340 |#2| |#3| |#4| |#5|)) 17)) (-3110 (((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|)) 15)))
-(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3110 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -3504 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -3624 ((-3 (-2 (|:| -3110 (-776)) (|:| -1691 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)))) (-13 (-561) (-1044 (-569))) (-435 |#1|) (-1249 |#2|) (-1249 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -917))
-((-3624 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-2 (|:| -3110 (-776)) (|:| -1691 *8))) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-3110 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3110 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -3504 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -3624 ((-3 (-2 (|:| -3110 (-776)) (|:| -1691 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|))))
-((-3624 (((-3 (-2 (|:| -3110 (-776)) (|:| -1691 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 64)) (-3504 (((-112) (-340 (-412 (-569)) |#1| |#2| |#3|)) 16)) (-3110 (((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 14)))
-(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -3110 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -3504 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -3624 ((-3 (-2 (|:| -3110 (-776)) (|:| -1691 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)))) (-1249 (-412 (-569))) (-1249 (-412 |#1|)) (-346 (-412 (-569)) |#1| |#2|)) (T -918))
-((-3624 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-2 (|:| -3110 (-776)) (|:| -1691 *6))) (-5 *1 (-918 *4 *5 *6)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-918 *4 *5 *6)))) (-3110 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776)) (-5 *1 (-918 *4 *5 *6)))))
-(-10 -7 (-15 -3110 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -3504 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -3624 ((-3 (-2 (|:| -3110 (-776)) (|:| -1691 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))))
-((-2908 ((|#2| |#2|) 26)) (-2695 (((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) 15)) (-2439 (((-927) (-569)) 38)) (-2800 (((-569) |#2|) 45)) (-2562 (((-569) |#2|) 21) (((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|) 20)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -2439 ((-927) (-569))) (-15 -2562 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -2562 ((-569) |#2|)) (-15 -2695 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -2800 ((-569) |#2|)) (-15 -2908 (|#2| |#2|))) (-1249 (-412 (-569))) (-1249 (-412 |#1|))) (T -919))
-((-2908 (*1 *2 *2) (-12 (-4 *3 (-1249 (-412 (-569)))) (-5 *1 (-919 *3 *2)) (-4 *2 (-1249 (-412 *3))))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1249 (-412 *4))))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1249 (-412 *4))))) (-2562 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1249 (-412 *4))))) (-2562 (*1 *2 *3) (-12 (-4 *3 (-1249 (-412 (-569)))) (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))) (-5 *1 (-919 *3 *4)) (-4 *4 (-1249 (-412 *3))))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1249 (-412 *3))) (-5 *2 (-927)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1249 (-412 *4))))))
-(-10 -7 (-15 -2439 ((-927) (-569))) (-15 -2562 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -2562 ((-569) |#2|)) (-15 -2695 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -2800 ((-569) |#2|)) (-15 -2908 (|#2| |#2|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 ((|#1| $) 100)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2366 (($ $ $) NIL)) (-2888 (((-3 $ "failed") $) 94)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-1353 (($ |#1| (-423 |#1|)) 92)) (-1946 (((-1179 |#1|) |#1| |#1|) 53)) (-1849 (($ $) 61)) (-2623 (((-112) $) NIL)) (-2040 (((-569) $) 97)) (-2138 (($ $ (-569)) 99)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2234 ((|#1| $) 96)) (-2331 (((-423 |#1|) $) 95)) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) 93)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-4366 (($ $) 50)) (-3793 (((-867) $) 124) (($ (-569)) 73) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 41) (((-412 |#1|) $) 78) (($ (-412 (-423 |#1|))) 86)) (-3302 (((-776)) 71 T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) 26 T CONST)) (-1813 (($) 15 T CONST)) (-2919 (((-112) $ $) 87)) (-3032 (($ $ $) NIL)) (-3021 (($ $) 108) (($ $ $) NIL)) (-3009 (($ $ $) 49)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 48) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-920 |#1|) (-13 (-367) (-38 |#1|) (-10 -8 (-15 -3793 ((-412 |#1|) $)) (-15 -3793 ($ (-412 (-423 |#1|)))) (-15 -4366 ($ $)) (-15 -2331 ((-423 |#1|) $)) (-15 -2234 (|#1| $)) (-15 -2138 ($ $ (-569))) (-15 -2040 ((-569) $)) (-15 -1946 ((-1179 |#1|) |#1| |#1|)) (-15 -1849 ($ $)) (-15 -1353 ($ |#1| (-423 |#1|))) (-15 -3673 (|#1| $)))) (-310)) (T -920))
-((-3793 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-412 (-423 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-2234 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-2138 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1946 (*1 *2 *3 *3) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1849 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1353 (*1 *1 *2 *3) (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2)))) (-3673 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
-(-13 (-367) (-38 |#1|) (-10 -8 (-15 -3793 ((-412 |#1|) $)) (-15 -3793 ($ (-412 (-423 |#1|)))) (-15 -4366 ($ $)) (-15 -2331 ((-423 |#1|) $)) (-15 -2234 (|#1| $)) (-15 -2138 ($ $ (-569))) (-15 -2040 ((-569) $)) (-15 -1946 ((-1179 |#1|) |#1| |#1|)) (-15 -1849 ($ $)) (-15 -1353 ($ |#1| (-423 |#1|))) (-15 -3673 (|#1| $))))
-((-1353 (((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1183)) 17) (((-52) (-412 (-958 |#1|)) (-1183)) 18)))
-(((-921 |#1|) (-10 -7 (-15 -1353 ((-52) (-412 (-958 |#1|)) (-1183))) (-15 -1353 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1183)))) (-13 (-310) (-147))) (T -921))
-((-1353 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1183)) (-5 *3 (-958 *6)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6)))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5)))))
-(-10 -7 (-15 -1353 ((-52) (-412 (-958 |#1|)) (-1183))) (-15 -1353 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1183))))
-((-1478 ((|#4| (-649 |#4|)) 149) (((-1179 |#4|) (-1179 |#4|) (-1179 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-1864 (((-1179 |#4|) (-649 (-1179 |#4|))) 142) (((-1179 |#4|) (-1179 |#4|) (-1179 |#4|)) 63) ((|#4| (-649 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
-(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 (|#4| |#4| |#4|)) (-15 -1864 (|#4| (-649 |#4|))) (-15 -1864 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1864 ((-1179 |#4|) (-649 (-1179 |#4|)))) (-15 -1478 (|#4| |#4| |#4|)) (-15 -1478 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1478 (|#4| (-649 |#4|)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -922))
-((-1478 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-1478 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-1478 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-649 (-1179 *7))) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-1179 *7)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1864 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-1864 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))))
-(-10 -7 (-15 -1864 (|#4| |#4| |#4|)) (-15 -1864 (|#4| (-649 |#4|))) (-15 -1864 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1864 ((-1179 |#4|) (-649 (-1179 |#4|)))) (-15 -1478 (|#4| |#4| |#4|)) (-15 -1478 ((-1179 |#4|) (-1179 |#4|) (-1179 |#4|))) (-15 -1478 (|#4| (-649 |#4|))))
-((-2106 (((-910 (-569)) (-977)) 38) (((-910 (-569)) (-649 (-569))) 35)) (-1593 (((-910 (-569)) (-649 (-569))) 70) (((-910 (-569)) (-927)) 71)) (-1998 (((-910 (-569))) 39)) (-2974 (((-910 (-569))) 55) (((-910 (-569)) (-649 (-569))) 54)) (-2851 (((-910 (-569))) 53) (((-910 (-569)) (-649 (-569))) 52)) (-4159 (((-910 (-569))) 51) (((-910 (-569)) (-649 (-569))) 50)) (-4064 (((-910 (-569))) 49) (((-910 (-569)) (-649 (-569))) 48)) (-3977 (((-910 (-569))) 47) (((-910 (-569)) (-649 (-569))) 46)) (-3099 (((-910 (-569))) 57) (((-910 (-569)) (-649 (-569))) 56)) (-3894 (((-910 (-569)) (-649 (-569))) 75) (((-910 (-569)) (-927)) 77)) (-3791 (((-910 (-569)) (-649 (-569))) 72) (((-910 (-569)) (-927)) 73)) (-1693 (((-910 (-569)) (-649 (-569))) 68) (((-910 (-569)) (-927)) 69)) (-3705 (((-910 (-569)) (-649 (-927))) 60)))
-(((-923) (-10 -7 (-15 -1593 ((-910 (-569)) (-927))) (-15 -1593 ((-910 (-569)) (-649 (-569)))) (-15 -1693 ((-910 (-569)) (-927))) (-15 -1693 ((-910 (-569)) (-649 (-569)))) (-15 -3705 ((-910 (-569)) (-649 (-927)))) (-15 -3791 ((-910 (-569)) (-927))) (-15 -3791 ((-910 (-569)) (-649 (-569)))) (-15 -3894 ((-910 (-569)) (-927))) (-15 -3894 ((-910 (-569)) (-649 (-569)))) (-15 -3977 ((-910 (-569)) (-649 (-569)))) (-15 -3977 ((-910 (-569)))) (-15 -4064 ((-910 (-569)) (-649 (-569)))) (-15 -4064 ((-910 (-569)))) (-15 -4159 ((-910 (-569)) (-649 (-569)))) (-15 -4159 ((-910 (-569)))) (-15 -2851 ((-910 (-569)) (-649 (-569)))) (-15 -2851 ((-910 (-569)))) (-15 -2974 ((-910 (-569)) (-649 (-569)))) (-15 -2974 ((-910 (-569)))) (-15 -3099 ((-910 (-569)) (-649 (-569)))) (-15 -3099 ((-910 (-569)))) (-15 -1998 ((-910 (-569)))) (-15 -2106 ((-910 (-569)) (-649 (-569)))) (-15 -2106 ((-910 (-569)) (-977))))) (T -923))
-((-2106 (*1 *2 *3) (-12 (-5 *3 (-977)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1998 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3099 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2974 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2851 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4159 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4064 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3977 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
-(-10 -7 (-15 -1593 ((-910 (-569)) (-927))) (-15 -1593 ((-910 (-569)) (-649 (-569)))) (-15 -1693 ((-910 (-569)) (-927))) (-15 -1693 ((-910 (-569)) (-649 (-569)))) (-15 -3705 ((-910 (-569)) (-649 (-927)))) (-15 -3791 ((-910 (-569)) (-927))) (-15 -3791 ((-910 (-569)) (-649 (-569)))) (-15 -3894 ((-910 (-569)) (-927))) (-15 -3894 ((-910 (-569)) (-649 (-569)))) (-15 -3977 ((-910 (-569)) (-649 (-569)))) (-15 -3977 ((-910 (-569)))) (-15 -4064 ((-910 (-569)) (-649 (-569)))) (-15 -4064 ((-910 (-569)))) (-15 -4159 ((-910 (-569)) (-649 (-569)))) (-15 -4159 ((-910 (-569)))) (-15 -2851 ((-910 (-569)) (-649 (-569)))) (-15 -2851 ((-910 (-569)))) (-15 -2974 ((-910 (-569)) (-649 (-569)))) (-15 -2974 ((-910 (-569)))) (-15 -3099 ((-910 (-569)) (-649 (-569)))) (-15 -3099 ((-910 (-569)))) (-15 -1998 ((-910 (-569)))) (-15 -2106 ((-910 (-569)) (-649 (-569)))) (-15 -2106 ((-910 (-569)) (-977))))
-((-2319 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183))) 14)) (-2213 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183))) 13)))
-(((-924 |#1|) (-10 -7 (-15 -2213 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -2319 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183))))) (-457)) (T -924))
-((-2319 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457)) (-5 *1 (-924 *4)))) (-2213 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457)) (-5 *1 (-924 *4)))))
-(-10 -7 (-15 -2213 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -2319 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1183)))))
-((-3793 (((-319 |#1|) (-482)) 16)))
-(((-925 |#1|) (-10 -7 (-15 -3793 ((-319 |#1|) (-482)))) (-561)) (T -925))
-((-3793 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-319 *4)) (-5 *1 (-925 *4)) (-4 *4 (-561)))))
-(-10 -7 (-15 -3793 ((-319 |#1|) (-482))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-2623 (((-112) $) 35)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+((-2629 (((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)) 77)) (-4019 (((-112) (-340 |#2| |#3| |#4| |#5|)) 17)) (-1466 (((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|)) 15)))
+(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -4019 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)))) (-13 (-561) (-1046 (-569))) (-435 |#1|) (-1251 |#2|) (-1251 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -917))
+((-2629 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *8))) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-1466 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -4019 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|))))
+((-2629 (((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 64)) (-4019 (((-112) (-340 (-412 (-569)) |#1| |#2| |#3|)) 16)) (-1466 (((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 14)))
+(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -4019 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)))) (-1251 (-412 (-569))) (-1251 (-412 |#1|)) (-346 (-412 (-569)) |#1| |#2|)) (T -918))
+((-2629 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *6))) (-5 *1 (-918 *4 *5 *6)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-918 *4 *5 *6)))) (-1466 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776)) (-5 *1 (-918 *4 *5 *6)))))
+(-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -4019 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))))
+((-3176 ((|#2| |#2|) 26)) (-1810 (((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) 15)) (-4306 (((-927) (-569)) 38)) (-3460 (((-569) |#2|) 45)) (-2997 (((-569) |#2|) 21) (((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|) 20)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -4306 ((-927) (-569))) (-15 -2997 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -2997 ((-569) |#2|)) (-15 -1810 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -3460 ((-569) |#2|)) (-15 -3176 (|#2| |#2|))) (-1251 (-412 (-569))) (-1251 (-412 |#1|))) (T -919))
+((-3176 (*1 *2 *2) (-12 (-4 *3 (-1251 (-412 (-569)))) (-5 *1 (-919 *3 *2)) (-4 *2 (-1251 (-412 *3))))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1251 (-412 *4))))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1251 (-412 *4))))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1251 (-412 *4))))) (-2997 (*1 *2 *3) (-12 (-4 *3 (-1251 (-412 (-569)))) (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))) (-5 *1 (-919 *3 *4)) (-4 *4 (-1251 (-412 *3))))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1251 (-412 *3))) (-5 *2 (-927)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1251 (-412 *4))))))
+(-10 -7 (-15 -4306 ((-927) (-569))) (-15 -2997 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -2997 ((-569) |#2|)) (-15 -1810 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -3460 ((-569) |#2|)) (-15 -3176 (|#2| |#2|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 ((|#1| $) 100)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 94)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-1976 (($ |#1| (-423 |#1|)) 92)) (-2871 (((-1181 |#1|) |#1| |#1|) 53)) (-3154 (($ $) 61)) (-2349 (((-112) $) NIL)) (-1431 (((-569) $) 97)) (-4309 (($ $ (-569)) 99)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2814 ((|#1| $) 96)) (-1373 (((-423 |#1|) $) 95)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) 93)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2380 (($ $) 50)) (-3796 (((-867) $) 124) (($ (-569)) 73) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 41) (((-412 |#1|) $) 78) (($ (-412 (-423 |#1|))) 86)) (-2721 (((-776)) 71 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 26 T CONST)) (-1815 (($) 15 T CONST)) (-2920 (((-112) $ $) 87)) (-3035 (($ $ $) NIL)) (-3024 (($ $) 108) (($ $ $) NIL)) (-3012 (($ $ $) 49)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 48) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-920 |#1|) (-13 (-367) (-38 |#1|) (-10 -8 (-15 -3796 ((-412 |#1|) $)) (-15 -3796 ($ (-412 (-423 |#1|)))) (-15 -2380 ($ $)) (-15 -1373 ((-423 |#1|) $)) (-15 -2814 (|#1| $)) (-15 -4309 ($ $ (-569))) (-15 -1431 ((-569) $)) (-15 -2871 ((-1181 |#1|) |#1| |#1|)) (-15 -3154 ($ $)) (-15 -1976 ($ |#1| (-423 |#1|))) (-15 -1938 (|#1| $)))) (-310)) (T -920))
+((-3796 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-412 (-423 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-2814 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-4309 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-2871 (*1 *2 *3 *3) (-12 (-5 *2 (-1181 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3154 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1976 (*1 *1 *2 *3) (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2)))) (-1938 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+(-13 (-367) (-38 |#1|) (-10 -8 (-15 -3796 ((-412 |#1|) $)) (-15 -3796 ($ (-412 (-423 |#1|)))) (-15 -2380 ($ $)) (-15 -1373 ((-423 |#1|) $)) (-15 -2814 (|#1| $)) (-15 -4309 ($ $ (-569))) (-15 -1431 ((-569) $)) (-15 -2871 ((-1181 |#1|) |#1| |#1|)) (-15 -3154 ($ $)) (-15 -1976 ($ |#1| (-423 |#1|))) (-15 -1938 (|#1| $))))
+((-1976 (((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1185)) 17) (((-52) (-412 (-958 |#1|)) (-1185)) 18)))
+(((-921 |#1|) (-10 -7 (-15 -1976 ((-52) (-412 (-958 |#1|)) (-1185))) (-15 -1976 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1185)))) (-13 (-310) (-147))) (T -921))
+((-1976 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1185)) (-5 *3 (-958 *6)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5)))))
+(-10 -7 (-15 -1976 ((-52) (-412 (-958 |#1|)) (-1185))) (-15 -1976 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1185))))
+((-3975 ((|#4| (-649 |#4|)) 149) (((-1181 |#4|) (-1181 |#4|) (-1181 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-1870 (((-1181 |#4|) (-649 (-1181 |#4|))) 142) (((-1181 |#4|) (-1181 |#4|) (-1181 |#4|)) 63) ((|#4| (-649 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
+(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 (|#4| |#4| |#4|)) (-15 -1870 (|#4| (-649 |#4|))) (-15 -1870 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -1870 ((-1181 |#4|) (-649 (-1181 |#4|)))) (-15 -3975 (|#4| |#4| |#4|)) (-15 -3975 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -3975 (|#4| (-649 |#4|)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -922))
+((-3975 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-3975 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-3975 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-649 (-1181 *7))) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-1181 *7)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1870 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))))
+(-10 -7 (-15 -1870 (|#4| |#4| |#4|)) (-15 -1870 (|#4| (-649 |#4|))) (-15 -1870 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -1870 ((-1181 |#4|) (-649 (-1181 |#4|)))) (-15 -3975 (|#4| |#4| |#4|)) (-15 -3975 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -3975 (|#4| (-649 |#4|))))
+((-4006 (((-910 (-569)) (-979)) 38) (((-910 (-569)) (-649 (-569))) 35)) (-2564 (((-910 (-569)) (-649 (-569))) 70) (((-910 (-569)) (-927)) 71)) (-2203 (((-910 (-569))) 39)) (-2545 (((-910 (-569))) 55) (((-910 (-569)) (-649 (-569))) 54)) (-2688 (((-910 (-569))) 53) (((-910 (-569)) (-649 (-569))) 52)) (-4176 (((-910 (-569))) 51) (((-910 (-569)) (-649 (-569))) 50)) (-1374 (((-910 (-569))) 49) (((-910 (-569)) (-649 (-569))) 48)) (-2914 (((-910 (-569))) 47) (((-910 (-569)) (-649 (-569))) 46)) (-1338 (((-910 (-569))) 57) (((-910 (-569)) (-649 (-569))) 56)) (-3369 (((-910 (-569)) (-649 (-569))) 75) (((-910 (-569)) (-927)) 77)) (-1842 (((-910 (-569)) (-649 (-569))) 72) (((-910 (-569)) (-927)) 73)) (-2342 (((-910 (-569)) (-649 (-569))) 68) (((-910 (-569)) (-927)) 69)) (-2225 (((-910 (-569)) (-649 (-927))) 60)))
+(((-923) (-10 -7 (-15 -2564 ((-910 (-569)) (-927))) (-15 -2564 ((-910 (-569)) (-649 (-569)))) (-15 -2342 ((-910 (-569)) (-927))) (-15 -2342 ((-910 (-569)) (-649 (-569)))) (-15 -2225 ((-910 (-569)) (-649 (-927)))) (-15 -1842 ((-910 (-569)) (-927))) (-15 -1842 ((-910 (-569)) (-649 (-569)))) (-15 -3369 ((-910 (-569)) (-927))) (-15 -3369 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)))) (-15 -1374 ((-910 (-569)) (-649 (-569)))) (-15 -1374 ((-910 (-569)))) (-15 -4176 ((-910 (-569)) (-649 (-569)))) (-15 -4176 ((-910 (-569)))) (-15 -2688 ((-910 (-569)) (-649 (-569)))) (-15 -2688 ((-910 (-569)))) (-15 -2545 ((-910 (-569)) (-649 (-569)))) (-15 -2545 ((-910 (-569)))) (-15 -1338 ((-910 (-569)) (-649 (-569)))) (-15 -1338 ((-910 (-569)))) (-15 -2203 ((-910 (-569)))) (-15 -4006 ((-910 (-569)) (-649 (-569)))) (-15 -4006 ((-910 (-569)) (-979))))) (T -923))
+((-4006 (*1 *2 *3) (-12 (-5 *3 (-979)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2203 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1338 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2545 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2688 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4176 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1374 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2914 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(-10 -7 (-15 -2564 ((-910 (-569)) (-927))) (-15 -2564 ((-910 (-569)) (-649 (-569)))) (-15 -2342 ((-910 (-569)) (-927))) (-15 -2342 ((-910 (-569)) (-649 (-569)))) (-15 -2225 ((-910 (-569)) (-649 (-927)))) (-15 -1842 ((-910 (-569)) (-927))) (-15 -1842 ((-910 (-569)) (-649 (-569)))) (-15 -3369 ((-910 (-569)) (-927))) (-15 -3369 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)))) (-15 -1374 ((-910 (-569)) (-649 (-569)))) (-15 -1374 ((-910 (-569)))) (-15 -4176 ((-910 (-569)) (-649 (-569)))) (-15 -4176 ((-910 (-569)))) (-15 -2688 ((-910 (-569)) (-649 (-569)))) (-15 -2688 ((-910 (-569)))) (-15 -2545 ((-910 (-569)) (-649 (-569)))) (-15 -2545 ((-910 (-569)))) (-15 -1338 ((-910 (-569)) (-649 (-569)))) (-15 -1338 ((-910 (-569)))) (-15 -2203 ((-910 (-569)))) (-15 -4006 ((-910 (-569)) (-649 (-569)))) (-15 -4006 ((-910 (-569)) (-979))))
+((-4371 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185))) 14)) (-2576 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185))) 13)))
+(((-924 |#1|) (-10 -7 (-15 -2576 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -4371 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185))))) (-457)) (T -924))
+((-4371 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457)) (-5 *1 (-924 *4)))) (-2576 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457)) (-5 *1 (-924 *4)))))
+(-10 -7 (-15 -2576 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -4371 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)))))
+((-3796 (((-319 |#1|) (-482)) 16)))
+(((-925 |#1|) (-10 -7 (-15 -3796 ((-319 |#1|) (-482)))) (-561)) (T -925))
+((-3796 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-319 *4)) (-5 *1 (-925 *4)) (-4 *4 (-561)))))
+(-10 -7 (-15 -3796 ((-319 |#1|) (-482))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-926) (-140)) (T -926))
-((-1336 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1433 (-649 *1)) (|:| -2330 *1))) (-5 *3 (-649 *1)))) (-2404 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926)))))
-(-13 (-457) (-10 -8 (-15 -1336 ((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $))) (-15 -2404 ((-3 (-649 $) "failed") (-649 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1864 (($ $ $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1813 (($) NIL T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ $ $) NIL)))
-(((-927) (-13 (-799) (-731) (-10 -8 (-15 -1864 ($ $ $)) (-6 (-4446 "*"))))) (T -927))
-((-1864 (*1 *1 *1 *1) (-5 *1 (-927))))
-(-13 (-799) (-731) (-10 -8 (-15 -1864 ($ $ $)) (-6 (-4446 "*"))))
+((-1865 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1435 (-649 *1)) (|:| -2332 *1))) (-5 *3 (-649 *1)))) (-4020 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926)))))
+(-13 (-457) (-10 -8 (-15 -1865 ((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $))) (-15 -4020 ((-3 (-649 $) "failed") (-649 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1870 (($ $ $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ $ $) NIL)))
+(((-927) (-13 (-799) (-731) (-10 -8 (-15 -1870 ($ $ $)) (-6 (-4449 "*"))))) (T -927))
+((-1870 (*1 *1 *1 *1) (-5 *1 (-927))))
+(-13 (-799) (-731) (-10 -8 (-15 -1870 ($ $ $)) (-6 (-4449 "*"))))
((|NonNegativeInteger|) (> |#1| 0))
-((-1476 ((|#2| (-649 |#1|) (-649 |#1|)) 29)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -1476 (|#2| (-649 |#1|) (-649 |#1|)))) (-367) (-1249 |#1|)) (T -928))
-((-1476 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1249 *4)) (-5 *1 (-928 *4 *2)))))
-(-10 -7 (-15 -1476 (|#2| (-649 |#1|) (-649 |#1|))))
-((-2153 (((-1179 |#2|) (-649 |#2|) (-649 |#2|)) 17) (((-1246 |#1| |#2|) (-1246 |#1| |#2|) (-649 |#2|) (-649 |#2|)) 13)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -2153 ((-1246 |#1| |#2|) (-1246 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -2153 ((-1179 |#2|) (-649 |#2|) (-649 |#2|)))) (-1183) (-367)) (T -929))
-((-2153 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1179 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-1183)))) (-2153 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1246 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1183)) (-4 *5 (-367)) (-5 *1 (-929 *4 *5)))))
-(-10 -7 (-15 -2153 ((-1246 |#1| |#2|) (-1246 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -2153 ((-1179 |#2|) (-649 |#2|) (-649 |#2|))))
-((-1740 (((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165)) 177)) (-2191 ((|#4| |#4|) 196)) (-4099 (((-649 (-412 (-958 |#1|))) (-649 (-1183))) 149)) (-2082 (((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569)) 88)) (-3351 (((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-649 |#4|)) 69)) (-1976 (((-694 |#4|) (-694 |#4|) (-649 |#4|)) 65)) (-1859 (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165)) 189)) (-1602 (((-569) (-694 |#4|) (-927) (-1165)) 169) (((-569) (-694 |#4|) (-649 (-1183)) (-927) (-1165)) 168) (((-569) (-694 |#4|) (-649 |#4|) (-927) (-1165)) 167) (((-569) (-694 |#4|) (-1165)) 157) (((-569) (-694 |#4|) (-649 (-1183)) (-1165)) 156) (((-569) (-694 |#4|) (-649 |#4|) (-1165)) 155) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927)) 154) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)) (-927)) 153) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927)) 152) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|)) 151) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183))) 150) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|)) 146)) (-4220 ((|#4| (-958 |#1|)) 80)) (-2935 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 193)) (-2814 (((-649 (-649 (-569))) (-569) (-569)) 162)) (-2672 (((-649 (-649 |#4|)) (-649 (-649 |#4|))) 107)) (-2541 (((-776) (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 102)) (-3728 (((-776) (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 101)) (-2296 (((-112) (-649 (-958 |#1|))) 19) (((-112) (-649 |#4|)) 15)) (-4326 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|)) 84)) (-3608 (((-649 |#4|) |#4|) 57)) (-3996 (((-649 (-412 (-958 |#1|))) (-649 |#4|)) 145) (((-694 (-412 (-958 |#1|))) (-694 |#4|)) 66) (((-412 (-958 |#1|)) |#4|) 142)) (-3881 (((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1165) (-569)) 113)) (-3202 (((-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776)) 100)) (-3048 (((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776)) 124)) (-3481 (((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| -2378 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3975 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) 56)))
-(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)) (-927))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -1602 ((-569) (-694 |#4|) (-649 |#4|) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-649 (-1183)) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-649 (-1183)) (-927) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-927) (-1165))) (-15 -1740 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -1859 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -3881 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1165) (-569))) (-15 -3996 ((-412 (-958 |#1|)) |#4|)) (-15 -3996 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3996 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -4099 ((-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -4220 (|#4| (-958 |#1|))) (-15 -4326 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -3202 ((-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -3351 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3481 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| -2378 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3975 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3608 ((-649 |#4|) |#4|)) (-15 -3728 ((-776) (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2541 ((-776) (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2672 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -2814 ((-649 (-649 (-569))) (-569) (-569))) (-15 -2935 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -3048 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -1976 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -2082 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -2191 (|#4| |#4|)) (-15 -2296 ((-112) (-649 |#4|))) (-15 -2296 ((-112) (-649 (-958 |#1|))))) (-13 (-310) (-147)) (-13 (-855) (-619 (-1183))) (-798) (-955 |#1| |#3| |#2|)) (T -930))
-((-2296 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2191 (*1 *2 *2) (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4)))) (-2082 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9)))) (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569)) (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10)) (-4 *10 (-13 (-855) (-619 (-1183)))) (-4 *11 (-798)) (-5 *2 (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12)) (|:| |wcond| (-649 (-958 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *9)))) (|:| -1903 (-649 (-1273 (-412 (-958 *9))))))))) (-5 *1 (-930 *9 *10 *11 *12)))) (-1976 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *7)) (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *5 *6 *7 *8)))) (-2814 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5)))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4)) (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2378 (-694 (-412 (-958 *4)))) (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3975 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -1903 (-649 (-1273 (-412 (-958 *4))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-3351 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -1903 (-649 (-1273 (-412 (-958 *4))))))) (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147))) (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *8))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))) (-4326 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147))) (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3996 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3881 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8)))) (-5 *5 (-776)) (-5 *6 (-1165)) (-4 *8 (-13 (-310) (-147))) (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1183)))) (-4 *10 (-798)) (-5 *2 (-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11)) (|:| |wcond| (-649 (-958 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *8)))) (|:| -1903 (-649 (-1273 (-412 (-958 *8)))))))))) (|:| |rgsz| (-569)))) (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -1903 (-649 (-1273 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -1903 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *4 (-1165)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6)) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1165)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-1602 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1183))) (-5 *5 (-927)) (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-1602 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927)) (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-1165)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-1165)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1165)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -1903 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *6)))) (|:| -1903 (-649 (-1273 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)))) (-1602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *6)))) (|:| -1903 (-649 (-1273 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *4)))) (|:| -1903 (-649 (-1273 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1183))) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -1903 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 *5)))) (|:| -1903 (-649 (-1273 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
-(-10 -7 (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1183)) (-927))) (-15 -1602 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -1602 ((-569) (-694 |#4|) (-649 |#4|) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-649 (-1183)) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-649 (-1183)) (-927) (-1165))) (-15 -1602 ((-569) (-694 |#4|) (-927) (-1165))) (-15 -1740 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -1859 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|))))))))) (-1165))) (-15 -3881 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1165) (-569))) (-15 -3996 ((-412 (-958 |#1|)) |#4|)) (-15 -3996 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3996 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -4099 ((-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -4220 (|#4| (-958 |#1|))) (-15 -4326 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -3202 ((-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -3351 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3481 ((-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))) (-2 (|:| -2378 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3975 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3608 ((-649 |#4|) |#4|)) (-15 -3728 ((-776) (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2541 ((-776) (-649 (-2 (|:| -3975 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2672 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -2814 ((-649 (-649 (-569))) (-569) (-569))) (-15 -2935 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -3048 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -1976 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -2082 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1273 (-412 (-958 |#1|)))) (|:| -1903 (-649 (-1273 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -2191 (|#4| |#4|)) (-15 -2296 ((-112) (-649 |#4|))) (-15 -2296 ((-112) (-649 (-958 |#1|)))))
-((-4233 (((-933) |#1| (-1183)) 17) (((-933) |#1| (-1183) (-1100 (-226))) 21)) (-3144 (((-933) |#1| |#1| (-1183) (-1100 (-226))) 19) (((-933) |#1| (-1183) (-1100 (-226))) 15)))
-(((-931 |#1|) (-10 -7 (-15 -3144 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -3144 ((-933) |#1| |#1| (-1183) (-1100 (-226)))) (-15 -4233 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -4233 ((-933) |#1| (-1183)))) (-619 (-541))) (T -931))
-((-4233 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-4233 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-3144 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))))
-(-10 -7 (-15 -3144 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -3144 ((-933) |#1| |#1| (-1183) (-1100 (-226)))) (-15 -4233 ((-933) |#1| (-1183) (-1100 (-226)))) (-15 -4233 ((-933) |#1| (-1183))))
-((-2652 (($ $ (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 123)) (-3820 (((-1100 (-226)) $) 64)) (-3808 (((-1100 (-226)) $) 63)) (-3795 (((-1100 (-226)) $) 62)) (-2943 (((-649 (-649 (-226))) $) 69)) (-3056 (((-1100 (-226)) $) 65)) (-3564 (((-569) (-569)) 57)) (-2738 (((-569) (-569)) 52)) (-3783 (((-569) (-569)) 55)) (-3312 (((-112) (-112)) 59)) (-3691 (((-569)) 56)) (-2933 (($ $ (-1100 (-226))) 126) (($ $) 127)) (-2603 (($ (-1 (-949 (-226)) (-226)) (-1100 (-226))) 133) (($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 134)) (-3144 (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226))) 136) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 137) (($ $ (-1100 (-226))) 129)) (-3197 (((-569)) 60)) (-2863 (((-569)) 50)) (-2606 (((-569)) 53)) (-4187 (((-649 (-649 (-949 (-226)))) $) 153)) (-4332 (((-112) (-112)) 61)) (-3793 (((-867) $) 151)) (-3442 (((-112)) 58)))
-(((-932) (-13 (-980) (-10 -8 (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ $ (-1100 (-226)))) (-15 -2652 ($ $ (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -2933 ($ $ (-1100 (-226)))) (-15 -2933 ($ $)) (-15 -3056 ((-1100 (-226)) $)) (-15 -2943 ((-649 (-649 (-226))) $)) (-15 -2863 ((-569))) (-15 -2738 ((-569) (-569))) (-15 -2606 ((-569))) (-15 -3783 ((-569) (-569))) (-15 -3691 ((-569))) (-15 -3564 ((-569) (-569))) (-15 -3442 ((-112))) (-15 -3312 ((-112) (-112))) (-15 -3197 ((-569))) (-15 -4332 ((-112) (-112)))))) (T -932))
-((-2603 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-2603 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-3144 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-3144 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-932)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-2652 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-2933 (*1 *1 *1) (-5 *1 (-932))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932)))) (-2863 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2738 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2606 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-3691 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-3442 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-3197 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
-(-13 (-980) (-10 -8 (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ $ (-1100 (-226)))) (-15 -2652 ($ $ (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -2933 ($ $ (-1100 (-226)))) (-15 -2933 ($ $)) (-15 -3056 ((-1100 (-226)) $)) (-15 -2943 ((-649 (-649 (-226))) $)) (-15 -2863 ((-569))) (-15 -2738 ((-569) (-569))) (-15 -2606 ((-569))) (-15 -3783 ((-569) (-569))) (-15 -3691 ((-569))) (-15 -3564 ((-569) (-569))) (-15 -3442 ((-112))) (-15 -3312 ((-112) (-112))) (-15 -3197 ((-569))) (-15 -4332 ((-112) (-112)))))
-((-2652 (($ $ (-1100 (-226))) 124) (($ $ (-1100 (-226)) (-1100 (-226))) 125)) (-3808 (((-1100 (-226)) $) 73)) (-3795 (((-1100 (-226)) $) 72)) (-3056 (((-1100 (-226)) $) 74)) (-1583 (((-569) (-569)) 66)) (-3941 (((-569) (-569)) 61)) (-1815 (((-569) (-569)) 64)) (-1334 (((-112) (-112)) 68)) (-1698 (((-569)) 65)) (-2933 (($ $ (-1100 (-226))) 128) (($ $) 129)) (-2603 (($ (-1 (-949 (-226)) (-226)) (-1100 (-226))) 143) (($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 144)) (-4233 (($ (-1 (-226) (-226)) (-1100 (-226))) 151) (($ (-1 (-226) (-226))) 155)) (-3144 (($ (-1 (-226) (-226)) (-1100 (-226))) 139) (($ (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226))) 140) (($ (-649 (-1 (-226) (-226))) (-1100 (-226))) 148) (($ (-649 (-1 (-226) (-226))) (-1100 (-226)) (-1100 (-226))) 149) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226))) 141) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226))) 142) (($ $ (-1100 (-226))) 130)) (-4126 (((-112) $) 69)) (-2400 (((-569)) 70)) (-4028 (((-569)) 59)) (-1914 (((-569)) 62)) (-4187 (((-649 (-649 (-949 (-226)))) $) 35)) (-2818 (((-112) (-112)) 71)) (-3793 (((-867) $) 169)) (-1471 (((-112)) 67)))
-(((-933) (-13 (-961) (-10 -8 (-15 -3144 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)))) (-15 -3144 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4233 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4233 ($ (-1 (-226) (-226)))) (-15 -3144 ($ $ (-1100 (-226)))) (-15 -4126 ((-112) $)) (-15 -2652 ($ $ (-1100 (-226)))) (-15 -2652 ($ $ (-1100 (-226)) (-1100 (-226)))) (-15 -2933 ($ $ (-1100 (-226)))) (-15 -2933 ($ $)) (-15 -3056 ((-1100 (-226)) $)) (-15 -4028 ((-569))) (-15 -3941 ((-569) (-569))) (-15 -1914 ((-569))) (-15 -1815 ((-569) (-569))) (-15 -1698 ((-569))) (-15 -1583 ((-569) (-569))) (-15 -1471 ((-112))) (-15 -1334 ((-112) (-112))) (-15 -2400 ((-569))) (-15 -2818 ((-112) (-112)))))) (T -933))
-((-3144 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-3144 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-3144 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-3144 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-3144 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-3144 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-2603 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-2603 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4233 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226))) (-5 *1 (-933)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-2652 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-2933 (*1 *1 *1) (-5 *1 (-933))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))) (-4028 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-1914 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-1815 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-1698 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-1471 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-1334 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-2400 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2818 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(-13 (-961) (-10 -8 (-15 -3144 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)))) (-15 -3144 ($ (-649 (-1 (-226) (-226))) (-1100 (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)))) (-15 -3144 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)))) (-15 -2603 ($ (-1 (-949 (-226)) (-226)) (-1100 (-226)) (-1100 (-226)) (-1100 (-226)))) (-15 -4233 ($ (-1 (-226) (-226)) (-1100 (-226)))) (-15 -4233 ($ (-1 (-226) (-226)))) (-15 -3144 ($ $ (-1100 (-226)))) (-15 -4126 ((-112) $)) (-15 -2652 ($ $ (-1100 (-226)))) (-15 -2652 ($ $ (-1100 (-226)) (-1100 (-226)))) (-15 -2933 ($ $ (-1100 (-226)))) (-15 -2933 ($ $)) (-15 -3056 ((-1100 (-226)) $)) (-15 -4028 ((-569))) (-15 -3941 ((-569) (-569))) (-15 -1914 ((-569))) (-15 -1815 ((-569) (-569))) (-15 -1698 ((-569))) (-15 -1583 ((-569) (-569))) (-15 -1471 ((-112))) (-15 -1334 ((-112) (-112))) (-15 -2400 ((-569))) (-15 -2818 ((-112) (-112)))))
-((-2712 (((-649 (-1100 (-226))) (-649 (-649 (-949 (-226))))) 34)))
-(((-934) (-10 -7 (-15 -2712 ((-649 (-1100 (-226))) (-649 (-649 (-949 (-226)))))))) (T -934))
-((-2712 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-1100 (-226)))) (-5 *1 (-934)))))
-(-10 -7 (-15 -2712 ((-649 (-1100 (-226))) (-649 (-649 (-949 (-226)))))))
-((-3571 ((|#2| |#2|) 28)) (-4199 ((|#2| |#2|) 29)) (-3706 ((|#2| |#2|) 27)) (-3658 ((|#2| |#2| (-511)) 26)))
-(((-935 |#1| |#2|) (-10 -7 (-15 -3658 (|#2| |#2| (-511))) (-15 -3706 (|#2| |#2|)) (-15 -3571 (|#2| |#2|)) (-15 -4199 (|#2| |#2|))) (-1106) (-435 |#1|)) (T -935))
-((-4199 (*1 *2 *2) (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3571 (*1 *2 *2) (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3658 (*1 *2 *2 *3) (-12 (-5 *3 (-511)) (-4 *4 (-1106)) (-5 *1 (-935 *4 *2)) (-4 *2 (-435 *4)))))
-(-10 -7 (-15 -3658 (|#2| |#2| (-511))) (-15 -3706 (|#2| |#2|)) (-15 -3571 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)))
-((-3571 (((-319 (-569)) (-1183)) 16)) (-4199 (((-319 (-569)) (-1183)) 14)) (-3706 (((-319 (-569)) (-1183)) 12)) (-3658 (((-319 (-569)) (-1183) (-511)) 19)))
-(((-936) (-10 -7 (-15 -3658 ((-319 (-569)) (-1183) (-511))) (-15 -3706 ((-319 (-569)) (-1183))) (-15 -3571 ((-319 (-569)) (-1183))) (-15 -4199 ((-319 (-569)) (-1183))))) (T -936))
-((-4199 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-511)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
-(-10 -7 (-15 -3658 ((-319 (-569)) (-1183) (-511))) (-15 -3706 ((-319 (-569)) (-1183))) (-15 -3571 ((-319 (-569)) (-1183))) (-15 -4199 ((-319 (-569)) (-1183))))
-((-2892 (((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)) 25)) (-2816 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -2816 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2892 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)))) (-1106) (-892 |#1|) (-13 (-1106) (-1044 |#2|))) (T -937))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-13 (-1106) (-1044 *3))) (-4 *3 (-892 *5)) (-5 *1 (-937 *5 *3 *6)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1106) (-1044 *5))) (-4 *5 (-892 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-937 *4 *5 *6)))))
-(-10 -7 (-15 -2816 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2892 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|))))
-((-2892 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 30)))
-(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -2892 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1106) (-13 (-561) (-892 |#1|)) (-13 (-435 |#2|) (-619 (-898 |#1|)) (-892 |#1|) (-1044 (-617 $)))) (T -938))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1044 (-617 $)))) (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5))) (-5 *1 (-938 *5 *6 *3)))))
-(-10 -7 (-15 -2892 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))
-((-2892 (((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)) 13)))
-(((-939 |#1|) (-10 -7 (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)))) (-550)) (T -939))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550)) (-5 *1 (-939 *3)))))
-(-10 -7 (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))))
-((-2892 (((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)) 57)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -2892 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)))) (-1106) (-13 (-1106) (-1044 (-617 $)) (-619 (-898 |#1|)) (-892 |#1|))) (T -940))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1106)) (-4 *6 (-13 (-1106) (-1044 (-617 $)) (-619 *4) (-892 *5))) (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6)))))
-(-10 -7 (-15 -2892 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|))))
-((-2892 (((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)) 17)))
-(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -2892 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)))) (-1106) (-892 |#1|) (-671 |#2|)) (T -941))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3)))))
-(-10 -7 (-15 -2892 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|))))
-((-2892 (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|)) 17 (|has| |#3| (-892 |#1|))) (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|))) 16)))
-(((-942 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2892 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -2892 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|)) (-1106) (-798) (-855) (-13 (-1055) (-892 |#1|)) (-13 (-955 |#4| |#2| |#3|) (-619 (-898 |#1|)))) (T -942))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5)) (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-13 (-1055) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3)))) (-2892 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3))) (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6)) (-4 *6 (-1106)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4))) (-4 *7 (-798)) (-4 *9 (-13 (-1055) (-892 *6))) (-5 *1 (-942 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2892 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -2892 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|))
-((-4272 ((|#2| |#2| (-649 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -4272 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4272 (|#2| |#2| (-649 (-1 (-112) |#3|))))) (-1106) (-435 |#1|) (-1223)) (T -943))
-((-4272 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1223)) (-4 *4 (-1106)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))) (-4272 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1223)) (-4 *4 (-1106)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))))
-(-10 -7 (-15 -4272 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4272 (|#2| |#2| (-649 (-1 (-112) |#3|)))))
-((-4272 (((-319 (-569)) (-1183) (-649 (-1 (-112) |#1|))) 18) (((-319 (-569)) (-1183) (-1 (-112) |#1|)) 15)))
-(((-944 |#1|) (-10 -7 (-15 -4272 ((-319 (-569)) (-1183) (-1 (-112) |#1|))) (-15 -4272 ((-319 (-569)) (-1183) (-649 (-1 (-112) |#1|))))) (-1223)) (T -944))
-((-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1223)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1223)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))))
-(-10 -7 (-15 -4272 ((-319 (-569)) (-1183) (-1 (-112) |#1|))) (-15 -4272 ((-319 (-569)) (-1183) (-649 (-1 (-112) |#1|)))))
-((-2892 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 25)))
-(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -2892 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1106) (-13 (-561) (-892 |#1|) (-619 (-898 |#1|))) (-998 |#2|)) (T -945))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-998 *6)) (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5)) (-5 *1 (-945 *5 *6 *3)))))
-(-10 -7 (-15 -2892 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))
-((-2892 (((-895 |#1| (-1183)) (-1183) (-898 |#1|) (-895 |#1| (-1183))) 18)))
-(((-946 |#1|) (-10 -7 (-15 -2892 ((-895 |#1| (-1183)) (-1183) (-898 |#1|) (-895 |#1| (-1183))))) (-1106)) (T -946))
-((-2892 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 (-1183))) (-5 *3 (-1183)) (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-5 *1 (-946 *5)))))
-(-10 -7 (-15 -2892 ((-895 |#1| (-1183)) (-1183) (-898 |#1|) (-895 |#1| (-1183)))))
-((-2993 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 34)) (-2892 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 33)))
-(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -2892 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -2993 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))) (-1106) (-1055) (-13 (-1055) (-619 (-898 |#1|)) (-1044 |#2|))) (T -947))
-((-2993 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6))) (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1106)) (-4 *8 (-13 (-1055) (-619 (-898 *6)) (-1044 *7))) (-5 *2 (-895 *6 *8)) (-4 *7 (-1055)) (-5 *1 (-947 *6 *7 *8)))) (-2892 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9))) (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1106)) (-4 *9 (-13 (-1055) (-619 (-898 *7)) (-1044 *8))) (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1055)) (-5 *1 (-947 *7 *8 *9)))))
-(-10 -7 (-15 -2892 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -2993 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))))
-((-1414 (((-1179 (-412 (-569))) (-569)) 81)) (-4417 (((-1179 (-569)) (-569)) 84)) (-1875 (((-1179 (-569)) (-569)) 78)) (-2375 (((-569) (-1179 (-569))) 74)) (-2289 (((-1179 (-412 (-569))) (-569)) 65)) (-2193 (((-1179 (-569)) (-569)) 49)) (-2095 (((-1179 (-569)) (-569)) 86)) (-2015 (((-1179 (-569)) (-569)) 85)) (-1923 (((-1179 (-412 (-569))) (-569)) 67)))
-(((-948) (-10 -7 (-15 -1923 ((-1179 (-412 (-569))) (-569))) (-15 -2015 ((-1179 (-569)) (-569))) (-15 -2095 ((-1179 (-569)) (-569))) (-15 -2193 ((-1179 (-569)) (-569))) (-15 -2289 ((-1179 (-412 (-569))) (-569))) (-15 -2375 ((-569) (-1179 (-569)))) (-15 -1875 ((-1179 (-569)) (-569))) (-15 -4417 ((-1179 (-569)) (-569))) (-15 -1414 ((-1179 (-412 (-569))) (-569))))) (T -948))
-((-1414 (*1 *2 *3) (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-4417 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-1875 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-569)) (-5 *1 (-948)))) (-2289 (*1 *2 *3) (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2193 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2095 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2015 (*1 *2 *3) (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-1923 (*1 *2 *3) (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
-(-10 -7 (-15 -1923 ((-1179 (-412 (-569))) (-569))) (-15 -2015 ((-1179 (-569)) (-569))) (-15 -2095 ((-1179 (-569)) (-569))) (-15 -2193 ((-1179 (-569)) (-569))) (-15 -2289 ((-1179 (-412 (-569))) (-569))) (-15 -2375 ((-569) (-1179 (-569)))) (-15 -1875 ((-1179 (-569)) (-569))) (-15 -4417 ((-1179 (-569)) (-569))) (-15 -1414 ((-1179 (-412 (-569))) (-569))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3464 (($ (-776)) NIL (|has| |#1| (-23)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-3281 (($ (-649 |#1|)) 9)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1365 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1878 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-2433 (((-112) $ (-776)) NIL)) (-3842 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-2907 (($ $ (-649 |#1|)) 25)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 18) (($ $ (-1240 (-569))) NIL)) (-3990 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-3083 (((-927) $) 13)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3885 (($ $ $) 23)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 14)) (-3806 (($ (-649 |#1|)) NIL)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3021 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3009 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2426 (((-776) $) 11 (|has| $ (-6 -4444)))))
-(((-949 |#1|) (-986 |#1|) (-1055)) (T -949))
-NIL
-(-986 |#1|)
-((-1796 (((-486 |#1| |#2|) (-958 |#2|)) 22)) (-4012 (((-248 |#1| |#2|) (-958 |#2|)) 35)) (-3786 (((-958 |#2|) (-486 |#1| |#2|)) 27)) (-1654 (((-248 |#1| |#2|) (-486 |#1| |#2|)) 57)) (-3899 (((-958 |#2|) (-248 |#1| |#2|)) 32)) (-1530 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 48)))
-(((-950 |#1| |#2|) (-10 -7 (-15 -1530 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -1654 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -1796 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -3786 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3899 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -4012 ((-248 |#1| |#2|) (-958 |#2|)))) (-649 (-1183)) (-1055)) (T -950))
-((-4012 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
-(-10 -7 (-15 -1530 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -1654 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -1796 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -3786 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3899 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -4012 ((-248 |#1| |#2|) (-958 |#2|))))
-((-4128 (((-649 |#2|) |#2| |#2|) 10)) (-3233 (((-776) (-649 |#1|)) 48 (|has| |#1| (-853)))) (-4246 (((-649 |#2|) |#2|) 11)) (-3364 (((-776) (-649 |#1|) (-569) (-569)) 52 (|has| |#1| (-853)))) (-3113 ((|#1| |#2|) 38 (|has| |#1| (-853)))))
-(((-951 |#1| |#2|) (-10 -7 (-15 -4128 ((-649 |#2|) |#2| |#2|)) (-15 -4246 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -3113 (|#1| |#2|)) (-15 -3233 ((-776) (-649 |#1|))) (-15 -3364 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|)) (-367) (-1249 |#1|)) (T -951))
-((-3364 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1249 *5)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *4 *5)) (-4 *5 (-1249 *4)))) (-3113 (*1 *2 *3) (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1249 *2)))) (-4246 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1249 *4)))) (-4128 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -4128 ((-649 |#2|) |#2| |#2|)) (-15 -4246 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -3113 (|#1| |#2|)) (-15 -3233 ((-776) (-649 |#1|))) (-15 -3364 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|))
-((-1344 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 19)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -1344 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1055) (-1055)) (T -952))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6)))))
-(-10 -7 (-15 -1344 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|))))
-((-3763 (((-1246 |#1| (-958 |#2|)) (-958 |#2|) (-1269 |#1|)) 18)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -3763 ((-1246 |#1| (-958 |#2|)) (-958 |#2|) (-1269 |#1|)))) (-1183) (-1055)) (T -953))
-((-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 *5)) (-14 *5 (-1183)) (-4 *6 (-1055)) (-5 *2 (-1246 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6)))))
-(-10 -7 (-15 -3763 ((-1246 |#1| (-958 |#2|)) (-958 |#2|) (-1269 |#1|))))
-((-3605 (((-776) $) 88) (((-776) $ (-649 |#4|)) 93)) (-2078 (($ $) 203)) (-2508 (((-423 $) $) 195)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 141)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3148 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) 73)) (-4202 (($ $ $ |#4|) 95)) (-1630 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 131) (((-694 |#2|) (-694 $)) 121)) (-4260 (($ $) 210) (($ $ |#4|) 213)) (-1863 (((-649 $) $) 77)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 229) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 222)) (-2518 (((-649 $) $) 34)) (-3920 (($ |#2| |#3|) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) 71)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |#4|) 192)) (-2753 (((-3 (-649 $) "failed") $) 52)) (-2633 (((-3 (-649 $) "failed") $) 39)) (-2865 (((-3 (-2 (|:| |var| |#4|) (|:| -4320 (-776))) "failed") $) 57)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 134)) (-3057 (((-423 (-1179 $)) (-1179 $)) 147)) (-3157 (((-423 (-1179 $)) (-1179 $)) 145)) (-3796 (((-423 $) $) 165)) (-1723 (($ $ (-649 (-297 $))) 24) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL)) (-4304 (($ $ |#4|) 97)) (-1408 (((-898 (-383)) $) 243) (((-898 (-569)) $) 236) (((-541) $) 251)) (-3479 ((|#2| $) NIL) (($ $ |#4|) 205)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 184)) (-4184 ((|#2| $ |#3|) NIL) (($ $ |#4| (-776)) 62) (($ $ (-649 |#4|) (-649 (-776))) 69)) (-4030 (((-3 $ "failed") $) 186)) (-1441 (((-112) $ $) 216)))
-(((-954 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3157 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3057 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -4117 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -4260 (|#1| |#1| |#4|)) (-15 -3479 (|#1| |#1| |#4|)) (-15 -4304 (|#1| |#1| |#4|)) (-15 -4202 (|#1| |#1| |#1| |#4|)) (-15 -1863 ((-649 |#1|) |#1|)) (-15 -3605 ((-776) |#1| (-649 |#4|))) (-15 -3605 ((-776) |#1|)) (-15 -2865 ((-3 (-2 (|:| |var| |#4|) (|:| -4320 (-776))) "failed") |#1|)) (-15 -2753 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2633 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3920 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3920 (|#1| |#1| |#4| (-776))) (-15 -3659 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1| |#4|)) (-15 -2518 ((-649 |#1|) |#1|)) (-15 -4184 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -4184 (|#1| |#1| |#4| (-776))) (-15 -1630 ((-694 |#2|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -4378 ((-3 |#4| "failed") |#1|)) (-15 -3148 (|#4| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#4| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#4| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3920 (|#1| |#2| |#3|)) (-15 -4184 (|#2| |#1| |#3|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|))) (-955 |#2| |#3| |#4|) (-1055) (-798) (-855)) (T -954))
-NIL
-(-10 -8 (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3157 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3057 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -4117 ((-3 (-1273 |#1|) "failed") (-694 |#1|))) (-15 -4260 (|#1| |#1| |#4|)) (-15 -3479 (|#1| |#1| |#4|)) (-15 -4304 (|#1| |#1| |#4|)) (-15 -4202 (|#1| |#1| |#1| |#4|)) (-15 -1863 ((-649 |#1|) |#1|)) (-15 -3605 ((-776) |#1| (-649 |#4|))) (-15 -3605 ((-776) |#1|)) (-15 -2865 ((-3 (-2 (|:| |var| |#4|) (|:| -4320 (-776))) "failed") |#1|)) (-15 -2753 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2633 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3920 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3920 (|#1| |#1| |#4| (-776))) (-15 -3659 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1| |#4|)) (-15 -2518 ((-649 |#1|) |#1|)) (-15 -4184 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -4184 (|#1| |#1| |#4| (-776))) (-15 -1630 ((-694 |#2|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -4378 ((-3 |#4| "failed") |#1|)) (-15 -3148 (|#4| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#4| |#1|)) (-15 -1723 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1723 (|#1| |#1| |#4| |#2|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3920 (|#1| |#2| |#3|)) (-15 -4184 (|#2| |#1| |#3|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -4260 (|#1| |#1|)) (-15 -1441 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 |#3|) $) 112)) (-3763 (((-1179 $) $ |#3|) 127) (((-1179 |#1|) $) 126)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-3087 (($ $) 90 (|has| |#1| (-561)))) (-2883 (((-112) $) 92 (|has| |#1| (-561)))) (-3605 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-1678 (((-3 $ "failed") $ $) 20)) (-3253 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-2078 (($ $) 100 (|has| |#1| (-457)))) (-2508 (((-423 $) $) 99 (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) 138)) (-3148 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) ((|#3| $) 139)) (-4202 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1879 (($ $) 156)) (-1630 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-2888 (((-3 $ "failed") $) 37)) (-4260 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1863 (((-649 $) $) 111)) (-4073 (((-112) $) 98 (|has| |#1| (-915)))) (-3972 (($ $ |#1| |#2| $) 174)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2623 (((-112) $) 35)) (-3238 (((-776) $) 171)) (-1697 (($ (-1179 |#1|) |#3|) 119) (($ (-1179 $) |#3|) 118)) (-2518 (((-649 $) $) 128)) (-4343 (((-112) $) 154)) (-3920 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |#3|) 122)) (-3712 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-4059 (($ (-1 |#2| |#2|) $) 173)) (-1344 (($ (-1 |#1| |#1|) $) 153)) (-3397 (((-3 |#3| "failed") $) 125)) (-1846 (($ $) 151)) (-1855 ((|#1| $) 150)) (-1835 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-1550 (((-1165) $) 10)) (-2753 (((-3 (-649 $) "failed") $) 116)) (-2633 (((-3 (-649 $) "failed") $) 117)) (-2865 (((-3 (-2 (|:| |var| |#3|) (|:| -4320 (-776))) "failed") $) 115)) (-3545 (((-1126) $) 11)) (-1824 (((-112) $) 168)) (-1833 ((|#1| $) 169)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1864 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3796 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2405 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-4304 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3514 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-3868 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-1408 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1756 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-561))) (($ (-412 (-569))) 80 (-2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-2836 (((-649 |#1|) $) 170)) (-4184 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-4030 (((-3 $ "failed") $) 81 (-2774 (-1756 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) 32 T CONST)) (-3877 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-955 |#1| |#2| |#3|) (-140) (-1055) (-798) (-855)) (T -955))
-((-4260 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3868 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-4184 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *2 (-855)))) (-4184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3763 (*1 *2 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1179 *1)) (-4 *1 (-955 *4 *5 *3)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1179 *3)))) (-3397 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3712 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-3659 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-955 *4 *5 *3)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *2 (-855)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)))) (-1697 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1055)) (-4 *1 (-955 *4 *5 *3)) (-4 *5 (-798)) (-4 *3 (-855)))) (-1697 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)))) (-2633 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-2753 (*1 *2 *1) (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-2865 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -4320 (-776)))))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-3605 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-1863 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-4202 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-4304 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3479 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-4260 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-2078 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2508 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5)))))
-(-13 (-906 |t#3|) (-329 |t#1| |t#2|) (-312 $) (-519 |t#3| |t#1|) (-519 |t#3| $) (-1044 |t#3|) (-381 |t#1|) (-10 -8 (-15 -3868 ((-776) $ |t#3|)) (-15 -3868 ((-649 (-776)) $ (-649 |t#3|))) (-15 -4184 ($ $ |t#3| (-776))) (-15 -4184 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -2518 ((-649 $) $)) (-15 -3763 ((-1179 $) $ |t#3|)) (-15 -3763 ((-1179 |t#1|) $)) (-15 -3397 ((-3 |t#3| "failed") $)) (-15 -3712 ((-776) $ |t#3|)) (-15 -3712 ((-649 (-776)) $ (-649 |t#3|))) (-15 -3659 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |t#3|)) (-15 -3920 ($ $ |t#3| (-776))) (-15 -3920 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -1697 ($ (-1179 |t#1|) |t#3|)) (-15 -1697 ($ (-1179 $) |t#3|)) (-15 -2633 ((-3 (-649 $) "failed") $)) (-15 -2753 ((-3 (-649 $) "failed") $)) (-15 -2865 ((-3 (-2 (|:| |var| |t#3|) (|:| -4320 (-776))) "failed") $)) (-15 -3605 ((-776) $)) (-15 -3605 ((-776) $ (-649 |t#3|))) (-15 -1710 ((-649 |t#3|) $)) (-15 -1863 ((-649 $) $)) (IF (|has| |t#1| (-619 (-541))) (IF (|has| |t#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-569)))) (IF (|has| |t#3| (-619 (-898 (-569)))) (-6 (-619 (-898 (-569)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-383)))) (IF (|has| |t#3| (-619 (-898 (-383)))) (-6 (-619 (-898 (-383)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-569))) (IF (|has| |t#3| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (IF (|has| |t#3| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4202 ($ $ $ |t#3|)) (-15 -4304 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-6 (-457)) (-15 -3479 ($ $ |t#3|)) (-15 -4260 ($ $)) (-15 -4260 ($ $ |t#3|)) (-15 -2508 ((-423 $) $)) (-15 -2078 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4442)) (-6 -4442) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-293) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2774 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-915) |has| |#1| (-915)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1044 |#3|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) |has| |#1| (-915)))
-((-1710 (((-649 |#2|) |#5|) 40)) (-3763 (((-1179 |#5|) |#5| |#2| (-1179 |#5|)) 23) (((-412 (-1179 |#5|)) |#5| |#2|) 16)) (-1697 ((|#5| (-412 (-1179 |#5|)) |#2|) 30)) (-3397 (((-3 |#2| "failed") |#5|) 71)) (-2753 (((-3 (-649 |#5|) "failed") |#5|) 65)) (-2980 (((-3 (-2 (|:| |val| |#5|) (|:| -4320 (-569))) "failed") |#5|) 53)) (-2633 (((-3 (-649 |#5|) "failed") |#5|) 67)) (-2865 (((-3 (-2 (|:| |var| |#2|) (|:| -4320 (-569))) "failed") |#5|) 57)))
-(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1710 ((-649 |#2|) |#5|)) (-15 -3397 ((-3 |#2| "failed") |#5|)) (-15 -3763 ((-412 (-1179 |#5|)) |#5| |#2|)) (-15 -1697 (|#5| (-412 (-1179 |#5|)) |#2|)) (-15 -3763 ((-1179 |#5|) |#5| |#2| (-1179 |#5|))) (-15 -2633 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2753 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2865 ((-3 (-2 (|:| |var| |#2|) (|:| -4320 (-569))) "failed") |#5|)) (-15 -2980 ((-3 (-2 (|:| |val| |#5|) (|:| -4320 (-569))) "failed") |#5|))) (-798) (-855) (-1055) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3793 ($ |#4|)) (-15 -4396 (|#4| $)) (-15 -4409 (|#4| $))))) (T -956))
-((-2980 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4320 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))) (-2865 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4320 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))) (-2753 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))) (-2633 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))) (-3763 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))) (-4 *7 (-955 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-5 *1 (-956 *5 *4 *6 *7 *3)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1179 *2))) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-4 *2 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))) (-5 *1 (-956 *5 *4 *6 *7 *2)) (-4 *7 (-955 *6 *5 *4)))) (-3763 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1179 *3))) (-5 *1 (-956 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))) (-3397 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1055)) (-4 *6 (-955 *5 *4 *2)) (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *6)) (-15 -4396 (*6 $)) (-15 -4409 (*6 $))))))) (-1710 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *5)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))))
-(-10 -7 (-15 -1710 ((-649 |#2|) |#5|)) (-15 -3397 ((-3 |#2| "failed") |#5|)) (-15 -3763 ((-412 (-1179 |#5|)) |#5| |#2|)) (-15 -1697 (|#5| (-412 (-1179 |#5|)) |#2|)) (-15 -3763 ((-1179 |#5|) |#5| |#2| (-1179 |#5|))) (-15 -2633 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2753 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2865 ((-3 (-2 (|:| |var| |#2|) (|:| -4320 (-569))) "failed") |#5|)) (-15 -2980 ((-3 (-2 (|:| |val| |#5|) (|:| -4320 (-569))) "failed") |#5|)))
-((-1344 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1344 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-798) (-855) (-1055) (-955 |#3| |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -3009 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (T -957))
-((-1344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *6 (-798)) (-4 *2 (-13 (-1106) (-10 -8 (-15 -3009 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (-5 *1 (-957 *6 *7 *8 *5 *2)) (-4 *5 (-955 *8 *6 *7)))))
-(-10 -7 (-15 -1344 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1183)) $) 16)) (-3763 (((-1179 $) $ (-1183)) 21) (((-1179 |#1|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-1183))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 8) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1183) "failed") $) NIL)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1183) $) NIL)) (-4202 (($ $ $ (-1183)) NIL (|has| |#1| (-173)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1183)) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-536 (-1183)) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1183) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1183) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-1697 (($ (-1179 |#1|) (-1183)) NIL) (($ (-1179 $) (-1183)) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-1183)) NIL)) (-3712 (((-536 (-1183)) $) NIL) (((-776) $ (-1183)) NIL) (((-649 (-776)) $ (-649 (-1183))) NIL)) (-4059 (($ (-1 (-536 (-1183)) (-536 (-1183))) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-3397 (((-3 (-1183) "failed") $) 19)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-1183)) (|:| -4320 (-776))) "failed") $) NIL)) (-2488 (($ $ (-1183)) 29 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1183) |#1|) NIL) (($ $ (-649 (-1183)) (-649 |#1|)) NIL) (($ $ (-1183) $) NIL) (($ $ (-649 (-1183)) (-649 $)) NIL)) (-4304 (($ $ (-1183)) NIL (|has| |#1| (-173)))) (-3514 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-3868 (((-536 (-1183)) $) NIL) (((-776) $ (-1183)) NIL) (((-649 (-776)) $ (-649 (-1183))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-1183) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1183) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1183) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1183)) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) 25) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1183)) 27) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-958 |#1|) (-13 (-955 |#1| (-536 (-1183)) (-1183)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1183))) |%noBranch|))) (-1055)) (T -958))
-((-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))))
-(-13 (-955 |#1| (-536 (-1183)) (-1183)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1183))) |%noBranch|)))
-((-1920 (((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) |#3| (-776)) 49)) (-2011 (((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776)) 44)) (-2199 (((-2 (|:| -4320 (-776)) (|:| -1433 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)) 65)) (-2099 (((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) |#5| (-776)) 74 (|has| |#3| (-457)))))
-(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1920 ((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -2011 ((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -2099 ((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -2199 ((-2 (|:| -4320 (-776)) (|:| -1433 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3793 ($ |#4|)) (-15 -4396 (|#4| $)) (-15 -4409 (|#4| $))))) (T -959))
-((-2199 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *3 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *3) (|:| |radicand| (-649 *3)))) (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -3793 ($ *3)) (-15 -4396 (*3 $)) (-15 -4409 (*3 $))))))) (-2099 (*1 *2 *3 *4) (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *3) (|:| |radicand| *3))) (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3793 ($ *8)) (-15 -4396 (*8 $)) (-15 -4409 (*8 $))))))) (-2011 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *9) (|:| |radicand| *9))) (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776)) (-4 *9 (-13 (-367) (-10 -8 (-15 -3793 ($ *8)) (-15 -4396 (*8 $)) (-15 -4409 (*8 $))))))) (-1920 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561)) (-4 *7 (-955 *3 *5 *6)) (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *8) (|:| |radicand| *8))) (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))))
-(-10 -7 (-15 -1920 ((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -2011 ((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -2099 ((-2 (|:| -4320 (-776)) (|:| -1433 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -2199 ((-2 (|:| -4320 (-776)) (|:| -1433 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776))))
-((-2415 (((-112) $ $) NIL)) (-3649 (($ (-1126)) 8)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 15) (((-1126) $) 12)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 11)))
-(((-960) (-13 (-1106) (-618 (-1126)) (-10 -8 (-15 -3649 ($ (-1126)))))) (T -960))
-((-3649 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-960)))))
-(-13 (-1106) (-618 (-1126)) (-10 -8 (-15 -3649 ($ (-1126)))))
-((-3808 (((-1100 (-226)) $) 8)) (-3795 (((-1100 (-226)) $) 9)) (-4187 (((-649 (-649 (-949 (-226)))) $) 10)) (-3793 (((-867) $) 6)))
+((-3954 ((|#2| (-649 |#1|) (-649 |#1|)) 29)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -3954 (|#2| (-649 |#1|) (-649 |#1|)))) (-367) (-1251 |#1|)) (T -928))
+((-3954 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1251 *4)) (-5 *1 (-928 *4 *2)))))
+(-10 -7 (-15 -3954 (|#2| (-649 |#1|) (-649 |#1|))))
+((-3213 (((-1181 |#2|) (-649 |#2|) (-649 |#2|)) 17) (((-1248 |#1| |#2|) (-1248 |#1| |#2|) (-649 |#2|) (-649 |#2|)) 13)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -3213 ((-1248 |#1| |#2|) (-1248 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -3213 ((-1181 |#2|) (-649 |#2|) (-649 |#2|)))) (-1185) (-367)) (T -929))
+((-3213 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1181 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-1185)))) (-3213 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1248 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1185)) (-4 *5 (-367)) (-5 *1 (-929 *4 *5)))))
+(-10 -7 (-15 -3213 ((-1248 |#1| |#2|) (-1248 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -3213 ((-1181 |#2|) (-649 |#2|) (-649 |#2|))))
+((-1557 (((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167)) 177)) (-3638 ((|#4| |#4|) 196)) (-1774 (((-649 (-412 (-958 |#1|))) (-649 (-1185))) 149)) (-3769 (((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569)) 88)) (-1958 (((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-649 |#4|)) 69)) (-1999 (((-694 |#4|) (-694 |#4|) (-649 |#4|)) 65)) (-3240 (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167)) 189)) (-2657 (((-569) (-694 |#4|) (-927) (-1167)) 169) (((-569) (-694 |#4|) (-649 (-1185)) (-927) (-1167)) 168) (((-569) (-694 |#4|) (-649 |#4|) (-927) (-1167)) 167) (((-569) (-694 |#4|) (-1167)) 157) (((-569) (-694 |#4|) (-649 (-1185)) (-1167)) 156) (((-569) (-694 |#4|) (-649 |#4|) (-1167)) 155) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927)) 154) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)) (-927)) 153) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927)) 152) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|)) 151) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185))) 150) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|)) 146)) (-3518 ((|#4| (-958 |#1|)) 80)) (-3462 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 193)) (-3620 (((-649 (-649 (-569))) (-569) (-569)) 162)) (-1614 (((-649 (-649 |#4|)) (-649 (-649 |#4|))) 107)) (-2809 (((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 102)) (-2406 (((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 101)) (-2220 (((-112) (-649 (-958 |#1|))) 19) (((-112) (-649 |#4|)) 15)) (-2041 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|)) 84)) (-3753 (((-649 |#4|) |#4|) 57)) (-3109 (((-649 (-412 (-958 |#1|))) (-649 |#4|)) 145) (((-694 (-412 (-958 |#1|))) (-694 |#4|)) 66) (((-412 (-958 |#1|)) |#4|) 142)) (-3216 (((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1167) (-569)) 113)) (-4249 (((-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776)) 100)) (-2087 (((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776)) 124)) (-3844 (((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| -1863 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) 56)))
+(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-927) (-1167))) (-15 -1557 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3240 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3216 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1167) (-569))) (-15 -3109 ((-412 (-958 |#1|)) |#4|)) (-15 -3109 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3109 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -1774 ((-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3518 (|#4| (-958 |#1|))) (-15 -2041 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -4249 ((-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -1958 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3844 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| -1863 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3753 ((-649 |#4|) |#4|)) (-15 -2406 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2809 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -1614 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -3620 ((-649 (-649 (-569))) (-569) (-569))) (-15 -3462 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2087 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -1999 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -3769 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -3638 (|#4| |#4|)) (-15 -2220 ((-112) (-649 |#4|))) (-15 -2220 ((-112) (-649 (-958 |#1|))))) (-13 (-310) (-147)) (-13 (-855) (-619 (-1185))) (-798) (-955 |#1| |#3| |#2|)) (T -930))
+((-2220 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4)))) (-3769 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9)))) (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569)) (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10)) (-4 *10 (-13 (-855) (-619 (-1185)))) (-4 *11 (-798)) (-5 *2 (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12)) (|:| |wcond| (-649 (-958 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *9)))) (|:| -2403 (-649 (-1275 (-412 (-958 *9))))))))) (-5 *1 (-930 *9 *10 *11 *12)))) (-1999 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *7)) (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3620 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4)) (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1863 (-694 (-412 (-958 *4)))) (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))) (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147))) (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *8))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))) (-2041 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147))) (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3216 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8)))) (-5 *5 (-776)) (-5 *6 (-1167)) (-4 *8 (-13 (-310) (-147))) (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1185)))) (-4 *10 (-798)) (-5 *2 (-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11)) (|:| |wcond| (-649 (-958 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *8)))) (|:| -2403 (-649 (-1275 (-412 (-958 *8)))))))))) (|:| |rgsz| (-569)))) (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-1557 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *4 (-1167)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6)) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1167)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1185))) (-5 *5 (-927)) (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-2657 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927)) (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-1167)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-1167)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1167)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *6)))) (|:| -2403 (-649 (-1275 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *6)))) (|:| -2403 (-649 (-1275 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1185))) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
+(-10 -7 (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-927) (-1167))) (-15 -1557 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3240 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3216 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1167) (-569))) (-15 -3109 ((-412 (-958 |#1|)) |#4|)) (-15 -3109 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3109 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -1774 ((-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3518 (|#4| (-958 |#1|))) (-15 -2041 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -4249 ((-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -1958 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3844 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| -1863 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3753 ((-649 |#4|) |#4|)) (-15 -2406 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2809 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -1614 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -3620 ((-649 (-649 (-569))) (-569) (-569))) (-15 -3462 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2087 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -1999 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -3769 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -3638 (|#4| |#4|)) (-15 -2220 ((-112) (-649 |#4|))) (-15 -2220 ((-112) (-649 (-958 |#1|)))))
+((-3672 (((-933) |#1| (-1185)) 17) (((-933) |#1| (-1185) (-1102 (-226))) 21)) (-1808 (((-933) |#1| |#1| (-1185) (-1102 (-226))) 19) (((-933) |#1| (-1185) (-1102 (-226))) 15)))
+(((-931 |#1|) (-10 -7 (-15 -1808 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -1808 ((-933) |#1| |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185)))) (-619 (-541))) (T -931))
+((-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-3672 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-1808 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))))
+(-10 -7 (-15 -1808 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -1808 ((-933) |#1| |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185))))
+((-1432 (($ $ (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 123)) (-3822 (((-1102 (-226)) $) 64)) (-3812 (((-1102 (-226)) $) 63)) (-3798 (((-1102 (-226)) $) 62)) (-3527 (((-649 (-649 (-226))) $) 69)) (-2146 (((-1102 (-226)) $) 65)) (-3314 (((-569) (-569)) 57)) (-4103 (((-569) (-569)) 52)) (-1766 (((-569) (-569)) 55)) (-2827 (((-112) (-112)) 59)) (-2089 (((-569)) 56)) (-3442 (($ $ (-1102 (-226))) 126) (($ $) 127)) (-2187 (($ (-1 (-949 (-226)) (-226)) (-1102 (-226))) 133) (($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 134)) (-1808 (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226))) 136) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 137) (($ $ (-1102 (-226))) 129)) (-4197 (((-569)) 60)) (-2829 (((-569)) 50)) (-2206 (((-569)) 53)) (-4417 (((-649 (-649 (-949 (-226)))) $) 153)) (-2092 (((-112) (-112)) 61)) (-3796 (((-867) $) 151)) (-1559 (((-112)) 58)))
+(((-932) (-13 (-982) (-10 -8 (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -3527 ((-649 (-649 (-226))) $)) (-15 -2829 ((-569))) (-15 -4103 ((-569) (-569))) (-15 -2206 ((-569))) (-15 -1766 ((-569) (-569))) (-15 -2089 ((-569))) (-15 -3314 ((-569) (-569))) (-15 -1559 ((-112))) (-15 -2827 ((-112) (-112))) (-15 -4197 ((-569))) (-15 -2092 ((-112) (-112)))))) (T -932))
+((-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-2187 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-1808 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-1808 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-1432 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-3442 (*1 *1 *1) (-5 *1 (-932))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932)))) (-2829 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2206 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2089 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-1559 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-4197 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2092 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+(-13 (-982) (-10 -8 (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -3527 ((-649 (-649 (-226))) $)) (-15 -2829 ((-569))) (-15 -4103 ((-569) (-569))) (-15 -2206 ((-569))) (-15 -1766 ((-569) (-569))) (-15 -2089 ((-569))) (-15 -3314 ((-569) (-569))) (-15 -1559 ((-112))) (-15 -2827 ((-112) (-112))) (-15 -4197 ((-569))) (-15 -2092 ((-112) (-112)))))
+((-1432 (($ $ (-1102 (-226))) 124) (($ $ (-1102 (-226)) (-1102 (-226))) 125)) (-3812 (((-1102 (-226)) $) 73)) (-3798 (((-1102 (-226)) $) 72)) (-2146 (((-1102 (-226)) $) 74)) (-2478 (((-569) (-569)) 66)) (-2535 (((-569) (-569)) 61)) (-4086 (((-569) (-569)) 64)) (-1845 (((-112) (-112)) 68)) (-4314 (((-569)) 65)) (-3442 (($ $ (-1102 (-226))) 128) (($ $) 129)) (-2187 (($ (-1 (-949 (-226)) (-226)) (-1102 (-226))) 143) (($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 144)) (-3672 (($ (-1 (-226) (-226)) (-1102 (-226))) 151) (($ (-1 (-226) (-226))) 155)) (-1808 (($ (-1 (-226) (-226)) (-1102 (-226))) 139) (($ (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226))) 140) (($ (-649 (-1 (-226) (-226))) (-1102 (-226))) 148) (($ (-649 (-1 (-226) (-226))) (-1102 (-226)) (-1102 (-226))) 149) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226))) 141) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 142) (($ $ (-1102 (-226))) 130)) (-3920 (((-112) $) 69)) (-3981 (((-569)) 70)) (-2221 (((-569)) 59)) (-2514 (((-569)) 62)) (-4417 (((-649 (-649 (-949 (-226)))) $) 35)) (-2820 (((-112) (-112)) 71)) (-3796 (((-867) $) 169)) (-3901 (((-112)) 67)))
+(((-933) (-13 (-961) (-10 -8 (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -3920 ((-112) $)) (-15 -1432 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -2221 ((-569))) (-15 -2535 ((-569) (-569))) (-15 -2514 ((-569))) (-15 -4086 ((-569) (-569))) (-15 -4314 ((-569))) (-15 -2478 ((-569) (-569))) (-15 -3901 ((-112))) (-15 -1845 ((-112) (-112))) (-15 -3981 ((-569))) (-15 -2820 ((-112) (-112)))))) (T -933))
+((-1808 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-2187 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-3672 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-1432 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-1432 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-3442 (*1 *1 *1) (-5 *1 (-933))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-2221 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2514 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4314 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-3901 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-3981 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2820 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(-13 (-961) (-10 -8 (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -3920 ((-112) $)) (-15 -1432 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -2221 ((-569))) (-15 -2535 ((-569) (-569))) (-15 -2514 ((-569))) (-15 -4086 ((-569) (-569))) (-15 -4314 ((-569))) (-15 -2478 ((-569) (-569))) (-15 -3901 ((-112))) (-15 -1845 ((-112) (-112))) (-15 -3981 ((-569))) (-15 -2820 ((-112) (-112)))))
+((-3873 (((-649 (-1102 (-226))) (-649 (-649 (-949 (-226))))) 34)))
+(((-934) (-10 -7 (-15 -3873 ((-649 (-1102 (-226))) (-649 (-649 (-949 (-226)))))))) (T -934))
+((-3873 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-1102 (-226)))) (-5 *1 (-934)))))
+(-10 -7 (-15 -3873 ((-649 (-1102 (-226))) (-649 (-649 (-949 (-226)))))))
+((-3574 ((|#2| |#2|) 28)) (-4201 ((|#2| |#2|) 29)) (-3709 ((|#2| |#2|) 27)) (-3661 ((|#2| |#2| (-511)) 26)))
+(((-935 |#1| |#2|) (-10 -7 (-15 -3661 (|#2| |#2| (-511))) (-15 -3709 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -4201 (|#2| |#2|))) (-1108) (-435 |#1|)) (T -935))
+((-4201 (*1 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3574 (*1 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3661 (*1 *2 *2 *3) (-12 (-5 *3 (-511)) (-4 *4 (-1108)) (-5 *1 (-935 *4 *2)) (-4 *2 (-435 *4)))))
+(-10 -7 (-15 -3661 (|#2| |#2| (-511))) (-15 -3709 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -4201 (|#2| |#2|)))
+((-3574 (((-319 (-569)) (-1185)) 16)) (-4201 (((-319 (-569)) (-1185)) 14)) (-3709 (((-319 (-569)) (-1185)) 12)) (-3661 (((-319 (-569)) (-1185) (-511)) 19)))
+(((-936) (-10 -7 (-15 -3661 ((-319 (-569)) (-1185) (-511))) (-15 -3709 ((-319 (-569)) (-1185))) (-15 -3574 ((-319 (-569)) (-1185))) (-15 -4201 ((-319 (-569)) (-1185))))) (T -936))
+((-4201 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-511)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
+(-10 -7 (-15 -3661 ((-319 (-569)) (-1185) (-511))) (-15 -3709 ((-319 (-569)) (-1185))) (-15 -3574 ((-319 (-569)) (-1185))) (-15 -4201 ((-319 (-569)) (-1185))))
+((-3131 (((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)) 25)) (-3641 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3641 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3131 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)))) (-1108) (-892 |#1|) (-13 (-1108) (-1046 |#2|))) (T -937))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-13 (-1108) (-1046 *3))) (-4 *3 (-892 *5)) (-5 *1 (-937 *5 *3 *6)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1108) (-1046 *5))) (-4 *5 (-892 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-937 *4 *5 *6)))))
+(-10 -7 (-15 -3641 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3131 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|))))
+((-3131 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 30)))
+(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1108) (-13 (-561) (-892 |#1|)) (-13 (-435 |#2|) (-619 (-898 |#1|)) (-892 |#1|) (-1046 (-617 $)))) (T -938))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1046 (-617 $)))) (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5))) (-5 *1 (-938 *5 *6 *3)))))
+(-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))
+((-3131 (((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)) 13)))
+(((-939 |#1|) (-10 -7 (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)))) (-550)) (T -939))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550)) (-5 *1 (-939 *3)))))
+(-10 -7 (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))))
+((-3131 (((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)) 57)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -3131 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)))) (-1108) (-13 (-1108) (-1046 (-617 $)) (-619 (-898 |#1|)) (-892 |#1|))) (T -940))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1108)) (-4 *6 (-13 (-1108) (-1046 (-617 $)) (-619 *4) (-892 *5))) (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6)))))
+(-10 -7 (-15 -3131 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|))))
+((-3131 (((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)) 17)))
+(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)))) (-1108) (-892 |#1|) (-671 |#2|)) (T -941))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3)))))
+(-10 -7 (-15 -3131 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|))))
+((-3131 (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|)) 17 (|has| |#3| (-892 |#1|))) (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|))) 16)))
+(((-942 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|)) (-1108) (-798) (-855) (-13 (-1057) (-892 |#1|)) (-13 (-955 |#4| |#2| |#3|) (-619 (-898 |#1|)))) (T -942))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5)) (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-13 (-1057) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3)))) (-3131 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3))) (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6)) (-4 *6 (-1108)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4))) (-4 *7 (-798)) (-4 *9 (-13 (-1057) (-892 *6))) (-5 *1 (-942 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|))
+((-4274 ((|#2| |#2| (-649 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -4274 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4274 (|#2| |#2| (-649 (-1 (-112) |#3|))))) (-1108) (-435 |#1|) (-1225)) (T -943))
+((-4274 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1225)) (-4 *4 (-1108)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1225)) (-4 *4 (-1108)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))))
+(-10 -7 (-15 -4274 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4274 (|#2| |#2| (-649 (-1 (-112) |#3|)))))
+((-4274 (((-319 (-569)) (-1185) (-649 (-1 (-112) |#1|))) 18) (((-319 (-569)) (-1185) (-1 (-112) |#1|)) 15)))
+(((-944 |#1|) (-10 -7 (-15 -4274 ((-319 (-569)) (-1185) (-1 (-112) |#1|))) (-15 -4274 ((-319 (-569)) (-1185) (-649 (-1 (-112) |#1|))))) (-1225)) (T -944))
+((-4274 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1225)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1225)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))))
+(-10 -7 (-15 -4274 ((-319 (-569)) (-1185) (-1 (-112) |#1|))) (-15 -4274 ((-319 (-569)) (-1185) (-649 (-1 (-112) |#1|)))))
+((-3131 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 25)))
+(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1108) (-13 (-561) (-892 |#1|) (-619 (-898 |#1|))) (-1000 |#2|)) (T -945))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-1000 *6)) (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5)) (-5 *1 (-945 *5 *6 *3)))))
+(-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))
+((-3131 (((-895 |#1| (-1185)) (-1185) (-898 |#1|) (-895 |#1| (-1185))) 18)))
+(((-946 |#1|) (-10 -7 (-15 -3131 ((-895 |#1| (-1185)) (-1185) (-898 |#1|) (-895 |#1| (-1185))))) (-1108)) (T -946))
+((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 (-1185))) (-5 *3 (-1185)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-5 *1 (-946 *5)))))
+(-10 -7 (-15 -3131 ((-895 |#1| (-1185)) (-1185) (-898 |#1|) (-895 |#1| (-1185)))))
+((-2762 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 34)) (-3131 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 33)))
+(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -2762 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))) (-1108) (-1057) (-13 (-1057) (-619 (-898 |#1|)) (-1046 |#2|))) (T -947))
+((-2762 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6))) (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1108)) (-4 *8 (-13 (-1057) (-619 (-898 *6)) (-1046 *7))) (-5 *2 (-895 *6 *8)) (-4 *7 (-1057)) (-5 *1 (-947 *6 *7 *8)))) (-3131 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9))) (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1108)) (-4 *9 (-13 (-1057) (-619 (-898 *7)) (-1046 *8))) (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1057)) (-5 *1 (-947 *7 *8 *9)))))
+(-10 -7 (-15 -3131 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -2762 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))))
+((-4393 (((-1181 (-412 (-569))) (-569)) 81)) (-1660 (((-1181 (-569)) (-569)) 84)) (-3397 (((-1181 (-569)) (-569)) 78)) (-1837 (((-569) (-1181 (-569))) 74)) (-2153 (((-1181 (-412 (-569))) (-569)) 65)) (-3665 (((-1181 (-569)) (-569)) 49)) (-3902 (((-1181 (-569)) (-569)) 86)) (-2356 (((-1181 (-569)) (-569)) 85)) (-2616 (((-1181 (-412 (-569))) (-569)) 67)))
+(((-948) (-10 -7 (-15 -2616 ((-1181 (-412 (-569))) (-569))) (-15 -2356 ((-1181 (-569)) (-569))) (-15 -3902 ((-1181 (-569)) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -2153 ((-1181 (-412 (-569))) (-569))) (-15 -1837 ((-569) (-1181 (-569)))) (-15 -3397 ((-1181 (-569)) (-569))) (-15 -1660 ((-1181 (-569)) (-569))) (-15 -4393 ((-1181 (-412 (-569))) (-569))))) (T -948))
+((-4393 (*1 *2 *3) (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-1660 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-569)) (-5 *1 (-948)))) (-2153 (*1 *2 *3) (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3665 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3902 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2356 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(-10 -7 (-15 -2616 ((-1181 (-412 (-569))) (-569))) (-15 -2356 ((-1181 (-569)) (-569))) (-15 -3902 ((-1181 (-569)) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -2153 ((-1181 (-412 (-569))) (-569))) (-15 -1837 ((-569) (-1181 (-569)))) (-15 -3397 ((-1181 (-569)) (-569))) (-15 -1660 ((-1181 (-569)) (-569))) (-15 -4393 ((-1181 (-412 (-569))) (-569))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776)) NIL (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-3283 (($ (-649 |#1|)) 9)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) NIL (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3420 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-4254 (((-112) $ (-776)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3166 (($ $ (-649 |#1|)) 25)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 18) (($ $ (-1242 (-569))) NIL)) (-3040 ((|#1| $ $) NIL (|has| |#1| (-1057)))) (-2377 (((-927) $) 13)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3260 (($ $ $) 23)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 14)) (-3809 (($ (-649 |#1|)) NIL)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2428 (((-776) $) 11 (|has| $ (-6 -4447)))))
+(((-949 |#1|) (-988 |#1|) (-1057)) (T -949))
+NIL
+(-988 |#1|)
+((-3941 (((-486 |#1| |#2|) (-958 |#2|)) 22)) (-2074 (((-248 |#1| |#2|) (-958 |#2|)) 35)) (-1801 (((-958 |#2|) (-486 |#1| |#2|)) 27)) (-1994 (((-248 |#1| |#2|) (-486 |#1| |#2|)) 57)) (-3427 (((-958 |#2|) (-248 |#1| |#2|)) 32)) (-3201 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 48)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -3201 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -1994 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3941 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -1801 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3427 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -2074 ((-248 |#1| |#2|) (-958 |#2|)))) (-649 (-1185)) (-1057)) (T -950))
+((-2074 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185))))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185))))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
+(-10 -7 (-15 -3201 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -1994 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3941 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -1801 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3427 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -2074 ((-248 |#1| |#2|) (-958 |#2|))))
+((-3944 (((-649 |#2|) |#2| |#2|) 10)) (-3304 (((-776) (-649 |#1|)) 48 (|has| |#1| (-853)))) (-3797 (((-649 |#2|) |#2|) 11)) (-2044 (((-776) (-649 |#1|) (-569) (-569)) 52 (|has| |#1| (-853)))) (-1488 ((|#1| |#2|) 38 (|has| |#1| (-853)))))
+(((-951 |#1| |#2|) (-10 -7 (-15 -3944 ((-649 |#2|) |#2| |#2|)) (-15 -3797 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -1488 (|#1| |#2|)) (-15 -3304 ((-776) (-649 |#1|))) (-15 -2044 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|)) (-367) (-1251 |#1|)) (T -951))
+((-2044 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1251 *5)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *4 *5)) (-4 *5 (-1251 *4)))) (-1488 (*1 *2 *3) (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1251 *2)))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1251 *4)))) (-3944 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -3944 ((-649 |#2|) |#2| |#2|)) (-15 -3797 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -1488 (|#1| |#2|)) (-15 -3304 ((-776) (-649 |#1|))) (-15 -2044 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|))
+((-1346 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 19)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -1346 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1057) (-1057)) (T -952))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6)))))
+(-10 -7 (-15 -1346 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|))))
+((-3767 (((-1248 |#1| (-958 |#2|)) (-958 |#2|) (-1271 |#1|)) 18)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -3767 ((-1248 |#1| (-958 |#2|)) (-958 |#2|) (-1271 |#1|)))) (-1185) (-1057)) (T -953))
+((-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1271 *5)) (-14 *5 (-1185)) (-4 *6 (-1057)) (-5 *2 (-1248 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6)))))
+(-10 -7 (-15 -3767 ((-1248 |#1| (-958 |#2|)) (-958 |#2|) (-1271 |#1|))))
+((-3722 (((-776) $) 88) (((-776) $ (-649 |#4|)) 93)) (-1830 (($ $) 203)) (-3764 (((-423 $) $) 195)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 141)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) 73)) (-3346 (($ $ $ |#4|) 95)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 131) (((-694 |#2|) (-694 $)) 121)) (-2642 (($ $) 210) (($ $ |#4|) 213)) (-1867 (((-649 $) $) 77)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 229) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 222)) (-2572 (((-649 $) $) 34)) (-3923 (($ |#2| |#3|) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) 71)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#4|) 192)) (-4250 (((-3 (-649 $) "failed") $) 52)) (-2427 (((-3 (-649 $) "failed") $) 39)) (-2850 (((-3 (-2 (|:| |var| |#4|) (|:| -1993 (-776))) "failed") $) 57)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 134)) (-2156 (((-423 (-1181 $)) (-1181 $)) 147)) (-3814 (((-423 (-1181 $)) (-1181 $)) 145)) (-3800 (((-423 $) $) 165)) (-1725 (($ $ (-649 (-297 $))) 24) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL)) (-3059 (($ $ |#4|) 97)) (-1410 (((-898 (-383)) $) 243) (((-898 (-569)) $) 236) (((-541) $) 251)) (-3833 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 184)) (-4383 ((|#2| $ |#3|) NIL) (($ $ |#4| (-776)) 62) (($ $ (-649 |#4|) (-649 (-776))) 69)) (-2239 (((-3 $ "failed") $) 186)) (-1520 (((-112) $ $) 216)))
+(((-954 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2642 (|#1| |#1| |#4|)) (-15 -3833 (|#1| |#1| |#4|)) (-15 -3059 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1| |#1| |#4|)) (-15 -1867 ((-649 |#1|) |#1|)) (-15 -3722 ((-776) |#1| (-649 |#4|))) (-15 -3722 ((-776) |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| |#4|) (|:| -1993 (-776))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3923 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3923 (|#1| |#1| |#4| (-776))) (-15 -2976 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2572 ((-649 |#1|) |#1|)) (-15 -4383 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -4383 (|#1| |#1| |#4| (-776))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4383 (|#2| |#1| |#3|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|))) (-955 |#2| |#3| |#4|) (-1057) (-798) (-855)) (T -954))
+NIL
+(-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2642 (|#1| |#1| |#4|)) (-15 -3833 (|#1| |#1| |#4|)) (-15 -3059 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1| |#1| |#4|)) (-15 -1867 ((-649 |#1|) |#1|)) (-15 -3722 ((-776) |#1| (-649 |#4|))) (-15 -3722 ((-776) |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| |#4|) (|:| -1993 (-776))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3923 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3923 (|#1| |#1| |#4| (-776))) (-15 -2976 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2572 ((-649 |#1|) |#1|)) (-15 -4383 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -4383 (|#1| |#1| |#4| (-776))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4383 (|#2| |#1| |#3|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#3|) $) 112)) (-3767 (((-1181 $) $ |#3|) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) 138)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) ((|#3| $) 139)) (-3346 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1883 (($ $) 156)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-2870 (($ $ |#1| |#2| $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-1700 (($ (-1181 |#1|) |#3|) 119) (($ (-1181 $) |#3|) 118)) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 122)) (-2272 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-2492 (($ (-1 |#2| |#2|) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-2306 (((-3 |#3| "failed") $) 125)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3435 (((-1167) $) 10)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) 115)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-3059 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3517 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-4339 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-561))) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-955 |#1| |#2| |#3|) (-140) (-1057) (-798) (-855)) (T -955))
+((-2642 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-4339 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-4339 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-4383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *2 (-855)))) (-4383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)))) (-2572 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3767 (*1 *2 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1181 *1)) (-4 *1 (-955 *4 *5 *3)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1181 *3)))) (-2306 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2272 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-2272 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-2976 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-955 *4 *5 *3)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *2 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1057)) (-4 *1 (-955 *4 *5 *3)) (-4 *5 (-798)) (-4 *3 (-855)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)))) (-2427 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-4250 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-2850 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-776)))))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-3722 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-1867 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3346 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3059 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3833 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-2642 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-1830 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3764 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5)))))
+(-13 (-906 |t#3|) (-329 |t#1| |t#2|) (-312 $) (-519 |t#3| |t#1|) (-519 |t#3| $) (-1046 |t#3|) (-381 |t#1|) (-10 -8 (-15 -4339 ((-776) $ |t#3|)) (-15 -4339 ((-649 (-776)) $ (-649 |t#3|))) (-15 -4383 ($ $ |t#3| (-776))) (-15 -4383 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -2572 ((-649 $) $)) (-15 -3767 ((-1181 $) $ |t#3|)) (-15 -3767 ((-1181 |t#1|) $)) (-15 -2306 ((-3 |t#3| "failed") $)) (-15 -2272 ((-776) $ |t#3|)) (-15 -2272 ((-649 (-776)) $ (-649 |t#3|))) (-15 -2976 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |t#3|)) (-15 -3923 ($ $ |t#3| (-776))) (-15 -3923 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -1700 ($ (-1181 |t#1|) |t#3|)) (-15 -1700 ($ (-1181 $) |t#3|)) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |var| |t#3|) (|:| -1993 (-776))) "failed") $)) (-15 -3722 ((-776) $)) (-15 -3722 ((-776) $ (-649 |t#3|))) (-15 -1712 ((-649 |t#3|) $)) (-15 -1867 ((-649 $) $)) (IF (|has| |t#1| (-619 (-541))) (IF (|has| |t#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-569)))) (IF (|has| |t#3| (-619 (-898 (-569)))) (-6 (-619 (-898 (-569)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-383)))) (IF (|has| |t#3| (-619 (-898 (-383)))) (-6 (-619 (-898 (-383)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-569))) (IF (|has| |t#3| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (IF (|has| |t#3| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -3346 ($ $ $ |t#3|)) (-15 -3059 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-6 (-457)) (-15 -3833 ($ $ |t#3|)) (-15 -2642 ($ $)) (-15 -2642 ($ $ |t#3|)) (-15 -3764 ((-423 $) $)) (-15 -1830 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4445)) (-6 -4445) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-915) |has| |#1| (-915)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1046 |#3|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) |has| |#1| (-915)))
+((-1712 (((-649 |#2|) |#5|) 40)) (-3767 (((-1181 |#5|) |#5| |#2| (-1181 |#5|)) 23) (((-412 (-1181 |#5|)) |#5| |#2|) 16)) (-1700 ((|#5| (-412 (-1181 |#5|)) |#2|) 30)) (-2306 (((-3 |#2| "failed") |#5|) 71)) (-4250 (((-3 (-649 |#5|) "failed") |#5|) 65)) (-2605 (((-3 (-2 (|:| |val| |#5|) (|:| -1993 (-569))) "failed") |#5|) 53)) (-2427 (((-3 (-649 |#5|) "failed") |#5|) 67)) (-2850 (((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-569))) "failed") |#5|) 57)))
+(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1712 ((-649 |#2|) |#5|)) (-15 -2306 ((-3 |#2| "failed") |#5|)) (-15 -3767 ((-412 (-1181 |#5|)) |#5| |#2|)) (-15 -1700 (|#5| (-412 (-1181 |#5|)) |#2|)) (-15 -3767 ((-1181 |#5|) |#5| |#2| (-1181 |#5|))) (-15 -2427 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -4250 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2850 ((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-569))) "failed") |#5|)) (-15 -2605 ((-3 (-2 (|:| |val| |#5|) (|:| -1993 (-569))) "failed") |#5|))) (-798) (-855) (-1057) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3796 ($ |#4|)) (-15 -4399 (|#4| $)) (-15 -4412 (|#4| $))))) (T -956))
+((-2605 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1993 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-2850 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-4250 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-2427 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-3767 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))) (-4 *7 (-955 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057)) (-5 *1 (-956 *5 *4 *6 *7 *3)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1181 *2))) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057)) (-4 *2 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))) (-5 *1 (-956 *5 *4 *6 *7 *2)) (-4 *7 (-955 *6 *5 *4)))) (-3767 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1181 *3))) (-5 *1 (-956 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-2306 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1057)) (-4 *6 (-955 *5 *4 *2)) (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *6)) (-15 -4399 (*6 $)) (-15 -4412 (*6 $))))))) (-1712 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *5)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))))
+(-10 -7 (-15 -1712 ((-649 |#2|) |#5|)) (-15 -2306 ((-3 |#2| "failed") |#5|)) (-15 -3767 ((-412 (-1181 |#5|)) |#5| |#2|)) (-15 -1700 (|#5| (-412 (-1181 |#5|)) |#2|)) (-15 -3767 ((-1181 |#5|) |#5| |#2| (-1181 |#5|))) (-15 -2427 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -4250 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2850 ((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-569))) "failed") |#5|)) (-15 -2605 ((-3 (-2 (|:| |val| |#5|) (|:| -1993 (-569))) "failed") |#5|)))
+((-1346 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1346 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-798) (-855) (-1057) (-955 |#3| |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (T -957))
+((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855)) (-4 *8 (-1057)) (-4 *6 (-798)) (-4 *2 (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (-5 *1 (-957 *6 *7 *8 *5 *2)) (-4 *5 (-955 *8 *6 *7)))))
+(-10 -7 (-15 -1346 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1185)) $) 16)) (-3767 (((-1181 $) $ (-1185)) 21) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1185))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 8) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1185) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1185) $) NIL)) (-3346 (($ $ $ (-1185)) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1185)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 (-1185)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1185) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1185) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) (-1185)) NIL) (($ (-1181 $) (-1185)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1185)) NIL)) (-2272 (((-536 (-1185)) $) NIL) (((-776) $ (-1185)) NIL) (((-649 (-776)) $ (-649 (-1185))) NIL)) (-2492 (($ (-1 (-536 (-1185)) (-536 (-1185))) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2306 (((-3 (-1185) "failed") $) 19)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1185)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $ (-1185)) 29 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1185) |#1|) NIL) (($ $ (-649 (-1185)) (-649 |#1|)) NIL) (($ $ (-1185) $) NIL) (($ $ (-649 (-1185)) (-649 $)) NIL)) (-3059 (($ $ (-1185)) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-4339 (((-536 (-1185)) $) NIL) (((-776) $ (-1185)) NIL) (((-649 (-776)) $ (-649 (-1185))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1185) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1185) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1185) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1185)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 25) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1185)) 27) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-958 |#1|) (-13 (-955 |#1| (-536 (-1185)) (-1185)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1185))) |%noBranch|))) (-1057)) (T -958))
+((-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)))))
+(-13 (-955 |#1| (-536 (-1185)) (-1185)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1185))) |%noBranch|)))
+((-2580 (((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#3| (-776)) 49)) (-2319 (((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776)) 44)) (-3728 (((-2 (|:| -1993 (-776)) (|:| -1435 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)) 65)) (-3947 (((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#5| (-776)) 74 (|has| |#3| (-457)))))
+(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2580 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -2319 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -3947 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3728 ((-2 (|:| -1993 (-776)) (|:| -1435 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3796 ($ |#4|)) (-15 -4399 (|#4| $)) (-15 -4412 (|#4| $))))) (T -959))
+((-3728 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *3 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| (-649 *3)))) (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -3796 ($ *3)) (-15 -4399 (*3 $)) (-15 -4412 (*3 $))))))) (-3947 (*1 *2 *3 *4) (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *3))) (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $))))))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *9) (|:| |radicand| *9))) (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776)) (-4 *9 (-13 (-367) (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $))))))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561)) (-4 *7 (-955 *3 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *8) (|:| |radicand| *8))) (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))))
+(-10 -7 (-15 -2580 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -2319 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -3947 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3728 ((-2 (|:| -1993 (-776)) (|:| -1435 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776))))
+((-2417 (((-112) $ $) NIL)) (-3653 (($ (-1128)) 8)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (((-1128) $) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11)))
+(((-960) (-13 (-1108) (-618 (-1128)) (-10 -8 (-15 -3653 ($ (-1128)))))) (T -960))
+((-3653 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-960)))))
+(-13 (-1108) (-618 (-1128)) (-10 -8 (-15 -3653 ($ (-1128)))))
+((-3812 (((-1102 (-226)) $) 8)) (-3798 (((-1102 (-226)) $) 9)) (-4417 (((-649 (-649 (-949 (-226)))) $) 10)) (-3796 (((-867) $) 6)))
(((-961) (-140)) (T -961))
-((-4187 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226))))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226))))))
-(-13 (-618 (-867)) (-10 -8 (-15 -4187 ((-649 (-649 (-949 (-226)))) $)) (-15 -3795 ((-1100 (-226)) $)) (-15 -3808 ((-1100 (-226)) $))))
+((-4417 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226))))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226))))))
+(-13 (-618 (-867)) (-10 -8 (-15 -4417 ((-649 (-649 (-949 (-226)))) $)) (-15 -3798 ((-1102 (-226)) $)) (-15 -3812 ((-1102 (-226)) $))))
(((-618 (-867)) . T))
-((-2294 (((-3 (-694 |#1|) "failed") |#2| (-927)) 18)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -2294 ((-3 (-694 |#1|) "failed") |#2| (-927)))) (-561) (-661 |#1|)) (T -962))
-((-2294 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5)) (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5)))))
-(-10 -7 (-15 -2294 ((-3 (-694 |#1|) "failed") |#2| (-927))))
-((-4085 (((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 16)) (-3596 ((|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 18)) (-1344 (((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)) 13)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -4085 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1344 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)))) (-1223) (-1223)) (T -963))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6)))) (-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-963 *5 *2)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5)))))
-(-10 -7 (-15 -4085 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1344 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) |#1|) 19 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 18 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 16)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-4295 (($ (-776) |#1|) 15)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) 11 (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) 20 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 17) (($ $ (-1240 (-569))) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) 21)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 14)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2426 (((-776) $) 8 (|has| $ (-6 -4444)))))
-(((-964 |#1|) (-19 |#1|) (-1223)) (T -964))
+((-2201 (((-3 (-694 |#1|) "failed") |#2| (-927)) 18)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -2201 ((-3 (-694 |#1|) "failed") |#2| (-927)))) (-561) (-661 |#1|)) (T -962))
+((-2201 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5)) (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5)))))
+(-10 -7 (-15 -2201 ((-3 (-694 |#1|) "failed") |#2| (-927))))
+((-1610 (((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 16)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 18)) (-1346 (((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)) 13)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -1610 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1346 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)))) (-1225) (-1225)) (T -963))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-963 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5)))))
+(-10 -7 (-15 -1610 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1346 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) 19 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 18 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 16)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 15)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 11 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) 20 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 17) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 21)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 14)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 8 (|has| $ (-6 -4447)))))
+(((-964 |#1|) (-19 |#1|) (-1225)) (T -964))
NIL
(-19 |#1|)
-((-2391 (($ $ (-1098 $)) 7) (($ $ (-1183)) 6)))
+((-3898 (($ $ (-1100 $)) 7) (($ $ (-1185)) 6)))
(((-965) (-140)) (T -965))
-((-2391 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-965)))) (-2391 (*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1183)))))
-(-13 (-10 -8 (-15 -2391 ($ $ (-1183))) (-15 -2391 ($ $ (-1098 $)))))
-((-1312 (((-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)) (-1183)) 30) (((-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183))) 31) (((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 |#1|))) (-958 |#1|) (-1183) (-958 |#1|) (-1183)) 49)))
-(((-966 |#1|) (-10 -7 (-15 -1312 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 |#1|))) (-958 |#1|) (-1183) (-958 |#1|) (-1183))) (-15 -1312 ((-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -1312 ((-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)) (-1183)))) (-13 (-367) (-147))) (T -966))
-((-1312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-5 *5 (-1183)) (-4 *6 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 *6))) (|:| |prim| (-1179 *6)))) (-5 *1 (-966 *6)))) (-1312 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 *5))) (|:| |prim| (-1179 *5)))) (-5 *1 (-966 *5)))) (-1312 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-1183)) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 *5)))) (-5 *1 (-966 *5)))))
-(-10 -7 (-15 -1312 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1179 |#1|))) (-958 |#1|) (-1183) (-958 |#1|) (-1183))) (-15 -1312 ((-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)))) (-15 -1312 ((-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 |#1|))) (|:| |prim| (-1179 |#1|))) (-649 (-958 |#1|)) (-649 (-1183)) (-1183))))
-((-1673 (((-649 |#1|) |#1| |#1|) 47)) (-4073 (((-112) |#1|) 44)) (-1547 ((|#1| |#1|) 80)) (-1437 ((|#1| |#1|) 79)))
-(((-967 |#1|) (-10 -7 (-15 -4073 ((-112) |#1|)) (-15 -1437 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1673 ((-649 |#1|) |#1| |#1|))) (-550)) (T -967))
-((-1673 (*1 *2 *3 *3) (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550)))) (-1547 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-1437 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-4073 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550)))))
-(-10 -7 (-15 -4073 ((-112) |#1|)) (-15 -1437 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1673 ((-649 |#1|) |#1| |#1|)))
-((-2927 (((-1278) (-867)) 9)))
-(((-968) (-10 -7 (-15 -2927 ((-1278) (-867))))) (T -968))
-((-2927 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-968)))))
-(-10 -7 (-15 -2927 ((-1278) (-867))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 78 (|has| |#1| (-561)))) (-3087 (($ $) 79 (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 34)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1879 (($ $) 31)) (-2888 (((-3 $ "failed") $) 42)) (-4260 (($ $) NIL (|has| |#1| (-457)))) (-3972 (($ $ |#1| |#2| $) 62)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) 17)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| |#2|) NIL)) (-3712 ((|#2| $) 24)) (-4059 (($ (-1 |#2| |#2|) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1846 (($ $) 28)) (-1855 ((|#1| $) 26)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) 51)) (-1833 ((|#1| $) NIL)) (-2635 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-561))))) (-2405 (((-3 $ "failed") $ $) 91 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-561)))) (-3868 ((|#2| $) 22)) (-3479 ((|#1| $) NIL (|has| |#1| (-457)))) (-3793 (((-867) $) NIL) (($ (-569)) 46) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 41) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ |#2|) 37)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) 15 T CONST)) (-3877 (($ $ $ (-776)) 74 (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 84 (|has| |#1| (-561)))) (-1803 (($) 27 T CONST)) (-1813 (($) 12 T CONST)) (-2919 (((-112) $ $) 83)) (-3032 (($ $ |#1|) 92 (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) 69) (($ $ (-776)) 67)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-969 |#1| |#2|) (-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -2635 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|))) (-1055) (-797)) (T -969))
-((-2635 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -2635 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL (-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3217 (($ $ $) 65 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (-1678 (((-3 $ "failed") $ $) 52 (-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3470 (((-776)) 36 (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-1802 ((|#2| $) 22)) (-3804 ((|#1| $) 21)) (-4188 (($) NIL (-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-2888 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3403 (($) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-2623 (((-112) $) NIL (-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3377 (($ $ $) NIL (-2774 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3969 (($ $ $) NIL (-2774 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3916 (($ |#1| |#2|) 20)) (-2855 (((-927) $) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 39 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2150 (($ (-927)) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3545 (((-1126) $) NIL)) (-3580 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2292 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-3793 (((-867) $) 14)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 42 (-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-1813 (($) 25 (-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))) CONST)) (-2976 (((-112) $ $) NIL (-2774 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2954 (((-112) $ $) NIL (-2774 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2919 (((-112) $ $) 19)) (-2964 (((-112) $ $) NIL (-2774 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2942 (((-112) $ $) 69 (-2774 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3032 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-3021 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3009 (($ $ $) 45 (-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (** (($ $ (-569)) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478)))) (($ $ (-776)) 32 (-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))) (($ $ (-927)) NIL (-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (* (($ (-569) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-776) $) 48 (-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ (-927) $) NIL (-2774 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ $ $) 28 (-2774 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))))
-(((-970 |#1| |#2|) (-13 (-1106) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3916 ($ |#1| |#2|)) (-15 -3804 (|#1| $)) (-15 -1802 (|#2| $)))) (-1106) (-1106)) (T -970))
-((-3916 (*1 *1 *2 *3) (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-3804 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1106)))) (-1802 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1106)))))
-(-13 (-1106) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3916 ($ |#1| |#2|)) (-15 -3804 (|#1| $)) (-15 -1802 (|#2| $))))
-((-2185 (((-1110) $) 12)) (-3122 (($ (-511) (-1110)) 14)) (-3570 (((-511) $) 9)) (-3793 (((-867) $) 24)))
-(((-971) (-13 (-618 (-867)) (-10 -8 (-15 -3570 ((-511) $)) (-15 -2185 ((-1110) $)) (-15 -3122 ($ (-511) (-1110)))))) (T -971))
-((-3570 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-971)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-971)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3570 ((-511) $)) (-15 -2185 ((-1110) $)) (-15 -3122 ($ (-511) (-1110)))))
-((-2415 (((-112) $ $) NIL)) (-3015 (($) NIL T CONST)) (-1769 (($ $ $) 30)) (-1745 (($ $) 24)) (-1550 (((-1165) $) NIL)) (-3587 (((-696 |#1|) $) 36)) (-3206 (((-696 (-878 $ $)) $) 55)) (-3451 (((-696 $) $) 45)) (-4349 (((-696 (-878 $ $)) $) 56)) (-4242 (((-696 (-878 $ $)) $) 57)) (-3327 (((-696 (-878 $ $)) $) 54)) (-2494 (($ $ $) 31)) (-3545 (((-1126) $) NIL)) (-1876 (($) NIL T CONST)) (-3689 (($ $ $) 32)) (-4017 (($ $ $) 29)) (-4115 (($ $ $) 27)) (-3793 (((-867) $) 59) (($ |#1|) 12)) (-1441 (((-112) $ $) NIL)) (-1756 (($ $ $) 28)) (-2919 (((-112) $ $) NIL)))
-(((-972 |#1|) (-13 (-973) (-621 |#1|) (-10 -8 (-15 -3587 ((-696 |#1|) $)) (-15 -3451 ((-696 $) $)) (-15 -3327 ((-696 (-878 $ $)) $)) (-15 -3206 ((-696 (-878 $ $)) $)) (-15 -4349 ((-696 (-878 $ $)) $)) (-15 -4242 ((-696 (-878 $ $)) $)) (-15 -4115 ($ $ $)) (-15 -4017 ($ $ $)))) (-1106)) (T -972))
-((-3587 (*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))) (-4115 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))) (-4017 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))))
-(-13 (-973) (-621 |#1|) (-10 -8 (-15 -3587 ((-696 |#1|) $)) (-15 -3451 ((-696 $) $)) (-15 -3327 ((-696 (-878 $ $)) $)) (-15 -3206 ((-696 (-878 $ $)) $)) (-15 -4349 ((-696 (-878 $ $)) $)) (-15 -4242 ((-696 (-878 $ $)) $)) (-15 -4115 ($ $ $)) (-15 -4017 ($ $ $))))
-((-2415 (((-112) $ $) 7)) (-3015 (($) 20 T CONST)) (-1769 (($ $ $) 16)) (-1745 (($ $) 18)) (-1550 (((-1165) $) 10)) (-2494 (($ $ $) 15)) (-3545 (((-1126) $) 11)) (-1876 (($) 19 T CONST)) (-3689 (($ $ $) 14)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1756 (($ $ $) 17)) (-2919 (((-112) $ $) 6)))
-(((-973) (-140)) (T -973))
-((-3015 (*1 *1) (-4 *1 (-973))) (-1876 (*1 *1) (-4 *1 (-973))) (-1745 (*1 *1 *1) (-4 *1 (-973))) (-1756 (*1 *1 *1 *1) (-4 *1 (-973))) (-1769 (*1 *1 *1 *1) (-4 *1 (-973))) (-2494 (*1 *1 *1 *1) (-4 *1 (-973))) (-3689 (*1 *1 *1 *1) (-4 *1 (-973))))
-(-13 (-1106) (-10 -8 (-15 -3015 ($) -3706) (-15 -1876 ($) -3706) (-15 -1745 ($ $)) (-15 -1756 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -2494 ($ $ $)) (-15 -3689 ($ $ $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4188 (($) 7 T CONST)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-2616 (($ $ $) 44)) (-2126 (($ $ $) 45)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3969 ((|#1| $) 46)) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-974 |#1|) (-140) (-855)) (T -974))
-((-3969 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))) (-2126 (*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))) (-2616 (*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4444) (-15 -3969 (|t#1| $)) (-15 -2126 ($ $ $)) (-15 -2616 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-2483 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1864 |#2|)) |#2| |#2|) 105)) (-4095 ((|#2| |#2| |#2|) 103)) (-2580 (((-2 (|:| |coef2| |#2|) (|:| -1864 |#2|)) |#2| |#2|) 107)) (-2692 (((-2 (|:| |coef1| |#2|) (|:| -1864 |#2|)) |#2| |#2|) 109)) (-2194 (((-2 (|:| |coef2| |#2|) (|:| -2008 |#1|)) |#2| |#2|) 131 (|has| |#1| (-457)))) (-1715 (((-2 (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|) 56)) (-4136 (((-2 (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|) 80)) (-4200 (((-2 (|:| |coef1| |#2|) (|:| -4202 |#1|)) |#2| |#2|) 82)) (-3690 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3207 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 89)) (-2894 (((-2 (|:| |coef2| |#2|) (|:| -4304 |#1|)) |#2|) 121)) (-3486 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 92)) (-3100 (((-649 (-776)) |#2| |#2|) 102)) (-1495 ((|#1| |#2| |#2|) 50)) (-2117 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2008 |#1|)) |#2| |#2|) 129 (|has| |#1| (-457)))) (-2008 ((|#1| |#2| |#2|) 127 (|has| |#1| (-457)))) (-1612 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|) 54)) (-4057 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|) 79)) (-4202 ((|#1| |#2| |#2|) 76)) (-1887 (((-2 (|:| -1433 |#1|) (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2|) 41)) (-1377 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3588 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3425 ((|#2| |#2| |#2|) 93)) (-3121 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 87)) (-4280 ((|#2| |#2| |#2| (-776)) 85)) (-1864 ((|#2| |#2| |#2|) 135 (|has| |#1| (-457)))) (-2405 (((-1273 |#2|) (-1273 |#2|) |#1|) 22)) (-2282 (((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2|) 46)) (-2797 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4304 |#1|)) |#2|) 119)) (-4304 ((|#1| |#2|) 116)) (-3396 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 91)) (-3284 ((|#2| |#2| |#2| (-776)) 90)) (-2995 (((-649 |#2|) |#2| |#2|) 99)) (-2455 ((|#2| |#2| |#1| |#1| (-776)) 62)) (-2367 ((|#1| |#1| |#1| (-776)) 61)) (* (((-1273 |#2|) |#1| (-1273 |#2|)) 17)))
-(((-975 |#1| |#2|) (-10 -7 (-15 -4202 (|#1| |#2| |#2|)) (-15 -4057 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -4136 ((-2 (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -4200 ((-2 (|:| |coef1| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -4280 (|#2| |#2| |#2| (-776))) (-15 -3121 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3207 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3284 (|#2| |#2| |#2| (-776))) (-15 -3396 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3486 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3425 (|#2| |#2| |#2|)) (-15 -3588 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3690 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4095 (|#2| |#2| |#2|)) (-15 -2483 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1864 |#2|)) |#2| |#2|)) (-15 -2580 ((-2 (|:| |coef2| |#2|) (|:| -1864 |#2|)) |#2| |#2|)) (-15 -2692 ((-2 (|:| |coef1| |#2|) (|:| -1864 |#2|)) |#2| |#2|)) (-15 -4304 (|#1| |#2|)) (-15 -2797 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4304 |#1|)) |#2|)) (-15 -2894 ((-2 (|:| |coef2| |#2|) (|:| -4304 |#1|)) |#2|)) (-15 -2995 ((-649 |#2|) |#2| |#2|)) (-15 -3100 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2008 (|#1| |#2| |#2|)) (-15 -2117 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2008 |#1|)) |#2| |#2|)) (-15 -2194 ((-2 (|:| |coef2| |#2|) (|:| -2008 |#1|)) |#2| |#2|)) (-15 -1864 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1273 |#2|) |#1| (-1273 |#2|))) (-15 -2405 ((-1273 |#2|) (-1273 |#2|) |#1|)) (-15 -1887 ((-2 (|:| -1433 |#1|) (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2|)) (-15 -2282 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2|)) (-15 -2367 (|#1| |#1| |#1| (-776))) (-15 -2455 (|#2| |#2| |#1| |#1| (-776))) (-15 -1377 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1495 (|#1| |#2| |#2|)) (-15 -1612 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -1715 ((-2 (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|))) (-561) (-1249 |#1|)) (T -975))
-((-1715 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4202 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-1612 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4202 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-1495 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))) (-1377 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2455 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2367 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-975 *2 *4)) (-4 *4 (-1249 *2)))) (-2282 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-1887 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -1433 *4) (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2405 (*1 *2 *2 *3) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561)) (-5 *1 (-975 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561)) (-5 *1 (-975 *3 *4)))) (-1864 (*1 *2 *2 *2) (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-2194 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2008 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2117 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2008 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2008 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))) (-3100 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2995 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2894 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4304 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2797 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4304 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4304 (*1 *2 *3) (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))) (-2692 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1864 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2580 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1864 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-2483 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1864 *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4095 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-3690 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-3588 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-3425 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))) (-3486 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-3396 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-3284 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1249 *4)))) (-3207 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-3121 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))) (-4280 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2)) (-4 *2 (-1249 *4)))) (-4200 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4202 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4136 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4202 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4057 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4202 *4))) (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))) (-4202 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))))
-(-10 -7 (-15 -4202 (|#1| |#2| |#2|)) (-15 -4057 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -4136 ((-2 (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -4200 ((-2 (|:| |coef1| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -4280 (|#2| |#2| |#2| (-776))) (-15 -3121 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3207 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3284 (|#2| |#2| |#2| (-776))) (-15 -3396 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3486 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3425 (|#2| |#2| |#2|)) (-15 -3588 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3690 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4095 (|#2| |#2| |#2|)) (-15 -2483 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1864 |#2|)) |#2| |#2|)) (-15 -2580 ((-2 (|:| |coef2| |#2|) (|:| -1864 |#2|)) |#2| |#2|)) (-15 -2692 ((-2 (|:| |coef1| |#2|) (|:| -1864 |#2|)) |#2| |#2|)) (-15 -4304 (|#1| |#2|)) (-15 -2797 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4304 |#1|)) |#2|)) (-15 -2894 ((-2 (|:| |coef2| |#2|) (|:| -4304 |#1|)) |#2|)) (-15 -2995 ((-649 |#2|) |#2| |#2|)) (-15 -3100 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2008 (|#1| |#2| |#2|)) (-15 -2117 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2008 |#1|)) |#2| |#2|)) (-15 -2194 ((-2 (|:| |coef2| |#2|) (|:| -2008 |#1|)) |#2| |#2|)) (-15 -1864 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1273 |#2|) |#1| (-1273 |#2|))) (-15 -2405 ((-1273 |#2|) (-1273 |#2|) |#1|)) (-15 -1887 ((-2 (|:| -1433 |#1|) (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2|)) (-15 -2282 ((-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) |#2| |#2|)) (-15 -2367 (|#1| |#1| |#1| (-776))) (-15 -2455 (|#2| |#2| |#1| |#1| (-776))) (-15 -1377 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1495 (|#1| |#2| |#2|)) (-15 -1612 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|)) (-15 -1715 ((-2 (|:| |coef2| |#2|) (|:| -4202 |#1|)) |#2| |#2|)))
-((-2415 (((-112) $ $) NIL)) (-3865 (((-1222) $) 13)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1416 (((-1141) $) 10)) (-3793 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-976) (-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -3865 ((-1222) $))))) (T -976))
-((-1416 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-976)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-976)))))
-(-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -3865 ((-1222) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) 39)) (-4188 (($) NIL T CONST)) (-1909 (((-649 (-649 (-569))) (-649 (-569))) 48)) (-1819 (((-569) $) 72)) (-3912 (($ (-649 (-569))) 18)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1408 (((-649 (-569)) $) 13)) (-3580 (($ $) 52)) (-3793 (((-867) $) 68) (((-649 (-569)) $) 11)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 8 T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 26)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 25)) (-3009 (($ $ $) 28)) (* (($ (-927) $) NIL) (($ (-776) $) 37)))
-(((-977) (-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -3912 ($ (-649 (-569)))) (-15 -1909 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -1819 ((-569) $)) (-15 -3580 ($ $))))) (T -977))
-((-3912 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-977)))) (-1909 (*1 *2 *3) (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-977)) (-5 *3 (-649 (-569))))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-977)))) (-3580 (*1 *1 *1) (-5 *1 (-977))))
-(-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -3912 ($ (-649 (-569)))) (-15 -1909 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -1819 ((-569) $)) (-15 -3580 ($ $))))
-((-3032 (($ $ |#2|) 31)) (-3021 (($ $) 23) (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-412 (-569)) $) 27) (($ $ (-412 (-569))) 29)))
-(((-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3032 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-979 |#2| |#3| |#4|) (-1055) (-797) (-855)) (T -978))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3032 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 |#3|) $) 86)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-4091 (((-112) $) 85)) (-2623 (((-112) $) 35)) (-4343 (((-112) $) 74)) (-3920 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-649 |#3|) (-649 |#2|)) 87)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-3868 ((|#2| $) 76)) (-4005 (($ $) 84)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4184 ((|#1| $ |#2|) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-979 |#1| |#2| |#3|) (-140) (-1055) (-797) (-855)) (T -979))
-((-1855 (*1 *2 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855)) (-4 *2 (-1055)))) (-1846 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *2 *4)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *2 (-797)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-979 *4 *3 *2)) (-4 *4 (-1055)) (-4 *3 (-797)) (-4 *2 (-855)))) (-3920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-797)) (-4 *6 (-855)))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4005 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797)) (-4 *4 (-855)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3920 ($ $ |t#3| |t#2|)) (-15 -3920 ($ $ (-649 |t#3|) (-649 |t#2|))) (-15 -1846 ($ $)) (-15 -1855 (|t#1| $)) (-15 -3868 (|t#2| $)) (-15 -1710 ((-649 |t#3|) $)) (-15 -4091 ((-112) $)) (-15 -4005 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-3820 (((-1100 (-226)) $) 8)) (-3808 (((-1100 (-226)) $) 9)) (-3795 (((-1100 (-226)) $) 10)) (-4187 (((-649 (-649 (-949 (-226)))) $) 11)) (-3793 (((-867) $) 6)))
-(((-980) (-140)) (T -980))
-((-4187 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
-(-13 (-618 (-867)) (-10 -8 (-15 -4187 ((-649 (-649 (-949 (-226)))) $)) (-15 -3795 ((-1100 (-226)) $)) (-15 -3808 ((-1100 (-226)) $)) (-15 -3820 ((-1100 (-226)) $))))
+((-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-965)))) (-3898 (*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1185)))))
+(-13 (-10 -8 (-15 -3898 ($ $ (-1185))) (-15 -3898 ($ $ (-1100 $)))))
+((-1616 (((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)) (-1185)) 30) (((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185))) 31) (((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 |#1|))) (-958 |#1|) (-1185) (-958 |#1|) (-1185)) 49)))
+(((-966 |#1|) (-10 -7 (-15 -1616 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 |#1|))) (-958 |#1|) (-1185) (-958 |#1|) (-1185))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)) (-1185)))) (-13 (-367) (-147))) (T -966))
+((-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-5 *5 (-1185)) (-4 *6 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *6))) (|:| |prim| (-1181 *6)))) (-5 *1 (-966 *6)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *5))) (|:| |prim| (-1181 *5)))) (-5 *1 (-966 *5)))) (-1616 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-1185)) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 *5)))) (-5 *1 (-966 *5)))))
+(-10 -7 (-15 -1616 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 |#1|))) (-958 |#1|) (-1185) (-958 |#1|) (-1185))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)) (-1185))))
+((-2160 (((-649 |#1|) |#1| |#1|) 47)) (-1473 (((-112) |#1|) 44)) (-3401 ((|#1| |#1|) 80)) (-1474 ((|#1| |#1|) 79)))
+(((-967 |#1|) (-10 -7 (-15 -1473 ((-112) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3401 (|#1| |#1|)) (-15 -2160 ((-649 |#1|) |#1| |#1|))) (-550)) (T -967))
+((-2160 (*1 *2 *3 *3) (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550)))) (-3401 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-1474 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550)))))
+(-10 -7 (-15 -1473 ((-112) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3401 (|#1| |#1|)) (-15 -2160 ((-649 |#1|) |#1| |#1|)))
+((-2929 (((-1280) (-867)) 9)))
+(((-968) (-10 -7 (-15 -2929 ((-1280) (-867))))) (T -968))
+((-2929 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-968)))))
+(-10 -7 (-15 -2929 ((-1280) (-867))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 78 (|has| |#1| (-561)))) (-4355 (($ $) 79 (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 34)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) 31)) (-3086 (((-3 $ "failed") $) 42)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2870 (($ $ |#1| |#2| $) 62)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 17)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-2272 ((|#2| $) 24)) (-2492 (($ (-1 |#2| |#2|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1849 (($ $) 28)) (-1857 ((|#1| $) 26)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 51)) (-1835 ((|#1| $) NIL)) (-2448 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-561))))) (-2407 (((-3 $ "failed") $ $) 91 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-561)))) (-4339 ((|#2| $) 22)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) 46) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 41) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ |#2|) 37)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 15 T CONST)) (-3184 (($ $ $ (-776)) 74 (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) 84 (|has| |#1| (-561)))) (-1804 (($) 27 T CONST)) (-1815 (($) 12 T CONST)) (-2920 (((-112) $ $) 83)) (-3035 (($ $ |#1|) 92 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 69) (($ $ (-776)) 67)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-969 |#1| |#2|) (-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -2448 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) (-1057) (-797)) (T -969))
+((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *2 (-797)))))
+(-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -2448 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3151 (($ $ $) 65 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (-2208 (((-3 $ "failed") $ $) 52 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3473 (((-776)) 36 (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-4000 ((|#2| $) 22)) (-3840 ((|#1| $) 21)) (-4427 (($) NIL (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3406 (($) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-2349 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3380 (($ $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2839 (($ $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3621 (($ |#1| |#2|) 20)) (-2731 (((-927) $) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 39 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2150 (($ (-927)) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3547 (((-1128) $) NIL)) (-3476 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2180 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-3796 (((-867) $) 14)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 42 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-1815 (($) 25 (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))) CONST)) (-2978 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2956 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2920 (((-112) $ $) 19)) (-2966 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2944 (((-112) $ $) 69 (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3035 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-3024 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3012 (($ $ $) 45 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (** (($ $ (-569)) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478)))) (($ $ (-776)) 32 (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))) (($ $ (-927)) NIL (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (* (($ (-569) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-776) $) 48 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ (-927) $) NIL (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ $ $) 28 (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))))
+(((-970 |#1| |#2|) (-13 (-1108) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3621 ($ |#1| |#2|)) (-15 -3840 (|#1| $)) (-15 -4000 (|#2| $)))) (-1108) (-1108)) (T -970))
+((-3621 (*1 *1 *2 *3) (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-3840 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1108)))) (-4000 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1108)))))
+(-13 (-1108) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3621 ($ |#1| |#2|)) (-15 -3840 (|#1| $)) (-15 -4000 (|#2| $))))
+((-2188 (((-1112) $) 12)) (-3125 (($ (-511) (-1112)) 14)) (-3573 (((-511) $) 9)) (-3796 (((-867) $) 24)))
+(((-971) (-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2188 ((-1112) $)) (-15 -3125 ($ (-511) (-1112)))))) (T -971))
+((-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-971)))) (-3125 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-971)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2188 ((-1112) $)) (-15 -3125 ($ (-511) (-1112)))))
+((-2417 (((-112) $ $) NIL)) (-3018 (($) NIL T CONST)) (-1771 (($ $ $) 30)) (-1749 (($ $) 24)) (-3435 (((-1167) $) NIL)) (-3540 (((-696 |#1|) $) 36)) (-4278 (((-696 (-878 $ $)) $) 55)) (-1653 (((-696 $) $) 45)) (-2255 (((-696 (-878 $ $)) $) 56)) (-3754 (((-696 (-878 $ $)) $) 57)) (-2947 (((-696 (-878 $ $)) $) 54)) (-3625 (($ $ $) 31)) (-3547 (((-1128) $) NIL)) (-1882 (($) NIL T CONST)) (-2069 (($ $ $) 32)) (-2125 (($ $ $) 29)) (-1908 (($ $ $) 27)) (-3796 (((-867) $) 59) (($ |#1|) 12)) (-1520 (((-112) $ $) NIL)) (-1759 (($ $ $) 28)) (-2920 (((-112) $ $) NIL)))
+(((-972 |#1|) (-13 (-975) (-621 |#1|) (-10 -8 (-15 -3540 ((-696 |#1|) $)) (-15 -1653 ((-696 $) $)) (-15 -2947 ((-696 (-878 $ $)) $)) (-15 -4278 ((-696 (-878 $ $)) $)) (-15 -2255 ((-696 (-878 $ $)) $)) (-15 -3754 ((-696 (-878 $ $)) $)) (-15 -1908 ($ $ $)) (-15 -2125 ($ $ $)))) (-1108)) (T -972))
+((-3540 (*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-1908 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108)))) (-2125 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108)))))
+(-13 (-975) (-621 |#1|) (-10 -8 (-15 -3540 ((-696 |#1|) $)) (-15 -1653 ((-696 $) $)) (-15 -2947 ((-696 (-878 $ $)) $)) (-15 -4278 ((-696 (-878 $ $)) $)) (-15 -2255 ((-696 (-878 $ $)) $)) (-15 -3754 ((-696 (-878 $ $)) $)) (-15 -1908 ($ $ $)) (-15 -2125 ($ $ $))))
+((-2300 (((-1110 |#1|) (-972 |#1|)) 41)) (-3001 (((-972 |#1|) (-972 |#1|)) 22)))
+(((-973 |#1|) (-13 (-1225) (-10 -7 (-15 -3001 ((-972 |#1|) (-972 |#1|))) (-15 -2300 ((-1110 |#1|) (-972 |#1|))))) (-1108)) (T -973))
+((-3001 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1108)) (-5 *1 (-973 *3)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-1108)) (-5 *2 (-1110 *4)) (-5 *1 (-973 *4)))))
+(-13 (-1225) (-10 -7 (-15 -3001 ((-972 |#1|) (-972 |#1|))) (-15 -2300 ((-1110 |#1|) (-972 |#1|)))))
+((-1346 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 29)))
+(((-974 |#1| |#2|) (-13 (-1225) (-10 -7 (-15 -1346 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|))))) (-1108) (-1108)) (T -974))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-972 *6)) (-5 *1 (-974 *5 *6)))))
+(-13 (-1225) (-10 -7 (-15 -1346 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))))
+((-2417 (((-112) $ $) 7)) (-3018 (($) 20 T CONST)) (-1771 (($ $ $) 16)) (-1749 (($ $) 18)) (-3435 (((-1167) $) 10)) (-3625 (($ $ $) 15)) (-3547 (((-1128) $) 11)) (-1882 (($) 19 T CONST)) (-2069 (($ $ $) 14)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1759 (($ $ $) 17)) (-2920 (((-112) $ $) 6)))
+(((-975) (-140)) (T -975))
+((-3018 (*1 *1) (-4 *1 (-975))) (-1882 (*1 *1) (-4 *1 (-975))) (-1749 (*1 *1 *1) (-4 *1 (-975))) (-1759 (*1 *1 *1 *1) (-4 *1 (-975))) (-1771 (*1 *1 *1 *1) (-4 *1 (-975))) (-3625 (*1 *1 *1 *1) (-4 *1 (-975))) (-2069 (*1 *1 *1 *1) (-4 *1 (-975))))
+(-13 (-1108) (-10 -8 (-15 -3018 ($) -3709) (-15 -1882 ($) -3709) (-15 -1749 ($ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -2069 ($ $ $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2292 (($ $ $) 44)) (-4198 (($ $ $) 45)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2839 ((|#1| $) 46)) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-976 |#1|) (-140) (-855)) (T -976))
+((-2839 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))) (-2292 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4447) (-15 -2839 (|t#1| $)) (-15 -4198 ($ $ $)) (-15 -2292 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-3528 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 105)) (-1726 ((|#2| |#2| |#2|) 103)) (-1992 (((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 107)) (-1778 (((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 109)) (-3675 (((-2 (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|) 131 (|has| |#1| (-457)))) (-1332 (((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 56)) (-3994 (((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 80)) (-3315 (((-2 (|:| |coef1| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 82)) (-2080 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-4289 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 89)) (-3043 (((-2 (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|) 121)) (-3899 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 92)) (-1350 (((-649 (-776)) |#2| |#2|) 102)) (-4120 ((|#1| |#2| |#2|) 50)) (-4101 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|) 129 (|has| |#1| (-457)))) (-2290 ((|#1| |#2| |#2|) 127 (|has| |#1| (-457)))) (-2779 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 54)) (-2472 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 79)) (-3346 ((|#1| |#2| |#2|) 76)) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|) 41)) (-2760 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3554 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-1384 ((|#2| |#2| |#2|) 93)) (-1563 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 87)) (-2845 ((|#2| |#2| |#2| (-776)) 85)) (-1870 ((|#2| |#2| |#2|) 135 (|has| |#1| (-457)))) (-2407 (((-1275 |#2|) (-1275 |#2|) |#1|) 22)) (-2084 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|) 46)) (-3428 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|) 119)) (-3059 ((|#1| |#2|) 116)) (-2297 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 91)) (-2532 ((|#2| |#2| |#2| (-776)) 90)) (-2786 (((-649 |#2|) |#2| |#2|) 99)) (-3220 ((|#2| |#2| |#1| |#1| (-776)) 62)) (-1760 ((|#1| |#1| |#1| (-776)) 61)) (* (((-1275 |#2|) |#1| (-1275 |#2|)) 17)))
+(((-977 |#1| |#2|) (-10 -7 (-15 -3346 (|#1| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3994 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3315 ((-2 (|:| |coef1| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -2845 (|#2| |#2| |#2| (-776))) (-15 -1563 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -4289 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2532 (|#2| |#2| |#2| (-776))) (-15 -2297 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3899 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -1384 (|#2| |#2| |#2|)) (-15 -3554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2080 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1726 (|#2| |#2| |#2|)) (-15 -3528 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1778 ((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -3059 (|#1| |#2|)) (-15 -3428 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -3043 ((-2 (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -2786 ((-649 |#2|) |#2| |#2|)) (-15 -1350 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2290 (|#1| |#2| |#2|)) (-15 -4101 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -3675 ((-2 (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1275 |#2|) |#1| (-1275 |#2|))) (-15 -2407 ((-1275 |#2|) (-1275 |#2|) |#1|)) (-15 -3514 ((-2 (|:| -1435 |#1|) (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -2084 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-776))) (-15 -3220 (|#2| |#2| |#1| |#1| (-776))) (-15 -2760 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4120 (|#1| |#2| |#2|)) (-15 -2779 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -1332 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|))) (-561) (-1251 |#1|)) (T -977))
+((-1332 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2779 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-4120 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) (-2760 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-3220 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-1760 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-977 *2 *4)) (-4 *4 (-1251 *2)))) (-2084 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3514 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -1435 *4) (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2407 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561)) (-5 *1 (-977 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561)) (-5 *1 (-977 *3 *4)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-3675 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2290 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-4101 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2290 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2290 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) (-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2786 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3043 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3059 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3428 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3059 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3059 (*1 *2 *3) (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) (-1778 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1870 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-1992 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1870 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3528 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1870 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-1726 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-2080 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3554 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-1384 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-3899 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-2297 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-2532 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2)) (-4 *2 (-1251 *4)))) (-4289 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-1563 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-2845 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2)) (-4 *2 (-1251 *4)))) (-3315 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3994 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3346 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))))
+(-10 -7 (-15 -3346 (|#1| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3994 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3315 ((-2 (|:| |coef1| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -2845 (|#2| |#2| |#2| (-776))) (-15 -1563 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -4289 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2532 (|#2| |#2| |#2| (-776))) (-15 -2297 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3899 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -1384 (|#2| |#2| |#2|)) (-15 -3554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2080 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1726 (|#2| |#2| |#2|)) (-15 -3528 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1778 ((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -3059 (|#1| |#2|)) (-15 -3428 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -3043 ((-2 (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -2786 ((-649 |#2|) |#2| |#2|)) (-15 -1350 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2290 (|#1| |#2| |#2|)) (-15 -4101 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -3675 ((-2 (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1275 |#2|) |#1| (-1275 |#2|))) (-15 -2407 ((-1275 |#2|) (-1275 |#2|) |#1|)) (-15 -3514 ((-2 (|:| -1435 |#1|) (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -2084 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-776))) (-15 -3220 (|#2| |#2| |#1| |#1| (-776))) (-15 -2760 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4120 (|#1| |#2| |#2|)) (-15 -2779 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -1332 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)))
+((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 10)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-978) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))) (T -978))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-978)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-978)))))
+(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) 39)) (-4427 (($) NIL T CONST)) (-2466 (((-649 (-649 (-569))) (-649 (-569))) 48)) (-4126 (((-569) $) 72)) (-3575 (($ (-649 (-569))) 18)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1410 (((-649 (-569)) $) 13)) (-3476 (($ $) 52)) (-3796 (((-867) $) 68) (((-649 (-569)) $) 11)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 8 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 26)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 25)) (-3012 (($ $ $) 28)) (* (($ (-927) $) NIL) (($ (-776) $) 37)))
+(((-979) (-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -3575 ($ (-649 (-569)))) (-15 -2466 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -4126 ((-569) $)) (-15 -3476 ($ $))))) (T -979))
+((-3575 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-979)))) (-2466 (*1 *2 *3) (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-979)) (-5 *3 (-649 (-569))))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-979)))) (-3476 (*1 *1 *1) (-5 *1 (-979))))
+(-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -3575 ($ (-649 (-569)))) (-15 -2466 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -4126 ((-569) $)) (-15 -3476 ($ $))))
+((-3035 (($ $ |#2|) 31)) (-3024 (($ $) 23) (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-412 (-569)) $) 27) (($ $ (-412 (-569))) 29)))
+(((-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3035 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-981 |#2| |#3| |#4|) (-1057) (-797) (-855)) (T -980))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3035 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#3|) $) 86)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-1677 (((-112) $) 85)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-649 |#3|) (-649 |#2|)) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4339 ((|#2| $) 76)) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-981 |#1| |#2| |#3|) (-140) (-1057) (-797) (-855)) (T -981))
+((-1857 (*1 *2 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855)) (-4 *2 (-1057)))) (-1849 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *4 (-855)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *2 *4)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *2 (-797)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-981 *4 *3 *2)) (-4 *4 (-1057)) (-4 *3 (-797)) (-4 *2 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-797)) (-4 *6 (-855)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2007 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *4 (-855)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3923 ($ $ |t#3| |t#2|)) (-15 -3923 ($ $ (-649 |t#3|) (-649 |t#2|))) (-15 -1849 ($ $)) (-15 -1857 (|t#1| $)) (-15 -4339 (|t#2| $)) (-15 -1712 ((-649 |t#3|) $)) (-15 -1677 ((-112) $)) (-15 -2007 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3822 (((-1102 (-226)) $) 8)) (-3812 (((-1102 (-226)) $) 9)) (-3798 (((-1102 (-226)) $) 10)) (-4417 (((-649 (-649 (-949 (-226)))) $) 11)) (-3796 (((-867) $) 6)))
+(((-982) (-140)) (T -982))
+((-4417 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))))
+(-13 (-618 (-867)) (-10 -8 (-15 -4417 ((-649 (-649 (-949 (-226)))) $)) (-15 -3798 ((-1102 (-226)) $)) (-15 -3812 ((-1102 (-226)) $)) (-15 -3822 ((-1102 (-226)) $))))
(((-618 (-867)) . T))
-((-1710 (((-649 |#4|) $) 23)) (-2686 (((-112) $) 55)) (-4276 (((-112) $) 54)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#4|) 42)) (-3584 (((-112) $) 56)) (-3778 (((-112) $ $) 62)) (-3685 (((-112) $ $) 65)) (-2576 (((-112) $) 60)) (-4374 (((-649 |#5|) (-649 |#5|) $) 98)) (-3247 (((-649 |#5|) (-649 |#5|) $) 95)) (-3365 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3097 (((-649 |#4|) $) 27)) (-3116 (((-112) |#4| $) 34)) (-3469 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2792 (($ $ |#4|) 39)) (-3013 (($ $ |#4|) 38)) (-2900 (($ $ |#4|) 40)) (-2919 (((-112) $ $) 46)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4276 ((-112) |#1|)) (-15 -4374 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3247 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3365 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3469 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3584 ((-112) |#1|)) (-15 -3685 ((-112) |#1| |#1|)) (-15 -3778 ((-112) |#1| |#1|)) (-15 -2576 ((-112) |#1|)) (-15 -2686 ((-112) |#1|)) (-15 -3355 ((-2 (|:| |under| |#1|) (|:| -2478 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2792 (|#1| |#1| |#4|)) (-15 -2900 (|#1| |#1| |#4|)) (-15 -3013 (|#1| |#1| |#4|)) (-15 -3116 ((-112) |#4| |#1|)) (-15 -3097 ((-649 |#4|) |#1|)) (-15 -1710 ((-649 |#4|) |#1|)) (-15 -2919 ((-112) |#1| |#1|))) (-982 |#2| |#3| |#4| |#5|) (-1055) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -981))
-NIL
-(-10 -8 (-15 -4276 ((-112) |#1|)) (-15 -4374 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3247 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3365 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3469 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3584 ((-112) |#1|)) (-15 -3685 ((-112) |#1| |#1|)) (-15 -3778 ((-112) |#1| |#1|)) (-15 -2576 ((-112) |#1|)) (-15 -2686 ((-112) |#1|)) (-15 -3355 ((-2 (|:| |under| |#1|) (|:| -2478 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2792 (|#1| |#1| |#4|)) (-15 -2900 (|#1| |#1| |#4|)) (-15 -3013 (|#1| |#1| |#4|)) (-15 -3116 ((-112) |#4| |#1|)) (-15 -3097 ((-649 |#4|) |#1|)) (-15 -1710 ((-649 |#4|) |#1|)) (-15 -2919 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-1710 (((-649 |#3|) $) 34)) (-2686 (((-112) $) 27)) (-4276 (((-112) $) 18 (|has| |#1| (-561)))) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) 28)) (-2716 (((-112) $ (-776)) 45)) (-1415 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4444)))) (-4188 (($) 46 T CONST)) (-3584 (((-112) $) 23 (|has| |#1| (-561)))) (-3778 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3685 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2576 (((-112) $) 26 (|has| |#1| (-561)))) (-4374 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) 37)) (-3148 (($ (-649 |#4|)) 36)) (-3547 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4444)))) (-2880 (((-649 |#4|) $) 53 (|has| $ (-6 -4444)))) (-1873 ((|#3| $) 35)) (-1689 (((-112) $ (-776)) 44)) (-3040 (((-649 |#4|) $) 54 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 48)) (-3097 (((-649 |#3|) $) 33)) (-3116 (((-112) |#3| $) 32)) (-2433 (((-112) $ (-776)) 43)) (-1550 (((-1165) $) 10)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-3545 (((-1126) $) 11)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2911 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) 39)) (-3218 (((-112) $) 42)) (-3597 (($) 41)) (-3558 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4444)))) (-3959 (($ $) 40)) (-1408 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 61)) (-2792 (($ $ |#3|) 29)) (-3013 (($ $ |#3|) 31)) (-2900 (($ $ |#3|) 30)) (-3793 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1441 (((-112) $ $) 9)) (-3037 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 6)) (-2426 (((-776) $) 47 (|has| $ (-6 -4444)))))
-(((-982 |#1| |#2| |#3| |#4|) (-140) (-1055) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -982))
-((-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-1071 *3 *4 *2)) (-4 *2 (-855)))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))) (-3116 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *3 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))) (-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-2900 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-2792 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))) (-3355 (*1 *2 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2478 *1) (|:| |upper| *1))) (-4 *1 (-982 *4 *5 *3 *6)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3685 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3469 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3365 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3247 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)))) (-4374 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))))
-(-13 (-1106) (-151 |t#4|) (-618 (-649 |t#4|)) (-10 -8 (-6 -4444) (-15 -4378 ((-3 $ "failed") (-649 |t#4|))) (-15 -3148 ($ (-649 |t#4|))) (-15 -1873 (|t#3| $)) (-15 -1710 ((-649 |t#3|) $)) (-15 -3097 ((-649 |t#3|) $)) (-15 -3116 ((-112) |t#3| $)) (-15 -3013 ($ $ |t#3|)) (-15 -2900 ($ $ |t#3|)) (-15 -2792 ($ $ |t#3|)) (-15 -3355 ((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |t#3|)) (-15 -2686 ((-112) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -2576 ((-112) $)) (-15 -3778 ((-112) $ $)) (-15 -3685 ((-112) $ $)) (-15 -3584 ((-112) $)) (-15 -3469 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3365 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3247 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -4374 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -4276 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-1106) . T) ((-1223) . T))
-((-3295 (((-649 |#4|) |#4| |#4|) 136)) (-1485 (((-649 |#4|) (-649 |#4|) (-112)) 125 (|has| |#1| (-457))) (((-649 |#4|) (-649 |#4|)) 126 (|has| |#1| (-457)))) (-2613 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 44)) (-2511 (((-112) |#4|) 43)) (-1362 (((-649 |#4|) |#4|) 121 (|has| |#1| (-457)))) (-3438 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|)) 24)) (-3549 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 30)) (-3639 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 31)) (-2161 (((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|)) 90)) (-2344 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-4381 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3194 (((-649 |#4|) (-649 |#4|)) 128)) (-1907 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112)) 59) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 61)) (-1986 ((|#4| |#4| (-649 |#4|)) 60)) (-1600 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 132 (|has| |#1| (-457)))) (-1806 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 135 (|has| |#1| (-457)))) (-1700 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 134 (|has| |#1| (-457)))) (-3428 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|))) 105) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 107) (((-649 |#4|) (-649 |#4|) |#4|) 140) (((-649 |#4|) |#4| |#4|) 137) (((-649 |#4|) (-649 |#4|)) 106)) (-3994 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-2423 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 52)) (-2432 (((-112) (-649 |#4|)) 79)) (-3630 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 67)) (-2817 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 37)) (-2722 (((-112) |#4|) 36)) (-3900 (((-649 |#4|) (-649 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-3799 (((-649 |#4|) (-649 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-2075 (((-649 |#4|) (-649 |#4|)) 83)) (-2249 (((-649 |#4|) (-649 |#4|)) 97)) (-3524 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2994 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 50)) (-2903 (((-112) |#4|) 45)))
-(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3428 ((-649 |#4|) (-649 |#4|))) (-15 -3428 ((-649 |#4|) |#4| |#4|)) (-15 -3194 ((-649 |#4|) (-649 |#4|))) (-15 -3295 ((-649 |#4|) |#4| |#4|)) (-15 -3428 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -3428 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -3428 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -3524 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -3630 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2432 ((-112) (-649 |#4|))) (-15 -3438 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -3549 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -3639 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -2423 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2511 ((-112) |#4|)) (-15 -2613 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2722 ((-112) |#4|)) (-15 -2817 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2903 ((-112) |#4|)) (-15 -2994 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1907 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1907 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -1986 (|#4| |#4| (-649 |#4|))) (-15 -2075 ((-649 |#4|) (-649 |#4|))) (-15 -2161 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2249 ((-649 |#4|) (-649 |#4|))) (-15 -2344 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4381 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -1362 ((-649 |#4|) |#4|)) (-15 -1485 ((-649 |#4|) (-649 |#4|))) (-15 -1485 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -1600 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1700 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1806 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -3799 ((-649 |#4|) (-649 |#4|))) (-15 -3900 ((-649 |#4|) (-649 |#4|))) (-15 -3994 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|)) (-561) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -983))
-((-3994 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1806 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1700 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1600 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1485 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1362 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-4381 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-983 *5 *6 *7 *8)))) (-2344 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *1 (-983 *6 *7 *8 *9)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2161 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3307 (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-1986 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *2)))) (-1907 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-1907 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-2994 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-2817 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2722 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-2613 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2511 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8)))) (-3524 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3428 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))) (-3428 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3428 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *3)))) (-3295 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3194 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))) (-3428 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3428 ((-649 |#4|) (-649 |#4|))) (-15 -3428 ((-649 |#4|) |#4| |#4|)) (-15 -3194 ((-649 |#4|) (-649 |#4|))) (-15 -3295 ((-649 |#4|) |#4| |#4|)) (-15 -3428 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -3428 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -3428 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -3524 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -3630 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2432 ((-112) (-649 |#4|))) (-15 -3438 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -3549 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -3639 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -2423 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2511 ((-112) |#4|)) (-15 -2613 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2722 ((-112) |#4|)) (-15 -2817 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2903 ((-112) |#4|)) (-15 -2994 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -1907 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1907 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -1986 (|#4| |#4| (-649 |#4|))) (-15 -2075 ((-649 |#4|) (-649 |#4|))) (-15 -2161 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2249 ((-649 |#4|) (-649 |#4|))) (-15 -2344 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4381 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -1362 ((-649 |#4|) |#4|)) (-15 -1485 ((-649 |#4|) (-649 |#4|))) (-15 -1485 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -1600 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1700 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1806 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -3799 ((-649 |#4|) (-649 |#4|))) (-15 -3900 ((-649 |#4|) (-649 |#4|))) (-15 -3994 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|))
-((-4079 (((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4265 (((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|)) 44)) (-4176 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-984 |#1|) (-10 -7 (-15 -4079 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4176 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4265 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|)))) (-367)) (T -984))
-((-4265 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5))))) (-5 *1 (-984 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)))) (-4176 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-984 *5)))) (-4079 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367)) (-5 *2 (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6)))) (-5 *1 (-984 *6)) (-5 *3 (-694 *6)))))
-(-10 -7 (-15 -4079 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4176 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4265 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1273 |#1|)))) (-694 |#1|) (-1273 |#1|))))
-((-2508 (((-423 |#4|) |#4|) 56)))
-(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2508 ((-423 |#4|) |#4|))) (-855) (-798) (-457) (-955 |#3| |#2| |#1|)) (T -985))
-((-2508 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
-(-10 -7 (-15 -2508 ((-423 |#4|) |#4|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3464 (($ (-776)) 113 (|has| |#1| (-23)))) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4445))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4445))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-4380 (($ $) 91 (|has| $ (-6 -4445)))) (-2248 (($ $) 101)) (-3547 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 52)) (-4034 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-3281 (($ (-649 |#1|)) 119)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1365 (((-694 |#1|) $ $) 106 (|has| |#1| (-1055)))) (-4295 (($ (-776) |#1|) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3377 (($ $ $) 88 (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3969 (($ $ $) 87 (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1878 ((|#1| $) 103 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-2433 (((-112) $ (-776)) 10)) (-3842 ((|#1| $) 104 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 43 (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4420 (($ $ |#1|) 42 (|has| $ (-6 -4445)))) (-2907 (($ $ (-649 |#1|)) 117)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-3990 ((|#1| $ $) 107 (|has| |#1| (-1055)))) (-3083 (((-927) $) 118)) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3885 (($ $ $) 105)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1938 (($ $ $ (-569)) 92 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 120)) (-3806 (($ (-649 |#1|)) 71)) (-2441 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2964 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 83 (|has| |#1| (-855)))) (-3021 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3009 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-986 |#1|) (-140) (-1055)) (T -986))
-((-3281 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-986 *3)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1055)) (-5 *2 (-927)))) (-3885 (*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1055)))) (-2907 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-986 *3)) (-4 *3 (-1055)))))
-(-13 (-1271 |t#1|) (-623 (-649 |t#1|)) (-10 -8 (-15 -3281 ($ (-649 |t#1|))) (-15 -3083 ((-927) $)) (-15 -3885 ($ $ $)) (-15 -2907 ($ $ (-649 |t#1|)))))
-(((-34) . T) ((-102) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-623 (-649 |#1|)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T) ((-1271 |#1|) . T))
-((-1344 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 17)))
-(((-987 |#1| |#2|) (-10 -7 (-15 -1344 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1055) (-1055)) (T -987))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-949 *6)) (-5 *1 (-987 *5 *6)))))
-(-10 -7 (-15 -1344 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|))))
-((-3318 ((|#1| (-949 |#1|)) 14)) (-3211 ((|#1| (-949 |#1|)) 13)) (-3114 ((|#1| (-949 |#1|)) 12)) (-3543 ((|#1| (-949 |#1|)) 16)) (-2644 ((|#1| (-949 |#1|)) 24)) (-3433 ((|#1| (-949 |#1|)) 15)) (-3648 ((|#1| (-949 |#1|)) 17)) (-2539 ((|#1| (-949 |#1|)) 23)) (-2450 ((|#1| (-949 |#1|)) 22)))
-(((-988 |#1|) (-10 -7 (-15 -3114 (|#1| (-949 |#1|))) (-15 -3211 (|#1| (-949 |#1|))) (-15 -3318 (|#1| (-949 |#1|))) (-15 -3433 (|#1| (-949 |#1|))) (-15 -3543 (|#1| (-949 |#1|))) (-15 -3648 (|#1| (-949 |#1|))) (-15 -2450 (|#1| (-949 |#1|))) (-15 -2539 (|#1| (-949 |#1|))) (-15 -2644 (|#1| (-949 |#1|)))) (-1055)) (T -988))
-((-2644 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(-10 -7 (-15 -3114 (|#1| (-949 |#1|))) (-15 -3211 (|#1| (-949 |#1|))) (-15 -3318 (|#1| (-949 |#1|))) (-15 -3433 (|#1| (-949 |#1|))) (-15 -3543 (|#1| (-949 |#1|))) (-15 -3648 (|#1| (-949 |#1|))) (-15 -2450 (|#1| (-949 |#1|))) (-15 -2539 (|#1| (-949 |#1|))) (-15 -2644 (|#1| (-949 |#1|))))
-((-1822 (((-3 |#1| "failed") |#1|) 18)) (-2012 (((-3 |#1| "failed") |#1|) 6)) (-1662 (((-3 |#1| "failed") |#1|) 16)) (-3035 (((-3 |#1| "failed") |#1|) 4)) (-2396 (((-3 |#1| "failed") |#1|) 20)) (-2168 (((-3 |#1| "failed") |#1|) 8)) (-2754 (((-3 |#1| "failed") |#1| (-776)) 1)) (-2945 (((-3 |#1| "failed") |#1|) 3)) (-2856 (((-3 |#1| "failed") |#1|) 2)) (-2485 (((-3 |#1| "failed") |#1|) 21)) (-2245 (((-3 |#1| "failed") |#1|) 9)) (-3805 (((-3 |#1| "failed") |#1|) 19)) (-2092 (((-3 |#1| "failed") |#1|) 7)) (-1735 (((-3 |#1| "failed") |#1|) 17)) (-1939 (((-3 |#1| "failed") |#1|) 5)) (-1603 (((-3 |#1| "failed") |#1|) 24)) (-4422 (((-3 |#1| "failed") |#1|) 12)) (-1417 (((-3 |#1| "failed") |#1|) 22)) (-2323 (((-3 |#1| "failed") |#1|) 10)) (-1638 (((-3 |#1| "failed") |#1|) 26)) (-1480 (((-3 |#1| "failed") |#1|) 14)) (-1731 (((-3 |#1| "failed") |#1|) 27)) (-1568 (((-3 |#1| "failed") |#1|) 15)) (-1703 (((-3 |#1| "failed") |#1|) 25)) (-1381 (((-3 |#1| "failed") |#1|) 13)) (-1500 (((-3 |#1| "failed") |#1|) 23)) (-2399 (((-3 |#1| "failed") |#1|) 11)))
-(((-989 |#1|) (-140) (-1208)) (T -989))
-((-1731 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1638 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1703 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1603 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1500 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1417 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2485 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2396 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3805 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1822 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1735 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1662 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1568 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1480 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1381 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-4422 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2399 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2323 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2245 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2168 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2092 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2012 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-1939 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-3035 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2945 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2856 (*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))) (-2754 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(-13 (-10 -7 (-15 -2754 ((-3 |t#1| "failed") |t#1| (-776))) (-15 -2856 ((-3 |t#1| "failed") |t#1|)) (-15 -2945 ((-3 |t#1| "failed") |t#1|)) (-15 -3035 ((-3 |t#1| "failed") |t#1|)) (-15 -1939 ((-3 |t#1| "failed") |t#1|)) (-15 -2012 ((-3 |t#1| "failed") |t#1|)) (-15 -2092 ((-3 |t#1| "failed") |t#1|)) (-15 -2168 ((-3 |t#1| "failed") |t#1|)) (-15 -2245 ((-3 |t#1| "failed") |t#1|)) (-15 -2323 ((-3 |t#1| "failed") |t#1|)) (-15 -2399 ((-3 |t#1| "failed") |t#1|)) (-15 -4422 ((-3 |t#1| "failed") |t#1|)) (-15 -1381 ((-3 |t#1| "failed") |t#1|)) (-15 -1480 ((-3 |t#1| "failed") |t#1|)) (-15 -1568 ((-3 |t#1| "failed") |t#1|)) (-15 -1662 ((-3 |t#1| "failed") |t#1|)) (-15 -1735 ((-3 |t#1| "failed") |t#1|)) (-15 -1822 ((-3 |t#1| "failed") |t#1|)) (-15 -3805 ((-3 |t#1| "failed") |t#1|)) (-15 -2396 ((-3 |t#1| "failed") |t#1|)) (-15 -2485 ((-3 |t#1| "failed") |t#1|)) (-15 -1417 ((-3 |t#1| "failed") |t#1|)) (-15 -1500 ((-3 |t#1| "failed") |t#1|)) (-15 -1603 ((-3 |t#1| "failed") |t#1|)) (-15 -1703 ((-3 |t#1| "failed") |t#1|)) (-15 -1638 ((-3 |t#1| "failed") |t#1|)) (-15 -1731 ((-3 |t#1| "failed") |t#1|))))
-((-1918 ((|#4| |#4| (-649 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1831 ((|#4| |#4| (-649 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1344 ((|#4| (-1 |#4| (-958 |#1|)) |#4|) 31)))
-(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1831 (|#4| |#4| |#3|)) (-15 -1831 (|#4| |#4| (-649 |#3|))) (-15 -1918 (|#4| |#4| |#3|)) (-15 -1918 (|#4| |#4| (-649 |#3|))) (-15 -1344 (|#4| (-1 |#4| (-958 |#1|)) |#4|))) (-1055) (-798) (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183))))) (-955 (-958 |#1|) |#2| |#3|)) (T -990))
-((-1344 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1055)) (-4 *2 (-955 (-958 *4) *5 *6)) (-4 *5 (-798)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183)))))) (-5 *1 (-990 *4 *5 *6 *2)))) (-1918 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183)))))) (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-1918 (*1 *2 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183)))))) (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))) (-1831 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183)))))) (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-1831 (*1 *2 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)) (-15 -2671 ((-3 $ "failed") (-1183)))))) (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))))
-(-10 -7 (-15 -1831 (|#4| |#4| |#3|)) (-15 -1831 (|#4| |#4| (-649 |#3|))) (-15 -1918 (|#4| |#4| |#3|)) (-15 -1918 (|#4| |#4| (-649 |#3|))) (-15 -1344 (|#4| (-1 |#4| (-958 |#1|)) |#4|)))
-((-2077 ((|#2| |#3|) 35)) (-2493 (((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 79)) (-2402 (((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 100)))
-(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2402 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2493 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -2077 (|#2| |#3|))) (-353) (-1249 |#1|) (-1249 |#2|) (-729 |#2| |#3|)) (T -991))
-((-2077 (*1 *2 *3) (-12 (-4 *3 (-1249 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-991 *4 *2 *3 *5)) (-4 *4 (-353)) (-4 *5 (-729 *2 *3)))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3)) (-5 *2 (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-991 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5)))) (-2402 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -1903 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-991 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5)))))
-(-10 -7 (-15 -2402 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2493 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -2077 (|#2| |#3|)))
-((-1410 (((-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))) 82)))
-(((-992 |#1| |#2|) (-10 -7 (-15 -1410 ((-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))))) (-649 (-1183)) (-776)) (T -992))
-((-1410 (*1 *2 *2) (-12 (-5 *2 (-993 (-412 (-569)) (-869 *3) (-241 *4 (-776)) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-992 *3 *4)))))
-(-10 -7 (-15 -1410 ((-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-993 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))))))
-((-2415 (((-112) $ $) NIL)) (-2527 (((-3 (-112) "failed") $) 71)) (-1582 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1406 (($ $ (-3 (-112) "failed")) 72)) (-4413 (($ (-649 |#4|) |#4|) 25)) (-1550 (((-1165) $) NIL)) (-3321 (($ $) 69)) (-3545 (((-1126) $) NIL)) (-3218 (((-112) $) 70)) (-3597 (($) 30)) (-3078 ((|#4| $) 74)) (-3827 (((-649 |#4|) $) 73)) (-3793 (((-867) $) 68)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-993 |#1| |#2| |#3| |#4|) (-13 (-1106) (-618 (-867)) (-10 -8 (-15 -3597 ($)) (-15 -4413 ($ (-649 |#4|) |#4|)) (-15 -2527 ((-3 (-112) "failed") $)) (-15 -1406 ($ $ (-3 (-112) "failed"))) (-15 -3218 ((-112) $)) (-15 -3827 ((-649 |#4|) $)) (-15 -3078 (|#4| $)) (-15 -3321 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -1582 ($ $)) |%noBranch|) |%noBranch|))) (-457) (-855) (-798) (-955 |#1| |#3| |#2|)) (T -993))
-((-3597 (*1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-4413 (*1 *1 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-993 *4 *5 *6 *3)))) (-2527 (*1 *2 *1) (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-3218 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-3827 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-993 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))) (-3321 (*1 *1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-1582 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))))
-(-13 (-1106) (-618 (-867)) (-10 -8 (-15 -3597 ($)) (-15 -4413 ($ (-649 |#4|) |#4|)) (-15 -2527 ((-3 (-112) "failed") $)) (-15 -1406 ($ $ (-3 (-112) "failed"))) (-15 -3218 ((-112) $)) (-15 -3827 ((-649 |#4|) $)) (-15 -3078 (|#4| $)) (-15 -3321 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -1582 ($ $)) |%noBranch|) |%noBranch|)))
-((-2597 (((-112) |#5| |#5|) 44)) (-2910 (((-112) |#5| |#5|) 59)) (-2140 (((-112) |#5| (-649 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2999 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2295 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) 70)) (-2499 (((-1278)) 32)) (-3702 (((-1278) (-1165) (-1165) (-1165)) 28)) (-2217 (((-649 |#5|) (-649 |#5|)) 100)) (-2371 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) 92)) (-4389 (((-649 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 122)) (-2812 (((-112) |#5| |#5|) 53)) (-2061 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1913 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-1984 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-1672 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-1355 (((-3 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-2708 (((-649 |#5|) (-649 |#5|)) 49)))
-(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3702 ((-1278) (-1165) (-1165) (-1165))) (-15 -2499 ((-1278))) (-15 -2597 ((-112) |#5| |#5|)) (-15 -2708 ((-649 |#5|) (-649 |#5|))) (-15 -2812 ((-112) |#5| |#5|)) (-15 -2910 ((-112) |#5| |#5|)) (-15 -2999 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1913 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1984 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1672 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2061 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2140 ((-112) |#5| |#5|)) (-15 -2140 ((-112) |#5| (-649 |#5|))) (-15 -2217 ((-649 |#5|) (-649 |#5|))) (-15 -2295 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2371 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-15 -4389 ((-649 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -1355 ((-3 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -994))
-((-1355 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| -4309 (-649 *9)) (|:| -3660 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-994 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1077 *6 *7 *8 *9)))) (-4389 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4309 (-649 *9)) (|:| -3660 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-994 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-2371 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3660 *7)))) (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-2295 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)))) (-2217 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8 *3)))) (-2140 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2061 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-1672 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-1984 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2999 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2910 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2812 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-994 *3 *4 *5 *6 *7)))) (-2597 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2499 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-994 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3702 ((-1278) (-1165) (-1165) (-1165))) (-15 -2499 ((-1278))) (-15 -2597 ((-112) |#5| |#5|)) (-15 -2708 ((-649 |#5|) (-649 |#5|))) (-15 -2812 ((-112) |#5| |#5|)) (-15 -2910 ((-112) |#5| |#5|)) (-15 -2999 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1913 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1984 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1672 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2061 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2140 ((-112) |#5| |#5|)) (-15 -2140 ((-112) |#5| (-649 |#5|))) (-15 -2217 ((-649 |#5|) (-649 |#5|))) (-15 -2295 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2371 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-15 -4389 ((-649 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -1355 ((-3 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2671 (((-1183) $) 15)) (-2185 (((-1165) $) 16)) (-3494 (($ (-1183) (-1165)) 14)) (-3793 (((-867) $) 13)))
-(((-995) (-13 (-618 (-867)) (-10 -8 (-15 -3494 ($ (-1183) (-1165))) (-15 -2671 ((-1183) $)) (-15 -2185 ((-1165) $))))) (T -995))
-((-3494 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-995)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-995)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-995)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3494 ($ (-1183) (-1165))) (-15 -2671 ((-1183) $)) (-15 -2185 ((-1165) $))))
-((-1344 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#4| (-1 |#2| |#1|) |#3|))) (-561) (-561) (-998 |#1|) (-998 |#2|)) (T -996))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-4 *2 (-998 *6)) (-5 *1 (-996 *5 *6 *4 *2)) (-4 *4 (-998 *5)))))
-(-10 -7 (-15 -1344 (|#4| (-1 |#2| |#1|) |#3|)))
-((-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-1183) "failed") $) 66) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) 96)) (-3148 ((|#2| $) NIL) (((-1183) $) 61) (((-412 (-569)) $) NIL) (((-569) $) 93)) (-1630 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 115) (((-694 |#2|) (-694 $)) 28)) (-3403 (($) 99)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 76) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 85)) (-3700 (($ $) 10)) (-3812 (((-3 $ "failed") $) 20)) (-1344 (($ (-1 |#2| |#2|) $) 22)) (-2305 (($) 16)) (-3555 (($ $) 55)) (-3514 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1528 (($ $) 12)) (-1408 (((-898 (-569)) $) 71) (((-898 (-383)) $) 80) (((-541) $) 40) (((-383) $) 44) (((-226) $) 48)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 91) (($ |#2|) NIL) (($ (-1183)) 58)) (-3302 (((-776)) 31)) (-2942 (((-112) $ $) 51)))
-(((-997 |#1| |#2|) (-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -1408 ((-226) |#1|)) (-15 -1408 ((-383) |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -3793 (|#1| (-1183))) (-15 -4378 ((-3 (-1183) "failed") |#1|)) (-15 -3148 ((-1183) |#1|)) (-15 -3403 (|#1|)) (-15 -3555 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1630 ((-694 |#2|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| |#1|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-998 |#2|) (-561)) (T -997))
-((-3302 (*1 *2) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-997 *3 *4)) (-4 *3 (-998 *4)))))
-(-10 -8 (-15 -2942 ((-112) |#1| |#1|)) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -1408 ((-226) |#1|)) (-15 -1408 ((-383) |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -3793 (|#1| (-1183))) (-15 -4378 ((-3 (-1183) "failed") |#1|)) (-15 -3148 ((-1183) |#1|)) (-15 -3403 (|#1|)) (-15 -3555 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -2892 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1630 ((-694 |#2|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| |#1|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3673 ((|#1| $) 147 (|has| |#1| (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-3253 (((-423 (-1179 $)) (-1179 $)) 138 (|has| |#1| (-915)))) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 141 (|has| |#1| (-915)))) (-1680 (((-112) $ $) 65)) (-2552 (((-569) $) 128 (|has| |#1| (-825)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 185) (((-3 (-1183) "failed") $) 136 (|has| |#1| (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) 119 (|has| |#1| (-1044 (-569)))) (((-3 (-569) "failed") $) 117 (|has| |#1| (-1044 (-569))))) (-3148 ((|#1| $) 186) (((-1183) $) 137 (|has| |#1| (-1044 (-1183)))) (((-412 (-569)) $) 120 (|has| |#1| (-1044 (-569)))) (((-569) $) 118 (|has| |#1| (-1044 (-569))))) (-2366 (($ $ $) 61)) (-1630 (((-694 (-569)) (-694 $)) 160 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 159 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 158) (((-694 |#1|) (-694 $)) 157)) (-2888 (((-3 $ "failed") $) 37)) (-3403 (($) 145 (|has| |#1| (-550)))) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-4073 (((-112) $) 79)) (-4237 (((-112) $) 130 (|has| |#1| (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 154 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 153 (|has| |#1| (-892 (-383))))) (-2623 (((-112) $) 35)) (-3700 (($ $) 149)) (-4396 ((|#1| $) 151)) (-3812 (((-3 $ "failed") $) 116 (|has| |#1| (-1158)))) (-4327 (((-112) $) 129 (|has| |#1| (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3377 (($ $ $) 126 (|has| |#1| (-855)))) (-3969 (($ $ $) 125 (|has| |#1| (-855)))) (-1344 (($ (-1 |#1| |#1|) $) 177)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-2305 (($) 115 (|has| |#1| (-1158)) CONST)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3555 (($ $) 146 (|has| |#1| (-310)))) (-2478 ((|#1| $) 143 (|has| |#1| (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) 140 (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 139 (|has| |#1| (-915)))) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) 183 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 181 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 180 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 179 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 178 (|has| |#1| (-519 (-1183) |#1|)))) (-1578 (((-776) $) 64)) (-1866 (($ $ |#1|) 184 (|has| |#1| (-289 |#1| |#1|)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-3514 (($ $) 176 (|has| |#1| (-234))) (($ $ (-776)) 174 (|has| |#1| (-234))) (($ $ (-1183)) 172 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 171 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 170 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 169 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-1528 (($ $) 148)) (-4409 ((|#1| $) 150)) (-1408 (((-898 (-569)) $) 156 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 155 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 133 (|has| |#1| (-619 (-541)))) (((-383) $) 132 (|has| |#1| (-1028))) (((-226) $) 131 (|has| |#1| (-1028)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 142 (-1756 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 189) (($ (-1183)) 135 (|has| |#1| (-1044 (-1183))))) (-4030 (((-3 $ "failed") $) 134 (-2774 (|has| |#1| (-145)) (-1756 (|has| $ (-145)) (|has| |#1| (-915)))))) (-3302 (((-776)) 32 T CONST)) (-2586 ((|#1| $) 144 (|has| |#1| (-550)))) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-3070 (($ $) 127 (|has| |#1| (-825)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $) 175 (|has| |#1| (-234))) (($ $ (-776)) 173 (|has| |#1| (-234))) (($ $ (-1183)) 168 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 167 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 166 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 165 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2976 (((-112) $ $) 123 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 122 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 124 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 121 (|has| |#1| (-855)))) (-3032 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
-(((-998 |#1|) (-140) (-561)) (T -998))
-((-3032 (*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-4396 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-4409 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-3700 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3555 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3403 (*1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-550)) (-4 *2 (-561)))) (-2586 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550)))) (-2478 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550)))))
-(-13 (-367) (-38 |t#1|) (-1044 |t#1|) (-342 |t#1|) (-232 |t#1|) (-381 |t#1|) (-890 |t#1|) (-405 |t#1|) (-10 -8 (-15 -3032 ($ |t#1| |t#1|)) (-15 -4396 (|t#1| $)) (-15 -4409 (|t#1| $)) (-15 -3700 ($ $)) (-15 -1528 ($ $)) (IF (|has| |t#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |t#1| (-1044 (-569))) (PROGN (-6 (-1044 (-569))) (-6 (-1044 (-412 (-569))))) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-1028)) (-6 (-1028)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1044 (-1183))) (-6 (-1044 (-1183))) |%noBranch|) (IF (|has| |t#1| (-310)) (PROGN (-15 -3673 (|t#1| $)) (-15 -3555 ($ $))) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3403 ($)) (-15 -2586 (|t#1| $)) (-15 -2478 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 #1=(-1183)) |has| |#1| (-1044 (-1183))) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) |has| |#1| (-1028)) ((-619 (-383)) |has| |#1| (-1028)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) . T) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) . T) ((-310) . T) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-457) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-796) |has| |#1| (-825)) ((-797) |has| |#1| (-825)) ((-799) |has| |#1| (-825)) ((-800) |has| |#1| (-825)) ((-825) |has| |#1| (-825)) ((-853) |has| |#1| (-825)) ((-855) -2774 (|has| |#1| (-855)) (|has| |#1| (-825))) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) |has| |#1| (-915)) ((-926) . T) ((-1028) |has| |#1| (-1028)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-569))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #1#) |has| |#1| (-1044 (-1183))) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-1158)) ((-1223) . T) ((-1227) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-3797 (($ (-1148 |#1| |#2|)) 11)) (-2428 (((-1148 |#1| |#2|) $) 12)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1866 ((|#2| $ (-241 |#1| |#2|)) 16)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL)))
-(((-999 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3797 ($ (-1148 |#1| |#2|))) (-15 -2428 ((-1148 |#1| |#2|) $)) (-15 -1866 (|#2| $ (-241 |#1| |#2|))))) (-927) (-367)) (T -999))
-((-3797 (*1 *1 *2) (-12 (-5 *2 (-1148 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)) (-5 *1 (-999 *3 *4)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1148 *3 *4)) (-5 *1 (-999 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-241 *4 *2)) (-14 *4 (-927)) (-4 *2 (-367)) (-5 *1 (-999 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -3797 ($ (-1148 |#1| |#2|))) (-15 -2428 ((-1148 |#1| |#2|) $)) (-15 -1866 (|#2| $ (-241 |#1| |#2|)))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1416 (((-1141) $) 9)) (-3793 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1000) (-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $))))) (T -1000))
-((-1416 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1000)))))
-(-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $))))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) 8)) (-4188 (($) 7 T CONST)) (-4078 (($ $) 47)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-3842 (((-776) $) 46)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3992 ((|#1| $) 45)) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3010 ((|#1| |#1| $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-4174 ((|#1| $) 48)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3898 ((|#1| $) 44)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1001 |#1|) (-140) (-1223)) (T -1001))
-((-3010 (*1 *2 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-4078 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4444) (-15 -3010 (|t#1| |t#1| $)) (-15 -4174 (|t#1| $)) (-15 -4078 ($ $)) (-15 -3842 ((-776) $)) (-15 -3992 (|t#1| $)) (-15 -3898 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-3192 (((-112) $) 43)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3148 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 44)) (-1545 (((-3 (-412 (-569)) "failed") $) 78)) (-1434 (((-112) $) 72)) (-1311 (((-412 (-569)) $) 76)) (-2623 (((-112) $) 42)) (-2707 ((|#2| $) 22)) (-1344 (($ (-1 |#2| |#2|) $) 19)) (-1814 (($ $) 58)) (-3514 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1408 (((-541) $) 67)) (-3580 (($ $) 17)) (-3793 (((-867) $) 53) (($ (-569)) 39) (($ |#2|) 37) (($ (-412 (-569))) NIL)) (-3302 (((-776)) 10)) (-3070 ((|#2| $) 71)) (-2919 (((-112) $ $) 26)) (-2942 (((-112) $ $) 69)) (-3021 (($ $) 30) (($ $ $) 29)) (-3009 (($ $ $) 27)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
-(((-1002 |#1| |#2|) (-10 -8 (-15 -3793 (|#1| (-412 (-569)))) (-15 -2942 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1814 (|#1| |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -3070 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3580 (|#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 -2623 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|))) (-1003 |#2|) (-173)) (T -1002))
-((-3302 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1002 *3 *4)) (-4 *3 (-1003 *4)))))
-(-10 -8 (-15 -3793 (|#1| (-412 (-569)))) (-15 -2942 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1814 (|#1| |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -3070 (|#2| |#1|)) (-15 -2707 (|#2| |#1|)) (-15 -3580 (|#1| |#1|)) (-15 -1344 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 -2623 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -3192 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-4378 (((-3 (-569) "failed") $) 127 (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 125 (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) 122)) (-3148 (((-569) $) 126 (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) 124 (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) 123)) (-1630 (((-694 (-569)) (-694 $)) 97 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 96 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 95) (((-694 |#1|) (-694 $)) 94)) (-2888 (((-3 $ "failed") $) 37)) (-3822 ((|#1| $) 87)) (-1545 (((-3 (-412 (-569)) "failed") $) 83 (|has| |#1| (-550)))) (-1434 (((-112) $) 85 (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) 84 (|has| |#1| (-550)))) (-3112 (($ |#1| |#1| |#1| |#1|) 88)) (-2623 (((-112) $) 35)) (-2707 ((|#1| $) 89)) (-3377 (($ $ $) 76 (|has| |#1| (-855)))) (-3969 (($ $ $) 75 (|has| |#1| (-855)))) (-1344 (($ (-1 |#1| |#1|) $) 98)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 80 (|has| |#1| (-367)))) (-3209 ((|#1| $) 90)) (-3332 ((|#1| $) 91)) (-3454 ((|#1| $) 92)) (-3545 (((-1126) $) 11)) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) 104 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 102 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 101 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) 100 (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) 99 (|has| |#1| (-519 (-1183) |#1|)))) (-1866 (($ $ |#1|) 105 (|has| |#1| (-289 |#1| |#1|)))) (-3514 (($ $) 121 (|has| |#1| (-234))) (($ $ (-776)) 119 (|has| |#1| (-234))) (($ $ (-1183)) 117 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 116 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 115 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 114 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1408 (((-541) $) 81 (|has| |#1| (-619 (-541))))) (-3580 (($ $) 93)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 70 (-2774 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-4030 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-3070 ((|#1| $) 86 (|has| |#1| (-1066)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $) 120 (|has| |#1| (-234))) (($ $ (-776)) 118 (|has| |#1| (-234))) (($ $ (-1183)) 113 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 112 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 111 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 110 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2976 (((-112) $ $) 73 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 72 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 74 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 71 (|has| |#1| (-855)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 79 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-412 (-569))) 78 (|has| |#1| (-367))) (($ (-412 (-569)) $) 77 (|has| |#1| (-367)))))
-(((-1003 |#1|) (-140) (-173)) (T -1003))
-((-3580 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3112 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)) (-4 *2 (-1066)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1545 (*1 *2 *1) (|partial| -12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))))
-(-13 (-38 |t#1|) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-381 |t#1|) (-10 -8 (-15 -3580 ($ $)) (-15 -3454 (|t#1| $)) (-15 -3332 (|t#1| $)) (-15 -3209 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -3112 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3822 (|t#1| $)) (IF (|has| |t#1| (-293)) (-6 (-293)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1066)) (-15 -3070 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1434 ((-112) $)) (-15 -1311 ((-412 (-569)) $)) (-15 -1545 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-367)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-367)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) |has| |#1| (-367)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2774 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1183) |#1|) |has| |#1| (-519 (-1183) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 #0#) |has| |#1| (-367)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-367)) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-367)) ((-645 |#1|) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-367)) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1057 #0#) |has| |#1| (-367)) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1062 #0#) |has| |#1| (-367)) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-1344 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#3| (-1 |#4| |#2|) |#1|))) (-1003 |#2|) (-173) (-1003 |#4|) (-173)) (T -1004))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1003 *6)) (-5 *1 (-1004 *4 *5 *2 *6)) (-4 *4 (-1003 *5)))))
-(-10 -7 (-15 -1344 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3822 ((|#1| $) 12)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1434 (((-112) $) NIL (|has| |#1| (-550)))) (-1311 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3112 (($ |#1| |#1| |#1| |#1|) 16)) (-2623 (((-112) $) NIL)) (-2707 ((|#1| $) NIL)) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-3209 ((|#1| $) 15)) (-3332 ((|#1| $) 14)) (-3454 ((|#1| $) 13)) (-3545 (((-1126) $) NIL)) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1183) |#1|))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-519 (-1183) |#1|)))) (-1866 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-3514 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3580 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-3070 ((|#1| $) NIL (|has| |#1| (-1066)))) (-1803 (($) 8 T CONST)) (-1813 (($) 10 T CONST)) (-2830 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-367)))))
-(((-1005 |#1|) (-1003 |#1|) (-173)) (T -1005))
-NIL
-(-1003 |#1|)
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2716 (((-112) $ (-776)) NIL)) (-4188 (($) NIL T CONST)) (-4078 (($ $) 23)) (-2397 (($ (-649 |#1|)) 33)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-3842 (((-776) $) 26)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1640 ((|#1| $) 28)) (-3813 (($ |#1| $) 17)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3992 ((|#1| $) 27)) (-1764 ((|#1| $) 22)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3010 ((|#1| |#1| $) 16)) (-3218 (((-112) $) 18)) (-3597 (($) NIL)) (-4174 ((|#1| $) 21)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) NIL)) (-3898 ((|#1| $) 30)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1006 |#1|) (-13 (-1001 |#1|) (-10 -8 (-15 -2397 ($ (-649 |#1|))))) (-1106)) (T -1006))
-((-2397 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1006 *3)))))
-(-13 (-1001 |#1|) (-10 -8 (-15 -2397 ($ (-649 |#1|)))))
-((-3807 (($ $) 12)) (-2506 (($ $ (-569)) 13)))
-(((-1007 |#1|) (-10 -8 (-15 -3807 (|#1| |#1|)) (-15 -2506 (|#1| |#1| (-569)))) (-1008)) (T -1007))
-NIL
-(-10 -8 (-15 -3807 (|#1| |#1|)) (-15 -2506 (|#1| |#1| (-569))))
-((-3807 (($ $) 6)) (-2506 (($ $ (-569)) 7)) (** (($ $ (-412 (-569))) 8)))
-(((-1008) (-140)) (T -1008))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-412 (-569))))) (-2506 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-569)))) (-3807 (*1 *1 *1) (-4 *1 (-1008))))
-(-13 (-10 -8 (-15 -3807 ($ $)) (-15 -2506 ($ $ (-569))) (-15 ** ($ $ (-412 (-569))))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-2240 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-3087 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2883 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1739 (((-694 (-412 |#2|)) (-1273 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3136 (((-412 |#2|) $) NIL)) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2508 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1680 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3470 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-3373 (((-112)) NIL)) (-3235 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| (-412 |#2|) (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1044 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-3390 (($ (-1273 (-412 |#2|)) (-1273 $)) NIL) (($ (-1273 (-412 |#2|))) 81) (($ (-1273 |#2|) |#2|) NIL)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2366 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1635 (((-694 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-412 |#2|))) (|:| |vec| (-1273 (-412 |#2|)))) (-694 $) (-1273 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-1633 (((-1273 $) (-1273 $)) NIL)) (-3596 (($ |#3|) 75) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-2888 (((-3 $ "failed") $) NIL)) (-2521 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-3757 (((-112) |#1| |#1|) NIL)) (-3975 (((-927)) NIL)) (-3403 (($) NIL (|has| (-412 |#2|) (-372)))) (-4355 (((-112)) NIL)) (-4247 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2373 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-4260 (($ $) NIL)) (-1312 (($) NIL (|has| (-412 |#2|) (-353)))) (-1940 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-2501 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-4073 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-3110 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2623 (((-112) $) NIL)) (-2566 (((-776)) NIL)) (-1774 (((-1273 $) (-1273 $)) NIL)) (-2707 (((-412 |#2|) $) NIL)) (-2648 (((-649 (-958 |#1|)) (-1183)) NIL (|has| |#1| (-367)))) (-3812 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2091 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2855 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3582 ((|#3| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1550 (((-1165) $) NIL)) (-2327 (((-694 (-412 |#2|))) 57)) (-1374 (((-694 (-412 |#2|))) 56)) (-1814 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2026 (($ (-1273 |#2|) |#2|) 82)) (-2435 (((-694 (-412 |#2|))) 55)) (-1511 (((-694 (-412 |#2|))) 54)) (-1943 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-2134 (((-2 (|:| |num| (-1273 |#2|)) (|:| |den| |#2|)) $) 88)) (-4131 (((-1273 $)) 51)) (-2402 (((-1273 $)) 50)) (-4022 (((-112) $) NIL)) (-3911 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2305 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-2881 (((-3 |#2| "failed")) 70)) (-3545 (((-1126) $) NIL)) (-2717 (((-776)) NIL)) (-2330 (($) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| (-412 |#2|) (-367)))) (-1864 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3796 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2405 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-1578 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1866 ((|#1| $ |#1| |#1|) NIL)) (-3006 (((-3 |#2| "failed")) 68)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4304 (((-412 |#2|) (-1273 $)) NIL) (((-412 |#2|)) 47)) (-2601 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3514 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2520 (((-694 (-412 |#2|)) (-1273 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-4143 ((|#3|) 58)) (-2430 (($) NIL (|has| (-412 |#2|) (-353)))) (-2960 (((-1273 (-412 |#2|)) $ (-1273 $)) NIL) (((-694 (-412 |#2|)) (-1273 $) (-1273 $)) NIL) (((-1273 (-412 |#2|)) $) 83) (((-694 (-412 |#2|)) (-1273 $)) NIL)) (-1408 (((-1273 (-412 |#2|)) $) NIL) (($ (-1273 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-1891 (((-1273 $) (-1273 $)) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2774 (|has| (-412 |#2|) (-1044 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4030 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-3798 ((|#3| $) NIL)) (-3302 (((-776)) NIL T CONST)) (-3637 (((-112)) 65)) (-3507 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) NIL)) (-2985 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2575 (((-112)) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1183))))) (($ $ (-776)) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2774 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367)))))
-(((-1009 |#1| |#2| |#3| |#4| |#5|) (-346 |#1| |#2| |#3|) (-1227) (-1249 |#1|) (-1249 (-412 |#2|)) (-412 |#2|) (-776)) (T -1009))
+((-1712 (((-649 |#4|) $) 23)) (-1731 (((-112) $) 55)) (-2800 (((-112) $) 54)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#4|) 42)) (-3503 (((-112) $) 56)) (-1717 (((-112) $ $) 62)) (-2039 (((-112) $ $) 65)) (-1964 (((-112) $) 60)) (-2459 (((-649 |#5|) (-649 |#5|) $) 98)) (-3459 (((-649 |#5|) (-649 |#5|) $) 95)) (-2054 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1328 (((-649 |#4|) $) 27)) (-1512 (((-112) |#4| $) 34)) (-1846 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3381 (($ $ |#4|) 39)) (-2963 (($ $ |#4|) 38)) (-3112 (($ $ |#4|) 40)) (-2920 (((-112) $ $) 46)))
+(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2800 ((-112) |#1|)) (-15 -2459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2054 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1846 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3503 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|)) (-15 -1717 ((-112) |#1| |#1|)) (-15 -1964 ((-112) |#1|)) (-15 -1731 ((-112) |#1|)) (-15 -3358 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -3112 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -1512 ((-112) |#4| |#1|)) (-15 -1328 ((-649 |#4|) |#1|)) (-15 -1712 ((-649 |#4|) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-984 |#2| |#3| |#4| |#5|) (-1057) (-798) (-855) (-1073 |#2| |#3| |#4|)) (T -983))
+NIL
+(-10 -8 (-15 -2800 ((-112) |#1|)) (-15 -2459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2054 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1846 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3503 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|)) (-15 -1717 ((-112) |#1| |#1|)) (-15 -1964 ((-112) |#1|)) (-15 -1731 ((-112) |#1|)) (-15 -3358 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -3112 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -1512 ((-112) |#4| |#1|)) (-15 -1328 ((-649 |#4|) |#1|)) (-15 -1712 ((-649 |#4|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447)))) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447)))) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-3547 (((-1128) $) 11)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447)))))
+(((-984 |#1| |#2| |#3| |#4|) (-140) (-1057) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -984))
+((-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-984 *3 *4 *5 *6)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-984 *3 *4 *5 *6)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-1073 *3 *4 *2)) (-4 *2 (-855)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))) (-1512 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *3 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112)))) (-2963 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))) (-3112 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))) (-3381 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))) (-3358 (*1 *2 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1))) (-4 *1 (-984 *4 *5 *3 *6)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-1717 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-2039 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-1846 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2054 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3459 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)))) (-2459 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))))
+(-13 (-1108) (-151 |t#4|) (-618 (-649 |t#4|)) (-10 -8 (-6 -4447) (-15 -4381 ((-3 $ "failed") (-649 |t#4|))) (-15 -3150 ($ (-649 |t#4|))) (-15 -3372 (|t#3| $)) (-15 -1712 ((-649 |t#3|) $)) (-15 -1328 ((-649 |t#3|) $)) (-15 -1512 ((-112) |t#3| $)) (-15 -2963 ($ $ |t#3|)) (-15 -3112 ($ $ |t#3|)) (-15 -3381 ($ $ |t#3|)) (-15 -3358 ((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |t#3|)) (-15 -1731 ((-112) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -1964 ((-112) $)) (-15 -1717 ((-112) $ $)) (-15 -2039 ((-112) $ $)) (-15 -3503 ((-112) $)) (-15 -1846 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2054 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3459 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -2459 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -2800 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-1108) . T) ((-1225) . T))
+((-2646 (((-649 |#4|) |#4| |#4|) 136)) (-4033 (((-649 |#4|) (-649 |#4|) (-112)) 125 (|has| |#1| (-457))) (((-649 |#4|) (-649 |#4|)) 126 (|has| |#1| (-457)))) (-2262 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 44)) (-2496 (((-112) |#4|) 43)) (-3329 (((-649 |#4|) |#4|) 121 (|has| |#1| (-457)))) (-1518 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|)) 24)) (-3167 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 30)) (-2810 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 31)) (-3305 (((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|)) 90)) (-1527 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2517 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-4168 (((-649 |#4|) (-649 |#4|)) 128)) (-2445 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112)) 59) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 61)) (-2088 ((|#4| |#4| (-649 |#4|)) 60)) (-2633 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 132 (|has| |#1| (-457)))) (-4027 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 135 (|has| |#1| (-457)))) (-4332 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 134 (|has| |#1| (-457)))) (-1409 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|))) 105) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 107) (((-649 |#4|) (-649 |#4|) |#4|) 140) (((-649 |#4|) |#4| |#4|) 137) (((-649 |#4|) (-649 |#4|)) 106)) (-3085 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-4185 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 52)) (-4245 (((-112) (-649 |#4|)) 79)) (-2705 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 67)) (-3654 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 37)) (-3968 (((-112) |#4|) 36)) (-3439 (((-649 |#4|) (-649 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1893 (((-649 |#4|) (-649 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1809 (((-649 |#4|) (-649 |#4|)) 83)) (-2959 (((-649 |#4|) (-649 |#4|)) 97)) (-4184 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2774 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 50)) (-3123 (((-112) |#4|) 45)))
+(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1409 ((-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) |#4| |#4|)) (-15 -4168 ((-649 |#4|) (-649 |#4|))) (-15 -2646 ((-649 |#4|) |#4| |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -4184 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2705 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -4245 ((-112) (-649 |#4|))) (-15 -1518 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -3167 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -2810 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -4185 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2262 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3968 ((-112) |#4|)) (-15 -3654 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3123 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -2088 (|#4| |#4| (-649 |#4|))) (-15 -1809 ((-649 |#4|) (-649 |#4|))) (-15 -3305 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2959 ((-649 |#4|) (-649 |#4|))) (-15 -1527 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2517 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3329 ((-649 |#4|) |#4|)) (-15 -4033 ((-649 |#4|) (-649 |#4|))) (-15 -4033 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -2633 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4332 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4027 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -1893 ((-649 |#4|) (-649 |#4|))) (-15 -3439 ((-649 |#4|) (-649 |#4|))) (-15 -3085 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|)) (-561) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -985))
+((-3085 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-1893 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-4027 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-4332 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-2633 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-4033 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7)))) (-4033 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-2517 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-985 *5 *6 *7 *8)))) (-1527 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *1 (-985 *6 *7 *8 *9)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-3305 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3310 (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1809 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-2088 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *2)))) (-2445 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7)))) (-2445 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-2774 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-2262 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8)))) (-4184 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7)))) (-1409 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7)))) (-1409 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-1409 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *3)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-4168 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-1409 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1409 ((-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) |#4| |#4|)) (-15 -4168 ((-649 |#4|) (-649 |#4|))) (-15 -2646 ((-649 |#4|) |#4| |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -4184 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2705 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -4245 ((-112) (-649 |#4|))) (-15 -1518 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -3167 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -2810 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -4185 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2262 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3968 ((-112) |#4|)) (-15 -3654 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3123 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -2088 (|#4| |#4| (-649 |#4|))) (-15 -1809 ((-649 |#4|) (-649 |#4|))) (-15 -3305 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2959 ((-649 |#4|) (-649 |#4|))) (-15 -1527 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2517 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3329 ((-649 |#4|) |#4|)) (-15 -4033 ((-649 |#4|) (-649 |#4|))) (-15 -4033 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -2633 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4332 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4027 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -1893 ((-649 |#4|) (-649 |#4|))) (-15 -3439 ((-649 |#4|) (-649 |#4|))) (-15 -3085 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|))
+((-1540 (((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2681 (((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|)) 44)) (-4318 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-986 |#1|) (-10 -7 (-15 -1540 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4318 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2681 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|)))) (-367)) (T -986))
+((-2681 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5))))) (-5 *1 (-986 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)))) (-4318 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-986 *5)))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367)) (-5 *2 (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6)))) (-5 *1 (-986 *6)) (-5 *3 (-694 *6)))))
+(-10 -7 (-15 -1540 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4318 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2681 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|))))
+((-3764 (((-423 |#4|) |#4|) 56)))
+(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3764 ((-423 |#4|) |#4|))) (-855) (-798) (-457) (-955 |#3| |#2| |#1|)) (T -987))
+((-3764 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3)) (-5 *1 (-987 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(-10 -7 (-15 -3764 ((-423 |#4|) |#4|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3467 (($ (-776)) 113 (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-3283 (($ (-649 |#1|)) 119)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) 106 (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3420 ((|#1| $) 103 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-4254 (((-112) $ (-776)) 10)) (-3845 ((|#1| $) 104 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3166 (($ $ (-649 |#1|)) 117)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-3040 ((|#1| $ $) 107 (|has| |#1| (-1057)))) (-2377 (((-927) $) 118)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3260 (($ $ $) 105)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 120)) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-3024 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3012 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-988 |#1|) (-140) (-1057)) (T -988))
+((-3283 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-988 *3)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1057)) (-5 *2 (-927)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1057)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-988 *3)) (-4 *3 (-1057)))))
+(-13 (-1273 |t#1|) (-623 (-649 |t#1|)) (-10 -8 (-15 -3283 ($ (-649 |t#1|))) (-15 -2377 ((-927) $)) (-15 -3260 ($ $ $)) (-15 -3166 ($ $ (-649 |t#1|)))))
+(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-623 (-649 |#1|)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T) ((-1273 |#1|) . T))
+((-1346 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 17)))
+(((-989 |#1| |#2|) (-10 -7 (-15 -1346 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1057) (-1057)) (T -989))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-949 *6)) (-5 *1 (-989 *5 *6)))))
+(-10 -7 (-15 -1346 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|))))
+((-2858 ((|#1| (-949 |#1|)) 14)) (-3081 ((|#1| (-949 |#1|)) 13)) (-1499 ((|#1| (-949 |#1|)) 12)) (-3124 ((|#1| (-949 |#1|)) 16)) (-1366 ((|#1| (-949 |#1|)) 24)) (-1472 ((|#1| (-949 |#1|)) 15)) (-2885 ((|#1| (-949 |#1|)) 17)) (-2787 ((|#1| (-949 |#1|)) 23)) (-3168 ((|#1| (-949 |#1|)) 22)))
+(((-990 |#1|) (-10 -7 (-15 -1499 (|#1| (-949 |#1|))) (-15 -3081 (|#1| (-949 |#1|))) (-15 -2858 (|#1| (-949 |#1|))) (-15 -1472 (|#1| (-949 |#1|))) (-15 -3124 (|#1| (-949 |#1|))) (-15 -2885 (|#1| (-949 |#1|))) (-15 -3168 (|#1| (-949 |#1|))) (-15 -2787 (|#1| (-949 |#1|))) (-15 -1366 (|#1| (-949 |#1|)))) (-1057)) (T -990))
+((-1366 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
+(-10 -7 (-15 -1499 (|#1| (-949 |#1|))) (-15 -3081 (|#1| (-949 |#1|))) (-15 -2858 (|#1| (-949 |#1|))) (-15 -1472 (|#1| (-949 |#1|))) (-15 -3124 (|#1| (-949 |#1|))) (-15 -2885 (|#1| (-949 |#1|))) (-15 -3168 (|#1| (-949 |#1|))) (-15 -2787 (|#1| (-949 |#1|))) (-15 -1366 (|#1| (-949 |#1|))))
+((-4162 (((-3 |#1| "failed") |#1|) 18)) (-2327 (((-3 |#1| "failed") |#1|) 6)) (-2071 (((-3 |#1| "failed") |#1|) 16)) (-1962 (((-3 |#1| "failed") |#1|) 4)) (-3942 (((-3 |#1| "failed") |#1|) 20)) (-3392 (((-3 |#1| "failed") |#1|) 8)) (-4260 (((-3 |#1| "failed") |#1| (-776)) 1)) (-3552 (((-3 |#1| "failed") |#1|) 3)) (-2745 (((-3 |#1| "failed") |#1|) 2)) (-3541 (((-3 |#1| "failed") |#1|) 21)) (-2935 (((-3 |#1| "failed") |#1|) 9)) (-3853 (((-3 |#1| "failed") |#1|) 19)) (-3869 (((-3 |#1| "failed") |#1|) 7)) (-1505 (((-3 |#1| "failed") |#1|) 17)) (-2796 (((-3 |#1| "failed") |#1|) 5)) (-2670 (((-3 |#1| "failed") |#1|) 24)) (-1705 (((-3 |#1| "failed") |#1|) 12)) (-4403 (((-3 |#1| "failed") |#1|) 22)) (-4415 (((-3 |#1| "failed") |#1|) 10)) (-1853 (((-3 |#1| "failed") |#1|) 26)) (-3995 (((-3 |#1| "failed") |#1|) 14)) (-1470 (((-3 |#1| "failed") |#1|) 27)) (-3637 (((-3 |#1| "failed") |#1|) 15)) (-4359 (((-3 |#1| "failed") |#1|) 25)) (-3082 (((-3 |#1| "failed") |#1|) 13)) (-4166 (((-3 |#1| "failed") |#1|) 23)) (-3972 (((-3 |#1| "failed") |#1|) 11)))
+(((-991 |#1|) (-140) (-1210)) (T -991))
+((-1470 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1853 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4359 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2670 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4166 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4403 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3541 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3942 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3853 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4162 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1505 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2071 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3637 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3995 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3082 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1705 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3972 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4415 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2935 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3392 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3869 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2327 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2796 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1962 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3552 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2745 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4260 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(-13 (-10 -7 (-15 -4260 ((-3 |t#1| "failed") |t#1| (-776))) (-15 -2745 ((-3 |t#1| "failed") |t#1|)) (-15 -3552 ((-3 |t#1| "failed") |t#1|)) (-15 -1962 ((-3 |t#1| "failed") |t#1|)) (-15 -2796 ((-3 |t#1| "failed") |t#1|)) (-15 -2327 ((-3 |t#1| "failed") |t#1|)) (-15 -3869 ((-3 |t#1| "failed") |t#1|)) (-15 -3392 ((-3 |t#1| "failed") |t#1|)) (-15 -2935 ((-3 |t#1| "failed") |t#1|)) (-15 -4415 ((-3 |t#1| "failed") |t#1|)) (-15 -3972 ((-3 |t#1| "failed") |t#1|)) (-15 -1705 ((-3 |t#1| "failed") |t#1|)) (-15 -3082 ((-3 |t#1| "failed") |t#1|)) (-15 -3995 ((-3 |t#1| "failed") |t#1|)) (-15 -3637 ((-3 |t#1| "failed") |t#1|)) (-15 -2071 ((-3 |t#1| "failed") |t#1|)) (-15 -1505 ((-3 |t#1| "failed") |t#1|)) (-15 -4162 ((-3 |t#1| "failed") |t#1|)) (-15 -3853 ((-3 |t#1| "failed") |t#1|)) (-15 -3942 ((-3 |t#1| "failed") |t#1|)) (-15 -3541 ((-3 |t#1| "failed") |t#1|)) (-15 -4403 ((-3 |t#1| "failed") |t#1|)) (-15 -4166 ((-3 |t#1| "failed") |t#1|)) (-15 -2670 ((-3 |t#1| "failed") |t#1|)) (-15 -4359 ((-3 |t#1| "failed") |t#1|)) (-15 -1853 ((-3 |t#1| "failed") |t#1|)) (-15 -1470 ((-3 |t#1| "failed") |t#1|))))
+((-2559 ((|#4| |#4| (-649 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4243 ((|#4| |#4| (-649 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1346 ((|#4| (-1 |#4| (-958 |#1|)) |#4|) 31)))
+(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4243 (|#4| |#4| |#3|)) (-15 -4243 (|#4| |#4| (-649 |#3|))) (-15 -2559 (|#4| |#4| |#3|)) (-15 -2559 (|#4| |#4| (-649 |#3|))) (-15 -1346 (|#4| (-1 |#4| (-958 |#1|)) |#4|))) (-1057) (-798) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185))))) (-955 (-958 |#1|) |#2| |#3|)) (T -992))
+((-1346 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1057)) (-4 *2 (-955 (-958 *4) *5 *6)) (-4 *5 (-798)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-5 *1 (-992 *4 *5 *6 *2)))) (-2559 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-2559 (*1 *2 *2 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))) (-4243 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-4243 (*1 *2 *2 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))))
+(-10 -7 (-15 -4243 (|#4| |#4| |#3|)) (-15 -4243 (|#4| |#4| (-649 |#3|))) (-15 -2559 (|#4| |#4| |#3|)) (-15 -2559 (|#4| |#4| (-649 |#3|))) (-15 -1346 (|#4| (-1 |#4| (-958 |#1|)) |#4|)))
+((-1820 ((|#2| |#3|) 35)) (-3615 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 79)) (-4002 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 100)))
+(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -1820 (|#2| |#3|))) (-353) (-1251 |#1|) (-1251 |#2|) (-729 |#2| |#3|)) (T -993))
+((-1820 (*1 *2 *3) (-12 (-4 *3 (-1251 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-993 *4 *2 *3 *5)) (-4 *4 (-353)) (-4 *5 (-729 *2 *3)))) (-3615 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-993 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5)))) (-4002 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5)))))
+(-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -1820 (|#2| |#3|)))
+((-4352 (((-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))) 82)))
+(((-994 |#1| |#2|) (-10 -7 (-15 -4352 ((-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))))) (-649 (-1185)) (-776)) (T -994))
+((-4352 (*1 *2 *2) (-12 (-5 *2 (-995 (-412 (-569)) (-869 *3) (-241 *4 (-776)) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-994 *3 *4)))))
+(-10 -7 (-15 -4352 ((-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))))))
+((-2417 (((-112) $ $) NIL)) (-2529 (((-3 (-112) "failed") $) 71)) (-2469 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1440 (($ $ (-3 (-112) "failed")) 72)) (-1615 (($ (-649 |#4|) |#4|) 25)) (-3435 (((-1167) $) NIL)) (-2889 (($ $) 69)) (-3547 (((-1128) $) NIL)) (-3162 (((-112) $) 70)) (-3635 (($) 30)) (-2338 ((|#4| $) 74)) (-4008 (((-649 |#4|) $) 73)) (-3796 (((-867) $) 68)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-995 |#1| |#2| |#3| |#4|) (-13 (-1108) (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -1615 ($ (-649 |#4|) |#4|)) (-15 -2529 ((-3 (-112) "failed") $)) (-15 -1440 ($ $ (-3 (-112) "failed"))) (-15 -3162 ((-112) $)) (-15 -4008 ((-649 |#4|) $)) (-15 -2338 (|#4| $)) (-15 -2889 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -2469 ($ $)) |%noBranch|) |%noBranch|))) (-457) (-855) (-798) (-955 |#1| |#3| |#2|)) (T -995))
+((-3635 (*1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-1615 (*1 *1 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-995 *4 *5 *6 *3)))) (-2529 (*1 *2 *1) (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-1440 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-3162 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-4008 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-2338 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-995 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))) (-2889 (*1 *1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-2469 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))))
+(-13 (-1108) (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -1615 ($ (-649 |#4|) |#4|)) (-15 -2529 ((-3 (-112) "failed") $)) (-15 -1440 ($ $ (-3 (-112) "failed"))) (-15 -3162 ((-112) $)) (-15 -4008 ((-649 |#4|) $)) (-15 -2338 (|#4| $)) (-15 -2889 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -2469 ($ $)) |%noBranch|) |%noBranch|)))
+((-2137 (((-112) |#5| |#5|) 44)) (-3197 (((-112) |#5| |#5|) 59)) (-3083 (((-112) |#5| (-649 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2831 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2210 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 70)) (-3681 (((-1280)) 32)) (-2197 (((-1280) (-1167) (-1167) (-1167)) 28)) (-2611 (((-649 |#5|) (-649 |#5|)) 100)) (-1805 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) 92)) (-1419 (((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 122)) (-3599 (((-112) |#5| |#5|) 53)) (-1647 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2503 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-2066 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-2151 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-3543 (((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3841 (((-649 |#5|) (-649 |#5|)) 49)))
+(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -996))
+((-3543 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-996 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1079 *6 *7 *8 *9)))) (-1419 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-996 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7)))) (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-996 *3 *4 *5 *6 *7)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-996 *3 *4 *5 *6 *7)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-1647 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-2151 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2066 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2503 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3599 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-996 *3 *4 *5 *6 *7)))) (-2137 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3681 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2197 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2672 (((-1185) $) 15)) (-2188 (((-1167) $) 16)) (-3497 (($ (-1185) (-1167)) 14)) (-3796 (((-867) $) 13)))
+(((-997) (-13 (-618 (-867)) (-10 -8 (-15 -3497 ($ (-1185) (-1167))) (-15 -2672 ((-1185) $)) (-15 -2188 ((-1167) $))))) (T -997))
+((-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-997)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-997)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-997)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3497 ($ (-1185) (-1167))) (-15 -2672 ((-1185) $)) (-15 -2188 ((-1167) $))))
+((-1346 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|))) (-561) (-561) (-1000 |#1|) (-1000 |#2|)) (T -998))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-4 *2 (-1000 *6)) (-5 *1 (-998 *5 *6 *4 *2)) (-4 *4 (-1000 *5)))))
+(-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|)))
+((-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-1185) "failed") $) 66) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) 96)) (-3150 ((|#2| $) NIL) (((-1185) $) 61) (((-412 (-569)) $) NIL) (((-569) $) 93)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 115) (((-694 |#2|) (-694 $)) 28)) (-3406 (($) 99)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 76) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 85)) (-2177 (($ $) 10)) (-3885 (((-3 $ "failed") $) 20)) (-1346 (($ (-1 |#2| |#2|) $) 22)) (-2307 (($) 16)) (-3231 (($ $) 55)) (-3517 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3181 (($ $) 12)) (-1410 (((-898 (-569)) $) 71) (((-898 (-383)) $) 80) (((-541) $) 40) (((-383) $) 44) (((-226) $) 48)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 91) (($ |#2|) NIL) (($ (-1185)) 58)) (-2721 (((-776)) 31)) (-2944 (((-112) $ $) 51)))
+(((-999 |#1| |#2|) (-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -3406 (|#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1000 |#2|) (-561)) (T -999))
+((-2721 (*1 *2) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-999 *3 *4)) (-4 *3 (-1000 *4)))))
+(-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -3406 (|#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 ((|#1| $) 147 (|has| |#1| (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 138 (|has| |#1| (-915)))) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 141 (|has| |#1| (-915)))) (-2227 (((-112) $ $) 65)) (-2919 (((-569) $) 128 (|has| |#1| (-825)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 185) (((-3 (-1185) "failed") $) 136 (|has| |#1| (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) 119 (|has| |#1| (-1046 (-569)))) (((-3 (-569) "failed") $) 117 (|has| |#1| (-1046 (-569))))) (-3150 ((|#1| $) 186) (((-1185) $) 137 (|has| |#1| (-1046 (-1185)))) (((-412 (-569)) $) 120 (|has| |#1| (-1046 (-569)))) (((-569) $) 118 (|has| |#1| (-1046 (-569))))) (-2368 (($ $ $) 61)) (-2957 (((-694 (-569)) (-694 $)) 160 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 159 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 158) (((-694 |#1|) (-694 $)) 157)) (-3086 (((-3 $ "failed") $) 37)) (-3406 (($) 145 (|has| |#1| (-550)))) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3712 (((-112) $) 130 (|has| |#1| (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 154 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 153 (|has| |#1| (-892 (-383))))) (-2349 (((-112) $) 35)) (-2177 (($ $) 149)) (-4399 ((|#1| $) 151)) (-3885 (((-3 $ "failed") $) 116 (|has| |#1| (-1160)))) (-2051 (((-112) $) 129 (|has| |#1| (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3380 (($ $ $) 126 (|has| |#1| (-855)))) (-2839 (($ $ $) 125 (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) 177)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-2307 (($) 115 (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3231 (($ $) 146 (|has| |#1| (-310)))) (-3465 ((|#1| $) 143 (|has| |#1| (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 140 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 139 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 183 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 181 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 180 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 179 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 178 (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) 64)) (-1869 (($ $ |#1|) 184 (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3517 (($ $) 176 (|has| |#1| (-234))) (($ $ (-776)) 174 (|has| |#1| (-234))) (($ $ (-1185)) 172 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 171 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 170 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 169 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3181 (($ $) 148)) (-4412 ((|#1| $) 150)) (-1410 (((-898 (-569)) $) 156 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 155 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 133 (|has| |#1| (-619 (-541)))) (((-383) $) 132 (|has| |#1| (-1030))) (((-226) $) 131 (|has| |#1| (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 142 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 189) (($ (-1185)) 135 (|has| |#1| (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) 134 (-2776 (|has| |#1| (-145)) (-1759 (|has| $ (-145)) (|has| |#1| (-915)))))) (-2721 (((-776)) 32 T CONST)) (-2040 ((|#1| $) 144 (|has| |#1| (-550)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 127 (|has| |#1| (-825)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 175 (|has| |#1| (-234))) (($ $ (-776)) 173 (|has| |#1| (-234))) (($ $ (-1185)) 168 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 167 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 166 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 165 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2978 (((-112) $ $) 123 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 122 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 124 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 121 (|has| |#1| (-855)))) (-3035 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
+(((-1000 |#1|) (-140) (-561)) (T -1000))
+((-3035 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-4399 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3231 (*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3406 (*1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-550)) (-4 *2 (-561)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550)))))
+(-13 (-367) (-38 |t#1|) (-1046 |t#1|) (-342 |t#1|) (-232 |t#1|) (-381 |t#1|) (-890 |t#1|) (-405 |t#1|) (-10 -8 (-15 -3035 ($ |t#1| |t#1|)) (-15 -4399 (|t#1| $)) (-15 -4412 (|t#1| $)) (-15 -2177 ($ $)) (-15 -3181 ($ $)) (IF (|has| |t#1| (-1160)) (-6 (-1160)) |%noBranch|) (IF (|has| |t#1| (-1046 (-569))) (PROGN (-6 (-1046 (-569))) (-6 (-1046 (-412 (-569))))) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1046 (-1185))) (-6 (-1046 (-1185))) |%noBranch|) (IF (|has| |t#1| (-310)) (PROGN (-15 -1938 (|t#1| $)) (-15 -3231 ($ $))) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3406 ($)) (-15 -2040 (|t#1| $)) (-15 -3465 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 #1=(-1185)) |has| |#1| (-1046 (-1185))) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) |has| |#1| (-1030)) ((-619 (-383)) |has| |#1| (-1030)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) . T) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) . T) ((-310) . T) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-457) . T) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-796) |has| |#1| (-825)) ((-797) |has| |#1| (-825)) ((-799) |has| |#1| (-825)) ((-800) |has| |#1| (-825)) ((-825) |has| |#1| (-825)) ((-853) |has| |#1| (-825)) ((-855) -2776 (|has| |#1| (-855)) (|has| |#1| (-825))) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) |has| |#1| (-915)) ((-926) . T) ((-1030) |has| |#1| (-1030)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-569))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #1#) |has| |#1| (-1046 (-1185))) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-1160)) ((-1225) . T) ((-1229) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1875 (($ (-1150 |#1| |#2|)) 11)) (-2430 (((-1150 |#1| |#2|) $) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 ((|#2| $ (-241 |#1| |#2|)) 16)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL)))
+(((-1001 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1875 ($ (-1150 |#1| |#2|))) (-15 -2430 ((-1150 |#1| |#2|) $)) (-15 -1869 (|#2| $ (-241 |#1| |#2|))))) (-927) (-367)) (T -1001))
+((-1875 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)) (-5 *1 (-1001 *3 *4)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-1150 *3 *4)) (-5 *1 (-1001 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-241 *4 *2)) (-14 *4 (-927)) (-4 *2 (-367)) (-5 *1 (-1001 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1875 ($ (-1150 |#1| |#2|))) (-15 -2430 ((-1150 |#1| |#2|) $)) (-15 -1869 (|#2| $ (-241 |#1| |#2|)))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 9)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1002) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $))))) (T -1002))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1002)))))
+(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $))))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-1529 (($ $) 47)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3845 (((-776) $) 46)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3064 ((|#1| $) 45)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-2928 ((|#1| |#1| $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-4295 ((|#1| $) 48)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-3417 ((|#1| $) 44)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1003 |#1|) (-140) (-1225)) (T -1003))
+((-2928 (*1 *2 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4447) (-15 -2928 (|t#1| |t#1| $)) (-15 -4295 (|t#1| $)) (-15 -1529 ($ $)) (-15 -3845 ((-776) $)) (-15 -3064 (|t#1| $)) (-15 -3417 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-4143 (((-112) $) 43)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 44)) (-3377 (((-3 (-412 (-569)) "failed") $) 78)) (-1441 (((-112) $) 72)) (-1606 (((-412 (-569)) $) 76)) (-2349 (((-112) $) 42)) (-3829 ((|#2| $) 22)) (-1346 (($ (-1 |#2| |#2|) $) 19)) (-1817 (($ $) 58)) (-3517 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1410 (((-541) $) 67)) (-3476 (($ $) 17)) (-3796 (((-867) $) 53) (($ (-569)) 39) (($ |#2|) 37) (($ (-412 (-569))) NIL)) (-2721 (((-776)) 10)) (-2271 ((|#2| $) 71)) (-2920 (((-112) $ $) 26)) (-2944 (((-112) $ $) 69)) (-3024 (($ $) 30) (($ $ $) 29)) (-3012 (($ $ $) 27)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL)))
+(((-1004 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -2944 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1817 (|#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -2349 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-1005 |#2|) (-173)) (T -1004))
+((-2721 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1004 *3 *4)) (-4 *3 (-1005 *4)))))
+(-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -2944 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1817 (|#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -2349 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 127 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 125 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 122)) (-3150 (((-569) $) 126 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 124 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 123)) (-2957 (((-694 (-569)) (-694 $)) 97 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 96 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 95) (((-694 |#1|) (-694 $)) 94)) (-3086 (((-3 $ "failed") $) 37)) (-3824 ((|#1| $) 87)) (-3377 (((-3 (-412 (-569)) "failed") $) 83 (|has| |#1| (-550)))) (-1441 (((-112) $) 85 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 84 (|has| |#1| (-550)))) (-1475 (($ |#1| |#1| |#1| |#1|) 88)) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 89)) (-3380 (($ $ $) 76 (|has| |#1| (-855)))) (-2839 (($ $ $) 75 (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) 98)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 80 (|has| |#1| (-367)))) (-4310 ((|#1| $) 90)) (-2982 ((|#1| $) 91)) (-1686 ((|#1| $) 92)) (-3547 (((-1128) $) 11)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 104 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 102 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 101 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 100 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 99 (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) 105 (|has| |#1| (-289 |#1| |#1|)))) (-3517 (($ $) 121 (|has| |#1| (-234))) (($ $ (-776)) 119 (|has| |#1| (-234))) (($ $ (-1185)) 117 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 116 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 115 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 114 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1410 (((-541) $) 81 (|has| |#1| (-619 (-541))))) (-3476 (($ $) 93)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 70 (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2271 ((|#1| $) 86 (|has| |#1| (-1068)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 120 (|has| |#1| (-234))) (($ $ (-776)) 118 (|has| |#1| (-234))) (($ $ (-1185)) 113 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 112 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 111 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 110 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2978 (((-112) $ $) 73 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 72 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 74 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 71 (|has| |#1| (-855)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 79 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-412 (-569))) 78 (|has| |#1| (-367))) (($ (-412 (-569)) $) 77 (|has| |#1| (-367)))))
+(((-1005 |#1|) (-140) (-173)) (T -1005))
+((-3476 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-1475 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))))
+(-13 (-38 |t#1|) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-381 |t#1|) (-10 -8 (-15 -3476 ($ $)) (-15 -1686 (|t#1| $)) (-15 -2982 (|t#1| $)) (-15 -4310 (|t#1| $)) (-15 -3829 (|t#1| $)) (-15 -1475 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3824 (|t#1| $)) (IF (|has| |t#1| (-293)) (-6 (-293)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2271 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-367)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-367)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) |has| |#1| (-367)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 #0#) |has| |#1| (-367)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-367)) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-367)) ((-645 |#1|) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-367)) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) |has| |#1| (-367)) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1064 #0#) |has| |#1| (-367)) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-1346 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) (-1005 |#2|) (-173) (-1005 |#4|) (-173)) (T -1006))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1005 *6)) (-5 *1 (-1006 *4 *5 *2 *6)) (-4 *4 (-1005 *5)))))
+(-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3824 ((|#1| $) 12)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1441 (((-112) $) NIL (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-1475 (($ |#1| |#1| |#1| |#1|) 16)) (-2349 (((-112) $) NIL)) (-3829 ((|#1| $) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-4310 ((|#1| $) 15)) (-2982 ((|#1| $) 14)) (-1686 ((|#1| $) 13)) (-3547 (((-1128) $) NIL)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-3517 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3476 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2271 ((|#1| $) NIL (|has| |#1| (-1068)))) (-1804 (($) 8 T CONST)) (-1815 (($) 10 T CONST)) (-2832 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-367)))))
+(((-1007 |#1|) (-1005 |#1|) (-173)) (T -1007))
+NIL
+(-1005 |#1|)
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-1529 (($ $) 23)) (-3951 (($ (-649 |#1|)) 33)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3845 (((-776) $) 26)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 28)) (-3894 (($ |#1| $) 17)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3064 ((|#1| $) 27)) (-1781 ((|#1| $) 22)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-2928 ((|#1| |#1| $) 16)) (-3162 (((-112) $) 18)) (-3635 (($) NIL)) (-4295 ((|#1| $) 21)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-3417 ((|#1| $) 30)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1008 |#1|) (-13 (-1003 |#1|) (-10 -8 (-15 -3951 ($ (-649 |#1|))))) (-1108)) (T -1008))
+((-3951 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1008 *3)))))
+(-13 (-1003 |#1|) (-10 -8 (-15 -3951 ($ (-649 |#1|)))))
+((-3813 (($ $) 12)) (-3742 (($ $ (-569)) 13)))
+(((-1009 |#1|) (-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-569)))) (-1010)) (T -1009))
+NIL
+(-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-569))))
+((-3813 (($ $) 6)) (-3742 (($ $ (-569)) 7)) (** (($ $ (-412 (-569))) 8)))
+(((-1010) (-140)) (T -1010))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-412 (-569))))) (-3742 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-569)))) (-3813 (*1 *1 *1) (-4 *1 (-1010))))
+(-13 (-10 -8 (-15 -3813 ($ $)) (-15 -3742 ($ $ (-569))) (-15 ** ($ $ (-412 (-569))))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2877 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-4355 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3039 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1547 (((-694 (-412 |#2|)) (-1275 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3140 (((-412 |#2|) $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3764 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2227 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3473 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-2123 (((-112)) NIL)) (-3317 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-2247 (($ (-1275 (-412 |#2|)) (-1275 $)) NIL) (($ (-1275 (-412 |#2|))) 81) (($ (-1275 |#2|) |#2|) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2368 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1833 (((-694 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-412 |#2|))) (|:| |vec| (-1275 (-412 |#2|)))) (-694 $) (-1275 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-2980 (((-1275 $) (-1275 $)) NIL)) (-3598 (($ |#3|) 75) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-2603 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-1523 (((-112) |#1| |#1|) NIL)) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| (-412 |#2|) (-372)))) (-2303 (((-112)) NIL)) (-3811 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2379 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-2642 (($ $) NIL)) (-1616 (($) NIL (|has| (-412 |#2|) (-353)))) (-2807 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-3701 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-1473 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1466 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2349 (((-112) $) NIL)) (-3045 (((-776)) NIL)) (-3751 (((-1275 $) (-1275 $)) NIL)) (-3829 (((-412 |#2|) $) NIL)) (-1388 (((-649 (-958 |#1|)) (-1185)) NIL (|has| |#1| (-367)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3859 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2731 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3585 ((|#3| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3435 (((-1167) $) NIL)) (-1334 (((-694 (-412 |#2|))) 57)) (-2979 (((-694 (-412 |#2|))) 56)) (-1817 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4397 (($ (-1275 |#2|) |#2|) 82)) (-4272 (((-694 (-412 |#2|))) 55)) (-4247 (((-694 (-412 |#2|))) 54)) (-2841 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-4277 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 88)) (-3963 (((-1275 $)) 51)) (-4002 (((-1275 $)) 50)) (-2173 (((-112) $) NIL)) (-3557 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2307 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-3015 (((-3 |#2| "failed")) 70)) (-3547 (((-1128) $) NIL)) (-3926 (((-776)) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| (-412 |#2|) (-367)))) (-1870 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3800 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2431 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1869 ((|#1| $ |#1| |#1|) NIL)) (-2893 (((-3 |#2| "failed")) 68)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3059 (((-412 |#2|) (-1275 $)) NIL) (((-412 |#2|)) 47)) (-2166 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3517 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2594 (((-694 (-412 |#2|)) (-1275 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-4061 ((|#3|) 58)) (-4234 (($) NIL (|has| (-412 |#2|) (-353)))) (-2415 (((-1275 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) (-1275 $) (-1275 $)) NIL) (((-1275 (-412 |#2|)) $) 83) (((-694 (-412 |#2|)) (-1275 $)) NIL)) (-1410 (((-1275 (-412 |#2|)) $) NIL) (($ (-1275 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-3562 (((-1275 $) (-1275 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| (-412 |#2|) (-1046 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2239 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-1886 ((|#3| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-2784 (((-112)) 65)) (-4050 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-2664 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4279 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1954 (((-112)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367)))))
+(((-1011 |#1| |#2| |#3| |#4| |#5|) (-346 |#1| |#2| |#3|) (-1229) (-1251 |#1|) (-1251 (-412 |#2|)) (-412 |#2|) (-776)) (T -1011))
NIL
(-346 |#1| |#2| |#3|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-2001 (((-649 (-569)) $) 73)) (-2751 (($ (-649 (-569))) 81)) (-3673 (((-569) $) 48 (|has| (-569) (-310)))) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL (|has| (-569) (-825)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) 60) (((-3 (-1183) "failed") $) NIL (|has| (-569) (-1044 (-1183)))) (((-3 (-412 (-569)) "failed") $) 57 (|has| (-569) (-1044 (-569)))) (((-3 (-569) "failed") $) 60 (|has| (-569) (-1044 (-569))))) (-3148 (((-569) $) NIL) (((-1183) $) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) NIL (|has| (-569) (-1044 (-569)))) (((-569) $) NIL (|has| (-569) (-1044 (-569))))) (-2366 (($ $ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3403 (($) NIL (|has| (-569) (-550)))) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2978 (((-649 (-569)) $) 79)) (-4237 (((-112) $) NIL (|has| (-569) (-825)))) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL)) (-4396 (((-569) $) 45)) (-3812 (((-3 $ "failed") $) NIL (|has| (-569) (-1158)))) (-4327 (((-112) $) NIL (|has| (-569) (-825)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-569) (-855)))) (-1344 (($ (-1 (-569) (-569)) $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL)) (-2305 (($) NIL (|has| (-569) (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3555 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) 50)) (-1911 (((-1163 (-569)) $) 78)) (-2631 (($ (-649 (-569)) (-649 (-569))) 82)) (-2478 (((-569) $) 64 (|has| (-569) (-550)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| (-569) (-915)))) (-3796 (((-423 $) $) NIL)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1723 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1183)) (-649 (-569))) NIL (|has| (-569) (-519 (-1183) (-569)))) (($ $ (-1183) (-569)) NIL (|has| (-569) (-519 (-1183) (-569))))) (-1578 (((-776) $) NIL)) (-1866 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $) 15 (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-1528 (($ $) NIL)) (-4409 (((-569) $) 47)) (-2864 (((-649 (-569)) $) 80)) (-1408 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1028))) (((-226) $) NIL (|has| (-569) (-1028)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3793 (((-867) $) 107) (($ (-569)) 51) (($ $) NIL) (($ (-412 (-569))) 27) (($ (-569)) 51) (($ (-1183)) NIL (|has| (-569) (-1044 (-1183)))) (((-412 (-569)) $) 25)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-3302 (((-776)) 13 T CONST)) (-2586 (((-569) $) 62 (|has| (-569) (-550)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3070 (($ $) NIL (|has| (-569) (-825)))) (-1803 (($) 14 T CONST)) (-1813 (($) 17 T CONST)) (-2830 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1183)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| (-569) (-906 (-1183)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2976 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2919 (((-112) $ $) 21)) (-2964 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2942 (((-112) $ $) 40 (|has| (-569) (-855)))) (-3032 (($ $ $) 36) (($ (-569) (-569)) 38)) (-3021 (($ $) 23) (($ $ $) 30)) (-3009 (($ $ $) 28)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ $ $) 34) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) 32) (($ $ (-569)) NIL)))
-(((-1010 |#1|) (-13 (-998 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -2001 ((-649 (-569)) $)) (-15 -1911 ((-1163 (-569)) $)) (-15 -2978 ((-649 (-569)) $)) (-15 -2864 ((-649 (-569)) $)) (-15 -2751 ($ (-649 (-569)))) (-15 -2631 ($ (-649 (-569)) (-649 (-569)))))) (-569)) (T -1010))
-((-3555 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))) (-2631 (*1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
-(-13 (-998 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3555 ((-412 (-569)) $)) (-15 -2001 ((-649 (-569)) $)) (-15 -1911 ((-1163 (-569)) $)) (-15 -2978 ((-649 (-569)) $)) (-15 -2864 ((-649 (-569)) $)) (-15 -2751 ($ (-649 (-569)))) (-15 -2631 ($ (-649 (-569)) (-649 (-569))))))
-((-2100 (((-52) (-412 (-569)) (-569)) 9)))
-(((-1011) (-10 -7 (-15 -2100 ((-52) (-412 (-569)) (-569))))) (T -1011))
-((-2100 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52)) (-5 *1 (-1011)))))
-(-10 -7 (-15 -2100 ((-52) (-412 (-569)) (-569))))
-((-3470 (((-569)) 23)) (-4329 (((-569)) 28)) (-2293 (((-1278) (-569)) 26)) (-2197 (((-569) (-569)) 29) (((-569)) 22)))
-(((-1012) (-10 -7 (-15 -2197 ((-569))) (-15 -3470 ((-569))) (-15 -2197 ((-569) (-569))) (-15 -2293 ((-1278) (-569))) (-15 -4329 ((-569))))) (T -1012))
-((-4329 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1012)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))) (-3470 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))) (-2197 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))))
-(-10 -7 (-15 -2197 ((-569))) (-15 -3470 ((-569))) (-15 -2197 ((-569) (-569))) (-15 -2293 ((-1278) (-569))) (-15 -4329 ((-569))))
-((-3572 (((-423 |#1|) |#1|) 43)) (-3796 (((-423 |#1|) |#1|) 41)))
-(((-1013 |#1|) (-10 -7 (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3572 ((-423 |#1|) |#1|))) (-1249 (-412 (-569)))) (T -1013))
-((-3572 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1249 (-412 (-569)))))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1249 (-412 (-569)))))))
-(-10 -7 (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3572 ((-423 |#1|) |#1|)))
-((-1545 (((-3 (-412 (-569)) "failed") |#1|) 15)) (-1434 (((-112) |#1|) 14)) (-1311 (((-412 (-569)) |#1|) 10)))
-(((-1014 |#1|) (-10 -7 (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|))) (-1044 (-412 (-569)))) (T -1014))
-((-1545 (*1 *2 *3) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))) (-1434 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1014 *3)) (-4 *3 (-1044 (-412 (-569)))))) (-1311 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))))
-(-10 -7 (-15 -1311 ((-412 (-569)) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -1545 ((-3 (-412 (-569)) "failed") |#1|)))
-((-3940 ((|#2| $ "value" |#2|) 12)) (-1866 ((|#2| $ "value") 10)) (-3860 (((-112) $ $) 18)))
-(((-1015 |#1| |#2|) (-10 -8 (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -3860 ((-112) |#1| |#1|)) (-15 -1866 (|#2| |#1| "value"))) (-1016 |#2|) (-1223)) (T -1015))
-NIL
-(-10 -8 (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -3860 ((-112) |#1| |#1|)) (-15 -1866 (|#2| |#1| "value")))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-4188 (($) 7 T CONST)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48)) (-3947 (((-569) $ $) 45)) (-2102 (((-112) $) 47)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1016 |#1|) (-140) (-1223)) (T -1016))
-((-3500 (*1 *2 *1) (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3)))) (-4035 (*1 *2 *1) (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1223)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1016 *2)) (-4 *2 (-1223)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-2273 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))) (-3947 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))) (-3860 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-3759 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-1767 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4445)) (-4 *1 (-1016 *3)) (-4 *3 (-1223)))) (-3940 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4445)) (-4 *1 (-1016 *2)) (-4 *2 (-1223)))) (-1660 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1016 *2)) (-4 *2 (-1223)))))
-(-13 (-494 |t#1|) (-10 -8 (-15 -3500 ((-649 $) $)) (-15 -4035 ((-649 $) $)) (-15 -2703 ((-112) $)) (-15 -2185 (|t#1| $)) (-15 -1866 (|t#1| $ "value")) (-15 -2102 ((-112) $)) (-15 -2273 ((-649 |t#1|) $)) (-15 -3947 ((-569) $ $)) (IF (|has| |t#1| (-1106)) (PROGN (-15 -3860 ((-112) $ $)) (-15 -3759 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4445)) (PROGN (-15 -1767 ($ $ (-649 $))) (-15 -3940 (|t#1| $ "value" |t#1|)) (-15 -1660 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-3807 (($ $) 9) (($ $ (-927)) 49) (($ (-412 (-569))) 13) (($ (-569)) 15)) (-3964 (((-3 $ "failed") (-1179 $) (-927) (-867)) 24) (((-3 $ "failed") (-1179 $) (-927)) 32)) (-2506 (($ $ (-569)) 58)) (-3302 (((-776)) 18)) (-4054 (((-649 $) (-1179 $)) NIL) (((-649 $) (-1179 (-412 (-569)))) 63) (((-649 $) (-1179 (-569))) 68) (((-649 $) (-958 $)) 72) (((-649 $) (-958 (-412 (-569)))) 76) (((-649 $) (-958 (-569))) 80)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 53)))
-(((-1017 |#1|) (-10 -8 (-15 -3807 (|#1| (-569))) (-15 -3807 (|#1| (-412 (-569)))) (-15 -3807 (|#1| |#1| (-927))) (-15 -4054 ((-649 |#1|) (-958 (-569)))) (-15 -4054 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -4054 ((-649 |#1|) (-958 |#1|))) (-15 -4054 ((-649 |#1|) (-1179 (-569)))) (-15 -4054 ((-649 |#1|) (-1179 (-412 (-569))))) (-15 -4054 ((-649 |#1|) (-1179 |#1|))) (-15 -3964 ((-3 |#1| "failed") (-1179 |#1|) (-927))) (-15 -3964 ((-3 |#1| "failed") (-1179 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2506 (|#1| |#1| (-569))) (-15 -3807 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3302 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-1018)) (T -1017))
-((-3302 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1017 *3)) (-4 *3 (-1018)))))
-(-10 -8 (-15 -3807 (|#1| (-569))) (-15 -3807 (|#1| (-412 (-569)))) (-15 -3807 (|#1| |#1| (-927))) (-15 -4054 ((-649 |#1|) (-958 (-569)))) (-15 -4054 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -4054 ((-649 |#1|) (-958 |#1|))) (-15 -4054 ((-649 |#1|) (-1179 (-569)))) (-15 -4054 ((-649 |#1|) (-1179 (-412 (-569))))) (-15 -4054 ((-649 |#1|) (-1179 |#1|))) (-15 -3964 ((-3 |#1| "failed") (-1179 |#1|) (-927))) (-15 -3964 ((-3 |#1| "failed") (-1179 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2506 (|#1| |#1| (-569))) (-15 -3807 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3302 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 102)) (-3087 (($ $) 103)) (-2883 (((-112) $) 105)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 122)) (-2508 (((-423 $) $) 123)) (-3807 (($ $) 86) (($ $ (-927)) 72) (($ (-412 (-569))) 71) (($ (-569)) 70)) (-1680 (((-112) $ $) 113)) (-2552 (((-569) $) 139)) (-4188 (($) 18 T CONST)) (-3964 (((-3 $ "failed") (-1179 $) (-927) (-867)) 80) (((-3 $ "failed") (-1179 $) (-927)) 79)) (-4378 (((-3 (-569) "failed") $) 99 (|has| (-412 (-569)) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) 94)) (-3148 (((-569) $) 98 (|has| (-412 (-569)) (-1044 (-569)))) (((-412 (-569)) $) 96 (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-412 (-569)) $) 95)) (-4221 (($ $ (-867)) 69)) (-4123 (($ $ (-867)) 68)) (-2366 (($ $ $) 117)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 116)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 111)) (-4073 (((-112) $) 124)) (-4237 (((-112) $) 137)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 85)) (-4327 (((-112) $) 138)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 120)) (-3377 (($ $ $) 136)) (-3969 (($ $ $) 135)) (-3052 (((-3 (-1179 $) "failed") $) 81)) (-3248 (((-3 (-867) "failed") $) 83)) (-3150 (((-3 (-1179 $) "failed") $) 82)) (-1835 (($ (-649 $)) 109) (($ $ $) 108)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 125)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 110)) (-1864 (($ (-649 $)) 107) (($ $ $) 106)) (-3796 (((-423 $) $) 121)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 118)) (-2405 (((-3 $ "failed") $ $) 101)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 112)) (-1578 (((-776) $) 114)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 115)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 129) (($ $) 100) (($ (-412 (-569))) 93) (($ (-569)) 92) (($ (-412 (-569))) 89)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 104)) (-3088 (((-412 (-569)) $ $) 67)) (-4054 (((-649 $) (-1179 $)) 78) (((-649 $) (-1179 (-412 (-569)))) 77) (((-649 $) (-1179 (-569))) 76) (((-649 $) (-958 $)) 75) (((-649 $) (-958 (-412 (-569)))) 74) (((-649 $) (-958 (-569))) 73)) (-3070 (($ $) 140)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2976 (((-112) $ $) 133)) (-2954 (((-112) $ $) 132)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 134)) (-2942 (((-112) $ $) 131)) (-3032 (($ $ $) 130)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126) (($ $ (-412 (-569))) 84)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 128) (($ $ (-412 (-569))) 127) (($ (-569) $) 91) (($ $ (-569)) 90) (($ (-412 (-569)) $) 88) (($ $ (-412 (-569))) 87)))
-(((-1018) (-140)) (T -1018))
-((-3807 (*1 *1 *1) (-4 *1 (-1018))) (-3248 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018)) (-5 *2 (-867)))) (-3150 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))) (-3052 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))) (-3964 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-5 *4 (-867)) (-4 *1 (-1018)))) (-3964 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-4 *1 (-1018)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-1179 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018)))) (-3807 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-927)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1018)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1018)))) (-4221 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))) (-3088 (*1 *2 *1 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-412 (-569))))))
-(-13 (-147) (-853) (-173) (-367) (-416 (-412 (-569))) (-38 (-569)) (-38 (-412 (-569))) (-1008) (-10 -8 (-15 -3248 ((-3 (-867) "failed") $)) (-15 -3150 ((-3 (-1179 $) "failed") $)) (-15 -3052 ((-3 (-1179 $) "failed") $)) (-15 -3964 ((-3 $ "failed") (-1179 $) (-927) (-867))) (-15 -3964 ((-3 $ "failed") (-1179 $) (-927))) (-15 -4054 ((-649 $) (-1179 $))) (-15 -4054 ((-649 $) (-1179 (-412 (-569))))) (-15 -4054 ((-649 $) (-1179 (-569)))) (-15 -4054 ((-649 $) (-958 $))) (-15 -4054 ((-649 $) (-958 (-412 (-569))))) (-15 -4054 ((-649 $) (-958 (-569)))) (-15 -3807 ($ $ (-927))) (-15 -3807 ($ $)) (-15 -3807 ($ (-412 (-569)))) (-15 -3807 ($ (-569))) (-15 -4221 ($ $ (-867))) (-15 -4123 ($ $ (-867))) (-15 -3088 ((-412 (-569)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 #1=(-569)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-416 (-412 (-569))) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-926) . T) ((-1008) . T) ((-1044 (-412 (-569))) . T) ((-1044 (-569)) |has| (-412 (-569)) (-1044 (-569))) ((-1057 #0#) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
-((-2056 (((-2 (|:| |ans| |#2|) (|:| -4407 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1019 |#1| |#2|) (-10 -7 (-15 -2056 ((-2 (|:| |ans| |#2|) (|:| -4407 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-27) (-435 |#1|))) (T -1019))
-((-2056 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1183)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2530 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1208) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4407 *4) (|:| |sol?| (-112)))) (-5 *1 (-1019 *8 *4)))))
-(-10 -7 (-15 -2056 ((-2 (|:| |ans| |#2|) (|:| -4407 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2163 (((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1020 |#1| |#2|) (-10 -7 (-15 -2163 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))) (-13 (-1208) (-27) (-435 |#1|))) (T -1020))
-((-2163 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1183)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2530 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1208) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-649 *4)) (-5 *1 (-1020 *8 *4)))))
-(-10 -7 (-15 -2163 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1183) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2530 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-4405 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4309 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)) 38)) (-2271 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3674 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 69)) (-2357 (((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|)) 74)))
-(((-1021 |#1| |#2|) (-10 -7 (-15 -2271 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3674 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -2357 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -4405 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4309 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)))) (-13 (-367) (-147) (-1044 (-569))) (-1249 |#1|)) (T -1021))
-((-4405 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1249 *6)) (-4 *6 (-13 (-367) (-147) (-1044 *4))) (-5 *4 (-569)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4309 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1021 *6 *3)))) (-2357 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1021 *4 *5)) (-5 *3 (-412 *5)))) (-2271 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6)) (|:| -3674 *6))) (-5 *1 (-1021 *5 *6)) (-5 *3 (-412 *6)))))
-(-10 -7 (-15 -2271 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3674 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -2357 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -4405 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4309 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|))))
-((-1413 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3674 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 22)) (-1543 (((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 34)))
-(((-1022 |#1| |#2|) (-10 -7 (-15 -1413 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3674 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1543 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)))) (-13 (-367) (-147) (-1044 (-569))) (-1249 |#1|)) (T -1022))
-((-1543 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1022 *4 *5)) (-5 *3 (-412 *5)))) (-1413 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6) (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3674 *6))) (-5 *1 (-1022 *5 *6)) (-5 *3 (-412 *6)))))
-(-10 -7 (-15 -1413 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3674 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1543 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))))
-((-1668 (((-1 |#1|) (-649 (-2 (|:| -2185 |#1|) (|:| -1458 (-569))))) 37)) (-2242 (((-1 |#1|) (-1108 |#1|)) 44)) (-1808 (((-1 |#1|) (-1273 |#1|) (-1273 (-569)) (-569)) 34)))
-(((-1023 |#1|) (-10 -7 (-15 -2242 ((-1 |#1|) (-1108 |#1|))) (-15 -1668 ((-1 |#1|) (-649 (-2 (|:| -2185 |#1|) (|:| -1458 (-569)))))) (-15 -1808 ((-1 |#1|) (-1273 |#1|) (-1273 (-569)) (-569)))) (-1106)) (T -1023))
-((-1808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1273 *6)) (-5 *4 (-1273 (-569))) (-5 *5 (-569)) (-4 *6 (-1106)) (-5 *2 (-1 *6)) (-5 *1 (-1023 *6)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -2185 *4) (|:| -1458 (-569))))) (-4 *4 (-1106)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-1108 *4)) (-4 *4 (-1106)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))))
-(-10 -7 (-15 -2242 ((-1 |#1|) (-1108 |#1|))) (-15 -1668 ((-1 |#1|) (-649 (-2 (|:| -2185 |#1|) (|:| -1458 (-569)))))) (-15 -1808 ((-1 |#1|) (-1273 |#1|) (-1273 (-569)) (-569))))
-((-3110 (((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1024 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3110 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-367) (-1249 |#1|) (-1249 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-13 (-372) (-367))) (T -1024))
-((-3110 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367)) (-4 *7 (-1249 *6)) (-4 *4 (-1249 (-412 *7))) (-4 *8 (-346 *6 *7 *4)) (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776)) (-5 *1 (-1024 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3110 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2415 (((-112) $ $) NIL)) (-3743 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-1141) $) 11)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1025) (-13 (-1089) (-10 -8 (-15 -3743 ((-1141) $)) (-15 -3583 ((-1141) $))))) (T -1025))
-((-3743 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))))
-(-13 (-1089) (-10 -8 (-15 -3743 ((-1141) $)) (-15 -3583 ((-1141) $))))
-((-2933 (((-3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) "failed") |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) 32) (((-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569))) 29)) (-4053 (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569))) 34) (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-412 (-569))) 30) (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) 33) (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1|) 28)) (-3946 (((-649 (-412 (-569))) (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) 20)) (-3825 (((-412 (-569)) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) 17)))
-(((-1026 |#1|) (-10 -7 (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1|)) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) "failed") |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -3825 ((-412 (-569)) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -3946 ((-649 (-412 (-569))) (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))))) (-1249 (-569))) (T -1026))
-((-3946 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1026 *4)) (-4 *4 (-1249 (-569))))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) (-5 *2 (-412 (-569))) (-5 *1 (-1026 *4)) (-4 *4 (-1249 (-569))))) (-2933 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))))) (-2933 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))))) (-4053 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4395 *5) (|:| -4407 *5)))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-2 (|:| -4395 *5) (|:| -4407 *5))))) (-4053 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-412 (-569))))) (-4053 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))) (-4053 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))))))
-(-10 -7 (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1|)) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) "failed") |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -3825 ((-412 (-569)) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -3946 ((-649 (-412 (-569))) (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))))
-((-2933 (((-3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) "failed") |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) 35) (((-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569))) 32)) (-4053 (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569))) 30) (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-412 (-569))) 26) (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) 28) (((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1|) 24)))
-(((-1027 |#1|) (-10 -7 (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1|)) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) "failed") |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))) (-1249 (-412 (-569)))) (T -1027))
-((-2933 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569)))))) (-2933 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *4)))) (-4053 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4395 *5) (|:| -4407 *5)))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *5)) (-5 *4 (-2 (|:| -4395 *5) (|:| -4407 *5))))) (-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4395 *4) (|:| -4407 *4)))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *4)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569)))) (-5 *4 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))) (-4053 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569)))))))
-(-10 -7 (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1|)) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -4053 ((-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-412 (-569)))) (-15 -2933 ((-3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) "failed") |#1| (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))) (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))))
-((-1408 (((-226) $) 6) (((-383) $) 9)))
-(((-1028) (-140)) (T -1028))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2231 (((-649 (-569)) $) 73)) (-4232 (($ (-649 (-569))) 81)) (-1938 (((-569) $) 48 (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) 60) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) 57 (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) 60 (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2581 (((-649 (-569)) $) 79)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) 45)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) 50)) (-2484 (((-1165 (-569)) $) 78)) (-2418 (($ (-649 (-569)) (-649 (-569))) 82)) (-3465 (((-569) $) 64 (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) 15 (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) 47)) (-2840 (((-649 (-569)) $) 80)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) 107) (($ (-569)) 51) (($ $) NIL) (($ (-412 (-569))) 27) (($ (-569)) 51) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) 25)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) 13 T CONST)) (-2040 (((-569) $) 62 (|has| (-569) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) 14 T CONST)) (-1815 (($) 17 T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) 21)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) 40 (|has| (-569) (-855)))) (-3035 (($ $ $) 36) (($ (-569) (-569)) 38)) (-3024 (($ $) 23) (($ $ $) 30)) (-3012 (($ $ $) 28)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ $ $) 34) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) 32) (($ $ (-569)) NIL)))
+(((-1012 |#1|) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -2231 ((-649 (-569)) $)) (-15 -2484 ((-1165 (-569)) $)) (-15 -2581 ((-649 (-569)) $)) (-15 -2840 ((-649 (-569)) $)) (-15 -4232 ($ (-649 (-569)))) (-15 -2418 ($ (-649 (-569)) (-649 (-569)))))) (-569)) (T -1012))
+((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2418 (*1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))))
+(-13 (-1000 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -2231 ((-649 (-569)) $)) (-15 -2484 ((-1165 (-569)) $)) (-15 -2581 ((-649 (-569)) $)) (-15 -2840 ((-649 (-569)) $)) (-15 -4232 ($ (-649 (-569)))) (-15 -2418 ($ (-649 (-569)) (-649 (-569))))))
+((-3955 (((-52) (-412 (-569)) (-569)) 9)))
+(((-1013) (-10 -7 (-15 -3955 ((-52) (-412 (-569)) (-569))))) (T -1013))
+((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52)) (-5 *1 (-1013)))))
+(-10 -7 (-15 -3955 ((-52) (-412 (-569)) (-569))))
+((-3473 (((-569)) 23)) (-2061 (((-569)) 28)) (-2192 (((-1280) (-569)) 26)) (-3705 (((-569) (-569)) 29) (((-569)) 22)))
+(((-1014) (-10 -7 (-15 -3705 ((-569))) (-15 -3473 ((-569))) (-15 -3705 ((-569) (-569))) (-15 -2192 ((-1280) (-569))) (-15 -2061 ((-569))))) (T -1014))
+((-2061 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1014)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) (-3473 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) (-3705 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))))
+(-10 -7 (-15 -3705 ((-569))) (-15 -3473 ((-569))) (-15 -3705 ((-569) (-569))) (-15 -2192 ((-1280) (-569))) (-15 -2061 ((-569))))
+((-3386 (((-423 |#1|) |#1|) 43)) (-3800 (((-423 |#1|) |#1|) 41)))
+(((-1015 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|))) (-1251 (-412 (-569)))) (T -1015))
+((-3386 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3)) (-4 *3 (-1251 (-412 (-569)))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3)) (-4 *3 (-1251 (-412 (-569)))))))
+(-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|)))
+((-3377 (((-3 (-412 (-569)) "failed") |#1|) 15)) (-1441 (((-112) |#1|) 14)) (-1606 (((-412 (-569)) |#1|) 10)))
+(((-1016 |#1|) (-10 -7 (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|))) (-1046 (-412 (-569)))) (T -1016))
+((-3377 (*1 *2 *3) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3)) (-4 *3 (-1046 *2)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1046 (-412 (-569)))))) (-1606 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3)) (-4 *3 (-1046 *2)))))
+(-10 -7 (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)))
+((-3943 ((|#2| $ "value" |#2|) 12)) (-1869 ((|#2| $ "value") 10)) (-4280 (((-112) $ $) 18)))
+(((-1017 |#1| |#2|) (-10 -8 (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -1869 (|#2| |#1| "value"))) (-1018 |#2|) (-1225)) (T -1017))
+NIL
+(-10 -8 (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -1869 (|#2| |#1| "value")))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1018 |#1|) (-140) (-1225)) (T -1018))
+((-4001 (*1 *2 *1) (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3)))) (-2280 (*1 *2 *1) (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3)))) (-2602 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-569)))) (-4280 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-1534 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-1803 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4448)) (-4 *1 (-1018 *3)) (-4 *3 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) (-2052 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2)) (-4 *2 (-1225)))))
+(-13 (-494 |t#1|) (-10 -8 (-15 -4001 ((-649 $) $)) (-15 -2280 ((-649 $) $)) (-15 -1887 ((-112) $)) (-15 -2188 (|t#1| $)) (-15 -1869 (|t#1| $ "value")) (-15 -3966 ((-112) $)) (-15 -2275 ((-649 |t#1|) $)) (-15 -2602 ((-569) $ $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -4280 ((-112) $ $)) (-15 -1534 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4448)) (PROGN (-15 -1803 ($ $ (-649 $))) (-15 -3943 (|t#1| $ "value" |t#1|)) (-15 -2052 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-3813 (($ $) 9) (($ $ (-927)) 49) (($ (-412 (-569))) 13) (($ (-569)) 15)) (-2793 (((-3 $ "failed") (-1181 $) (-927) (-867)) 24) (((-3 $ "failed") (-1181 $) (-927)) 32)) (-3742 (($ $ (-569)) 58)) (-2721 (((-776)) 18)) (-2444 (((-649 $) (-1181 $)) NIL) (((-649 $) (-1181 (-412 (-569)))) 63) (((-649 $) (-1181 (-569))) 68) (((-649 $) (-958 $)) 72) (((-649 $) (-958 (-412 (-569)))) 76) (((-649 $) (-958 (-569))) 80)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 53)))
+(((-1019 |#1|) (-10 -8 (-15 -3813 (|#1| (-569))) (-15 -3813 (|#1| (-412 (-569)))) (-15 -3813 (|#1| |#1| (-927))) (-15 -2444 ((-649 |#1|) (-958 (-569)))) (-15 -2444 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-958 |#1|))) (-15 -2444 ((-649 |#1|) (-1181 (-569)))) (-15 -2444 ((-649 |#1|) (-1181 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-1181 |#1|))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3742 (|#1| |#1| (-569))) (-15 -3813 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2721 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-1020)) (T -1019))
+((-2721 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1019 *3)) (-4 *3 (-1020)))))
+(-10 -8 (-15 -3813 (|#1| (-569))) (-15 -3813 (|#1| (-412 (-569)))) (-15 -3813 (|#1| |#1| (-927))) (-15 -2444 ((-649 |#1|) (-958 (-569)))) (-15 -2444 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-958 |#1|))) (-15 -2444 ((-649 |#1|) (-1181 (-569)))) (-15 -2444 ((-649 |#1|) (-1181 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-1181 |#1|))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3742 (|#1| |#1| (-569))) (-15 -3813 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2721 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102)) (-4355 (($ $) 103)) (-3039 (((-112) $) 105)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 122)) (-3764 (((-423 $) $) 123)) (-3813 (($ $) 86) (($ $ (-927)) 72) (($ (-412 (-569))) 71) (($ (-569)) 70)) (-2227 (((-112) $ $) 113)) (-2919 (((-569) $) 139)) (-4427 (($) 18 T CONST)) (-2793 (((-3 $ "failed") (-1181 $) (-927) (-867)) 80) (((-3 $ "failed") (-1181 $) (-927)) 79)) (-4381 (((-3 (-569) "failed") $) 99 (|has| (-412 (-569)) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) 94)) (-3150 (((-569) $) 98 (|has| (-412 (-569)) (-1046 (-569)))) (((-412 (-569)) $) 96 (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-412 (-569)) $) 95)) (-3531 (($ $ (-867)) 69)) (-3900 (($ $ (-867)) 68)) (-2368 (($ $ $) 117)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 116)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111)) (-1473 (((-112) $) 124)) (-3712 (((-112) $) 137)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 85)) (-2051 (((-112) $) 138)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120)) (-3380 (($ $ $) 136)) (-2839 (($ $ $) 135)) (-2118 (((-3 (-1181 $) "failed") $) 81)) (-3470 (((-3 (-867) "failed") $) 83)) (-3747 (((-3 (-1181 $) "failed") $) 82)) (-1839 (($ (-649 $)) 109) (($ $ $) 108)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 125)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110)) (-1870 (($ (-649 $)) 107) (($ $ $) 106)) (-3800 (((-423 $) $) 121)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118)) (-2407 (((-3 $ "failed") $ $) 101)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112)) (-2431 (((-776) $) 114)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 129) (($ $) 100) (($ (-412 (-569))) 93) (($ (-569)) 92) (($ (-412 (-569))) 89)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 104)) (-3091 (((-412 (-569)) $ $) 67)) (-2444 (((-649 $) (-1181 $)) 78) (((-649 $) (-1181 (-412 (-569)))) 77) (((-649 $) (-1181 (-569))) 76) (((-649 $) (-958 $)) 75) (((-649 $) (-958 (-412 (-569)))) 74) (((-649 $) (-958 (-569))) 73)) (-2271 (($ $) 140)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 133)) (-2956 (((-112) $ $) 132)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 134)) (-2944 (((-112) $ $) 131)) (-3035 (($ $ $) 130)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126) (($ $ (-412 (-569))) 84)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 128) (($ $ (-412 (-569))) 127) (($ (-569) $) 91) (($ $ (-569)) 90) (($ (-412 (-569)) $) 88) (($ $ (-412 (-569))) 87)))
+(((-1020) (-140)) (T -1020))
+((-3813 (*1 *1 *1) (-4 *1 (-1020))) (-3470 (*1 *2 *1) (|partial| -12 (-4 *1 (-1020)) (-5 *2 (-867)))) (-3747 (*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020)))) (-2118 (*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020)))) (-2793 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-5 *4 (-867)) (-4 *1 (-1020)))) (-2793 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1181 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-927)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1020)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1020)))) (-3531 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867)))) (-3900 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867)))) (-3091 (*1 *2 *1 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-412 (-569))))))
+(-13 (-147) (-853) (-173) (-367) (-416 (-412 (-569))) (-38 (-569)) (-38 (-412 (-569))) (-1010) (-10 -8 (-15 -3470 ((-3 (-867) "failed") $)) (-15 -3747 ((-3 (-1181 $) "failed") $)) (-15 -2118 ((-3 (-1181 $) "failed") $)) (-15 -2793 ((-3 $ "failed") (-1181 $) (-927) (-867))) (-15 -2793 ((-3 $ "failed") (-1181 $) (-927))) (-15 -2444 ((-649 $) (-1181 $))) (-15 -2444 ((-649 $) (-1181 (-412 (-569))))) (-15 -2444 ((-649 $) (-1181 (-569)))) (-15 -2444 ((-649 $) (-958 $))) (-15 -2444 ((-649 $) (-958 (-412 (-569))))) (-15 -2444 ((-649 $) (-958 (-569)))) (-15 -3813 ($ $ (-927))) (-15 -3813 ($ $)) (-15 -3813 ($ (-412 (-569)))) (-15 -3813 ($ (-569))) (-15 -3531 ($ $ (-867))) (-15 -3900 ($ $ (-867))) (-15 -3091 ((-412 (-569)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 #1=(-569)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-416 (-412 (-569))) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-926) . T) ((-1010) . T) ((-1046 (-412 (-569))) . T) ((-1046 (-569)) |has| (-412 (-569)) (-1046 (-569))) ((-1059 #0#) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 #1#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T))
+((-1588 (((-2 (|:| |ans| |#2|) (|:| -4410 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1021 |#1| |#2|) (-10 -7 (-15 -1588 ((-2 (|:| |ans| |#2|) (|:| -4410 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-27) (-435 |#1|))) (T -1021))
+((-1588 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1185)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1210) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112)))) (-5 *1 (-1021 *8 *4)))))
+(-10 -7 (-15 -1588 ((-2 (|:| |ans| |#2|) (|:| -4410 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3337 (((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1022 |#1| |#2|) (-10 -7 (-15 -3337 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-27) (-435 |#1|))) (T -1022))
+((-3337 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1185)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1210) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-649 *4)) (-5 *1 (-1022 *8 *4)))))
+(-10 -7 (-15 -3337 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1556 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)) 38)) (-1995 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 69)) (-1663 (((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|)) 74)))
+(((-1023 |#1| |#2|) (-10 -7 (-15 -1995 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1663 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -1556 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)))) (-13 (-367) (-147) (-1046 (-569))) (-1251 |#1|)) (T -1023))
+((-1556 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1251 *6)) (-4 *6 (-13 (-367) (-147) (-1046 *4))) (-5 *4 (-569)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1023 *6 *3)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1023 *4 *5)) (-5 *3 (-412 *5)))) (-1995 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6)) (|:| -3676 *6))) (-5 *1 (-1023 *5 *6)) (-5 *3 (-412 *6)))))
+(-10 -7 (-15 -1995 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1663 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -1556 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|))))
+((-4382 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 22)) (-3349 (((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 34)))
+(((-1024 |#1| |#2|) (-10 -7 (-15 -4382 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3349 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)))) (-13 (-367) (-147) (-1046 (-569))) (-1251 |#1|)) (T -1024))
+((-3349 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1024 *4 *5)) (-5 *3 (-412 *5)))) (-4382 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6) (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3676 *6))) (-5 *1 (-1024 *5 *6)) (-5 *3 (-412 *6)))))
+(-10 -7 (-15 -4382 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3349 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))))
+((-2113 (((-1 |#1|) (-649 (-2 (|:| -2188 |#1|) (|:| -3766 (-569))))) 37)) (-2900 (((-1 |#1|) (-1110 |#1|)) 44)) (-4049 (((-1 |#1|) (-1275 |#1|) (-1275 (-569)) (-569)) 34)))
+(((-1025 |#1|) (-10 -7 (-15 -2900 ((-1 |#1|) (-1110 |#1|))) (-15 -2113 ((-1 |#1|) (-649 (-2 (|:| -2188 |#1|) (|:| -3766 (-569)))))) (-15 -4049 ((-1 |#1|) (-1275 |#1|) (-1275 (-569)) (-569)))) (-1108)) (T -1025))
+((-4049 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1275 *6)) (-5 *4 (-1275 (-569))) (-5 *5 (-569)) (-4 *6 (-1108)) (-5 *2 (-1 *6)) (-5 *1 (-1025 *6)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -2188 *4) (|:| -3766 (-569))))) (-4 *4 (-1108)) (-5 *2 (-1 *4)) (-5 *1 (-1025 *4)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-1110 *4)) (-4 *4 (-1108)) (-5 *2 (-1 *4)) (-5 *1 (-1025 *4)))))
+(-10 -7 (-15 -2900 ((-1 |#1|) (-1110 |#1|))) (-15 -2113 ((-1 |#1|) (-649 (-2 (|:| -2188 |#1|) (|:| -3766 (-569)))))) (-15 -4049 ((-1 |#1|) (-1275 |#1|) (-1275 (-569)) (-569))))
+((-1466 (((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-13 (-372) (-367))) (T -1026))
+((-1466 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-4 *4 (-1251 (-412 *7))) (-4 *8 (-346 *6 *7 *4)) (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776)) (-5 *1 (-1026 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2417 (((-112) $ $) NIL)) (-3746 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1027) (-13 (-1091) (-10 -8 (-15 -3746 ((-1143) $)) (-15 -3586 ((-1143) $))))) (T -1027))
+((-3746 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027)))))
+(-13 (-1091) (-10 -8 (-15 -3746 ((-1143) $)) (-15 -3586 ((-1143) $))))
+((-3442 (((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 32) (((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 29)) (-2433 (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 34) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569))) 30) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 33) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|) 28)) (-2590 (((-649 (-412 (-569))) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) 20)) (-3988 (((-412 (-569)) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 17)))
+(((-1028 |#1|) (-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -3988 ((-412 (-569)) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2590 ((-649 (-412 (-569))) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))))) (-1251 (-569))) (T -1028))
+((-2590 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1028 *4)) (-4 *4 (-1251 (-569))))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *2 (-412 (-569))) (-5 *1 (-1028 *4)) (-4 *4 (-1251 (-569))))) (-3442 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))) (-3442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-412 (-569))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))))
+(-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -3988 ((-412 (-569)) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2590 ((-649 (-412 (-569))) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))))
+((-3442 (((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 35) (((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 32)) (-2433 (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 30) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569))) 26) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 28) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|) 24)))
+(((-1029 |#1|) (-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-1251 (-412 (-569)))) (T -1029))
+((-3442 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))))) (-3442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *4)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *5)) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4398 *4) (|:| -4410 *4)))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *4)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))) (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))))))
+(-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))))
+((-1410 (((-226) $) 6) (((-383) $) 9)))
+(((-1030) (-140)) (T -1030))
NIL
(-13 (-619 (-226)) (-619 (-383)))
(((-619 (-226)) . T) ((-619 (-383)) . T))
-((-2912 (((-649 (-383)) (-958 (-569)) (-383)) 28) (((-649 (-383)) (-958 (-412 (-569))) (-383)) 27)) (-3616 (((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1183)) (-383)) 37)))
-(((-1029) (-10 -7 (-15 -2912 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -2912 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -3616 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1183)) (-383))))) (T -1029))
-((-3616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1029)) (-5 *5 (-383)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1029)) (-5 *4 (-383)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383))) (-5 *1 (-1029)) (-5 *4 (-383)))))
-(-10 -7 (-15 -2912 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -2912 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -3616 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1183)) (-383))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 75)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-3807 (($ $) NIL) (($ $ (-927)) NIL) (($ (-412 (-569))) NIL) (($ (-569)) NIL)) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) 70)) (-4188 (($) NIL T CONST)) (-3964 (((-3 $ "failed") (-1179 $) (-927) (-867)) NIL) (((-3 $ "failed") (-1179 $) (-927)) 55)) (-4378 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-569) "failed") $) NIL (-2774 (|has| (-412 (-569)) (-1044 (-569))) (|has| |#1| (-1044 (-569)))))) (-3148 (((-412 (-569)) $) 17 (|has| (-412 (-569)) (-1044 (-412 (-569))))) (((-412 (-569)) $) 17) ((|#1| $) 117) (((-569) $) NIL (-2774 (|has| (-412 (-569)) (-1044 (-569))) (|has| |#1| (-1044 (-569)))))) (-4221 (($ $ (-867)) 47)) (-4123 (($ $ (-867)) 48)) (-2366 (($ $ $) NIL)) (-3871 (((-412 (-569)) $ $) 21)) (-2888 (((-3 $ "failed") $) 88)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-4237 (((-112) $) 66)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL)) (-4327 (((-112) $) 69)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-3052 (((-3 (-1179 $) "failed") $) 83)) (-3248 (((-3 (-867) "failed") $) 82)) (-3150 (((-3 (-1179 $) "failed") $) 80)) (-4167 (((-3 (-1067 $ (-1179 $)) "failed") $) 78)) (-1835 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 89)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3793 (((-867) $) 87) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) 63) (($ (-412 (-569))) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 119)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-3088 (((-412 (-569)) $ $) 27)) (-4054 (((-649 $) (-1179 $)) 61) (((-649 $) (-1179 (-412 (-569)))) NIL) (((-649 $) (-1179 (-569))) NIL) (((-649 $) (-958 $)) NIL) (((-649 $) (-958 (-412 (-569)))) NIL) (((-649 $) (-958 (-569))) NIL)) (-4277 (($ (-1067 $ (-1179 $)) (-867)) 46)) (-3070 (($ $) 22)) (-1803 (($) 32 T CONST)) (-1813 (($) 39 T CONST)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 76)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 24)) (-3032 (($ $ $) 37)) (-3021 (($ $) 38) (($ $ $) 74)) (-3009 (($ $ $) 112)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 98) (($ $ $) 104) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ (-569) $) 98) (($ $ (-569)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1030 |#1|) (-13 (-1018) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -4277 ($ (-1067 $ (-1179 $)) (-867))) (-15 -4167 ((-3 (-1067 $ (-1179 $)) "failed") $)) (-15 -3871 ((-412 (-569)) $ $)))) (-13 (-853) (-367) (-1028))) (T -1030))
-((-4277 (*1 *1 *2 *3) (-12 (-5 *2 (-1067 (-1030 *4) (-1179 (-1030 *4)))) (-5 *3 (-867)) (-5 *1 (-1030 *4)) (-4 *4 (-13 (-853) (-367) (-1028))))) (-4167 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067 (-1030 *3) (-1179 (-1030 *3)))) (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1028))))) (-3871 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1028))))))
-(-13 (-1018) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -4277 ($ (-1067 $ (-1179 $)) (-867))) (-15 -4167 ((-3 (-1067 $ (-1179 $)) "failed") $)) (-15 -3871 ((-412 (-569)) $ $))))
-((-4384 (((-2 (|:| -4309 |#2|) (|:| -3903 (-649 |#1|))) |#2| (-649 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1031 |#1| |#2|) (-10 -7 (-15 -4384 (|#2| |#2| |#1|)) (-15 -4384 ((-2 (|:| -4309 |#2|) (|:| -3903 (-649 |#1|))) |#2| (-649 |#1|)))) (-367) (-661 |#1|)) (T -1031))
-((-4384 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4309 *3) (|:| -3903 (-649 *5)))) (-5 *1 (-1031 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5)))) (-4384 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-1031 *3 *2)) (-4 *2 (-661 *3)))))
-(-10 -7 (-15 -4384 (|#2| |#2| |#1|)) (-15 -4384 ((-2 (|:| -4309 |#2|) (|:| -3903 (-649 |#1|))) |#2| (-649 |#1|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3268 ((|#1| $ |#1|) 14)) (-3940 ((|#1| $ |#1|) 12)) (-3544 (($ |#1|) 10)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1866 ((|#1| $) 11)) (-3414 ((|#1| $) 13)) (-3793 (((-867) $) 21 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2919 (((-112) $ $) 9)))
-(((-1032 |#1|) (-13 (-1223) (-10 -8 (-15 -3544 ($ |#1|)) (-15 -1866 (|#1| $)) (-15 -3940 (|#1| $ |#1|)) (-15 -3414 (|#1| $)) (-15 -3268 (|#1| $ |#1|)) (-15 -2919 ((-112) $ $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|))) (-1223)) (T -1032))
-((-3544 (*1 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-1866 (*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-3940 (*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-3414 (*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-3268 (*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))) (-2919 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1032 *3)) (-4 *3 (-1223)))))
-(-13 (-1223) (-10 -8 (-15 -3544 ($ |#1|)) (-15 -1866 (|#1| $)) (-15 -3940 (|#1| $ |#1|)) (-15 -3414 (|#1| $)) (-15 -3268 (|#1| $ |#1|)) (-15 -2919 ((-112) $ $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) NIL)) (-3465 (((-649 $) (-649 |#4|)) 118) (((-649 $) (-649 |#4|) (-112)) 119) (((-649 $) (-649 |#4|) (-112) (-112)) 117) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1710 (((-649 |#3|) $) NIL)) (-2686 (((-112) $) NIL)) (-4276 (((-112) $) NIL (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2874 ((|#4| |#4| $) NIL)) (-2078 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| $) 112)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) 66)) (-4188 (($) NIL T CONST)) (-3584 (((-112) $) 29 (|has| |#1| (-561)))) (-3778 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2576 (((-112) $) NIL (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4374 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3148 (($ (-649 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 45)) (-2516 ((|#4| |#4| $) 69)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-1696 (($ |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3593 ((|#4| |#4| $) NIL)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) NIL)) (-2848 (((-112) |#4| $) NIL)) (-2634 (((-112) |#4| $) NIL)) (-2959 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1316 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 133)) (-2880 (((-649 |#4|) $) 18 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1873 ((|#3| $) 38)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#4|) $) 19 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-3831 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 23)) (-3097 (((-649 |#3|) $) NIL)) (-3116 (((-112) |#3| $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-3533 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-3425 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| |#4| $) 110)) (-1722 (((-3 |#4| "failed") $) 42)) (-3638 (((-649 $) |#4| $) 93)) (-2533 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-3736 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-4333 (((-649 $) |#4| $) 115) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 116) (((-649 $) |#4| (-649 $)) NIL)) (-1442 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 128)) (-1551 (($ |#4| $) 82) (($ (-649 |#4|) $) 83) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1447 (((-649 |#4|) $) NIL)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2642 ((|#4| |#4| $) NIL)) (-1672 (((-112) $ $) NIL)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2765 ((|#4| |#4| $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-3 |#4| "failed") $) 40)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3124 (((-3 $ "failed") $ |#4|) 59)) (-2907 (($ $ |#4|) NIL) (((-649 $) |#4| $) 95) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 89)) (-2911 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 17)) (-3597 (($) 14)) (-3868 (((-776) $) NIL)) (-3558 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) 13)) (-1408 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 22)) (-2792 (($ $ |#3|) 52)) (-3013 (($ $ |#3|) 54)) (-2408 (($ $) NIL)) (-2900 (($ $ |#3|) NIL)) (-3793 (((-867) $) 35) (((-649 |#4|) $) 46)) (-3023 (((-776) $) NIL (|has| |#3| (-372)))) (-1441 (((-112) $ $) NIL)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-3304 (((-649 $) |#4| $) 92) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-3037 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) NIL)) (-2743 (((-112) |#4| $) NIL)) (-2133 (((-112) |#3| $) 65)) (-2919 (((-112) $ $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1033 |#1| |#2| |#3| |#4|) (-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1551 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1442 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1316 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1033))
-((-1551 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *3))) (-5 *1 (-1033 *5 *6 *7 *3)) (-4 *3 (-1071 *5 *6 *7)))) (-3465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-3465 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-1442 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8)))) (-1316 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1033 *5 *6 *7 *8))))) (-5 *1 (-1033 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
-(-13 (-1077 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1551 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1442 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1316 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)))))
-((-2352 (((-649 (-694 |#1|)) (-649 (-694 |#1|))) 73) (((-694 |#1|) (-694 |#1|)) 72) (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 71) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 68)) (-2246 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 66) (((-694 |#1|) (-694 |#1|) (-927)) 65)) (-2462 (((-649 (-694 (-569))) (-649 (-649 (-569)))) 84) (((-649 (-694 (-569))) (-649 (-911 (-569))) (-569)) 83) (((-694 (-569)) (-649 (-569))) 80) (((-694 (-569)) (-911 (-569)) (-569)) 78)) (-2141 (((-694 (-958 |#1|)) (-776)) 98)) (-2033 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 52 (|has| |#1| (-6 (-4446 "*")))) (((-694 |#1|) (-694 |#1|) (-927)) 50 (|has| |#1| (-6 (-4446 "*"))))))
-(((-1034 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4446 "*"))) (-15 -2033 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4446 "*"))) (-15 -2033 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -2141 ((-694 (-958 |#1|)) (-776))) (-15 -2246 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -2246 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -2352 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2352 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2352 ((-694 |#1|) (-694 |#1|))) (-15 -2352 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2462 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -2462 ((-694 (-569)) (-649 (-569)))) (-15 -2462 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -2462 ((-649 (-694 (-569))) (-649 (-649 (-569)))))) (-1055)) (T -1034))
-((-2462 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1034 *4)) (-4 *4 (-1055)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569)) (-5 *2 (-649 (-694 *4))) (-5 *1 (-1034 *5)) (-4 *5 (-1055)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1034 *4)) (-4 *4 (-1055)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4)) (-5 *1 (-1034 *5)) (-4 *5 (-1055)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-2352 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-2352 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))) (-2246 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))) (-2246 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1034 *4)) (-4 *4 (-1055)))) (-2033 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (|has| *4 (-6 (-4446 "*"))) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))) (-2033 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4446 "*"))) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4446 "*"))) (-15 -2033 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4446 "*"))) (-15 -2033 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -2141 ((-694 (-958 |#1|)) (-776))) (-15 -2246 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -2246 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -2352 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2352 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2352 ((-694 |#1|) (-694 |#1|))) (-15 -2352 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2462 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -2462 ((-694 (-569)) (-649 (-569)))) (-15 -2462 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -2462 ((-649 (-694 (-569))) (-649 (-649 (-569))))))
-((-1771 (((-694 |#1|) (-649 (-694 |#1|)) (-1273 |#1|)) 71 (|has| |#1| (-310)))) (-3067 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 (-1273 |#1|))) 111 (|has| |#1| (-367))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 |#1|)) 118 (|has| |#1| (-367)))) (-4086 (((-1273 |#1|) (-649 (-1273 |#1|)) (-569)) 136 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3991 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927)) 124 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112)) 123 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|))) 122 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569)) 121 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3886 (((-112) (-649 (-694 |#1|))) 104 (|has| |#1| (-367))) (((-112) (-649 (-694 |#1|)) (-569)) 107 (|has| |#1| (-367)))) (-1653 (((-1273 (-1273 |#1|)) (-649 (-694 |#1|)) (-1273 |#1|)) 68 (|has| |#1| (-310)))) (-1538 (((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|)) 48)) (-1409 (((-694 |#1|) (-1273 (-1273 |#1|))) 41)) (-1880 (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569)) 95 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 94 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569)) 102 (|has| |#1| (-367)))))
-(((-1035 |#1|) (-10 -7 (-15 -1409 ((-694 |#1|) (-1273 (-1273 |#1|)))) (-15 -1538 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -1653 ((-1273 (-1273 |#1|)) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -1771 ((-694 |#1|) (-649 (-694 |#1|)) (-1273 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -1880 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -1880 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1880 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -3886 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -3886 ((-112) (-649 (-694 |#1|)))) (-15 -3067 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -3067 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 (-1273 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -4086 ((-1273 |#1|) (-649 (-1273 |#1|)) (-569)))) |%noBranch|) |%noBranch|)) (-1055)) (T -1035))
-((-4086 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1273 *5))) (-5 *4 (-569)) (-5 *2 (-1273 *5)) (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)))) (-3991 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-3991 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-3991 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1055)) (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-649 (-694 *4))))) (-3991 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372)) (-4 *6 (-1055)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1035 *6)) (-5 *3 (-649 (-694 *6))))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1273 (-1273 *5))) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-3067 (*1 *2 *3 *4) (-12 (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-649 (-694 *5))))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-1035 *4)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367)) (-4 *5 (-1055)) (-5 *2 (-112)) (-5 *1 (-1035 *5)))) (-1880 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5)) (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-1055)))) (-1880 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1035 *4)) (-4 *4 (-367)) (-4 *4 (-1055)))) (-1880 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569)) (-5 *2 (-694 *6)) (-5 *1 (-1035 *6)) (-4 *6 (-367)) (-4 *6 (-1055)))) (-1771 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1273 *5)) (-4 *5 (-310)) (-4 *5 (-1055)) (-5 *2 (-694 *5)) (-5 *1 (-1035 *5)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1055)) (-5 *2 (-1273 (-1273 *5))) (-5 *1 (-1035 *5)) (-5 *4 (-1273 *5)))) (-1538 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1035 *4)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-1273 (-1273 *4))) (-4 *4 (-1055)) (-5 *2 (-694 *4)) (-5 *1 (-1035 *4)))))
-(-10 -7 (-15 -1409 ((-694 |#1|) (-1273 (-1273 |#1|)))) (-15 -1538 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -1653 ((-1273 (-1273 |#1|)) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -1771 ((-694 |#1|) (-649 (-694 |#1|)) (-1273 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -1880 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -1880 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1880 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -3886 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -3886 ((-112) (-649 (-694 |#1|)))) (-15 -3067 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 |#1|))) (-15 -3067 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1273 (-1273 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -3991 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -4086 ((-1273 |#1|) (-649 (-1273 |#1|)) (-569)))) |%noBranch|) |%noBranch|))
-((-2651 ((|#1| (-927) |#1|) 18)))
-(((-1036 |#1|) (-10 -7 (-15 -2651 (|#1| (-927) |#1|))) (-13 (-1106) (-10 -8 (-15 -3009 ($ $ $))))) (T -1036))
-((-2651 (*1 *2 *3 *2) (-12 (-5 *3 (-927)) (-5 *1 (-1036 *2)) (-4 *2 (-13 (-1106) (-10 -8 (-15 -3009 ($ $ $))))))))
-(-10 -7 (-15 -2651 (|#1| (-927) |#1|)))
-((-3675 (((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569))))) 67)) (-3787 (((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569))))) 52)) (-2612 (((-649 (-319 (-569))) (-694 (-412 (-958 (-569))))) 45)) (-3117 (((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569))))) 87)) (-2868 (((-694 (-319 (-569))) (-694 (-319 (-569)))) 38)) (-2992 (((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569))))) 76)) (-2752 (((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569))))) 84)))
-(((-1037) (-10 -7 (-15 -3675 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -3787 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -2612 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -2752 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -2868 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -2992 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -3117 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569)))))))) (T -1037))
-((-3117 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))) (-2992 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))) (-2752 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))) (-2612 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569)))) (-5 *1 (-1037)))) (-3787 (*1 *2 *3 *4) (-12 (-5 *4 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)) (-5 *3 (-319 (-569))))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569)))))))) (-5 *1 (-1037)))))
-(-10 -7 (-15 -3675 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -3787 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -2612 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -2752 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -2868 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -2992 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -3117 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569)))))))
-((-4192 ((|#1| |#1| (-927)) 18)))
-(((-1038 |#1|) (-10 -7 (-15 -4192 (|#1| |#1| (-927)))) (-13 (-1106) (-10 -8 (-15 * ($ $ $))))) (T -1038))
-((-4192 (*1 *2 *2 *3) (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2)) (-4 *2 (-13 (-1106) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -4192 (|#1| |#1| (-927))))
-((-3793 ((|#1| (-315)) 11) (((-1278) |#1|) 9)))
-(((-1039 |#1|) (-10 -7 (-15 -3793 ((-1278) |#1|)) (-15 -3793 (|#1| (-315)))) (-1223)) (T -1039))
-((-3793 (*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1039 *2)) (-4 *2 (-1223)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-1278)) (-5 *1 (-1039 *3)) (-4 *3 (-1223)))))
-(-10 -7 (-15 -3793 ((-1278) |#1|)) (-15 -3793 (|#1| (-315))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-3596 (($ |#4|) 25)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-3582 ((|#4| $) 27)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 46) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3302 (((-776)) 43 T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 21 T CONST)) (-1813 (($) 23 T CONST)) (-2919 (((-112) $ $) 40)) (-3021 (($ $) 31) (($ $ $) NIL)) (-3009 (($ $ $) 29)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1040 |#1| |#2| |#3| |#4| |#5|) (-13 (-173) (-38 |#1|) (-10 -8 (-15 -3596 ($ |#4|)) (-15 -3793 ($ |#4|)) (-15 -3582 (|#4| $)))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|) (-649 |#4|)) (T -1040))
-((-3596 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-3793 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-3582 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-649 *2)))))
-(-13 (-173) (-38 |#1|) (-10 -8 (-15 -3596 ($ |#4|)) (-15 -3793 ($ |#4|)) (-15 -3582 (|#4| $))))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL)) (-4321 (((-1278) $ (-1183) (-1183)) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-4391 (((-112) (-112)) 43)) (-4292 (((-112) (-112)) 42)) (-3940 (((-52) $ (-1183) (-52)) NIL)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 (-52) "failed") (-1183) $) NIL)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-3463 (($ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-3 (-52) "failed") (-1183) $) NIL)) (-1696 (($ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-3843 (((-52) $ (-1183) (-52)) NIL (|has| $ (-6 -4445)))) (-3773 (((-52) $ (-1183)) NIL)) (-2880 (((-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-649 (-52)) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3040 (((-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-649 (-52)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106))))) (-1535 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4445))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-2796 (((-649 (-1183)) $) 37)) (-3937 (((-112) (-1183) $) NIL)) (-1640 (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL)) (-3813 (($ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL)) (-1755 (((-649 (-1183)) $) NIL)) (-3748 (((-112) (-1183) $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-3510 (((-52) $) NIL (|has| (-1183) (-855)))) (-3123 (((-3 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) "failed") (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL)) (-4420 (($ $ (-52)) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-297 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106))))) (-3851 (((-649 (-52)) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 (((-52) $ (-1183)) 39) (((-52) $ (-1183) (-52)) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL)) (-3793 (((-867) $) 41 (-2774 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1041) (-13 (-1199 (-1183) (-52)) (-10 -7 (-15 -4391 ((-112) (-112))) (-15 -4292 ((-112) (-112))) (-6 -4444)))) (T -1041))
-((-4391 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
-(-13 (-1199 (-1183) (-52)) (-10 -7 (-15 -4391 ((-112) (-112))) (-15 -4292 ((-112) (-112))) (-6 -4444)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1416 (((-1141) $) 9)) (-3793 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1042) (-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $))))) (T -1042))
-((-1416 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1042)))))
-(-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $))))
-((-3148 ((|#2| $) 10)))
-(((-1043 |#1| |#2|) (-10 -8 (-15 -3148 (|#2| |#1|))) (-1044 |#2|) (-1223)) (T -1043))
-NIL
-(-10 -8 (-15 -3148 (|#2| |#1|)))
-((-4378 (((-3 |#1| "failed") $) 9)) (-3148 ((|#1| $) 8)) (-3793 (($ |#1|) 6)))
-(((-1044 |#1|) (-140) (-1223)) (T -1044))
-((-4378 (*1 *2 *1) (|partial| -12 (-4 *1 (-1044 *2)) (-4 *2 (-1223)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-1223)))))
-(-13 (-621 |t#1|) (-10 -8 (-15 -4378 ((-3 |t#1| "failed") $)) (-15 -3148 (|t#1| $))))
+((-3218 (((-649 (-383)) (-958 (-569)) (-383)) 28) (((-649 (-383)) (-958 (-412 (-569))) (-383)) 27)) (-2539 (((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1185)) (-383)) 37)))
+(((-1031) (-10 -7 (-15 -3218 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -3218 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -2539 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1185)) (-383))))) (T -1031))
+((-2539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1031)) (-5 *5 (-383)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1031)) (-5 *4 (-383)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383))) (-5 *1 (-1031)) (-5 *4 (-383)))))
+(-10 -7 (-15 -3218 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -3218 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -2539 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1185)) (-383))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 75)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL) (($ $ (-927)) NIL) (($ (-412 (-569))) NIL) (($ (-569)) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) 70)) (-4427 (($) NIL T CONST)) (-2793 (((-3 $ "failed") (-1181 $) (-927) (-867)) NIL) (((-3 $ "failed") (-1181 $) (-927)) 55)) (-4381 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-569) "failed") $) NIL (-2776 (|has| (-412 (-569)) (-1046 (-569))) (|has| |#1| (-1046 (-569)))))) (-3150 (((-412 (-569)) $) 17 (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-412 (-569)) $) 17) ((|#1| $) 117) (((-569) $) NIL (-2776 (|has| (-412 (-569)) (-1046 (-569))) (|has| |#1| (-1046 (-569)))))) (-3531 (($ $ (-867)) 47)) (-3900 (($ $ (-867)) 48)) (-2368 (($ $ $) NIL)) (-4358 (((-412 (-569)) $ $) 21)) (-3086 (((-3 $ "failed") $) 88)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) 66)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL)) (-2051 (((-112) $) 69)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2118 (((-3 (-1181 $) "failed") $) 83)) (-3470 (((-3 (-867) "failed") $) 82)) (-3747 (((-3 (-1181 $) "failed") $) 80)) (-4246 (((-3 (-1069 $ (-1181 $)) "failed") $) 78)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 89)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3796 (((-867) $) 87) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) 63) (($ (-412 (-569))) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 119)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ $) 27)) (-2444 (((-649 $) (-1181 $)) 61) (((-649 $) (-1181 (-412 (-569)))) NIL) (((-649 $) (-1181 (-569))) NIL) (((-649 $) (-958 $)) NIL) (((-649 $) (-958 (-412 (-569)))) NIL) (((-649 $) (-958 (-569))) NIL)) (-2811 (($ (-1069 $ (-1181 $)) (-867)) 46)) (-2271 (($ $) 22)) (-1804 (($) 32 T CONST)) (-1815 (($) 39 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 76)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 24)) (-3035 (($ $ $) 37)) (-3024 (($ $) 38) (($ $ $) 74)) (-3012 (($ $ $) 112)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 98) (($ $ $) 104) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ (-569) $) 98) (($ $ (-569)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1032 |#1|) (-13 (-1020) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -2811 ($ (-1069 $ (-1181 $)) (-867))) (-15 -4246 ((-3 (-1069 $ (-1181 $)) "failed") $)) (-15 -4358 ((-412 (-569)) $ $)))) (-13 (-853) (-367) (-1030))) (T -1032))
+((-2811 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-1032 *4) (-1181 (-1032 *4)))) (-5 *3 (-867)) (-5 *1 (-1032 *4)) (-4 *4 (-13 (-853) (-367) (-1030))))) (-4246 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 (-1032 *3) (-1181 (-1032 *3)))) (-5 *1 (-1032 *3)) (-4 *3 (-13 (-853) (-367) (-1030))))) (-4358 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1032 *3)) (-4 *3 (-13 (-853) (-367) (-1030))))))
+(-13 (-1020) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -2811 ($ (-1069 $ (-1181 $)) (-867))) (-15 -4246 ((-3 (-1069 $ (-1181 $)) "failed") $)) (-15 -4358 ((-412 (-569)) $ $))))
+((-1369 (((-2 (|:| -4312 |#2|) (|:| -3906 (-649 |#1|))) |#2| (-649 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1033 |#1| |#2|) (-10 -7 (-15 -1369 (|#2| |#2| |#1|)) (-15 -1369 ((-2 (|:| -4312 |#2|) (|:| -3906 (-649 |#1|))) |#2| (-649 |#1|)))) (-367) (-661 |#1|)) (T -1033))
+((-1369 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4312 *3) (|:| -3906 (-649 *5)))) (-5 *1 (-1033 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5)))) (-1369 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-661 *3)))))
+(-10 -7 (-15 -1369 (|#2| |#2| |#1|)) (-15 -1369 ((-2 (|:| -4312 |#2|) (|:| -3906 (-649 |#1|))) |#2| (-649 |#1|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3697 ((|#1| $ |#1|) 14)) (-3943 ((|#1| $ |#1|) 12)) (-3135 (($ |#1|) 10)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1869 ((|#1| $) 11)) (-4392 ((|#1| $) 13)) (-3796 (((-867) $) 21 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2920 (((-112) $ $) 9)))
+(((-1034 |#1|) (-13 (-1225) (-10 -8 (-15 -3135 ($ |#1|)) (-15 -1869 (|#1| $)) (-15 -3943 (|#1| $ |#1|)) (-15 -4392 (|#1| $)) (-15 -3697 (|#1| $ |#1|)) (-15 -2920 ((-112) $ $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) (-1225)) (T -1034))
+((-3135 (*1 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-4392 (*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-3697 (*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-2920 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1034 *3)) (-4 *3 (-1225)))))
+(-13 (-1225) (-10 -8 (-15 -3135 ($ |#1|)) (-15 -1869 (|#1| $)) (-15 -3943 (|#1| $ |#1|)) (-15 -4392 (|#1| $)) (-15 -3697 (|#1| $ |#1|)) (-15 -2920 ((-112) $ $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) 118) (((-649 $) (-649 |#4|) (-112)) 119) (((-649 $) (-649 |#4|) (-112) (-112)) 117) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 112)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 66)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) 29 (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 45)) (-2548 ((|#4| |#4| $) 69)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2648 (((-112) |#4| $) NIL)) (-2438 (((-112) |#4| $) NIL)) (-2404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1661 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 133)) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 19 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 23)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 110)) (-1724 (((-3 |#4| "failed") $) 42)) (-2798 (((-649 $) |#4| $) 93)) (-2716 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2101 (((-649 $) |#4| $) 115) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 116) (((-649 $) |#4| (-649 $)) NIL)) (-1530 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 128)) (-3446 (($ |#4| $) 82) (($ (-649 |#4|) $) 83) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1586 (((-649 |#4|) $) NIL)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 40)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) 59)) (-3166 (($ $ |#4|) NIL) (((-649 $) |#4| $) 95) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 89)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 14)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 22)) (-3381 (($ $ |#3|) 52)) (-2963 (($ $ |#3|) 54)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-2744 (((-649 $) |#4| $) 92) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4159 (((-112) |#4| $) NIL)) (-4269 (((-112) |#3| $) 65)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1035 |#1| |#2| |#3| |#4|) (-13 (-1079 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -1035))
+((-3446 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *3))) (-5 *1 (-1035 *5 *6 *7 *3)) (-4 *3 (-1073 *5 *6 *7)))) (-1806 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) (-1806 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) (-1530 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) (-1661 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1035 *5 *6 *7 *8))))) (-5 *1 (-1035 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(-13 (-1079 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)))))
+((-1619 (((-649 (-694 |#1|)) (-649 (-694 |#1|))) 73) (((-694 |#1|) (-694 |#1|)) 72) (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 71) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 68)) (-2948 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 66) (((-694 |#1|) (-694 |#1|) (-927)) 65)) (-3276 (((-649 (-694 (-569))) (-649 (-649 (-569)))) 84) (((-649 (-694 (-569))) (-649 (-911 (-569))) (-569)) 83) (((-694 (-569)) (-649 (-569))) 80) (((-694 (-569)) (-911 (-569)) (-569)) 78)) (-3095 (((-694 (-958 |#1|)) (-776)) 98)) (-1339 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 52 (|has| |#1| (-6 (-4449 "*")))) (((-694 |#1|) (-694 |#1|) (-927)) 50 (|has| |#1| (-6 (-4449 "*"))))))
+(((-1036 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -3095 ((-694 (-958 |#1|)) (-776))) (-15 -2948 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -2948 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -1619 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1619 ((-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3276 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -3276 ((-694 (-569)) (-649 (-569)))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-649 (-569)))))) (-1057)) (T -1036))
+((-3276 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1036 *4)) (-4 *4 (-1057)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569)) (-5 *2 (-649 (-694 *4))) (-5 *1 (-1036 *5)) (-4 *5 (-1057)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1036 *4)) (-4 *4 (-1057)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4)) (-5 *1 (-1036 *5)) (-4 *5 (-1057)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-1619 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-1619 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-2948 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))) (-2948 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1036 *4)) (-4 *4 (-1057)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (|has| *4 (-6 (-4449 "*"))) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4449 "*"))) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -3095 ((-694 (-958 |#1|)) (-776))) (-15 -2948 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -2948 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -1619 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1619 ((-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3276 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -3276 ((-694 (-569)) (-649 (-569)))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-649 (-569))))))
+((-3720 (((-694 |#1|) (-649 (-694 |#1|)) (-1275 |#1|)) 71 (|has| |#1| (-310)))) (-2241 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 (-1275 |#1|))) 111 (|has| |#1| (-367))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 |#1|)) 118 (|has| |#1| (-367)))) (-1620 (((-1275 |#1|) (-649 (-1275 |#1|)) (-569)) 136 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3051 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927)) 124 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112)) 123 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|))) 122 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569)) 121 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3271 (((-112) (-649 (-694 |#1|))) 104 (|has| |#1| (-367))) (((-112) (-649 (-694 |#1|)) (-569)) 107 (|has| |#1| (-367)))) (-1985 (((-1275 (-1275 |#1|)) (-649 (-694 |#1|)) (-1275 |#1|)) 68 (|has| |#1| (-310)))) (-3291 (((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|)) 48)) (-4342 (((-694 |#1|) (-1275 (-1275 |#1|))) 41)) (-3431 (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569)) 95 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 94 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569)) 102 (|has| |#1| (-367)))))
+(((-1037 |#1|) (-10 -7 (-15 -4342 ((-694 |#1|) (-1275 (-1275 |#1|)))) (-15 -3291 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -1985 ((-1275 (-1275 |#1|)) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -3720 ((-694 |#1|) (-649 (-694 |#1|)) (-1275 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 (-1275 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -1620 ((-1275 |#1|) (-649 (-1275 |#1|)) (-569)))) |%noBranch|) |%noBranch|)) (-1057)) (T -1037))
+((-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1275 *5))) (-5 *4 (-569)) (-5 *2 (-1275 *5)) (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-3051 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1057)) (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1037 *4)) (-5 *3 (-649 (-694 *4))))) (-3051 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372)) (-4 *6 (-1057)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1037 *6)) (-5 *3 (-649 (-694 *6))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-1275 (-1275 *5))) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1057)) (-5 *2 (-112)) (-5 *1 (-1037 *4)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-112)) (-5 *1 (-1037 *5)))) (-3431 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5)) (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-1057)))) (-3431 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1037 *4)) (-4 *4 (-367)) (-4 *4 (-1057)))) (-3431 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569)) (-5 *2 (-694 *6)) (-5 *1 (-1037 *6)) (-4 *6 (-367)) (-4 *6 (-1057)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1275 *5)) (-4 *5 (-310)) (-4 *5 (-1057)) (-5 *2 (-694 *5)) (-5 *1 (-1037 *5)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1057)) (-5 *2 (-1275 (-1275 *5))) (-5 *1 (-1037 *5)) (-5 *4 (-1275 *5)))) (-3291 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1057)) (-5 *1 (-1037 *4)))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-1275 (-1275 *4))) (-4 *4 (-1057)) (-5 *2 (-694 *4)) (-5 *1 (-1037 *4)))))
+(-10 -7 (-15 -4342 ((-694 |#1|) (-1275 (-1275 |#1|)))) (-15 -3291 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -1985 ((-1275 (-1275 |#1|)) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -3720 ((-694 |#1|) (-649 (-694 |#1|)) (-1275 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 (-1275 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -1620 ((-1275 |#1|) (-649 (-1275 |#1|)) (-569)))) |%noBranch|) |%noBranch|))
+((-2653 ((|#1| (-927) |#1|) 18)))
+(((-1038 |#1|) (-10 -7 (-15 -2653 (|#1| (-927) |#1|))) (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $))))) (T -1038))
+((-2653 (*1 *2 *3 *2) (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2)) (-4 *2 (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $))))))))
+(-10 -7 (-15 -2653 (|#1| (-927) |#1|)))
+((-1947 (((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569))))) 67)) (-1811 (((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569))))) 52)) (-2253 (((-649 (-319 (-569))) (-694 (-412 (-958 (-569))))) 45)) (-1522 (((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569))))) 87)) (-2880 (((-694 (-319 (-569))) (-694 (-319 (-569)))) 38)) (-2748 (((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569))))) 76)) (-4240 (((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569))))) 84)))
+(((-1039) (-10 -7 (-15 -1947 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -1811 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -2253 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -4240 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -2880 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -2748 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -1522 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569)))))))) (T -1039))
+((-1522 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039)))) (-4240 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569)))) (-5 *1 (-1039)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)) (-5 *3 (-319 (-569))))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569)))))))) (-5 *1 (-1039)))))
+(-10 -7 (-15 -1947 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -1811 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -2253 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -4240 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -2880 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -2748 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -1522 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569)))))))
+((-3233 ((|#1| |#1| (-927)) 18)))
+(((-1040 |#1|) (-10 -7 (-15 -3233 (|#1| |#1| (-927)))) (-13 (-1108) (-10 -8 (-15 * ($ $ $))))) (T -1040))
+((-3233 (*1 *2 *2 *3) (-12 (-5 *3 (-927)) (-5 *1 (-1040 *2)) (-4 *2 (-13 (-1108) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3233 (|#1| |#1| (-927))))
+((-3796 ((|#1| (-315)) 11) (((-1280) |#1|) 9)))
+(((-1041 |#1|) (-10 -7 (-15 -3796 ((-1280) |#1|)) (-15 -3796 (|#1| (-315)))) (-1225)) (T -1041))
+((-3796 (*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1041 *2)) (-4 *2 (-1225)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1280)) (-5 *1 (-1041 *3)) (-4 *3 (-1225)))))
+(-10 -7 (-15 -3796 ((-1280) |#1|)) (-15 -3796 (|#1| (-315))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ |#4|) 25)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3585 ((|#4| $) 27)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 46) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2721 (((-776)) 43 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 21 T CONST)) (-1815 (($) 23 T CONST)) (-2920 (((-112) $ $) 40)) (-3024 (($ $) 31) (($ $ $) NIL)) (-3012 (($ $ $) 29)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1042 |#1| |#2| |#3| |#4| |#5|) (-13 (-173) (-38 |#1|) (-10 -8 (-15 -3598 ($ |#4|)) (-15 -3796 ($ |#4|)) (-15 -3585 (|#4| $)))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|) (-649 |#4|)) (T -1042))
+((-3598 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-3585 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-649 *2)))))
+(-13 (-173) (-38 |#1|) (-10 -8 (-15 -3598 ($ |#4|)) (-15 -3796 ($ |#4|)) (-15 -3585 (|#4| $))))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-2002 (((-1280) $ (-1185) (-1185)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-1447 (((-112) (-112)) 43)) (-2967 (((-112) (-112)) 42)) (-3943 (((-52) $ (-1185) (-52)) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 (-52) "failed") (-1185) $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-3 (-52) "failed") (-1185) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-52) $ (-1185) (-52)) NIL (|has| $ (-6 -4448)))) (-3776 (((-52) $ (-1185)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1185) $) NIL (|has| (-1185) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-3256 (((-1185) $) NIL (|has| (-1185) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2795 (((-649 (-1185)) $) 37)) (-3804 (((-112) (-1185) $) NIL)) (-1877 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-1696 (((-649 (-1185)) $) NIL)) (-1414 (((-112) (-1185) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-3513 (((-52) $) NIL (|has| (-1185) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) "failed") (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL)) (-1682 (($ $ (-52)) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-4199 (((-649 (-52)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-52) $ (-1185)) 39) (((-52) $ (-1185) (-52)) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-3796 (((-867) $) 41 (-2776 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1043) (-13 (-1201 (-1185) (-52)) (-10 -7 (-15 -1447 ((-112) (-112))) (-15 -2967 ((-112) (-112))) (-6 -4447)))) (T -1043))
+((-1447 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043)))))
+(-13 (-1201 (-1185) (-52)) (-10 -7 (-15 -1447 ((-112) (-112))) (-15 -2967 ((-112) (-112))) (-6 -4447)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 9)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1044) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $))))) (T -1044))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1044)))))
+(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $))))
+((-3150 ((|#2| $) 10)))
+(((-1045 |#1| |#2|) (-10 -8 (-15 -3150 (|#2| |#1|))) (-1046 |#2|) (-1225)) (T -1045))
+NIL
+(-10 -8 (-15 -3150 (|#2| |#1|)))
+((-4381 (((-3 |#1| "failed") $) 9)) (-3150 ((|#1| $) 8)) (-3796 (($ |#1|) 6)))
+(((-1046 |#1|) (-140) (-1225)) (T -1046))
+((-4381 (*1 *2 *1) (|partial| -12 (-4 *1 (-1046 *2)) (-4 *2 (-1225)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1225)))))
+(-13 (-621 |t#1|) (-10 -8 (-15 -4381 ((-3 |t#1| "failed") $)) (-15 -3150 (|t#1| $))))
(((-621 |#1|) . T))
-((-3263 (((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1183))) 38)))
-(((-1045 |#1| |#2|) (-10 -7 (-15 -3263 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1183))))) (-561) (-13 (-561) (-1044 |#1|))) (T -1045))
-((-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-4 *6 (-13 (-561) (-1044 *5))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1045 *5 *6)))))
-(-10 -7 (-15 -3263 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1183)))))
-((-3515 (((-383)) 17)) (-2242 (((-1 (-383)) (-383) (-383)) 22)) (-3674 (((-1 (-383)) (-776)) 50)) (-3633 (((-383)) 37)) (-3361 (((-1 (-383)) (-383) (-383)) 38)) (-3751 (((-383)) 29)) (-2679 (((-1 (-383)) (-383)) 30)) (-2547 (((-383) (-776)) 45)) (-2809 (((-1 (-383)) (-776)) 46)) (-1666 (((-1 (-383)) (-776) (-776)) 49)) (-1994 (((-1 (-383)) (-776) (-776)) 47)))
-(((-1046) (-10 -7 (-15 -3515 ((-383))) (-15 -3633 ((-383))) (-15 -3751 ((-383))) (-15 -2547 ((-383) (-776))) (-15 -2242 ((-1 (-383)) (-383) (-383))) (-15 -3361 ((-1 (-383)) (-383) (-383))) (-15 -2679 ((-1 (-383)) (-383))) (-15 -2809 ((-1 (-383)) (-776))) (-15 -1994 ((-1 (-383)) (-776) (-776))) (-15 -1666 ((-1 (-383)) (-776) (-776))) (-15 -3674 ((-1 (-383)) (-776))))) (T -1046))
-((-3674 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-1666 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-1994 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))) (-2679 (*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))) (-3361 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))) (-2242 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1046)))) (-3751 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))) (-3633 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))) (-3515 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
-(-10 -7 (-15 -3515 ((-383))) (-15 -3633 ((-383))) (-15 -3751 ((-383))) (-15 -2547 ((-383) (-776))) (-15 -2242 ((-1 (-383)) (-383) (-383))) (-15 -3361 ((-1 (-383)) (-383) (-383))) (-15 -2679 ((-1 (-383)) (-383))) (-15 -2809 ((-1 (-383)) (-776))) (-15 -1994 ((-1 (-383)) (-776) (-776))) (-15 -1666 ((-1 (-383)) (-776) (-776))) (-15 -3674 ((-1 (-383)) (-776))))
-((-3796 (((-423 |#1|) |#1|) 33)))
-(((-1047 |#1|) (-10 -7 (-15 -3796 ((-423 |#1|) |#1|))) (-1249 (-412 (-958 (-569))))) (T -1047))
-((-3796 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1047 *3)) (-4 *3 (-1249 (-412 (-958 (-569))))))))
-(-10 -7 (-15 -3796 ((-423 |#1|) |#1|)))
-((-2895 (((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))) 14)))
-(((-1048 |#1|) (-10 -7 (-15 -2895 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))))) (-310)) (T -1048))
-((-2895 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310)) (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1048 *4)))))
-(-10 -7 (-15 -2895 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|)))))
-((-1710 (((-649 (-1183)) (-412 (-958 |#1|))) 17)) (-3763 (((-412 (-1179 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183)) 24)) (-1697 (((-412 (-958 |#1|)) (-412 (-1179 (-412 (-958 |#1|)))) (-1183)) 26)) (-3397 (((-3 (-1183) "failed") (-412 (-958 |#1|))) 20)) (-1723 (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|))))) 32) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 33) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1183)) (-649 (-412 (-958 |#1|)))) 28) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|))) 29)) (-3793 (((-412 (-958 |#1|)) |#1|) 11)))
-(((-1049 |#1|) (-10 -7 (-15 -1710 ((-649 (-1183)) (-412 (-958 |#1|)))) (-15 -3397 ((-3 (-1183) "failed") (-412 (-958 |#1|)))) (-15 -3763 ((-412 (-1179 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -1697 ((-412 (-958 |#1|)) (-412 (-1179 (-412 (-958 |#1|)))) (-1183))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1183)) (-649 (-412 (-958 |#1|))))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3793 ((-412 (-958 |#1|)) |#1|))) (-561)) (T -1049))
-((-3793 (*1 *2 *3) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1049 *3)) (-4 *3 (-561)))) (-1723 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1049 *4)))) (-1723 (*1 *2 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1049 *4)))) (-1723 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-1183))) (-5 *4 (-649 (-412 (-958 *5)))) (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1049 *5)))) (-1723 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-1049 *4)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1179 (-412 (-958 *5))))) (-5 *4 (-1183)) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1049 *5)) (-4 *5 (-561)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-561)) (-5 *2 (-412 (-1179 (-412 (-958 *5))))) (-5 *1 (-1049 *5)) (-5 *3 (-412 (-958 *5))))) (-3397 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-1183)) (-5 *1 (-1049 *4)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1183))) (-5 *1 (-1049 *4)))))
-(-10 -7 (-15 -1710 ((-649 (-1183)) (-412 (-958 |#1|)))) (-15 -3397 ((-3 (-1183) "failed") (-412 (-958 |#1|)))) (-15 -3763 ((-412 (-1179 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -1697 ((-412 (-958 |#1|)) (-412 (-1179 (-412 (-958 |#1|)))) (-1183))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1183)) (-649 (-412 (-958 |#1|))))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1723 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3793 ((-412 (-958 |#1|)) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-4188 (($) 18 T CONST)) (-2067 ((|#1| $) 23)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-1999 ((|#1| $) 22)) (-2997 ((|#1|) 20 T CONST)) (-3793 (((-867) $) 12)) (-3101 ((|#1| $) 21)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
-(((-1050 |#1|) (-140) (-23)) (T -1050))
-((-2067 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))) (-2997 (*1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -2067 (|t#1| $)) (-15 -1999 (|t#1| $)) (-15 -3101 (|t#1| $)) (-15 -2997 (|t#1|) -3706)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-2156 (($) 25 T CONST)) (-4188 (($) 18 T CONST)) (-2067 ((|#1| $) 23)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-1999 ((|#1| $) 22)) (-2997 ((|#1|) 20 T CONST)) (-3793 (((-867) $) 12)) (-3101 ((|#1| $) 21)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
-(((-1051 |#1|) (-140) (-23)) (T -1051))
-((-2156 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-23)))))
-(-13 (-1050 |t#1|) (-10 -8 (-15 -2156 ($) -3706)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1050 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 (-785 |#1| (-869 |#2|)))))) (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3465 (((-649 $) (-649 (-785 |#1| (-869 |#2|)))) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112)) NIL)) (-1710 (((-649 (-869 |#2|)) $) NIL)) (-2686 (((-112) $) NIL)) (-4276 (((-112) $) NIL (|has| |#1| (-561)))) (-2206 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2874 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-2078 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3660 $))) (-785 |#1| (-869 |#2|)) $) NIL)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ (-869 |#2|)) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1415 (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 (-785 |#1| (-869 |#2|)) "failed") $ (-869 |#2|)) NIL)) (-4188 (($) NIL T CONST)) (-3584 (((-112) $) NIL (|has| |#1| (-561)))) (-3778 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2576 (((-112) $) NIL (|has| |#1| (-561)))) (-1821 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-4374 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-3247 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3148 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3522 (((-3 $ "failed") $) NIL)) (-2516 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-785 |#1| (-869 |#2|)) (-1106))))) (-1696 (($ (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-2303 (((-112) (-785 |#1| (-869 |#2|)) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-3593 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3596 (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|))) NIL (|has| $ (-6 -4444))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-1320 (((-2 (|:| -4130 (-649 (-785 |#1| (-869 |#2|)))) (|:| -1717 (-649 (-785 |#1| (-869 |#2|))))) $) NIL)) (-2848 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2634 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2959 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2880 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-4337 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-1873 (((-869 |#2|) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-785 |#1| (-869 |#2|)) (-1106))))) (-3831 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL)) (-3097 (((-649 (-869 |#2|)) $) NIL)) (-3116 (((-112) (-869 |#2|) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-3533 (((-3 (-785 |#1| (-869 |#2|)) (-649 $)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3425 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3660 $))) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1722 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-3638 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL)) (-2533 (((-3 (-112) (-649 $)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3736 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-4333 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL)) (-1551 (($ (-785 |#1| (-869 |#2|)) $) NIL) (($ (-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1447 (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-2010 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2642 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1672 (((-112) $ $) NIL)) (-3469 (((-2 (|:| |num| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-2110 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2765 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-3123 (((-3 (-785 |#1| (-869 |#2|)) "failed") (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL)) (-3124 (((-3 $ "failed") $ (-785 |#1| (-869 |#2|))) NIL)) (-2907 (($ $ (-785 |#1| (-869 |#2|))) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-2911 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ $ (-297 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (($ $ (-649 (-297 (-785 |#1| (-869 |#2|))))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-3868 (((-776) $) NIL)) (-3558 (((-776) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-785 |#1| (-869 |#2|)) (-1106)))) (((-776) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-785 |#1| (-869 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-2792 (($ $ (-869 |#2|)) NIL)) (-3013 (($ $ (-869 |#2|)) NIL)) (-2408 (($ $) NIL)) (-2900 (($ $ (-869 |#2|)) NIL)) (-3793 (((-867) $) NIL) (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-3023 (((-776) $) NIL (|has| (-869 |#2|) (-372)))) (-1441 (((-112) $ $) NIL)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-1917 (((-112) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-649 (-785 |#1| (-869 |#2|))))) NIL)) (-3304 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-3037 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3220 (((-649 (-869 |#2|)) $) NIL)) (-2743 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2133 (((-112) (-869 |#2|) $) NIL)) (-2919 (((-112) $ $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1052 |#1| |#2|) (-13 (-1077 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -3465 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112))))) (-457) (-649 (-1183))) (T -1052))
-((-3465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1052 *5 *6)))))
-(-13 (-1077 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -3465 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112)))))
-((-2242 (((-1 (-569)) (-1100 (-569))) 32)) (-2055 (((-569) (-569) (-569) (-569) (-569)) 29)) (-1889 (((-1 (-569)) |RationalNumber|) NIL)) (-1978 (((-1 (-569)) |RationalNumber|) NIL)) (-2950 (((-1 (-569)) (-569) |RationalNumber|) NIL)))
-(((-1053) (-10 -7 (-15 -2242 ((-1 (-569)) (-1100 (-569)))) (-15 -2950 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -1889 ((-1 (-569)) |RationalNumber|)) (-15 -1978 ((-1 (-569)) |RationalNumber|)) (-15 -2055 ((-569) (-569) (-569) (-569) (-569))))) (T -1053))
-((-2055 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1053)))) (-1978 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))) (-1889 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))) (-2950 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)) (-5 *3 (-569)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-1100 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
-(-10 -7 (-15 -2242 ((-1 (-569)) (-1100 (-569)))) (-15 -2950 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -1889 ((-1 (-569)) |RationalNumber|)) (-15 -1978 ((-1 (-569)) |RationalNumber|)) (-15 -2055 ((-569) (-569) (-569) (-569) (-569))))
-((-3793 (((-867) $) NIL) (($ (-569)) 10)))
-(((-1054 |#1|) (-10 -8 (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-1055)) (T -1054))
-NIL
-(-10 -8 (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-1055) (-140)) (T -1055))
-((-3302 (*1 *2) (-12 (-4 *1 (-1055)) (-5 *2 (-776)))))
-(-13 (-1064) (-731) (-653 $) (-621 (-569)) (-10 -7 (-15 -3302 ((-776)) -3706) (-6 -4441)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2153 (((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)) 60)))
-(((-1056 |#1| |#2|) (-10 -7 (-15 -2153 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)))) (-1183) (-367)) (T -1056))
-((-2153 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367)) (-5 *2 (-412 (-958 *6))) (-5 *1 (-1056 *5 *6)) (-14 *5 (-1183)))))
-(-10 -7 (-15 -2153 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 15)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 16 T CONST)) (-2919 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
-(((-1057 |#1|) (-140) (-1064)) (T -1057))
-((-1803 (*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1064)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064)))))
-(-13 (-1106) (-10 -8 (-15 (-1803) ($) -3706) (-15 -3192 ((-112) $)) (-15 * ($ $ |t#1|))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-4080 (((-112) $) 40)) (-4317 (((-112) $) 17)) (-3221 (((-776) $) 13)) (-3234 (((-776) $) 14)) (-4206 (((-112) $) 30)) (-3962 (((-112) $) 42)))
-(((-1058 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3234 ((-776) |#1|)) (-15 -3221 ((-776) |#1|)) (-15 -3962 ((-112) |#1|)) (-15 -4080 ((-112) |#1|)) (-15 -4206 ((-112) |#1|)) (-15 -4317 ((-112) |#1|))) (-1059 |#2| |#3| |#4| |#5| |#6|) (-776) (-776) (-1055) (-239 |#3| |#4|) (-239 |#2| |#4|)) (T -1058))
-NIL
-(-10 -8 (-15 -3234 ((-776) |#1|)) (-15 -3221 ((-776) |#1|)) (-15 -3962 ((-112) |#1|)) (-15 -4080 ((-112) |#1|)) (-15 -4206 ((-112) |#1|)) (-15 -4317 ((-112) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-4080 (((-112) $) 56)) (-1678 (((-3 $ "failed") $ $) 20)) (-4317 (((-112) $) 58)) (-2716 (((-112) $ (-776)) 66)) (-4188 (($) 18 T CONST)) (-4372 (($ $) 39 (|has| |#3| (-310)))) (-1486 ((|#4| $ (-569)) 44)) (-3975 (((-776) $) 38 (|has| |#3| (-561)))) (-3773 ((|#3| $ (-569) (-569)) 46)) (-2880 (((-649 |#3|) $) 73 (|has| $ (-6 -4444)))) (-2345 (((-776) $) 37 (|has| |#3| (-561)))) (-2250 (((-649 |#5|) $) 36 (|has| |#3| (-561)))) (-3221 (((-776) $) 50)) (-3234 (((-776) $) 49)) (-1689 (((-112) $ (-776)) 65)) (-3856 (((-569) $) 54)) (-1738 (((-569) $) 52)) (-3040 (((-649 |#3|) $) 74 (|has| $ (-6 -4444)))) (-1655 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1106)) (|has| $ (-6 -4444))))) (-3744 (((-569) $) 53)) (-1609 (((-569) $) 51)) (-2428 (($ (-649 (-649 |#3|))) 59)) (-3831 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3005 (((-649 (-649 |#3|)) $) 48)) (-2433 (((-112) $ (-776)) 64)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-561)))) (-2911 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#3|) (-649 |#3|)) 80 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) 78 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 (-297 |#3|))) 77 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-2834 (((-112) $ $) 60)) (-3218 (((-112) $) 63)) (-3597 (($) 62)) (-1866 ((|#3| $ (-569) (-569)) 47) ((|#3| $ (-569) (-569) |#3|) 45)) (-4206 (((-112) $) 57)) (-3558 (((-776) |#3| $) 75 (-12 (|has| |#3| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4444)))) (-3959 (($ $) 61)) (-1363 ((|#5| $ (-569)) 43)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-3037 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4444)))) (-3962 (((-112) $) 55)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#3|) 40 (|has| |#3| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2426 (((-776) $) 67 (|has| $ (-6 -4444)))))
-(((-1059 |#1| |#2| |#3| |#4| |#5|) (-140) (-776) (-776) (-1055) (-239 |t#2| |t#3|) (-239 |t#1| |t#3|)) (T -1059))
-((-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2428 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1055)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3856 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5))))) (-1866 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))) (-3773 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))) (-1866 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *2 (-1055)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) (-1486 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *2 *7)) (-4 *6 (-1055)) (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))) (-1363 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *7 *2)) (-4 *6 (-1055)) (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))) (-1344 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2405 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367)))) (-4372 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-649 *7)))))
-(-13 (-111 |t#3| |t#3|) (-494 |t#3|) (-10 -8 (-6 -4444) (IF (|has| |t#3| (-173)) (-6 (-722 |t#3|)) |%noBranch|) (-15 -2428 ($ (-649 (-649 |t#3|)))) (-15 -4317 ((-112) $)) (-15 -4206 ((-112) $)) (-15 -4080 ((-112) $)) (-15 -3962 ((-112) $)) (-15 -3856 ((-569) $)) (-15 -3744 ((-569) $)) (-15 -1738 ((-569) $)) (-15 -1609 ((-569) $)) (-15 -3221 ((-776) $)) (-15 -3234 ((-776) $)) (-15 -3005 ((-649 (-649 |t#3|)) $)) (-15 -1866 (|t#3| $ (-569) (-569))) (-15 -3773 (|t#3| $ (-569) (-569))) (-15 -1866 (|t#3| $ (-569) (-569) |t#3|)) (-15 -1486 (|t#4| $ (-569))) (-15 -1363 (|t#5| $ (-569))) (-15 -1344 ($ (-1 |t#3| |t#3|) $)) (-15 -1344 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-561)) (-15 -2405 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-367)) (-15 -3032 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-310)) (-15 -4372 ($ $)) |%noBranch|) (IF (|has| |t#3| (-561)) (PROGN (-15 -3975 ((-776) $)) (-15 -2345 ((-776) $)) (-15 -2250 ((-649 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-618 (-867)) . T) ((-312 |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))) ((-494 |#3|) . T) ((-519 |#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))) ((-651 (-569)) . T) ((-651 |#3|) . T) ((-653 |#3|) . T) ((-645 |#3|) |has| |#3| (-173)) ((-722 |#3|) |has| |#3| (-173)) ((-1057 |#3|) . T) ((-1062 |#3|) . T) ((-1106) . T) ((-1223) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-4080 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4317 (((-112) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-4188 (($) NIL T CONST)) (-4372 (($ $) 47 (|has| |#3| (-310)))) (-1486 (((-241 |#2| |#3|) $ (-569)) 36)) (-3190 (($ (-694 |#3|)) 45)) (-3975 (((-776) $) 49 (|has| |#3| (-561)))) (-3773 ((|#3| $ (-569) (-569)) NIL)) (-2880 (((-649 |#3|) $) NIL (|has| $ (-6 -4444)))) (-2345 (((-776) $) 51 (|has| |#3| (-561)))) (-2250 (((-649 (-241 |#1| |#3|)) $) 55 (|has| |#3| (-561)))) (-3221 (((-776) $) NIL)) (-3234 (((-776) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3856 (((-569) $) NIL)) (-1738 (((-569) $) NIL)) (-3040 (((-649 |#3|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106))))) (-3744 (((-569) $) NIL)) (-1609 (((-569) $) NIL)) (-2428 (($ (-649 (-649 |#3|))) 31)) (-3831 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3005 (((-649 (-649 |#3|)) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-561)))) (-2911 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#3| $ (-569) (-569)) NIL) ((|#3| $ (-569) (-569) |#3|) NIL)) (-3083 (((-134)) 59 (|has| |#3| (-367)))) (-4206 (((-112) $) NIL)) (-3558 (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106)))) (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) 65 (|has| |#3| (-619 (-541))))) (-1363 (((-241 |#1| |#3|) $ (-569)) 40)) (-3793 (((-867) $) 19) (((-694 |#3|) $) 42)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444)))) (-3962 (((-112) $) NIL)) (-1803 (($) 16 T CONST)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1060 |#1| |#2| |#3|) (-13 (-1059 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1280 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -3190 ($ (-694 |#3|))))) (-776) (-776) (-1055)) (T -1060))
-((-3190 (*1 *1 *2) (-12 (-5 *2 (-694 *5)) (-4 *5 (-1055)) (-5 *1 (-1060 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)))))
-(-13 (-1059 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1280 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -3190 ($ (-694 |#3|)))))
-((-3596 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1344 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1061 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1344 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3596 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-776) (-776) (-1055) (-239 |#2| |#3|) (-239 |#1| |#3|) (-1059 |#1| |#2| |#3| |#4| |#5|) (-1055) (-239 |#2| |#7|) (-239 |#1| |#7|) (-1059 |#1| |#2| |#7| |#8| |#9|)) (T -1061))
-((-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1055)) (-4 *2 (-1055)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *12 (-1059 *5 *6 *2 *10 *11)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1055)) (-4 *10 (-1055)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *2 (-1059 *5 *6 *10 *11 *12)) (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) (-4 *12 (-239 *5 *10)))))
-(-10 -7 (-15 -1344 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3596 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ |#1|) 27)))
-(((-1062 |#1|) (-140) (-1064)) (T -1062))
-NIL
-(-13 (-21) (-1057 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1057 |#1|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2671 (((-1183) $) 11)) (-2819 ((|#1| $) 12)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3494 (($ (-1183) |#1|) 10)) (-3793 (((-867) $) 22 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2919 (((-112) $ $) 17 (|has| |#1| (-1106)))))
-(((-1063 |#1| |#2|) (-13 (-1223) (-10 -8 (-15 -3494 ($ (-1183) |#1|)) (-15 -2671 ((-1183) $)) (-15 -2819 (|#1| $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|))) (-1099 |#2|) (-1223)) (T -1063))
-((-3494 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-4 *4 (-1223)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-1099 *4)))) (-2671 (*1 *2 *1) (-12 (-4 *4 (-1223)) (-5 *2 (-1183)) (-5 *1 (-1063 *3 *4)) (-4 *3 (-1099 *4)))) (-2819 (*1 *2 *1) (-12 (-4 *2 (-1099 *3)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1223)))))
-(-13 (-1223) (-10 -8 (-15 -3494 ($ (-1183) |#1|)) (-15 -2671 ((-1183) $)) (-15 -2819 (|#1| $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-1064) (-140)) (T -1064))
-NIL
-(-13 (-21) (-1118))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1118) . T) ((-1106) . T))
-((-3008 (($ $) 17)) (-3434 (($ $) 25)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 55)) (-2707 (($ $) 27)) (-3555 (($ $) 12)) (-2478 (($ $) 43)) (-1408 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) 36)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 31) (($ (-569)) NIL) (($ (-412 (-569))) 31)) (-3302 (((-776)) 9)) (-2586 (($ $) 45)))
-(((-1065 |#1|) (-10 -8 (-15 -3434 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3555 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -2707 (|#1| |#1|)) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| (-569))) (-15 -1408 ((-226) |#1|)) (-15 -1408 ((-383) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| |#1|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-1066)) (T -1065))
-((-3302 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1065 *3)) (-4 *3 (-1066)))))
-(-10 -8 (-15 -3434 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3555 (|#1| |#1|)) (-15 -2478 (|#1| |#1|)) (-15 -2586 (|#1| |#1|)) (-15 -2707 (|#1| |#1|)) (-15 -2892 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| (-569))) (-15 -1408 ((-226) |#1|)) (-15 -1408 ((-383) |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| |#1|)) (-15 -3302 ((-776))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3673 (((-569) $) 97)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-3008 (($ $) 95)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-3807 (($ $) 105)) (-1680 (((-112) $ $) 65)) (-2552 (((-569) $) 122)) (-4188 (($) 18 T CONST)) (-3434 (($ $) 94)) (-4378 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3148 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-4073 (((-112) $) 79)) (-4237 (((-112) $) 120)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 104)) (-2707 (($ $) 100)) (-4327 (((-112) $) 121)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3377 (($ $ $) 119)) (-3969 (($ $ $) 118)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3555 (($ $) 96)) (-2478 (($ $) 98)) (-3796 (((-423 $) $) 82)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-1408 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-3302 (((-776)) 32 T CONST)) (-2586 (($ $) 99)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-3070 (($ $) 123)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2976 (((-112) $ $) 116)) (-2954 (((-112) $ $) 115)) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 117)) (-2942 (((-112) $ $) 114)) (-3032 (($ $ $) 73)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+((-3639 (((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1185))) 38)))
+(((-1047 |#1| |#2|) (-10 -7 (-15 -3639 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1185))))) (-561) (-13 (-561) (-1046 |#1|))) (T -1047))
+((-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-4 *6 (-13 (-561) (-1046 *5))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1047 *5 *6)))))
+(-10 -7 (-15 -3639 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1185)))))
+((-4106 (((-383)) 17)) (-2900 (((-1 (-383)) (-383) (-383)) 22)) (-3676 (((-1 (-383)) (-776)) 50)) (-2738 (((-383)) 37)) (-3364 (((-1 (-383)) (-383) (-383)) 38)) (-1457 (((-383)) 29)) (-1671 (((-1 (-383)) (-383)) 30)) (-2873 (((-383) (-776)) 45)) (-3561 (((-1 (-383)) (-776)) 46)) (-1668 (((-1 (-383)) (-776) (-776)) 49)) (-2165 (((-1 (-383)) (-776) (-776)) 47)))
+(((-1048) (-10 -7 (-15 -4106 ((-383))) (-15 -2738 ((-383))) (-15 -1457 ((-383))) (-15 -2873 ((-383) (-776))) (-15 -2900 ((-1 (-383)) (-383) (-383))) (-15 -3364 ((-1 (-383)) (-383) (-383))) (-15 -1671 ((-1 (-383)) (-383))) (-15 -3561 ((-1 (-383)) (-776))) (-15 -2165 ((-1 (-383)) (-776) (-776))) (-15 -1668 ((-1 (-383)) (-776) (-776))) (-15 -3676 ((-1 (-383)) (-776))))) (T -1048))
+((-3676 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-1668 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-2165 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-1671 (*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))) (-3364 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))) (-2900 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1048)))) (-1457 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))) (-2738 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))) (-4106 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))))
+(-10 -7 (-15 -4106 ((-383))) (-15 -2738 ((-383))) (-15 -1457 ((-383))) (-15 -2873 ((-383) (-776))) (-15 -2900 ((-1 (-383)) (-383) (-383))) (-15 -3364 ((-1 (-383)) (-383) (-383))) (-15 -1671 ((-1 (-383)) (-383))) (-15 -3561 ((-1 (-383)) (-776))) (-15 -2165 ((-1 (-383)) (-776) (-776))) (-15 -1668 ((-1 (-383)) (-776) (-776))) (-15 -3676 ((-1 (-383)) (-776))))
+((-3800 (((-423 |#1|) |#1|) 33)))
+(((-1049 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|))) (-1251 (-412 (-958 (-569))))) (T -1049))
+((-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1049 *3)) (-4 *3 (-1251 (-412 (-958 (-569))))))))
+(-10 -7 (-15 -3800 ((-423 |#1|) |#1|)))
+((-3055 (((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))) 14)))
+(((-1050 |#1|) (-10 -7 (-15 -3055 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))))) (-310)) (T -1050))
+((-3055 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310)) (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1050 *4)))))
+(-10 -7 (-15 -3055 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|)))))
+((-1712 (((-649 (-1185)) (-412 (-958 |#1|))) 17)) (-3767 (((-412 (-1181 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185)) 24)) (-1700 (((-412 (-958 |#1|)) (-412 (-1181 (-412 (-958 |#1|)))) (-1185)) 26)) (-2306 (((-3 (-1185) "failed") (-412 (-958 |#1|))) 20)) (-1725 (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|))))) 32) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 33) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1185)) (-649 (-412 (-958 |#1|)))) 28) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|))) 29)) (-3796 (((-412 (-958 |#1|)) |#1|) 11)))
+(((-1051 |#1|) (-10 -7 (-15 -1712 ((-649 (-1185)) (-412 (-958 |#1|)))) (-15 -2306 ((-3 (-1185) "failed") (-412 (-958 |#1|)))) (-15 -3767 ((-412 (-1181 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -1700 ((-412 (-958 |#1|)) (-412 (-1181 (-412 (-958 |#1|)))) (-1185))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1185)) (-649 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3796 ((-412 (-958 |#1|)) |#1|))) (-561)) (T -1051))
+((-3796 (*1 *2 *3) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1051 *3)) (-4 *3 (-561)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1051 *4)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1051 *4)))) (-1725 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-1185))) (-5 *4 (-649 (-412 (-958 *5)))) (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1051 *5)))) (-1725 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-1051 *4)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1181 (-412 (-958 *5))))) (-5 *4 (-1185)) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1051 *5)) (-4 *5 (-561)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-561)) (-5 *2 (-412 (-1181 (-412 (-958 *5))))) (-5 *1 (-1051 *5)) (-5 *3 (-412 (-958 *5))))) (-2306 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-1185)) (-5 *1 (-1051 *4)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1185))) (-5 *1 (-1051 *4)))))
+(-10 -7 (-15 -1712 ((-649 (-1185)) (-412 (-958 |#1|)))) (-15 -2306 ((-3 (-1185) "failed") (-412 (-958 |#1|)))) (-15 -3767 ((-412 (-1181 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -1700 ((-412 (-958 |#1|)) (-412 (-1181 (-412 (-958 |#1|)))) (-1185))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1185)) (-649 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3796 ((-412 (-958 |#1|)) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-4427 (($) 18 T CONST)) (-1715 ((|#1| $) 23)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2212 ((|#1| $) 22)) (-2808 ((|#1|) 20 T CONST)) (-3796 (((-867) $) 12)) (-1364 ((|#1| $) 21)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
+(((-1052 |#1|) (-140) (-23)) (T -1052))
+((-1715 (*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))) (-2808 (*1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -1715 (|t#1| $)) (-15 -2212 (|t#1| $)) (-15 -1364 (|t#1| $)) (-15 -2808 (|t#1|) -3709)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3248 (($) 25 T CONST)) (-4427 (($) 18 T CONST)) (-1715 ((|#1| $) 23)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2212 ((|#1| $) 22)) (-2808 ((|#1|) 20 T CONST)) (-3796 (((-867) $) 12)) (-1364 ((|#1| $) 21)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16)))
+(((-1053 |#1|) (-140) (-23)) (T -1053))
+((-3248 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))))
+(-13 (-1052 |t#1|) (-10 -8 (-15 -3248 ($) -3709)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1052 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 (-785 |#1| (-869 |#2|)))))) (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-1806 (((-649 $) (-649 (-785 |#1| (-869 |#2|)))) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112)) NIL)) (-1712 (((-649 (-869 |#2|)) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2950 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1830 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3663 $))) (-785 |#1| (-869 |#2|)) $) NIL)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ (-869 |#2|)) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 (-785 |#1| (-869 |#2|)) "failed") $ (-869 |#2|)) NIL)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) NIL (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-2459 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3150 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3525 (((-3 $ "failed") $) NIL)) (-2548 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108))))) (-1698 (($ (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-2288 (((-112) (-785 |#1| (-869 |#2|)) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-3604 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3598 (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|))) NIL (|has| $ (-6 -4447))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-1694 (((-2 (|:| -4133 (-649 (-785 |#1| (-869 |#2|)))) (|:| -1721 (-649 (-785 |#1| (-869 |#2|))))) $) NIL)) (-2648 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2438 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2404 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2882 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2140 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-3372 (((-869 |#2|) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108))))) (-3834 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL)) (-1328 (((-649 (-869 |#2|)) $) NIL)) (-1512 (((-112) (-869 |#2|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4275 (((-3 (-785 |#1| (-869 |#2|)) (-649 $)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1384 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3663 $))) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1724 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-2798 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL)) (-2716 (((-3 (-112) (-649 $)) (-785 |#1| (-869 |#2|)) $) NIL)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2101 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL)) (-3446 (($ (-785 |#1| (-869 |#2|)) $) NIL) (($ (-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1586 (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-2310 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-1341 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-4046 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-4348 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-1574 (((-3 (-785 |#1| (-869 |#2|)) "failed") (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL)) (-1589 (((-3 $ "failed") $ (-785 |#1| (-869 |#2|))) NIL)) (-3166 (($ $ (-785 |#1| (-869 |#2|))) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-3208 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ $ (-297 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ $ (-649 (-297 (-785 |#1| (-869 |#2|))))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-4339 (((-776) $) NIL)) (-3560 (((-776) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (((-776) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-785 |#1| (-869 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3381 (($ $ (-869 |#2|)) NIL)) (-2963 (($ $ (-869 |#2|)) NIL)) (-4039 (($ $) NIL)) (-3112 (($ $ (-869 |#2|)) NIL)) (-3796 (((-867) $) NIL) (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1873 (((-776) $) NIL (|has| (-869 |#2|) (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-2546 (((-112) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-649 (-785 |#1| (-869 |#2|))))) NIL)) (-2744 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-1980 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 (-869 |#2|)) $) NIL)) (-4159 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-4269 (((-112) (-869 |#2|) $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1054 |#1| |#2|) (-13 (-1079 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -1806 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112))))) (-457) (-649 (-1185))) (T -1054))
+((-1806 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1054 *5 *6)))))
+(-13 (-1079 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -1806 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112)))))
+((-2900 (((-1 (-569)) (-1102 (-569))) 32)) (-1577 (((-569) (-569) (-569) (-569) (-569)) 29)) (-3539 (((-1 (-569)) |RationalNumber|) NIL)) (-2018 (((-1 (-569)) |RationalNumber|) NIL)) (-3613 (((-1 (-569)) (-569) |RationalNumber|) NIL)))
+(((-1055) (-10 -7 (-15 -2900 ((-1 (-569)) (-1102 (-569)))) (-15 -3613 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -3539 ((-1 (-569)) |RationalNumber|)) (-15 -2018 ((-1 (-569)) |RationalNumber|)) (-15 -1577 ((-569) (-569) (-569) (-569) (-569))))) (T -1055))
+((-1577 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1055)))) (-2018 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))) (-3539 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)) (-5 *3 (-569)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-1102 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))))
+(-10 -7 (-15 -2900 ((-1 (-569)) (-1102 (-569)))) (-15 -3613 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -3539 ((-1 (-569)) |RationalNumber|)) (-15 -2018 ((-1 (-569)) |RationalNumber|)) (-15 -1577 ((-569) (-569) (-569) (-569) (-569))))
+((-3796 (((-867) $) NIL) (($ (-569)) 10)))
+(((-1056 |#1|) (-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1057)) (T -1056))
+NIL
+(-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-1057) (-140)) (T -1057))
+((-2721 (*1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-776)))))
+(-13 (-1066) (-731) (-653 $) (-621 (-569)) (-10 -7 (-15 -2721 ((-776)) -3709) (-6 -4444)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-3213 (((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)) 60)))
+(((-1058 |#1| |#2|) (-10 -7 (-15 -3213 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)))) (-1185) (-367)) (T -1058))
+((-3213 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367)) (-5 *2 (-412 (-958 *6))) (-5 *1 (-1058 *5 *6)) (-14 *5 (-1185)))))
+(-10 -7 (-15 -3213 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1059 |#1|) (-140) (-1066)) (T -1059))
+((-1804 (*1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066)))))
+(-13 (-1108) (-10 -8 (-15 (-1804) ($) -3709) (-15 -4143 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-1551 (((-112) $) 40)) (-3169 (((-112) $) 17)) (-3225 (((-776) $) 13)) (-3236 (((-776) $) 14)) (-3387 (((-112) $) 30)) (-2768 (((-112) $) 42)))
+(((-1060 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3236 ((-776) |#1|)) (-15 -3225 ((-776) |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|))) (-1061 |#2| |#3| |#4| |#5| |#6|) (-776) (-776) (-1057) (-239 |#3| |#4|) (-239 |#2| |#4|)) (T -1060))
+NIL
+(-10 -8 (-15 -3236 ((-776) |#1|)) (-15 -3225 ((-776) |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1551 (((-112) $) 56)) (-2208 (((-3 $ "failed") $ $) 20)) (-3169 (((-112) $) 58)) (-3914 (((-112) $ (-776)) 66)) (-4427 (($) 18 T CONST)) (-2439 (($ $) 39 (|has| |#3| (-310)))) (-4044 ((|#4| $ (-569)) 44)) (-3978 (((-776) $) 38 (|has| |#3| (-561)))) (-3776 ((|#3| $ (-569) (-569)) 46)) (-2882 (((-649 |#3|) $) 73 (|has| $ (-6 -4447)))) (-1539 (((-776) $) 37 (|has| |#3| (-561)))) (-2970 (((-649 |#5|) $) 36 (|has| |#3| (-561)))) (-3225 (((-776) $) 50)) (-3236 (((-776) $) 49)) (-2314 (((-112) $ (-776)) 65)) (-4241 (((-569) $) 54)) (-1537 (((-569) $) 52)) (-2009 (((-649 |#3|) $) 74 (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 53)) (-2742 (((-569) $) 51)) (-2430 (($ (-649 (-649 |#3|))) 59)) (-3834 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2884 (((-649 (-649 |#3|)) $) 48)) (-4254 (((-112) $ (-776)) 64)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-561)))) (-3208 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#3|) (-649 |#3|)) 80 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) 78 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 (-297 |#3|))) 77 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) 60)) (-3162 (((-112) $) 63)) (-3635 (($) 62)) (-1869 ((|#3| $ (-569) (-569)) 47) ((|#3| $ (-569) (-569) |#3|) 45)) (-3387 (((-112) $) 57)) (-3560 (((-776) |#3| $) 75 (-12 (|has| |#3| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4447)))) (-3962 (($ $) 61)) (-3041 ((|#5| $ (-569)) 43)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4447)))) (-2768 (((-112) $) 55)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#3|) 40 (|has| |#3| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2428 (((-776) $) 67 (|has| $ (-6 -4447)))))
+(((-1061 |#1| |#2| |#3| |#4| |#5|) (-140) (-776) (-776) (-1057) (-239 |t#2| |t#3|) (-239 |t#1| |t#3|)) (T -1061))
+((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1057)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5))))) (-1869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057)))) (-3776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057)))) (-1869 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *2 (-1057)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) (-4044 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *2 *7)) (-4 *6 (-1057)) (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))) (-3041 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *7 *2)) (-4 *6 (-1057)) (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367)))) (-2439 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-649 *7)))))
+(-13 (-111 |t#3| |t#3|) (-494 |t#3|) (-10 -8 (-6 -4447) (IF (|has| |t#3| (-173)) (-6 (-722 |t#3|)) |%noBranch|) (-15 -2430 ($ (-649 (-649 |t#3|)))) (-15 -3169 ((-112) $)) (-15 -3387 ((-112) $)) (-15 -1551 ((-112) $)) (-15 -2768 ((-112) $)) (-15 -4241 ((-569) $)) (-15 -1378 ((-569) $)) (-15 -1537 ((-569) $)) (-15 -2742 ((-569) $)) (-15 -3225 ((-776) $)) (-15 -3236 ((-776) $)) (-15 -2884 ((-649 (-649 |t#3|)) $)) (-15 -1869 (|t#3| $ (-569) (-569))) (-15 -3776 (|t#3| $ (-569) (-569))) (-15 -1869 (|t#3| $ (-569) (-569) |t#3|)) (-15 -4044 (|t#4| $ (-569))) (-15 -3041 (|t#5| $ (-569))) (-15 -1346 ($ (-1 |t#3| |t#3|) $)) (-15 -1346 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-561)) (-15 -2407 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-367)) (-15 -3035 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-310)) (-15 -2439 ($ $)) |%noBranch|) (IF (|has| |t#3| (-561)) (PROGN (-15 -3978 ((-776) $)) (-15 -1539 ((-776) $)) (-15 -2970 ((-649 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-618 (-867)) . T) ((-312 |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))) ((-494 |#3|) . T) ((-519 |#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))) ((-651 (-569)) . T) ((-651 |#3|) . T) ((-653 |#3|) . T) ((-645 |#3|) |has| |#3| (-173)) ((-722 |#3|) |has| |#3| (-173)) ((-1059 |#3|) . T) ((-1064 |#3|) . T) ((-1108) . T) ((-1225) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1551 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 47 (|has| |#3| (-310)))) (-4044 (((-241 |#2| |#3|) $ (-569)) 36)) (-4122 (($ (-694 |#3|)) 45)) (-3978 (((-776) $) 49 (|has| |#3| (-561)))) (-3776 ((|#3| $ (-569) (-569)) NIL)) (-2882 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-1539 (((-776) $) 51 (|has| |#3| (-561)))) (-2970 (((-649 (-241 |#1| |#3|)) $) 55 (|has| |#3| (-561)))) (-3225 (((-776) $) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#3|))) 31)) (-3834 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2884 (((-649 (-649 |#3|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-561)))) (-3208 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#3| $ (-569) (-569)) NIL) ((|#3| $ (-569) (-569) |#3|) NIL)) (-2377 (((-134)) 59 (|has| |#3| (-367)))) (-3387 (((-112) $) NIL)) (-3560 (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108)))) (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 65 (|has| |#3| (-619 (-541))))) (-3041 (((-241 |#1| |#3|) $ (-569)) 40)) (-3796 (((-867) $) 19) (((-694 |#3|) $) 42)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1062 |#1| |#2| |#3|) (-13 (-1061 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1282 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -4122 ($ (-694 |#3|))))) (-776) (-776) (-1057)) (T -1062))
+((-4122 (*1 *1 *2) (-12 (-5 *2 (-694 *5)) (-4 *5 (-1057)) (-5 *1 (-1062 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)))))
+(-13 (-1061 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1282 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -4122 ($ (-694 |#3|)))))
+((-3598 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1346 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1063 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1346 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3598 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-776) (-776) (-1057) (-239 |#2| |#3|) (-239 |#1| |#3|) (-1061 |#1| |#2| |#3| |#4| |#5|) (-1057) (-239 |#2| |#7|) (-239 |#1| |#7|) (-1061 |#1| |#2| |#7| |#8| |#9|)) (T -1063))
+((-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1057)) (-4 *2 (-1057)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *12 (-1061 *5 *6 *2 *10 *11)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1057)) (-4 *10 (-1057)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *2 (-1061 *5 *6 *10 *11 *12)) (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) (-4 *12 (-239 *5 *10)))))
+(-10 -7 (-15 -1346 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3598 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ |#1|) 27)))
+(((-1064 |#1|) (-140) (-1066)) (T -1064))
+NIL
+(-13 (-21) (-1059 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1059 |#1|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2672 (((-1185) $) 11)) (-2821 ((|#1| $) 12)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3497 (($ (-1185) |#1|) 10)) (-3796 (((-867) $) 22 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2920 (((-112) $ $) 17 (|has| |#1| (-1108)))))
+(((-1065 |#1| |#2|) (-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) |#1|)) (-15 -2672 ((-1185) $)) (-15 -2821 (|#1| $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) (-1101 |#2|) (-1225)) (T -1065))
+((-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-4 *4 (-1225)) (-5 *1 (-1065 *3 *4)) (-4 *3 (-1101 *4)))) (-2672 (*1 *2 *1) (-12 (-4 *4 (-1225)) (-5 *2 (-1185)) (-5 *1 (-1065 *3 *4)) (-4 *3 (-1101 *4)))) (-2821 (*1 *2 *1) (-12 (-4 *2 (-1101 *3)) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1225)))))
+(-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) |#1|)) (-15 -2672 ((-1185) $)) (-15 -2821 (|#1| $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
(((-1066) (-140)) (T -1066))
-((-3070 (*1 *1 *1) (-4 *1 (-1066))) (-2707 (*1 *1 *1) (-4 *1 (-1066))) (-2586 (*1 *1 *1) (-4 *1 (-1066))) (-2478 (*1 *1 *1) (-4 *1 (-1066))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-569)))) (-3555 (*1 *1 *1) (-4 *1 (-1066))) (-3008 (*1 *1 *1) (-4 *1 (-1066))) (-3434 (*1 *1 *1) (-4 *1 (-1066))))
-(-13 (-367) (-853) (-1028) (-1044 (-569)) (-1044 (-412 (-569))) (-1008) (-619 (-898 (-383))) (-892 (-383)) (-147) (-10 -8 (-15 -2707 ($ $)) (-15 -2586 ($ $)) (-15 -2478 ($ $)) (-15 -3673 ((-569) $)) (-15 -3555 ($ $)) (-15 -3008 ($ $)) (-15 -3434 ($ $)) (-15 -3070 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1008) . T) ((-1028) . T) ((-1044 (-412 (-569))) . T) ((-1044 (-569)) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) |#2| $) 26)) (-3470 ((|#1| $) 10)) (-2552 (((-569) |#2| $) 116)) (-3964 (((-3 $ "failed") |#2| (-927)) 75)) (-4407 ((|#1| $) 31)) (-3871 ((|#1| |#2| $ |#1|) 40)) (-2933 (($ $) 28)) (-2888 (((-3 |#2| "failed") |#2| $) 111)) (-4237 (((-112) |#2| $) NIL)) (-4327 (((-112) |#2| $) NIL)) (-2824 (((-112) |#2| $) 27)) (-3045 ((|#1| $) 117)) (-4395 ((|#1| $) 30)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-4143 ((|#2| $) 102)) (-3793 (((-867) $) 92)) (-1441 (((-112) $ $) NIL)) (-3088 ((|#1| |#2| $ |#1|) 41)) (-4054 (((-649 $) |#2|) 77)) (-2919 (((-112) $ $) 97)))
-(((-1067 |#1| |#2|) (-13 (-1074 |#1| |#2|) (-10 -8 (-15 -4395 (|#1| $)) (-15 -4407 (|#1| $)) (-15 -3470 (|#1| $)) (-15 -3045 (|#1| $)) (-15 -2933 ($ $)) (-15 -2824 ((-112) |#2| $)) (-15 -3871 (|#1| |#2| $ |#1|)))) (-13 (-853) (-367)) (-1249 |#1|)) (T -1067))
-((-3871 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-4395 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-4407 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-3470 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-3045 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-2933 (*1 *1 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1249 *2)))) (-2824 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1067 *4 *3)) (-4 *3 (-1249 *4)))))
-(-13 (-1074 |#1| |#2|) (-10 -8 (-15 -4395 (|#1| $)) (-15 -4407 (|#1| $)) (-15 -3470 (|#1| $)) (-15 -3045 (|#1| $)) (-15 -2933 ($ $)) (-15 -2824 ((-112) |#2| $)) (-15 -3871 (|#1| |#2| $ |#1|))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-4122 (($ $ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3956 (($ $ $ $) NIL)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-2552 (((-569) $) NIL)) (-3081 (($ $ $) NIL)) (-4188 (($) NIL T CONST)) (-1965 (($ (-1183)) 10) (($ (-569)) 7)) (-4378 (((-3 (-569) "failed") $) NIL)) (-3148 (((-569) $) NIL)) (-2366 (($ $ $) NIL)) (-1630 (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL)) (-1434 (((-112) $) NIL)) (-1311 (((-412 (-569)) $) NIL)) (-3403 (($) NIL) (($ $) NIL)) (-2373 (($ $ $) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2481 (($ $ $ $) NIL)) (-4190 (($ $ $) NIL)) (-4237 (((-112) $) NIL)) (-1841 (($ $ $) NIL)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2623 (((-112) $) NIL)) (-1607 (((-112) $) NIL)) (-3812 (((-3 $ "failed") $) NIL)) (-4327 (((-112) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2604 (($ $ $ $) NIL)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-2605 (($ $) NIL)) (-3842 (($ $) NIL)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-3678 (($ $ $) NIL)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1649 (($ $) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2108 (((-112) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3514 (($ $ (-776)) NIL) (($ $) NIL)) (-2431 (($ $) NIL)) (-3959 (($ $) NIL)) (-1408 (((-569) $) 16) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL) (($ (-1183)) 9)) (-3793 (((-867) $) 23) (($ (-569)) 6) (($ $) NIL) (($ (-569)) 6)) (-3302 (((-776)) NIL T CONST)) (-4271 (((-112) $ $) NIL)) (-2950 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-4360 (($) NIL)) (-2985 (((-112) $ $) NIL)) (-4048 (($ $ $ $) NIL)) (-3070 (($ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)) (-3021 (($ $) 22) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
-(((-1068) (-13 (-550) (-623 (-1183)) (-10 -8 (-6 -4431) (-6 -4436) (-6 -4432) (-15 -1965 ($ (-1183))) (-15 -1965 ($ (-569)))))) (T -1068))
-((-1965 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1068)))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1068)))))
-(-13 (-550) (-623 (-1183)) (-10 -8 (-6 -4431) (-6 -4436) (-6 -4432) (-15 -1965 ($ (-1183))) (-15 -1965 ($ (-569)))))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL)) (-4321 (((-1278) $ (-1183) (-1183)) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-2159 (($) 9)) (-3940 (((-52) $ (-1183) (-52)) NIL)) (-1865 (($ $) 32)) (-4076 (($ $) 30)) (-4191 (($ $) 29)) (-3979 (($ $) 31)) (-1744 (($ $) 35)) (-1617 (($ $) 36)) (-4303 (($ $) 28)) (-3874 (($ $) 33)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) 27 (|has| $ (-6 -4444)))) (-2356 (((-3 (-52) "failed") (-1183) $) 43)) (-4188 (($) NIL T CONST)) (-3174 (($) 7)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-3463 (($ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) 53 (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-3 (-52) "failed") (-1183) $) NIL)) (-1696 (($ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444)))) (-2060 (((-3 (-1165) "failed") $ (-1165) (-569)) 74)) (-3843 (((-52) $ (-1183) (-52)) NIL (|has| $ (-6 -4445)))) (-3773 (((-52) $ (-1183)) NIL)) (-2880 (((-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-649 (-52)) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3040 (((-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) 38 (|has| $ (-6 -4444))) (((-649 (-52)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106))))) (-1535 (((-1183) $) NIL (|has| (-1183) (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4445))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-2796 (((-649 (-1183)) $) NIL)) (-3937 (((-112) (-1183) $) NIL)) (-1640 (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL)) (-3813 (($ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) 46)) (-1755 (((-649 (-1183)) $) NIL)) (-3748 (((-112) (-1183) $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-4388 (((-383) $ (-1183)) 52)) (-2351 (((-649 (-1165)) $ (-1165)) 76)) (-3510 (((-52) $) NIL (|has| (-1183) (-855)))) (-3123 (((-3 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) "failed") (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL)) (-4420 (($ $ (-52)) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-297 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL (-12 (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-312 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106))))) (-3851 (((-649 (-52)) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 (((-52) $ (-1183)) NIL) (((-52) $ (-1183) (-52)) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL)) (-2255 (($ $ (-1183)) 54)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-52) (-1106)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) 40)) (-2441 (($ $ $) 41)) (-3793 (((-867) $) NIL (-2774 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-618 (-867)))))) (-1505 (($ $ (-1183) (-383)) 50)) (-1382 (($ $ (-1183) (-383)) 51)) (-1441 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 (-1183)) (|:| -2214 (-52)))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-52) (-1106)) (|has| (-2 (|:| -2003 (-1183)) (|:| -2214 (-52))) (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1069) (-13 (-1199 (-1183) (-52)) (-10 -8 (-15 -2441 ($ $ $)) (-15 -3174 ($)) (-15 -4303 ($ $)) (-15 -4191 ($ $)) (-15 -4076 ($ $)) (-15 -3979 ($ $)) (-15 -3874 ($ $)) (-15 -1865 ($ $)) (-15 -1744 ($ $)) (-15 -1617 ($ $)) (-15 -1505 ($ $ (-1183) (-383))) (-15 -1382 ($ $ (-1183) (-383))) (-15 -4388 ((-383) $ (-1183))) (-15 -2351 ((-649 (-1165)) $ (-1165))) (-15 -2255 ($ $ (-1183))) (-15 -2159 ($)) (-15 -2060 ((-3 (-1165) "failed") $ (-1165) (-569))) (-6 -4444)))) (T -1069))
-((-2441 (*1 *1 *1 *1) (-5 *1 (-1069))) (-3174 (*1 *1) (-5 *1 (-1069))) (-4303 (*1 *1 *1) (-5 *1 (-1069))) (-4191 (*1 *1 *1) (-5 *1 (-1069))) (-4076 (*1 *1 *1) (-5 *1 (-1069))) (-3979 (*1 *1 *1) (-5 *1 (-1069))) (-3874 (*1 *1 *1) (-5 *1 (-1069))) (-1865 (*1 *1 *1) (-5 *1 (-1069))) (-1744 (*1 *1 *1) (-5 *1 (-1069))) (-1617 (*1 *1 *1) (-5 *1 (-1069))) (-1505 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))) (-1382 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))) (-4388 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-383)) (-5 *1 (-1069)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1069)) (-5 *3 (-1165)))) (-2255 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1069)))) (-2159 (*1 *1) (-5 *1 (-1069))) (-2060 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-1069)))))
-(-13 (-1199 (-1183) (-52)) (-10 -8 (-15 -2441 ($ $ $)) (-15 -3174 ($)) (-15 -4303 ($ $)) (-15 -4191 ($ $)) (-15 -4076 ($ $)) (-15 -3979 ($ $)) (-15 -3874 ($ $)) (-15 -1865 ($ $)) (-15 -1744 ($ $)) (-15 -1617 ($ $)) (-15 -1505 ($ $ (-1183) (-383))) (-15 -1382 ($ $ (-1183) (-383))) (-15 -4388 ((-383) $ (-1183))) (-15 -2351 ((-649 (-1165)) $ (-1165))) (-15 -2255 ($ $ (-1183))) (-15 -2159 ($)) (-15 -2060 ((-3 (-1165) "failed") $ (-1165) (-569))) (-6 -4444)))
-((-1566 (($ $) 46)) (-2951 (((-112) $ $) 82)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) 253) (((-3 $ "failed") (-958 (-569))) 252) (((-3 $ "failed") (-958 |#2|)) 255)) (-3148 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) NIL) (($ (-958 (-412 (-569)))) 241) (($ (-958 (-569))) 237) (($ (-958 |#2|)) 257)) (-1879 (($ $) NIL) (($ $ |#4|) 44)) (-2303 (((-112) $ $) 131) (((-112) $ (-649 $)) 135)) (-2328 (((-112) $) 60)) (-1887 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 125)) (-3632 (($ $) 160)) (-3251 (($ $) 156)) (-3357 (($ $) 155)) (-2852 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2748 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4337 (((-112) $ $) 143) (((-112) $ (-649 $)) 144)) (-1873 ((|#4| $) 32)) (-3551 (($ $ $) 128)) (-2416 (((-112) $) 59)) (-1775 (((-776) $) 35)) (-3273 (($ $) 174)) (-3407 (($ $) 171)) (-1961 (((-649 $) $) 72)) (-2241 (($ $) 62)) (-3526 (($ $) 167)) (-2057 (((-649 $) $) 69)) (-2155 (($ $) 64)) (-1855 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3452 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-776))) $ $) 130)) (-3641 (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $) 126) (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $ |#4|) 127)) (-3739 (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $) 121) (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $ |#4|) 123)) (-2638 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2537 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1455 (((-649 $) $) 54)) (-2010 (((-112) $ $) 140) (((-112) $ (-649 $)) 141)) (-2642 (($ $ $) 116)) (-2305 (($ $) 37)) (-1672 (((-112) $ $) 80)) (-2110 (((-112) $ $) 136) (((-112) $ (-649 $)) 138)) (-2765 (($ $ $) 112)) (-1669 (($ $) 41)) (-1864 ((|#2| |#2| $) 164) (($ (-649 $)) NIL) (($ $ $) NIL)) (-4331 (($ $ |#2|) NIL) (($ $ $) 153)) (-3175 (($ $ |#2|) 148) (($ $ $) 151)) (-1563 (($ $) 49)) (-1328 (($ $) 55)) (-1408 (((-898 (-383)) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (($ (-958 (-412 (-569)))) 243) (($ (-958 (-569))) 239) (($ (-958 |#2|)) 254) (((-1165) $) 281) (((-958 |#2|) $) 184)) (-3793 (((-867) $) 29) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-958 |#2|) $) 185) (($ (-412 (-569))) NIL) (($ $) NIL)) (-3055 (((-3 (-112) "failed") $ $) 79)))
-(((-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -1864 (|#1| |#1| |#1|)) (-15 -1864 (|#1| (-649 |#1|))) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 ((-958 |#2|) |#1|)) (-15 -1408 ((-958 |#2|) |#1|)) (-15 -1408 ((-1165) |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3407 (|#1| |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -1864 (|#2| |#2| |#1|)) (-15 -4331 (|#1| |#1| |#1|)) (-15 -3175 (|#1| |#1| |#1|)) (-15 -4331 (|#1| |#1| |#2|)) (-15 -3175 (|#1| |#1| |#2|)) (-15 -3251 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -1408 (|#1| (-958 |#2|))) (-15 -3148 (|#1| (-958 |#2|))) (-15 -4378 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1408 (|#1| (-958 (-569)))) (-15 -3148 (|#1| (-958 (-569)))) (-15 -4378 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1408 (|#1| (-958 (-412 (-569))))) (-15 -3148 (|#1| (-958 (-412 (-569))))) (-15 -4378 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -2642 (|#1| |#1| |#1|)) (-15 -2765 (|#1| |#1| |#1|)) (-15 -3452 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3830 (-776))) |#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -1887 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -3641 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1| |#4|)) (-15 -3641 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -3739 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -3365 |#1|)) |#1| |#1| |#4|)) (-15 -3739 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1| |#4|)) (-15 -2638 (|#1| |#1| |#1| |#4|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2638 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1| |#4|)) (-15 -2852 (|#1| |#1| |#1| |#4|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#1|)) (-15 -4337 ((-112) |#1| (-649 |#1|))) (-15 -4337 ((-112) |#1| |#1|)) (-15 -2010 ((-112) |#1| (-649 |#1|))) (-15 -2010 ((-112) |#1| |#1|)) (-15 -2110 ((-112) |#1| (-649 |#1|))) (-15 -2110 ((-112) |#1| |#1|)) (-15 -2303 ((-112) |#1| (-649 |#1|))) (-15 -2303 ((-112) |#1| |#1|)) (-15 -2951 ((-112) |#1| |#1|)) (-15 -1672 ((-112) |#1| |#1|)) (-15 -3055 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1961 ((-649 |#1|) |#1|)) (-15 -2057 ((-649 |#1|) |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2328 ((-112) |#1|)) (-15 -2416 ((-112) |#1|)) (-15 -1879 (|#1| |#1| |#4|)) (-15 -1855 (|#1| |#1| |#4|)) (-15 -1328 (|#1| |#1|)) (-15 -1455 ((-649 |#1|) |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -1775 ((-776) |#1|)) (-15 -1873 (|#4| |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -3793 (|#1| |#4|)) (-15 -4378 ((-3 |#4| "failed") |#1|)) (-15 -3148 (|#4| |#1|)) (-15 -1855 (|#2| |#1|)) (-15 -1879 (|#1| |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-1071 |#2| |#3| |#4|) (-1055) (-798) (-855)) (T -1070))
-NIL
-(-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -1864 (|#1| |#1| |#1|)) (-15 -1864 (|#1| (-649 |#1|))) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 ((-958 |#2|) |#1|)) (-15 -1408 ((-958 |#2|) |#1|)) (-15 -1408 ((-1165) |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3407 (|#1| |#1|)) (-15 -3526 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -1864 (|#2| |#2| |#1|)) (-15 -4331 (|#1| |#1| |#1|)) (-15 -3175 (|#1| |#1| |#1|)) (-15 -4331 (|#1| |#1| |#2|)) (-15 -3175 (|#1| |#1| |#2|)) (-15 -3251 (|#1| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -1408 (|#1| (-958 |#2|))) (-15 -3148 (|#1| (-958 |#2|))) (-15 -4378 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1408 (|#1| (-958 (-569)))) (-15 -3148 (|#1| (-958 (-569)))) (-15 -4378 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1408 (|#1| (-958 (-412 (-569))))) (-15 -3148 (|#1| (-958 (-412 (-569))))) (-15 -4378 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -2642 (|#1| |#1| |#1|)) (-15 -2765 (|#1| |#1| |#1|)) (-15 -3452 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3830 (-776))) |#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -1887 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -3641 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1| |#4|)) (-15 -3641 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -3739 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -3365 |#1|)) |#1| |#1| |#4|)) (-15 -3739 ((-2 (|:| -1433 |#1|) (|:| |gap| (-776)) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1| |#4|)) (-15 -2638 (|#1| |#1| |#1| |#4|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2638 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1| |#1| |#4|)) (-15 -2852 (|#1| |#1| |#1| |#4|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -2852 (|#1| |#1| |#1|)) (-15 -4337 ((-112) |#1| (-649 |#1|))) (-15 -4337 ((-112) |#1| |#1|)) (-15 -2010 ((-112) |#1| (-649 |#1|))) (-15 -2010 ((-112) |#1| |#1|)) (-15 -2110 ((-112) |#1| (-649 |#1|))) (-15 -2110 ((-112) |#1| |#1|)) (-15 -2303 ((-112) |#1| (-649 |#1|))) (-15 -2303 ((-112) |#1| |#1|)) (-15 -2951 ((-112) |#1| |#1|)) (-15 -1672 ((-112) |#1| |#1|)) (-15 -3055 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1961 ((-649 |#1|) |#1|)) (-15 -2057 ((-649 |#1|) |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2328 ((-112) |#1|)) (-15 -2416 ((-112) |#1|)) (-15 -1879 (|#1| |#1| |#4|)) (-15 -1855 (|#1| |#1| |#4|)) (-15 -1328 (|#1| |#1|)) (-15 -1455 ((-649 |#1|) |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -1775 ((-776) |#1|)) (-15 -1873 (|#4| |#1|)) (-15 -1408 ((-541) |#1|)) (-15 -1408 ((-898 (-569)) |#1|)) (-15 -1408 ((-898 (-383)) |#1|)) (-15 -3793 (|#1| |#4|)) (-15 -4378 ((-3 |#4| "failed") |#1|)) (-15 -3148 (|#4| |#1|)) (-15 -1855 (|#2| |#1|)) (-15 -1879 (|#1| |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 |#3|) $) 112)) (-3763 (((-1179 $) $ |#3|) 127) (((-1179 |#1|) $) 126)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-3087 (($ $) 90 (|has| |#1| (-561)))) (-2883 (((-112) $) 92 (|has| |#1| (-561)))) (-3605 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-1566 (($ $) 273)) (-2951 (((-112) $ $) 259)) (-1678 (((-3 $ "failed") $ $) 20)) (-4095 (($ $ $) 218 (|has| |#1| (-561)))) (-2807 (((-649 $) $ $) 213 (|has| |#1| (-561)))) (-3253 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-2078 (($ $) 100 (|has| |#1| (-457)))) (-2508 (((-423 $) $) 99 (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-958 (-412 (-569)))) 233 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))) (((-3 $ "failed") (-958 (-569))) 230 (-2774 (-12 (-1745 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183)))))) (((-3 $ "failed") (-958 |#1|)) 227 (-2774 (-12 (-1745 (|has| |#1| (-38 (-412 (-569))))) (-1745 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1183)))) (-12 (-1745 (|has| |#1| (-550))) (-1745 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (-1745 (|has| |#1| (-998 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))))) (-3148 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) ((|#3| $) 139) (($ (-958 (-412 (-569)))) 232 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))) (($ (-958 (-569))) 229 (-2774 (-12 (-1745 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183)))))) (($ (-958 |#1|)) 226 (-2774 (-12 (-1745 (|has| |#1| (-38 (-412 (-569))))) (-1745 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1183)))) (-12 (-1745 (|has| |#1| (-550))) (-1745 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (-1745 (|has| |#1| (-998 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))))) (-4202 (($ $ $ |#3|) 110 (|has| |#1| (-173))) (($ $ $) 214 (|has| |#1| (-561)))) (-1879 (($ $) 156) (($ $ |#3|) 268)) (-1630 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-2303 (((-112) $ $) 258) (((-112) $ (-649 $)) 257)) (-2888 (((-3 $ "failed") $) 37)) (-2328 (((-112) $) 266)) (-1887 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 238)) (-3632 (($ $) 207 (|has| |#1| (-457)))) (-4260 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1863 (((-649 $) $) 111)) (-4073 (((-112) $) 98 (|has| |#1| (-915)))) (-3251 (($ $) 223 (|has| |#1| (-561)))) (-3357 (($ $) 224 (|has| |#1| (-561)))) (-2852 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2748 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3972 (($ $ |#1| |#2| $) 174)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2623 (((-112) $) 35)) (-3238 (((-776) $) 171)) (-4337 (((-112) $ $) 252) (((-112) $ (-649 $)) 251)) (-3749 (($ $ $ $ $) 209 (|has| |#1| (-561)))) (-1873 ((|#3| $) 277)) (-1697 (($ (-1179 |#1|) |#3|) 119) (($ (-1179 $) |#3|) 118)) (-2518 (((-649 $) $) 128)) (-4343 (((-112) $) 154)) (-3920 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-3551 (($ $ $) 237)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |#3|) 122)) (-2416 (((-112) $) 267)) (-3712 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-1775 (((-776) $) 276)) (-4059 (($ (-1 |#2| |#2|) $) 173)) (-1344 (($ (-1 |#1| |#1|) $) 153)) (-3397 (((-3 |#3| "failed") $) 125)) (-3273 (($ $) 204 (|has| |#1| (-457)))) (-3407 (($ $) 205 (|has| |#1| (-457)))) (-1961 (((-649 $) $) 262)) (-2241 (($ $) 265)) (-3526 (($ $) 206 (|has| |#1| (-457)))) (-2057 (((-649 $) $) 263)) (-2155 (($ $) 264)) (-1846 (($ $) 151)) (-1855 ((|#1| $) 150) (($ $ |#3|) 269)) (-1835 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3452 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-776))) $ $) 236)) (-3641 (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $) 240) (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $ |#3|) 239)) (-3739 (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $) 242) (((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $ |#3|) 241)) (-2638 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2537 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1550 (((-1165) $) 10)) (-3425 (($ $ $) 212 (|has| |#1| (-561)))) (-1455 (((-649 $) $) 271)) (-2753 (((-3 (-649 $) "failed") $) 116)) (-2633 (((-3 (-649 $) "failed") $) 117)) (-2865 (((-3 (-2 (|:| |var| |#3|) (|:| -4320 (-776))) "failed") $) 115)) (-2010 (((-112) $ $) 254) (((-112) $ (-649 $)) 253)) (-2642 (($ $ $) 234)) (-2305 (($ $) 275)) (-1672 (((-112) $ $) 260)) (-2110 (((-112) $ $) 256) (((-112) $ (-649 $)) 255)) (-2765 (($ $ $) 235)) (-1669 (($ $) 274)) (-3545 (((-1126) $) 11)) (-2929 (((-2 (|:| -1864 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-561)))) (-3054 (((-2 (|:| -1864 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-561)))) (-1824 (((-112) $) 168)) (-1833 ((|#1| $) 169)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1864 ((|#1| |#1| $) 208 (|has| |#1| (-457))) (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3796 (((-423 $) $) 101 (|has| |#1| (-915)))) (-4251 (((-2 (|:| -1864 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-561)))) (-2405 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-4331 (($ $ |#1|) 221 (|has| |#1| (-561))) (($ $ $) 219 (|has| |#1| (-561)))) (-3175 (($ $ |#1|) 222 (|has| |#1| (-561))) (($ $ $) 220 (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-4304 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3514 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-3868 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-1563 (($ $) 272)) (-1328 (($ $) 270)) (-1408 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541))))) (($ (-958 (-412 (-569)))) 231 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183))))) (($ (-958 (-569))) 228 (-2774 (-12 (-1745 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1183)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1183)))))) (($ (-958 |#1|)) 225 (|has| |#3| (-619 (-1183)))) (((-1165) $) 203 (-12 (|has| |#1| (-1044 (-569))) (|has| |#3| (-619 (-1183))))) (((-958 |#1|) $) 202 (|has| |#3| (-619 (-1183))))) (-3479 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1756 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-958 |#1|) $) 201 (|has| |#3| (-619 (-1183)))) (($ (-412 (-569))) 80 (-2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) 170)) (-4184 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-4030 (((-3 $ "failed") $) 81 (-2774 (-1756 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) 32 T CONST)) (-3877 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1803 (($) 19 T CONST)) (-3055 (((-3 (-112) "failed") $ $) 261)) (-1813 (($) 34 T CONST)) (-2570 (($ $ $ $ (-776)) 210 (|has| |#1| (-561)))) (-2702 (($ $ $ (-776)) 211 (|has| |#1| (-561)))) (-2830 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1071 |#1| |#2| |#3|) (-140) (-1055) (-798) (-855)) (T -1071))
-((-1873 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-2305 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1669 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1566 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1563 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1455 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1855 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-1879 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2241 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2155 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2057 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-1961 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-3055 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1672 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2303 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2303 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2110 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2110 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2010 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-4337 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4337 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2852 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2748 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2852 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2748 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2638 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2638 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2537 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3739 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -3365 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3739 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -3365 *1))) (-4 *1 (-1071 *4 *5 *3)))) (-3641 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3641 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1071 *4 *5 *3)))) (-1887 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3551 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3452 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3830 (-776)))) (-4 *1 (-1071 *3 *4 *5)))) (-2765 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2642 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4378 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))) (-4378 (*1 *1 *2) (|partial| -2774 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3148 (*1 *1 *2) (-2774 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1408 (*1 *1 *2) (-2774 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))))) (-4378 (*1 *1 *2) (|partial| -2774 (-12 (-5 *2 (-958 *3)) (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-1745 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1745 (-4 *3 (-550))) (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1745 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3148 (*1 *1 *2) (-2774 (-12 (-5 *2 (-958 *3)) (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-1745 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1745 (-4 *3 (-550))) (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1745 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *5 (-619 (-1183))) (-4 *4 (-798)) (-4 *5 (-855)))) (-3357 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3251 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-4331 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3175 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-4331 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-4095 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-4251 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1864 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-3054 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1864 *1) (|:| |coef1| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1864 *1) (|:| |coef2| *1))) (-4 *1 (-1071 *3 *4 *5)))) (-4202 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2807 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))) (-3425 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2702 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-2570 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-3749 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1864 (*1 *2 *2 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3632 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3526 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3407 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3273 (*1 *1 *1) (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))))
-(-13 (-955 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1873 (|t#3| $)) (-15 -1775 ((-776) $)) (-15 -2305 ($ $)) (-15 -1669 ($ $)) (-15 -1566 ($ $)) (-15 -1563 ($ $)) (-15 -1455 ((-649 $) $)) (-15 -1328 ($ $)) (-15 -1855 ($ $ |t#3|)) (-15 -1879 ($ $ |t#3|)) (-15 -2416 ((-112) $)) (-15 -2328 ((-112) $)) (-15 -2241 ($ $)) (-15 -2155 ($ $)) (-15 -2057 ((-649 $) $)) (-15 -1961 ((-649 $) $)) (-15 -3055 ((-3 (-112) "failed") $ $)) (-15 -1672 ((-112) $ $)) (-15 -2951 ((-112) $ $)) (-15 -2303 ((-112) $ $)) (-15 -2303 ((-112) $ (-649 $))) (-15 -2110 ((-112) $ $)) (-15 -2110 ((-112) $ (-649 $))) (-15 -2010 ((-112) $ $)) (-15 -2010 ((-112) $ (-649 $))) (-15 -4337 ((-112) $ $)) (-15 -4337 ((-112) $ (-649 $))) (-15 -2852 ($ $ $)) (-15 -2748 ($ $ $)) (-15 -2852 ($ $ $ |t#3|)) (-15 -2748 ($ $ $ |t#3|)) (-15 -2638 ($ $ $)) (-15 -2537 ($ $ $)) (-15 -2638 ($ $ $ |t#3|)) (-15 -2537 ($ $ $ |t#3|)) (-15 -3739 ((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $)) (-15 -3739 ((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -3365 $)) $ $ |t#3|)) (-15 -3641 ((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -3641 ((-2 (|:| -1433 $) (|:| |gap| (-776)) (|:| -2726 $) (|:| -3365 $)) $ $ |t#3|)) (-15 -1887 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -3551 ($ $ $)) (-15 -3452 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-776))) $ $)) (-15 -2765 ($ $ $)) (-15 -2642 ($ $ $)) (IF (|has| |t#3| (-619 (-1183))) (PROGN (-6 (-618 (-958 |t#1|))) (-6 (-619 (-958 |t#1|))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -4378 ((-3 $ "failed") (-958 (-412 (-569))))) (-15 -3148 ($ (-958 (-412 (-569))))) (-15 -1408 ($ (-958 (-412 (-569))))) (-15 -4378 ((-3 $ "failed") (-958 (-569)))) (-15 -3148 ($ (-958 (-569)))) (-15 -1408 ($ (-958 (-569)))) (IF (|has| |t#1| (-998 (-569))) |%noBranch| (PROGN (-15 -4378 ((-3 $ "failed") (-958 |t#1|))) (-15 -3148 ($ (-958 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4378 ((-3 $ "failed") (-958 (-569)))) (-15 -3148 ($ (-958 (-569)))) (-15 -1408 ($ (-958 (-569)))) (IF (|has| |t#1| (-550)) |%noBranch| (PROGN (-15 -4378 ((-3 $ "failed") (-958 |t#1|))) (-15 -3148 ($ (-958 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) |%noBranch| (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4378 ((-3 $ "failed") (-958 |t#1|))) (-15 -3148 ($ (-958 |t#1|)))))) (-15 -1408 ($ (-958 |t#1|))) (IF (|has| |t#1| (-1044 (-569))) (-6 (-619 (-1165))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3357 ($ $)) (-15 -3251 ($ $)) (-15 -3175 ($ $ |t#1|)) (-15 -4331 ($ $ |t#1|)) (-15 -3175 ($ $ $)) (-15 -4331 ($ $ $)) (-15 -4095 ($ $ $)) (-15 -4251 ((-2 (|:| -1864 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3054 ((-2 (|:| -1864 $) (|:| |coef1| $)) $ $)) (-15 -2929 ((-2 (|:| -1864 $) (|:| |coef2| $)) $ $)) (-15 -4202 ($ $ $)) (-15 -2807 ((-649 $) $ $)) (-15 -3425 ($ $ $)) (-15 -2702 ($ $ $ (-776))) (-15 -2570 ($ $ $ $ (-776))) (-15 -3749 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -1864 (|t#1| |t#1| $)) (-15 -3632 ($ $)) (-15 -3526 ($ $)) (-15 -3407 ($ $)) (-15 -3273 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-618 (-958 |#1|)) |has| |#3| (-619 (-1183))) ((-173) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-619 (-958 |#1|)) |has| |#3| (-619 (-1183))) ((-619 (-1165)) -12 (|has| |#1| (-1044 (-569))) (|has| |#3| (-619 (-1183)))) ((-293) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2774 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#2| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 |#1|) . T) ((-1044 |#3|) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) |has| |#1| (-915)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-2682 (((-649 (-1141)) $) 18)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 27) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-1141) $) 20)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1072) (-13 (-1089) (-10 -8 (-15 -2682 ((-649 (-1141)) $)) (-15 -3583 ((-1141) $))))) (T -1072))
-((-2682 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1072)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1072)))))
-(-13 (-1089) (-10 -8 (-15 -2682 ((-649 (-1141)) $)) (-15 -3583 ((-1141) $))))
-((-3192 (((-112) |#3| $) 15)) (-3964 (((-3 $ "failed") |#3| (-927)) 29)) (-2888 (((-3 |#3| "failed") |#3| $) 45)) (-4237 (((-112) |#3| $) 19)) (-4327 (((-112) |#3| $) 17)))
-(((-1073 |#1| |#2| |#3|) (-10 -8 (-15 -3964 ((-3 |#1| "failed") |#3| (-927))) (-15 -2888 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4237 ((-112) |#3| |#1|)) (-15 -4327 ((-112) |#3| |#1|)) (-15 -3192 ((-112) |#3| |#1|))) (-1074 |#2| |#3|) (-13 (-853) (-367)) (-1249 |#2|)) (T -1073))
-NIL
-(-10 -8 (-15 -3964 ((-3 |#1| "failed") |#3| (-927))) (-15 -2888 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4237 ((-112) |#3| |#1|)) (-15 -4327 ((-112) |#3| |#1|)) (-15 -3192 ((-112) |#3| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) |#2| $) 22)) (-2552 (((-569) |#2| $) 23)) (-3964 (((-3 $ "failed") |#2| (-927)) 16)) (-3871 ((|#1| |#2| $ |#1|) 14)) (-2888 (((-3 |#2| "failed") |#2| $) 19)) (-4237 (((-112) |#2| $) 20)) (-4327 (((-112) |#2| $) 21)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-4143 ((|#2| $) 18)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-3088 ((|#1| |#2| $ |#1|) 15)) (-4054 (((-649 $) |#2|) 17)) (-2919 (((-112) $ $) 6)))
-(((-1074 |#1| |#2|) (-140) (-13 (-853) (-367)) (-1249 |t#1|)) (T -1074))
-((-2552 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-569)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-112)))) (-4327 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-112)))) (-4237 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-112)))) (-2888 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1249 *3)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1249 *3)))) (-4054 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-649 *1)) (-4 *1 (-1074 *4 *3)))) (-3964 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367))) (-4 *1 (-1074 *4 *2)) (-4 *2 (-1249 *4)))) (-3088 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1249 *2)))) (-3871 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1249 *2)))))
-(-13 (-1106) (-10 -8 (-15 -2552 ((-569) |t#2| $)) (-15 -3192 ((-112) |t#2| $)) (-15 -4327 ((-112) |t#2| $)) (-15 -4237 ((-112) |t#2| $)) (-15 -2888 ((-3 |t#2| "failed") |t#2| $)) (-15 -4143 (|t#2| $)) (-15 -4054 ((-649 $) |t#2|)) (-15 -3964 ((-3 $ "failed") |t#2| (-927))) (-15 -3088 (|t#1| |t#2| $ |t#1|)) (-15 -3871 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-4334 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-776)) 114)) (-2115 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776)) 63)) (-2456 (((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-776)) 99)) (-2457 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-2211 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776)) 65) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776) (-112)) 67)) (-2307 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 87)) (-1408 (((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) 92)) (-1379 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-112)) 62)) (-2368 (((-776) (-649 |#4|) (-649 |#5|)) 21)))
-(((-1075 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2368 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -2457 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -1379 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-112))) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4334 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-776))) (-15 -1408 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2456 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-776)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1075))
-((-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9)))) (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165)) (-5 *1 (-1075 *4 *5 *6 *7 *8)))) (-4334 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3660 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3660 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9)) (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1075 *7 *8 *9 *10 *11)))) (-2307 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-2307 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-2211 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1075 *7 *8 *9 *3 *4)) (-4 *4 (-1077 *7 *8 *9 *3)))) (-2115 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-1379 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))) (-2368 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2368 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -2457 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -1379 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-112))) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4334 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-776))) (-15 -1408 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2456 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-776))))
-((-2848 (((-112) |#5| $) 26)) (-2634 (((-112) |#5| $) 29)) (-2959 (((-112) |#5| $) 18) (((-112) $) 52)) (-4333 (((-649 $) |#5| $) NIL) (((-649 $) (-649 |#5|) $) 94) (((-649 $) (-649 |#5|) (-649 $)) 92) (((-649 $) |#5| (-649 $)) 95)) (-2907 (($ $ |#5|) NIL) (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 73) (((-649 $) (-649 |#5|) $) 75) (((-649 $) (-649 |#5|) (-649 $)) 77)) (-3304 (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 64) (((-649 $) (-649 |#5|) $) 69) (((-649 $) (-649 |#5|) (-649 $)) 71)) (-2743 (((-112) |#5| $) 32)))
-(((-1076 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2907 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2907 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2907 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2907 ((-649 |#1|) |#5| |#1|)) (-15 -3304 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -3304 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -3304 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -3304 ((-649 |#1|) |#5| |#1|)) (-15 -4333 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -4333 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -4333 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -4333 ((-649 |#1|) |#5| |#1|)) (-15 -2634 ((-112) |#5| |#1|)) (-15 -2959 ((-112) |#1|)) (-15 -2743 ((-112) |#5| |#1|)) (-15 -2848 ((-112) |#5| |#1|)) (-15 -2959 ((-112) |#5| |#1|)) (-15 -2907 (|#1| |#1| |#5|))) (-1077 |#2| |#3| |#4| |#5|) (-457) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -1076))
-NIL
-(-10 -8 (-15 -2907 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2907 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2907 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2907 ((-649 |#1|) |#5| |#1|)) (-15 -3304 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -3304 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -3304 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -3304 ((-649 |#1|) |#5| |#1|)) (-15 -4333 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -4333 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -4333 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -4333 ((-649 |#1|) |#5| |#1|)) (-15 -2634 ((-112) |#5| |#1|)) (-15 -2959 ((-112) |#1|)) (-15 -2743 ((-112) |#5| |#1|)) (-15 -2848 ((-112) |#5| |#1|)) (-15 -2959 ((-112) |#5| |#1|)) (-15 -2907 (|#1| |#1| |#5|)))
-((-2415 (((-112) $ $) 7)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) 86)) (-3465 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1710 (((-649 |#3|) $) 34)) (-2686 (((-112) $) 27)) (-4276 (((-112) $) 18 (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) 102) (((-112) $) 98)) (-2874 ((|#4| |#4| $) 93)) (-2078 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| $) 127)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) 28)) (-2716 (((-112) $ (-776)) 45)) (-1415 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) 80)) (-4188 (($) 46 T CONST)) (-3584 (((-112) $) 23 (|has| |#1| (-561)))) (-3778 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3685 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2576 (((-112) $) 26 (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4374 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) 37)) (-3148 (($ (-649 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2516 ((|#4| |#4| $) 90)) (-3547 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3593 ((|#4| |#4| $) 88)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) 106)) (-2848 (((-112) |#4| $) 137)) (-2634 (((-112) |#4| $) 134)) (-2959 (((-112) |#4| $) 138) (((-112) $) 135)) (-2880 (((-649 |#4|) $) 53 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) 105) (((-112) $) 104)) (-1873 ((|#3| $) 35)) (-1689 (((-112) $ (-776)) 44)) (-3040 (((-649 |#4|) $) 54 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 48)) (-3097 (((-649 |#3|) $) 33)) (-3116 (((-112) |#3| $) 32)) (-2433 (((-112) $ (-776)) 43)) (-1550 (((-1165) $) 10)) (-3533 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-3425 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| |#4| $) 128)) (-1722 (((-3 |#4| "failed") $) 84)) (-3638 (((-649 $) |#4| $) 130)) (-2533 (((-3 (-112) (-649 $)) |#4| $) 133)) (-3736 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4333 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-1551 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1447 (((-649 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-2642 ((|#4| |#4| $) 91)) (-1672 (((-112) $ $) 111)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) 101) (((-112) $) 97)) (-2765 ((|#4| |#4| $) 92)) (-3545 (((-1126) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3124 (((-3 $ "failed") $ |#4|) 79)) (-2907 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-2911 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) 39)) (-3218 (((-112) $) 42)) (-3597 (($) 41)) (-3868 (((-776) $) 107)) (-3558 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4444)))) (-3959 (($ $) 40)) (-1408 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 61)) (-2792 (($ $ |#3|) 29)) (-3013 (($ $ |#3|) 31)) (-2408 (($ $) 89)) (-2900 (($ $ |#3|) 30)) (-3793 (((-867) $) 12) (((-649 |#4|) $) 38)) (-3023 (((-776) $) 77 (|has| |#3| (-372)))) (-1441 (((-112) $ $) 9)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-3304 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3037 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) 82)) (-2743 (((-112) |#4| $) 136)) (-2133 (((-112) |#3| $) 81)) (-2919 (((-112) $ $) 6)) (-2426 (((-776) $) 47 (|has| $ (-6 -4444)))))
-(((-1077 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1077))
-((-2959 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2848 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2743 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-2634 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2533 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3736 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3736 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-3638 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3533 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3425 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2078 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *1)))) (-4 *1 (-1077 *4 *5 *6 *3)))) (-4333 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-4333 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-4333 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-4333 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-3304 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-3304 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-3304 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-3304 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-1551 (*1 *1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1551 (*1 *1 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)))) (-2907 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)))) (-2907 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)))) (-2907 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *7)))) (-2907 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1077 *5 *6 *7 *8)))))
-(-13 (-1216 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2959 ((-112) |t#4| $)) (-15 -2848 ((-112) |t#4| $)) (-15 -2743 ((-112) |t#4| $)) (-15 -2959 ((-112) $)) (-15 -2634 ((-112) |t#4| $)) (-15 -2533 ((-3 (-112) (-649 $)) |t#4| $)) (-15 -3736 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) |t#4| $)) (-15 -3736 ((-112) |t#4| $)) (-15 -3638 ((-649 $) |t#4| $)) (-15 -3533 ((-3 |t#4| (-649 $)) |t#4| |t#4| $)) (-15 -3425 ((-649 (-2 (|:| |val| |t#4|) (|:| -3660 $))) |t#4| |t#4| $)) (-15 -2078 ((-649 (-2 (|:| |val| |t#4|) (|:| -3660 $))) |t#4| $)) (-15 -4333 ((-649 $) |t#4| $)) (-15 -4333 ((-649 $) (-649 |t#4|) $)) (-15 -4333 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -4333 ((-649 $) |t#4| (-649 $))) (-15 -3304 ((-649 $) |t#4| $)) (-15 -3304 ((-649 $) |t#4| (-649 $))) (-15 -3304 ((-649 $) (-649 |t#4|) $)) (-15 -3304 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -1551 ($ |t#4| $)) (-15 -1551 ($ (-649 |t#4|) $)) (-15 -2907 ((-649 $) |t#4| $)) (-15 -2907 ((-649 $) |t#4| (-649 $))) (-15 -2907 ((-649 $) (-649 |t#4|) $)) (-15 -2907 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -3465 ((-649 $) (-649 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
-((-3586 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|) 86)) (-3249 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|) 127)) (-3472 (((-649 |#5|) |#4| |#5|) 74)) (-3381 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1694 (((-1278)) 36)) (-1537 (((-1278)) 25)) (-1628 (((-1278) (-1165) (-1165) (-1165)) 32)) (-1449 (((-1278) (-1165) (-1165) (-1165)) 21)) (-3069 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#4| |#4| |#5|) 107)) (-3063 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#3| (-112)) 118) (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3151 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|) 113)))
-(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1449 ((-1278) (-1165) (-1165) (-1165))) (-15 -1537 ((-1278))) (-15 -1628 ((-1278) (-1165) (-1165) (-1165))) (-15 -1694 ((-1278))) (-15 -3069 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3063 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3063 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#3| (-112))) (-15 -3151 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3249 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3381 ((-112) |#4| |#5|)) (-15 -3381 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -3472 ((-649 |#5|) |#4| |#5|)) (-15 -3586 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1078))
-((-3586 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3472 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3381 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3381 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3249 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3151 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3063 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9)))) (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3660 *9)))) (-5 *1 (-1078 *6 *7 *4 *8 *9)))) (-3063 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-3069 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1694 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-1628 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-1537 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-1449 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1449 ((-1278) (-1165) (-1165) (-1165))) (-15 -1537 ((-1278))) (-15 -1628 ((-1278) (-1165) (-1165) (-1165))) (-15 -1694 ((-1278))) (-15 -3069 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3063 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3063 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#3| (-112))) (-15 -3151 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3249 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3381 ((-112) |#4| |#5|)) (-15 -3381 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -3472 ((-649 |#5|) |#4| |#5|)) (-15 -3586 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|)))
-((-2415 (((-112) $ $) NIL)) (-3865 (((-1222) $) 13)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1416 (((-1141) $) 10)) (-3793 (((-867) $) 20) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1079) (-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -3865 ((-1222) $))))) (T -1079))
-((-1416 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1079)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-1079)))))
-(-13 (-1089) (-10 -8 (-15 -1416 ((-1141) $)) (-15 -3865 ((-1222) $))))
-((-4309 (((-112) $ $) 7)))
-(((-1080) (-13 (-1223) (-10 -8 (-15 -4309 ((-112) $ $))))) (T -1080))
-((-4309 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1080)))))
-(-13 (-1223) (-10 -8 (-15 -4309 ((-112) $ $))))
-((-2415 (((-112) $ $) NIL)) (-3570 (((-1183) $) 8)) (-1550 (((-1165) $) 17)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 11)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 14)))
-(((-1081 |#1|) (-13 (-1106) (-10 -8 (-15 -3570 ((-1183) $)))) (-1183)) (T -1081))
-((-3570 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1081 *3)) (-14 *3 *2))))
-(-13 (-1106) (-10 -8 (-15 -3570 ((-1183) $))))
-((-2415 (((-112) $ $) NIL)) (-4272 (($ $ (-649 (-1183)) (-1 (-112) (-649 |#3|))) 34)) (-2137 (($ |#3| |#3|) 23) (($ |#3| |#3| (-649 (-1183))) 21)) (-2112 ((|#3| $) 13)) (-4378 (((-3 (-297 |#3|) "failed") $) 60)) (-3148 (((-297 |#3|) $) NIL)) (-3688 (((-649 (-1183)) $) 16)) (-1743 (((-898 |#1|) $) 11)) (-2101 ((|#3| $) 12)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1866 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-927)) 41)) (-3793 (((-867) $) 89) (($ (-297 |#3|)) 22)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 38)))
-(((-1082 |#1| |#2| |#3|) (-13 (-1106) (-289 |#3| |#3|) (-1044 (-297 |#3|)) (-10 -8 (-15 -2137 ($ |#3| |#3|)) (-15 -2137 ($ |#3| |#3| (-649 (-1183)))) (-15 -4272 ($ $ (-649 (-1183)) (-1 (-112) (-649 |#3|)))) (-15 -1743 ((-898 |#1|) $)) (-15 -2101 (|#3| $)) (-15 -2112 (|#3| $)) (-15 -1866 (|#3| $ |#3| (-927))) (-15 -3688 ((-649 (-1183)) $)))) (-1106) (-13 (-1055) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1082))
-((-2137 (*1 *1 *2 *2) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1082 *3 *4 *2)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-2137 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1082 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-4272 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1 (-112) (-649 *6))) (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1082 *4 *5 *6)))) (-1743 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 *2))) (-5 *2 (-898 *3)) (-5 *1 (-1082 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 *2))))) (-2101 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1082 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))))) (-2112 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1082 *3 *4 *2)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))))) (-1866 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1082 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-3688 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1183))) (-5 *1 (-1082 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
-(-13 (-1106) (-289 |#3| |#3|) (-1044 (-297 |#3|)) (-10 -8 (-15 -2137 ($ |#3| |#3|)) (-15 -2137 ($ |#3| |#3| (-649 (-1183)))) (-15 -4272 ($ $ (-649 (-1183)) (-1 (-112) (-649 |#3|)))) (-15 -1743 ((-898 |#1|) $)) (-15 -2101 (|#3| $)) (-15 -2112 (|#3| $)) (-15 -1866 (|#3| $ |#3| (-927))) (-15 -3688 ((-649 (-1183)) $))))
-((-2415 (((-112) $ $) NIL)) (-4241 (($ (-649 (-1082 |#1| |#2| |#3|))) 14)) (-1573 (((-649 (-1082 |#1| |#2| |#3|)) $) 21)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1866 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-927)) 27)) (-3793 (((-867) $) 17)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 20)))
-(((-1083 |#1| |#2| |#3|) (-13 (-1106) (-289 |#3| |#3|) (-10 -8 (-15 -4241 ($ (-649 (-1082 |#1| |#2| |#3|)))) (-15 -1573 ((-649 (-1082 |#1| |#2| |#3|)) $)) (-15 -1866 (|#3| $ |#3| (-927))))) (-1106) (-13 (-1055) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1083))
-((-4241 (*1 *1 *2) (-12 (-5 *2 (-649 (-1082 *3 *4 *5))) (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1083 *3 *4 *5)))) (-1573 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1082 *3 *4 *5))) (-5 *1 (-1083 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-1866 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1106)) (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1083 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))))
-(-13 (-1106) (-289 |#3| |#3|) (-10 -8 (-15 -4241 ($ (-649 (-1082 |#1| |#2| |#3|)))) (-15 -1573 ((-649 (-1082 |#1| |#2| |#3|)) $)) (-15 -1866 (|#3| $ |#3| (-927)))))
-((-2482 (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 88) (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 92) (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 90)))
-(((-1084 |#1| |#2|) (-10 -7 (-15 -2482 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -2482 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2482 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)))) (-13 (-310) (-147)) (-649 (-1183))) (T -1084))
-((-2482 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5)))))) (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *4)) (|:| -2960 (-649 (-958 *4)))))) (-5 *1 (-1084 *4 *5)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1183))))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5)))))) (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))))))
-(-10 -7 (-15 -2482 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -2482 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2482 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))))
-((-3796 (((-423 |#3|) |#3|) 18)))
-(((-1085 |#1| |#2| |#3|) (-10 -7 (-15 -3796 ((-423 |#3|) |#3|))) (-1249 (-412 (-569))) (-13 (-367) (-147) (-729 (-412 (-569)) |#1|)) (-1249 |#2|)) (T -1085))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-569)) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1085 *4 *5 *3)) (-4 *3 (-1249 *5)))))
-(-10 -7 (-15 -3796 ((-423 |#3|) |#3|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 139)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-367)))) (-3087 (($ $) NIL (|has| |#1| (-367)))) (-2883 (((-112) $) NIL (|has| |#1| (-367)))) (-1739 (((-694 |#1|) (-1273 $)) NIL) (((-694 |#1|)) 123)) (-3136 ((|#1| $) 128)) (-1372 (((-1196 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3470 (((-776)) 46 (|has| |#1| (-372)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-3390 (($ (-1273 |#1|) (-1273 $)) NIL) (($ (-1273 |#1|)) 49)) (-2324 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1635 (((-694 |#1|) $ (-1273 $)) NIL) (((-694 |#1|) $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 115) (((-694 |#1|) (-694 $)) 110)) (-3596 (($ |#2|) 67) (((-3 $ "failed") (-412 |#2|)) NIL (|has| |#1| (-367)))) (-2888 (((-3 $ "failed") $) NIL)) (-3975 (((-927)) 84)) (-3403 (($) 50 (|has| |#1| (-372)))) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1312 (($) NIL (|has| |#1| (-353)))) (-1940 (((-112) $) NIL (|has| |#1| (-353)))) (-2501 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-3110 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2623 (((-112) $) NIL)) (-2707 ((|#1| $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2091 ((|#2| $) 91 (|has| |#1| (-367)))) (-2855 (((-927) $) 148 (|has| |#1| (-372)))) (-3582 ((|#2| $) 64)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2305 (($) NIL (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 138 (|has| |#1| (-372)))) (-3545 (((-1126) $) NIL)) (-2330 (($) 130)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1507 (((-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))) NIL (|has| |#1| (-353)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-4304 ((|#1| (-1273 $)) NIL) ((|#1|) 119)) (-2601 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3514 (($ $) NIL (-2774 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2774 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2520 (((-694 |#1|) (-1273 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-4143 ((|#2|) 80)) (-2430 (($) NIL (|has| |#1| (-353)))) (-2960 (((-1273 |#1|) $ (-1273 $)) 96) (((-694 |#1|) (-1273 $) (-1273 $)) NIL) (((-1273 |#1|) $) 77) (((-694 |#1|) (-1273 $)) 92)) (-1408 (((-1273 |#1|) $) NIL) (($ (-1273 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (|has| |#1| (-353)))) (-3793 (((-867) $) 63) (($ (-569)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-367))) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-367)) (|has| |#1| (-1044 (-412 (-569))))))) (-4030 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3798 ((|#2| $) 89)) (-3302 (((-776)) 82 T CONST)) (-1441 (((-112) $ $) NIL)) (-1903 (((-1273 $)) 88)) (-2985 (((-112) $ $) NIL (|has| |#1| (-367)))) (-1803 (($) 32 T CONST)) (-1813 (($) 19 T CONST)) (-2830 (($ $) NIL (-2774 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2774 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1183))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2919 (((-112) $ $) 69)) (-3032 (($ $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) 73) (($ $ $) NIL)) (-3009 (($ $ $) 71)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367)))))
-(((-1086 |#1| |#2| |#3|) (-729 |#1| |#2|) (-173) (-1249 |#1|) |#2|) (T -1086))
+NIL
+(-13 (-21) (-1120))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1120) . T) ((-1108) . T))
+((-2917 (($ $) 17)) (-1482 (($ $) 25)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 55)) (-3829 (($ $) 27)) (-3231 (($ $) 12)) (-3465 (($ $) 43)) (-1410 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) 36)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 31) (($ (-569)) NIL) (($ (-412 (-569))) 31)) (-2721 (((-776)) 9)) (-2040 (($ $) 45)))
+(((-1067 |#1|) (-10 -8 (-15 -1482 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1068)) (T -1067))
+((-2721 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1067 *3)) (-4 *3 (-1068)))))
+(-10 -8 (-15 -1482 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 (((-569) $) 97)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2917 (($ $) 95)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 105)) (-2227 (((-112) $ $) 65)) (-2919 (((-569) $) 122)) (-4427 (($) 18 T CONST)) (-1482 (($ $) 94)) (-4381 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3150 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3712 (((-112) $) 120)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 104)) (-3829 (($ $) 100)) (-2051 (((-112) $) 121)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3380 (($ $ $) 119)) (-2839 (($ $ $) 118)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3231 (($ $) 96)) (-3465 (($ $) 98)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-1410 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-2721 (((-776)) 32 T CONST)) (-2040 (($ $) 99)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 123)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 116)) (-2956 (((-112) $ $) 115)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 117)) (-2944 (((-112) $ $) 114)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75)))
+(((-1068) (-140)) (T -1068))
+((-2271 (*1 *1 *1) (-4 *1 (-1068))) (-3829 (*1 *1 *1) (-4 *1 (-1068))) (-2040 (*1 *1 *1) (-4 *1 (-1068))) (-3465 (*1 *1 *1) (-4 *1 (-1068))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-569)))) (-3231 (*1 *1 *1) (-4 *1 (-1068))) (-2917 (*1 *1 *1) (-4 *1 (-1068))) (-1482 (*1 *1 *1) (-4 *1 (-1068))))
+(-13 (-367) (-853) (-1030) (-1046 (-569)) (-1046 (-412 (-569))) (-1010) (-619 (-898 (-383))) (-892 (-383)) (-147) (-10 -8 (-15 -3829 ($ $)) (-15 -2040 ($ $)) (-15 -3465 ($ $)) (-15 -1938 ((-569) $)) (-15 -3231 ($ $)) (-15 -2917 ($ $)) (-15 -1482 ($ $)) (-15 -2271 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1010) . T) ((-1030) . T) ((-1046 (-412 (-569))) . T) ((-1046 (-569)) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) |#2| $) 26)) (-3473 ((|#1| $) 10)) (-2919 (((-569) |#2| $) 116)) (-2793 (((-3 $ "failed") |#2| (-927)) 75)) (-4410 ((|#1| $) 31)) (-4358 ((|#1| |#2| $ |#1|) 40)) (-3442 (($ $) 28)) (-3086 (((-3 |#2| "failed") |#2| $) 111)) (-3712 (((-112) |#2| $) NIL)) (-2051 (((-112) |#2| $) NIL)) (-3699 (((-112) |#2| $) 27)) (-2058 ((|#1| $) 117)) (-4398 ((|#1| $) 30)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4061 ((|#2| $) 102)) (-3796 (((-867) $) 92)) (-1520 (((-112) $ $) NIL)) (-3091 ((|#1| |#2| $ |#1|) 41)) (-2444 (((-649 $) |#2|) 77)) (-2920 (((-112) $ $) 97)))
+(((-1069 |#1| |#2|) (-13 (-1076 |#1| |#2|) (-10 -8 (-15 -4398 (|#1| $)) (-15 -4410 (|#1| $)) (-15 -3473 (|#1| $)) (-15 -2058 (|#1| $)) (-15 -3442 ($ $)) (-15 -3699 ((-112) |#2| $)) (-15 -4358 (|#1| |#2| $ |#1|)))) (-13 (-853) (-367)) (-1251 |#1|)) (T -1069))
+((-4358 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-4398 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-4410 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-3473 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-2058 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-3442 (*1 *1 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-3699 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1069 *4 *3)) (-4 *3 (-1251 *4)))))
+(-13 (-1076 |#1| |#2|) (-10 -8 (-15 -4398 (|#1| $)) (-15 -4410 (|#1| $)) (-15 -3473 (|#1| $)) (-15 -2058 (|#1| $)) (-15 -3442 ($ $)) (-15 -3699 ((-112) |#2| $)) (-15 -4358 (|#1| |#2| $ |#1|))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) NIL)) (-4427 (($) NIL T CONST)) (-1909 (($ (-1185)) 10) (($ (-569)) 7)) (-4381 (((-3 (-569) "failed") $) NIL)) (-3150 (((-569) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($) NIL) (($ $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) NIL)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2606 (($ $) NIL)) (-3845 (($ $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-3593 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-2432 (($ $) NIL)) (-3962 (($ $) NIL)) (-1410 (((-569) $) 16) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL) (($ (-1185)) 9)) (-3796 (((-867) $) 23) (($ (-569)) 6) (($ $) NIL) (($ (-569)) 6)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) NIL)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3024 (($ $) 22) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL)))
+(((-1070) (-13 (-550) (-623 (-1185)) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1909 ($ (-1185))) (-15 -1909 ($ (-569)))))) (T -1070))
+((-1909 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1070)))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1070)))))
+(-13 (-550) (-623 (-1185)) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1909 ($ (-1185))) (-15 -1909 ($ (-569)))))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-2002 (((-1280) $ (-1185) (-1185)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3282 (($) 9)) (-3943 (((-52) $ (-1185) (-52)) NIL)) (-3286 (($ $) 32)) (-1509 (($ $) 30)) (-3221 (($ $) 29)) (-2936 (($ $) 31)) (-1595 (($ $) 35)) (-2836 (($ $) 36)) (-3046 (($ $) 28)) (-4388 (($ $) 33)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) 27 (|has| $ (-6 -4447)))) (-2359 (((-3 (-52) "failed") (-1185) $) 43)) (-4427 (($) NIL T CONST)) (-3987 (($) 7)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) 53 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-3 (-52) "failed") (-1185) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1635 (((-3 (-1167) "failed") $ (-1167) (-569)) 74)) (-3846 (((-52) $ (-1185) (-52)) NIL (|has| $ (-6 -4448)))) (-3776 (((-52) $ (-1185)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1185) $) NIL (|has| (-1185) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) 38 (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-3256 (((-1185) $) NIL (|has| (-1185) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2795 (((-649 (-1185)) $) NIL)) (-3804 (((-112) (-1185) $) NIL)) (-1877 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) 46)) (-1696 (((-649 (-1185)) $) NIL)) (-1414 (((-112) (-1185) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-1405 (((-383) $ (-1185)) 52)) (-1609 (((-649 (-1167)) $ (-1167)) 76)) (-3513 (((-52) $) NIL (|has| (-1185) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) "failed") (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL)) (-1682 (($ $ (-52)) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-4199 (((-649 (-52)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-52) $ (-1185)) NIL) (((-52) $ (-1185) (-52)) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-3028 (($ $ (-1185)) 54)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) 40)) (-2443 (($ $ $) 41)) (-3796 (((-867) $) NIL (-2776 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-618 (-867)))))) (-4196 (($ $ (-1185) (-383)) 50)) (-3096 (($ $ (-1185) (-383)) 51)) (-1520 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1071) (-13 (-1201 (-1185) (-52)) (-10 -8 (-15 -2443 ($ $ $)) (-15 -3987 ($)) (-15 -3046 ($ $)) (-15 -3221 ($ $)) (-15 -1509 ($ $)) (-15 -2936 ($ $)) (-15 -4388 ($ $)) (-15 -3286 ($ $)) (-15 -1595 ($ $)) (-15 -2836 ($ $)) (-15 -4196 ($ $ (-1185) (-383))) (-15 -3096 ($ $ (-1185) (-383))) (-15 -1405 ((-383) $ (-1185))) (-15 -1609 ((-649 (-1167)) $ (-1167))) (-15 -3028 ($ $ (-1185))) (-15 -3282 ($)) (-15 -1635 ((-3 (-1167) "failed") $ (-1167) (-569))) (-6 -4447)))) (T -1071))
+((-2443 (*1 *1 *1 *1) (-5 *1 (-1071))) (-3987 (*1 *1) (-5 *1 (-1071))) (-3046 (*1 *1 *1) (-5 *1 (-1071))) (-3221 (*1 *1 *1) (-5 *1 (-1071))) (-1509 (*1 *1 *1) (-5 *1 (-1071))) (-2936 (*1 *1 *1) (-5 *1 (-1071))) (-4388 (*1 *1 *1) (-5 *1 (-1071))) (-3286 (*1 *1 *1) (-5 *1 (-1071))) (-1595 (*1 *1 *1) (-5 *1 (-1071))) (-2836 (*1 *1 *1) (-5 *1 (-1071))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071)))) (-3096 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071)))) (-1405 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-383)) (-5 *1 (-1071)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1071)) (-5 *3 (-1167)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1071)))) (-3282 (*1 *1) (-5 *1 (-1071))) (-1635 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-1071)))))
+(-13 (-1201 (-1185) (-52)) (-10 -8 (-15 -2443 ($ $ $)) (-15 -3987 ($)) (-15 -3046 ($ $)) (-15 -3221 ($ $)) (-15 -1509 ($ $)) (-15 -2936 ($ $)) (-15 -4388 ($ $)) (-15 -3286 ($ $)) (-15 -1595 ($ $)) (-15 -2836 ($ $)) (-15 -4196 ($ $ (-1185) (-383))) (-15 -3096 ($ $ (-1185) (-383))) (-15 -1405 ((-383) $ (-1185))) (-15 -1609 ((-649 (-1167)) $ (-1167))) (-15 -3028 ($ $ (-1185))) (-15 -3282 ($)) (-15 -1635 ((-3 (-1167) "failed") $ (-1167) (-569))) (-6 -4447)))
+((-1568 (($ $) 46)) (-3623 (((-112) $ $) 82)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) 253) (((-3 $ "failed") (-958 (-569))) 252) (((-3 $ "failed") (-958 |#2|)) 255)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) NIL) (($ (-958 (-412 (-569)))) 241) (($ (-958 (-569))) 237) (($ (-958 |#2|)) 257)) (-1883 (($ $) NIL) (($ $ |#4|) 44)) (-2288 (((-112) $ $) 131) (((-112) $ (-649 $)) 135)) (-1345 (((-112) $) 60)) (-3514 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 125)) (-2727 (($ $) 160)) (-3508 (($ $) 156)) (-1996 (($ $) 155)) (-2700 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4200 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2140 (((-112) $ $) 143) (((-112) $ (-649 $)) 144)) (-3372 ((|#4| $) 32)) (-3189 (($ $ $) 128)) (-4107 (((-112) $) 59)) (-3762 (((-776) $) 35)) (-2442 (($ $) 174)) (-2382 (($ $) 171)) (-1872 (((-649 $) $) 72)) (-2890 (($ $) 62)) (-4203 (($ $) 167)) (-1602 (((-649 $) $) 69)) (-3237 (($ $) 64)) (-1857 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $) 130)) (-2834 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 126) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |#4|) 127)) (-1330 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $) 121) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |#4|) 123)) (-4421 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2763 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3737 (((-649 $) $) 54)) (-2310 (((-112) $ $) 140) (((-112) $ (-649 $)) 141)) (-1341 (($ $ $) 116)) (-2307 (($ $) 37)) (-2151 (((-112) $ $) 80)) (-4046 (((-112) $ $) 136) (((-112) $ (-649 $)) 138)) (-4348 (($ $ $) 112)) (-2122 (($ $) 41)) (-1870 ((|#2| |#2| $) 164) (($ (-649 $)) NIL) (($ $ $) NIL)) (-2081 (($ $ |#2|) NIL) (($ $ $) 153)) (-3997 (($ $ |#2|) 148) (($ $ $) 151)) (-3596 (($ $) 49)) (-1791 (($ $) 55)) (-1410 (((-898 (-383)) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (($ (-958 (-412 (-569)))) 243) (($ (-958 (-569))) 239) (($ (-958 |#2|)) 254) (((-1167) $) 281) (((-958 |#2|) $) 184)) (-3796 (((-867) $) 29) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-958 |#2|) $) 185) (($ (-412 (-569))) NIL) (($ $) NIL)) (-2136 (((-3 (-112) "failed") $ $) 79)))
+(((-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -1870 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 ((-958 |#2|) |#1|)) (-15 -1410 ((-958 |#2|) |#1|)) (-15 -1410 ((-1167) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2727 (|#1| |#1|)) (-15 -1870 (|#2| |#2| |#1|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1| |#2|)) (-15 -3997 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1410 (|#1| (-958 |#2|))) (-15 -3150 (|#1| (-958 |#2|))) (-15 -4381 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1410 (|#1| (-958 (-569)))) (-15 -3150 (|#1| (-958 (-569)))) (-15 -4381 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1410 (|#1| (-958 (-412 (-569))))) (-15 -3150 (|#1| (-958 (-412 (-569))))) (-15 -4381 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -1341 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1| |#1|)) (-15 -1664 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4037 (-776))) |#1| |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3514 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1| |#4|)) (-15 -4421 (|#1| |#1| |#1| |#4|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -4421 (|#1| |#1| |#1|)) (-15 -4200 (|#1| |#1| |#1| |#4|)) (-15 -2700 (|#1| |#1| |#1| |#4|)) (-15 -4200 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -2140 ((-112) |#1| (-649 |#1|))) (-15 -2140 ((-112) |#1| |#1|)) (-15 -2310 ((-112) |#1| (-649 |#1|))) (-15 -2310 ((-112) |#1| |#1|)) (-15 -4046 ((-112) |#1| (-649 |#1|))) (-15 -4046 ((-112) |#1| |#1|)) (-15 -2288 ((-112) |#1| (-649 |#1|))) (-15 -2288 ((-112) |#1| |#1|)) (-15 -3623 ((-112) |#1| |#1|)) (-15 -2151 ((-112) |#1| |#1|)) (-15 -2136 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1872 ((-649 |#1|) |#1|)) (-15 -1602 ((-649 |#1|) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -4107 ((-112) |#1|)) (-15 -1883 (|#1| |#1| |#4|)) (-15 -1857 (|#1| |#1| |#4|)) (-15 -1791 (|#1| |#1|)) (-15 -3737 ((-649 |#1|) |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -3762 ((-776) |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1857 (|#2| |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1073 |#2| |#3| |#4|) (-1057) (-798) (-855)) (T -1072))
+NIL
+(-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -1870 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 ((-958 |#2|) |#1|)) (-15 -1410 ((-958 |#2|) |#1|)) (-15 -1410 ((-1167) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2727 (|#1| |#1|)) (-15 -1870 (|#2| |#2| |#1|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1| |#2|)) (-15 -3997 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1410 (|#1| (-958 |#2|))) (-15 -3150 (|#1| (-958 |#2|))) (-15 -4381 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1410 (|#1| (-958 (-569)))) (-15 -3150 (|#1| (-958 (-569)))) (-15 -4381 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1410 (|#1| (-958 (-412 (-569))))) (-15 -3150 (|#1| (-958 (-412 (-569))))) (-15 -4381 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -1341 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1| |#1|)) (-15 -1664 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4037 (-776))) |#1| |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3514 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1| |#4|)) (-15 -4421 (|#1| |#1| |#1| |#4|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -4421 (|#1| |#1| |#1|)) (-15 -4200 (|#1| |#1| |#1| |#4|)) (-15 -2700 (|#1| |#1| |#1| |#4|)) (-15 -4200 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -2140 ((-112) |#1| (-649 |#1|))) (-15 -2140 ((-112) |#1| |#1|)) (-15 -2310 ((-112) |#1| (-649 |#1|))) (-15 -2310 ((-112) |#1| |#1|)) (-15 -4046 ((-112) |#1| (-649 |#1|))) (-15 -4046 ((-112) |#1| |#1|)) (-15 -2288 ((-112) |#1| (-649 |#1|))) (-15 -2288 ((-112) |#1| |#1|)) (-15 -3623 ((-112) |#1| |#1|)) (-15 -2151 ((-112) |#1| |#1|)) (-15 -2136 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1872 ((-649 |#1|) |#1|)) (-15 -1602 ((-649 |#1|) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -4107 ((-112) |#1|)) (-15 -1883 (|#1| |#1| |#4|)) (-15 -1857 (|#1| |#1| |#4|)) (-15 -1791 (|#1| |#1|)) (-15 -3737 ((-649 |#1|) |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -3762 ((-776) |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1857 (|#2| |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#3|) $) 112)) (-3767 (((-1181 $) $ |#3|) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-1568 (($ $) 273)) (-3623 (((-112) $ $) 259)) (-2208 (((-3 $ "failed") $ $) 20)) (-1726 (($ $ $) 218 (|has| |#1| (-561)))) (-3536 (((-649 $) $ $) 213 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-958 (-412 (-569)))) 233 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))) (((-3 $ "failed") (-958 (-569))) 230 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185)))))) (((-3 $ "failed") (-958 |#1|)) 227 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-550))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-1000 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))))) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) ((|#3| $) 139) (($ (-958 (-412 (-569)))) 232 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))) (($ (-958 (-569))) 229 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185)))))) (($ (-958 |#1|)) 226 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-550))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-1000 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))))) (-3346 (($ $ $ |#3|) 110 (|has| |#1| (-173))) (($ $ $) 214 (|has| |#1| (-561)))) (-1883 (($ $) 156) (($ $ |#3|) 268)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-2288 (((-112) $ $) 258) (((-112) $ (-649 $)) 257)) (-3086 (((-3 $ "failed") $) 37)) (-1345 (((-112) $) 266)) (-3514 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 238)) (-2727 (($ $) 207 (|has| |#1| (-457)))) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-3508 (($ $) 223 (|has| |#1| (-561)))) (-1996 (($ $) 224 (|has| |#1| (-561)))) (-2700 (($ $ $) 250) (($ $ $ |#3|) 248)) (-4200 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2870 (($ $ |#1| |#2| $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-2140 (((-112) $ $) 252) (((-112) $ (-649 $)) 251)) (-1430 (($ $ $ $ $) 209 (|has| |#1| (-561)))) (-3372 ((|#3| $) 277)) (-1700 (($ (-1181 |#1|) |#3|) 119) (($ (-1181 $) |#3|) 118)) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-3189 (($ $ $) 237)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 122)) (-4107 (((-112) $) 267)) (-2272 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-3762 (((-776) $) 276)) (-2492 (($ (-1 |#2| |#2|) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-2306 (((-3 |#3| "failed") $) 125)) (-2442 (($ $) 204 (|has| |#1| (-457)))) (-2382 (($ $) 205 (|has| |#1| (-457)))) (-1872 (((-649 $) $) 262)) (-2890 (($ $) 265)) (-4203 (($ $) 206 (|has| |#1| (-457)))) (-1602 (((-649 $) $) 263)) (-3237 (($ $) 264)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150) (($ $ |#3|) 269)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $) 236)) (-2834 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 240) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 239)) (-1330 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $) 242) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |#3|) 241)) (-4421 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2763 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3435 (((-1167) $) 10)) (-1384 (($ $ $) 212 (|has| |#1| (-561)))) (-3737 (((-649 $) $) 271)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) 115)) (-2310 (((-112) $ $) 254) (((-112) $ (-649 $)) 253)) (-1341 (($ $ $) 234)) (-2307 (($ $) 275)) (-2151 (((-112) $ $) 260)) (-4046 (((-112) $ $) 256) (((-112) $ (-649 $)) 255)) (-4348 (($ $ $) 235)) (-2122 (($ $) 274)) (-3547 (((-1128) $) 11)) (-3396 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-561)))) (-2127 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-561)))) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 ((|#1| |#1| $) 208 (|has| |#1| (-457))) (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2549 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-2081 (($ $ |#1|) 221 (|has| |#1| (-561))) (($ $ $) 219 (|has| |#1| (-561)))) (-3997 (($ $ |#1|) 222 (|has| |#1| (-561))) (($ $ $) 220 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-3059 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3517 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-4339 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-3596 (($ $) 272)) (-1791 (($ $) 270)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541))))) (($ (-958 (-412 (-569)))) 231 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))) (($ (-958 (-569))) 228 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185)))))) (($ (-958 |#1|)) 225 (|has| |#3| (-619 (-1185)))) (((-1167) $) 203 (-12 (|has| |#1| (-1046 (-569))) (|has| |#3| (-619 (-1185))))) (((-958 |#1|) $) 202 (|has| |#3| (-619 (-1185))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-958 |#1|) $) 201 (|has| |#3| (-619 (-1185)))) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-2136 (((-3 (-112) "failed") $ $) 261)) (-1815 (($) 34 T CONST)) (-3089 (($ $ $ $ (-776)) 210 (|has| |#1| (-561)))) (-1876 (($ $ $ (-776)) 211 (|has| |#1| (-561)))) (-2832 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1073 |#1| |#2| |#3|) (-140) (-1057) (-798) (-855)) (T -1073))
+((-3372 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2122 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3737 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-1791 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1857 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-1883 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1602 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-1872 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-2136 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2151 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-3623 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2288 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2288 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-4046 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4046 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2310 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2140 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2140 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2700 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4200 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2700 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-4200 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-4421 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2763 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4421 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2763 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-1330 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5)))) (-1330 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1))) (-4 *1 (-1073 *4 *5 *3)))) (-2834 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5)))) (-2834 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *4 *5 *3)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5)))) (-3189 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1664 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4037 (-776)))) (-4 *1 (-1073 *3 *4 *5)))) (-4348 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1341 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))) (-4381 (*1 *1 *2) (|partial| -2776 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3150 (*1 *1 *2) (-2776 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1410 (*1 *1 *2) (-2776 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) (-4381 (*1 *1 *2) (|partial| -2776 (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3150 (*1 *1 *2) (-2776 (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *5 (-619 (-1185))) (-4 *4 (-798)) (-4 *5 (-855)))) (-1996 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3508 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3997 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2081 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3997 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2081 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1726 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1073 *3 *4 *5)))) (-2127 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1))) (-4 *1 (-1073 *3 *4 *5)))) (-3396 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef2| *1))) (-4 *1 (-1073 *3 *4 *5)))) (-3346 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3536 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-1384 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1876 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-3089 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-1430 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1870 (*1 *2 *2 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2727 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2382 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))))
+(-13 (-955 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3372 (|t#3| $)) (-15 -3762 ((-776) $)) (-15 -2307 ($ $)) (-15 -2122 ($ $)) (-15 -1568 ($ $)) (-15 -3596 ($ $)) (-15 -3737 ((-649 $) $)) (-15 -1791 ($ $)) (-15 -1857 ($ $ |t#3|)) (-15 -1883 ($ $ |t#3|)) (-15 -4107 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -2890 ($ $)) (-15 -3237 ($ $)) (-15 -1602 ((-649 $) $)) (-15 -1872 ((-649 $) $)) (-15 -2136 ((-3 (-112) "failed") $ $)) (-15 -2151 ((-112) $ $)) (-15 -3623 ((-112) $ $)) (-15 -2288 ((-112) $ $)) (-15 -2288 ((-112) $ (-649 $))) (-15 -4046 ((-112) $ $)) (-15 -4046 ((-112) $ (-649 $))) (-15 -2310 ((-112) $ $)) (-15 -2310 ((-112) $ (-649 $))) (-15 -2140 ((-112) $ $)) (-15 -2140 ((-112) $ (-649 $))) (-15 -2700 ($ $ $)) (-15 -4200 ($ $ $)) (-15 -2700 ($ $ $ |t#3|)) (-15 -4200 ($ $ $ |t#3|)) (-15 -4421 ($ $ $)) (-15 -2763 ($ $ $)) (-15 -4421 ($ $ $ |t#3|)) (-15 -2763 ($ $ $ |t#3|)) (-15 -1330 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $)) (-15 -1330 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |t#3|)) (-15 -2834 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2834 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |t#3|)) (-15 -3514 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3189 ($ $ $)) (-15 -1664 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $)) (-15 -4348 ($ $ $)) (-15 -1341 ($ $ $)) (IF (|has| |t#3| (-619 (-1185))) (PROGN (-6 (-618 (-958 |t#1|))) (-6 (-619 (-958 |t#1|))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -4381 ((-3 $ "failed") (-958 (-412 (-569))))) (-15 -3150 ($ (-958 (-412 (-569))))) (-15 -1410 ($ (-958 (-412 (-569))))) (-15 -4381 ((-3 $ "failed") (-958 (-569)))) (-15 -3150 ($ (-958 (-569)))) (-15 -1410 ($ (-958 (-569)))) (IF (|has| |t#1| (-1000 (-569))) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 |t#1|))) (-15 -3150 ($ (-958 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 (-569)))) (-15 -3150 ($ (-958 (-569)))) (-15 -1410 ($ (-958 (-569)))) (IF (|has| |t#1| (-550)) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 |t#1|))) (-15 -3150 ($ (-958 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) |%noBranch| (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 |t#1|))) (-15 -3150 ($ (-958 |t#1|)))))) (-15 -1410 ($ (-958 |t#1|))) (IF (|has| |t#1| (-1046 (-569))) (-6 (-619 (-1167))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -1996 ($ $)) (-15 -3508 ($ $)) (-15 -3997 ($ $ |t#1|)) (-15 -2081 ($ $ |t#1|)) (-15 -3997 ($ $ $)) (-15 -2081 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -2549 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2127 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -3396 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -3346 ($ $ $)) (-15 -3536 ((-649 $) $ $)) (-15 -1384 ($ $ $)) (-15 -1876 ($ $ $ (-776))) (-15 -3089 ($ $ $ $ (-776))) (-15 -1430 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -1870 (|t#1| |t#1| $)) (-15 -2727 ($ $)) (-15 -4203 ($ $)) (-15 -2382 ($ $)) (-15 -2442 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-618 (-958 |#1|)) |has| |#3| (-619 (-1185))) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-619 (-958 |#1|)) |has| |#3| (-619 (-1185))) ((-619 (-1167)) -12 (|has| |#1| (-1046 (-569))) (|has| |#3| (-619 (-1185)))) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#2| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1046 |#3|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) |has| |#1| (-915)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2685 (((-649 (-1143)) $) 18)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 20)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1074) (-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $))))) (T -1074))
+((-2685 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1074)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1074)))))
+(-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $))))
+((-4143 (((-112) |#3| $) 15)) (-2793 (((-3 $ "failed") |#3| (-927)) 29)) (-3086 (((-3 |#3| "failed") |#3| $) 45)) (-3712 (((-112) |#3| $) 19)) (-2051 (((-112) |#3| $) 17)))
+(((-1075 |#1| |#2| |#3|) (-10 -8 (-15 -2793 ((-3 |#1| "failed") |#3| (-927))) (-15 -3086 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3712 ((-112) |#3| |#1|)) (-15 -2051 ((-112) |#3| |#1|)) (-15 -4143 ((-112) |#3| |#1|))) (-1076 |#2| |#3|) (-13 (-853) (-367)) (-1251 |#2|)) (T -1075))
+NIL
+(-10 -8 (-15 -2793 ((-3 |#1| "failed") |#3| (-927))) (-15 -3086 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3712 ((-112) |#3| |#1|)) (-15 -2051 ((-112) |#3| |#1|)) (-15 -4143 ((-112) |#3| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) |#2| $) 22)) (-2919 (((-569) |#2| $) 23)) (-2793 (((-3 $ "failed") |#2| (-927)) 16)) (-4358 ((|#1| |#2| $ |#1|) 14)) (-3086 (((-3 |#2| "failed") |#2| $) 19)) (-3712 (((-112) |#2| $) 20)) (-2051 (((-112) |#2| $) 21)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4061 ((|#2| $) 18)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-3091 ((|#1| |#2| $ |#1|) 15)) (-2444 (((-649 $) |#2|) 17)) (-2920 (((-112) $ $) 6)))
+(((-1076 |#1| |#2|) (-140) (-13 (-853) (-367)) (-1251 |t#1|)) (T -1076))
+((-2919 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-569)))) (-4143 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-112)))) (-2051 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-112)))) (-3712 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-112)))) (-3086 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1251 *3)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1251 *3)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-649 *1)) (-4 *1 (-1076 *4 *3)))) (-2793 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367))) (-4 *1 (-1076 *4 *2)) (-4 *2 (-1251 *4)))) (-3091 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1251 *2)))) (-4358 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1251 *2)))))
+(-13 (-1108) (-10 -8 (-15 -2919 ((-569) |t#2| $)) (-15 -4143 ((-112) |t#2| $)) (-15 -2051 ((-112) |t#2| $)) (-15 -3712 ((-112) |t#2| $)) (-15 -3086 ((-3 |t#2| "failed") |t#2| $)) (-15 -4061 (|t#2| $)) (-15 -2444 ((-649 $) |t#2|)) (-15 -2793 ((-3 $ "failed") |t#2| (-927))) (-15 -3091 (|t#1| |t#2| $ |t#1|)) (-15 -4358 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2111 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776)) 114)) (-4083 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 63)) (-2458 (((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)) 99)) (-3232 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-2554 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 65) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112)) 67)) (-2316 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 87)) (-1410 (((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 92)) (-3760 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-112)) 62)) (-1772 (((-776) (-649 |#4|) (-649 |#5|)) 21)))
+(((-1077 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-112))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1077))
+((-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167)) (-5 *1 (-1077 *4 *5 *6 *7 *8)))) (-2111 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9)) (-4 *11 (-1079 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1077 *7 *8 *9 *10 *11)))) (-2316 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-2316 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-2554 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2554 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-2554 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *7 *8 *9 *3 *4)) (-4 *4 (-1079 *7 *8 *9 *3)))) (-4083 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-3760 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-112))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776))))
+((-2648 (((-112) |#5| $) 26)) (-2438 (((-112) |#5| $) 29)) (-2404 (((-112) |#5| $) 18) (((-112) $) 52)) (-2101 (((-649 $) |#5| $) NIL) (((-649 $) (-649 |#5|) $) 94) (((-649 $) (-649 |#5|) (-649 $)) 92) (((-649 $) |#5| (-649 $)) 95)) (-3166 (($ $ |#5|) NIL) (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 73) (((-649 $) (-649 |#5|) $) 75) (((-649 $) (-649 |#5|) (-649 $)) 77)) (-2744 (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 64) (((-649 $) (-649 |#5|) $) 69) (((-649 $) (-649 |#5|) (-649 $)) 71)) (-4159 (((-112) |#5| $) 32)))
+(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3166 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -3166 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -3166 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -3166 ((-649 |#1|) |#5| |#1|)) (-15 -2744 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2744 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2744 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2744 ((-649 |#1|) |#5| |#1|)) (-15 -2101 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2101 ((-649 |#1|) |#5| |#1|)) (-15 -2438 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#1|)) (-15 -4159 ((-112) |#5| |#1|)) (-15 -2648 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#5| |#1|)) (-15 -3166 (|#1| |#1| |#5|))) (-1079 |#2| |#3| |#4| |#5|) (-457) (-798) (-855) (-1073 |#2| |#3| |#4|)) (T -1078))
+NIL
+(-10 -8 (-15 -3166 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -3166 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -3166 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -3166 ((-649 |#1|) |#5| |#1|)) (-15 -2744 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2744 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2744 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2744 ((-649 |#1|) |#5| |#1|)) (-15 -2101 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2101 ((-649 |#1|) |#5| |#1|)) (-15 -2438 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#1|)) (-15 -4159 ((-112) |#5| |#1|)) (-15 -2648 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#5| |#1|)) (-15 -3166 (|#1| |#1| |#5|)))
+((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447)))))
+(((-1079 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1079))
+((-2404 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-4159 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-2438 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2716 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-4422 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *1)))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-4422 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2798 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-4275 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-1384 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1)))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-1830 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1)))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-2101 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-2101 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *7)))) (-2101 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)))) (-2101 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) (-2744 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-2744 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) (-2744 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)))) (-3446 (*1 *1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-3446 (*1 *1 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)))) (-3166 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-3166 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) (-3166 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *7)))) (-3166 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *5 *6 *7 *8)))))
+(-13 (-1218 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2404 ((-112) |t#4| $)) (-15 -2648 ((-112) |t#4| $)) (-15 -4159 ((-112) |t#4| $)) (-15 -2404 ((-112) $)) (-15 -2438 ((-112) |t#4| $)) (-15 -2716 ((-3 (-112) (-649 $)) |t#4| $)) (-15 -4422 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |t#4| $)) (-15 -4422 ((-112) |t#4| $)) (-15 -2798 ((-649 $) |t#4| $)) (-15 -4275 ((-3 |t#4| (-649 $)) |t#4| |t#4| $)) (-15 -1384 ((-649 (-2 (|:| |val| |t#4|) (|:| -3663 $))) |t#4| |t#4| $)) (-15 -1830 ((-649 (-2 (|:| |val| |t#4|) (|:| -3663 $))) |t#4| $)) (-15 -2101 ((-649 $) |t#4| $)) (-15 -2101 ((-649 $) (-649 |t#4|) $)) (-15 -2101 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -2101 ((-649 $) |t#4| (-649 $))) (-15 -2744 ((-649 $) |t#4| $)) (-15 -2744 ((-649 $) |t#4| (-649 $))) (-15 -2744 ((-649 $) (-649 |t#4|) $)) (-15 -2744 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -3446 ($ |t#4| $)) (-15 -3446 ($ (-649 |t#4|) $)) (-15 -3166 ((-649 $) |t#4| $)) (-15 -3166 ((-649 $) |t#4| (-649 $))) (-15 -3166 ((-649 $) (-649 |t#4|) $)) (-15 -3166 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -1806 ((-649 $) (-649 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T))
+((-3529 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|) 86)) (-3483 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 127)) (-1868 (((-649 |#5|) |#4| |#5|) 74)) (-2182 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2351 (((-1280)) 36)) (-3280 (((-1280)) 25)) (-2933 (((-1280) (-1167) (-1167) (-1167)) 32)) (-3673 (((-1280) (-1167) (-1167) (-1167)) 21)) (-2261 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|) 107)) (-2204 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112)) 118) (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3757 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 113)))
+(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -2261 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -3757 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3483 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2182 ((-112) |#4| |#5|)) (-15 -2182 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1868 ((-649 |#5|) |#4| |#5|)) (-15 -3529 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1080))
+((-3529 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-1868 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2182 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2182 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3483 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3757 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9)))) (-5 *1 (-1080 *6 *7 *4 *8 *9)))) (-2204 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-2261 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2351 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2933 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3280 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-3673 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -2261 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -3757 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3483 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2182 ((-112) |#4| |#5|)) (-15 -2182 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1868 ((-649 |#5|) |#4| |#5|)) (-15 -3529 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|)))
+((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 10)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1081) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))) (T -1081))
+((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1081)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1081)))))
+(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))
+((-4312 (((-112) $ $) 7)))
+(((-1082) (-13 (-1225) (-10 -8 (-15 -4312 ((-112) $ $))))) (T -1082))
+((-4312 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1082)))))
+(-13 (-1225) (-10 -8 (-15 -4312 ((-112) $ $))))
+((-2417 (((-112) $ $) NIL)) (-3573 (((-1185) $) 8)) (-3435 (((-1167) $) 17)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 14)))
+(((-1083 |#1|) (-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $)))) (-1185)) (T -1083))
+((-3573 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1083 *3)) (-14 *3 *2))))
+(-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $))))
+((-2417 (((-112) $ $) NIL)) (-4274 (($ $ (-649 (-1185)) (-1 (-112) (-649 |#3|))) 34)) (-2139 (($ |#3| |#3|) 23) (($ |#3| |#3| (-649 (-1185))) 21)) (-2115 ((|#3| $) 13)) (-4381 (((-3 (-297 |#3|) "failed") $) 60)) (-3150 (((-297 |#3|) $) NIL)) (-2059 (((-649 (-1185)) $) 16)) (-1746 (((-898 |#1|) $) 11)) (-2105 ((|#3| $) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-927)) 41)) (-3796 (((-867) $) 89) (($ (-297 |#3|)) 22)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 38)))
+(((-1084 |#1| |#2| |#3|) (-13 (-1108) (-289 |#3| |#3|) (-1046 (-297 |#3|)) (-10 -8 (-15 -2139 ($ |#3| |#3|)) (-15 -2139 ($ |#3| |#3| (-649 (-1185)))) (-15 -4274 ($ $ (-649 (-1185)) (-1 (-112) (-649 |#3|)))) (-15 -1746 ((-898 |#1|) $)) (-15 -2105 (|#3| $)) (-15 -2115 (|#3| $)) (-15 -1869 (|#3| $ |#3| (-927))) (-15 -2059 ((-649 (-1185)) $)))) (-1108) (-13 (-1057) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1084))
+((-2139 (*1 *1 *2 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1084 *3 *4 *2)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-2139 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1084 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-4274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1 (-112) (-649 *6))) (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1084 *4 *5 *6)))) (-1746 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 *2))) (-5 *2 (-898 *3)) (-5 *1 (-1084 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 *2))))) (-2105 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1084 *3 *4 *2)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))))) (-2115 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1084 *3 *4 *2)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))))) (-1869 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1084 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-2059 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1185))) (-5 *1 (-1084 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
+(-13 (-1108) (-289 |#3| |#3|) (-1046 (-297 |#3|)) (-10 -8 (-15 -2139 ($ |#3| |#3|)) (-15 -2139 ($ |#3| |#3| (-649 (-1185)))) (-15 -4274 ($ $ (-649 (-1185)) (-1 (-112) (-649 |#3|)))) (-15 -1746 ((-898 |#1|) $)) (-15 -2105 (|#3| $)) (-15 -2115 (|#3| $)) (-15 -1869 (|#3| $ |#3| (-927))) (-15 -2059 ((-649 (-1185)) $))))
+((-2417 (((-112) $ $) NIL)) (-4244 (($ (-649 (-1084 |#1| |#2| |#3|))) 14)) (-1575 (((-649 (-1084 |#1| |#2| |#3|)) $) 21)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-927)) 27)) (-3796 (((-867) $) 17)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 20)))
+(((-1085 |#1| |#2| |#3|) (-13 (-1108) (-289 |#3| |#3|) (-10 -8 (-15 -4244 ($ (-649 (-1084 |#1| |#2| |#3|)))) (-15 -1575 ((-649 (-1084 |#1| |#2| |#3|)) $)) (-15 -1869 (|#3| $ |#3| (-927))))) (-1108) (-13 (-1057) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1085))
+((-4244 (*1 *1 *2) (-12 (-5 *2 (-649 (-1084 *3 *4 *5))) (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1085 *3 *4 *5)))) (-1575 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1084 *3 *4 *5))) (-5 *1 (-1085 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-1869 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1085 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))))
+(-13 (-1108) (-289 |#3| |#3|) (-10 -8 (-15 -4244 ($ (-649 (-1084 |#1| |#2| |#3|)))) (-15 -1575 ((-649 (-1084 |#1| |#2| |#3|)) $)) (-15 -1869 (|#3| $ |#3| (-927)))))
+((-3516 (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 88) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 92) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 90)))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)))) (-13 (-310) (-147)) (-649 (-1185))) (T -1086))
+((-3516 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))))) (-3516 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) (-5 *1 (-1086 *4 *5)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1185))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))))))
+(-10 -7 (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))))
+((-3800 (((-423 |#3|) |#3|) 18)))
+(((-1087 |#1| |#2| |#3|) (-10 -7 (-15 -3800 ((-423 |#3|) |#3|))) (-1251 (-412 (-569))) (-13 (-367) (-147) (-729 (-412 (-569)) |#1|)) (-1251 |#2|)) (T -1087))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-569)) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1251 *5)))))
+(-10 -7 (-15 -3800 ((-423 |#3|) |#3|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 139)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-367)))) (-4355 (($ $) NIL (|has| |#1| (-367)))) (-3039 (((-112) $) NIL (|has| |#1| (-367)))) (-1547 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) 123)) (-3140 ((|#1| $) 128)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3473 (((-776)) 46 (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|) (-1275 $)) NIL) (($ (-1275 |#1|)) 49)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1833 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 115) (((-694 |#1|) (-694 $)) 110)) (-3598 (($ |#2|) 67) (((-3 $ "failed") (-412 |#2|)) NIL (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-3978 (((-927)) 84)) (-3406 (($) 50 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1616 (($) NIL (|has| |#1| (-353)))) (-2807 (((-112) $) NIL (|has| |#1| (-353)))) (-3701 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1466 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2349 (((-112) $) NIL)) (-3829 ((|#1| $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-3859 ((|#2| $) 91 (|has| |#1| (-367)))) (-2731 (((-927) $) 148 (|has| |#1| (-372)))) (-3585 ((|#2| $) 64)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-2307 (($) NIL (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 138 (|has| |#1| (-372)))) (-3547 (((-1128) $) NIL)) (-2332 (($) 130)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-353)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3059 ((|#1| (-1275 $)) NIL) ((|#1|) 119)) (-2166 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3517 (($ $) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-4061 ((|#2|) 80)) (-4234 (($) NIL (|has| |#1| (-353)))) (-2415 (((-1275 |#1|) $ (-1275 $)) 96) (((-694 |#1|) (-1275 $) (-1275 $)) NIL) (((-1275 |#1|) $) 77) (((-694 |#1|) (-1275 $)) 92)) (-1410 (((-1275 |#1|) $) NIL) (($ (-1275 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-353)))) (-3796 (((-867) $) 63) (($ (-569)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-367))) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1886 ((|#2| $) 89)) (-2721 (((-776)) 82 T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 88)) (-2664 (((-112) $ $) NIL (|has| |#1| (-367)))) (-1804 (($) 32 T CONST)) (-1815 (($) 19 T CONST)) (-2832 (($ $) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2920 (((-112) $ $) 69)) (-3035 (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) 73) (($ $ $) NIL)) (-3012 (($ $ $) 71)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367)))))
+(((-1088 |#1| |#2| |#3|) (-729 |#1| |#2|) (-173) (-1251 |#1|) |#2|) (T -1088))
NIL
(-729 |#1| |#2|)
-((-3796 (((-423 |#3|) |#3|) 19)))
-(((-1087 |#1| |#2| |#3|) (-10 -7 (-15 -3796 ((-423 |#3|) |#3|))) (-1249 (-412 (-958 (-569)))) (-13 (-367) (-147) (-729 (-412 (-958 (-569))) |#1|)) (-1249 |#2|)) (T -1087))
-((-3796 (*1 *2 *3) (-12 (-4 *4 (-1249 (-412 (-958 (-569))))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-958 (-569))) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1249 *5)))))
-(-10 -7 (-15 -3796 ((-423 |#3|) |#3|)))
-((-2415 (((-112) $ $) NIL)) (-3377 (($ $ $) 16)) (-3969 (($ $ $) 17)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2557 (($) 6)) (-1408 (((-1183) $) 20)) (-3793 (((-867) $) 13)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 15)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 9)))
-(((-1088) (-13 (-855) (-619 (-1183)) (-10 -8 (-15 -2557 ($))))) (T -1088))
-((-2557 (*1 *1) (-5 *1 (-1088))))
-(-13 (-855) (-619 (-1183)) (-10 -8 (-15 -2557 ($))))
-((-2415 (((-112) $ $) 7)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
-(((-1089) (-140)) (T -1089))
+((-3800 (((-423 |#3|) |#3|) 19)))
+(((-1089 |#1| |#2| |#3|) (-10 -7 (-15 -3800 ((-423 |#3|) |#3|))) (-1251 (-412 (-958 (-569)))) (-13 (-367) (-147) (-729 (-412 (-958 (-569))) |#1|)) (-1251 |#2|)) (T -1089))
+((-3800 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 (-958 (-569))))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-958 (-569))) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1089 *4 *5 *3)) (-4 *3 (-1251 *5)))))
+(-10 -7 (-15 -3800 ((-423 |#3|) |#3|)))
+((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) 16)) (-2839 (($ $ $) 17)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2954 (($) 6)) (-1410 (((-1185) $) 20)) (-3796 (((-867) $) 13)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 15)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 9)))
+(((-1090) (-13 (-855) (-619 (-1185)) (-10 -8 (-15 -2954 ($))))) (T -1090))
+((-2954 (*1 *1) (-5 *1 (-1090))))
+(-13 (-855) (-619 (-1185)) (-10 -8 (-15 -2954 ($))))
+((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-1190)) 17) (((-1190) $) 16)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
+(((-1091) (-140)) (T -1091))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-621 #0=(-1188)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T))
-((-2663 ((|#1| |#1| (-1 (-569) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2461 (((-1278)) 21)) (-4313 (((-649 |#1|)) 13)))
-(((-1090 |#1|) (-10 -7 (-15 -2461 ((-1278))) (-15 -4313 ((-649 |#1|))) (-15 -2663 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2663 (|#1| |#1| (-1 (-569) |#1| |#1|)))) (-132)) (T -1090))
-((-2663 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))) (-4313 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))) (-2461 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
-(-10 -7 (-15 -2461 ((-1278))) (-15 -4313 ((-649 |#1|))) (-15 -2663 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2663 (|#1| |#1| (-1 (-569) |#1| |#1|))))
-((-2567 (($ (-109) $) 20)) (-2675 (((-696 (-109)) (-511) $) 19)) (-3597 (($) 7)) (-2472 (($) 21)) (-2771 (($) 22)) (-2772 (((-649 (-176)) $) 10)) (-3793 (((-867) $) 25)))
-(((-1091) (-13 (-618 (-867)) (-10 -8 (-15 -3597 ($)) (-15 -2772 ((-649 (-176)) $)) (-15 -2675 ((-696 (-109)) (-511) $)) (-15 -2567 ($ (-109) $)) (-15 -2472 ($)) (-15 -2771 ($))))) (T -1091))
-((-3597 (*1 *1) (-5 *1 (-1091))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1091)))) (-2675 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1091)))) (-2567 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1091)))) (-2472 (*1 *1) (-5 *1 (-1091))) (-2771 (*1 *1) (-5 *1 (-1091))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3597 ($)) (-15 -2772 ((-649 (-176)) $)) (-15 -2675 ((-696 (-109)) (-511) $)) (-15 -2567 ($ (-109) $)) (-15 -2472 ($)) (-15 -2771 ($))))
-((-2870 (((-1273 (-694 |#1|)) (-649 (-694 |#1|))) 47) (((-1273 (-694 (-958 |#1|))) (-649 (-1183)) (-694 (-958 |#1|))) 75) (((-1273 (-694 (-412 (-958 |#1|)))) (-649 (-1183)) (-694 (-412 (-958 |#1|)))) 92)) (-2960 (((-1273 |#1|) (-694 |#1|) (-649 (-694 |#1|))) 41)))
-(((-1092 |#1|) (-10 -7 (-15 -2870 ((-1273 (-694 (-412 (-958 |#1|)))) (-649 (-1183)) (-694 (-412 (-958 |#1|))))) (-15 -2870 ((-1273 (-694 (-958 |#1|))) (-649 (-1183)) (-694 (-958 |#1|)))) (-15 -2870 ((-1273 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2960 ((-1273 |#1|) (-694 |#1|) (-649 (-694 |#1|))))) (-367)) (T -1092))
-((-2960 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-1273 *5)) (-5 *1 (-1092 *5)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-1092 *4)))) (-2870 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367)) (-5 *2 (-1273 (-694 (-958 *5)))) (-5 *1 (-1092 *5)) (-5 *4 (-694 (-958 *5))))) (-2870 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367)) (-5 *2 (-1273 (-694 (-412 (-958 *5))))) (-5 *1 (-1092 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
-(-10 -7 (-15 -2870 ((-1273 (-694 (-412 (-958 |#1|)))) (-649 (-1183)) (-694 (-412 (-958 |#1|))))) (-15 -2870 ((-1273 (-694 (-958 |#1|))) (-649 (-1183)) (-694 (-958 |#1|)))) (-15 -2870 ((-1273 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2960 ((-1273 |#1|) (-694 |#1|) (-649 (-694 |#1|)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3993 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1183)) NIL)) (-1458 (((-776) $) NIL) (((-776) $ (-1183)) NIL)) (-1710 (((-649 (-1094 (-1183))) $) NIL)) (-3763 (((-1179 $) $ (-1094 (-1183))) NIL) (((-1179 |#1|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-1094 (-1183)))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3765 (($ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1094 (-1183)) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL) (((-3 (-1131 |#1| (-1183)) "failed") $) NIL)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1094 (-1183)) $) NIL) (((-1183) $) NIL) (((-1131 |#1| (-1183)) $) NIL)) (-4202 (($ $ $ (-1094 (-1183))) NIL (|has| |#1| (-173)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1094 (-1183))) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-536 (-1094 (-1183))) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1094 (-1183)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1094 (-1183)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3110 (((-776) $ (-1183)) NIL) (((-776) $) NIL)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-1697 (($ (-1179 |#1|) (-1094 (-1183))) NIL) (($ (-1179 $) (-1094 (-1183))) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-536 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-1094 (-1183))) NIL)) (-3712 (((-536 (-1094 (-1183))) $) NIL) (((-776) $ (-1094 (-1183))) NIL) (((-649 (-776)) $ (-649 (-1094 (-1183)))) NIL)) (-4059 (($ (-1 (-536 (-1094 (-1183))) (-536 (-1094 (-1183)))) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1546 (((-1 $ (-776)) (-1183)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-3397 (((-3 (-1094 (-1183)) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-3149 (((-1094 (-1183)) $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-3876 (((-112) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-1094 (-1183))) (|:| -4320 (-776))) "failed") $) NIL)) (-1508 (($ $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1094 (-1183)) |#1|) NIL) (($ $ (-649 (-1094 (-1183))) (-649 |#1|)) NIL) (($ $ (-1094 (-1183)) $) NIL) (($ $ (-649 (-1094 (-1183))) (-649 $)) NIL) (($ $ (-1183) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1183)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-4304 (($ $ (-1094 (-1183))) NIL (|has| |#1| (-173)))) (-3514 (($ $ (-1094 (-1183))) NIL) (($ $ (-649 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4107 (((-649 (-1183)) $) NIL)) (-3868 (((-536 (-1094 (-1183))) $) NIL) (((-776) $ (-1094 (-1183))) NIL) (((-649 (-776)) $ (-649 (-1094 (-1183)))) NIL) (((-776) $ (-1183)) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1094 (-1183)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1094 (-1183))) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1094 (-1183))) NIL) (($ (-1183)) NIL) (($ (-1131 |#1| (-1183))) NIL) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-536 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-1094 (-1183))) NIL) (($ $ (-649 (-1094 (-1183)))) NIL) (($ $ (-1094 (-1183)) (-776)) NIL) (($ $ (-649 (-1094 (-1183))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1093 |#1|) (-13 (-255 |#1| (-1183) (-1094 (-1183)) (-536 (-1094 (-1183)))) (-1044 (-1131 |#1| (-1183)))) (-1055)) (T -1093))
-NIL
-(-13 (-255 |#1| (-1183) (-1094 (-1183)) (-536 (-1094 (-1183)))) (-1044 (-1131 |#1| (-1183))))
-((-2415 (((-112) $ $) NIL)) (-1458 (((-776) $) NIL)) (-2671 ((|#1| $) 10)) (-4378 (((-3 |#1| "failed") $) NIL)) (-3148 ((|#1| $) NIL)) (-3110 (((-776) $) 11)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-1546 (($ |#1| (-776)) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3514 (($ $) NIL) (($ $ (-776)) NIL)) (-3793 (((-867) $) NIL) (($ |#1|) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 16)))
-(((-1094 |#1|) (-268 |#1|) (-855)) (T -1094))
+(((-93) . T) ((-102) . T) ((-621 #0=(-1190)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T))
+((-1524 ((|#1| |#1| (-1 (-569) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2464 (((-1280)) 21)) (-4315 (((-649 |#1|)) 13)))
+(((-1092 |#1|) (-10 -7 (-15 -2464 ((-1280))) (-15 -4315 ((-649 |#1|))) (-15 -1524 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1524 (|#1| |#1| (-1 (-569) |#1| |#1|)))) (-132)) (T -1092))
+((-1524 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2)))) (-1524 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2)))) (-4315 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-132)))) (-2464 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1092 *3)) (-4 *3 (-132)))))
+(-10 -7 (-15 -2464 ((-1280))) (-15 -4315 ((-649 |#1|))) (-15 -1524 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1524 (|#1| |#1| (-1 (-569) |#1| |#1|))))
+((-3058 (($ (-109) $) 20)) (-1625 (((-696 (-109)) (-511) $) 19)) (-3635 (($) 7)) (-3399 (($) 21)) (-3164 (($) 22)) (-3174 (((-649 (-176)) $) 10)) (-3796 (((-867) $) 25)))
+(((-1093) (-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3174 ((-649 (-176)) $)) (-15 -1625 ((-696 (-109)) (-511) $)) (-15 -3058 ($ (-109) $)) (-15 -3399 ($)) (-15 -3164 ($))))) (T -1093))
+((-3635 (*1 *1) (-5 *1 (-1093))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1093)))) (-1625 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1093)))) (-3058 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1093)))) (-3399 (*1 *1) (-5 *1 (-1093))) (-3164 (*1 *1) (-5 *1 (-1093))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3174 ((-649 (-176)) $)) (-15 -1625 ((-696 (-109)) (-511) $)) (-15 -3058 ($ (-109) $)) (-15 -3399 ($)) (-15 -3164 ($))))
+((-2901 (((-1275 (-694 |#1|)) (-649 (-694 |#1|))) 47) (((-1275 (-694 (-958 |#1|))) (-649 (-1185)) (-694 (-958 |#1|))) 75) (((-1275 (-694 (-412 (-958 |#1|)))) (-649 (-1185)) (-694 (-412 (-958 |#1|)))) 92)) (-2415 (((-1275 |#1|) (-694 |#1|) (-649 (-694 |#1|))) 41)))
+(((-1094 |#1|) (-10 -7 (-15 -2901 ((-1275 (-694 (-412 (-958 |#1|)))) (-649 (-1185)) (-694 (-412 (-958 |#1|))))) (-15 -2901 ((-1275 (-694 (-958 |#1|))) (-649 (-1185)) (-694 (-958 |#1|)))) (-15 -2901 ((-1275 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2415 ((-1275 |#1|) (-694 |#1|) (-649 (-694 |#1|))))) (-367)) (T -1094))
+((-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-1275 *5)) (-5 *1 (-1094 *5)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-1094 *4)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367)) (-5 *2 (-1275 (-694 (-958 *5)))) (-5 *1 (-1094 *5)) (-5 *4 (-694 (-958 *5))))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367)) (-5 *2 (-1275 (-694 (-412 (-958 *5))))) (-5 *1 (-1094 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
+(-10 -7 (-15 -2901 ((-1275 (-694 (-412 (-958 |#1|)))) (-649 (-1185)) (-694 (-412 (-958 |#1|))))) (-15 -2901 ((-1275 (-694 (-958 |#1|))) (-649 (-1185)) (-694 (-958 |#1|)))) (-15 -2901 ((-1275 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2415 ((-1275 |#1|) (-694 |#1|) (-649 (-694 |#1|)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3072 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1185)) NIL)) (-3766 (((-776) $) NIL) (((-776) $ (-1185)) NIL)) (-1712 (((-649 (-1096 (-1185))) $) NIL)) (-3767 (((-1181 $) $ (-1096 (-1185))) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1096 (-1185)))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1590 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1096 (-1185)) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL) (((-3 (-1133 |#1| (-1185)) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1096 (-1185)) $) NIL) (((-1185) $) NIL) (((-1133 |#1| (-1185)) $) NIL)) (-3346 (($ $ $ (-1096 (-1185))) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1096 (-1185))) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 (-1096 (-1185))) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1096 (-1185)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1096 (-1185)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ (-1185)) NIL) (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) (-1096 (-1185))) NIL) (($ (-1181 $) (-1096 (-1185))) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1096 (-1185))) NIL)) (-2272 (((-536 (-1096 (-1185))) $) NIL) (((-776) $ (-1096 (-1185))) NIL) (((-649 (-776)) $ (-649 (-1096 (-1185)))) NIL)) (-2492 (($ (-1 (-536 (-1096 (-1185))) (-536 (-1096 (-1185)))) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3389 (((-1 $ (-776)) (-1185)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-2306 (((-3 (-1096 (-1185)) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3152 (((-1096 (-1185)) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-3173 (((-112) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1096 (-1185))) (|:| -1993 (-776))) "failed") $) NIL)) (-1510 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1096 (-1185)) |#1|) NIL) (($ $ (-649 (-1096 (-1185))) (-649 |#1|)) NIL) (($ $ (-1096 (-1185)) $) NIL) (($ $ (-649 (-1096 (-1185))) (-649 $)) NIL) (($ $ (-1185) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-3059 (($ $ (-1096 (-1185))) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1096 (-1185))) NIL) (($ $ (-649 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1848 (((-649 (-1185)) $) NIL)) (-4339 (((-536 (-1096 (-1185))) $) NIL) (((-776) $ (-1096 (-1185))) NIL) (((-649 (-776)) $ (-649 (-1096 (-1185)))) NIL) (((-776) $ (-1185)) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1096 (-1185)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1096 (-1185)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1096 (-1185)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1096 (-1185))) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1096 (-1185))) NIL) (($ (-1185)) NIL) (($ (-1133 |#1| (-1185))) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1096 (-1185))) NIL) (($ $ (-649 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1095 |#1|) (-13 (-255 |#1| (-1185) (-1096 (-1185)) (-536 (-1096 (-1185)))) (-1046 (-1133 |#1| (-1185)))) (-1057)) (T -1095))
+NIL
+(-13 (-255 |#1| (-1185) (-1096 (-1185)) (-536 (-1096 (-1185)))) (-1046 (-1133 |#1| (-1185))))
+((-2417 (((-112) $ $) NIL)) (-3766 (((-776) $) NIL)) (-2672 ((|#1| $) 10)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-1466 (((-776) $) 11)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3389 (($ |#1| (-776)) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3517 (($ $) NIL) (($ $ (-776)) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 16)))
+(((-1096 |#1|) (-268 |#1|) (-855)) (T -1096))
NIL
(-268 |#1|)
-((-1344 (((-649 |#2|) (-1 |#2| |#1|) (-1100 |#1|)) 29 (|has| |#1| (-853))) (((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|)) 14)))
-(((-1095 |#1| |#2|) (-10 -7 (-15 -1344 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) (IF (|has| |#1| (-853)) (-15 -1344 ((-649 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) |%noBranch|)) (-1223) (-1223)) (T -1095))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-853)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-649 *6)) (-5 *1 (-1095 *5 *6)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1100 *6)) (-5 *1 (-1095 *5 *6)))))
-(-10 -7 (-15 -1344 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) (IF (|has| |#1| (-853)) (-15 -1344 ((-649 |#2|) (-1 |#2| |#1|) (-1100 |#1|))) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 16) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1882 (((-649 (-1141)) $) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1096) (-13 (-1089) (-10 -8 (-15 -1882 ((-649 (-1141)) $))))) (T -1096))
-((-1882 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1096)))))
-(-13 (-1089) (-10 -8 (-15 -1882 ((-649 (-1141)) $))))
-((-1344 (((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)) 19)))
-(((-1097 |#1| |#2|) (-10 -7 (-15 -1344 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)))) (-1223) (-1223)) (T -1097))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1098 *6)) (-5 *1 (-1097 *5 *6)))))
-(-10 -7 (-15 -1344 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))))
-((-2415 (((-112) $ $) NIL (|has| (-1100 |#1|) (-1106)))) (-2671 (((-1183) $) NIL)) (-2819 (((-1100 |#1|) $) NIL)) (-1550 (((-1165) $) NIL (|has| (-1100 |#1|) (-1106)))) (-3545 (((-1126) $) NIL (|has| (-1100 |#1|) (-1106)))) (-3494 (($ (-1183) (-1100 |#1|)) NIL)) (-3793 (((-867) $) NIL (|has| (-1100 |#1|) (-1106)))) (-1441 (((-112) $ $) NIL (|has| (-1100 |#1|) (-1106)))) (-2919 (((-112) $ $) NIL (|has| (-1100 |#1|) (-1106)))))
-(((-1098 |#1|) (-13 (-1223) (-10 -8 (-15 -3494 ($ (-1183) (-1100 |#1|))) (-15 -2671 ((-1183) $)) (-15 -2819 ((-1100 |#1|) $)) (IF (|has| (-1100 |#1|) (-1106)) (-6 (-1106)) |%noBranch|))) (-1223)) (T -1098))
-((-3494 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1100 *4)) (-4 *4 (-1223)) (-5 *1 (-1098 *4)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1098 *3)) (-4 *3 (-1223)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-1098 *3)) (-4 *3 (-1223)))))
-(-13 (-1223) (-10 -8 (-15 -3494 ($ (-1183) (-1100 |#1|))) (-15 -2671 ((-1183) $)) (-15 -2819 ((-1100 |#1|) $)) (IF (|has| (-1100 |#1|) (-1106)) (-6 (-1106)) |%noBranch|)))
-((-2819 (($ |#1| |#1|) 8)) (-2035 ((|#1| $) 11)) (-1488 ((|#1| $) 13)) (-1498 (((-569) $) 9)) (-1950 ((|#1| $) 10)) (-1809 ((|#1| $) 12)) (-1408 (($ |#1|) 6)) (-3642 (($ |#1| |#1|) 15)) (-2683 (($ $ (-569)) 14)))
-(((-1099 |#1|) (-140) (-1223)) (T -1099))
-((-3642 (*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1099 *3)) (-4 *3 (-1223)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))) (-2819 (*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
-(-13 (-623 |t#1|) (-10 -8 (-15 -3642 ($ |t#1| |t#1|)) (-15 -2683 ($ $ (-569))) (-15 -1488 (|t#1| $)) (-15 -1809 (|t#1| $)) (-15 -2035 (|t#1| $)) (-15 -1950 (|t#1| $)) (-15 -1498 ((-569) $)) (-15 -2819 ($ |t#1| |t#1|))))
+((-1346 (((-649 |#2|) (-1 |#2| |#1|) (-1102 |#1|)) 29 (|has| |#1| (-853))) (((-1102 |#2|) (-1 |#2| |#1|) (-1102 |#1|)) 14)))
+(((-1097 |#1| |#2|) (-10 -7 (-15 -1346 ((-1102 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) |%noBranch|)) (-1225) (-1225)) (T -1097))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-853)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-649 *6)) (-5 *1 (-1097 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1102 *6)) (-5 *1 (-1097 *5 *6)))))
+(-10 -7 (-15 -1346 ((-1102 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3453 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1098) (-13 (-1091) (-10 -8 (-15 -3453 ((-649 (-1143)) $))))) (T -1098))
+((-3453 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1098)))))
+(-13 (-1091) (-10 -8 (-15 -3453 ((-649 (-1143)) $))))
+((-1346 (((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|)) 19)))
+(((-1099 |#1| |#2|) (-10 -7 (-15 -1346 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|)))) (-1225) (-1225)) (T -1099))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1100 *6)) (-5 *1 (-1099 *5 *6)))))
+(-10 -7 (-15 -1346 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|))))
+((-2417 (((-112) $ $) NIL (|has| (-1102 |#1|) (-1108)))) (-2672 (((-1185) $) NIL)) (-2821 (((-1102 |#1|) $) NIL)) (-3435 (((-1167) $) NIL (|has| (-1102 |#1|) (-1108)))) (-3547 (((-1128) $) NIL (|has| (-1102 |#1|) (-1108)))) (-3497 (($ (-1185) (-1102 |#1|)) NIL)) (-3796 (((-867) $) NIL (|has| (-1102 |#1|) (-1108)))) (-1520 (((-112) $ $) NIL (|has| (-1102 |#1|) (-1108)))) (-2920 (((-112) $ $) NIL (|has| (-1102 |#1|) (-1108)))))
+(((-1100 |#1|) (-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) (-1102 |#1|))) (-15 -2672 ((-1185) $)) (-15 -2821 ((-1102 |#1|) $)) (IF (|has| (-1102 |#1|) (-1108)) (-6 (-1108)) |%noBranch|))) (-1225)) (T -1100))
+((-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1102 *4)) (-4 *4 (-1225)) (-5 *1 (-1100 *4)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1100 *3)) (-4 *3 (-1225)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-1102 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-1225)))))
+(-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) (-1102 |#1|))) (-15 -2672 ((-1185) $)) (-15 -2821 ((-1102 |#1|) $)) (IF (|has| (-1102 |#1|) (-1108)) (-6 (-1108)) |%noBranch|)))
+((-2821 (($ |#1| |#1|) 8)) (-1365 ((|#1| $) 11)) (-1487 ((|#1| $) 13)) (-1500 (((-569) $) 9)) (-2916 ((|#1| $) 10)) (-1812 ((|#1| $) 12)) (-1410 (($ |#1|) 6)) (-3645 (($ |#1| |#1|) 15)) (-2686 (($ $ (-569)) 14)))
+(((-1101 |#1|) (-140) (-1225)) (T -1101))
+((-3645 (*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1101 *3)) (-4 *3 (-1225)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1225)) (-5 *2 (-569)))) (-2821 (*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))))
+(-13 (-623 |t#1|) (-10 -8 (-15 -3645 ($ |t#1| |t#1|)) (-15 -2686 ($ $ (-569))) (-15 -1487 (|t#1| $)) (-15 -1812 (|t#1| $)) (-15 -1365 (|t#1| $)) (-15 -2916 (|t#1| $)) (-15 -1500 ((-569) $)) (-15 -2821 ($ |t#1| |t#1|))))
(((-623 |#1|) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2819 (($ |#1| |#1|) 16)) (-1344 (((-649 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-853)))) (-2035 ((|#1| $) 12)) (-1488 ((|#1| $) 11)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1498 (((-569) $) 15)) (-1950 ((|#1| $) 14)) (-1809 ((|#1| $) 13)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1378 (((-649 |#1|) $) 44 (|has| |#1| (-853))) (((-649 |#1|) (-649 $)) 43 (|has| |#1| (-853)))) (-1408 (($ |#1|) 29)) (-3793 (((-867) $) 28 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3642 (($ |#1| |#1|) 10)) (-2683 (($ $ (-569)) 17)) (-2919 (((-112) $ $) 22 (|has| |#1| (-1106)))))
-(((-1100 |#1|) (-13 (-1099 |#1|) (-10 -7 (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-649 |#1|))) |%noBranch|))) (-1223)) (T -1100))
-NIL
-(-13 (-1099 |#1|) (-10 -7 (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-649 |#1|))) |%noBranch|)))
-((-2819 (($ |#1| |#1|) 8)) (-1344 ((|#2| (-1 |#1| |#1|) $) 16)) (-2035 ((|#1| $) 11)) (-1488 ((|#1| $) 13)) (-1498 (((-569) $) 9)) (-1950 ((|#1| $) 10)) (-1809 ((|#1| $) 12)) (-1378 ((|#2| (-649 $)) 18) ((|#2| $) 17)) (-1408 (($ |#1|) 6)) (-3642 (($ |#1| |#1|) 15)) (-2683 (($ $ (-569)) 14)))
-(((-1101 |#1| |#2|) (-140) (-853) (-1155 |t#1|)) (T -1101))
-((-1378 (*1 *2 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1155 *4)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1155 *3)))) (-1344 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1155 *4)))))
-(-13 (-1099 |t#1|) (-10 -8 (-15 -1378 (|t#2| (-649 $))) (-15 -1378 (|t#2| $)) (-15 -1344 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-623 |#1|) . T) ((-1099 |#1|) . T))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-1722 (((-1141) $) 12)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 18) (($ (-1188)) NIL) (((-1188) $) NIL)) (-3583 (((-649 (-1141)) $) 10)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1102) (-13 (-1089) (-10 -8 (-15 -3583 ((-649 (-1141)) $)) (-15 -1722 ((-1141) $))))) (T -1102))
-((-3583 (*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1102)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1102)))))
-(-13 (-1089) (-10 -8 (-15 -3583 ((-649 (-1141)) $)) (-15 -1722 ((-1141) $))))
-((-3966 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2210 (($ $ $) 10)) (-2298 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1103 |#1| |#2|) (-10 -8 (-15 -3966 (|#1| |#2| |#1|)) (-15 -3966 (|#1| |#1| |#2|)) (-15 -3966 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1| |#2|)) (-15 -2298 (|#1| |#1| |#1|))) (-1104 |#2|) (-1106)) (T -1103))
-NIL
-(-10 -8 (-15 -3966 (|#1| |#2| |#1|)) (-15 -3966 (|#1| |#1| |#2|)) (-15 -3966 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1| |#2|)) (-15 -2298 (|#1| |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3966 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2210 (($ $ $) 21)) (-2124 (((-112) $ $) 20)) (-2716 (((-112) $ (-776)) 36)) (-4255 (($) 26) (($ (-649 |#1|)) 25)) (-1415 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4444)))) (-4188 (($) 37 T CONST)) (-3547 (($ $) 60 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#1| $) 59 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4444)))) (-2880 (((-649 |#1|) $) 44 (|has| $ (-6 -4444)))) (-1315 (((-112) $ $) 29)) (-1689 (((-112) $ (-776)) 35)) (-3040 (((-649 |#1|) $) 45 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 39)) (-2433 (((-112) $ (-776)) 34)) (-1550 (((-1165) $) 10)) (-4333 (($ $ $) 24)) (-3545 (((-1126) $) 11)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2911 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#1|) (-649 |#1|)) 51 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 49 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 (-297 |#1|))) 48 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 30)) (-3218 (((-112) $) 33)) (-3597 (($) 32)) (-2298 (($ $ $) 23) (($ $ |#1|) 22)) (-3558 (((-776) |#1| $) 46 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4444)))) (-3959 (($ $) 31)) (-1408 (((-541) $) 61 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 52)) (-3793 (((-867) $) 12)) (-3864 (($) 28) (($ (-649 |#1|)) 27)) (-1441 (((-112) $ $) 9)) (-3037 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 6)) (-2426 (((-776) $) 38 (|has| $ (-6 -4444)))))
-(((-1104 |#1|) (-140) (-1106)) (T -1104))
-((-1315 (*1 *2 *1 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-3864 (*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-3864 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3)))) (-4255 (*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3)))) (-4333 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-2298 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-2298 (*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-2210 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-2124 (*1 *2 *1 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))) (-3966 (*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-3966 (*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))) (-3966 (*1 *1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
-(-13 (-1106) (-151 |t#1|) (-10 -8 (-6 -4434) (-15 -1315 ((-112) $ $)) (-15 -3864 ($)) (-15 -3864 ($ (-649 |t#1|))) (-15 -4255 ($)) (-15 -4255 ($ (-649 |t#1|))) (-15 -4333 ($ $ $)) (-15 -2298 ($ $ $)) (-15 -2298 ($ $ |t#1|)) (-15 -2210 ($ $ $)) (-15 -2124 ((-112) $ $)) (-15 -3966 ($ $ $)) (-15 -3966 ($ $ |t#1|)) (-15 -3966 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) . T) ((-1223) . T))
-((-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 8)) (-1441 (((-112) $ $) 12)))
-(((-1105 |#1|) (-10 -8 (-15 -1441 ((-112) |#1| |#1|)) (-15 -1550 ((-1165) |#1|)) (-15 -3545 ((-1126) |#1|))) (-1106)) (T -1105))
-NIL
-(-10 -8 (-15 -1441 ((-112) |#1| |#1|)) (-15 -1550 ((-1165) |#1|)) (-15 -3545 ((-1126) |#1|)))
-((-2415 (((-112) $ $) 7)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
-(((-1106) (-140)) (T -1106))
-((-3545 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1126)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1165)))) (-1441 (*1 *2 *1 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-112)))))
-(-13 (-102) (-618 (-867)) (-10 -8 (-15 -3545 ((-1126) $)) (-15 -1550 ((-1165) $)) (-15 -1441 ((-112) $ $))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2821 (($ |#1| |#1|) 16)) (-1346 (((-649 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-853)))) (-1365 ((|#1| $) 12)) (-1487 ((|#1| $) 11)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1500 (((-569) $) 15)) (-2916 ((|#1| $) 14)) (-1812 ((|#1| $) 13)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1380 (((-649 |#1|) $) 44 (|has| |#1| (-853))) (((-649 |#1|) (-649 $)) 43 (|has| |#1| (-853)))) (-1410 (($ |#1|) 29)) (-3796 (((-867) $) 28 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3645 (($ |#1| |#1|) 10)) (-2686 (($ $ (-569)) 17)) (-2920 (((-112) $ $) 22 (|has| |#1| (-1108)))))
+(((-1102 |#1|) (-13 (-1101 |#1|) (-10 -7 (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-649 |#1|))) |%noBranch|))) (-1225)) (T -1102))
+NIL
+(-13 (-1101 |#1|) (-10 -7 (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-649 |#1|))) |%noBranch|)))
+((-2821 (($ |#1| |#1|) 8)) (-1346 ((|#2| (-1 |#1| |#1|) $) 16)) (-1365 ((|#1| $) 11)) (-1487 ((|#1| $) 13)) (-1500 (((-569) $) 9)) (-2916 ((|#1| $) 10)) (-1812 ((|#1| $) 12)) (-1380 ((|#2| (-649 $)) 18) ((|#2| $) 17)) (-1410 (($ |#1|) 6)) (-3645 (($ |#1| |#1|) 15)) (-2686 (($ $ (-569)) 14)))
+(((-1103 |#1| |#2|) (-140) (-853) (-1157 |t#1|)) (T -1103))
+((-1380 (*1 *2 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1157 *4)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1157 *3)))) (-1346 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1157 *4)))))
+(-13 (-1101 |t#1|) (-10 -8 (-15 -1380 (|t#2| (-649 $))) (-15 -1380 (|t#2| $)) (-15 -1346 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-623 |#1|) . T) ((-1101 |#1|) . T))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1724 (((-1143) $) 12)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 18) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1104) (-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $)) (-15 -1724 ((-1143) $))))) (T -1104))
+((-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1104)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1104)))))
+(-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $)) (-15 -1724 ((-1143) $))))
+((-3969 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2541 (($ $ $) 10)) (-2237 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1105 |#1| |#2|) (-10 -8 (-15 -3969 (|#1| |#2| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2237 (|#1| |#1| |#1|))) (-1106 |#2|) (-1108)) (T -1105))
+NIL
+(-10 -8 (-15 -3969 (|#1| |#2| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2237 (|#1| |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-3969 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2541 (($ $ $) 21)) (-4179 (((-112) $ $) 20)) (-3914 (((-112) $ (-776)) 36)) (-4257 (($) 26) (($ (-649 |#1|)) 25)) (-1417 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4447)))) (-4427 (($) 37 T CONST)) (-3550 (($ $) 60 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 44 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 29)) (-2314 (((-112) $ (-776)) 35)) (-2009 (((-649 |#1|) $) 45 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 39)) (-4254 (((-112) $ (-776)) 34)) (-3435 (((-1167) $) 10)) (-2101 (($ $ $) 24)) (-3547 (((-1128) $) 11)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3208 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 51 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 49 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 (-297 |#1|))) 48 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 30)) (-3162 (((-112) $) 33)) (-3635 (($) 32)) (-2237 (($ $ $) 23) (($ $ |#1|) 22)) (-3560 (((-776) |#1| $) 46 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4447)))) (-3962 (($ $) 31)) (-1410 (((-541) $) 61 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 52)) (-3796 (((-867) $) 12)) (-3868 (($) 28) (($ (-649 |#1|)) 27)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 38 (|has| $ (-6 -4447)))))
+(((-1106 |#1|) (-140) (-1108)) (T -1106))
+((-1651 (*1 *2 *1 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-3868 (*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3)))) (-4257 (*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-4257 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3)))) (-2101 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2237 (*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-3969 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-3969 (*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-3969 (*1 *1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(-13 (-1108) (-151 |t#1|) (-10 -8 (-6 -4437) (-15 -1651 ((-112) $ $)) (-15 -3868 ($)) (-15 -3868 ($ (-649 |t#1|))) (-15 -4257 ($)) (-15 -4257 ($ (-649 |t#1|))) (-15 -2101 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -2237 ($ $ |t#1|)) (-15 -2541 ($ $ $)) (-15 -4179 ((-112) $ $)) (-15 -3969 ($ $ $)) (-15 -3969 ($ $ |t#1|)) (-15 -3969 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) . T) ((-1225) . T))
+((-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 8)) (-1520 (((-112) $ $) 12)))
+(((-1107 |#1|) (-10 -8 (-15 -1520 ((-112) |#1| |#1|)) (-15 -3435 ((-1167) |#1|)) (-15 -3547 ((-1128) |#1|))) (-1108)) (T -1107))
+NIL
+(-10 -8 (-15 -1520 ((-112) |#1| |#1|)) (-15 -3435 ((-1167) |#1|)) (-15 -3547 ((-1128) |#1|)))
+((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
+(((-1108) (-140)) (T -1108))
+((-3547 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1128)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1167)))) (-1520 (*1 *2 *1 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-112)))))
+(-13 (-102) (-618 (-867)) (-10 -8 (-15 -3547 ((-1128) $)) (-15 -3435 ((-1167) $)) (-15 -1520 ((-112) $ $))))
(((-102) . T) ((-618 (-867)) . T))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) 36)) (-3753 (($ (-649 (-927))) 72)) (-3953 (((-3 $ "failed") $ (-927) (-927)) 83)) (-3403 (($) 40)) (-1655 (((-112) (-927) $) 44)) (-2855 (((-927) $) 66)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) 39)) (-4042 (((-3 $ "failed") $ (-927)) 79)) (-3545 (((-1126) $) NIL)) (-1761 (((-1273 $)) 49)) (-3857 (((-649 (-927)) $) 27)) (-3111 (((-776) $ (-927) (-927)) 80)) (-3793 (((-867) $) 32)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 24)))
-(((-1107 |#1| |#2|) (-13 (-372) (-10 -8 (-15 -4042 ((-3 $ "failed") $ (-927))) (-15 -3953 ((-3 $ "failed") $ (-927) (-927))) (-15 -3857 ((-649 (-927)) $)) (-15 -3753 ($ (-649 (-927)))) (-15 -1761 ((-1273 $))) (-15 -1655 ((-112) (-927) $)) (-15 -3111 ((-776) $ (-927) (-927))))) (-927) (-927)) (T -1107))
-((-4042 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3953 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1761 (*1 *2) (-12 (-5 *2 (-1273 (-1107 *3 *4))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1655 (*1 *2 *3 *1) (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3111 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-372) (-10 -8 (-15 -4042 ((-3 $ "failed") $ (-927))) (-15 -3953 ((-3 $ "failed") $ (-927) (-927))) (-15 -3857 ((-649 (-927)) $)) (-15 -3753 ($ (-649 (-927)))) (-15 -1761 ((-1273 $))) (-15 -1655 ((-112) (-927) $)) (-15 -3111 ((-776) $ (-927) (-927)))))
-((-2415 (((-112) $ $) NIL)) (-2813 (($) NIL (|has| |#1| (-372)))) (-3966 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2210 (($ $ $) 81)) (-2124 (((-112) $ $) 82)) (-2716 (((-112) $ (-776)) NIL)) (-3470 (((-776)) NIL (|has| |#1| (-372)))) (-4255 (($ (-649 |#1|)) NIL) (($) 13)) (-4101 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3463 (($ |#1| $) 74 (|has| $ (-6 -4444))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4444)))) (-3403 (($) NIL (|has| |#1| (-372)))) (-2880 (((-649 |#1|) $) 19 (|has| $ (-6 -4444)))) (-1315 (((-112) $ $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3377 ((|#1| $) 55 (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3969 ((|#1| $) 53 (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 34)) (-2855 (((-927) $) NIL (|has| |#1| (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-4333 (($ $ $) 79)) (-1640 ((|#1| $) 25)) (-3813 (($ |#1| $) 69)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3545 (((-1126) $) NIL)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1764 ((|#1| $) 27)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 21)) (-3597 (($) 11)) (-2298 (($ $ |#1|) NIL) (($ $ $) 80)) (-1906 (($) NIL) (($ (-649 |#1|)) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 16)) (-1408 (((-541) $) 50 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 62)) (-2923 (($ $) NIL (|has| |#1| (-372)))) (-3793 (((-867) $) NIL)) (-3036 (((-776) $) NIL)) (-3864 (($ (-649 |#1|)) NIL) (($) 12)) (-1441 (((-112) $ $) NIL)) (-4209 (($ (-649 |#1|)) NIL)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 52)) (-2426 (((-776) $) 10 (|has| $ (-6 -4444)))))
-(((-1108 |#1|) (-430 |#1|) (-1106)) (T -1108))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) 36)) (-1478 (($ (-649 (-927))) 72)) (-2674 (((-3 $ "failed") $ (-927) (-927)) 83)) (-3406 (($) 40)) (-2004 (((-112) (-927) $) 44)) (-2731 (((-927) $) 66)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 39)) (-2345 (((-3 $ "failed") $ (-927)) 79)) (-3547 (((-1128) $) NIL)) (-1747 (((-1275 $)) 49)) (-4251 (((-649 (-927)) $) 27)) (-3117 (((-776) $ (-927) (-927)) 80)) (-3796 (((-867) $) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 24)))
+(((-1109 |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2345 ((-3 $ "failed") $ (-927))) (-15 -2674 ((-3 $ "failed") $ (-927) (-927))) (-15 -4251 ((-649 (-927)) $)) (-15 -1478 ($ (-649 (-927)))) (-15 -1747 ((-1275 $))) (-15 -2004 ((-112) (-927) $)) (-15 -3117 ((-776) $ (-927) (-927))))) (-927) (-927)) (T -1109))
+((-2345 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2674 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1747 (*1 *2) (-12 (-5 *2 (-1275 (-1109 *3 *4))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-2004 (*1 *2 *3 *1) (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3117 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-372) (-10 -8 (-15 -2345 ((-3 $ "failed") $ (-927))) (-15 -2674 ((-3 $ "failed") $ (-927) (-927))) (-15 -4251 ((-649 (-927)) $)) (-15 -1478 ($ (-649 (-927)))) (-15 -1747 ((-1275 $))) (-15 -2004 ((-112) (-927) $)) (-15 -3117 ((-776) $ (-927) (-927)))))
+((-2417 (((-112) $ $) NIL)) (-3610 (($) NIL (|has| |#1| (-372)))) (-3969 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2541 (($ $ $) 81)) (-4179 (((-112) $ $) 82)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4257 (($ (-649 |#1|)) NIL) (($) 13)) (-1796 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) 74 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4447)))) (-3406 (($) NIL (|has| |#1| (-372)))) (-2882 (((-649 |#1|) $) 19 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-3380 ((|#1| $) 55 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2839 ((|#1| $) 53 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 34)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 79)) (-1877 ((|#1| $) 25)) (-3894 (($ |#1| $) 69)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3547 (((-1128) $) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1781 ((|#1| $) 27)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 21)) (-3635 (($) 11)) (-2237 (($ $ |#1|) NIL) (($ $ $) 80)) (-2434 (($) NIL) (($ (-649 |#1|)) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 16)) (-1410 (((-541) $) 50 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 62)) (-3327 (($ $) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL)) (-1970 (((-776) $) NIL)) (-3868 (($ (-649 |#1|)) NIL) (($) 12)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 |#1|)) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 52)) (-2428 (((-776) $) 10 (|has| $ (-6 -4447)))))
+(((-1110 |#1|) (-430 |#1|) (-1108)) (T -1110))
NIL
(-430 |#1|)
-((-2415 (((-112) $ $) 7)) (-4318 (((-112) $) 33)) (-1402 ((|#2| $) 28)) (-3169 (((-112) $) 34)) (-3387 ((|#1| $) 29)) (-3388 (((-112) $) 36)) (-3606 (((-112) $) 38)) (-3267 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-4227 (((-112) $) 32)) (-1431 ((|#3| $) 27)) (-3545 (((-1126) $) 11)) (-4129 (((-112) $) 31)) (-2555 ((|#4| $) 26)) (-2622 ((|#5| $) 25)) (-4309 (((-112) $ $) 39)) (-1866 (($ $ (-569)) 21) (($ $ (-649 (-569))) 20)) (-3878 (((-649 $) $) 30)) (-1408 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-649 $)) 40)) (-3793 (((-867) $) 12)) (-3404 (($ $) 23)) (-3392 (($ $) 24)) (-1441 (((-112) $ $) 9)) (-3493 (((-112) $) 37)) (-2919 (((-112) $ $) 6)) (-2426 (((-569) $) 22)))
-(((-1109 |#1| |#2| |#3| |#4| |#5|) (-140) (-1106) (-1106) (-1106) (-1106) (-1106)) (T -1109))
-((-4309 (*1 *2 *1 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))) (-3878 (*1 *2 *1) (-12 (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-1109 *3 *4 *5 *6 *7)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *2 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *2 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *2 *6)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *2)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))) (-3392 (*1 *1 *1) (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))) (-3404 (*1 *1 *1) (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-569)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)))))
-(-13 (-1106) (-623 |t#1|) (-623 |t#2|) (-623 |t#3|) (-623 |t#4|) (-623 |t#4|) (-623 |t#5|) (-623 (-649 $)) (-10 -8 (-15 -4309 ((-112) $ $)) (-15 -3606 ((-112) $)) (-15 -3493 ((-112) $)) (-15 -3388 ((-112) $)) (-15 -3267 ((-112) $)) (-15 -3169 ((-112) $)) (-15 -4318 ((-112) $)) (-15 -4227 ((-112) $)) (-15 -4129 ((-112) $)) (-15 -3878 ((-649 $) $)) (-15 -3387 (|t#1| $)) (-15 -1402 (|t#2| $)) (-15 -1431 (|t#3| $)) (-15 -2555 (|t#4| $)) (-15 -2622 (|t#5| $)) (-15 -3392 ($ $)) (-15 -3404 ($ $)) (-15 -2426 ((-569) $)) (-15 -1866 ($ $ (-569))) (-15 -1866 ($ $ (-649 (-569))))))
-(((-102) . T) ((-618 (-867)) . T) ((-623 (-649 $)) . T) ((-623 |#1|) . T) ((-623 |#2|) . T) ((-623 |#3|) . T) ((-623 |#4|) . T) ((-623 |#5|) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-4318 (((-112) $) NIL)) (-1402 (((-1183) $) NIL)) (-3169 (((-112) $) NIL)) (-3387 (((-1165) $) NIL)) (-3388 (((-112) $) NIL)) (-3606 (((-112) $) NIL)) (-3267 (((-112) $) NIL)) (-1550 (((-1165) $) NIL)) (-4227 (((-112) $) NIL)) (-1431 (((-569) $) NIL)) (-3545 (((-1126) $) NIL)) (-4129 (((-112) $) NIL)) (-2555 (((-226) $) NIL)) (-2622 (((-867) $) NIL)) (-4309 (((-112) $ $) NIL)) (-1866 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3878 (((-649 $) $) NIL)) (-1408 (($ (-1165)) NIL) (($ (-1183)) NIL) (($ (-569)) NIL) (($ (-226)) NIL) (($ (-867)) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL)) (-3404 (($ $) NIL)) (-3392 (($ $) NIL)) (-1441 (((-112) $ $) NIL)) (-3493 (((-112) $) NIL)) (-2919 (((-112) $ $) NIL)) (-2426 (((-569) $) NIL)))
-(((-1110) (-1109 (-1165) (-1183) (-569) (-226) (-867))) (T -1110))
-NIL
-(-1109 (-1165) (-1183) (-569) (-226) (-867))
-((-2415 (((-112) $ $) NIL)) (-4318 (((-112) $) 45)) (-1402 ((|#2| $) 48)) (-3169 (((-112) $) 20)) (-3387 ((|#1| $) 21)) (-3388 (((-112) $) 42)) (-3606 (((-112) $) 14)) (-3267 (((-112) $) 44)) (-1550 (((-1165) $) NIL)) (-4227 (((-112) $) 46)) (-1431 ((|#3| $) 50)) (-3545 (((-1126) $) NIL)) (-4129 (((-112) $) 47)) (-2555 ((|#4| $) 49)) (-2622 ((|#5| $) 51)) (-4309 (((-112) $ $) 41)) (-1866 (($ $ (-569)) 62) (($ $ (-649 (-569))) 64)) (-3878 (((-649 $) $) 27)) (-1408 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-649 $)) 52)) (-3793 (((-867) $) 28)) (-3404 (($ $) 26)) (-3392 (($ $) 58)) (-1441 (((-112) $ $) NIL)) (-3493 (((-112) $) 23)) (-2919 (((-112) $ $) 40)) (-2426 (((-569) $) 60)))
-(((-1111 |#1| |#2| |#3| |#4| |#5|) (-1109 |#1| |#2| |#3| |#4| |#5|) (-1106) (-1106) (-1106) (-1106) (-1106)) (T -1111))
-NIL
-(-1109 |#1| |#2| |#3| |#4| |#5|)
-((-3358 (((-1278) $) 22)) (-1705 (($ (-1183) (-439) |#2|) 11)) (-3793 (((-867) $) 16)))
-(((-1112 |#1| |#2|) (-13 (-400) (-10 -8 (-15 -1705 ($ (-1183) (-439) |#2|)))) (-1106) (-435 |#1|)) (T -1112))
-((-1705 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *3 (-439)) (-4 *5 (-1106)) (-5 *1 (-1112 *5 *4)) (-4 *4 (-435 *5)))))
-(-13 (-400) (-10 -8 (-15 -1705 ($ (-1183) (-439) |#2|))))
-((-2597 (((-112) |#5| |#5|) 44)) (-2910 (((-112) |#5| |#5|) 59)) (-2140 (((-112) |#5| (-649 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2999 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2295 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) 70)) (-2499 (((-1278)) 32)) (-3702 (((-1278) (-1165) (-1165) (-1165)) 28)) (-2217 (((-649 |#5|) (-649 |#5|)) 101)) (-2371 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) 93)) (-4389 (((-649 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 123)) (-2812 (((-112) |#5| |#5|) 53)) (-2061 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1913 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-1984 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-1672 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-1355 (((-3 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2708 (((-649 |#5|) (-649 |#5|)) 49)))
-(((-1113 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3702 ((-1278) (-1165) (-1165) (-1165))) (-15 -2499 ((-1278))) (-15 -2597 ((-112) |#5| |#5|)) (-15 -2708 ((-649 |#5|) (-649 |#5|))) (-15 -2812 ((-112) |#5| |#5|)) (-15 -2910 ((-112) |#5| |#5|)) (-15 -2999 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1913 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1984 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1672 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2061 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2140 ((-112) |#5| |#5|)) (-15 -2140 ((-112) |#5| (-649 |#5|))) (-15 -2217 ((-649 |#5|) (-649 |#5|))) (-15 -2295 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2371 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-15 -4389 ((-649 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -1355 ((-3 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1113))
-((-1355 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| -4309 (-649 *9)) (|:| -3660 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-1113 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1077 *6 *7 *8 *9)))) (-4389 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4309 (-649 *9)) (|:| -3660 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-1113 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-2371 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3660 *7)))) (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-2295 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)))) (-2217 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1113 *5 *6 *7 *8 *3)))) (-2140 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2061 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-1672 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-1984 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2999 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-2910 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2812 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))) (-2597 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))) (-2499 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1113 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3702 ((-1278) (-1165) (-1165) (-1165))) (-15 -2499 ((-1278))) (-15 -2597 ((-112) |#5| |#5|)) (-15 -2708 ((-649 |#5|) (-649 |#5|))) (-15 -2812 ((-112) |#5| |#5|)) (-15 -2910 ((-112) |#5| |#5|)) (-15 -2999 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1913 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1984 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1672 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2061 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2140 ((-112) |#5| |#5|)) (-15 -2140 ((-112) |#5| (-649 |#5|))) (-15 -2217 ((-649 |#5|) (-649 |#5|))) (-15 -2295 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2371 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-15 -4389 ((-649 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -1355 ((-3 (-2 (|:| -4309 (-649 |#4|)) (|:| -3660 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1799 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|) 108)) (-1791 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#4| |#4| |#5|) 80)) (-3938 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|) 102)) (-4104 (((-649 |#5|) |#4| |#5|) 124)) (-1670 (((-649 |#5|) |#4| |#5|) 131)) (-1692 (((-649 |#5|) |#4| |#5|) 132)) (-4026 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|) 109)) (-1564 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|) 130)) (-1604 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1877 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#3| (-112)) 92) (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3862 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|) 87)) (-1694 (((-1278)) 36)) (-1537 (((-1278)) 25)) (-1628 (((-1278) (-1165) (-1165) (-1165)) 32)) (-1449 (((-1278) (-1165) (-1165) (-1165)) 21)))
-(((-1114 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1449 ((-1278) (-1165) (-1165) (-1165))) (-15 -1537 ((-1278))) (-15 -1628 ((-1278) (-1165) (-1165) (-1165))) (-15 -1694 ((-1278))) (-15 -1791 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -1877 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1877 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#3| (-112))) (-15 -3862 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3938 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -1604 ((-112) |#4| |#5|)) (-15 -4026 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -4104 ((-649 |#5|) |#4| |#5|)) (-15 -1564 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -1670 ((-649 |#5|) |#4| |#5|)) (-15 -1604 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -1692 ((-649 |#5|) |#4| |#5|)) (-15 -1799 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1077 |#1| |#2| |#3| |#4|)) (T -1114))
-((-1799 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1692 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1604 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1670 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1564 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-4104 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-4026 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1604 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3938 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-3862 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1877 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9)))) (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3660 *9)))) (-5 *1 (-1114 *6 *7 *4 *8 *9)))) (-1877 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3)))) (-1791 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))) (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))) (-1694 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-1628 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))) (-1537 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278)) (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))) (-1449 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278)) (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1449 ((-1278) (-1165) (-1165) (-1165))) (-15 -1537 ((-1278))) (-15 -1628 ((-1278) (-1165) (-1165) (-1165))) (-15 -1694 ((-1278))) (-15 -1791 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -1877 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1877 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) |#3| (-112))) (-15 -3862 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -3938 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#4| |#5|)) (-15 -1604 ((-112) |#4| |#5|)) (-15 -4026 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -4104 ((-649 |#5|) |#4| |#5|)) (-15 -1564 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -1670 ((-649 |#5|) |#4| |#5|)) (-15 -1604 ((-649 (-2 (|:| |val| (-112)) (|:| -3660 |#5|))) |#4| |#5|)) (-15 -1692 ((-649 |#5|) |#4| |#5|)) (-15 -1799 ((-649 (-2 (|:| |val| |#4|) (|:| -3660 |#5|))) |#4| |#5|)))
-((-2415 (((-112) $ $) 7)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) 86)) (-3465 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1710 (((-649 |#3|) $) 34)) (-2686 (((-112) $) 27)) (-4276 (((-112) $) 18 (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) 102) (((-112) $) 98)) (-2874 ((|#4| |#4| $) 93)) (-2078 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| $) 127)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) 28)) (-2716 (((-112) $ (-776)) 45)) (-1415 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) 80)) (-4188 (($) 46 T CONST)) (-3584 (((-112) $) 23 (|has| |#1| (-561)))) (-3778 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3685 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2576 (((-112) $) 26 (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4374 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) 37)) (-3148 (($ (-649 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2516 ((|#4| |#4| $) 90)) (-3547 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3593 ((|#4| |#4| $) 88)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) 106)) (-2848 (((-112) |#4| $) 137)) (-2634 (((-112) |#4| $) 134)) (-2959 (((-112) |#4| $) 138) (((-112) $) 135)) (-2880 (((-649 |#4|) $) 53 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) 105) (((-112) $) 104)) (-1873 ((|#3| $) 35)) (-1689 (((-112) $ (-776)) 44)) (-3040 (((-649 |#4|) $) 54 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 48)) (-3097 (((-649 |#3|) $) 33)) (-3116 (((-112) |#3| $) 32)) (-2433 (((-112) $ (-776)) 43)) (-1550 (((-1165) $) 10)) (-3533 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-3425 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| |#4| $) 128)) (-1722 (((-3 |#4| "failed") $) 84)) (-3638 (((-649 $) |#4| $) 130)) (-2533 (((-3 (-112) (-649 $)) |#4| $) 133)) (-3736 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4333 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-1551 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1447 (((-649 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-2642 ((|#4| |#4| $) 91)) (-1672 (((-112) $ $) 111)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) 101) (((-112) $) 97)) (-2765 ((|#4| |#4| $) 92)) (-3545 (((-1126) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3124 (((-3 $ "failed") $ |#4|) 79)) (-2907 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-2911 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) 39)) (-3218 (((-112) $) 42)) (-3597 (($) 41)) (-3868 (((-776) $) 107)) (-3558 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4444)))) (-3959 (($ $) 40)) (-1408 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 61)) (-2792 (($ $ |#3|) 29)) (-3013 (($ $ |#3|) 31)) (-2408 (($ $) 89)) (-2900 (($ $ |#3|) 30)) (-3793 (((-867) $) 12) (((-649 |#4|) $) 38)) (-3023 (((-776) $) 77 (|has| |#3| (-372)))) (-1441 (((-112) $ $) 9)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-3304 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3037 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) 82)) (-2743 (((-112) |#4| $) 136)) (-2133 (((-112) |#3| $) 81)) (-2919 (((-112) $ $) 6)) (-2426 (((-776) $) 47 (|has| $ (-6 -4444)))))
-(((-1115 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1115))
-NIL
-(-13 (-1077 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
-((-3764 (((-649 (-569)) (-569) (-569) (-569)) 39)) (-3670 (((-649 (-569)) (-569) (-569) (-569)) 29)) (-1494 (((-649 (-569)) (-569) (-569) (-569)) 34)) (-1373 (((-569) (-569) (-569)) 23)) (-4379 (((-1273 (-569)) (-649 (-569)) (-1273 (-569)) (-569)) 75) (((-1273 (-569)) (-1273 (-569)) (-1273 (-569)) (-569)) 70)) (-3890 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112)) 52)) (-3604 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 74)) (-2745 (((-694 (-569)) (-649 (-569)) (-649 (-569))) 58)) (-3338 (((-649 (-694 (-569))) (-649 (-569))) 63)) (-1973 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 78)) (-1893 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569))) 88)))
-(((-1116) (-10 -7 (-15 -1893 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1973 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3338 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -2745 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -3604 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3890 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -4379 ((-1273 (-569)) (-1273 (-569)) (-1273 (-569)) (-569))) (-15 -4379 ((-1273 (-569)) (-649 (-569)) (-1273 (-569)) (-569))) (-15 -1373 ((-569) (-569) (-569))) (-15 -1494 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3670 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3764 ((-649 (-569)) (-569) (-569) (-569))))) (T -1116))
-((-3764 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))) (-3670 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))) (-1494 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))) (-1373 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1116)))) (-4379 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569)) (-5 *1 (-1116)))) (-4379 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-569)) (-5 *1 (-1116)))) (-3890 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1116)))) (-3604 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1116)))) (-2745 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1116)))) (-1973 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1116)))) (-1893 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))))
-(-10 -7 (-15 -1893 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1973 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3338 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -2745 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -3604 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3890 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -4379 ((-1273 (-569)) (-1273 (-569)) (-1273 (-569)) (-569))) (-15 -4379 ((-1273 (-569)) (-649 (-569)) (-1273 (-569)) (-569))) (-15 -1373 ((-569) (-569) (-569))) (-15 -1494 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3670 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3764 ((-649 (-569)) (-569) (-569) (-569))))
+((-2417 (((-112) $ $) 7)) (-3179 (((-112) $) 33)) (-1404 ((|#2| $) 28)) (-3936 (((-112) $) 34)) (-3390 ((|#1| $) 29)) (-2229 (((-112) $) 36)) (-3734 (((-112) $) 38)) (-3685 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3605 (((-112) $) 32)) (-1433 ((|#3| $) 27)) (-3547 (((-1128) $) 11)) (-3953 (((-112) $) 31)) (-2557 ((|#4| $) 26)) (-2624 ((|#5| $) 25)) (-4312 (((-112) $ $) 39)) (-1869 (($ $ (-569)) 21) (($ $ (-649 (-569))) 20)) (-3881 (((-649 $) $) 30)) (-1410 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-649 $)) 40)) (-3796 (((-867) $) 12)) (-3407 (($ $) 23)) (-3395 (($ $) 24)) (-1520 (((-112) $ $) 9)) (-3952 (((-112) $) 37)) (-2920 (((-112) $ $) 6)) (-2428 (((-569) $) 22)))
+(((-1111 |#1| |#2| |#3| |#4| |#5|) (-140) (-1108) (-1108) (-1108) (-1108) (-1108)) (T -1111))
+((-4312 (*1 *2 *1 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3881 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-1111 *3 *4 *5 *6 *7)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *2 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *2 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *2)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)))) (-3407 (*1 *1 *1) (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-569)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))))
+(-13 (-1108) (-623 |t#1|) (-623 |t#2|) (-623 |t#3|) (-623 |t#4|) (-623 |t#4|) (-623 |t#5|) (-623 (-649 $)) (-10 -8 (-15 -4312 ((-112) $ $)) (-15 -3734 ((-112) $)) (-15 -3952 ((-112) $)) (-15 -2229 ((-112) $)) (-15 -3685 ((-112) $)) (-15 -3936 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3953 ((-112) $)) (-15 -3881 ((-649 $) $)) (-15 -3390 (|t#1| $)) (-15 -1404 (|t#2| $)) (-15 -1433 (|t#3| $)) (-15 -2557 (|t#4| $)) (-15 -2624 (|t#5| $)) (-15 -3395 ($ $)) (-15 -3407 ($ $)) (-15 -2428 ((-569) $)) (-15 -1869 ($ $ (-569))) (-15 -1869 ($ $ (-649 (-569))))))
+(((-102) . T) ((-618 (-867)) . T) ((-623 (-649 $)) . T) ((-623 |#1|) . T) ((-623 |#2|) . T) ((-623 |#3|) . T) ((-623 |#4|) . T) ((-623 |#5|) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3179 (((-112) $) NIL)) (-1404 (((-1185) $) NIL)) (-3936 (((-112) $) NIL)) (-3390 (((-1167) $) NIL)) (-2229 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3685 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3605 (((-112) $) NIL)) (-1433 (((-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3953 (((-112) $) NIL)) (-2557 (((-226) $) NIL)) (-2624 (((-867) $) NIL)) (-4312 (((-112) $ $) NIL)) (-1869 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3881 (((-649 $) $) NIL)) (-1410 (($ (-1167)) NIL) (($ (-1185)) NIL) (($ (-569)) NIL) (($ (-226)) NIL) (($ (-867)) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL)) (-3407 (($ $) NIL)) (-3395 (($ $) NIL)) (-1520 (((-112) $ $) NIL)) (-3952 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-569) $) NIL)))
+(((-1112) (-1111 (-1167) (-1185) (-569) (-226) (-867))) (T -1112))
+NIL
+(-1111 (-1167) (-1185) (-569) (-226) (-867))
+((-2417 (((-112) $ $) NIL)) (-3179 (((-112) $) 45)) (-1404 ((|#2| $) 48)) (-3936 (((-112) $) 20)) (-3390 ((|#1| $) 21)) (-2229 (((-112) $) 42)) (-3734 (((-112) $) 14)) (-3685 (((-112) $) 44)) (-3435 (((-1167) $) NIL)) (-3605 (((-112) $) 46)) (-1433 ((|#3| $) 50)) (-3547 (((-1128) $) NIL)) (-3953 (((-112) $) 47)) (-2557 ((|#4| $) 49)) (-2624 ((|#5| $) 51)) (-4312 (((-112) $ $) 41)) (-1869 (($ $ (-569)) 62) (($ $ (-649 (-569))) 64)) (-3881 (((-649 $) $) 27)) (-1410 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-649 $)) 52)) (-3796 (((-867) $) 28)) (-3407 (($ $) 26)) (-3395 (($ $) 58)) (-1520 (((-112) $ $) NIL)) (-3952 (((-112) $) 23)) (-2920 (((-112) $ $) 40)) (-2428 (((-569) $) 60)))
+(((-1113 |#1| |#2| |#3| |#4| |#5|) (-1111 |#1| |#2| |#3| |#4| |#5|) (-1108) (-1108) (-1108) (-1108) (-1108)) (T -1113))
+NIL
+(-1111 |#1| |#2| |#3| |#4| |#5|)
+((-3362 (((-1280) $) 22)) (-1707 (($ (-1185) (-439) |#2|) 11)) (-3796 (((-867) $) 16)))
+(((-1114 |#1| |#2|) (-13 (-400) (-10 -8 (-15 -1707 ($ (-1185) (-439) |#2|)))) (-1108) (-435 |#1|)) (T -1114))
+((-1707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-439)) (-4 *5 (-1108)) (-5 *1 (-1114 *5 *4)) (-4 *4 (-435 *5)))))
+(-13 (-400) (-10 -8 (-15 -1707 ($ (-1185) (-439) |#2|))))
+((-2137 (((-112) |#5| |#5|) 44)) (-3197 (((-112) |#5| |#5|) 59)) (-3083 (((-112) |#5| (-649 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2831 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2210 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 70)) (-3681 (((-1280)) 32)) (-2197 (((-1280) (-1167) (-1167) (-1167)) 28)) (-2611 (((-649 |#5|) (-649 |#5|)) 101)) (-1805 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) 93)) (-1419 (((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 123)) (-3599 (((-112) |#5| |#5|) 53)) (-1647 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2503 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-2066 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-2151 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-3543 (((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3841 (((-649 |#5|) (-649 |#5|)) 49)))
+(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1115))
+((-3543 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-1115 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1079 *6 *7 *8 *9)))) (-1419 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-1115 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7)))) (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1115 *3 *4 *5 *6 *7)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-1115 *3 *4 *5 *6 *7)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1115 *5 *6 *7 *8 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-1647 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-2151 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2066 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2503 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3599 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-1115 *3 *4 *5 *6 *7)))) (-2137 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3681 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2197 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3970 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|) 108)) (-3907 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|) 80)) (-2511 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 102)) (-1818 (((-649 |#5|) |#4| |#5|) 124)) (-2131 (((-649 |#5|) |#4| |#5|) 131)) (-2333 (((-649 |#5|) |#4| |#5|) 132)) (-2211 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 109)) (-3607 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 130)) (-2684 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3409 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112)) 92) (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4302 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 87)) (-2351 (((-1280)) 36)) (-3280 (((-1280)) 25)) (-2933 (((-1280) (-1167) (-1167) (-1167)) 32)) (-3673 (((-1280) (-1167) (-1167) (-1167)) 21)))
+(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -3907 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -4302 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2511 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2684 ((-112) |#4| |#5|)) (-15 -2211 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1818 ((-649 |#5|) |#4| |#5|)) (-15 -3607 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2131 ((-649 |#5|) |#4| |#5|)) (-15 -2684 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2333 ((-649 |#5|) |#4| |#5|)) (-15 -3970 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1116))
+((-3970 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2333 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2684 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-1818 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2684 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2511 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-4302 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9)))) (-5 *1 (-1116 *6 *7 *4 *8 *9)))) (-3409 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-3907 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2351 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2933 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3280 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-3673 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -3907 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -4302 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2511 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2684 ((-112) |#4| |#5|)) (-15 -2211 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1818 ((-649 |#5|) |#4| |#5|)) (-15 -3607 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2131 ((-649 |#5|) |#4| |#5|)) (-15 -2684 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2333 ((-649 |#5|) |#4| |#5|)) (-15 -3970 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|)))
+((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447)))))
+(((-1117 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1117))
+NIL
+(-13 (-1079 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1079 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T))
+((-1579 (((-649 (-569)) (-569) (-569) (-569)) 39)) (-3090 (((-649 (-569)) (-569) (-569) (-569)) 29)) (-4109 (((-649 (-569)) (-569) (-569) (-569)) 34)) (-3729 (((-569) (-569) (-569)) 23)) (-2498 (((-1275 (-569)) (-649 (-569)) (-1275 (-569)) (-569)) 75) (((-1275 (-569)) (-1275 (-569)) (-1275 (-569)) (-569)) 70)) (-3321 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112)) 52)) (-3711 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 74)) (-4170 (((-694 (-569)) (-649 (-569)) (-649 (-569))) 58)) (-3049 (((-649 (-694 (-569))) (-649 (-569))) 63)) (-1971 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 78)) (-3588 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569))) 88)))
+(((-1118) (-10 -7 (-15 -3588 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1971 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3049 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -4170 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -3711 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3321 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -2498 ((-1275 (-569)) (-1275 (-569)) (-1275 (-569)) (-569))) (-15 -2498 ((-1275 (-569)) (-649 (-569)) (-1275 (-569)) (-569))) (-15 -3729 ((-569) (-569) (-569))) (-15 -4109 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3090 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1579 ((-649 (-569)) (-569) (-569) (-569))))) (T -1118))
+((-1579 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))) (-3090 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))) (-4109 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))) (-3729 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1118)))) (-2498 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569)) (-5 *1 (-1118)))) (-2498 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-569)) (-5 *1 (-1118)))) (-3321 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1118)))) (-3711 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1118)))) (-4170 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1118)))) (-1971 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1118)))) (-3588 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118)))))
+(-10 -7 (-15 -3588 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1971 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3049 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -4170 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -3711 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3321 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -2498 ((-1275 (-569)) (-1275 (-569)) (-1275 (-569)) (-569))) (-15 -2498 ((-1275 (-569)) (-649 (-569)) (-1275 (-569)) (-569))) (-15 -3729 ((-569) (-569) (-569))) (-15 -4109 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3090 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1579 ((-649 (-569)) (-569) (-569) (-569))))
((** (($ $ (-927)) 10)))
-(((-1117 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927)))) (-1118)) (T -1117))
+(((-1119 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927)))) (-1120)) (T -1119))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-927))))
-((-2415 (((-112) $ $) 7)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 15)))
-(((-1118) (-140)) (T -1118))
-((* (*1 *1 *1 *1) (-4 *1 (-1118))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1118)) (-5 *2 (-927)))))
-(-13 (-1106) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-927)))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL (|has| |#3| (-1106)))) (-3192 (((-112) $) NIL (|has| |#3| (-131)))) (-4230 (($ (-927)) NIL (|has| |#3| (-1055)))) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-3217 (($ $ $) NIL (|has| |#3| (-798)))) (-1678 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2716 (((-112) $ (-776)) NIL)) (-3470 (((-776)) NIL (|has| |#3| (-372)))) (-2552 (((-569) $) NIL (|has| |#3| (-853)))) (-3940 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1106)))) (-3148 (((-569) $) NIL (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106)))) ((|#3| $) NIL (|has| |#3| (-1106)))) (-1630 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1055)))) (((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) NIL (|has| |#3| (-1055))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1055)))) (-2888 (((-3 $ "failed") $) NIL (|has| |#3| (-731)))) (-3403 (($) NIL (|has| |#3| (-372)))) (-3843 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#3| $ (-569)) 12)) (-4237 (((-112) $) NIL (|has| |#3| (-853)))) (-2880 (((-649 |#3|) $) NIL (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL (|has| |#3| (-731)))) (-4327 (((-112) $) NIL (|has| |#3| (-853)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3040 (((-649 |#3|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3831 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#3| |#3|) $) NIL)) (-2855 (((-927) $) NIL (|has| |#3| (-372)))) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#3| (-1106)))) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#3| (-372)))) (-3545 (((-1126) $) NIL (|has| |#3| (-1106)))) (-3510 ((|#3| $) NIL (|has| (-569) (-855)))) (-4420 (($ $ |#3|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106))))) (-3851 (((-649 |#3|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) NIL)) (-3990 ((|#3| $ $) NIL (|has| |#3| (-1055)))) (-3845 (($ (-1273 |#3|)) NIL)) (-3083 (((-134)) NIL (|has| |#3| (-367)))) (-3514 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055)))) (-3558 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#3| (-1106))))) (-3959 (($ $) NIL)) (-3793 (((-1273 |#3|) $) NIL) (($ (-569)) NIL (-2774 (-12 (|has| |#3| (-1044 (-569))) (|has| |#3| (-1106))) (|has| |#3| (-1055)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1044 (-412 (-569)))) (|has| |#3| (-1106)))) (($ |#3|) NIL (|has| |#3| (-1106))) (((-867) $) NIL (|has| |#3| (-618 (-867))))) (-3302 (((-776)) NIL (|has| |#3| (-1055)) CONST)) (-1441 (((-112) $ $) NIL (|has| |#3| (-1106)))) (-3037 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4444)))) (-3070 (($ $) NIL (|has| |#3| (-853)))) (-1803 (($) NIL (|has| |#3| (-131)) CONST)) (-1813 (($) NIL (|has| |#3| (-731)) CONST)) (-2830 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1055)))) (($ $ (-1183)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1183))) (|has| |#3| (-1055)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1055))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1055)))) (-2976 (((-112) $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2954 (((-112) $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2919 (((-112) $ $) NIL (|has| |#3| (-1106)))) (-2964 (((-112) $ $) NIL (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2942 (((-112) $ $) 24 (-2774 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3032 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3021 (($ $ $) NIL (|has| |#3| (-1055))) (($ $) NIL (|has| |#3| (-1055)))) (-3009 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-776)) NIL (|has| |#3| (-731))) (($ $ (-927)) NIL (|has| |#3| (-731)))) (* (($ (-569) $) NIL (|has| |#3| (-1055))) (($ $ $) NIL (|has| |#3| (-731))) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ (-776) $) NIL (|has| |#3| (-131))) (($ (-927) $) NIL (|has| |#3| (-25)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1119 |#1| |#2| |#3|) (-239 |#1| |#3|) (-776) (-776) (-798)) (T -1119))
+((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 15)))
+(((-1120) (-140)) (T -1120))
+((* (*1 *1 *1 *1) (-4 *1 (-1120))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-927)))))
+(-13 (-1108) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-927)))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL (|has| |#3| (-1108)))) (-4143 (((-112) $) NIL (|has| |#3| (-131)))) (-3636 (($ (-927)) NIL (|has| |#3| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#3| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#3| (-372)))) (-2919 (((-569) $) NIL (|has| |#3| (-853)))) (-3943 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) ((|#3| $) NIL (|has| |#3| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) NIL (|has| |#3| (-1057))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1057)))) (-3086 (((-3 $ "failed") $) NIL (|has| |#3| (-731)))) (-3406 (($) NIL (|has| |#3| (-372)))) (-3846 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#3| $ (-569)) 12)) (-3712 (((-112) $) NIL (|has| |#3| (-853)))) (-2882 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#3| (-731)))) (-2051 (((-112) $) NIL (|has| |#3| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2009 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3834 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#3| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#3| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#3| (-372)))) (-3547 (((-1128) $) NIL (|has| |#3| (-1108)))) (-3513 ((|#3| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#3|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-4199 (((-649 |#3|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) NIL)) (-3040 ((|#3| $ $) NIL (|has| |#3| (-1057)))) (-3848 (($ (-1275 |#3|)) NIL)) (-2377 (((-134)) NIL (|has| |#3| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057)))) (-3560 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#3|) $) NIL) (($ (-569)) NIL (-2776 (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) (($ |#3|) NIL (|has| |#3| (-1108))) (((-867) $) NIL (|has| |#3| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#3| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#3| (-1108)))) (-1980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#3| (-853)))) (-1804 (($) NIL (|has| |#3| (-131)) CONST)) (-1815 (($) NIL (|has| |#3| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2920 (((-112) $ $) NIL (|has| |#3| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2944 (((-112) $ $) 24 (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3035 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3024 (($ $ $) NIL (|has| |#3| (-1057))) (($ $) NIL (|has| |#3| (-1057)))) (-3012 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-776)) NIL (|has| |#3| (-731))) (($ $ (-927)) NIL (|has| |#3| (-731)))) (* (($ (-569) $) NIL (|has| |#3| (-1057))) (($ $ $) NIL (|has| |#3| (-731))) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ (-776) $) NIL (|has| |#3| (-131))) (($ (-927) $) NIL (|has| |#3| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1121 |#1| |#2| |#3|) (-239 |#1| |#3|) (-776) (-776) (-798)) (T -1121))
NIL
(-239 |#1| |#3|)
-((-3867 (((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 50)) (-3178 (((-569) (-1246 |#2| |#1|)) 97 (|has| |#1| (-457)))) (-4234 (((-569) (-1246 |#2| |#1|)) 79)) (-3961 (((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 60)) (-3077 (((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 96 (|has| |#1| (-457)))) (-4050 (((-649 |#1|) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 64)) (-4139 (((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|)) 78)))
-(((-1120 |#1| |#2|) (-10 -7 (-15 -3867 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -3961 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -4050 ((-649 |#1|) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -4139 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -4234 ((-569) (-1246 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3077 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -3178 ((-569) (-1246 |#2| |#1|)))) |%noBranch|)) (-825) (-1183)) (T -1120))
-((-3178 (*1 *2 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-3077 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-4139 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))) (-4050 (*1 *2 *3 *3) (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 *4)) (-5 *1 (-1120 *4 *5)))) (-3961 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4))) (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))) (-3867 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4))) (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))))
-(-10 -7 (-15 -3867 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -3961 ((-649 (-1246 |#2| |#1|)) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -4050 ((-649 |#1|) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -4139 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -4234 ((-569) (-1246 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3077 ((-569) (-1246 |#2| |#1|) (-1246 |#2| |#1|))) (-15 -3178 ((-569) (-1246 |#2| |#1|)))) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-3277 (($ (-511) (-1124)) 13)) (-4328 (((-1124) $) 19)) (-3570 (((-511) $) 16)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 26) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1121) (-13 (-1089) (-10 -8 (-15 -3277 ($ (-511) (-1124))) (-15 -3570 ((-511) $)) (-15 -4328 ((-1124) $))))) (T -1121))
-((-3277 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-1121)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1121)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1121)))))
-(-13 (-1089) (-10 -8 (-15 -3277 ($ (-511) (-1124))) (-15 -3570 ((-511) $)) (-15 -4328 ((-1124) $))))
-((-2552 (((-3 (-569) "failed") |#2| (-1183) |#2| (-1165)) 19) (((-3 (-569) "failed") |#2| (-1183) (-848 |#2|)) 17) (((-3 (-569) "failed") |#2|) 60)))
-(((-1122 |#1| |#2|) (-10 -7 (-15 -2552 ((-3 (-569) "failed") |#2|)) (-15 -2552 ((-3 (-569) "failed") |#2| (-1183) (-848 |#2|))) (-15 -2552 ((-3 (-569) "failed") |#2| (-1183) |#2| (-1165)))) (-13 (-561) (-1044 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1208) (-435 |#1|))) (T -1122))
-((-2552 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-1165)) (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1122 *6 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))))) (-2552 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6))) (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1122 *6 *3)))) (-2552 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1122 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))))
-(-10 -7 (-15 -2552 ((-3 (-569) "failed") |#2|)) (-15 -2552 ((-3 (-569) "failed") |#2| (-1183) (-848 |#2|))) (-15 -2552 ((-3 (-569) "failed") |#2| (-1183) |#2| (-1165))))
-((-2552 (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)) (-1165)) 38) (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-848 (-412 (-958 |#1|)))) 33) (((-3 (-569) "failed") (-412 (-958 |#1|))) 14)))
-(((-1123 |#1|) (-10 -7 (-15 -2552 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2552 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-848 (-412 (-958 |#1|))))) (-15 -2552 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)) (-1165)))) (-457)) (T -1123))
-((-2552 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1183)) (-5 *5 (-1165)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *6)))) (-2552 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *6)))) (-2552 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *4)))))
-(-10 -7 (-15 -2552 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2552 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-848 (-412 (-958 |#1|))))) (-15 -2552 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1183) (-412 (-958 |#1|)) (-1165))))
-((-2415 (((-112) $ $) NIL)) (-3865 (((-1188) $) 12)) (-3810 (((-649 (-1188)) $) 14)) (-4328 (($ (-649 (-1188)) (-1188)) 10)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 29)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 17)))
-(((-1124) (-13 (-1106) (-10 -8 (-15 -4328 ($ (-649 (-1188)) (-1188))) (-15 -3865 ((-1188) $)) (-15 -3810 ((-649 (-1188)) $))))) (T -1124))
-((-4328 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1188))) (-5 *3 (-1188)) (-5 *1 (-1124)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1124)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1124)))))
-(-13 (-1106) (-10 -8 (-15 -4328 ($ (-649 (-1188)) (-1188))) (-15 -3865 ((-1188) $)) (-15 -3810 ((-649 (-1188)) $))))
-((-1582 (((-319 (-569)) (-48)) 12)))
-(((-1125) (-10 -7 (-15 -1582 ((-319 (-569)) (-48))))) (T -1125))
-((-1582 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1125)))))
-(-10 -7 (-15 -1582 ((-319 (-569)) (-48))))
-((-2415 (((-112) $ $) NIL)) (-2436 (($ $) 44)) (-3192 (((-112) $) 69)) (-1780 (($ $ $) 51)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 97)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-4122 (($ $ $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3956 (($ $ $ $) 80)) (-2078 (($ $) NIL)) (-2508 (((-423 $) $) NIL)) (-1680 (((-112) $ $) NIL)) (-3470 (((-776)) 82)) (-2552 (((-569) $) NIL)) (-3081 (($ $ $) 77)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL)) (-3148 (((-569) $) NIL)) (-2366 (($ $ $) 63)) (-1630 (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 91) (((-694 (-569)) (-694 $)) 32)) (-2888 (((-3 $ "failed") $) NIL)) (-1545 (((-3 (-412 (-569)) "failed") $) NIL)) (-1434 (((-112) $) NIL)) (-1311 (((-412 (-569)) $) NIL)) (-3403 (($) 94) (($ $) 95)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL)) (-4073 (((-112) $) NIL)) (-2481 (($ $ $ $) NIL)) (-4190 (($ $ $) 92)) (-4237 (((-112) $) NIL)) (-1841 (($ $ $) NIL)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2623 (((-112) $) 71)) (-1607 (((-112) $) 68)) (-1745 (($ $) 45)) (-3812 (((-3 $ "failed") $) NIL)) (-4327 (((-112) $) 81)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2604 (($ $ $ $) 78)) (-3377 (($ $ $) 73) (($) 42 T CONST)) (-3969 (($ $ $) 72) (($) 41 T CONST)) (-2605 (($ $) NIL)) (-2855 (((-927) $) 87)) (-3842 (($ $) 76)) (-1835 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1550 (((-1165) $) NIL)) (-3678 (($ $ $) NIL)) (-2305 (($) NIL T CONST)) (-2150 (($ (-927)) 86)) (-3589 (($ $) 56)) (-3545 (((-1126) $) 75)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL)) (-1864 (($ $ $) 66) (($ (-649 $)) NIL)) (-1649 (($ $) NIL)) (-3796 (((-423 $) $) NIL)) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL)) (-2405 (((-3 $ "failed") $ $) NIL)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2108 (((-112) $) NIL)) (-1578 (((-776) $) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 65)) (-3514 (($ $ (-776)) NIL) (($ $) NIL)) (-2431 (($ $) 57)) (-3959 (($ $) NIL)) (-1408 (((-569) $) 17) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL)) (-3793 (((-867) $) 35) (($ (-569)) 93) (($ $) NIL) (($ (-569)) 93)) (-3302 (((-776)) NIL T CONST)) (-4271 (((-112) $ $) NIL)) (-2950 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-4360 (($) 40)) (-2985 (((-112) $ $) NIL)) (-4048 (($ $ $ $) 79)) (-3070 (($ $) 67)) (-4419 (($ $ $) 47)) (-1803 (($) 7 T CONST)) (-3503 (($ $ $) 50)) (-1813 (($) 39 T CONST)) (-4195 (((-1165) $) 26) (((-1165) $ (-112)) 27) (((-1278) (-827) $) 28) (((-1278) (-827) $ (-112)) 29)) (-3516 (($ $) 48)) (-2830 (($ $ (-776)) NIL) (($ $) NIL)) (-3489 (($ $ $) 49)) (-2976 (((-112) $ $) 55)) (-2954 (((-112) $ $) 52)) (-2919 (((-112) $ $) 43)) (-2964 (((-112) $ $) 54)) (-2942 (((-112) $ $) 10)) (-4404 (($ $ $) 46)) (-3021 (($ $) 16) (($ $ $) 59)) (-3009 (($ $ $) 58)) (** (($ $ (-927)) NIL) (($ $ (-776)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 38) (($ $ $) 37)))
-(((-1126) (-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4431) (-6 -4436) (-6 -4432) (-15 -1745 ($ $)) (-15 -1780 ($ $ $)) (-15 -3516 ($ $)) (-15 -3489 ($ $ $)) (-15 -3503 ($ $ $))))) (T -1126))
-((-1745 (*1 *1 *1) (-5 *1 (-1126))) (-1780 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3516 (*1 *1 *1) (-5 *1 (-1126))) (-3489 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3503 (*1 *1 *1 *1) (-5 *1 (-1126))))
-(-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4431) (-6 -4436) (-6 -4432) (-15 -1745 ($ $)) (-15 -1780 ($ $ $)) (-15 -3516 ($ $)) (-15 -3489 ($ $ $)) (-15 -3503 ($ $ $))))
+((-4329 (((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 50)) (-4014 (((-569) (-1248 |#2| |#1|)) 97 (|has| |#1| (-457)))) (-3683 (((-569) (-1248 |#2| |#1|)) 79)) (-2757 (((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 60)) (-2328 (((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 96 (|has| |#1| (-457)))) (-2402 (((-649 |#1|) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 64)) (-4021 (((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 78)))
+(((-1122 |#1| |#2|) (-10 -7 (-15 -4329 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2757 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2402 ((-649 |#1|) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4021 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -3683 ((-569) (-1248 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -2328 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4014 ((-569) (-1248 |#2| |#1|)))) |%noBranch|)) (-825) (-1185)) (T -1122))
+((-4014 (*1 *2 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-4021 (*1 *2 *3 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-2402 (*1 *2 *3 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 *4)) (-5 *1 (-1122 *4 *5)))) (-2757 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4))) (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4)))) (-4329 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4))) (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4)))))
+(-10 -7 (-15 -4329 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2757 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2402 ((-649 |#1|) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4021 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -3683 ((-569) (-1248 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -2328 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4014 ((-569) (-1248 |#2| |#1|)))) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-2471 (($ (-511) (-1126)) 13)) (-4331 (((-1126) $) 19)) (-3573 (((-511) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 26) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1123) (-13 (-1091) (-10 -8 (-15 -2471 ($ (-511) (-1126))) (-15 -3573 ((-511) $)) (-15 -4331 ((-1126) $))))) (T -1123))
+((-2471 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-1123)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1123)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1123)))))
+(-13 (-1091) (-10 -8 (-15 -2471 ($ (-511) (-1126))) (-15 -3573 ((-511) $)) (-15 -4331 ((-1126) $))))
+((-2919 (((-3 (-569) "failed") |#2| (-1185) |#2| (-1167)) 19) (((-3 (-569) "failed") |#2| (-1185) (-848 |#2|)) 17) (((-3 (-569) "failed") |#2|) 60)))
+(((-1124 |#1| |#2|) (-10 -7 (-15 -2919 ((-3 (-569) "failed") |#2|)) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) (-848 |#2|))) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) |#2| (-1167)))) (-13 (-561) (-1046 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1210) (-435 |#1|))) (T -1124))
+((-2919 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-1167)) (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1124 *6 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))))) (-2919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1124 *6 *3)))) (-2919 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))))
+(-10 -7 (-15 -2919 ((-3 (-569) "failed") |#2|)) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) (-848 |#2|))) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) |#2| (-1167))))
+((-2919 (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)) (-1167)) 38) (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-848 (-412 (-958 |#1|)))) 33) (((-3 (-569) "failed") (-412 (-958 |#1|))) 14)))
+(((-1125 |#1|) (-10 -7 (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-848 (-412 (-958 |#1|))))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)) (-1167)))) (-457)) (T -1125))
+((-2919 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1185)) (-5 *5 (-1167)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *6)))) (-2919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *6)))) (-2919 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *4)))))
+(-10 -7 (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-848 (-412 (-958 |#1|))))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)) (-1167))))
+((-2417 (((-112) $ $) NIL)) (-3870 (((-1190) $) 12)) (-3815 (((-649 (-1190)) $) 14)) (-4331 (($ (-649 (-1190)) (-1190)) 10)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 29)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 17)))
+(((-1126) (-13 (-1108) (-10 -8 (-15 -4331 ($ (-649 (-1190)) (-1190))) (-15 -3870 ((-1190) $)) (-15 -3815 ((-649 (-1190)) $))))) (T -1126))
+((-4331 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1190))) (-5 *3 (-1190)) (-5 *1 (-1126)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1126)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1126)))))
+(-13 (-1108) (-10 -8 (-15 -4331 ($ (-649 (-1190)) (-1190))) (-15 -3870 ((-1190) $)) (-15 -3815 ((-649 (-1190)) $))))
+((-2469 (((-319 (-569)) (-48)) 12)))
+(((-1127) (-10 -7 (-15 -2469 ((-319 (-569)) (-48))))) (T -1127))
+((-2469 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1127)))))
+(-10 -7 (-15 -2469 ((-319 (-569)) (-48))))
+((-2417 (((-112) $ $) NIL)) (-2436 (($ $) 44)) (-4143 (((-112) $) 69)) (-1783 (($ $ $) 51)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 97)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) 80)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) 82)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) 77)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL)) (-3150 (((-569) $) NIL)) (-2368 (($ $ $) 63)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 91) (((-694 (-569)) (-694 $)) 32)) (-3086 (((-3 $ "failed") $) NIL)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($) 94) (($ $) 95)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) 92)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) 71)) (-2719 (((-112) $) 68)) (-1749 (($ $) 45)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) 81)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) 78)) (-3380 (($ $ $) 73) (($) 42 T CONST)) (-2839 (($ $ $) 72) (($) 41 T CONST)) (-2606 (($ $) NIL)) (-2731 (((-927) $) 87)) (-3845 (($ $) 76)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-2150 (($ (-927)) 86)) (-3593 (($ $) 56)) (-3547 (((-1128) $) 75)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) 66) (($ (-649 $)) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 65)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-2432 (($ $) 57)) (-3962 (($ $) NIL)) (-1410 (((-569) $) 17) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL)) (-3796 (((-867) $) 35) (($ (-569)) 93) (($ $) NIL) (($ (-569)) 93)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) 40)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) 79)) (-2271 (($ $) 67)) (-4419 (($ $ $) 47)) (-1804 (($) 7 T CONST)) (-3506 (($ $ $) 50)) (-1815 (($) 39 T CONST)) (-3266 (((-1167) $) 26) (((-1167) $ (-112)) 27) (((-1280) (-827) $) 28) (((-1280) (-827) $ (-112)) 29)) (-3519 (($ $) 48)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-3492 (($ $ $) 49)) (-2978 (((-112) $ $) 55)) (-2956 (((-112) $ $) 52)) (-2920 (((-112) $ $) 43)) (-2966 (((-112) $ $) 54)) (-2944 (((-112) $ $) 10)) (-4406 (($ $ $) 46)) (-3024 (($ $) 16) (($ $ $) 59)) (-3012 (($ $ $) 58)) (** (($ $ (-927)) NIL) (($ $ (-776)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 38) (($ $ $) 37)))
+(((-1128) (-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1749 ($ $)) (-15 -1783 ($ $ $)) (-15 -3519 ($ $)) (-15 -3492 ($ $ $)) (-15 -3506 ($ $ $))))) (T -1128))
+((-1749 (*1 *1 *1) (-5 *1 (-1128))) (-1783 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3519 (*1 *1 *1) (-5 *1 (-1128))) (-3492 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3506 (*1 *1 *1 *1) (-5 *1 (-1128))))
+(-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1749 ($ $)) (-15 -1783 ($ $ $)) (-15 -3519 ($ $)) (-15 -3492 ($ $ $)) (-15 -3506 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3307 ((|#1| $) 45)) (-2716 (((-112) $ (-776)) 8)) (-4188 (($) 7 T CONST)) (-3529 ((|#1| |#1| $) 47)) (-3410 ((|#1| $) 46)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1640 ((|#1| $) 40)) (-3813 (($ |#1| $) 41)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-1764 ((|#1| $) 42)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-2802 (((-776) $) 44)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) 43)) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1127 |#1|) (-140) (-1223)) (T -1127))
-((-3529 (*1 *2 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4444) (-15 -3529 (|t#1| |t#1| $)) (-15 -3410 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -2802 ((-776) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-3136 ((|#3| $) 87)) (-4378 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3148 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#3| $) 47)) (-1630 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL) (((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 $) (-1273 $)) 84) (((-694 |#3|) (-694 $)) 76)) (-3514 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2572 ((|#3| $) 89)) (-2706 ((|#4| $) 43)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#3|) 25)) (** (($ $ (-927)) NIL) (($ $ (-776)) 24) (($ $ (-569)) 95)))
-(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -2572 (|#3| |#1|)) (-15 -3136 (|#3| |#1|)) (-15 -2706 (|#4| |#1|)) (-15 -1630 ((-694 |#3|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -3793 (|#1| |#3|)) (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3148 (|#3| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3793 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3793 ((-867) |#1|))) (-1129 |#2| |#3| |#4| |#5|) (-776) (-1055) (-239 |#2| |#3|) (-239 |#2| |#3|)) (T -1128))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -2572 (|#3| |#1|)) (-15 -3136 (|#3| |#1|)) (-15 -2706 (|#4| |#1|)) (-15 -1630 ((-694 |#3|) (-694 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 |#3|)) (|:| |vec| (-1273 |#3|))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 |#1|) (-1273 |#1|))) (-15 -1630 ((-694 (-569)) (-694 |#1|))) (-15 -3793 (|#1| |#3|)) (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3148 (|#3| |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3514 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3793 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3136 ((|#2| $) 77)) (-4080 (((-112) $) 117)) (-1678 (((-3 $ "failed") $ $) 20)) (-4317 (((-112) $) 115)) (-2716 (((-112) $ (-776)) 107)) (-2931 (($ |#2|) 80)) (-4188 (($) 18 T CONST)) (-4372 (($ $) 134 (|has| |#2| (-310)))) (-1486 ((|#3| $ (-569)) 129)) (-4378 (((-3 (-569) "failed") $) 92 (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) 89 (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) 86)) (-3148 (((-569) $) 91 (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) 88 (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) 87)) (-1630 (((-694 (-569)) (-694 $)) 84 (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 83 (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 82) (((-694 |#2|) (-694 $)) 81)) (-2888 (((-3 $ "failed") $) 37)) (-3975 (((-776) $) 135 (|has| |#2| (-561)))) (-3773 ((|#2| $ (-569) (-569)) 127)) (-2880 (((-649 |#2|) $) 100 (|has| $ (-6 -4444)))) (-2623 (((-112) $) 35)) (-2345 (((-776) $) 136 (|has| |#2| (-561)))) (-2250 (((-649 |#4|) $) 137 (|has| |#2| (-561)))) (-3221 (((-776) $) 123)) (-3234 (((-776) $) 124)) (-1689 (((-112) $ (-776)) 108)) (-3647 ((|#2| $) 72 (|has| |#2| (-6 (-4446 "*"))))) (-3856 (((-569) $) 119)) (-1738 (((-569) $) 121)) (-3040 (((-649 |#2|) $) 99 (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444))))) (-3744 (((-569) $) 120)) (-1609 (((-569) $) 122)) (-2428 (($ (-649 (-649 |#2|))) 114)) (-3831 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-3005 (((-649 (-649 |#2|)) $) 125)) (-2433 (((-112) $ (-776)) 109)) (-1550 (((-1165) $) 10)) (-1933 (((-3 $ "failed") $) 71 (|has| |#2| (-367)))) (-3545 (((-1126) $) 11)) (-2405 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-561)))) (-2911 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) 96 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 95 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 93 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) 113)) (-3218 (((-112) $) 110)) (-3597 (($) 111)) (-1866 ((|#2| $ (-569) (-569) |#2|) 128) ((|#2| $ (-569) (-569)) 126)) (-3514 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-776)) 55) (($ $ (-649 (-1183)) (-649 (-776))) 48 (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) 47 (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) 46 (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) 45 (|has| |#2| (-906 (-1183)))) (($ $ (-776)) 43 (|has| |#2| (-234))) (($ $) 41 (|has| |#2| (-234)))) (-2572 ((|#2| $) 76)) (-2823 (($ (-649 |#2|)) 79)) (-4206 (((-112) $) 116)) (-2706 ((|#3| $) 78)) (-2458 ((|#2| $) 73 (|has| |#2| (-6 (-4446 "*"))))) (-3558 (((-776) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4444))) (((-776) |#2| $) 98 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 112)) (-1363 ((|#4| $ (-569)) 130)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 90 (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) 85)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-3037 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4444)))) (-3962 (((-112) $) 118)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-776)) 53) (($ $ (-649 (-1183)) (-649 (-776))) 52 (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) 51 (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) 50 (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) 49 (|has| |#2| (-906 (-1183)))) (($ $ (-776)) 44 (|has| |#2| (-234))) (($ $) 42 (|has| |#2| (-234)))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#2|) 133 (|has| |#2| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 70 (|has| |#2| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2426 (((-776) $) 106 (|has| $ (-6 -4444)))))
-(((-1129 |#1| |#2| |#3| |#4|) (-140) (-776) (-1055) (-239 |t#1| |t#2|) (-239 |t#1| |t#2|)) (T -1129))
-((-2931 (*1 *1 *2) (-12 (-4 *2 (-1055)) (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)))) (-2823 (*1 *1 *2) (-12 (-5 *2 (-649 *4)) (-4 *4 (-1055)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *2 (-239 *3 *4)) (-4 *5 (-239 *3 *4)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055)))) (-1933 (*1 *1 *1) (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367)))))
-(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1059 |t#1| |t#1| |t#2| |t#3| |t#4|) (-416 |t#2|) (-381 |t#2|) (-10 -8 (IF (|has| |t#2| (-173)) (-6 (-722 |t#2|)) |%noBranch|) (-15 -2931 ($ |t#2|)) (-15 -2823 ($ (-649 |t#2|))) (-15 -2706 (|t#3| $)) (-15 -3136 (|t#2| $)) (-15 -2572 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4446 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2458 (|t#2| $)) (-15 -3647 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-367)) (PROGN (-15 -1933 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4446 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#2| (-1044 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-232 |#2|) . T) ((-234) |has| |#2| (-234)) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-381 |#2|) . T) ((-416 |#2|) . T) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-6 (-4446 "*")))) ((-644 (-569)) |has| |#2| (-644 (-569))) ((-644 |#2|) . T) ((-722 |#2|) -2774 (|has| |#2| (-173)) (|has| |#2| (-6 (-4446 "*")))) ((-731) . T) ((-906 (-1183)) |has| |#2| (-906 (-1183))) ((-1059 |#1| |#1| |#2| |#3| |#4|) . T) ((-1044 #0#) |has| |#2| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#2| (-1044 (-569))) ((-1044 |#2|) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1223) . T))
-((-2059 ((|#4| |#4|) 81)) (-1875 ((|#4| |#4|) 76)) (-2254 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|))) |#4| |#3|) 91)) (-2157 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1962 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1130 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1875 (|#4| |#4|)) (-15 -1962 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2059 (|#4| |#4|)) (-15 -2157 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2254 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|))) |#4| |#3|))) (-310) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1130))
-((-2254 (*1 *2 *3 *4) (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4)))) (-5 *1 (-1130 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-2157 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
-(-10 -7 (-15 -1875 (|#4| |#4|)) (-15 -1962 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2059 (|#4| |#4|)) (-15 -2157 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2254 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1903 (-649 |#3|))) |#4| |#3|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 18)) (-1710 (((-649 |#2|) $) 174)) (-3763 (((-1179 $) $ |#2|) 60) (((-1179 |#1|) $) 49)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 116 (|has| |#1| (-561)))) (-3087 (($ $) 118 (|has| |#1| (-561)))) (-2883 (((-112) $) 120 (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 |#2|)) 213)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) 167) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 |#2| "failed") $) NIL)) (-3148 ((|#1| $) 165) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) ((|#2| $) NIL)) (-4202 (($ $ $ |#2|) NIL (|has| |#1| (-173)))) (-1879 (($ $) 217)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) 90)) (-4260 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-536 |#2|) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2623 (((-112) $) 20)) (-3238 (((-776) $) 30)) (-1697 (($ (-1179 |#1|) |#2|) 54) (($ (-1179 $) |#2|) 71)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) 38)) (-3920 (($ |#1| (-536 |#2|)) 78) (($ $ |#2| (-776)) 58) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ |#2|) NIL)) (-3712 (((-536 |#2|) $) 205) (((-776) $ |#2|) 206) (((-649 (-776)) $ (-649 |#2|)) 207)) (-4059 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) 128)) (-3397 (((-3 |#2| "failed") $) 177)) (-1846 (($ $) 216)) (-1855 ((|#1| $) 43)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| |#2|) (|:| -4320 (-776))) "failed") $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) 39)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 148 (|has| |#1| (-457)))) (-1864 (($ (-649 $)) 153 (|has| |#1| (-457))) (($ $ $) 138 (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#1| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2405 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-561)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-649 |#2|) (-649 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-649 |#2|) (-649 $)) 194)) (-4304 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3514 (($ $ |#2|) 215) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-3868 (((-536 |#2|) $) 201) (((-776) $ |#2|) 196) (((-649 (-776)) $ (-649 |#2|)) 199)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3479 ((|#1| $) 134 (|has| |#1| (-457))) (($ $ |#2|) 137 (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3793 (((-867) $) 159) (($ (-569)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-2836 (((-649 |#1|) $) 162)) (-4184 ((|#1| $ (-536 |#2|)) 80) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) 87 T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 123 (|has| |#1| (-561)))) (-1803 (($) 12 T CONST)) (-1813 (($) 14 T CONST)) (-2830 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2919 (((-112) $ $) 106)) (-3032 (($ $ |#1|) 132 (|has| |#1| (-367)))) (-3021 (($ $) 93) (($ $ $) 104)) (-3009 (($ $ $) 55)) (** (($ $ (-927)) 110) (($ $ (-776)) 109)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 96) (($ $ $) 72) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
-(((-1131 |#1| |#2|) (-955 |#1| (-536 |#2|) |#2|) (-1055) (-855)) (T -1131))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3310 ((|#1| $) 45)) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-4235 ((|#1| |#1| $) 47)) (-2412 ((|#1| $) 46)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2804 (((-776) $) 44)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1129 |#1|) (-140) (-1225)) (T -1129))
+((-4235 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4447) (-15 -4235 (|t#1| |t#1| $)) (-15 -2412 (|t#1| $)) (-15 -3310 (|t#1| $)) (-15 -2804 ((-776) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-3140 ((|#3| $) 87)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#3| $) 47)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) 84) (((-694 |#3|) (-694 $)) 76)) (-3517 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-1928 ((|#3| $) 89)) (-1912 ((|#4| $) 43)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#3|) 25)) (** (($ $ (-927)) NIL) (($ $ (-776)) 24) (($ $ (-569)) 95)))
+(((-1130 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -1928 (|#3| |#1|)) (-15 -3140 (|#3| |#1|)) (-15 -1912 (|#4| |#1|)) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3796 ((-867) |#1|))) (-1131 |#2| |#3| |#4| |#5|) (-776) (-1057) (-239 |#2| |#3|) (-239 |#2| |#3|)) (T -1130))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -1928 (|#3| |#1|)) (-15 -3140 (|#3| |#1|)) (-15 -1912 (|#4| |#1|)) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3140 ((|#2| $) 77)) (-1551 (((-112) $) 117)) (-2208 (((-3 $ "failed") $ $) 20)) (-3169 (((-112) $) 115)) (-3914 (((-112) $ (-776)) 107)) (-3419 (($ |#2|) 80)) (-4427 (($) 18 T CONST)) (-2439 (($ $) 134 (|has| |#2| (-310)))) (-4044 ((|#3| $ (-569)) 129)) (-4381 (((-3 (-569) "failed") $) 92 (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 89 (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) 86)) (-3150 (((-569) $) 91 (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) 88 (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) 87)) (-2957 (((-694 (-569)) (-694 $)) 84 (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 83 (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 82) (((-694 |#2|) (-694 $)) 81)) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-776) $) 135 (|has| |#2| (-561)))) (-3776 ((|#2| $ (-569) (-569)) 127)) (-2882 (((-649 |#2|) $) 100 (|has| $ (-6 -4447)))) (-2349 (((-112) $) 35)) (-1539 (((-776) $) 136 (|has| |#2| (-561)))) (-2970 (((-649 |#4|) $) 137 (|has| |#2| (-561)))) (-3225 (((-776) $) 123)) (-3236 (((-776) $) 124)) (-2314 (((-112) $ (-776)) 108)) (-2874 ((|#2| $) 72 (|has| |#2| (-6 (-4449 "*"))))) (-4241 (((-569) $) 119)) (-1537 (((-569) $) 121)) (-2009 (((-649 |#2|) $) 99 (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 120)) (-2742 (((-569) $) 122)) (-2430 (($ (-649 (-649 |#2|))) 114)) (-3834 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-2884 (((-649 (-649 |#2|)) $) 125)) (-4254 (((-112) $ (-776)) 109)) (-3435 (((-1167) $) 10)) (-2725 (((-3 $ "failed") $) 71 (|has| |#2| (-367)))) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-561)))) (-3208 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) 96 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 95 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 93 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 113)) (-3162 (((-112) $) 110)) (-3635 (($) 111)) (-1869 ((|#2| $ (-569) (-569) |#2|) 128) ((|#2| $ (-569) (-569)) 126)) (-3517 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-776)) 55) (($ $ (-649 (-1185)) (-649 (-776))) 48 (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) 47 (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) 46 (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) 45 (|has| |#2| (-906 (-1185)))) (($ $ (-776)) 43 (|has| |#2| (-234))) (($ $) 41 (|has| |#2| (-234)))) (-1928 ((|#2| $) 76)) (-3687 (($ (-649 |#2|)) 79)) (-3387 (((-112) $) 116)) (-1912 ((|#3| $) 78)) (-3242 ((|#2| $) 73 (|has| |#2| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4447))) (((-776) |#2| $) 98 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 112)) (-3041 ((|#4| $ (-569)) 130)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 90 (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) 85)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4447)))) (-2768 (((-112) $) 118)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-776)) 53) (($ $ (-649 (-1185)) (-649 (-776))) 52 (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) 51 (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) 50 (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) 49 (|has| |#2| (-906 (-1185)))) (($ $ (-776)) 44 (|has| |#2| (-234))) (($ $) 42 (|has| |#2| (-234)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#2|) 133 (|has| |#2| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 70 (|has| |#2| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2428 (((-776) $) 106 (|has| $ (-6 -4447)))))
+(((-1131 |#1| |#2| |#3| |#4|) (-140) (-776) (-1057) (-239 |t#1| |t#2|) (-239 |t#1| |t#2|)) (T -1131))
+((-3419 (*1 *1 *2) (-12 (-4 *2 (-1057)) (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-649 *4)) (-4 *4 (-1057)) (-4 *1 (-1131 *3 *4 *5 *6)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1057)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1057)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1131 *3 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *2 (-239 *3 *4)) (-4 *5 (-239 *3 *4)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2725 (*1 *1 *1) (|partial| -12 (-4 *1 (-1131 *2 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1131 *3 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367)))))
+(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1061 |t#1| |t#1| |t#2| |t#3| |t#4|) (-416 |t#2|) (-381 |t#2|) (-10 -8 (IF (|has| |t#2| (-173)) (-6 (-722 |t#2|)) |%noBranch|) (-15 -3419 ($ |t#2|)) (-15 -3687 ($ (-649 |t#2|))) (-15 -1912 (|t#3| $)) (-15 -3140 (|t#2| $)) (-15 -1928 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4449 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3242 (|t#2| $)) (-15 -2874 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-367)) (PROGN (-15 -2725 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4449 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-232 |#2|) . T) ((-234) |has| |#2| (-234)) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-381 |#2|) . T) ((-416 |#2|) . T) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-6 (-4449 "*")))) ((-644 (-569)) |has| |#2| (-644 (-569))) ((-644 |#2|) . T) ((-722 |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-6 (-4449 "*")))) ((-731) . T) ((-906 (-1185)) |has| |#2| (-906 (-1185))) ((-1061 |#1| |#1| |#2| |#3| |#4|) . T) ((-1046 #0#) |has| |#2| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#2| (-1046 (-569))) ((-1046 |#2|) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1225) . T))
+((-1623 ((|#4| |#4|) 81)) (-3397 ((|#4| |#4|) 76)) (-3016 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|) 91)) (-3257 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1885 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| |#4|)) (-15 -1885 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1623 (|#4| |#4|)) (-15 -3257 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3016 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|))) (-310) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1132))
+((-3016 (*1 *2 *3 *4) (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-1132 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(-10 -7 (-15 -3397 (|#4| |#4|)) (-15 -1885 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1623 (|#4| |#4|)) (-15 -3257 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3016 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 18)) (-1712 (((-649 |#2|) $) 174)) (-3767 (((-1181 $) $ |#2|) 60) (((-1181 |#1|) $) 49)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 116 (|has| |#1| (-561)))) (-4355 (($ $) 118 (|has| |#1| (-561)))) (-3039 (((-112) $) 120 (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 |#2|)) 213)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 167) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 |#2| "failed") $) NIL)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) ((|#2| $) NIL)) (-3346 (($ $ $ |#2|) NIL (|has| |#1| (-173)))) (-1883 (($ $) 217)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 90)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 |#2|) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) 20)) (-3366 (((-776) $) 30)) (-1700 (($ (-1181 |#1|) |#2|) 54) (($ (-1181 $) |#2|) 71)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) 38)) (-3923 (($ |#1| (-536 |#2|)) 78) (($ $ |#2| (-776)) 58) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#2|) NIL)) (-2272 (((-536 |#2|) $) 205) (((-776) $ |#2|) 206) (((-649 (-776)) $ (-649 |#2|)) 207)) (-2492 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 128)) (-2306 (((-3 |#2| "failed") $) 177)) (-1849 (($ $) 216)) (-1857 ((|#1| $) 43)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 39)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 148 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 153 (|has| |#1| (-457))) (($ $ $) 138 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-649 |#2|) (-649 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-649 |#2|) (-649 $)) 194)) (-3059 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3517 (($ $ |#2|) 215) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4339 (((-536 |#2|) $) 201) (((-776) $ |#2|) 196) (((-649 (-776)) $ (-649 |#2|)) 199)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#1| $) 134 (|has| |#1| (-457))) (($ $ |#2|) 137 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 159) (($ (-569)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2512 (((-649 |#1|) $) 162)) (-4383 ((|#1| $ (-536 |#2|)) 80) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 87 T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) 123 (|has| |#1| (-561)))) (-1804 (($) 12 T CONST)) (-1815 (($) 14 T CONST)) (-2832 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2920 (((-112) $ $) 106)) (-3035 (($ $ |#1|) 132 (|has| |#1| (-367)))) (-3024 (($ $) 93) (($ $ $) 104)) (-3012 (($ $ $) 55)) (** (($ $ (-927)) 110) (($ $ (-776)) 109)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 96) (($ $ $) 72) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
+(((-1133 |#1| |#2|) (-955 |#1| (-536 |#2|) |#2|) (-1057) (-855)) (T -1133))
NIL
(-955 |#1| (-536 |#2|) |#2|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 |#2|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-2769 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2744 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-4114 (($ $) 156 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3275 (((-958 |#1|) $ (-776)) NIL) (((-958 |#1|) $ (-776) (-776)) NIL)) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-776) $ |#2|) NIL) (((-776) $ |#2| (-776)) NIL)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4343 (((-112) $) NIL)) (-3920 (($ $ (-649 |#2|) (-649 (-536 |#2|))) NIL) (($ $ |#2| (-536 |#2|)) NIL) (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 63) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2660 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-2488 (($ $ |#2|) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-4087 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-412 (-569)))))) (-2907 (($ $ (-776)) 16)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4386 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (($ $ |#2| $) 106) (($ $ (-649 |#2|) (-649 $)) 99) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3514 (($ $ |#2|) 109) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-3868 (((-536 |#2|) $) NIL)) (-2349 (((-1 (-1163 |#3|) |#3|) (-649 |#2|) (-649 (-1163 |#3|))) 87)) (-4124 (($ $) 158 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 18)) (-3793 (((-867) $) 199) (($ (-569)) NIL) (($ |#1|) 45 (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#2|) 70) (($ |#3|) 68)) (-4184 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL) ((|#3| $ (-776)) 43)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-1501 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 52 T CONST)) (-1813 (($) 62 T CONST)) (-2830 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) 201 (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) 77) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 112 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 65) (($ $ (-412 (-569))) 117 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 115 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1132 |#1| |#2| |#3|) (-13 (-745 |#1| |#2|) (-10 -8 (-15 -4184 (|#3| $ (-776))) (-15 -3793 ($ |#2|)) (-15 -3793 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2349 ((-1 (-1163 |#3|) |#3|) (-649 |#2|) (-649 (-1163 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $ |#2| |#1|)) (-15 -4087 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1055) (-855) (-955 |#1| (-536 |#2|) |#2|)) (T -1132))
-((-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5)) (-5 *1 (-1132 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-855)))) (-3793 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-3793 (*1 *1 *2) (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1163 *7))) (-4 *6 (-855)) (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1055)) (-5 *2 (-1 (-1163 *7) *7)) (-5 *1 (-1132 *5 *6 *7)))) (-2488 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-4087 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1132 *4 *3 *5))) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *1 (-1132 *4 *3 *5)) (-4 *5 (-955 *4 (-536 *3) *3)))))
-(-13 (-745 |#1| |#2|) (-10 -8 (-15 -4184 (|#3| $ (-776))) (-15 -3793 ($ |#2|)) (-15 -3793 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2349 ((-1 (-1163 |#3|) |#3|) (-649 |#2|) (-649 (-1163 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $ |#2| |#1|)) (-15 -4087 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2415 (((-112) $ $) 7)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) 86)) (-3465 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1710 (((-649 |#3|) $) 34)) (-2686 (((-112) $) 27)) (-4276 (((-112) $) 18 (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) 102) (((-112) $) 98)) (-2874 ((|#4| |#4| $) 93)) (-2078 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| $) 127)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) 28)) (-2716 (((-112) $ (-776)) 45)) (-1415 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) 80)) (-4188 (($) 46 T CONST)) (-3584 (((-112) $) 23 (|has| |#1| (-561)))) (-3778 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3685 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2576 (((-112) $) 26 (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4374 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) 37)) (-3148 (($ (-649 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2516 ((|#4| |#4| $) 90)) (-3547 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3593 ((|#4| |#4| $) 88)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) 106)) (-2848 (((-112) |#4| $) 137)) (-2634 (((-112) |#4| $) 134)) (-2959 (((-112) |#4| $) 138) (((-112) $) 135)) (-2880 (((-649 |#4|) $) 53 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) 105) (((-112) $) 104)) (-1873 ((|#3| $) 35)) (-1689 (((-112) $ (-776)) 44)) (-3040 (((-649 |#4|) $) 54 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 48)) (-3097 (((-649 |#3|) $) 33)) (-3116 (((-112) |#3| $) 32)) (-2433 (((-112) $ (-776)) 43)) (-1550 (((-1165) $) 10)) (-3533 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-3425 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| |#4| $) 128)) (-1722 (((-3 |#4| "failed") $) 84)) (-3638 (((-649 $) |#4| $) 130)) (-2533 (((-3 (-112) (-649 $)) |#4| $) 133)) (-3736 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4333 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-1551 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1447 (((-649 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-2642 ((|#4| |#4| $) 91)) (-1672 (((-112) $ $) 111)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) 101) (((-112) $) 97)) (-2765 ((|#4| |#4| $) 92)) (-3545 (((-1126) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3124 (((-3 $ "failed") $ |#4|) 79)) (-2907 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-2911 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) 39)) (-3218 (((-112) $) 42)) (-3597 (($) 41)) (-3868 (((-776) $) 107)) (-3558 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4444)))) (-3959 (($ $) 40)) (-1408 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 61)) (-2792 (($ $ |#3|) 29)) (-3013 (($ $ |#3|) 31)) (-2408 (($ $) 89)) (-2900 (($ $ |#3|) 30)) (-3793 (((-867) $) 12) (((-649 |#4|) $) 38)) (-3023 (((-776) $) 77 (|has| |#3| (-372)))) (-1441 (((-112) $ $) 9)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-3304 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-3037 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) 82)) (-2743 (((-112) |#4| $) 136)) (-2133 (((-112) |#3| $) 81)) (-2919 (((-112) $ $) 6)) (-2426 (((-776) $) 47 (|has| $ (-6 -4444)))))
-(((-1133 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1133))
-NIL
-(-13 (-1115 |t#1| |t#2| |t#3| |t#4|) (-789 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-789 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1077 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1115 |#1| |#2| |#3| |#4|) . T) ((-1216 |#1| |#2| |#3| |#4|) . T) ((-1223) . T))
-((-2912 (((-649 |#2|) |#1|) 15)) (-1720 (((-649 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-649 |#2|) |#1|) 63)) (-1503 (((-649 |#2|) |#2| |#2| |#2|) 45) (((-649 |#2|) |#1|) 61)) (-4387 ((|#2| |#1|) 56)) (-1380 (((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3788 (((-649 |#2|) |#2| |#2|) 42) (((-649 |#2|) |#1|) 60)) (-1615 (((-649 |#2|) |#2| |#2| |#2| |#2|) 46) (((-649 |#2|) |#1|) 62)) (-3997 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3815 ((|#2| |#2| |#2| |#2|) 53)) (-3717 ((|#2| |#2| |#2|) 52)) (-3914 ((|#2| |#2| |#2| |#2| |#2|) 54)))
-(((-1134 |#1| |#2|) (-10 -7 (-15 -2912 ((-649 |#2|) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -1380 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3788 ((-649 |#2|) |#1|)) (-15 -1503 ((-649 |#2|) |#1|)) (-15 -1615 ((-649 |#2|) |#1|)) (-15 -1720 ((-649 |#2|) |#1|)) (-15 -3788 ((-649 |#2|) |#2| |#2|)) (-15 -1503 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -1615 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1720 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3717 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2| |#2|)) (-15 -3914 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3997 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1249 |#2|) (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (T -1134))
-((-3997 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-3914 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-3815 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-3717 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-1720 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-1615 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-1503 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-3788 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))) (-1720 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-1615 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-1503 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))) (-1380 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-2 (|:| |solns| (-649 *5)) (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-1249 *5)))) (-4387 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -2912 ((-649 |#2|) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -1380 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3788 ((-649 |#2|) |#1|)) (-15 -1503 ((-649 |#2|) |#1|)) (-15 -1615 ((-649 |#2|) |#1|)) (-15 -1720 ((-649 |#2|) |#1|)) (-15 -3788 ((-649 |#2|) |#2| |#2|)) (-15 -1503 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -1615 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1720 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3717 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2| |#2|)) (-15 -3914 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3997 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-4083 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|))))) 118) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183))) 117) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|)))) 115) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 113) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|)))) 97) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1183)) 98) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|))) 92) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1183)) 82)) (-4180 (((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 111) (((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1183)) 54)) (-4258 (((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1183)) 122) (((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183)) 121)))
-(((-1135 |#1|) (-10 -7 (-15 -4083 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -4083 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -4083 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -4083 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -4180 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -4180 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -4258 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -4258 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1183)))) (-13 (-310) (-147))) (T -1135))
-((-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5)))) (-5 *1 (-1135 *5)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5))) (-5 *1 (-1135 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1135 *4)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1135 *4)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1135 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1135 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1135 *5)))))
-(-10 -7 (-15 -4083 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1183))) (-15 -4083 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -4083 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -4083 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -4083 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -4180 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -4180 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -4258 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -4258 ((-1172 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1183))))
-((-3204 (((-412 (-1179 (-319 |#1|))) (-1273 (-319 |#1|)) (-412 (-1179 (-319 |#1|))) (-569)) 38)) (-3108 (((-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|)))) 49)))
-(((-1136 |#1|) (-10 -7 (-15 -3108 ((-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))))) (-15 -3204 ((-412 (-1179 (-319 |#1|))) (-1273 (-319 |#1|)) (-412 (-1179 (-319 |#1|))) (-569)))) (-561)) (T -1136))
-((-3204 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-412 (-1179 (-319 *5)))) (-5 *3 (-1273 (-319 *5))) (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1136 *5)))) (-3108 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-412 (-1179 (-319 *3)))) (-4 *3 (-561)) (-5 *1 (-1136 *3)))))
-(-10 -7 (-15 -3108 ((-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))) (-412 (-1179 (-319 |#1|))))) (-15 -3204 ((-412 (-1179 (-319 |#1|))) (-1273 (-319 |#1|)) (-412 (-1179 (-319 |#1|))) (-569))))
-((-2912 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1183))) 246) (((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1183)) 23) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1183)) 29) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|))) 28) (((-649 (-297 (-319 |#1|))) (-319 |#1|)) 24)))
-(((-1137 |#1|) (-10 -7 (-15 -2912 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -2912 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -2912 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1183))) (-15 -2912 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1183))) (-15 -2912 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1183))))) (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (T -1137))
-((-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1183))) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)) (-5 *3 (-649 (-297 (-319 *5)))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-319 *5)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-297 (-319 *5))))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-297 (-319 *4))))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-319 *4)))))
-(-10 -7 (-15 -2912 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -2912 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -2912 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1183))) (-15 -2912 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1183))) (-15 -2912 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1183)))))
-((-3406 ((|#2| |#2|) 30 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3308 ((|#2| |#2|) 29 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1138 |#1| |#2|) (-10 -7 (-15 -3308 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3406 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -3308 (|#2| |#2|)) (-15 -3406 (|#2| |#2|))) |%noBranch|)) (-1223) (-13 (-609 (-569) |#1|) (-10 -7 (-6 -4444) (-6 -4445)))) (T -1138))
-((-3406 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4444) (-6 -4445)))))) (-3308 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4444) (-6 -4445)))))) (-3406 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4444) (-6 -4445)))))) (-3308 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4444) (-6 -4445)))))))
-(-10 -7 (-15 -3308 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3406 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -3308 (|#2| |#2|)) (-15 -3406 (|#2| |#2|))) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-1466 (((-1171 3 |#1|) $) 141)) (-1883 (((-112) $) 101)) (-3902 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 104) (($ (-649 (-949 |#1|))) 103) (((-649 (-949 |#1|)) $) 102)) (-3224 (((-112) $) 72)) (-3281 (($ $ (-949 |#1|)) 76) (($ $ (-649 |#1|)) 81) (($ $ (-776)) 83) (($ (-949 |#1|)) 77) (((-949 |#1|) $) 75)) (-4351 (((-2 (|:| -3538 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 139)) (-3746 (((-776) $) 53)) (-2566 (((-776) $) 52)) (-1339 (($ $ (-776) (-949 |#1|)) 67)) (-1622 (((-112) $) 111)) (-1763 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 118) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 120) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 115) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 127) (($ (-649 (-649 (-949 |#1|)))) 116) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 117) (((-649 (-649 (-949 |#1|))) $) 114)) (-2126 (($ (-649 $)) 56) (($ $ $) 57)) (-3610 (((-649 (-172)) $) 133)) (-3313 (((-649 (-949 |#1|)) $) 130)) (-2424 (((-649 (-649 (-172))) $) 132)) (-1364 (((-649 (-649 (-649 (-949 |#1|)))) $) NIL)) (-1499 (((-649 (-649 (-649 (-776)))) $) 131)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3366 (((-776) $ (-649 (-949 |#1|))) 65)) (-4238 (((-112) $) 84)) (-4344 (($ $ (-649 (-949 |#1|))) 86) (($ $ (-649 (-649 |#1|))) 92) (($ (-649 (-949 |#1|))) 87) (((-649 (-949 |#1|)) $) 85)) (-2697 (($) 48) (($ (-1171 3 |#1|)) 49)) (-3959 (($ $) 63)) (-3495 (((-649 $) $) 62)) (-4000 (($ (-649 $)) 59)) (-3628 (((-649 $) $) 61)) (-3793 (((-867) $) 146)) (-4013 (((-112) $) 94)) (-4121 (($ $ (-649 (-949 |#1|))) 96) (($ $ (-649 (-649 |#1|))) 99) (($ (-649 (-949 |#1|))) 97) (((-649 (-949 |#1|)) $) 95)) (-3498 (($ $) 140)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1139 |#1|) (-1140 |#1|) (-1055)) (T -1139))
-NIL
-(-1140 |#1|)
-((-2415 (((-112) $ $) 7)) (-1466 (((-1171 3 |#1|) $) 14)) (-1883 (((-112) $) 30)) (-3902 (($ $ (-649 (-949 |#1|))) 34) (($ $ (-649 (-649 |#1|))) 33) (($ (-649 (-949 |#1|))) 32) (((-649 (-949 |#1|)) $) 31)) (-3224 (((-112) $) 45)) (-3281 (($ $ (-949 |#1|)) 50) (($ $ (-649 |#1|)) 49) (($ $ (-776)) 48) (($ (-949 |#1|)) 47) (((-949 |#1|) $) 46)) (-4351 (((-2 (|:| -3538 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 16)) (-3746 (((-776) $) 59)) (-2566 (((-776) $) 60)) (-1339 (($ $ (-776) (-949 |#1|)) 51)) (-1622 (((-112) $) 22)) (-1763 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 29) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 28) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 27) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 26) (($ (-649 (-649 (-949 |#1|)))) 25) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 24) (((-649 (-649 (-949 |#1|))) $) 23)) (-2126 (($ (-649 $)) 58) (($ $ $) 57)) (-3610 (((-649 (-172)) $) 17)) (-3313 (((-649 (-949 |#1|)) $) 21)) (-2424 (((-649 (-649 (-172))) $) 18)) (-1364 (((-649 (-649 (-649 (-949 |#1|)))) $) 19)) (-1499 (((-649 (-649 (-649 (-776)))) $) 20)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3366 (((-776) $ (-649 (-949 |#1|))) 52)) (-4238 (((-112) $) 40)) (-4344 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 43) (($ (-649 (-949 |#1|))) 42) (((-649 (-949 |#1|)) $) 41)) (-2697 (($) 62) (($ (-1171 3 |#1|)) 61)) (-3959 (($ $) 53)) (-3495 (((-649 $) $) 54)) (-4000 (($ (-649 $)) 56)) (-3628 (((-649 $) $) 55)) (-3793 (((-867) $) 12)) (-4013 (((-112) $) 35)) (-4121 (($ $ (-649 (-949 |#1|))) 39) (($ $ (-649 (-649 |#1|))) 38) (($ (-649 (-949 |#1|))) 37) (((-649 (-949 |#1|)) $) 36)) (-3498 (($ $) 15)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
-(((-1140 |#1|) (-140) (-1055)) (T -1140))
-((-3793 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-867)))) (-2697 (*1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-2697 (*1 *1 *2) (-12 (-5 *2 (-1171 3 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-2126 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3628 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))) (-3495 (*1 *2 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-3366 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1140 *4)) (-4 *4 (-1055)) (-5 *2 (-776)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-3281 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3281 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3281 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3281 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-949 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-4344 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-4344 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-4344 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-4121 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-1763 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))) (-1763 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))) (-1763 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-1763 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-112)) (-4 *1 (-1140 *4)) (-4 *4 (-1055)))) (-1763 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1055)) (-4 *1 (-1140 *3)))) (-1763 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1055)) (-4 *1 (-1140 *4)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-949 *3)))))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-649 (-776))))))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-649 (-949 *3))))))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-172)))))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-172))))) (-4351 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -3538 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776)))))) (-3498 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-1171 3 *3)))))
-(-13 (-1106) (-10 -8 (-15 -2697 ($)) (-15 -2697 ($ (-1171 3 |t#1|))) (-15 -2566 ((-776) $)) (-15 -3746 ((-776) $)) (-15 -2126 ($ (-649 $))) (-15 -2126 ($ $ $)) (-15 -4000 ($ (-649 $))) (-15 -3628 ((-649 $) $)) (-15 -3495 ((-649 $) $)) (-15 -3959 ($ $)) (-15 -3366 ((-776) $ (-649 (-949 |t#1|)))) (-15 -1339 ($ $ (-776) (-949 |t#1|))) (-15 -3281 ($ $ (-949 |t#1|))) (-15 -3281 ($ $ (-649 |t#1|))) (-15 -3281 ($ $ (-776))) (-15 -3281 ($ (-949 |t#1|))) (-15 -3281 ((-949 |t#1|) $)) (-15 -3224 ((-112) $)) (-15 -4344 ($ $ (-649 (-949 |t#1|)))) (-15 -4344 ($ $ (-649 (-649 |t#1|)))) (-15 -4344 ($ (-649 (-949 |t#1|)))) (-15 -4344 ((-649 (-949 |t#1|)) $)) (-15 -4238 ((-112) $)) (-15 -4121 ($ $ (-649 (-949 |t#1|)))) (-15 -4121 ($ $ (-649 (-649 |t#1|)))) (-15 -4121 ($ (-649 (-949 |t#1|)))) (-15 -4121 ((-649 (-949 |t#1|)) $)) (-15 -4013 ((-112) $)) (-15 -3902 ($ $ (-649 (-949 |t#1|)))) (-15 -3902 ($ $ (-649 (-649 |t#1|)))) (-15 -3902 ($ (-649 (-949 |t#1|)))) (-15 -3902 ((-649 (-949 |t#1|)) $)) (-15 -1883 ((-112) $)) (-15 -1763 ($ $ (-649 (-649 (-949 |t#1|))) (-649 (-172)) (-172))) (-15 -1763 ($ $ (-649 (-649 (-649 |t#1|))) (-649 (-172)) (-172))) (-15 -1763 ($ $ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -1763 ($ $ (-649 (-649 (-649 |t#1|))) (-112) (-112))) (-15 -1763 ($ (-649 (-649 (-949 |t#1|))))) (-15 -1763 ($ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -1763 ((-649 (-649 (-949 |t#1|))) $)) (-15 -1622 ((-112) $)) (-15 -3313 ((-649 (-949 |t#1|)) $)) (-15 -1499 ((-649 (-649 (-649 (-776)))) $)) (-15 -1364 ((-649 (-649 (-649 (-949 |t#1|)))) $)) (-15 -2424 ((-649 (-649 (-172))) $)) (-15 -3610 ((-649 (-172)) $)) (-15 -4351 ((-2 (|:| -3538 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $)) (-15 -3498 ($ $)) (-15 -1466 ((-1171 3 |t#1|) $)) (-15 -3793 ((-867) $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 184) (($ (-1188)) NIL) (((-1188) $) 7)) (-1792 (((-112) $ (|[\|\|]| (-529))) 19) (((-112) $ (|[\|\|]| (-219))) 23) (((-112) $ (|[\|\|]| (-681))) 27) (((-112) $ (|[\|\|]| (-1283))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-611))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1121))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-686))) 55) (((-112) $ (|[\|\|]| (-522))) 59) (((-112) $ (|[\|\|]| (-1072))) 63) (((-112) $ (|[\|\|]| (-1284))) 67) (((-112) $ (|[\|\|]| (-530))) 71) (((-112) $ (|[\|\|]| (-1157))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-676))) 83) (((-112) $ (|[\|\|]| (-314))) 87) (((-112) $ (|[\|\|]| (-1042))) 91) (((-112) $ (|[\|\|]| (-181))) 95) (((-112) $ (|[\|\|]| (-976))) 99) (((-112) $ (|[\|\|]| (-1079))) 103) (((-112) $ (|[\|\|]| (-1096))) 107) (((-112) $ (|[\|\|]| (-1102))) 111) (((-112) $ (|[\|\|]| (-631))) 115) (((-112) $ (|[\|\|]| (-1173))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-483))) 131) (((-112) $ (|[\|\|]| (-597))) 135) (((-112) $ (|[\|\|]| (-511))) 139) (((-112) $ (|[\|\|]| (-1165))) 143) (((-112) $ (|[\|\|]| (-569))) 147)) (-1441 (((-112) $ $) NIL)) (-3988 (((-529) $) 20) (((-219) $) 24) (((-681) $) 28) (((-1283) $) 32) (((-138) $) 36) (((-611) $) 40) (((-133) $) 44) (((-1121) $) 48) (((-96) $) 52) (((-686) $) 56) (((-522) $) 60) (((-1072) $) 64) (((-1284) $) 68) (((-530) $) 72) (((-1157) $) 76) (((-154) $) 80) (((-676) $) 84) (((-314) $) 88) (((-1042) $) 92) (((-181) $) 96) (((-976) $) 100) (((-1079) $) 104) (((-1096) $) 108) (((-1102) $) 112) (((-631) $) 116) (((-1173) $) 120) (((-156) $) 124) (((-137) $) 128) (((-483) $) 132) (((-597) $) 136) (((-511) $) 140) (((-1165) $) 144) (((-569) $) 148)) (-2919 (((-112) $ $) NIL)))
-(((-1141) (-1143)) (T -1141))
-NIL
-(-1143)
-((-2042 (((-649 (-1188)) (-1165)) 9)))
-(((-1142) (-10 -7 (-15 -2042 ((-649 (-1188)) (-1165))))) (T -1142))
-((-2042 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-1142)))))
-(-10 -7 (-15 -2042 ((-649 (-1188)) (-1165))))
-((-2415 (((-112) $ $) 7)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-1188)) 17) (((-1188) $) 16)) (-1792 (((-112) $ (|[\|\|]| (-529))) 85) (((-112) $ (|[\|\|]| (-219))) 83) (((-112) $ (|[\|\|]| (-681))) 81) (((-112) $ (|[\|\|]| (-1283))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-611))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1121))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-686))) 67) (((-112) $ (|[\|\|]| (-522))) 65) (((-112) $ (|[\|\|]| (-1072))) 63) (((-112) $ (|[\|\|]| (-1284))) 61) (((-112) $ (|[\|\|]| (-530))) 59) (((-112) $ (|[\|\|]| (-1157))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-676))) 53) (((-112) $ (|[\|\|]| (-314))) 51) (((-112) $ (|[\|\|]| (-1042))) 49) (((-112) $ (|[\|\|]| (-181))) 47) (((-112) $ (|[\|\|]| (-976))) 45) (((-112) $ (|[\|\|]| (-1079))) 43) (((-112) $ (|[\|\|]| (-1096))) 41) (((-112) $ (|[\|\|]| (-1102))) 39) (((-112) $ (|[\|\|]| (-631))) 37) (((-112) $ (|[\|\|]| (-1173))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-483))) 29) (((-112) $ (|[\|\|]| (-597))) 27) (((-112) $ (|[\|\|]| (-511))) 25) (((-112) $ (|[\|\|]| (-1165))) 23) (((-112) $ (|[\|\|]| (-569))) 21)) (-1441 (((-112) $ $) 9)) (-3988 (((-529) $) 84) (((-219) $) 82) (((-681) $) 80) (((-1283) $) 78) (((-138) $) 76) (((-611) $) 74) (((-133) $) 72) (((-1121) $) 70) (((-96) $) 68) (((-686) $) 66) (((-522) $) 64) (((-1072) $) 62) (((-1284) $) 60) (((-530) $) 58) (((-1157) $) 56) (((-154) $) 54) (((-676) $) 52) (((-314) $) 50) (((-1042) $) 48) (((-181) $) 46) (((-976) $) 44) (((-1079) $) 42) (((-1096) $) 40) (((-1102) $) 38) (((-631) $) 36) (((-1173) $) 34) (((-156) $) 32) (((-137) $) 30) (((-483) $) 28) (((-597) $) 26) (((-511) $) 24) (((-1165) $) 22) (((-569) $) 20)) (-2919 (((-112) $ $) 6)))
-(((-1143) (-140)) (T -1143))
-((-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-529)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-219)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-681)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1283))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1283)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-138)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-611)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-133)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1121)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-96)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-686)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-522)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1072)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1284))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1284)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-530)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1157)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-154)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-676)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-314)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1042)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-181)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-976)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1079)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1096)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1102)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-631)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1173)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-156)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-137)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-483)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-597)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-511)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1165)))) (-1792 (*1 *2 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-569)))))
-(-13 (-1089) (-1268) (-10 -8 (-15 -1792 ((-112) $ (|[\|\|]| (-529)))) (-15 -3988 ((-529) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-219)))) (-15 -3988 ((-219) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-681)))) (-15 -3988 ((-681) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1283)))) (-15 -3988 ((-1283) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-138)))) (-15 -3988 ((-138) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-611)))) (-15 -3988 ((-611) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-133)))) (-15 -3988 ((-133) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1121)))) (-15 -3988 ((-1121) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-96)))) (-15 -3988 ((-96) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-686)))) (-15 -3988 ((-686) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-522)))) (-15 -3988 ((-522) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1072)))) (-15 -3988 ((-1072) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1284)))) (-15 -3988 ((-1284) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-530)))) (-15 -3988 ((-530) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1157)))) (-15 -3988 ((-1157) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-154)))) (-15 -3988 ((-154) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-676)))) (-15 -3988 ((-676) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-314)))) (-15 -3988 ((-314) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1042)))) (-15 -3988 ((-1042) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-181)))) (-15 -3988 ((-181) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-976)))) (-15 -3988 ((-976) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1079)))) (-15 -3988 ((-1079) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1096)))) (-15 -3988 ((-1096) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1102)))) (-15 -3988 ((-1102) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-631)))) (-15 -3988 ((-631) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1173)))) (-15 -3988 ((-1173) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-156)))) (-15 -3988 ((-156) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-137)))) (-15 -3988 ((-137) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-483)))) (-15 -3988 ((-483) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-597)))) (-15 -3988 ((-597) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-511)))) (-15 -3988 ((-511) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3988 ((-1165) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-569)))) (-15 -3988 ((-569) $))))
-(((-93) . T) ((-102) . T) ((-621 #0=(-1188)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1106) . T) ((-1089) . T) ((-1268) . T))
-((-2948 (((-1278) (-649 (-867))) 22) (((-1278) (-867)) 21)) (-2827 (((-1278) (-649 (-867))) 20) (((-1278) (-867)) 19)) (-3358 (((-1278) (-649 (-867))) 18) (((-1278) (-867)) 10) (((-1278) (-1165) (-867)) 16)))
-(((-1144) (-10 -7 (-15 -3358 ((-1278) (-1165) (-867))) (-15 -3358 ((-1278) (-867))) (-15 -2827 ((-1278) (-867))) (-15 -2948 ((-1278) (-867))) (-15 -3358 ((-1278) (-649 (-867)))) (-15 -2827 ((-1278) (-649 (-867)))) (-15 -2948 ((-1278) (-649 (-867)))))) (T -1144))
-((-2948 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(-10 -7 (-15 -3358 ((-1278) (-1165) (-867))) (-15 -3358 ((-1278) (-867))) (-15 -2827 ((-1278) (-867))) (-15 -2948 ((-1278) (-867))) (-15 -3358 ((-1278) (-649 (-867)))) (-15 -2827 ((-1278) (-649 (-867)))) (-15 -2948 ((-1278) (-649 (-867)))))
-((-2209 (($ $ $) 10)) (-2103 (($ $) 9)) (-1357 (($ $ $) 13)) (-1608 (($ $ $) 15)) (-2421 (($ $ $) 12)) (-1493 (($ $ $) 14)) (-1836 (($ $) 17)) (-1724 (($ $) 16)) (-3070 (($ $) 6)) (-2315 (($ $ $) 11) (($ $) 7)) (-1994 (($ $ $) 8)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2771 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-4118 (($ $) 156 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3278 (((-958 |#1|) $ (-776)) NIL) (((-958 |#1|) $ (-776) (-776)) NIL)) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $ |#2|) NIL) (((-776) $ |#2| (-776)) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2198 (((-112) $) NIL)) (-3923 (($ $ (-649 |#2|) (-649 (-536 |#2|))) NIL) (($ $ |#2| (-536 |#2|)) NIL) (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 63) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $ |#2|) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-1632 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-412 (-569)))))) (-3166 (($ $ (-776)) 16)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4389 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (($ $ |#2| $) 106) (($ $ (-649 |#2|) (-649 $)) 99) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3517 (($ $ |#2|) 109) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4339 (((-536 |#2|) $) NIL)) (-1583 (((-1 (-1165 |#3|) |#3|) (-649 |#2|) (-649 (-1165 |#3|))) 87)) (-4128 (($ $) 158 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 18)) (-3796 (((-867) $) 199) (($ (-569)) NIL) (($ |#1|) 45 (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#2|) 70) (($ |#3|) 68)) (-4383 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL) ((|#3| $ (-776)) 43)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-1503 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 52 T CONST)) (-1815 (($) 62 T CONST)) (-2832 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) 201 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) 77) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 112 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 65) (($ $ (-412 (-569))) 117 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 115 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1134 |#1| |#2| |#3|) (-13 (-745 |#1| |#2|) (-10 -8 (-15 -4383 (|#3| $ (-776))) (-15 -3796 ($ |#2|)) (-15 -3796 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1583 ((-1 (-1165 |#3|) |#3|) (-649 |#2|) (-649 (-1165 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ |#2| |#1|)) (-15 -1632 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1057) (-855) (-955 |#1| (-536 |#2|) |#2|)) (T -1134))
+((-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5)) (-5 *1 (-1134 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-855)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *2 (-855)) (-5 *1 (-1134 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1165 *7))) (-4 *6 (-855)) (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1057)) (-5 *2 (-1 (-1165 *7) *7)) (-5 *1 (-1134 *5 *6 *7)))) (-3579 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-4 *2 (-855)) (-5 *1 (-1134 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-1632 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1134 *4 *3 *5))) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057)) (-4 *3 (-855)) (-5 *1 (-1134 *4 *3 *5)) (-4 *5 (-955 *4 (-536 *3) *3)))))
+(-13 (-745 |#1| |#2|) (-10 -8 (-15 -4383 (|#3| $ (-776))) (-15 -3796 ($ |#2|)) (-15 -3796 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1583 ((-1 (-1165 |#3|) |#3|) (-649 |#2|) (-649 (-1165 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ |#2| |#1|)) (-15 -1632 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447)))))
+(((-1135 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1135))
+NIL
+(-13 (-1117 |t#1| |t#2| |t#3| |t#4|) (-789 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-789 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1079 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1117 |#1| |#2| |#3| |#4|) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T))
+((-3218 (((-649 |#2|) |#1|) 15)) (-1382 (((-649 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-649 |#2|) |#1|) 63)) (-4177 (((-649 |#2|) |#2| |#2| |#2|) 45) (((-649 |#2|) |#1|) 61)) (-1393 ((|#2| |#1|) 56)) (-3772 (((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3792 (((-649 |#2|) |#2| |#2|) 42) (((-649 |#2|) |#1|) 60)) (-2812 (((-649 |#2|) |#2| |#2| |#2| |#2|) 46) (((-649 |#2|) |#1|) 62)) (-3120 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3915 ((|#2| |#2| |#2| |#2|) 53)) (-2321 ((|#2| |#2| |#2|) 52)) (-3600 ((|#2| |#2| |#2| |#2| |#2|) 54)))
+(((-1136 |#1| |#2|) (-10 -7 (-15 -3218 ((-649 |#2|) |#1|)) (-15 -1393 (|#2| |#1|)) (-15 -3772 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3792 ((-649 |#2|) |#1|)) (-15 -4177 ((-649 |#2|) |#1|)) (-15 -2812 ((-649 |#2|) |#1|)) (-15 -1382 ((-649 |#2|) |#1|)) (-15 -3792 ((-649 |#2|) |#2| |#2|)) (-15 -4177 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -2812 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1382 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2321 (|#2| |#2| |#2|)) (-15 -3915 (|#2| |#2| |#2| |#2|)) (-15 -3600 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3120 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1251 |#2|) (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (T -1136))
+((-3120 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-3600 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-3915 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-2321 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-1382 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-2812 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-4177 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-3792 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-1382 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-2812 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-4177 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-3792 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-2 (|:| |solns| (-649 *5)) (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1136 *3 *5)) (-4 *3 (-1251 *5)))) (-1393 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -3218 ((-649 |#2|) |#1|)) (-15 -1393 (|#2| |#1|)) (-15 -3772 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3792 ((-649 |#2|) |#1|)) (-15 -4177 ((-649 |#2|) |#1|)) (-15 -2812 ((-649 |#2|) |#1|)) (-15 -1382 ((-649 |#2|) |#1|)) (-15 -3792 ((-649 |#2|) |#2| |#2|)) (-15 -4177 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -2812 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1382 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2321 (|#2| |#2| |#2|)) (-15 -3915 (|#2| |#2| |#2| |#2|)) (-15 -3600 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3120 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-1585 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|))))) 118) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185))) 117) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|)))) 115) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 113) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|)))) 97) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1185)) 98) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|))) 92) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1185)) 82)) (-4353 (((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 111) (((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1185)) 54)) (-2619 (((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1185)) 122) (((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185)) 121)))
+(((-1137 |#1|) (-10 -7 (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -4353 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -4353 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1185)))) (-13 (-310) (-147))) (T -1137))
+((-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5)))) (-5 *1 (-1137 *5)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5)))))
+(-10 -7 (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -4353 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -4353 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1185))))
+((-4258 (((-412 (-1181 (-319 |#1|))) (-1275 (-319 |#1|)) (-412 (-1181 (-319 |#1|))) (-569)) 38)) (-1444 (((-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|)))) 49)))
+(((-1138 |#1|) (-10 -7 (-15 -1444 ((-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))))) (-15 -4258 ((-412 (-1181 (-319 |#1|))) (-1275 (-319 |#1|)) (-412 (-1181 (-319 |#1|))) (-569)))) (-561)) (T -1138))
+((-4258 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-412 (-1181 (-319 *5)))) (-5 *3 (-1275 (-319 *5))) (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1138 *5)))) (-1444 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-412 (-1181 (-319 *3)))) (-4 *3 (-561)) (-5 *1 (-1138 *3)))))
+(-10 -7 (-15 -1444 ((-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))))) (-15 -4258 ((-412 (-1181 (-319 |#1|))) (-1275 (-319 |#1|)) (-412 (-1181 (-319 |#1|))) (-569))))
+((-3218 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1185))) 246) (((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1185)) 23) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1185)) 29) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|))) 28) (((-649 (-297 (-319 |#1|))) (-319 |#1|)) 24)))
+(((-1139 |#1|) (-10 -7 (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1185))) (-15 -3218 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1185))))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (T -1139))
+((-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1139 *5)) (-5 *3 (-649 (-297 (-319 *5)))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5)) (-5 *3 (-319 *5)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5)) (-5 *3 (-297 (-319 *5))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-297 (-319 *4))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-319 *4)))))
+(-10 -7 (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1185))) (-15 -3218 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1185)))))
+((-2373 ((|#2| |#2|) 30 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-2781 ((|#2| |#2|) 29 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1140 |#1| |#2|) (-10 -7 (-15 -2781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2373 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -2781 (|#2| |#2|)) (-15 -2373 (|#2| |#2|))) |%noBranch|)) (-1225) (-13 (-609 (-569) |#1|) (-10 -7 (-6 -4447) (-6 -4448)))) (T -1140))
+((-2373 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448)))))) (-2781 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448)))))) (-2373 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448)))))) (-2781 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448)))))))
+(-10 -7 (-15 -2781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2373 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -2781 (|#2| |#2|)) (-15 -2373 (|#2| |#2|))) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-3849 (((-1173 3 |#1|) $) 141)) (-3463 (((-112) $) 101)) (-3461 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 104) (($ (-649 (-949 |#1|))) 103) (((-649 (-949 |#1|)) $) 102)) (-3214 (((-112) $) 72)) (-3283 (($ $ (-949 |#1|)) 76) (($ $ (-649 |#1|)) 81) (($ $ (-776)) 83) (($ (-949 |#1|)) 77) (((-949 |#1|) $) 75)) (-4354 (((-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 139)) (-1391 (((-776) $) 53)) (-3045 (((-776) $) 52)) (-1889 (($ $ (-776) (-949 |#1|)) 67)) (-2876 (((-112) $) 111)) (-1770 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 118) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 120) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 115) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 127) (($ (-649 (-649 (-949 |#1|)))) 116) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 117) (((-649 (-649 (-949 |#1|))) $) 114)) (-4198 (($ (-649 $)) 56) (($ $ $) 57)) (-2476 (((-649 (-172)) $) 133)) (-3316 (((-649 (-949 |#1|)) $) 130)) (-4194 (((-649 (-649 (-172))) $) 132)) (-3053 (((-649 (-649 (-649 (-949 |#1|)))) $) NIL)) (-4156 (((-649 (-649 (-649 (-776)))) $) 131)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2064 (((-776) $ (-649 (-949 |#1|))) 65)) (-3723 (((-112) $) 84)) (-2207 (($ $ (-649 (-949 |#1|))) 86) (($ $ (-649 (-649 |#1|))) 92) (($ (-649 (-949 |#1|))) 87) (((-649 (-949 |#1|)) $) 85)) (-1832 (($) 48) (($ (-1173 3 |#1|)) 49)) (-3962 (($ $) 63)) (-3961 (((-649 $) $) 62)) (-1960 (($ (-649 $)) 59)) (-2680 (((-649 $) $) 61)) (-3796 (((-867) $) 146)) (-2085 (((-112) $) 94)) (-3878 (($ $ (-649 (-949 |#1|))) 96) (($ $ (-649 (-649 |#1|))) 99) (($ (-649 (-949 |#1|))) 97) (((-649 (-949 |#1|)) $) 95)) (-3982 (($ $) 140)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1141 |#1|) (-1142 |#1|) (-1057)) (T -1141))
+NIL
+(-1142 |#1|)
+((-2417 (((-112) $ $) 7)) (-3849 (((-1173 3 |#1|) $) 14)) (-3463 (((-112) $) 30)) (-3461 (($ $ (-649 (-949 |#1|))) 34) (($ $ (-649 (-649 |#1|))) 33) (($ (-649 (-949 |#1|))) 32) (((-649 (-949 |#1|)) $) 31)) (-3214 (((-112) $) 45)) (-3283 (($ $ (-949 |#1|)) 50) (($ $ (-649 |#1|)) 49) (($ $ (-776)) 48) (($ (-949 |#1|)) 47) (((-949 |#1|) $) 46)) (-4354 (((-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 16)) (-1391 (((-776) $) 59)) (-3045 (((-776) $) 60)) (-1889 (($ $ (-776) (-949 |#1|)) 51)) (-2876 (((-112) $) 22)) (-1770 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 29) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 28) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 27) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 26) (($ (-649 (-649 (-949 |#1|)))) 25) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 24) (((-649 (-649 (-949 |#1|))) $) 23)) (-4198 (($ (-649 $)) 58) (($ $ $) 57)) (-2476 (((-649 (-172)) $) 17)) (-3316 (((-649 (-949 |#1|)) $) 21)) (-4194 (((-649 (-649 (-172))) $) 18)) (-3053 (((-649 (-649 (-649 (-949 |#1|)))) $) 19)) (-4156 (((-649 (-649 (-649 (-776)))) $) 20)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2064 (((-776) $ (-649 (-949 |#1|))) 52)) (-3723 (((-112) $) 40)) (-2207 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 43) (($ (-649 (-949 |#1|))) 42) (((-649 (-949 |#1|)) $) 41)) (-1832 (($) 62) (($ (-1173 3 |#1|)) 61)) (-3962 (($ $) 53)) (-3961 (((-649 $) $) 54)) (-1960 (($ (-649 $)) 56)) (-2680 (((-649 $) $) 55)) (-3796 (((-867) $) 12)) (-2085 (((-112) $) 35)) (-3878 (($ $ (-649 (-949 |#1|))) 39) (($ $ (-649 (-649 |#1|))) 38) (($ (-649 (-949 |#1|))) 37) (((-649 (-949 |#1|)) $) 36)) (-3982 (($ $) 15)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
+(((-1142 |#1|) (-140) (-1057)) (T -1142))
+((-3796 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-867)))) (-1832 (*1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-1173 3 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-2680 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)))) (-3961 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1142 *4)) (-4 *4 (-1057)) (-5 *2 (-776)))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-949 *3)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-1770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057)))) (-1770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057)))) (-1770 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) (-1770 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-112)) (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-1770 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1057)) (-4 *1 (-1142 *4)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-949 *3)))))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-649 (-776))))))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-649 (-949 *3))))))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-172)))))) (-2476 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-172))))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776)))))) (-3982 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-1173 3 *3)))))
+(-13 (-1108) (-10 -8 (-15 -1832 ($)) (-15 -1832 ($ (-1173 3 |t#1|))) (-15 -3045 ((-776) $)) (-15 -1391 ((-776) $)) (-15 -4198 ($ (-649 $))) (-15 -4198 ($ $ $)) (-15 -1960 ($ (-649 $))) (-15 -2680 ((-649 $) $)) (-15 -3961 ((-649 $) $)) (-15 -3962 ($ $)) (-15 -2064 ((-776) $ (-649 (-949 |t#1|)))) (-15 -1889 ($ $ (-776) (-949 |t#1|))) (-15 -3283 ($ $ (-949 |t#1|))) (-15 -3283 ($ $ (-649 |t#1|))) (-15 -3283 ($ $ (-776))) (-15 -3283 ($ (-949 |t#1|))) (-15 -3283 ((-949 |t#1|) $)) (-15 -3214 ((-112) $)) (-15 -2207 ($ $ (-649 (-949 |t#1|)))) (-15 -2207 ($ $ (-649 (-649 |t#1|)))) (-15 -2207 ($ (-649 (-949 |t#1|)))) (-15 -2207 ((-649 (-949 |t#1|)) $)) (-15 -3723 ((-112) $)) (-15 -3878 ($ $ (-649 (-949 |t#1|)))) (-15 -3878 ($ $ (-649 (-649 |t#1|)))) (-15 -3878 ($ (-649 (-949 |t#1|)))) (-15 -3878 ((-649 (-949 |t#1|)) $)) (-15 -2085 ((-112) $)) (-15 -3461 ($ $ (-649 (-949 |t#1|)))) (-15 -3461 ($ $ (-649 (-649 |t#1|)))) (-15 -3461 ($ (-649 (-949 |t#1|)))) (-15 -3461 ((-649 (-949 |t#1|)) $)) (-15 -3463 ((-112) $)) (-15 -1770 ($ $ (-649 (-649 (-949 |t#1|))) (-649 (-172)) (-172))) (-15 -1770 ($ $ (-649 (-649 (-649 |t#1|))) (-649 (-172)) (-172))) (-15 -1770 ($ $ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -1770 ($ $ (-649 (-649 (-649 |t#1|))) (-112) (-112))) (-15 -1770 ($ (-649 (-649 (-949 |t#1|))))) (-15 -1770 ($ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -1770 ((-649 (-649 (-949 |t#1|))) $)) (-15 -2876 ((-112) $)) (-15 -3316 ((-649 (-949 |t#1|)) $)) (-15 -4156 ((-649 (-649 (-649 (-776)))) $)) (-15 -3053 ((-649 (-649 (-649 (-949 |t#1|)))) $)) (-15 -4194 ((-649 (-649 (-172))) $)) (-15 -2476 ((-649 (-172)) $)) (-15 -4354 ((-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $)) (-15 -3982 ($ $)) (-15 -3849 ((-1173 3 |t#1|) $)) (-15 -3796 ((-867) $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 184) (($ (-1190)) NIL) (((-1190) $) 7)) (-1795 (((-112) $ (|[\|\|]| (-529))) 19) (((-112) $ (|[\|\|]| (-219))) 23) (((-112) $ (|[\|\|]| (-681))) 27) (((-112) $ (|[\|\|]| (-1285))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-611))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1123))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-686))) 55) (((-112) $ (|[\|\|]| (-522))) 59) (((-112) $ (|[\|\|]| (-1074))) 63) (((-112) $ (|[\|\|]| (-1286))) 67) (((-112) $ (|[\|\|]| (-530))) 71) (((-112) $ (|[\|\|]| (-1159))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-676))) 83) (((-112) $ (|[\|\|]| (-314))) 87) (((-112) $ (|[\|\|]| (-1044))) 91) (((-112) $ (|[\|\|]| (-181))) 95) (((-112) $ (|[\|\|]| (-978))) 99) (((-112) $ (|[\|\|]| (-1081))) 103) (((-112) $ (|[\|\|]| (-1098))) 107) (((-112) $ (|[\|\|]| (-1104))) 111) (((-112) $ (|[\|\|]| (-631))) 115) (((-112) $ (|[\|\|]| (-1175))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-483))) 131) (((-112) $ (|[\|\|]| (-597))) 135) (((-112) $ (|[\|\|]| (-511))) 139) (((-112) $ (|[\|\|]| (-1167))) 143) (((-112) $ (|[\|\|]| (-569))) 147)) (-1520 (((-112) $ $) NIL)) (-3993 (((-529) $) 20) (((-219) $) 24) (((-681) $) 28) (((-1285) $) 32) (((-138) $) 36) (((-611) $) 40) (((-133) $) 44) (((-1123) $) 48) (((-96) $) 52) (((-686) $) 56) (((-522) $) 60) (((-1074) $) 64) (((-1286) $) 68) (((-530) $) 72) (((-1159) $) 76) (((-154) $) 80) (((-676) $) 84) (((-314) $) 88) (((-1044) $) 92) (((-181) $) 96) (((-978) $) 100) (((-1081) $) 104) (((-1098) $) 108) (((-1104) $) 112) (((-631) $) 116) (((-1175) $) 120) (((-156) $) 124) (((-137) $) 128) (((-483) $) 132) (((-597) $) 136) (((-511) $) 140) (((-1167) $) 144) (((-569) $) 148)) (-2920 (((-112) $ $) NIL)))
+(((-1143) (-1145)) (T -1143))
+NIL
+(-1145)
+((-2045 (((-649 (-1190)) (-1167)) 9)))
+(((-1144) (-10 -7 (-15 -2045 ((-649 (-1190)) (-1167))))) (T -1144))
+((-2045 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-1144)))))
+(-10 -7 (-15 -2045 ((-649 (-1190)) (-1167))))
+((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-1190)) 17) (((-1190) $) 16)) (-1795 (((-112) $ (|[\|\|]| (-529))) 85) (((-112) $ (|[\|\|]| (-219))) 83) (((-112) $ (|[\|\|]| (-681))) 81) (((-112) $ (|[\|\|]| (-1285))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-611))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1123))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-686))) 67) (((-112) $ (|[\|\|]| (-522))) 65) (((-112) $ (|[\|\|]| (-1074))) 63) (((-112) $ (|[\|\|]| (-1286))) 61) (((-112) $ (|[\|\|]| (-530))) 59) (((-112) $ (|[\|\|]| (-1159))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-676))) 53) (((-112) $ (|[\|\|]| (-314))) 51) (((-112) $ (|[\|\|]| (-1044))) 49) (((-112) $ (|[\|\|]| (-181))) 47) (((-112) $ (|[\|\|]| (-978))) 45) (((-112) $ (|[\|\|]| (-1081))) 43) (((-112) $ (|[\|\|]| (-1098))) 41) (((-112) $ (|[\|\|]| (-1104))) 39) (((-112) $ (|[\|\|]| (-631))) 37) (((-112) $ (|[\|\|]| (-1175))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-483))) 29) (((-112) $ (|[\|\|]| (-597))) 27) (((-112) $ (|[\|\|]| (-511))) 25) (((-112) $ (|[\|\|]| (-1167))) 23) (((-112) $ (|[\|\|]| (-569))) 21)) (-1520 (((-112) $ $) 9)) (-3993 (((-529) $) 84) (((-219) $) 82) (((-681) $) 80) (((-1285) $) 78) (((-138) $) 76) (((-611) $) 74) (((-133) $) 72) (((-1123) $) 70) (((-96) $) 68) (((-686) $) 66) (((-522) $) 64) (((-1074) $) 62) (((-1286) $) 60) (((-530) $) 58) (((-1159) $) 56) (((-154) $) 54) (((-676) $) 52) (((-314) $) 50) (((-1044) $) 48) (((-181) $) 46) (((-978) $) 44) (((-1081) $) 42) (((-1098) $) 40) (((-1104) $) 38) (((-631) $) 36) (((-1175) $) 34) (((-156) $) 32) (((-137) $) 30) (((-483) $) 28) (((-597) $) 26) (((-511) $) 24) (((-1167) $) 22) (((-569) $) 20)) (-2920 (((-112) $ $) 6)))
(((-1145) (-140)) (T -1145))
-((-1836 (*1 *1 *1) (-4 *1 (-1145))) (-1724 (*1 *1 *1) (-4 *1 (-1145))) (-1608 (*1 *1 *1 *1) (-4 *1 (-1145))) (-1493 (*1 *1 *1 *1) (-4 *1 (-1145))) (-1357 (*1 *1 *1 *1) (-4 *1 (-1145))) (-2421 (*1 *1 *1 *1) (-4 *1 (-1145))) (-2315 (*1 *1 *1 *1) (-4 *1 (-1145))) (-2209 (*1 *1 *1 *1) (-4 *1 (-1145))) (-2103 (*1 *1 *1) (-4 *1 (-1145))) (-1994 (*1 *1 *1 *1) (-4 *1 (-1145))) (-2315 (*1 *1 *1) (-4 *1 (-1145))) (-3070 (*1 *1 *1) (-4 *1 (-1145))))
-(-13 (-10 -8 (-15 -3070 ($ $)) (-15 -2315 ($ $)) (-15 -1994 ($ $ $)) (-15 -2103 ($ $)) (-15 -2209 ($ $ $)) (-15 -2315 ($ $ $)) (-15 -2421 ($ $ $)) (-15 -1357 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -1608 ($ $ $)) (-15 -1724 ($ $)) (-15 -1836 ($ $))))
-((-2415 (((-112) $ $) 44)) (-2185 ((|#1| $) 17)) (-1931 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2527 (((-112) $) 19)) (-4350 (($ $ |#1|) 30)) (-4149 (($ $ (-112)) 32)) (-4049 (($ $) 33)) (-4252 (($ $ |#2|) 31)) (-1550 (((-1165) $) NIL)) (-3950 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3545 (((-1126) $) NIL)) (-3218 (((-112) $) 16)) (-3597 (($) 13)) (-3959 (($ $) 29)) (-3806 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3660 |#2|))) 23) (((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3660 |#2|)))) 26) (((-649 $) |#1| (-649 |#2|)) 28)) (-2383 ((|#2| $) 18)) (-3793 (((-867) $) 53)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 42)))
-(((-1146 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -3597 ($)) (-15 -3218 ((-112) $)) (-15 -2185 (|#1| $)) (-15 -2383 (|#2| $)) (-15 -2527 ((-112) $)) (-15 -3806 ($ |#1| |#2| (-112))) (-15 -3806 ($ |#1| |#2|)) (-15 -3806 ($ (-2 (|:| |val| |#1|) (|:| -3660 |#2|)))) (-15 -3806 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3660 |#2|))))) (-15 -3806 ((-649 $) |#1| (-649 |#2|))) (-15 -3959 ($ $)) (-15 -4350 ($ $ |#1|)) (-15 -4252 ($ $ |#2|)) (-15 -4149 ($ $ (-112))) (-15 -4049 ($ $)) (-15 -3950 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1931 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1106) (-34)) (-13 (-1106) (-34))) (T -1146))
-((-3597 (*1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-2185 (*1 *2 *1) (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *2 *3)) (-4 *3 (-13 (-1106) (-34))))) (-2383 (*1 *2 *1) (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1106) (-34))))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-3806 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3806 (*1 *1 *2 *3) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3660 *4))) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1146 *3 *4)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3660 *5)))) (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-649 (-1146 *4 *5))) (-5 *1 (-1146 *4 *5)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-649 (-1146 *3 *5))) (-5 *1 (-1146 *3 *5)) (-4 *3 (-13 (-1106) (-34))))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-4350 (*1 *1 *1 *2) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-4252 (*1 *1 *1 *2) (-12 (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1106) (-34))) (-4 *2 (-13 (-1106) (-34))))) (-4149 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3950 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1146 *5 *6)))) (-1931 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34))))))
-(-13 (-1106) (-10 -8 (-15 -3597 ($)) (-15 -3218 ((-112) $)) (-15 -2185 (|#1| $)) (-15 -2383 (|#2| $)) (-15 -2527 ((-112) $)) (-15 -3806 ($ |#1| |#2| (-112))) (-15 -3806 ($ |#1| |#2|)) (-15 -3806 ($ (-2 (|:| |val| |#1|) (|:| -3660 |#2|)))) (-15 -3806 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3660 |#2|))))) (-15 -3806 ((-649 $) |#1| (-649 |#2|))) (-15 -3959 ($ $)) (-15 -4350 ($ $ |#1|)) (-15 -4252 ($ $ |#2|)) (-15 -4149 ($ $ (-112))) (-15 -4049 ($ $)) (-15 -3950 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1931 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2415 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-2185 (((-1146 |#1| |#2|) $) 27)) (-3809 (($ $) 91)) (-3590 (((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3343 (($ $ $ (-649 (-1146 |#1| |#2|))) 108) (($ $ $ (-649 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2716 (((-112) $ (-776)) NIL)) (-1660 (((-1146 |#1| |#2|) $ (-1146 |#1| |#2|)) 46 (|has| $ (-6 -4445)))) (-3940 (((-1146 |#1| |#2|) $ "value" (-1146 |#1| |#2|)) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 44 (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-1711 (((-649 (-2 (|:| |val| |#1|) (|:| -3660 |#2|))) $) 95)) (-3463 (($ (-1146 |#1| |#2|) $) 42)) (-1696 (($ (-1146 |#1| |#2|) $) 34)) (-2880 (((-649 (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 54)) (-3709 (((-112) (-1146 |#1| |#2|) $) 97)) (-3759 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 (-1146 |#1| |#2|)) $) 58 (|has| $ (-6 -4444)))) (-1655 (((-112) (-1146 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-1146 |#1| |#2|) (-1106))))) (-3831 (($ (-1 (-1146 |#1| |#2|) (-1146 |#1| |#2|)) $) 50 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-1146 |#1| |#2|) (-1146 |#1| |#2|)) $) 49)) (-2433 (((-112) $ (-776)) NIL)) (-2273 (((-649 (-1146 |#1| |#2|)) $) 56)) (-2703 (((-112) $) 45)) (-1550 (((-1165) $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-3545 (((-1126) $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-2629 (((-3 $ "failed") $) 89)) (-2911 (((-112) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-1146 |#1| |#2|)))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106)))) (($ $ (-297 (-1146 |#1| |#2|))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106)))) (($ $ (-1146 |#1| |#2|) (-1146 |#1| |#2|)) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106)))) (($ $ (-649 (-1146 |#1| |#2|)) (-649 (-1146 |#1| |#2|))) NIL (-12 (|has| (-1146 |#1| |#2|) (-312 (-1146 |#1| |#2|))) (|has| (-1146 |#1| |#2|) (-1106))))) (-2834 (((-112) $ $) 53)) (-3218 (((-112) $) 24)) (-3597 (($) 26)) (-1866 (((-1146 |#1| |#2|) $ "value") NIL)) (-3947 (((-569) $ $) NIL)) (-2102 (((-112) $) 47)) (-3558 (((-776) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4444))) (((-776) (-1146 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-1146 |#1| |#2|) (-1106))))) (-3959 (($ $) 52)) (-3806 (($ (-1146 |#1| |#2|)) 10) (($ |#1| |#2| (-649 $)) 13) (($ |#1| |#2| (-649 (-1146 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-649 |#2|)) 18)) (-4134 (((-649 |#2|) $) 96)) (-3793 (((-867) $) 87 (|has| (-1146 |#1| |#2|) (-618 (-867))))) (-3500 (((-649 $) $) 31)) (-3860 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-1441 (((-112) $ $) NIL (|has| (-1146 |#1| |#2|) (-1106)))) (-3037 (((-112) (-1 (-112) (-1146 |#1| |#2|)) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 70 (|has| (-1146 |#1| |#2|) (-1106)))) (-2426 (((-776) $) 64 (|has| $ (-6 -4444)))))
-(((-1147 |#1| |#2|) (-13 (-1016 (-1146 |#1| |#2|)) (-10 -8 (-6 -4445) (-6 -4444) (-15 -2629 ((-3 $ "failed") $)) (-15 -3809 ($ $)) (-15 -3806 ($ (-1146 |#1| |#2|))) (-15 -3806 ($ |#1| |#2| (-649 $))) (-15 -3806 ($ |#1| |#2| (-649 (-1146 |#1| |#2|)))) (-15 -3806 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4134 ((-649 |#2|) $)) (-15 -1711 ((-649 (-2 (|:| |val| |#1|) (|:| -3660 |#2|))) $)) (-15 -3709 ((-112) (-1146 |#1| |#2|) $)) (-15 -3590 ((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1696 ($ (-1146 |#1| |#2|) $)) (-15 -3463 ($ (-1146 |#1| |#2|) $)) (-15 -3343 ($ $ $ (-649 (-1146 |#1| |#2|)))) (-15 -3343 ($ $ $ (-649 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1106) (-34)) (-13 (-1106) (-34))) (T -1147))
-((-2629 (*1 *1 *1) (|partial| -12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-3806 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1147 *2 *3))) (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))))) (-3806 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1146 *2 *3))) (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34))) (-5 *1 (-1147 *2 *3)))) (-3806 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1106) (-34))) (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34))))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-649 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4)))) (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))) (-3709 (*1 *2 *3 *1) (-12 (-5 *3 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *4 *5)))) (-3590 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1146 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *5 *6)))) (-1696 (*1 *1 *2 *1) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-3343 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-649 (-1146 *3 *4))) (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))) (-3343 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1146 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34))) (-5 *1 (-1147 *4 *5)))))
-(-13 (-1016 (-1146 |#1| |#2|)) (-10 -8 (-6 -4445) (-6 -4444) (-15 -2629 ((-3 $ "failed") $)) (-15 -3809 ($ $)) (-15 -3806 ($ (-1146 |#1| |#2|))) (-15 -3806 ($ |#1| |#2| (-649 $))) (-15 -3806 ($ |#1| |#2| (-649 (-1146 |#1| |#2|)))) (-15 -3806 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4134 ((-649 |#2|) $)) (-15 -1711 ((-649 (-2 (|:| |val| |#1|) (|:| -3660 |#2|))) $)) (-15 -3709 ((-112) (-1146 |#1| |#2|) $)) (-15 -3590 ((-112) (-1146 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1696 ($ (-1146 |#1| |#2|) $)) (-15 -3463 ($ (-1146 |#1| |#2|) $)) (-15 -3343 ($ $ $ (-649 (-1146 |#1| |#2|)))) (-15 -3343 ($ $ $ (-649 (-1146 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-2873 (($ $) NIL)) (-3136 ((|#2| $) NIL)) (-4080 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2763 (($ (-694 |#2|)) 56)) (-4317 (((-112) $) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-2931 (($ |#2|) 14)) (-4188 (($) NIL T CONST)) (-4372 (($ $) 69 (|has| |#2| (-310)))) (-1486 (((-241 |#1| |#2|) $ (-569)) 42)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) ((|#2| $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) 83)) (-3975 (((-776) $) 71 (|has| |#2| (-561)))) (-3773 ((|#2| $ (-569) (-569)) NIL)) (-2880 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-2623 (((-112) $) NIL)) (-2345 (((-776) $) 73 (|has| |#2| (-561)))) (-2250 (((-649 (-241 |#1| |#2|)) $) 77 (|has| |#2| (-561)))) (-3221 (((-776) $) NIL)) (-4295 (($ |#2|) 25)) (-3234 (((-776) $) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-3647 ((|#2| $) 67 (|has| |#2| (-6 (-4446 "*"))))) (-3856 (((-569) $) NIL)) (-1738 (((-569) $) NIL)) (-3040 (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3744 (((-569) $) NIL)) (-1609 (((-569) $) NIL)) (-2428 (($ (-649 (-649 |#2|))) 37)) (-3831 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3005 (((-649 (-649 |#2|)) $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-1933 (((-3 $ "failed") $) 80 (|has| |#2| (-367)))) (-3545 (((-1126) $) NIL)) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-2911 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) NIL)) (-3514 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2572 ((|#2| $) NIL)) (-2823 (($ (-649 |#2|)) 50)) (-4206 (((-112) $) NIL)) (-2706 (((-241 |#1| |#2|) $) NIL)) (-2458 ((|#2| $) 65 (|has| |#2| (-6 (-4446 "*"))))) (-3558 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3959 (($ $) NIL)) (-1408 (((-541) $) 89 (|has| |#2| (-619 (-541))))) (-1363 (((-241 |#1| |#2|) $ (-569)) 44)) (-3793 (((-867) $) 47) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1044 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) 52)) (-3302 (((-776)) 23 T CONST)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3962 (((-112) $) NIL)) (-1803 (($) 16 T CONST)) (-1813 (($) 21 T CONST)) (-2830 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) 63) (($ $ (-569)) 82 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) 59) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) 61)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1148 |#1| |#2|) (-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4295 ($ |#2|)) (-15 -2873 ($ $)) (-15 -2763 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4446 "*"))) (-6 -4433) |%noBranch|) (IF (|has| |#2| (-6 (-4446 "*"))) (IF (|has| |#2| (-6 -4441)) (-6 -4441) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-776) (-1055)) (T -1148))
-((-4295 (*1 *1 *2) (-12 (-5 *1 (-1148 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1055)))) (-2873 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1055)))) (-2763 (*1 *1 *2) (-12 (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1148 *3 *4)) (-14 *3 (-776)))))
-(-13 (-1129 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4295 ($ |#2|)) (-15 -2873 ($ $)) (-15 -2763 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4446 "*"))) (-6 -4433) |%noBranch|) (IF (|has| |#2| (-6 (-4446 "*"))) (IF (|has| |#2| (-6 -4441)) (-6 -4441) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
-((-2127 (($ $) 19)) (-2965 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2526 (((-112) $ $) 24)) (-2301 (($ $) 17)) (-1866 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1240 (-569))) NIL) (($ $ $) 31)) (-3793 (($ (-144)) 29) (((-867) $) NIL)))
-(((-1149 |#1|) (-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -1866 (|#1| |#1| |#1|)) (-15 -2965 (|#1| |#1| (-141))) (-15 -2965 (|#1| |#1| (-144))) (-15 -3793 (|#1| (-144))) (-15 -2526 ((-112) |#1| |#1|)) (-15 -2127 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -1866 ((-144) |#1| (-569))) (-15 -1866 ((-144) |#1| (-569) (-144)))) (-1150)) (T -1149))
-NIL
-(-10 -8 (-15 -3793 ((-867) |#1|)) (-15 -1866 (|#1| |#1| |#1|)) (-15 -2965 (|#1| |#1| (-141))) (-15 -2965 (|#1| |#1| (-144))) (-15 -3793 (|#1| (-144))) (-15 -2526 ((-112) |#1| |#1|)) (-15 -2127 (|#1| |#1|)) (-15 -2301 (|#1| |#1|)) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -1866 ((-144) |#1| (-569))) (-15 -1866 ((-144) |#1| (-569) (-144))))
-((-2415 (((-112) $ $) 19 (|has| (-144) (-1106)))) (-2038 (($ $) 121)) (-2127 (($ $) 122)) (-2965 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2504 (((-112) $ $) 119)) (-2484 (((-112) $ $ (-569)) 118)) (-3067 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-2031 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-3012 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4445))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4445))))) (-3355 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-2716 (((-112) $ (-776)) 8)) (-3940 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4445))) (((-144) $ (-1240 (-569)) (-144)) 59 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-1636 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-4380 (($ $) 91 (|has| $ (-6 -4445)))) (-2248 (($ $) 101)) (-3166 (($ $ (-1240 (-569)) $) 115)) (-3547 (($ $) 79 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ (-144) $) 78 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4444)))) (-3596 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4444))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4444)))) (-3843 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4445)))) (-3773 (((-144) $ (-569)) 52)) (-2526 (((-112) $ $) 120)) (-4034 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1106))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2880 (((-649 (-144)) $) 31 (|has| $ (-6 -4444)))) (-4295 (($ (-776) (-144)) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3377 (($ $ $) 88 (|has| (-144) (-855)))) (-2126 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-3040 (((-649 (-144)) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3969 (($ $ $) 87 (|has| (-144) (-855)))) (-4043 (((-112) $ $ (-144)) 116)) (-4146 (((-776) $ $ (-144)) 117)) (-3831 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2215 (($ $) 123)) (-2301 (($ $) 124)) (-2433 (((-112) $ (-776)) 10)) (-1647 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1550 (((-1165) $) 22 (|has| (-144) (-1106)))) (-4294 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21 (|has| (-144) (-1106)))) (-3510 (((-144) $) 43 (|has| (-569) (-855)))) (-3123 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4420 (($ $ (-144)) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3851 (((-649 (-144)) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1240 (-569))) 64) (($ $ $) 103)) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3558 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4444))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444))))) (-1938 (($ $ $ (-569)) 92 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3806 (($ (-649 (-144))) 71)) (-2441 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (($ (-144)) 112) (((-867) $) 18 (|has| (-144) (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| (-144) (-1106)))) (-3037 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2954 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2919 (((-112) $ $) 20 (|has| (-144) (-1106)))) (-2964 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2942 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1150) (-140)) (T -1150))
-((-2301 (*1 *1 *1) (-4 *1 (-1150))) (-2215 (*1 *1 *1) (-4 *1 (-1150))) (-2127 (*1 *1 *1) (-4 *1 (-1150))) (-2038 (*1 *1 *1) (-4 *1 (-1150))) (-2526 (*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))) (-2504 (*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))) (-2484 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-569)) (-5 *2 (-112)))) (-4146 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-776)))) (-4043 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3166 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1240 (-569))))) (-4034 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)))) (-4034 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)) (-5 *3 (-141)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1150)))) (-3067 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1150)))) (-3067 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1150)))) (-2965 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-2965 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-1647 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-1647 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-1636 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))) (-1636 (*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141)))) (-1866 (*1 *1 *1 *1) (-4 *1 (-1150))))
-(-13 (-19 (-144)) (-10 -8 (-15 -2301 ($ $)) (-15 -2215 ($ $)) (-15 -2127 ($ $)) (-15 -2038 ($ $)) (-15 -2526 ((-112) $ $)) (-15 -2504 ((-112) $ $)) (-15 -2484 ((-112) $ $ (-569))) (-15 -4146 ((-776) $ $ (-144))) (-15 -4043 ((-112) $ $ (-144))) (-15 -3166 ($ $ (-1240 (-569)) $)) (-15 -4034 ((-569) $ $ (-569))) (-15 -4034 ((-569) (-141) $ (-569))) (-15 -3793 ($ (-144))) (-15 -3067 ((-649 $) $ (-144))) (-15 -3067 ((-649 $) $ (-141))) (-15 -2965 ($ $ (-144))) (-15 -2965 ($ $ (-141))) (-15 -1647 ($ $ (-144))) (-15 -1647 ($ $ (-141))) (-15 -1636 ($ $ (-144))) (-15 -1636 ($ $ (-141))) (-15 -1866 ($ $ $))))
-(((-34) . T) ((-102) -2774 (|has| (-144) (-1106)) (|has| (-144) (-855))) ((-618 (-867)) -2774 (|has| (-144) (-1106)) (|has| (-144) (-855)) (|has| (-144) (-618 (-867)))) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-656 #0#) . T) ((-19 #0#) . T) ((-855) |has| (-144) (-855)) ((-1106) -2774 (|has| (-144) (-1106)) (|has| (-144) (-855))) ((-1223) . T))
-((-4334 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-776)) 112)) (-2115 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776)) 61)) (-2456 (((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-776)) 97)) (-2457 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-2211 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776)) 63) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776) (-112)) 65)) (-2307 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 85)) (-1408 (((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) 90)) (-1379 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|) 60)) (-2368 (((-776) (-649 |#4|) (-649 |#5|)) 21)))
-(((-1151 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2368 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -2457 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -1379 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4334 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-776))) (-15 -1408 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2456 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-776)))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3| |#4|)) (T -1151))
-((-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9)))) (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8))) (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1115 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165)) (-5 *1 (-1151 *4 *5 *6 *7 *8)))) (-4334 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3660 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3660 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9)) (-4 *11 (-1115 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1151 *7 *8 *9 *10 *11)))) (-2307 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-2307 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3)))) (-2211 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1151 *7 *8 *9 *3 *4)) (-4 *4 (-1115 *7 *8 *9 *3)))) (-2115 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-2115 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1071 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3)))) (-1379 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4)))))) (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))) (-2368 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2368 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -2457 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -1379 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2115 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5| (-776))) (-15 -2211 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) |#4| |#5|)) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2307 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4334 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))))) (-776))) (-15 -1408 ((-1165) (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|)))) (-15 -2456 ((-1278) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3660 |#5|))) (-776))))
-((-2415 (((-112) $ $) NIL)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) NIL)) (-3465 (((-649 $) (-649 |#4|)) 124) (((-649 $) (-649 |#4|) (-112)) 125) (((-649 $) (-649 |#4|) (-112) (-112)) 123) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1710 (((-649 |#3|) $) NIL)) (-2686 (((-112) $) NIL)) (-4276 (((-112) $) NIL (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2874 ((|#4| |#4| $) NIL)) (-2078 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| $) 97)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) 75)) (-4188 (($) NIL T CONST)) (-3584 (((-112) $) 29 (|has| |#1| (-561)))) (-3778 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2576 (((-112) $) NIL (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4374 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3148 (($ (-649 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 45)) (-2516 ((|#4| |#4| $) 78)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-1696 (($ |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3593 ((|#4| |#4| $) NIL)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) NIL)) (-2848 (((-112) |#4| $) NIL)) (-2634 (((-112) |#4| $) NIL)) (-2959 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1316 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 139)) (-2880 (((-649 |#4|) $) 18 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1873 ((|#3| $) 38)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#4|) $) 19 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-3831 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 23)) (-3097 (((-649 |#3|) $) NIL)) (-3116 (((-112) |#3| $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-3533 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-3425 (((-649 (-2 (|:| |val| |#4|) (|:| -3660 $))) |#4| |#4| $) 117)) (-1722 (((-3 |#4| "failed") $) 42)) (-3638 (((-649 $) |#4| $) 102)) (-2533 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-3736 (((-649 (-2 (|:| |val| (-112)) (|:| -3660 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-4333 (((-649 $) |#4| $) 121) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 122) (((-649 $) |#4| (-649 $)) NIL)) (-1442 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 134)) (-1551 (($ |#4| $) 88) (($ (-649 |#4|) $) 89) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1447 (((-649 |#4|) $) NIL)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2642 ((|#4| |#4| $) NIL)) (-1672 (((-112) $ $) NIL)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2765 ((|#4| |#4| $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-3 |#4| "failed") $) 40)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3124 (((-3 $ "failed") $ |#4|) 59)) (-2907 (($ $ |#4|) NIL) (((-649 $) |#4| $) 104) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 99)) (-2911 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 17)) (-3597 (($) 14)) (-3868 (((-776) $) NIL)) (-3558 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) 13)) (-1408 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 22)) (-2792 (($ $ |#3|) 52)) (-3013 (($ $ |#3|) 54)) (-2408 (($ $) NIL)) (-2900 (($ $ |#3|) NIL)) (-3793 (((-867) $) 35) (((-649 |#4|) $) 46)) (-3023 (((-776) $) NIL (|has| |#3| (-372)))) (-1441 (((-112) $ $) NIL)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-3304 (((-649 $) |#4| $) 66) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-3037 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) NIL)) (-2743 (((-112) |#4| $) NIL)) (-2133 (((-112) |#3| $) 74)) (-2919 (((-112) $ $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1152 |#1| |#2| |#3| |#4|) (-13 (-1115 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1551 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1442 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1316 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1152))
-((-1551 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *3))) (-5 *1 (-1152 *5 *6 *7 *3)) (-4 *3 (-1071 *5 *6 *7)))) (-3465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-3465 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-1442 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))) (-1316 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1152 *5 *6 *7 *8))))) (-5 *1 (-1152 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
-(-13 (-1115 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1551 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -3465 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1442 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1316 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3307 ((|#1| $) 37)) (-2362 (($ (-649 |#1|)) 45)) (-2716 (((-112) $ (-776)) NIL)) (-4188 (($) NIL T CONST)) (-3529 ((|#1| |#1| $) 40)) (-3410 ((|#1| $) 35)) (-2880 (((-649 |#1|) $) 18 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 22)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1640 ((|#1| $) 38)) (-3813 (($ |#1| $) 41)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1764 ((|#1| $) 36)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 32)) (-3597 (($) 43)) (-2802 (((-776) $) 30)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 27)) (-3793 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4209 (($ (-649 |#1|)) NIL)) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 17 (|has| |#1| (-1106)))) (-2426 (((-776) $) 31 (|has| $ (-6 -4444)))))
-(((-1153 |#1|) (-13 (-1127 |#1|) (-10 -8 (-15 -2362 ($ (-649 |#1|))))) (-1223)) (T -1153))
-((-2362 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1153 *3)))))
-(-13 (-1127 |#1|) (-10 -8 (-15 -2362 ($ (-649 |#1|)))))
-((-3940 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1240 (-569)) |#2|) 55) ((|#2| $ (-569) |#2|) 52)) (-1677 (((-112) $) 12)) (-3831 (($ (-1 |#2| |#2|) $) 50)) (-3510 ((|#2| $) NIL) (($ $ (-776)) 20)) (-4420 (($ $ |#2|) 51)) (-1807 (((-112) $) 11)) (-1866 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1240 (-569))) 38) ((|#2| $ (-569)) 29) ((|#2| $ (-569) |#2|) NIL)) (-1621 (($ $ $) 58) (($ $ |#2|) NIL)) (-2441 (($ $ $) 40) (($ |#2| $) NIL) (($ (-649 $)) 47) (($ $ |#2|) NIL)))
-(((-1154 |#1| |#2|) (-10 -8 (-15 -1677 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -3940 (|#2| |#1| (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569))) (-15 -4420 (|#1| |#1| |#2|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -2441 (|#1| (-649 |#1|))) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -3940 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -3940 (|#2| |#1| "last" |#2|)) (-15 -3940 (|#1| |#1| "rest" |#1|)) (-15 -3940 (|#2| |#1| "first" |#2|)) (-15 -1621 (|#1| |#1| |#2|)) (-15 -1621 (|#1| |#1| |#1|)) (-15 -1866 (|#2| |#1| "last")) (-15 -1866 (|#1| |#1| "rest")) (-15 -3510 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -1866 (|#2| |#1| "value")) (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|))) (-1155 |#2|) (-1223)) (T -1154))
-NIL
-(-10 -8 (-15 -1677 ((-112) |#1|)) (-15 -1807 ((-112) |#1|)) (-15 -3940 (|#2| |#1| (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569) |#2|)) (-15 -1866 (|#2| |#1| (-569))) (-15 -4420 (|#1| |#1| |#2|)) (-15 -2441 (|#1| |#1| |#2|)) (-15 -2441 (|#1| (-649 |#1|))) (-15 -1866 (|#1| |#1| (-1240 (-569)))) (-15 -3940 (|#2| |#1| (-1240 (-569)) |#2|)) (-15 -3940 (|#2| |#1| "last" |#2|)) (-15 -3940 (|#1| |#1| "rest" |#1|)) (-15 -3940 (|#2| |#1| "first" |#2|)) (-15 -1621 (|#1| |#1| |#2|)) (-15 -1621 (|#1| |#1| |#1|)) (-15 -1866 (|#2| |#1| "last")) (-15 -1866 (|#1| |#1| "rest")) (-15 -3510 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -1866 (|#2| |#1| "value")) (-15 -3831 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-2561 ((|#1| $) 66)) (-1566 (($ $) 68)) (-4321 (((-1278) $ (-569) (-569)) 98 (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) 53 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-4382 (($ $ $) 57 (|has| $ (-6 -4445)))) (-1716 ((|#1| $ |#1|) 55 (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) 59 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4445))) (($ $ "rest" $) 56 (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 118 (|has| $ (-6 -4445))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4444)))) (-2548 ((|#1| $) 67)) (-4188 (($) 7 T CONST)) (-3522 (($ $) 74) (($ $ (-776)) 72)) (-3547 (($ $) 100 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4444))) (($ |#1| $) 101 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3843 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 88)) (-1677 (((-112) $) 84)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-4295 (($ (-776) |#1|) 109)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 96 (|has| (-569) (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 95 (|has| (-569) (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2433 (((-112) $ (-776)) 10)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1722 ((|#1| $) 71) (($ $ (-776)) 69)) (-4294 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1755 (((-649 (-569)) $) 93)) (-3748 (((-112) (-569) $) 92)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 77) (($ $ (-776)) 75)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4420 (($ $ |#1|) 97 (|has| $ (-6 -4445)))) (-1807 (((-112) $) 85)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 91)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1240 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-3947 (((-569) $ $) 45)) (-4325 (($ $ (-1240 (-569))) 115) (($ $ (-569)) 114)) (-2102 (((-112) $) 47)) (-1750 (($ $) 63)) (-1497 (($ $) 60 (|has| $ (-6 -4445)))) (-3754 (((-776) $) 64)) (-3866 (($ $) 65)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1408 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 108)) (-1621 (($ $ $) 62 (|has| $ (-6 -4445))) (($ $ |#1|) 61 (|has| $ (-6 -4445)))) (-2441 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1155 |#1|) (-140) (-1223)) (T -1155))
-((-1807 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
-(-13 (-1261 |t#1|) (-656 |t#1|) (-10 -8 (-15 -1807 ((-112) $)) (-15 -1677 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T) ((-1261 |#1|) . T))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4321 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#2| $ |#1| |#2|) NIL)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) NIL)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) NIL)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) NIL)) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 ((|#1| $) NIL (|has| |#1| (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 ((|#1| $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2796 (((-649 |#1|) $) NIL)) (-3937 (((-112) |#1| $) NIL)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1755 (((-649 |#1|) $) NIL)) (-3748 (((-112) |#1| $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#2| $) NIL (|has| |#1| (-855)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1156 |#1| |#2| |#3|) (-1199 |#1| |#2|) (-1106) (-1106) |#2|) (T -1156))
-NIL
-(-1199 |#1| |#2|)
-((-2415 (((-112) $ $) NIL)) (-3922 (((-696 (-1141)) $) 27)) (-3758 (((-1141) $) 15)) (-4031 (((-1141) $) 17)) (-1550 (((-1165) $) NIL)) (-4154 (((-511) $) 13)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 37) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1157) (-13 (-1089) (-10 -8 (-15 -4154 ((-511) $)) (-15 -4031 ((-1141) $)) (-15 -3922 ((-696 (-1141)) $)) (-15 -3758 ((-1141) $))))) (T -1157))
-((-4154 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1157)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-696 (-1141))) (-5 *1 (-1157)))) (-3758 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))))
-(-13 (-1089) (-10 -8 (-15 -4154 ((-511) $)) (-15 -4031 ((-1141) $)) (-15 -3922 ((-696 (-1141)) $)) (-15 -3758 ((-1141) $))))
-((-2415 (((-112) $ $) 7)) (-3812 (((-3 $ "failed") $) 14)) (-1550 (((-1165) $) 10)) (-2305 (($) 15 T CONST)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-2919 (((-112) $ $) 6)))
-(((-1158) (-140)) (T -1158))
-((-2305 (*1 *1) (-4 *1 (-1158))) (-3812 (*1 *1 *1) (|partial| -4 *1 (-1158))))
-(-13 (-1106) (-10 -8 (-15 -2305 ($) -3706) (-15 -3812 ((-3 $ "failed") $))))
-(((-102) . T) ((-618 (-867)) . T) ((-1106) . T))
-((-3255 (((-1163 |#1|) (-1163 |#1|)) 17)) (-4266 (((-1163 |#1|) (-1163 |#1|)) 13)) (-3389 (((-1163 |#1|) (-1163 |#1|) (-569) (-569)) 20)) (-3137 (((-1163 |#1|) (-1163 |#1|)) 15)))
-(((-1159 |#1|) (-10 -7 (-15 -4266 ((-1163 |#1|) (-1163 |#1|))) (-15 -3137 ((-1163 |#1|) (-1163 |#1|))) (-15 -3255 ((-1163 |#1|) (-1163 |#1|))) (-15 -3389 ((-1163 |#1|) (-1163 |#1|) (-569) (-569)))) (-13 (-561) (-147))) (T -1159))
-((-3389 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1159 *4)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1159 *3)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1159 *3)))) (-4266 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1159 *3)))))
-(-10 -7 (-15 -4266 ((-1163 |#1|) (-1163 |#1|))) (-15 -3137 ((-1163 |#1|) (-1163 |#1|))) (-15 -3255 ((-1163 |#1|) (-1163 |#1|))) (-15 -3389 ((-1163 |#1|) (-1163 |#1|) (-569) (-569))))
-((-2441 (((-1163 |#1|) (-1163 (-1163 |#1|))) 15)))
-(((-1160 |#1|) (-10 -7 (-15 -2441 ((-1163 |#1|) (-1163 (-1163 |#1|))))) (-1223)) (T -1160))
-((-2441 (*1 *2 *3) (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1160 *4)) (-4 *4 (-1223)))))
-(-10 -7 (-15 -2441 ((-1163 |#1|) (-1163 (-1163 |#1|)))))
-((-4085 (((-1163 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|)) 25)) (-3596 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|)) 26)) (-1344 (((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|)) 16)))
-(((-1161 |#1| |#2|) (-10 -7 (-15 -1344 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|))) (-15 -4085 ((-1163 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|))) (-15 -3596 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|)))) (-1223) (-1223)) (T -1161))
-((-3596 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1163 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-1161 *5 *2)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1163 *6)) (-4 *6 (-1223)) (-4 *3 (-1223)) (-5 *2 (-1163 *3)) (-5 *1 (-1161 *6 *3)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6)))))
-(-10 -7 (-15 -1344 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|))) (-15 -4085 ((-1163 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|))) (-15 -3596 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1163 |#1|))))
-((-1344 (((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-1163 |#2|)) 21)))
-(((-1162 |#1| |#2| |#3|) (-10 -7 (-15 -1344 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-1163 |#2|)))) (-1223) (-1223) (-1223)) (T -1162))
-((-1344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-1163 *7)) (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8)) (-5 *1 (-1162 *6 *7 *8)))))
-(-10 -7 (-15 -1344 ((-1163 |#3|) (-1 |#3| |#1| |#2|) (-1163 |#1|) (-1163 |#2|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) NIL)) (-2561 ((|#1| $) NIL)) (-1566 (($ $) 67)) (-4321 (((-1278) $ (-569) (-569)) 99 (|has| $ (-6 -4445)))) (-1613 (($ $ (-569)) 129 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3626 (((-867) $) 56 (|has| |#1| (-1106)))) (-3505 (((-112)) 55 (|has| |#1| (-1106)))) (-1660 ((|#1| $ |#1|) NIL (|has| $ (-6 -4445)))) (-4382 (($ $ $) 116 (|has| $ (-6 -4445))) (($ $ (-569) $) 142)) (-1716 ((|#1| $ |#1|) 126 (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) 121 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4445))) (($ $ "rest" $) 125 (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 113 (|has| $ (-6 -4445))) ((|#1| $ (-569) |#1|) 77 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 80)) (-2548 ((|#1| $) NIL)) (-4188 (($) NIL T CONST)) (-2143 (($ $) 14)) (-3522 (($ $) 42) (($ $ (-776)) 111)) (-2657 (((-112) (-649 |#1|) $) 135 (|has| |#1| (-1106)))) (-2779 (($ (-649 |#1|)) 131)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) 79)) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-1677 (((-112) $) NIL)) (-2880 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1867 (((-1278) (-569) $) 141 (|has| |#1| (-1106)))) (-2044 (((-776) $) 138)) (-4035 (((-649 $) $) NIL)) (-3759 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2433 (((-112) $ (-776)) NIL)) (-2273 (((-649 |#1|) $) NIL)) (-2703 (((-112) $) NIL)) (-2336 (($ $) 114)) (-4363 (((-112) $) 13)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1722 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4294 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) 96)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-1338 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2239 ((|#1| $) 10)) (-3510 ((|#1| $) 41) (($ $ (-776)) 65)) (-2540 (((-2 (|:| |cycle?| (-112)) (|:| -4311 (-776)) (|:| |period| (-776))) (-776) $) 36)) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1389 (($ (-1 (-112) |#1|) $) 146)) (-1401 (($ (-1 (-112) |#1|) $) 147)) (-4420 (($ $ |#1|) 90 (|has| $ (-6 -4445)))) (-2907 (($ $ (-569)) 45)) (-1807 (((-112) $) 94)) (-1348 (((-112) $) 12)) (-1474 (((-112) $) 137)) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 30)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) 20)) (-3597 (($) 60)) (-1866 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1240 (-569))) NIL) ((|#1| $ (-569)) 75) ((|#1| $ (-569) |#1|) NIL)) (-3947 (((-569) $ $) 64)) (-4325 (($ $ (-1240 (-569))) NIL) (($ $ (-569)) NIL)) (-2440 (($ (-1 $)) 63)) (-2102 (((-112) $) 91)) (-1750 (($ $) 92)) (-1497 (($ $) 117 (|has| $ (-6 -4445)))) (-3754 (((-776) $) NIL)) (-3866 (($ $) NIL)) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 59)) (-1408 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 73)) (-3745 (($ |#1| $) 115)) (-1621 (($ $ $) 119 (|has| $ (-6 -4445))) (($ $ |#1|) 120 (|has| $ (-6 -4445)))) (-2441 (($ $ $) 101) (($ |#1| $) 61) (($ (-649 $)) 106) (($ $ |#1|) 100)) (-4005 (($ $) 66)) (-3793 (($ (-649 |#1|)) 130) (((-867) $) 57 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) NIL)) (-3860 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 133 (|has| |#1| (-1106)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1163 |#1|) (-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4445) (-15 -2779 ($ (-649 |#1|))) (IF (|has| |#1| (-1106)) (-15 -2657 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -2540 ((-2 (|:| |cycle?| (-112)) (|:| -4311 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -2440 ($ (-1 $))) (-15 -3745 ($ |#1| $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -1867 ((-1278) (-569) $)) (-15 -3626 ((-867) $)) (-15 -3505 ((-112)))) |%noBranch|) (-15 -4382 ($ $ (-569) $)) (-15 -1338 ($ (-1 |#1|))) (-15 -1338 ($ (-1 |#1| |#1|) |#1|)) (-15 -1389 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)))) (-1223)) (T -1163))
-((-2779 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-2657 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-4 *4 (-1223)) (-5 *2 (-112)) (-5 *1 (-1163 *4)))) (-2540 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4311 (-776)) (|:| |period| (-776)))) (-5 *1 (-1163 *4)) (-4 *4 (-1223)) (-5 *3 (-776)))) (-2440 (*1 *1 *2) (-12 (-5 *2 (-1 (-1163 *3))) (-5 *1 (-1163 *3)) (-4 *3 (-1223)))) (-3745 (*1 *1 *2 *1) (-12 (-5 *1 (-1163 *2)) (-4 *2 (-1223)))) (-1867 (*1 *2 *3 *1) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1163 *4)) (-4 *4 (-1106)) (-4 *4 (-1223)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1163 *3)) (-4 *3 (-1106)) (-4 *3 (-1223)))) (-3505 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3)) (-4 *3 (-1106)) (-4 *3 (-1223)))) (-4382 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1163 *3)) (-4 *3 (-1223)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-1338 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))) (-1401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
-(-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4445) (-15 -2779 ($ (-649 |#1|))) (IF (|has| |#1| (-1106)) (-15 -2657 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -2540 ((-2 (|:| |cycle?| (-112)) (|:| -4311 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -2440 ($ (-1 $))) (-15 -3745 ($ |#1| $)) (IF (|has| |#1| (-1106)) (PROGN (-15 -1867 ((-1278) (-569) $)) (-15 -3626 ((-867) $)) (-15 -3505 ((-112)))) |%noBranch|) (-15 -4382 ($ $ (-569) $)) (-15 -1338 ($ (-1 |#1|))) (-15 -1338 ($ (-1 |#1| |#1|) |#1|)) (-15 -1389 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $))))
-((-2415 (((-112) $ $) 19)) (-2038 (($ $) 121)) (-2127 (($ $) 122)) (-2965 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2504 (((-112) $ $) 119)) (-2484 (((-112) $ $ (-569)) 118)) (-3387 (($ (-569)) 128)) (-3067 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-2031 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-3012 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4445))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4445))))) (-3355 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-2716 (((-112) $ (-776)) 8)) (-3940 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4445))) (((-144) $ (-1240 (-569)) (-144)) 59 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-1636 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-4380 (($ $) 91 (|has| $ (-6 -4445)))) (-2248 (($ $) 101)) (-3166 (($ $ (-1240 (-569)) $) 115)) (-3547 (($ $) 79 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ (-144) $) 78 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4444)))) (-3596 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4444))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4444)))) (-3843 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4445)))) (-3773 (((-144) $ (-569)) 52)) (-2526 (((-112) $ $) 120)) (-4034 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1106))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2880 (((-649 (-144)) $) 31 (|has| $ (-6 -4444)))) (-4295 (($ (-776) (-144)) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3377 (($ $ $) 88 (|has| (-144) (-855)))) (-2126 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-3040 (((-649 (-144)) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3969 (($ $ $) 87 (|has| (-144) (-855)))) (-4043 (((-112) $ $ (-144)) 116)) (-4146 (((-776) $ $ (-144)) 117)) (-3831 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2215 (($ $) 123)) (-2301 (($ $) 124)) (-2433 (((-112) $ (-776)) 10)) (-1647 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1550 (((-1165) $) 22)) (-4294 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21)) (-3510 (((-144) $) 43 (|has| (-569) (-855)))) (-3123 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4420 (($ $ (-144)) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3851 (((-649 (-144)) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1240 (-569))) 64) (($ $ $) 103)) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3558 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4444))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1106)) (|has| $ (-6 -4444))))) (-1938 (($ $ $ (-569)) 92 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3806 (($ (-649 (-144))) 71)) (-2441 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (($ (-144)) 112) (((-867) $) 18)) (-1441 (((-112) $ $) 23)) (-3037 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4444)))) (-4195 (((-1165) $) 132) (((-1165) $ (-112)) 131) (((-1278) (-827) $) 130) (((-1278) (-827) $ (-112)) 129)) (-2976 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2954 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2919 (((-112) $ $) 20)) (-2964 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2942 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1164) (-140)) (T -1164))
-((-3387 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1164)))))
-(-13 (-1150) (-1106) (-833) (-10 -8 (-15 -3387 ($ (-569)))))
-(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))) ((-656 #0#) . T) ((-19 #0#) . T) ((-833) . T) ((-855) |has| (-144) (-855)) ((-1106) . T) ((-1150) . T) ((-1223) . T))
-((-2415 (((-112) $ $) NIL)) (-2038 (($ $) NIL)) (-2127 (($ $) NIL)) (-2965 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2504 (((-112) $ $) NIL)) (-2484 (((-112) $ $ (-569)) NIL)) (-3387 (($ (-569)) 8)) (-3067 (((-649 $) $ (-144)) NIL) (((-649 $) $ (-141)) NIL)) (-2031 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-3012 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| (-144) (-855))))) (-3355 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4445))) (((-144) $ (-1240 (-569)) (-144)) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-1636 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3166 (($ $ (-1240 (-569)) $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-1696 (($ (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4444))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4444)))) (-3843 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4445)))) (-3773 (((-144) $ (-569)) NIL)) (-2526 (((-112) $ $) NIL)) (-4034 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1106))) (((-569) (-144) $ (-569)) NIL (|has| (-144) (-1106))) (((-569) $ $ (-569)) NIL) (((-569) (-141) $ (-569)) NIL)) (-2880 (((-649 (-144)) $) NIL (|has| $ (-6 -4444)))) (-4295 (($ (-776) (-144)) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| (-144) (-855)))) (-2126 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-3040 (((-649 (-144)) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-1535 (((-569) $) NIL (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| (-144) (-855)))) (-4043 (((-112) $ $ (-144)) NIL)) (-4146 (((-776) $ $ (-144)) NIL)) (-3831 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2215 (($ $) NIL)) (-2301 (($ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1647 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1550 (((-1165) $) NIL)) (-4294 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-144) $) NIL (|has| (-569) (-855)))) (-3123 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4420 (($ $ (-144)) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-3851 (((-649 (-144)) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1240 (-569))) NIL) (($ $ $) NIL)) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3558 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-144) (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3806 (($ (-649 (-144))) NIL)) (-2441 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (($ (-144)) NIL) (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-3037 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4444)))) (-4195 (((-1165) $) 19) (((-1165) $ (-112)) 21) (((-1278) (-827) $) 22) (((-1278) (-827) $ (-112)) 23)) (-2976 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2954 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2942 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1165) (-1164)) (T -1165))
-NIL
-(-1164)
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL)) (-4321 (((-1278) $ (-1165) (-1165)) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-1165) |#1|) NIL)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#1| "failed") (-1165) $) NIL)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#1| "failed") (-1165) $) NIL)) (-1696 (($ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-1165) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-1165)) NIL)) (-2880 (((-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3040 (((-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-1165) $) NIL (|has| (-1165) (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-2796 (((-649 (-1165)) $) NIL)) (-3937 (((-112) (-1165) $) NIL)) (-1640 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL)) (-1755 (((-649 (-1165)) $) NIL)) (-3748 (((-112) (-1165) $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-3510 ((|#1| $) NIL (|has| (-1165) (-855)))) (-3123 (((-3 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) "failed") (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ $ (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL (-12 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-312 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-1165)) NIL) ((|#1| $ (-1165) |#1|) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-618 (-867))) (|has| |#1| (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 (-1165)) (|:| -2214 |#1|)) (-1106)) (|has| |#1| (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1166 |#1|) (-13 (-1199 (-1165) |#1|) (-10 -7 (-6 -4444))) (-1106)) (T -1166))
-NIL
-(-13 (-1199 (-1165) |#1|) (-10 -7 (-6 -4444)))
-((-4218 (((-1163 |#1|) (-1163 |#1|)) 84)) (-2888 (((-3 (-1163 |#1|) "failed") (-1163 |#1|)) 42)) (-1569 (((-1163 |#1|) (-412 (-569)) (-1163 |#1|)) 136 (|has| |#1| (-38 (-412 (-569)))))) (-3830 (((-1163 |#1|) |#1| (-1163 |#1|)) 142 (|has| |#1| (-367)))) (-3319 (((-1163 |#1|) (-1163 |#1|)) 99)) (-1929 (((-1163 (-569)) (-569)) 64)) (-1459 (((-1163 |#1|) (-1163 (-1163 |#1|))) 118 (|has| |#1| (-38 (-412 (-569)))))) (-4089 (((-1163 |#1|) (-569) (-569) (-1163 |#1|)) 104)) (-3345 (((-1163 |#1|) |#1| (-569)) 54)) (-2021 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 67)) (-1695 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 139 (|has| |#1| (-367)))) (-1332 (((-1163 |#1|) |#1| (-1 (-1163 |#1|))) 117 (|has| |#1| (-38 (-412 (-569)))))) (-1823 (((-1163 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1163 |#1|))) 140 (|has| |#1| (-367)))) (-3445 (((-1163 |#1|) (-1163 |#1|)) 98)) (-3569 (((-1163 |#1|) (-1163 |#1|)) 83)) (-3974 (((-1163 |#1|) (-569) (-569) (-1163 |#1|)) 105)) (-2488 (((-1163 |#1|) |#1| (-1163 |#1|)) 114 (|has| |#1| (-38 (-412 (-569)))))) (-3000 (((-1163 (-569)) (-569)) 63)) (-3802 (((-1163 |#1|) |#1|) 66)) (-3079 (((-1163 |#1|) (-1163 |#1|) (-569) (-569)) 101)) (-2218 (((-1163 |#1|) (-1 |#1| (-569)) (-1163 |#1|)) 73)) (-2405 (((-3 (-1163 |#1|) "failed") (-1163 |#1|) (-1163 |#1|)) 40)) (-3200 (((-1163 |#1|) (-1163 |#1|)) 100)) (-1723 (((-1163 |#1|) (-1163 |#1|) |#1|) 78)) (-2121 (((-1163 |#1|) (-1163 |#1|)) 69)) (-2314 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 79)) (-3793 (((-1163 |#1|) |#1|) 74)) (-2409 (((-1163 |#1|) (-1163 (-1163 |#1|))) 89)) (-3032 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 41)) (-3021 (((-1163 |#1|) (-1163 |#1|)) 21) (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 23)) (-3009 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 17)) (* (((-1163 |#1|) (-1163 |#1|) |#1|) 29) (((-1163 |#1|) |#1| (-1163 |#1|)) 26) (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 27)))
-(((-1167 |#1|) (-10 -7 (-15 -3009 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3021 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3021 ((-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -2405 ((-3 (-1163 |#1|) "failed") (-1163 |#1|) (-1163 |#1|))) (-15 -3032 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2888 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -3345 ((-1163 |#1|) |#1| (-569))) (-15 -3000 ((-1163 (-569)) (-569))) (-15 -1929 ((-1163 (-569)) (-569))) (-15 -3802 ((-1163 |#1|) |#1|)) (-15 -2021 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2121 ((-1163 |#1|) (-1163 |#1|))) (-15 -2218 ((-1163 |#1|) (-1 |#1| (-569)) (-1163 |#1|))) (-15 -3793 ((-1163 |#1|) |#1|)) (-15 -1723 ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -2314 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3569 ((-1163 |#1|) (-1163 |#1|))) (-15 -4218 ((-1163 |#1|) (-1163 |#1|))) (-15 -2409 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -3445 ((-1163 |#1|) (-1163 |#1|))) (-15 -3319 ((-1163 |#1|) (-1163 |#1|))) (-15 -3200 ((-1163 |#1|) (-1163 |#1|))) (-15 -3079 ((-1163 |#1|) (-1163 |#1|) (-569) (-569))) (-15 -4089 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (-15 -3974 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 -1332 ((-1163 |#1|) |#1| (-1 (-1163 |#1|)))) (-15 -1459 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -1569 ((-1163 |#1|) (-412 (-569)) (-1163 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -1695 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -1823 ((-1163 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1163 |#1|)))) (-15 -3830 ((-1163 |#1|) |#1| (-1163 |#1|)))) |%noBranch|)) (-1055)) (T -1167))
-((-3830 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-1823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1163 *4))) (-4 *4 (-367)) (-4 *4 (-1055)) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)))) (-1695 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1055)) (-5 *3 (-412 (-569))) (-5 *1 (-1167 *4)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))) (-1332 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1163 *3))) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))) (-2488 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3974 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-4089 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-3079 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3319 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)) (-4 *4 (-1055)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3569 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2314 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-1723 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-2218 (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1055)) (-5 *1 (-1167 *4)))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2021 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3802 (*1 *2 *3) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-1929 (*1 *2 *3) (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055)) (-5 *3 (-569)))) (-3000 (*1 *2 *3) (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055)) (-5 *3 (-569)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))) (-2888 (*1 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3032 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-2405 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3021 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))) (-3009 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(-10 -7 (-15 -3009 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3021 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3021 ((-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 * ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 * ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -2405 ((-3 (-1163 |#1|) "failed") (-1163 |#1|) (-1163 |#1|))) (-15 -3032 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2888 ((-3 (-1163 |#1|) "failed") (-1163 |#1|))) (-15 -3345 ((-1163 |#1|) |#1| (-569))) (-15 -3000 ((-1163 (-569)) (-569))) (-15 -1929 ((-1163 (-569)) (-569))) (-15 -3802 ((-1163 |#1|) |#1|)) (-15 -2021 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2121 ((-1163 |#1|) (-1163 |#1|))) (-15 -2218 ((-1163 |#1|) (-1 |#1| (-569)) (-1163 |#1|))) (-15 -3793 ((-1163 |#1|) |#1|)) (-15 -1723 ((-1163 |#1|) (-1163 |#1|) |#1|)) (-15 -2314 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3569 ((-1163 |#1|) (-1163 |#1|))) (-15 -4218 ((-1163 |#1|) (-1163 |#1|))) (-15 -2409 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -3445 ((-1163 |#1|) (-1163 |#1|))) (-15 -3319 ((-1163 |#1|) (-1163 |#1|))) (-15 -3200 ((-1163 |#1|) (-1163 |#1|))) (-15 -3079 ((-1163 |#1|) (-1163 |#1|) (-569) (-569))) (-15 -4089 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (-15 -3974 ((-1163 |#1|) (-569) (-569) (-1163 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ((-1163 |#1|) |#1| (-1163 |#1|))) (-15 -1332 ((-1163 |#1|) |#1| (-1 (-1163 |#1|)))) (-15 -1459 ((-1163 |#1|) (-1163 (-1163 |#1|)))) (-15 -1569 ((-1163 |#1|) (-412 (-569)) (-1163 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -1695 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -1823 ((-1163 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1163 |#1|)))) (-15 -3830 ((-1163 |#1|) |#1| (-1163 |#1|)))) |%noBranch|))
-((-2769 (((-1163 |#1|) (-1163 |#1|)) 60)) (-2624 (((-1163 |#1|) (-1163 |#1|)) 42)) (-2744 (((-1163 |#1|) (-1163 |#1|)) 56)) (-2600 (((-1163 |#1|) (-1163 |#1|)) 38)) (-4114 (((-1163 |#1|) (-1163 |#1|)) 63)) (-2645 (((-1163 |#1|) (-1163 |#1|)) 45)) (-2660 (((-1163 |#1|) (-1163 |#1|)) 34)) (-4386 (((-1163 |#1|) (-1163 |#1|)) 29)) (-4124 (((-1163 |#1|) (-1163 |#1|)) 64)) (-2659 (((-1163 |#1|) (-1163 |#1|)) 46)) (-2781 (((-1163 |#1|) (-1163 |#1|)) 61)) (-2632 (((-1163 |#1|) (-1163 |#1|)) 43)) (-2756 (((-1163 |#1|) (-1163 |#1|)) 58)) (-2609 (((-1163 |#1|) (-1163 |#1|)) 40)) (-4161 (((-1163 |#1|) (-1163 |#1|)) 68)) (-2699 (((-1163 |#1|) (-1163 |#1|)) 50)) (-4133 (((-1163 |#1|) (-1163 |#1|)) 66)) (-2673 (((-1163 |#1|) (-1163 |#1|)) 48)) (-4182 (((-1163 |#1|) (-1163 |#1|)) 71)) (-2721 (((-1163 |#1|) (-1163 |#1|)) 53)) (-1501 (((-1163 |#1|) (-1163 |#1|)) 72)) (-2732 (((-1163 |#1|) (-1163 |#1|)) 54)) (-4170 (((-1163 |#1|) (-1163 |#1|)) 70)) (-2710 (((-1163 |#1|) (-1163 |#1|)) 52)) (-4147 (((-1163 |#1|) (-1163 |#1|)) 69)) (-2687 (((-1163 |#1|) (-1163 |#1|)) 51)) (** (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 36)))
-(((-1168 |#1|) (-10 -7 (-15 -4386 ((-1163 |#1|) (-1163 |#1|))) (-15 -2660 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2600 ((-1163 |#1|) (-1163 |#1|))) (-15 -2609 ((-1163 |#1|) (-1163 |#1|))) (-15 -2624 ((-1163 |#1|) (-1163 |#1|))) (-15 -2632 ((-1163 |#1|) (-1163 |#1|))) (-15 -2645 ((-1163 |#1|) (-1163 |#1|))) (-15 -2659 ((-1163 |#1|) (-1163 |#1|))) (-15 -2673 ((-1163 |#1|) (-1163 |#1|))) (-15 -2687 ((-1163 |#1|) (-1163 |#1|))) (-15 -2699 ((-1163 |#1|) (-1163 |#1|))) (-15 -2710 ((-1163 |#1|) (-1163 |#1|))) (-15 -2721 ((-1163 |#1|) (-1163 |#1|))) (-15 -2732 ((-1163 |#1|) (-1163 |#1|))) (-15 -2744 ((-1163 |#1|) (-1163 |#1|))) (-15 -2756 ((-1163 |#1|) (-1163 |#1|))) (-15 -2769 ((-1163 |#1|) (-1163 |#1|))) (-15 -2781 ((-1163 |#1|) (-1163 |#1|))) (-15 -4114 ((-1163 |#1|) (-1163 |#1|))) (-15 -4124 ((-1163 |#1|) (-1163 |#1|))) (-15 -4133 ((-1163 |#1|) (-1163 |#1|))) (-15 -4147 ((-1163 |#1|) (-1163 |#1|))) (-15 -4161 ((-1163 |#1|) (-1163 |#1|))) (-15 -4170 ((-1163 |#1|) (-1163 |#1|))) (-15 -4182 ((-1163 |#1|) (-1163 |#1|))) (-15 -1501 ((-1163 |#1|) (-1163 |#1|)))) (-38 (-412 (-569)))) (T -1168))
-((-1501 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2721 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2687 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2645 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2632 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1168 *3)))))
-(-10 -7 (-15 -4386 ((-1163 |#1|) (-1163 |#1|))) (-15 -2660 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -2600 ((-1163 |#1|) (-1163 |#1|))) (-15 -2609 ((-1163 |#1|) (-1163 |#1|))) (-15 -2624 ((-1163 |#1|) (-1163 |#1|))) (-15 -2632 ((-1163 |#1|) (-1163 |#1|))) (-15 -2645 ((-1163 |#1|) (-1163 |#1|))) (-15 -2659 ((-1163 |#1|) (-1163 |#1|))) (-15 -2673 ((-1163 |#1|) (-1163 |#1|))) (-15 -2687 ((-1163 |#1|) (-1163 |#1|))) (-15 -2699 ((-1163 |#1|) (-1163 |#1|))) (-15 -2710 ((-1163 |#1|) (-1163 |#1|))) (-15 -2721 ((-1163 |#1|) (-1163 |#1|))) (-15 -2732 ((-1163 |#1|) (-1163 |#1|))) (-15 -2744 ((-1163 |#1|) (-1163 |#1|))) (-15 -2756 ((-1163 |#1|) (-1163 |#1|))) (-15 -2769 ((-1163 |#1|) (-1163 |#1|))) (-15 -2781 ((-1163 |#1|) (-1163 |#1|))) (-15 -4114 ((-1163 |#1|) (-1163 |#1|))) (-15 -4124 ((-1163 |#1|) (-1163 |#1|))) (-15 -4133 ((-1163 |#1|) (-1163 |#1|))) (-15 -4147 ((-1163 |#1|) (-1163 |#1|))) (-15 -4161 ((-1163 |#1|) (-1163 |#1|))) (-15 -4170 ((-1163 |#1|) (-1163 |#1|))) (-15 -4182 ((-1163 |#1|) (-1163 |#1|))) (-15 -1501 ((-1163 |#1|) (-1163 |#1|))))
-((-2769 (((-1163 |#1|) (-1163 |#1|)) 107)) (-2624 (((-1163 |#1|) (-1163 |#1|)) 61)) (-4037 (((-2 (|:| -2744 (-1163 |#1|)) (|:| -2756 (-1163 |#1|))) (-1163 |#1|)) 103)) (-2744 (((-1163 |#1|) (-1163 |#1|)) 104)) (-3939 (((-2 (|:| -2600 (-1163 |#1|)) (|:| -2609 (-1163 |#1|))) (-1163 |#1|)) 54)) (-2600 (((-1163 |#1|) (-1163 |#1|)) 55)) (-4114 (((-1163 |#1|) (-1163 |#1|)) 109)) (-2645 (((-1163 |#1|) (-1163 |#1|)) 68)) (-2660 (((-1163 |#1|) (-1163 |#1|)) 40)) (-4386 (((-1163 |#1|) (-1163 |#1|)) 37)) (-4124 (((-1163 |#1|) (-1163 |#1|)) 110)) (-2659 (((-1163 |#1|) (-1163 |#1|)) 69)) (-2781 (((-1163 |#1|) (-1163 |#1|)) 108)) (-2632 (((-1163 |#1|) (-1163 |#1|)) 64)) (-2756 (((-1163 |#1|) (-1163 |#1|)) 105)) (-2609 (((-1163 |#1|) (-1163 |#1|)) 56)) (-4161 (((-1163 |#1|) (-1163 |#1|)) 118)) (-2699 (((-1163 |#1|) (-1163 |#1|)) 93)) (-4133 (((-1163 |#1|) (-1163 |#1|)) 112)) (-2673 (((-1163 |#1|) (-1163 |#1|)) 89)) (-4182 (((-1163 |#1|) (-1163 |#1|)) 122)) (-2721 (((-1163 |#1|) (-1163 |#1|)) 97)) (-1501 (((-1163 |#1|) (-1163 |#1|)) 124)) (-2732 (((-1163 |#1|) (-1163 |#1|)) 99)) (-4170 (((-1163 |#1|) (-1163 |#1|)) 120)) (-2710 (((-1163 |#1|) (-1163 |#1|)) 95)) (-4147 (((-1163 |#1|) (-1163 |#1|)) 114)) (-2687 (((-1163 |#1|) (-1163 |#1|)) 91)) (** (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 41)))
-(((-1169 |#1|) (-10 -7 (-15 -4386 ((-1163 |#1|) (-1163 |#1|))) (-15 -2660 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3939 ((-2 (|:| -2600 (-1163 |#1|)) (|:| -2609 (-1163 |#1|))) (-1163 |#1|))) (-15 -2600 ((-1163 |#1|) (-1163 |#1|))) (-15 -2609 ((-1163 |#1|) (-1163 |#1|))) (-15 -2624 ((-1163 |#1|) (-1163 |#1|))) (-15 -2632 ((-1163 |#1|) (-1163 |#1|))) (-15 -2645 ((-1163 |#1|) (-1163 |#1|))) (-15 -2659 ((-1163 |#1|) (-1163 |#1|))) (-15 -2673 ((-1163 |#1|) (-1163 |#1|))) (-15 -2687 ((-1163 |#1|) (-1163 |#1|))) (-15 -2699 ((-1163 |#1|) (-1163 |#1|))) (-15 -2710 ((-1163 |#1|) (-1163 |#1|))) (-15 -2721 ((-1163 |#1|) (-1163 |#1|))) (-15 -2732 ((-1163 |#1|) (-1163 |#1|))) (-15 -4037 ((-2 (|:| -2744 (-1163 |#1|)) (|:| -2756 (-1163 |#1|))) (-1163 |#1|))) (-15 -2744 ((-1163 |#1|) (-1163 |#1|))) (-15 -2756 ((-1163 |#1|) (-1163 |#1|))) (-15 -2769 ((-1163 |#1|) (-1163 |#1|))) (-15 -2781 ((-1163 |#1|) (-1163 |#1|))) (-15 -4114 ((-1163 |#1|) (-1163 |#1|))) (-15 -4124 ((-1163 |#1|) (-1163 |#1|))) (-15 -4133 ((-1163 |#1|) (-1163 |#1|))) (-15 -4147 ((-1163 |#1|) (-1163 |#1|))) (-15 -4161 ((-1163 |#1|) (-1163 |#1|))) (-15 -4170 ((-1163 |#1|) (-1163 |#1|))) (-15 -4182 ((-1163 |#1|) (-1163 |#1|))) (-15 -1501 ((-1163 |#1|) (-1163 |#1|)))) (-38 (-412 (-569)))) (T -1169))
-((-1501 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4037 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2744 (-1163 *4)) (|:| -2756 (-1163 *4)))) (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2721 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2687 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2645 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2632 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2600 (-1163 *4)) (|:| -2609 (-1163 *4)))) (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-2660 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1169 *3)))))
-(-10 -7 (-15 -4386 ((-1163 |#1|) (-1163 |#1|))) (-15 -2660 ((-1163 |#1|) (-1163 |#1|))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3939 ((-2 (|:| -2600 (-1163 |#1|)) (|:| -2609 (-1163 |#1|))) (-1163 |#1|))) (-15 -2600 ((-1163 |#1|) (-1163 |#1|))) (-15 -2609 ((-1163 |#1|) (-1163 |#1|))) (-15 -2624 ((-1163 |#1|) (-1163 |#1|))) (-15 -2632 ((-1163 |#1|) (-1163 |#1|))) (-15 -2645 ((-1163 |#1|) (-1163 |#1|))) (-15 -2659 ((-1163 |#1|) (-1163 |#1|))) (-15 -2673 ((-1163 |#1|) (-1163 |#1|))) (-15 -2687 ((-1163 |#1|) (-1163 |#1|))) (-15 -2699 ((-1163 |#1|) (-1163 |#1|))) (-15 -2710 ((-1163 |#1|) (-1163 |#1|))) (-15 -2721 ((-1163 |#1|) (-1163 |#1|))) (-15 -2732 ((-1163 |#1|) (-1163 |#1|))) (-15 -4037 ((-2 (|:| -2744 (-1163 |#1|)) (|:| -2756 (-1163 |#1|))) (-1163 |#1|))) (-15 -2744 ((-1163 |#1|) (-1163 |#1|))) (-15 -2756 ((-1163 |#1|) (-1163 |#1|))) (-15 -2769 ((-1163 |#1|) (-1163 |#1|))) (-15 -2781 ((-1163 |#1|) (-1163 |#1|))) (-15 -4114 ((-1163 |#1|) (-1163 |#1|))) (-15 -4124 ((-1163 |#1|) (-1163 |#1|))) (-15 -4133 ((-1163 |#1|) (-1163 |#1|))) (-15 -4147 ((-1163 |#1|) (-1163 |#1|))) (-15 -4161 ((-1163 |#1|) (-1163 |#1|))) (-15 -4170 ((-1163 |#1|) (-1163 |#1|))) (-15 -4182 ((-1163 |#1|) (-1163 |#1|))) (-15 -1501 ((-1163 |#1|) (-1163 |#1|))))
-((-4137 (((-964 |#2|) |#2| |#2|) 50)) (-4260 ((|#2| |#2| |#1|) 19 (|has| |#1| (-310)))))
-(((-1170 |#1| |#2|) (-10 -7 (-15 -4137 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -4260 (|#2| |#2| |#1|)) |%noBranch|)) (-561) (-1249 |#1|)) (T -1170))
-((-4260 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1170 *3 *2)) (-4 *2 (-1249 *3)))) (-4137 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1170 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -4137 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -4260 (|#2| |#2| |#1|)) |%noBranch|))
-((-2415 (((-112) $ $) NIL)) (-2514 (($ $ (-649 (-776))) 81)) (-1466 (($) 33)) (-3296 (($ $) 51)) (-1782 (((-649 $) $) 60)) (-2592 (((-112) $) 19)) (-3131 (((-649 (-949 |#2|)) $) 88)) (-3229 (($ $) 82)) (-3408 (((-776) $) 47)) (-4295 (($) 32)) (-2872 (($ $ (-649 (-776)) (-949 |#2|)) 74) (($ $ (-649 (-776)) (-776)) 75) (($ $ (-776) (-949 |#2|)) 77)) (-2126 (($ $ $) 57) (($ (-649 $)) 59)) (-2465 (((-776) $) 89)) (-2703 (((-112) $) 15)) (-1550 (((-1165) $) NIL)) (-2495 (((-112) $) 22)) (-3545 (((-1126) $) NIL)) (-3359 (((-172) $) 87)) (-3708 (((-949 |#2|) $) 83)) (-3612 (((-776) $) 84)) (-3474 (((-112) $) 86)) (-2639 (($ $ (-649 (-776)) (-172)) 80)) (-2232 (($ $) 52)) (-3793 (((-867) $) 100)) (-2749 (($ $ (-649 (-776)) (-112)) 79)) (-3500 (((-649 $) $) 11)) (-3601 (($ $ (-776)) 46)) (-3698 (($ $) 43)) (-1441 (((-112) $ $) NIL)) (-2996 (($ $ $ (-949 |#2|) (-776)) 70)) (-1935 (($ $ (-949 |#2|)) 69)) (-2016 (($ $ (-649 (-776)) (-949 |#2|)) 66) (($ $ (-649 (-776)) (-776)) 72) (((-776) $ (-949 |#2|)) 73)) (-2919 (((-112) $ $) 94)))
-(((-1171 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -2703 ((-112) $)) (-15 -2592 ((-112) $)) (-15 -2495 ((-112) $)) (-15 -4295 ($)) (-15 -1466 ($)) (-15 -3698 ($ $)) (-15 -3601 ($ $ (-776))) (-15 -3500 ((-649 $) $)) (-15 -3408 ((-776) $)) (-15 -3296 ($ $)) (-15 -2232 ($ $)) (-15 -2126 ($ $ $)) (-15 -2126 ($ (-649 $))) (-15 -1782 ((-649 $) $)) (-15 -2016 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -1935 ($ $ (-949 |#2|))) (-15 -2996 ($ $ $ (-949 |#2|) (-776))) (-15 -2872 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2016 ($ $ (-649 (-776)) (-776))) (-15 -2872 ($ $ (-649 (-776)) (-776))) (-15 -2016 ((-776) $ (-949 |#2|))) (-15 -2872 ($ $ (-776) (-949 |#2|))) (-15 -2749 ($ $ (-649 (-776)) (-112))) (-15 -2639 ($ $ (-649 (-776)) (-172))) (-15 -2514 ($ $ (-649 (-776)))) (-15 -3708 ((-949 |#2|) $)) (-15 -3612 ((-776) $)) (-15 -3474 ((-112) $)) (-15 -3359 ((-172) $)) (-15 -2465 ((-776) $)) (-15 -3229 ($ $)) (-15 -3131 ((-649 (-949 |#2|)) $)))) (-927) (-1055)) (T -1171))
-((-2703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-4295 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-1466 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-3698 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-3601 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3296 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-2232 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-2126 (*1 *1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2016 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *4)) (-4 *4 (-1055)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)))) (-2996 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-2872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-2016 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-2872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *2 (-776)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-2872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))) (-2749 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-2639 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1055)))) (-2514 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-949 *4)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-172)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))) (-3229 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1055)))))
-(-13 (-1106) (-10 -8 (-15 -2703 ((-112) $)) (-15 -2592 ((-112) $)) (-15 -2495 ((-112) $)) (-15 -4295 ($)) (-15 -1466 ($)) (-15 -3698 ($ $)) (-15 -3601 ($ $ (-776))) (-15 -3500 ((-649 $) $)) (-15 -3408 ((-776) $)) (-15 -3296 ($ $)) (-15 -2232 ($ $)) (-15 -2126 ($ $ $)) (-15 -2126 ($ (-649 $))) (-15 -1782 ((-649 $) $)) (-15 -2016 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -1935 ($ $ (-949 |#2|))) (-15 -2996 ($ $ $ (-949 |#2|) (-776))) (-15 -2872 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2016 ($ $ (-649 (-776)) (-776))) (-15 -2872 ($ $ (-649 (-776)) (-776))) (-15 -2016 ((-776) $ (-949 |#2|))) (-15 -2872 ($ $ (-776) (-949 |#2|))) (-15 -2749 ($ $ (-649 (-776)) (-112))) (-15 -2639 ($ $ (-649 (-776)) (-172))) (-15 -2514 ($ $ (-649 (-776)))) (-15 -3708 ((-949 |#2|) $)) (-15 -3612 ((-776) $)) (-15 -3474 ((-112) $)) (-15 -3359 ((-172) $)) (-15 -2465 ((-776) $)) (-15 -3229 ($ $)) (-15 -3131 ((-649 (-949 |#2|)) $))))
-((-2415 (((-112) $ $) NIL)) (-2112 ((|#2| $) 11)) (-2101 ((|#1| $) 10)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3806 (($ |#1| |#2|) 9)) (-3793 (((-867) $) 16)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1172 |#1| |#2|) (-13 (-1106) (-10 -8 (-15 -3806 ($ |#1| |#2|)) (-15 -2101 (|#1| $)) (-15 -2112 (|#2| $)))) (-1106) (-1106)) (T -1172))
-((-3806 (*1 *1 *2 *3) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-2101 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *2 *3)) (-4 *3 (-1106)))) (-2112 (*1 *2 *1) (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1106)))))
-(-13 (-1106) (-10 -8 (-15 -3806 ($ |#1| |#2|)) (-15 -2101 (|#1| $)) (-15 -2112 (|#2| $))))
-((-2415 (((-112) $ $) NIL)) (-3724 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1173) (-13 (-1089) (-10 -8 (-15 -3724 ((-1141) $))))) (T -1173))
-((-3724 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1173)))))
-(-13 (-1089) (-10 -8 (-15 -3724 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 11)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3087 (($ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2883 (((-112) $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3008 (($ $ (-569)) NIL) (($ $ (-569) (-569)) 75)) (-2009 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-3435 (((-1181 |#1| |#2| |#3|) $) 42)) (-3171 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 32)) (-1770 (((-1181 |#1| |#2| |#3|) $) 33)) (-2769 (($ $) 116 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) 112 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-2552 (((-569) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3317 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-4114 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1183) "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3148 (((-1181 |#1| |#2| |#3|) $) 140) (((-1183) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3292 (($ $) 37) (($ (-569) $) 38)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-1181 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 (-1181 |#1| |#2| |#3|))) (|:| |vec| (-1273 (-1181 |#1| |#2| |#3|)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-2888 (((-3 $ "failed") $) 54)) (-4299 (((-412 (-958 |#1|)) $ (-569)) 74 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 76 (|has| |#1| (-561)))) (-3403 (($) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4237 (((-112) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4091 (((-112) $) 28)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-3110 (((-569) $) NIL) (((-569) $ (-569)) 26)) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL (|has| |#1| (-367)))) (-4396 (((-1181 |#1| |#2| |#3|) $) 44 (|has| |#1| (-367)))) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3812 (((-3 $ "failed") $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))))) (-4327 (((-112) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-2253 (($ $ (-927)) NIL)) (-2598 (($ (-1 |#1| (-569)) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-569)) 19) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-3377 (($ $ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3969 (($ $ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2660 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1781 (($ (-569) (-1181 |#1| |#2| |#3|)) 36)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2488 (($ $) 79 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 80 (|has| |#1| (-38 (-412 (-569)))))) (-2305 (($) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3555 (($ $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-2478 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-569)) 158)) (-2405 (((-3 $ "failed") $ $) 55 (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4386 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-519 (-1183) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1181 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1181 |#1| |#2| |#3|)) (-649 (-1181 |#1| |#2| |#3|))) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-312 (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-569)) NIL) (($ $ $) 61 (|has| (-569) (-1118))) (($ $ (-1181 |#1| |#2| |#3|)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-289 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1269 |#2|)) 57) (($ $ (-776)) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 56 (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-1528 (($ $) NIL (|has| |#1| (-367)))) (-4409 (((-1181 |#1| |#2| |#3|) $) 46 (|has| |#1| (-367)))) (-3868 (((-569) $) 43)) (-4124 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 118 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 114 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-1408 (((-541) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-4005 (($ $) NIL)) (-3793 (((-867) $) 162) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1181 |#1| |#2| |#3|)) 30) (($ (-1269 |#2|)) 25) (($ (-1183)) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (($ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-4184 ((|#1| $ (-569)) 77)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) 12)) (-2586 (((-1181 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4133 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 110 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 106 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-3070 (($ $) NIL (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1803 (($) 21 T CONST)) (-1813 (($) 16 T CONST)) (-2830 (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-2976 (((-112) $ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2954 (((-112) $ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2942 (((-112) $ $) NIL (-2774 (-12 (|has| (-1181 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1181 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 49 (|has| |#1| (-367))) (($ (-1181 |#1| |#2| |#3|) (-1181 |#1| |#2| |#3|)) 50 (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) 60) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) 83 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1181 |#1| |#2| |#3|)) 48 (|has| |#1| (-367))) (($ (-1181 |#1| |#2| |#3|) $) 47 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1174 |#1| |#2| |#3|) (-13 (-1235 |#1| (-1181 |#1| |#2| |#3|)) (-10 -8 (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1174))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1235 |#1| (-1181 |#1| |#2| |#3|)) (-10 -8 (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-3269 ((|#2| |#2| (-1098 |#2|)) 26) ((|#2| |#2| (-1183)) 28)))
-(((-1175 |#1| |#2|) (-10 -7 (-15 -3269 (|#2| |#2| (-1183))) (-15 -3269 (|#2| |#2| (-1098 |#2|)))) (-13 (-561) (-1044 (-569)) (-644 (-569))) (-13 (-435 |#1|) (-160) (-27) (-1208))) (T -1175))
-((-3269 (*1 *2 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208))) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1175 *4 *2)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208))))))
-(-10 -7 (-15 -3269 (|#2| |#2| (-1183))) (-15 -3269 (|#2| |#2| (-1098 |#2|))))
-((-3269 (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1098 (-412 (-958 |#1|)))) 31) (((-412 (-958 |#1|)) (-958 |#1|) (-1098 (-958 |#1|))) 44) (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1183)) 33) (((-412 (-958 |#1|)) (-958 |#1|) (-1183)) 36)))
-(((-1176 |#1|) (-10 -7 (-15 -3269 ((-412 (-958 |#1|)) (-958 |#1|) (-1183))) (-15 -3269 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -3269 ((-412 (-958 |#1|)) (-958 |#1|) (-1098 (-958 |#1|)))) (-15 -3269 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1098 (-412 (-958 |#1|)))))) (-13 (-561) (-1044 (-569)))) (T -1176))
-((-3269 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-3 *3 (-319 *5))) (-5 *1 (-1176 *5)))) (-3269 (*1 *2 *3 *4) (-12 (-5 *4 (-1098 (-958 *5))) (-5 *3 (-958 *5)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 *3)) (-5 *1 (-1176 *5)))) (-3269 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-412 (-958 *5))))) (-3269 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-958 *5)))))
-(-10 -7 (-15 -3269 ((-412 (-958 |#1|)) (-958 |#1|) (-1183))) (-15 -3269 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1183))) (-15 -3269 ((-412 (-958 |#1|)) (-958 |#1|) (-1098 (-958 |#1|)))) (-15 -3269 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1098 (-412 (-958 |#1|))))))
-((-1344 (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 13)))
-(((-1177 |#1| |#2|) (-10 -7 (-15 -1344 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)))) (-1055) (-1055)) (T -1177))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6)))))
-(-10 -7 (-15 -1344 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))))
-((-2508 (((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|))) 51)) (-3796 (((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|))) 52)))
-(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|)))) (-15 -2508 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|))))) (-798) (-855) (-457) (-955 |#3| |#1| |#2|)) (T -1178))
-((-2508 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7)))) (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7))))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7)))) (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7))))))
-(-10 -7 (-15 -3796 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|)))) (-15 -2508 ((-423 (-1179 (-412 |#4|))) (-1179 (-412 |#4|)))))
-((-2415 (((-112) $ $) 171)) (-3192 (((-112) $) 43)) (-2822 (((-1273 |#1|) $ (-776)) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2571 (($ (-1179 |#1|)) NIL)) (-3763 (((-1179 $) $ (-1088)) 82) (((-1179 |#1|) $) 71)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) 164 (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4095 (($ $ $) 158 (|has| |#1| (-561)))) (-3253 (((-423 (-1179 $)) (-1179 $)) 95 (|has| |#1| (-915)))) (-2078 (($ $) NIL (|has| |#1| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 115 (|has| |#1| (-915)))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3409 (($ $ (-776)) 61)) (-3274 (($ $ (-776)) 63)) (-1782 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL)) (-3148 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-1088) $) NIL)) (-4202 (($ $ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $ $) 160 (|has| |#1| (-173)))) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) 80)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-4401 (($ $ $) 131)) (-3897 (($ $ $) NIL (|has| |#1| (-561)))) (-1887 (((-2 (|:| -1433 |#1|) (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-561)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4260 (($ $) 165 (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-776) $) 69)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2808 (((-867) $ (-867)) 148)) (-3110 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2623 (((-112) $) 48)) (-3238 (((-776) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| |#1| (-1158)))) (-1697 (($ (-1179 |#1|) (-1088)) 73) (($ (-1179 $) (-1088)) 89)) (-2253 (($ $ (-776)) 51)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) 87) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-1088)) NIL) (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 153)) (-3712 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-4059 (($ (-1 (-776) (-776)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2704 (((-1179 |#1|) $) NIL)) (-3397 (((-3 (-1088) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) 76)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1550 (((-1165) $) NIL)) (-3528 (((-2 (|:| -2726 $) (|:| -3365 $)) $ (-776)) 60)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-1088)) (|:| -4320 (-776))) "failed") $) NIL)) (-2488 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2305 (($) NIL (|has| |#1| (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) 50)) (-1833 ((|#1| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 103 (|has| |#1| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 167 (|has| |#1| (-457)))) (-2635 (($ $ (-776) |#1| $) 123)) (-3057 (((-423 (-1179 $)) (-1179 $)) 101 (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 100 (|has| |#1| (-915)))) (-3796 (((-423 $) $) 108 (|has| |#1| (-915)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2405 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#1|) NIL) (($ $ (-649 (-1088)) (-649 |#1|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-3762 (((-3 $ "failed") $ (-776)) 54)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 172 (|has| |#1| (-367)))) (-4304 (($ $ (-1088)) NIL (|has| |#1| (-173))) ((|#1| $) 156 (|has| |#1| (-173)))) (-3514 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3868 (((-776) $) 78) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) 162 (|has| |#1| (-457))) (($ $ (-1088)) NIL (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3793 (((-867) $) 149) (($ (-569)) NIL) (($ |#1|) 77) (($ (-1088)) NIL) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) 41 (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) 17 T CONST)) (-1813 (($) 19 T CONST)) (-2830 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2919 (((-112) $ $) 120)) (-3032 (($ $ |#1|) 173 (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 90)) (** (($ $ (-927)) 14) (($ $ (-776)) 12)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1179 |#1|) (-13 (-1249 |#1|) (-10 -8 (-15 -2808 ((-867) $ (-867))) (-15 -2635 ($ $ (-776) |#1| $)))) (-1055)) (T -1179))
-((-2808 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1179 *3)) (-4 *3 (-1055)))) (-2635 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1179 *3)) (-4 *3 (-1055)))))
-(-13 (-1249 |#1|) (-10 -8 (-15 -2808 ((-867) $ (-867))) (-15 -2635 ($ $ (-776) |#1| $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 11)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2009 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2769 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-1174 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1181 |#1| |#2| |#3|) "failed") $) 36)) (-3148 (((-1174 |#1| |#2| |#3|) $) NIL) (((-1181 |#1| |#2| |#3|) $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2496 (((-412 (-569)) $) 59)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1794 (($ (-412 (-569)) (-1174 |#1| |#2| |#3|)) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-412 (-569))) 20) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2660 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2407 (((-1174 |#1| |#2| |#3|) $) 41)) (-2320 (((-3 (-1174 |#1| |#2| |#3|) "failed") $) NIL)) (-1781 (((-1174 |#1| |#2| |#3|) $) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2488 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-412 (-569))) NIL)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4386 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1269 |#2|)) 38)) (-3868 (((-412 (-569)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) NIL)) (-3793 (((-867) $) 62) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1174 |#1| |#2| |#3|)) 30) (($ (-1181 |#1| |#2| |#3|)) 31) (($ (-1269 |#2|)) 26) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4184 ((|#1| $ (-412 (-569))) NIL)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) 12)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 22 T CONST)) (-1813 (($) 16 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 24)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1180 |#1| |#2| |#3|) (-13 (-1256 |#1| (-1174 |#1| |#2| |#3|)) (-1044 (-1181 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1180))
-((-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1256 |#1| (-1174 |#1| |#2| |#3|)) (-1044 (-1181 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 129)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 119)) (-3683 (((-1246 |#2| |#1|) $ (-776)) 69)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-776)) 85) (($ $ (-776) (-776)) 82)) (-2009 (((-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 105)) (-2769 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2744 (($ $) 169 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 118) (($ (-1163 |#1|)) 113)) (-4114 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) 25)) (-2718 (($ $) 28)) (-3275 (((-958 |#1|) $ (-776)) 81) (((-958 |#1|) $ (-776) (-776)) 83)) (-4091 (((-112) $) 124)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-776) $) 126) (((-776) $ (-776)) 128)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) NIL)) (-2598 (($ (-1 |#1| (-569)) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) 13) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2660 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-2488 (($ $) 133 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 134 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-2907 (($ $ (-776)) 15)) (-2405 (((-3 $ "failed") $ $) 26 (|has| |#1| (-561)))) (-4386 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1866 ((|#1| $ (-776)) 122) (($ $ $) 132 (|has| (-776) (-1118)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1269 |#2|)) 31)) (-3868 (((-776) $) NIL)) (-4124 (($ $) 179 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) NIL)) (-3793 (((-867) $) 206) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 130 (|has| |#1| (-173))) (($ (-1246 |#2| |#1|)) 55) (($ (-1269 |#2|)) 36)) (-2836 (((-1163 |#1|) $) 101)) (-4184 ((|#1| $ (-776)) 121)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) 58)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 161 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) 181 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 165 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-776)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 167 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 159 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 17 T CONST)) (-1813 (($) 20 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) 198)) (-3009 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 203 (|has| |#1| (-367))) (($ $ $) 138 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 141 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1181 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-10 -8 (-15 -3793 ($ (-1246 |#2| |#1|))) (-15 -3683 ((-1246 |#2| |#1|) $ (-776))) (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1181))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-1181 *3 *4 *5)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1181 *4 *5 *6)) (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1264 |#1|) (-10 -8 (-15 -3793 ($ (-1246 |#2| |#1|))) (-15 -3683 ((-1246 |#2| |#1|) $ (-776))) (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-3793 (((-867) $) 33) (($ (-1183)) 35)) (-2774 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 46)) (-2761 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 39) (($ $) 40)) (-2688 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 41)) (-2674 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 43)) (-2661 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 42)) (-2647 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 44)) (-2087 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 45)))
-(((-1182) (-13 (-618 (-867)) (-10 -8 (-15 -3793 ($ (-1183))) (-15 -2688 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2661 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2674 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2647 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2774 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2087 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2761 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2761 ($ $))))) (T -1182))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182)))) (-2688 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2661 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2674 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2647 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2774 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2087 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182)))) (-5 *1 (-1182)))) (-2761 (*1 *1 *1) (-5 *1 (-1182))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3793 ($ (-1183))) (-15 -2688 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2661 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2674 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2647 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2774 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2087 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2761 ($ (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2761 ($ $))))
-((-2415 (((-112) $ $) NIL)) (-3007 (($ $ (-649 (-867))) 62)) (-1925 (($ $ (-649 (-867))) 60)) (-3387 (((-1165) $) 101)) (-3854 (((-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867)))) $) 108)) (-2017 (((-112) $) 23)) (-4361 (($ $ (-649 (-649 (-867)))) 59) (($ $ (-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867))))) 99)) (-4188 (($) 163 T CONST)) (-2107 (((-1278)) 135)) (-2892 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 69) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 76)) (-4295 (($) 122) (($ $) 131)) (-3570 (($ $) 100)) (-3377 (($ $ $) NIL)) (-3969 (($ $ $) NIL)) (-3379 (((-649 $) $) 136)) (-1550 (((-1165) $) 114)) (-3545 (((-1126) $) NIL)) (-1866 (($ $ (-649 (-867))) 61)) (-1408 (((-541) $) 48) (((-1183) $) 49) (((-898 (-569)) $) 80) (((-898 (-383)) $) 78)) (-3793 (((-867) $) 55) (($ (-1165)) 50)) (-1441 (((-112) $ $) NIL)) (-2906 (($ $ (-649 (-867))) 63)) (-4195 (((-1165) $) 34) (((-1165) $ (-112)) 35) (((-1278) (-827) $) 36) (((-1278) (-827) $ (-112)) 37)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 51)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) 52)))
-(((-1183) (-13 (-855) (-619 (-541)) (-833) (-619 (-1183)) (-621 (-1165)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4295 ($)) (-15 -4295 ($ $)) (-15 -2107 ((-1278))) (-15 -3570 ($ $)) (-15 -2017 ((-112) $)) (-15 -3854 ((-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -4361 ($ $ (-649 (-649 (-867))))) (-15 -4361 ($ $ (-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -1925 ($ $ (-649 (-867)))) (-15 -3007 ($ $ (-649 (-867)))) (-15 -2906 ($ $ (-649 (-867)))) (-15 -1866 ($ $ (-649 (-867)))) (-15 -3387 ((-1165) $)) (-15 -3379 ((-649 $) $)) (-15 -4188 ($) -3706)))) (T -1183))
-((-4295 (*1 *1) (-5 *1 (-1183))) (-4295 (*1 *1 *1) (-5 *1 (-1183))) (-2107 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1183)))) (-3570 (*1 *1 *1) (-5 *1 (-1183))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1183)))) (-4361 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1183)))) (-4361 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1183)))) (-1925 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-3007 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-2906 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1183)))) (-4188 (*1 *1) (-5 *1 (-1183))))
-(-13 (-855) (-619 (-541)) (-833) (-619 (-1183)) (-621 (-1165)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4295 ($)) (-15 -4295 ($ $)) (-15 -2107 ((-1278))) (-15 -3570 ($ $)) (-15 -2017 ((-112) $)) (-15 -3854 ((-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -4361 ($ $ (-649 (-649 (-867))))) (-15 -4361 ($ $ (-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -1925 ($ $ (-649 (-867)))) (-15 -3007 ($ $ (-649 (-867)))) (-15 -2906 ($ $ (-649 (-867)))) (-15 -1866 ($ $ (-649 (-867)))) (-15 -3387 ((-1165) $)) (-15 -3379 ((-649 $) $)) (-15 -4188 ($) -3706)))
-((-2204 (((-1273 |#1|) |#1| (-927)) 18) (((-1273 |#1|) (-649 |#1|)) 25)))
-(((-1184 |#1|) (-10 -7 (-15 -2204 ((-1273 |#1|) (-649 |#1|))) (-15 -2204 ((-1273 |#1|) |#1| (-927)))) (-1055)) (T -1184))
-((-2204 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1273 *3)) (-5 *1 (-1184 *3)) (-4 *3 (-1055)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1055)) (-5 *2 (-1273 *4)) (-5 *1 (-1184 *4)))))
-(-10 -7 (-15 -2204 ((-1273 |#1|) (-649 |#1|))) (-15 -2204 ((-1273 |#1|) |#1| (-927))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1044 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3148 (((-569) $) NIL (|has| |#1| (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1044 (-412 (-569))))) ((|#1| $) NIL)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4260 (($ $) NIL (|has| |#1| (-457)))) (-3972 (($ $ |#1| (-977) $) NIL)) (-2623 (((-112) $) 17)) (-3238 (((-776) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-977)) NIL)) (-3712 (((-977) $) NIL)) (-4059 (($ (-1 (-977) (-977)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#1| $) NIL)) (-2635 (($ $ (-977) |#1| $) NIL (-12 (|has| (-977) (-131)) (|has| |#1| (-561))))) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3868 (((-977) $) NIL)) (-3479 ((|#1| $) NIL (|has| |#1| (-457)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2774 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1044 (-412 (-569))))))) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ (-977)) NIL)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1803 (($) 11 T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 21)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1185 |#1|) (-13 (-329 |#1| (-977)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-977) (-131)) (-15 -2635 ($ $ (-977) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|))) (-1055)) (T -1185))
-((-2635 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-977)) (-4 *2 (-131)) (-5 *1 (-1185 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
-(-13 (-329 |#1| (-977)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-977) (-131)) (-15 -2635 ($ $ (-977) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|)))
-((-2290 (((-1187) (-1183) $) 25)) (-4014 (($) 29)) (-4406 (((-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-1183) $) 22)) (-1512 (((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2577 "void")) $) 41) (((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) 42) (((-1278) (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) 43)) (-4100 (((-1278) (-1183)) 58)) (-1390 (((-1278) (-1183) $) 55) (((-1278) (-1183)) 56) (((-1278)) 57)) (-3826 (((-1278) (-1183)) 37)) (-1729 (((-1183)) 36)) (-3597 (($) 34)) (-2737 (((-442) (-1183) (-442) (-1183) $) 45) (((-442) (-649 (-1183)) (-442) (-1183) $) 49) (((-442) (-1183) (-442)) 46) (((-442) (-1183) (-442) (-1183)) 50)) (-1828 (((-1183)) 35)) (-3793 (((-867) $) 28)) (-3924 (((-1278)) 30) (((-1278) (-1183)) 33)) (-2376 (((-649 (-1183)) (-1183) $) 24)) (-1623 (((-1278) (-1183) (-649 (-1183)) $) 38) (((-1278) (-1183) (-649 (-1183))) 39) (((-1278) (-649 (-1183))) 40)))
-(((-1186) (-13 (-618 (-867)) (-10 -8 (-15 -4014 ($)) (-15 -3924 ((-1278))) (-15 -3924 ((-1278) (-1183))) (-15 -2737 ((-442) (-1183) (-442) (-1183) $)) (-15 -2737 ((-442) (-649 (-1183)) (-442) (-1183) $)) (-15 -2737 ((-442) (-1183) (-442))) (-15 -2737 ((-442) (-1183) (-442) (-1183))) (-15 -3826 ((-1278) (-1183))) (-15 -1828 ((-1183))) (-15 -1729 ((-1183))) (-15 -1623 ((-1278) (-1183) (-649 (-1183)) $)) (-15 -1623 ((-1278) (-1183) (-649 (-1183)))) (-15 -1623 ((-1278) (-649 (-1183)))) (-15 -1512 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2577 "void")) $)) (-15 -1512 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2577 "void")))) (-15 -1512 ((-1278) (-3 (|:| |fst| (-439)) (|:| -2577 "void")))) (-15 -1390 ((-1278) (-1183) $)) (-15 -1390 ((-1278) (-1183))) (-15 -1390 ((-1278))) (-15 -4100 ((-1278) (-1183))) (-15 -3597 ($)) (-15 -4406 ((-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-1183) $)) (-15 -2376 ((-649 (-1183)) (-1183) $)) (-15 -2290 ((-1187) (-1183) $))))) (T -1186))
-((-4014 (*1 *1) (-5 *1 (-1186))) (-3924 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-2737 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-2737 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *4 (-1183)) (-5 *1 (-1186)))) (-2737 (*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-2737 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1828 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))) (-1729 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))) (-1623 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1512 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1390 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-1390 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))) (-3597 (*1 *1) (-5 *1 (-1186))) (-4406 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *1 (-1186)))) (-2376 (*1 *2 *3 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1186)) (-5 *3 (-1183)))) (-2290 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1187)) (-5 *1 (-1186)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -4014 ($)) (-15 -3924 ((-1278))) (-15 -3924 ((-1278) (-1183))) (-15 -2737 ((-442) (-1183) (-442) (-1183) $)) (-15 -2737 ((-442) (-649 (-1183)) (-442) (-1183) $)) (-15 -2737 ((-442) (-1183) (-442))) (-15 -2737 ((-442) (-1183) (-442) (-1183))) (-15 -3826 ((-1278) (-1183))) (-15 -1828 ((-1183))) (-15 -1729 ((-1183))) (-15 -1623 ((-1278) (-1183) (-649 (-1183)) $)) (-15 -1623 ((-1278) (-1183) (-649 (-1183)))) (-15 -1623 ((-1278) (-649 (-1183)))) (-15 -1512 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2577 "void")) $)) (-15 -1512 ((-1278) (-1183) (-3 (|:| |fst| (-439)) (|:| -2577 "void")))) (-15 -1512 ((-1278) (-3 (|:| |fst| (-439)) (|:| -2577 "void")))) (-15 -1390 ((-1278) (-1183) $)) (-15 -1390 ((-1278) (-1183))) (-15 -1390 ((-1278))) (-15 -4100 ((-1278) (-1183))) (-15 -3597 ($)) (-15 -4406 ((-3 (|:| |fst| (-439)) (|:| -2577 "void")) (-1183) $)) (-15 -2376 ((-649 (-1183)) (-1183) $)) (-15 -2290 ((-1187) (-1183) $))))
-((-4288 (((-649 (-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) $) 66)) (-3257 (((-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))) (-439) $) 47)) (-3297 (($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-442))))) 17)) (-4100 (((-1278) $) 73)) (-3378 (((-649 (-1183)) $) 22)) (-4197 (((-1110) $) 60)) (-3482 (((-442) (-1183) $) 27)) (-4385 (((-649 (-1183)) $) 30)) (-3597 (($) 19)) (-2737 (((-442) (-649 (-1183)) (-442) $) 25) (((-442) (-1183) (-442) $) 24)) (-3793 (((-867) $) 9) (((-1196 (-1183) (-442)) $) 13)))
-(((-1187) (-13 (-618 (-867)) (-10 -8 (-15 -3793 ((-1196 (-1183) (-442)) $)) (-15 -3597 ($)) (-15 -2737 ((-442) (-649 (-1183)) (-442) $)) (-15 -2737 ((-442) (-1183) (-442) $)) (-15 -3482 ((-442) (-1183) $)) (-15 -3378 ((-649 (-1183)) $)) (-15 -3257 ((-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -4385 ((-649 (-1183)) $)) (-15 -4288 ((-649 (-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) $)) (-15 -4197 ((-1110) $)) (-15 -4100 ((-1278) $)) (-15 -3297 ($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-442))))))))) (T -1187))
-((-3793 (*1 *2 *1) (-12 (-5 *2 (-1196 (-1183) (-442))) (-5 *1 (-1187)))) (-3597 (*1 *1) (-5 *1 (-1187))) (-2737 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *1 (-1187)))) (-2737 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1187)))) (-3482 (*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-442)) (-5 *1 (-1187)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))) (-3257 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) (-5 *1 (-1187)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))))) (-5 *1 (-1187)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1187)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1187)))) (-3297 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-442))))) (-5 *1 (-1187)))))
-(-13 (-618 (-867)) (-10 -8 (-15 -3793 ((-1196 (-1183) (-442)) $)) (-15 -3597 ($)) (-15 -2737 ((-442) (-649 (-1183)) (-442) $)) (-15 -2737 ((-442) (-1183) (-442) $)) (-15 -3482 ((-442) (-1183) $)) (-15 -3378 ((-649 (-1183)) $)) (-15 -3257 ((-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -4385 ((-649 (-1183)) $)) (-15 -4288 ((-649 (-649 (-3 (|:| -3570 (-1183)) (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))) $)) (-15 -4197 ((-1110) $)) (-15 -4100 ((-1278) $)) (-15 -3297 ($ (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-442))))))))
-((-2415 (((-112) $ $) NIL)) (-4378 (((-3 (-569) "failed") $) 29) (((-3 (-226) "failed") $) 35) (((-3 (-511) "failed") $) 43) (((-3 (-1165) "failed") $) 47)) (-3148 (((-569) $) 30) (((-226) $) 36) (((-511) $) 40) (((-1165) $) 48)) (-2698 (((-112) $) 53)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2588 (((-3 (-569) (-226) (-511) (-1165) $) $) 55)) (-3789 (((-649 $) $) 57)) (-1408 (((-1110) $) 24) (($ (-1110)) 25)) (-3695 (((-112) $) 56)) (-3793 (((-867) $) 23) (($ (-569)) 26) (($ (-226)) 32) (($ (-511)) 38) (($ (-1165)) 44) (((-541) $) 59) (((-569) $) 31) (((-226) $) 37) (((-511) $) 41) (((-1165) $) 49)) (-1792 (((-112) $ (|[\|\|]| (-569))) 10) (((-112) $ (|[\|\|]| (-226))) 13) (((-112) $ (|[\|\|]| (-511))) 19) (((-112) $ (|[\|\|]| (-1165))) 16)) (-2804 (($ (-511) (-649 $)) 51) (($ $ (-649 $)) 52)) (-1441 (((-112) $ $) NIL)) (-3988 (((-569) $) 27) (((-226) $) 33) (((-511) $) 39) (((-1165) $) 45)) (-2919 (((-112) $ $) 7)))
-(((-1188) (-13 (-1268) (-1106) (-1044 (-569)) (-1044 (-226)) (-1044 (-511)) (-1044 (-1165)) (-618 (-541)) (-10 -8 (-15 -1408 ((-1110) $)) (-15 -1408 ($ (-1110))) (-15 -3793 ((-569) $)) (-15 -3988 ((-569) $)) (-15 -3793 ((-226) $)) (-15 -3988 ((-226) $)) (-15 -3793 ((-511) $)) (-15 -3988 ((-511) $)) (-15 -3793 ((-1165) $)) (-15 -3988 ((-1165) $)) (-15 -2804 ($ (-511) (-649 $))) (-15 -2804 ($ $ (-649 $))) (-15 -2698 ((-112) $)) (-15 -2588 ((-3 (-569) (-226) (-511) (-1165) $) $)) (-15 -3789 ((-649 $) $)) (-15 -3695 ((-112) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-569)))) (-15 -1792 ((-112) $ (|[\|\|]| (-226)))) (-15 -1792 ((-112) $ (|[\|\|]| (-511)))) (-15 -1792 ((-112) $ (|[\|\|]| (-1165))))))) (T -1188))
-((-1408 (*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1188)))) (-1408 (*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-1188)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188)))) (-2804 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1188))) (-5 *1 (-1188)))) (-2804 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1165) (-1188))) (-5 *1 (-1188)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188)))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1188)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-1188)))))
-(-13 (-1268) (-1106) (-1044 (-569)) (-1044 (-226)) (-1044 (-511)) (-1044 (-1165)) (-618 (-541)) (-10 -8 (-15 -1408 ((-1110) $)) (-15 -1408 ($ (-1110))) (-15 -3793 ((-569) $)) (-15 -3988 ((-569) $)) (-15 -3793 ((-226) $)) (-15 -3988 ((-226) $)) (-15 -3793 ((-511) $)) (-15 -3988 ((-511) $)) (-15 -3793 ((-1165) $)) (-15 -3988 ((-1165) $)) (-15 -2804 ($ (-511) (-649 $))) (-15 -2804 ($ $ (-649 $))) (-15 -2698 ((-112) $)) (-15 -2588 ((-3 (-569) (-226) (-511) (-1165) $) $)) (-15 -3789 ((-649 $) $)) (-15 -3695 ((-112) $)) (-15 -1792 ((-112) $ (|[\|\|]| (-569)))) (-15 -1792 ((-112) $ (|[\|\|]| (-226)))) (-15 -1792 ((-112) $ (|[\|\|]| (-511)))) (-15 -1792 ((-112) $ (|[\|\|]| (-1165))))))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) 22)) (-4188 (($) 12 T CONST)) (-3403 (($) 26)) (-3377 (($ $ $) NIL) (($) 19 T CONST)) (-3969 (($ $ $) NIL) (($) 20 T CONST)) (-2855 (((-927) $) 24)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) 23)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-1189 |#1|) (-13 (-849) (-10 -8 (-15 -4188 ($) -3706))) (-927)) (T -1189))
-((-4188 (*1 *1) (-12 (-5 *1 (-1189 *2)) (-14 *2 (-927)))))
-(-13 (-849) (-10 -8 (-15 -4188 ($) -3706)))
+((-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-529)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-219)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-681)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1285))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1285)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-138)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-611)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-133)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1123)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-96)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-686)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-522)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1074)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1286))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1286)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-530)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1159)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-154)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-676)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-314)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1044))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1044)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-181)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-978)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1081)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1098)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1104)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-631)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1175)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-156)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-137)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-483)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-597)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-511)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1167)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-569)))))
+(-13 (-1091) (-1270) (-10 -8 (-15 -1795 ((-112) $ (|[\|\|]| (-529)))) (-15 -3993 ((-529) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-219)))) (-15 -3993 ((-219) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-681)))) (-15 -3993 ((-681) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1285)))) (-15 -3993 ((-1285) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-138)))) (-15 -3993 ((-138) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-611)))) (-15 -3993 ((-611) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-133)))) (-15 -3993 ((-133) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1123)))) (-15 -3993 ((-1123) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-96)))) (-15 -3993 ((-96) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-686)))) (-15 -3993 ((-686) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-522)))) (-15 -3993 ((-522) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1074)))) (-15 -3993 ((-1074) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1286)))) (-15 -3993 ((-1286) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-530)))) (-15 -3993 ((-530) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1159)))) (-15 -3993 ((-1159) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-154)))) (-15 -3993 ((-154) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-676)))) (-15 -3993 ((-676) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-314)))) (-15 -3993 ((-314) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1044)))) (-15 -3993 ((-1044) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-181)))) (-15 -3993 ((-181) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-978)))) (-15 -3993 ((-978) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1081)))) (-15 -3993 ((-1081) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1098)))) (-15 -3993 ((-1098) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1104)))) (-15 -3993 ((-1104) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-631)))) (-15 -3993 ((-631) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1175)))) (-15 -3993 ((-1175) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-156)))) (-15 -3993 ((-156) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-137)))) (-15 -3993 ((-137) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-483)))) (-15 -3993 ((-483) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-597)))) (-15 -3993 ((-597) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -3993 ((-511) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1167)))) (-15 -3993 ((-1167) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-569)))) (-15 -3993 ((-569) $))))
+(((-93) . T) ((-102) . T) ((-621 #0=(-1190)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T) ((-1091) . T) ((-1270) . T))
+((-3589 (((-1280) (-649 (-867))) 22) (((-1280) (-867)) 21)) (-3731 (((-1280) (-649 (-867))) 20) (((-1280) (-867)) 19)) (-3362 (((-1280) (-649 (-867))) 18) (((-1280) (-867)) 10) (((-1280) (-1167) (-867)) 16)))
+(((-1146) (-10 -7 (-15 -3362 ((-1280) (-1167) (-867))) (-15 -3362 ((-1280) (-867))) (-15 -3731 ((-1280) (-867))) (-15 -3589 ((-1280) (-867))) (-15 -3362 ((-1280) (-649 (-867)))) (-15 -3731 ((-1280) (-649 (-867)))) (-15 -3589 ((-1280) (-649 (-867)))))) (T -1146))
+((-3589 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3362 (*1 *2 *3 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))))
+(-10 -7 (-15 -3362 ((-1280) (-1167) (-867))) (-15 -3362 ((-1280) (-867))) (-15 -3731 ((-1280) (-867))) (-15 -3589 ((-1280) (-867))) (-15 -3362 ((-1280) (-649 (-867)))) (-15 -3731 ((-1280) (-649 (-867)))) (-15 -3589 ((-1280) (-649 (-867)))))
+((-2533 (($ $ $) 10)) (-3977 (($ $) 9)) (-2090 (($ $ $) 13)) (-2730 (($ $ $) 15)) (-4164 (($ $ $) 12)) (-4099 (($ $ $) 14)) (-4273 (($ $) 17)) (-1407 (($ $) 16)) (-2271 (($ $) 6)) (-2392 (($ $ $) 11) (($ $) 7)) (-2165 (($ $ $) 8)))
+(((-1147) (-140)) (T -1147))
+((-4273 (*1 *1 *1) (-4 *1 (-1147))) (-1407 (*1 *1 *1) (-4 *1 (-1147))) (-2730 (*1 *1 *1 *1) (-4 *1 (-1147))) (-4099 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2090 (*1 *1 *1 *1) (-4 *1 (-1147))) (-4164 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2392 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2533 (*1 *1 *1 *1) (-4 *1 (-1147))) (-3977 (*1 *1 *1) (-4 *1 (-1147))) (-2165 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2392 (*1 *1 *1) (-4 *1 (-1147))) (-2271 (*1 *1 *1) (-4 *1 (-1147))))
+(-13 (-10 -8 (-15 -2271 ($ $)) (-15 -2392 ($ $)) (-15 -2165 ($ $ $)) (-15 -3977 ($ $)) (-15 -2533 ($ $ $)) (-15 -2392 ($ $ $)) (-15 -4164 ($ $ $)) (-15 -2090 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -2730 ($ $ $)) (-15 -1407 ($ $)) (-15 -4273 ($ $))))
+((-2417 (((-112) $ $) 44)) (-2188 ((|#1| $) 17)) (-2703 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2529 (((-112) $) 19)) (-2264 (($ $ |#1|) 30)) (-4098 (($ $ (-112)) 32)) (-2394 (($ $) 33)) (-2562 (($ $ |#2|) 31)) (-3435 (((-1167) $) NIL)) (-2637 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3547 (((-1128) $) NIL)) (-3162 (((-112) $) 16)) (-3635 (($) 13)) (-3962 (($ $) 29)) (-3809 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) 23) (((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|)))) 26) (((-649 $) |#1| (-649 |#2|)) 28)) (-2385 ((|#2| $) 18)) (-3796 (((-867) $) 53)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 42)))
+(((-1148 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3635 ($)) (-15 -3162 ((-112) $)) (-15 -2188 (|#1| $)) (-15 -2385 (|#2| $)) (-15 -2529 ((-112) $)) (-15 -3809 ($ |#1| |#2| (-112))) (-15 -3809 ($ |#1| |#2|)) (-15 -3809 ($ (-2 (|:| |val| |#1|) (|:| -3663 |#2|)))) (-15 -3809 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))))) (-15 -3809 ((-649 $) |#1| (-649 |#2|))) (-15 -3962 ($ $)) (-15 -2264 ($ $ |#1|)) (-15 -2562 ($ $ |#2|)) (-15 -4098 ($ $ (-112))) (-15 -2394 ($ $)) (-15 -2637 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2703 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1108) (-34)) (-13 (-1108) (-34))) (T -1148))
+((-3635 (*1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-2188 (*1 *2 *1) (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *2 *3)) (-4 *3 (-13 (-1108) (-34))))) (-2385 (*1 *2 *1) (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-13 (-1108) (-34))))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3663 *4))) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1148 *3 *4)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3663 *5)))) (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-649 (-1148 *4 *5))) (-5 *1 (-1148 *4 *5)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-649 (-1148 *3 *5))) (-5 *1 (-1148 *3 *5)) (-4 *3 (-13 (-1108) (-34))))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-2264 (*1 *1 *1 *2) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-2562 (*1 *1 *1 *2) (-12 (-5 *1 (-1148 *3 *2)) (-4 *3 (-13 (-1108) (-34))) (-4 *2 (-13 (-1108) (-34))))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-2394 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-2637 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1148 *5 *6)))) (-2703 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34))))))
+(-13 (-1108) (-10 -8 (-15 -3635 ($)) (-15 -3162 ((-112) $)) (-15 -2188 (|#1| $)) (-15 -2385 (|#2| $)) (-15 -2529 ((-112) $)) (-15 -3809 ($ |#1| |#2| (-112))) (-15 -3809 ($ |#1| |#2|)) (-15 -3809 ($ (-2 (|:| |val| |#1|) (|:| -3663 |#2|)))) (-15 -3809 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))))) (-15 -3809 ((-649 $) |#1| (-649 |#2|))) (-15 -3962 ($ $)) (-15 -2264 ($ $ |#1|)) (-15 -2562 ($ $ |#2|)) (-15 -4098 ($ $ (-112))) (-15 -2394 ($ $)) (-15 -2637 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2703 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2417 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-2188 (((-1148 |#1| |#2|) $) 27)) (-3862 (($ $) 91)) (-3566 (((-112) (-1148 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1916 (($ $ $ (-649 (-1148 |#1| |#2|))) 108) (($ $ $ (-649 (-1148 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3914 (((-112) $ (-776)) NIL)) (-2052 (((-1148 |#1| |#2|) $ (-1148 |#1| |#2|)) 46 (|has| $ (-6 -4448)))) (-3943 (((-1148 |#1| |#2|) $ "value" (-1148 |#1| |#2|)) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 44 (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-1713 (((-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) $) 95)) (-1794 (($ (-1148 |#1| |#2|) $) 42)) (-1698 (($ (-1148 |#1| |#2|) $) 34)) (-2882 (((-649 (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 54)) (-2254 (((-112) (-1148 |#1| |#2|) $) 97)) (-1534 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 (-1148 |#1| |#2|)) $) 58 (|has| $ (-6 -4447)))) (-2004 (((-112) (-1148 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-1148 |#1| |#2|) (-1108))))) (-3834 (($ (-1 (-1148 |#1| |#2|) (-1148 |#1| |#2|)) $) 50 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-1148 |#1| |#2|) (-1148 |#1| |#2|)) $) 49)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 (-1148 |#1| |#2|)) $) 56)) (-1887 (((-112) $) 45)) (-3435 (((-1167) $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-3547 (((-1128) $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-2397 (((-3 $ "failed") $) 89)) (-3208 (((-112) (-1 (-112) (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-1148 |#1| |#2|)))) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108)))) (($ $ (-297 (-1148 |#1| |#2|))) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108)))) (($ $ (-1148 |#1| |#2|) (-1148 |#1| |#2|)) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108)))) (($ $ (-649 (-1148 |#1| |#2|)) (-649 (-1148 |#1| |#2|))) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108))))) (-3790 (((-112) $ $) 53)) (-3162 (((-112) $) 24)) (-3635 (($) 26)) (-1869 (((-1148 |#1| |#2|) $ "value") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447))) (((-776) (-1148 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-1148 |#1| |#2|) (-1108))))) (-3962 (($ $) 52)) (-3809 (($ (-1148 |#1| |#2|)) 10) (($ |#1| |#2| (-649 $)) 13) (($ |#1| |#2| (-649 (-1148 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-649 |#2|)) 18)) (-4138 (((-649 |#2|) $) 96)) (-3796 (((-867) $) 87 (|has| (-1148 |#1| |#2|) (-618 (-867))))) (-4001 (((-649 $) $) 31)) (-4280 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-1520 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-1980 (((-112) (-1 (-112) (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 70 (|has| (-1148 |#1| |#2|) (-1108)))) (-2428 (((-776) $) 64 (|has| $ (-6 -4447)))))
+(((-1149 |#1| |#2|) (-13 (-1018 (-1148 |#1| |#2|)) (-10 -8 (-6 -4448) (-6 -4447) (-15 -2397 ((-3 $ "failed") $)) (-15 -3862 ($ $)) (-15 -3809 ($ (-1148 |#1| |#2|))) (-15 -3809 ($ |#1| |#2| (-649 $))) (-15 -3809 ($ |#1| |#2| (-649 (-1148 |#1| |#2|)))) (-15 -3809 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4138 ((-649 |#2|) $)) (-15 -1713 ((-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) $)) (-15 -2254 ((-112) (-1148 |#1| |#2|) $)) (-15 -3566 ((-112) (-1148 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1698 ($ (-1148 |#1| |#2|) $)) (-15 -1794 ($ (-1148 |#1| |#2|) $)) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)))) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1108) (-34)) (-13 (-1108) (-34))) (T -1149))
+((-2397 (*1 *1 *1) (|partial| -12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3862 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1149 *2 *3))) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1148 *2 *3))) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))) (-5 *1 (-1149 *2 *3)))) (-3809 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1108) (-34))) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-649 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-2254 (*1 *2 *3 *1) (-12 (-5 *3 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *4 *5)))) (-3566 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1148 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *5 *6)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-1916 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-649 (-1148 *3 *4))) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-1916 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1148 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) (-5 *1 (-1149 *4 *5)))))
+(-13 (-1018 (-1148 |#1| |#2|)) (-10 -8 (-6 -4448) (-6 -4447) (-15 -2397 ((-3 $ "failed") $)) (-15 -3862 ($ $)) (-15 -3809 ($ (-1148 |#1| |#2|))) (-15 -3809 ($ |#1| |#2| (-649 $))) (-15 -3809 ($ |#1| |#2| (-649 (-1148 |#1| |#2|)))) (-15 -3809 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4138 ((-649 |#2|) $)) (-15 -1713 ((-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) $)) (-15 -2254 ((-112) (-1148 |#1| |#2|) $)) (-15 -3566 ((-112) (-1148 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1698 ($ (-1148 |#1| |#2|) $)) (-15 -1794 ($ (-1148 |#1| |#2|) $)) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)))) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2937 (($ $) NIL)) (-3140 ((|#2| $) NIL)) (-1551 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4330 (($ (-694 |#2|)) 56)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3419 (($ |#2|) 14)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 69 (|has| |#2| (-310)))) (-4044 (((-241 |#1| |#2|) $ (-569)) 42)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 83)) (-3978 (((-776) $) 71 (|has| |#2| (-561)))) (-3776 ((|#2| $ (-569) (-569)) NIL)) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL)) (-1539 (((-776) $) 73 (|has| |#2| (-561)))) (-2970 (((-649 (-241 |#1| |#2|)) $) 77 (|has| |#2| (-561)))) (-3225 (((-776) $) NIL)) (-4300 (($ |#2|) 25)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#2| $) 67 (|has| |#2| (-6 (-4449 "*"))))) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#2|))) 37)) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2884 (((-649 (-649 |#2|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2725 (((-3 $ "failed") $) 80 (|has| |#2| (-367)))) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) NIL)) (-3517 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-1928 ((|#2| $) NIL)) (-3687 (($ (-649 |#2|)) 50)) (-3387 (((-112) $) NIL)) (-1912 (((-241 |#1| |#2|) $) NIL)) (-3242 ((|#2| $) 65 (|has| |#2| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 89 (|has| |#2| (-619 (-541))))) (-3041 (((-241 |#1| |#2|) $ (-569)) 44)) (-3796 (((-867) $) 47) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) 52)) (-2721 (((-776)) 23 T CONST)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-1804 (($) 16 T CONST)) (-1815 (($) 21 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) 63) (($ $ (-569)) 82 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) 59) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) 61)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1150 |#1| |#2|) (-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4300 ($ |#2|)) (-15 -2937 ($ $)) (-15 -4330 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4449 "*"))) (-6 -4436) |%noBranch|) (IF (|has| |#2| (-6 (-4449 "*"))) (IF (|has| |#2| (-6 -4444)) (-6 -4444) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-776) (-1057)) (T -1150))
+((-4300 (*1 *1 *2) (-12 (-5 *1 (-1150 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1057)))) (-2937 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1057)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-694 *4)) (-4 *4 (-1057)) (-5 *1 (-1150 *3 *4)) (-14 *3 (-776)))))
+(-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4300 ($ |#2|)) (-15 -2937 ($ $)) (-15 -4330 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4449 "*"))) (-6 -4436) |%noBranch|) (IF (|has| |#2| (-6 (-4449 "*"))) (IF (|has| |#2| (-6 -4444)) (-6 -4444) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|)))
+((-4209 (($ $) 19)) (-2455 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2528 (((-112) $ $) 24)) (-2268 (($ $) 17)) (-1869 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1242 (-569))) NIL) (($ $ $) 31)) (-3796 (($ (-144)) 29) (((-867) $) NIL)))
+(((-1151 |#1|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1869 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| (-141))) (-15 -2455 (|#1| |#1| (-144))) (-15 -3796 (|#1| (-144))) (-15 -2528 ((-112) |#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1869 ((-144) |#1| (-569))) (-15 -1869 ((-144) |#1| (-569) (-144)))) (-1152)) (T -1151))
+NIL
+(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1869 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| (-141))) (-15 -2455 (|#1| |#1| (-144))) (-15 -3796 (|#1| (-144))) (-15 -2528 ((-112) |#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1869 ((-144) |#1| (-569))) (-15 -1869 ((-144) |#1| (-569) (-144))))
+((-2417 (((-112) $ $) 19 (|has| (-144) (-1108)))) (-1402 (($ $) 121)) (-4209 (($ $) 122)) (-2455 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) 119)) (-2486 (((-112) $ $ (-569)) 118)) (-2241 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-1637 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3903 (($ $ (-1242 (-569)) $) 115)) (-3550 (($ $) 79 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-144) $) 78 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) 52)) (-2528 (((-112) $ $) 120)) (-4036 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1108))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2882 (((-649 (-144)) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) 116)) (-4148 (((-776) $ $ (-144)) 117)) (-3834 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2588 (($ $) 123)) (-2268 (($ $) 124)) (-4254 (((-112) $ (-776)) 10)) (-1648 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3435 (((-1167) $) 22 (|has| (-144) (-1108)))) (-4298 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| (-144) (-1108)))) (-3513 (((-144) $) 43 (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1682 (($ $ (-144)) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1242 (-569))) 64) (($ $ $) 103)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4447))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) 71)) (-2443 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (($ (-144)) 112) (((-867) $) 18 (|has| (-144) (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| (-144) (-1108)))) (-1980 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2956 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2920 (((-112) $ $) 20 (|has| (-144) (-1108)))) (-2966 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2944 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1152) (-140)) (T -1152))
+((-2268 (*1 *1 *1) (-4 *1 (-1152))) (-2588 (*1 *1 *1) (-4 *1 (-1152))) (-4209 (*1 *1 *1) (-4 *1 (-1152))) (-1402 (*1 *1 *1) (-4 *1 (-1152))) (-2528 (*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112)))) (-2506 (*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112)))) (-2486 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-569)) (-5 *2 (-112)))) (-4148 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-776)))) (-4045 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3903 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1242 (-569))))) (-4036 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569)))) (-4036 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569)) (-5 *3 (-141)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1152)))) (-2241 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1152)))) (-2241 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1152)))) (-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))) (-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) (-1869 (*1 *1 *1 *1) (-4 *1 (-1152))))
+(-13 (-19 (-144)) (-10 -8 (-15 -2268 ($ $)) (-15 -2588 ($ $)) (-15 -4209 ($ $)) (-15 -1402 ($ $)) (-15 -2528 ((-112) $ $)) (-15 -2506 ((-112) $ $)) (-15 -2486 ((-112) $ $ (-569))) (-15 -4148 ((-776) $ $ (-144))) (-15 -4045 ((-112) $ $ (-144))) (-15 -3903 ($ $ (-1242 (-569)) $)) (-15 -4036 ((-569) $ $ (-569))) (-15 -4036 ((-569) (-141) $ (-569))) (-15 -3796 ($ (-144))) (-15 -2241 ((-649 $) $ (-144))) (-15 -2241 ((-649 $) $ (-141))) (-15 -2455 ($ $ (-144))) (-15 -2455 ($ $ (-141))) (-15 -1648 ($ $ (-144))) (-15 -1648 ($ $ (-141))) (-15 -1637 ($ $ (-144))) (-15 -1637 ($ $ (-141))) (-15 -1869 ($ $ $))))
+(((-34) . T) ((-102) -2776 (|has| (-144) (-1108)) (|has| (-144) (-855))) ((-618 (-867)) -2776 (|has| (-144) (-1108)) (|has| (-144) (-855)) (|has| (-144) (-618 (-867)))) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-656 #0#) . T) ((-19 #0#) . T) ((-855) |has| (-144) (-855)) ((-1108) -2776 (|has| (-144) (-1108)) (|has| (-144) (-855))) ((-1225) . T))
+((-2111 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776)) 112)) (-4083 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 61)) (-2458 (((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)) 97)) (-3232 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-2554 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 63) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112)) 65)) (-2316 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 85)) (-1410 (((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 90)) (-3760 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 60)) (-1772 (((-776) (-649 |#4|) (-649 |#5|)) 21)))
+(((-1153 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1117 |#1| |#2| |#3| |#4|)) (T -1153))
+((-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1117 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167)) (-5 *1 (-1153 *4 *5 *6 *7 *8)))) (-2111 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9)) (-4 *11 (-1117 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1153 *7 *8 *9 *10 *11)))) (-2316 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-2316 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-2554 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))) (-2554 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3)))) (-2554 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *7 *8 *9 *3 *4)) (-4 *4 (-1117 *7 *8 *9 *3)))) (-4083 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3)))) (-3760 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776))))
+((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) 124) (((-649 $) (-649 |#4|) (-112)) 125) (((-649 $) (-649 |#4|) (-112) (-112)) 123) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 97)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 75)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) 29 (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 45)) (-2548 ((|#4| |#4| $) 78)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2648 (((-112) |#4| $) NIL)) (-2438 (((-112) |#4| $) NIL)) (-2404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1661 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 139)) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 19 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 23)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 117)) (-1724 (((-3 |#4| "failed") $) 42)) (-2798 (((-649 $) |#4| $) 102)) (-2716 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2101 (((-649 $) |#4| $) 121) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 122) (((-649 $) |#4| (-649 $)) NIL)) (-1530 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 134)) (-3446 (($ |#4| $) 88) (($ (-649 |#4|) $) 89) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1586 (((-649 |#4|) $) NIL)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 40)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) 59)) (-3166 (($ $ |#4|) NIL) (((-649 $) |#4| $) 104) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 99)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 14)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 22)) (-3381 (($ $ |#3|) 52)) (-2963 (($ $ |#3|) 54)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-2744 (((-649 $) |#4| $) 66) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4159 (((-112) |#4| $) NIL)) (-4269 (((-112) |#3| $) 74)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1154 |#1| |#2| |#3| |#4|) (-13 (-1117 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -1154))
+((-3446 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *3))) (-5 *1 (-1154 *5 *6 *7 *3)) (-4 *3 (-1073 *5 *6 *7)))) (-1806 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) (-1806 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) (-1530 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) (-1661 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1154 *5 *6 *7 *8))))) (-5 *1 (-1154 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(-13 (-1117 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3310 ((|#1| $) 37)) (-2364 (($ (-649 |#1|)) 45)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-4235 ((|#1| |#1| $) 40)) (-2412 ((|#1| $) 35)) (-2882 (((-649 |#1|) $) 18 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 22)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 38)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1781 ((|#1| $) 36)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 32)) (-3635 (($) 43)) (-2804 (((-776) $) 30)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 27)) (-3796 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 17 (|has| |#1| (-1108)))) (-2428 (((-776) $) 31 (|has| $ (-6 -4447)))))
+(((-1155 |#1|) (-13 (-1129 |#1|) (-10 -8 (-15 -2364 ($ (-649 |#1|))))) (-1225)) (T -1155))
+((-2364 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1155 *3)))))
+(-13 (-1129 |#1|) (-10 -8 (-15 -2364 ($ (-649 |#1|)))))
+((-3943 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1242 (-569)) |#2|) 55) ((|#2| $ (-569) |#2|) 52)) (-2199 (((-112) $) 12)) (-3834 (($ (-1 |#2| |#2|) $) 50)) (-3513 ((|#2| $) NIL) (($ $ (-776)) 20)) (-1682 (($ $ |#2|) 51)) (-4038 (((-112) $) 11)) (-1869 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1242 (-569))) 38) ((|#2| $ (-569)) 29) ((|#2| $ (-569) |#2|) NIL)) (-2866 (($ $ $) 58) (($ $ |#2|) NIL)) (-2443 (($ $ $) 40) (($ |#2| $) NIL) (($ (-649 $)) 47) (($ $ |#2|) NIL)))
+(((-1156 |#1| |#2|) (-10 -8 (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| "last")) (-15 -1869 (|#1| |#1| "rest")) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1869 (|#2| |#1| "value")) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|))) (-1157 |#2|) (-1225)) (T -1156))
+NIL
+(-10 -8 (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| "last")) (-15 -1869 (|#1| |#1| "rest")) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1869 (|#2| |#1| "value")) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2002 (((-1280) $ (-569) (-569)) 98 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 118 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4447)))) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-3550 (($ $) 100 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4447))) (($ |#1| $) 101 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3846 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 88)) (-2199 (((-112) $) 84)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) 109)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 96 (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 95 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-4298 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1696 (((-649 (-569)) $) 93)) (-1414 (((-112) (-569) $) 92)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1682 (($ $ |#1|) 97 (|has| $ (-6 -4448)))) (-4038 (((-112) $) 85)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 91)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1242 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-2602 (((-569) $ $) 45)) (-4328 (($ $ (-1242 (-569))) 115) (($ $ (-569)) 114)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 108)) (-2866 (($ $ $) 62 (|has| $ (-6 -4448))) (($ $ |#1|) 61 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1157 |#1|) (-140) (-1225)) (T -1157))
+((-4038 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))))
+(-13 (-1263 |t#1|) (-656 |t#1|) (-10 -8 (-15 -4038 ((-112) $)) (-15 -2199 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T) ((-1263 |#1|) . T))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1158 |#1| |#2| |#3|) (-1201 |#1| |#2|) (-1108) (-1108) |#2|) (T -1158))
+NIL
+(-1201 |#1| |#2|)
+((-2417 (((-112) $ $) NIL)) (-3666 (((-696 (-1143)) $) 27)) (-3761 (((-1143) $) 15)) (-2248 (((-1143) $) 17)) (-3435 (((-1167) $) NIL)) (-4141 (((-511) $) 13)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 37) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1159) (-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -2248 ((-1143) $)) (-15 -3666 ((-696 (-1143)) $)) (-15 -3761 ((-1143) $))))) (T -1159))
+((-4141 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1159)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-696 (-1143))) (-5 *1 (-1159)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159)))))
+(-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -2248 ((-1143) $)) (-15 -3666 ((-696 (-1143)) $)) (-15 -3761 ((-1143) $))))
+((-2417 (((-112) $ $) 7)) (-3885 (((-3 $ "failed") $) 14)) (-3435 (((-1167) $) 10)) (-2307 (($) 15 T CONST)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)))
+(((-1160) (-140)) (T -1160))
+((-2307 (*1 *1) (-4 *1 (-1160))) (-3885 (*1 *1 *1) (|partial| -4 *1 (-1160))))
+(-13 (-1108) (-10 -8 (-15 -2307 ($) -3709) (-15 -3885 ((-3 $ "failed") $))))
+(((-102) . T) ((-618 (-867)) . T) ((-1108) . T))
+((-3559 (((-1165 |#1|) (-1165 |#1|)) 17)) (-2695 (((-1165 |#1|) (-1165 |#1|)) 13)) (-2238 (((-1165 |#1|) (-1165 |#1|) (-569) (-569)) 20)) (-1729 (((-1165 |#1|) (-1165 |#1|)) 15)))
+(((-1161 |#1|) (-10 -7 (-15 -2695 ((-1165 |#1|) (-1165 |#1|))) (-15 -1729 ((-1165 |#1|) (-1165 |#1|))) (-15 -3559 ((-1165 |#1|) (-1165 |#1|))) (-15 -2238 ((-1165 |#1|) (-1165 |#1|) (-569) (-569)))) (-13 (-561) (-147))) (T -1161))
+((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1161 *4)))) (-3559 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1161 *3)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1161 *3)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1161 *3)))))
+(-10 -7 (-15 -2695 ((-1165 |#1|) (-1165 |#1|))) (-15 -1729 ((-1165 |#1|) (-1165 |#1|))) (-15 -3559 ((-1165 |#1|) (-1165 |#1|))) (-15 -2238 ((-1165 |#1|) (-1165 |#1|) (-569) (-569))))
+((-2443 (((-1165 |#1|) (-1165 (-1165 |#1|))) 15)))
+(((-1162 |#1|) (-10 -7 (-15 -2443 ((-1165 |#1|) (-1165 (-1165 |#1|))))) (-1225)) (T -1162))
+((-2443 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1162 *4)) (-4 *4 (-1225)))))
+(-10 -7 (-15 -2443 ((-1165 |#1|) (-1165 (-1165 |#1|)))))
+((-1610 (((-1165 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|)) 25)) (-3598 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|)) 26)) (-1346 (((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)) 16)))
+(((-1163 |#1| |#2|) (-10 -7 (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1610 ((-1165 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|))) (-15 -3598 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|)))) (-1225) (-1225)) (T -1163))
+((-3598 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-1163 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1165 *6)) (-4 *6 (-1225)) (-4 *3 (-1225)) (-5 *2 (-1165 *3)) (-5 *1 (-1163 *6 *3)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6)))))
+(-10 -7 (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1610 ((-1165 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|))) (-15 -3598 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|))))
+((-1346 (((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-1165 |#2|)) 21)))
+(((-1164 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-1165 |#2|)))) (-1225) (-1225) (-1225)) (T -1164))
+((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-1165 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) (-5 *1 (-1164 *6 *7 *8)))))
+(-10 -7 (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-1165 |#2|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) 67)) (-2002 (((-1280) $ (-569) (-569)) 99 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 129 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-2654 (((-867) $) 56 (|has| |#1| (-1108)))) (-4028 (((-112)) 55 (|has| |#1| (-1108)))) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) 116 (|has| $ (-6 -4448))) (($ $ (-569) $) 142)) (-1344 ((|#1| $ |#1|) 126 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 121 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4448))) (($ $ "rest" $) 125 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 113 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 77 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 80)) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3115 (($ $) 14)) (-3525 (($ $) 42) (($ $ (-776)) 111)) (-1489 (((-112) (-649 |#1|) $) 135 (|has| |#1| (-1108)))) (-3239 (($ (-649 |#1|)) 131)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) 79)) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1871 (((-1280) (-569) $) 141 (|has| |#1| (-1108)))) (-1465 (((-776) $) 138)) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-1438 (($ $) 114)) (-2350 (((-112) $) 13)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) 96)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1340 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2867 ((|#1| $) 10)) (-3513 ((|#1| $) 41) (($ $ (-776)) 65)) (-2799 (((-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776))) (-776) $) 36)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1392 (($ (-1 (-112) |#1|) $) 146)) (-1401 (($ (-1 (-112) |#1|) $) 147)) (-1682 (($ $ |#1|) 90 (|has| $ (-6 -4448)))) (-3166 (($ $ (-569)) 45)) (-4038 (((-112) $) 94)) (-1949 (((-112) $) 12)) (-3934 (((-112) $) 137)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 30)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) 20)) (-3635 (($) 60)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) 75) ((|#1| $ (-569) |#1|) NIL)) (-2602 (((-569) $ $) 64)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4316 (($ (-1 $)) 63)) (-3966 (((-112) $) 91)) (-1641 (($ $) 92)) (-4142 (($ $) 117 (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 59)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 73)) (-3748 (($ |#1| $) 115)) (-2866 (($ $ $) 119 (|has| $ (-6 -4448))) (($ $ |#1|) 120 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 101) (($ |#1| $) 61) (($ (-649 $)) 106) (($ $ |#1|) 100)) (-2007 (($ $) 66)) (-3796 (($ (-649 |#1|)) 130) (((-867) $) 57 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 133 (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1165 |#1|) (-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4448) (-15 -3239 ($ (-649 |#1|))) (IF (|has| |#1| (-1108)) (-15 -1489 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -2799 ((-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -4316 ($ (-1 $))) (-15 -3748 ($ |#1| $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -1871 ((-1280) (-569) $)) (-15 -2654 ((-867) $)) (-15 -4028 ((-112)))) |%noBranch|) (-15 -2530 ($ $ (-569) $)) (-15 -1340 ($ (-1 |#1|))) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)))) (-1225)) (T -1165))
+((-3239 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1489 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-4 *4 (-1225)) (-5 *2 (-112)) (-5 *1 (-1165 *4)))) (-2799 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776)))) (-5 *1 (-1165 *4)) (-4 *4 (-1225)) (-5 *3 (-776)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-1 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1225)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1225)))) (-1871 (*1 *2 *3 *1) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1165 *4)) (-4 *4 (-1108)) (-4 *4 (-1225)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1165 *3)) (-4 *3 (-1108)) (-4 *3 (-1225)))) (-4028 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1108)) (-4 *3 (-1225)))) (-2530 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1165 *3)) (-4 *3 (-1225)))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))))
+(-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4448) (-15 -3239 ($ (-649 |#1|))) (IF (|has| |#1| (-1108)) (-15 -1489 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -2799 ((-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -4316 ($ (-1 $))) (-15 -3748 ($ |#1| $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -1871 ((-1280) (-569) $)) (-15 -2654 ((-867) $)) (-15 -4028 ((-112)))) |%noBranch|) (-15 -2530 ($ $ (-569) $)) (-15 -1340 ($ (-1 |#1|))) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $))))
+((-2417 (((-112) $ $) 19)) (-1402 (($ $) 121)) (-4209 (($ $) 122)) (-2455 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) 119)) (-2486 (((-112) $ $ (-569)) 118)) (-3390 (($ (-569)) 128)) (-2241 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-1637 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3903 (($ $ (-1242 (-569)) $) 115)) (-3550 (($ $) 79 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-144) $) 78 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) 52)) (-2528 (((-112) $ $) 120)) (-4036 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1108))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2882 (((-649 (-144)) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) 116)) (-4148 (((-776) $ $ (-144)) 117)) (-3834 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2588 (($ $) 123)) (-2268 (($ $) 124)) (-4254 (((-112) $ (-776)) 10)) (-1648 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3435 (((-1167) $) 22)) (-4298 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21)) (-3513 (((-144) $) 43 (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1682 (($ $ (-144)) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1242 (-569))) 64) (($ $ $) 103)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4447))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) 71)) (-2443 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (($ (-144)) 112) (((-867) $) 18)) (-1520 (((-112) $ $) 23)) (-1980 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4447)))) (-3266 (((-1167) $) 132) (((-1167) $ (-112)) 131) (((-1280) (-827) $) 130) (((-1280) (-827) $ (-112)) 129)) (-2978 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2956 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2920 (((-112) $ $) 20)) (-2966 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2944 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1166) (-140)) (T -1166))
+((-3390 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1166)))))
+(-13 (-1152) (-1108) (-833) (-10 -8 (-15 -3390 ($ (-569)))))
+(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-656 #0#) . T) ((-19 #0#) . T) ((-833) . T) ((-855) |has| (-144) (-855)) ((-1108) . T) ((-1152) . T) ((-1225) . T))
+((-2417 (((-112) $ $) NIL)) (-1402 (($ $) NIL)) (-4209 (($ $) NIL)) (-2455 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) NIL)) (-2486 (((-112) $ $ (-569)) NIL)) (-3390 (($ (-569)) 8)) (-2241 (((-649 $) $ (-144)) NIL) (((-649 $) $ (-141)) NIL)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-144) (-855))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-1637 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3903 (($ $ (-1242 (-569)) $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-1698 (($ (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) NIL)) (-2528 (((-112) $ $) NIL)) (-4036 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) NIL (|has| (-144) (-1108))) (((-569) $ $ (-569)) NIL) (((-569) (-141) $ (-569)) NIL)) (-2882 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) NIL)) (-4148 (((-776) $ $ (-144)) NIL)) (-3834 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2588 (($ $) NIL)) (-2268 (($ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-1648 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3435 (((-1167) $) NIL)) (-4298 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-144) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1682 (($ $ (-144)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1242 (-569))) NIL) (($ $ $) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) NIL)) (-2443 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (($ (-144)) NIL) (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3266 (((-1167) $) 19) (((-1167) $ (-112)) 21) (((-1280) (-827) $) 22) (((-1280) (-827) $ (-112)) 23)) (-2978 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1167) (-1166)) (T -1167))
+NIL
+(-1166)
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-2002 (((-1280) $ (-1167) (-1167)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-1167) |#1|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#1| "failed") (-1167) $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#1| "failed") (-1167) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-1167) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-1167)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1167) $) NIL (|has| (-1167) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-1167) $) NIL (|has| (-1167) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-2795 (((-649 (-1167)) $) NIL)) (-3804 (((-112) (-1167) $) NIL)) (-1877 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-1696 (((-649 (-1167)) $) NIL)) (-1414 (((-112) (-1167) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-3513 ((|#1| $) NIL (|has| (-1167) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) "failed") (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-1167)) NIL) ((|#1| $ (-1167) |#1|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-618 (-867))) (|has| |#1| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1168 |#1|) (-13 (-1201 (-1167) |#1|) (-10 -7 (-6 -4447))) (-1108)) (T -1168))
+NIL
+(-13 (-1201 (-1167) |#1|) (-10 -7 (-6 -4447)))
+((-3490 (((-1165 |#1|) (-1165 |#1|)) 84)) (-3086 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 42)) (-3650 (((-1165 |#1|) (-412 (-569)) (-1165 |#1|)) 136 (|has| |#1| (-38 (-412 (-569)))))) (-4037 (((-1165 |#1|) |#1| (-1165 |#1|)) 142 (|has| |#1| (-367)))) (-2868 (((-1165 |#1|) (-1165 |#1|)) 99)) (-2692 (((-1165 (-569)) (-569)) 64)) (-3777 (((-1165 |#1|) (-1165 (-1165 |#1|))) 118 (|has| |#1| (-38 (-412 (-569)))))) (-1655 (((-1165 |#1|) (-569) (-569) (-1165 |#1|)) 104)) (-3348 (((-1165 |#1|) |#1| (-569)) 54)) (-4346 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 67)) (-4303 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 139 (|has| |#1| (-367)))) (-1824 (((-1165 |#1|) |#1| (-1 (-1165 |#1|))) 117 (|has| |#1| (-38 (-412 (-569)))))) (-4173 (((-1165 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1165 |#1|))) 140 (|has| |#1| (-367)))) (-1597 (((-1165 |#1|) (-1165 |#1|)) 98)) (-3374 (((-1165 |#1|) (-1165 |#1|)) 83)) (-2892 (((-1165 |#1|) (-569) (-569) (-1165 |#1|)) 105)) (-3579 (((-1165 |#1|) |#1| (-1165 |#1|)) 114 (|has| |#1| (-38 (-412 (-569)))))) (-2842 (((-1165 (-569)) (-569)) 63)) (-3805 (((-1165 |#1|) |#1|) 66)) (-2347 (((-1165 |#1|) (-1165 |#1|) (-569) (-569)) 101)) (-2623 (((-1165 |#1|) (-1 |#1| (-569)) (-1165 |#1|)) 73)) (-2407 (((-3 (-1165 |#1|) "failed") (-1165 |#1|) (-1165 |#1|)) 40)) (-4230 (((-1165 |#1|) (-1165 |#1|)) 100)) (-1725 (((-1165 |#1|) (-1165 |#1|) |#1|) 78)) (-4144 (((-1165 |#1|) (-1165 |#1|)) 69)) (-2383 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 79)) (-3796 (((-1165 |#1|) |#1|) 74)) (-4051 (((-1165 |#1|) (-1165 (-1165 |#1|))) 89)) (-3035 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 41)) (-3024 (((-1165 |#1|) (-1165 |#1|)) 21) (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 23)) (-3012 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 17)) (* (((-1165 |#1|) (-1165 |#1|) |#1|) 29) (((-1165 |#1|) |#1| (-1165 |#1|)) 26) (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 27)))
+(((-1169 |#1|) (-10 -7 (-15 -3012 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2407 ((-3 (-1165 |#1|) "failed") (-1165 |#1|) (-1165 |#1|))) (-15 -3035 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3086 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -3348 ((-1165 |#1|) |#1| (-569))) (-15 -2842 ((-1165 (-569)) (-569))) (-15 -2692 ((-1165 (-569)) (-569))) (-15 -3805 ((-1165 |#1|) |#1|)) (-15 -4346 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4144 ((-1165 |#1|) (-1165 |#1|))) (-15 -2623 ((-1165 |#1|) (-1 |#1| (-569)) (-1165 |#1|))) (-15 -3796 ((-1165 |#1|) |#1|)) (-15 -1725 ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2383 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3374 ((-1165 |#1|) (-1165 |#1|))) (-15 -3490 ((-1165 |#1|) (-1165 |#1|))) (-15 -4051 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -1597 ((-1165 |#1|) (-1165 |#1|))) (-15 -2868 ((-1165 |#1|) (-1165 |#1|))) (-15 -4230 ((-1165 |#1|) (-1165 |#1|))) (-15 -2347 ((-1165 |#1|) (-1165 |#1|) (-569) (-569))) (-15 -1655 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (-15 -2892 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 -1824 ((-1165 |#1|) |#1| (-1 (-1165 |#1|)))) (-15 -3777 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -3650 ((-1165 |#1|) (-412 (-569)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -4303 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4173 ((-1165 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1165 |#1|)))) (-15 -4037 ((-1165 |#1|) |#1| (-1165 |#1|)))) |%noBranch|)) (-1057)) (T -1169))
+((-4037 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1165 *4))) (-4 *4 (-367)) (-4 *4 (-1057)) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)))) (-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3650 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1057)) (-5 *3 (-412 (-569))) (-5 *1 (-1169 *4)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1165 *3))) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)))) (-3579 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2892 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-1655 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-2347 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)) (-4 *4 (-1057)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2383 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))) (-2623 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-4346 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))) (-2692 (*1 *2 *3) (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057)) (-5 *3 (-569)))) (-2842 (*1 *2 *3) (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057)) (-5 *3 (-569)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))) (-3086 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2407 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))))
+(-10 -7 (-15 -3012 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2407 ((-3 (-1165 |#1|) "failed") (-1165 |#1|) (-1165 |#1|))) (-15 -3035 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3086 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -3348 ((-1165 |#1|) |#1| (-569))) (-15 -2842 ((-1165 (-569)) (-569))) (-15 -2692 ((-1165 (-569)) (-569))) (-15 -3805 ((-1165 |#1|) |#1|)) (-15 -4346 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4144 ((-1165 |#1|) (-1165 |#1|))) (-15 -2623 ((-1165 |#1|) (-1 |#1| (-569)) (-1165 |#1|))) (-15 -3796 ((-1165 |#1|) |#1|)) (-15 -1725 ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2383 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3374 ((-1165 |#1|) (-1165 |#1|))) (-15 -3490 ((-1165 |#1|) (-1165 |#1|))) (-15 -4051 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -1597 ((-1165 |#1|) (-1165 |#1|))) (-15 -2868 ((-1165 |#1|) (-1165 |#1|))) (-15 -4230 ((-1165 |#1|) (-1165 |#1|))) (-15 -2347 ((-1165 |#1|) (-1165 |#1|) (-569) (-569))) (-15 -1655 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (-15 -2892 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 -1824 ((-1165 |#1|) |#1| (-1 (-1165 |#1|)))) (-15 -3777 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -3650 ((-1165 |#1|) (-412 (-569)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -4303 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4173 ((-1165 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1165 |#1|)))) (-15 -4037 ((-1165 |#1|) |#1| (-1165 |#1|)))) |%noBranch|))
+((-2771 (((-1165 |#1|) (-1165 |#1|)) 60)) (-2626 (((-1165 |#1|) (-1165 |#1|)) 42)) (-2746 (((-1165 |#1|) (-1165 |#1|)) 56)) (-2601 (((-1165 |#1|) (-1165 |#1|)) 38)) (-4118 (((-1165 |#1|) (-1165 |#1|)) 63)) (-2647 (((-1165 |#1|) (-1165 |#1|)) 45)) (-2662 (((-1165 |#1|) (-1165 |#1|)) 34)) (-4389 (((-1165 |#1|) (-1165 |#1|)) 29)) (-4128 (((-1165 |#1|) (-1165 |#1|)) 64)) (-2661 (((-1165 |#1|) (-1165 |#1|)) 46)) (-2783 (((-1165 |#1|) (-1165 |#1|)) 61)) (-2635 (((-1165 |#1|) (-1165 |#1|)) 43)) (-2758 (((-1165 |#1|) (-1165 |#1|)) 58)) (-2614 (((-1165 |#1|) (-1165 |#1|)) 40)) (-4161 (((-1165 |#1|) (-1165 |#1|)) 68)) (-2701 (((-1165 |#1|) (-1165 |#1|)) 50)) (-4140 (((-1165 |#1|) (-1165 |#1|)) 66)) (-2675 (((-1165 |#1|) (-1165 |#1|)) 48)) (-4183 (((-1165 |#1|) (-1165 |#1|)) 71)) (-2723 (((-1165 |#1|) (-1165 |#1|)) 53)) (-1503 (((-1165 |#1|) (-1165 |#1|)) 72)) (-2734 (((-1165 |#1|) (-1165 |#1|)) 54)) (-4175 (((-1165 |#1|) (-1165 |#1|)) 70)) (-2712 (((-1165 |#1|) (-1165 |#1|)) 52)) (-4151 (((-1165 |#1|) (-1165 |#1|)) 69)) (-2689 (((-1165 |#1|) (-1165 |#1|)) 51)) (** (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 36)))
+(((-1170 |#1|) (-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|)))) (-38 (-412 (-569)))) (T -1170))
+((-1503 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2661 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4389 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))))
+(-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|))))
+((-2771 (((-1165 |#1|) (-1165 |#1|)) 107)) (-2626 (((-1165 |#1|) (-1165 |#1|)) 61)) (-2298 (((-2 (|:| -2746 (-1165 |#1|)) (|:| -2758 (-1165 |#1|))) (-1165 |#1|)) 103)) (-2746 (((-1165 |#1|) (-1165 |#1|)) 104)) (-2522 (((-2 (|:| -2601 (-1165 |#1|)) (|:| -2614 (-1165 |#1|))) (-1165 |#1|)) 54)) (-2601 (((-1165 |#1|) (-1165 |#1|)) 55)) (-4118 (((-1165 |#1|) (-1165 |#1|)) 109)) (-2647 (((-1165 |#1|) (-1165 |#1|)) 68)) (-2662 (((-1165 |#1|) (-1165 |#1|)) 40)) (-4389 (((-1165 |#1|) (-1165 |#1|)) 37)) (-4128 (((-1165 |#1|) (-1165 |#1|)) 110)) (-2661 (((-1165 |#1|) (-1165 |#1|)) 69)) (-2783 (((-1165 |#1|) (-1165 |#1|)) 108)) (-2635 (((-1165 |#1|) (-1165 |#1|)) 64)) (-2758 (((-1165 |#1|) (-1165 |#1|)) 105)) (-2614 (((-1165 |#1|) (-1165 |#1|)) 56)) (-4161 (((-1165 |#1|) (-1165 |#1|)) 118)) (-2701 (((-1165 |#1|) (-1165 |#1|)) 93)) (-4140 (((-1165 |#1|) (-1165 |#1|)) 112)) (-2675 (((-1165 |#1|) (-1165 |#1|)) 89)) (-4183 (((-1165 |#1|) (-1165 |#1|)) 122)) (-2723 (((-1165 |#1|) (-1165 |#1|)) 97)) (-1503 (((-1165 |#1|) (-1165 |#1|)) 124)) (-2734 (((-1165 |#1|) (-1165 |#1|)) 99)) (-4175 (((-1165 |#1|) (-1165 |#1|)) 120)) (-2712 (((-1165 |#1|) (-1165 |#1|)) 95)) (-4151 (((-1165 |#1|) (-1165 |#1|)) 114)) (-2689 (((-1165 |#1|) (-1165 |#1|)) 91)) (** (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 41)))
+(((-1171 |#1|) (-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2522 ((-2 (|:| -2601 (-1165 |#1|)) (|:| -2614 (-1165 |#1|))) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2298 ((-2 (|:| -2746 (-1165 |#1|)) (|:| -2758 (-1165 |#1|))) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|)))) (-38 (-412 (-569)))) (T -1171))
+((-1503 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2746 (-1165 *4)) (|:| -2758 (-1165 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2661 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2601 (-1165 *4)) (|:| -2614 (-1165 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4389 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))))
+(-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2522 ((-2 (|:| -2601 (-1165 |#1|)) (|:| -2614 (-1165 |#1|))) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2298 ((-2 (|:| -2746 (-1165 |#1|)) (|:| -2758 (-1165 |#1|))) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|))))
+((-4003 (((-964 |#2|) |#2| |#2|) 50)) (-2642 ((|#2| |#2| |#1|) 19 (|has| |#1| (-310)))))
+(((-1172 |#1| |#2|) (-10 -7 (-15 -4003 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -2642 (|#2| |#2| |#1|)) |%noBranch|)) (-561) (-1251 |#1|)) (T -1172))
+((-2642 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1251 *3)))) (-4003 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1172 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -4003 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -2642 (|#2| |#2| |#1|)) |%noBranch|))
+((-2417 (((-112) $ $) NIL)) (-2527 (($ $ (-649 (-776))) 81)) (-3849 (($) 33)) (-2659 (($ $) 51)) (-3818 (((-649 $) $) 60)) (-2100 (((-112) $) 19)) (-1669 (((-649 (-949 |#2|)) $) 88)) (-3258 (($ $) 82)) (-2393 (((-776) $) 47)) (-4300 (($) 32)) (-2926 (($ $ (-649 (-776)) (-949 |#2|)) 74) (($ $ (-649 (-776)) (-776)) 75) (($ $ (-776) (-949 |#2|)) 77)) (-4198 (($ $ $) 57) (($ (-649 $)) 59)) (-2467 (((-776) $) 89)) (-1887 (((-112) $) 15)) (-3435 (((-1167) $) NIL)) (-3634 (((-112) $) 22)) (-3547 (((-1128) $) NIL)) (-2005 (((-172) $) 87)) (-2243 (((-949 |#2|) $) 83)) (-2497 (((-776) $) 84)) (-3784 (((-112) $) 86)) (-1311 (($ $ (-649 (-776)) (-172)) 80)) (-2791 (($ $) 52)) (-3796 (((-867) $) 100)) (-4211 (($ $ (-649 (-776)) (-112)) 79)) (-4001 (((-649 $) $) 11)) (-3682 (($ $ (-776)) 46)) (-2158 (($ $) 43)) (-1520 (((-112) $ $) NIL)) (-2797 (($ $ $ (-949 |#2|) (-776)) 70)) (-2749 (($ $ (-949 |#2|)) 69)) (-2367 (($ $ (-649 (-776)) (-949 |#2|)) 66) (($ $ (-649 (-776)) (-776)) 72) (((-776) $ (-949 |#2|)) 73)) (-2920 (((-112) $ $) 94)))
+(((-1173 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -1887 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -3634 ((-112) $)) (-15 -4300 ($)) (-15 -3849 ($)) (-15 -2158 ($ $)) (-15 -3682 ($ $ (-776))) (-15 -4001 ((-649 $) $)) (-15 -2393 ((-776) $)) (-15 -2659 ($ $)) (-15 -2791 ($ $)) (-15 -4198 ($ $ $)) (-15 -4198 ($ (-649 $))) (-15 -3818 ((-649 $) $)) (-15 -2367 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2749 ($ $ (-949 |#2|))) (-15 -2797 ($ $ $ (-949 |#2|) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2367 ($ $ (-649 (-776)) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-776))) (-15 -2367 ((-776) $ (-949 |#2|))) (-15 -2926 ($ $ (-776) (-949 |#2|))) (-15 -4211 ($ $ (-649 (-776)) (-112))) (-15 -1311 ($ $ (-649 (-776)) (-172))) (-15 -2527 ($ $ (-649 (-776)))) (-15 -2243 ((-949 |#2|) $)) (-15 -2497 ((-776) $)) (-15 -3784 ((-112) $)) (-15 -2005 ((-172) $)) (-15 -2467 ((-776) $)) (-15 -3258 ($ $)) (-15 -1669 ((-649 (-949 |#2|)) $)))) (-927) (-1057)) (T -1173))
+((-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-4300 (*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-3849 (*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2659 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-4198 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2749 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *4)) (-4 *4 (-1057)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)))) (-2797 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-2926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-2367 (*1 *2 *1 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *2 (-776)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-4211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-1311 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-2527 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-949 *4)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-172)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3258 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))))
+(-13 (-1108) (-10 -8 (-15 -1887 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -3634 ((-112) $)) (-15 -4300 ($)) (-15 -3849 ($)) (-15 -2158 ($ $)) (-15 -3682 ($ $ (-776))) (-15 -4001 ((-649 $) $)) (-15 -2393 ((-776) $)) (-15 -2659 ($ $)) (-15 -2791 ($ $)) (-15 -4198 ($ $ $)) (-15 -4198 ($ (-649 $))) (-15 -3818 ((-649 $) $)) (-15 -2367 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2749 ($ $ (-949 |#2|))) (-15 -2797 ($ $ $ (-949 |#2|) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2367 ($ $ (-649 (-776)) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-776))) (-15 -2367 ((-776) $ (-949 |#2|))) (-15 -2926 ($ $ (-776) (-949 |#2|))) (-15 -4211 ($ $ (-649 (-776)) (-112))) (-15 -1311 ($ $ (-649 (-776)) (-172))) (-15 -2527 ($ $ (-649 (-776)))) (-15 -2243 ((-949 |#2|) $)) (-15 -2497 ((-776) $)) (-15 -3784 ((-112) $)) (-15 -2005 ((-172) $)) (-15 -2467 ((-776) $)) (-15 -3258 ($ $)) (-15 -1669 ((-649 (-949 |#2|)) $))))
+((-2417 (((-112) $ $) NIL)) (-2115 ((|#2| $) 11)) (-2105 ((|#1| $) 10)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3809 (($ |#1| |#2|) 9)) (-3796 (((-867) $) 16)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1174 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3809 ($ |#1| |#2|)) (-15 -2105 (|#1| $)) (-15 -2115 (|#2| $)))) (-1108) (-1108)) (T -1174))
+((-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-2105 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-1108)))) (-2115 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -3809 ($ |#1| |#2|)) (-15 -2105 (|#1| $)) (-15 -2115 (|#2| $))))
+((-2417 (((-112) $ $) NIL)) (-3727 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1175) (-13 (-1091) (-10 -8 (-15 -3727 ((-1143) $))))) (T -1175))
+((-3727 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1175)))))
+(-13 (-1091) (-10 -8 (-15 -3727 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-1183 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 11)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4355 (($ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3039 (((-112) $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2917 (($ $ (-569)) NIL) (($ $ (-569) (-569)) 75)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-1494 (((-1183 |#1| |#2| |#3|) $) 42)) (-3956 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 32)) (-1773 (((-1183 |#1| |#2| |#3|) $) 33)) (-2771 (($ $) 116 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) 112 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1185) "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-3150 (((-1183 |#1| |#2| |#3|) $) 140) (((-1185) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-2612 (($ $) 37) (($ (-569) $) 38)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-1183 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-1183 |#1| |#2| |#3|))) (|:| |vec| (-1275 (-1183 |#1| |#2| |#3|)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) 54)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 74 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 76 (|has| |#1| (-561)))) (-3406 (($) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-3712 (((-112) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) 28)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) NIL) (((-569) $ (-569)) 26)) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-367)))) (-4399 (((-1183 |#1| |#2| |#3|) $) 44 (|has| |#1| (-367)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) NIL)) (-2148 (($ (-1 |#1| (-569)) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-569)) 19) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-3380 (($ $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2839 (($ $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2662 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1784 (($ (-569) (-1183 |#1| |#2| |#3|)) 36)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 79 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 80 (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3231 (($ $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3465 (((-1183 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 158)) (-2407 (((-3 $ "failed") $ $) 55 (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) (-1183 |#1| |#2| |#3|)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-519 (-1185) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-1183 |#1| |#2| |#3|))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-519 (-1185) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1183 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1183 |#1| |#2| |#3|))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1183 |#1| |#2| |#3|)) (-649 (-1183 |#1| |#2| |#3|))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) NIL) (($ $ $) 61 (|has| (-569) (-1120))) (($ $ (-1183 |#1| |#2| |#3|)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-289 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1271 |#2|)) 57) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 56 (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-3181 (($ $) NIL (|has| |#1| (-367)))) (-4412 (((-1183 |#1| |#2| |#3|) $) 46 (|has| |#1| (-367)))) (-4339 (((-569) $) 43)) (-4128 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 118 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 114 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-541) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 162) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1183 |#1| |#2| |#3|)) 30) (($ (-1271 |#2|)) 25) (($ (-1185)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (($ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-4383 ((|#1| $ (-569)) 77)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 12)) (-2040 (((-1183 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4140 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 110 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 106 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1804 (($) 21 T CONST)) (-1815 (($) 16 T CONST)) (-2832 (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-2978 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2956 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2944 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 49 (|has| |#1| (-367))) (($ (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) 50 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) 60) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) 83 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1183 |#1| |#2| |#3|)) 48 (|has| |#1| (-367))) (($ (-1183 |#1| |#2| |#3|) $) 47 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1176 |#1| |#2| |#3|) (-13 (-1237 |#1| (-1183 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1176))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(-13 (-1237 |#1| (-1183 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|)))
+((-3272 ((|#2| |#2| (-1100 |#2|)) 26) ((|#2| |#2| (-1185)) 28)))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -3272 (|#2| |#2| (-1185))) (-15 -3272 (|#2| |#2| (-1100 |#2|)))) (-13 (-561) (-1046 (-569)) (-644 (-569))) (-13 (-435 |#1|) (-160) (-27) (-1210))) (T -1177))
+((-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210))) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1177 *4 *2)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210))))))
+(-10 -7 (-15 -3272 (|#2| |#2| (-1185))) (-15 -3272 (|#2| |#2| (-1100 |#2|))))
+((-3272 (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1100 (-412 (-958 |#1|)))) 31) (((-412 (-958 |#1|)) (-958 |#1|) (-1100 (-958 |#1|))) 44) (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1185)) 33) (((-412 (-958 |#1|)) (-958 |#1|) (-1185)) 36)))
+(((-1178 |#1|) (-10 -7 (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1185))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1100 (-958 |#1|)))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1100 (-412 (-958 |#1|)))))) (-13 (-561) (-1046 (-569)))) (T -1178))
+((-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-3 *3 (-319 *5))) (-5 *1 (-1178 *5)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-958 *5))) (-5 *3 (-958 *5)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 *3)) (-5 *1 (-1178 *5)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1178 *5)) (-5 *3 (-412 (-958 *5))))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1178 *5)) (-5 *3 (-958 *5)))))
+(-10 -7 (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1185))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1100 (-958 |#1|)))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1100 (-412 (-958 |#1|))))))
+((-1346 (((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)) 13)))
+(((-1179 |#1| |#2|) (-10 -7 (-15 -1346 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)))) (-1057) (-1057)) (T -1179))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-1181 *6)) (-5 *1 (-1179 *5 *6)))))
+(-10 -7 (-15 -1346 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))))
+((-3764 (((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|))) 51)) (-3800 (((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|))) 52)))
+(((-1180 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|)))) (-15 -3764 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|))))) (-798) (-855) (-457) (-955 |#3| |#1| |#2|)) (T -1180))
+((-3764 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7)))) (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7)))) (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7))))))
+(-10 -7 (-15 -3800 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|)))) (-15 -3764 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|)))))
+((-2417 (((-112) $ $) 171)) (-4143 (((-112) $) 43)) (-3678 (((-1275 |#1|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#1|)) NIL)) (-3767 (((-1181 $) $ (-1090)) 82) (((-1181 |#1|) $) 71)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) 164 (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) 158 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) 95 (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 115 (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2401 (($ $ (-776)) 61)) (-2452 (($ $ (-776)) 63)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1090) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $ $) 160 (|has| |#1| (-173)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 80)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1525 (($ $ $) 131)) (-3405 (($ $ $) NIL (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-2642 (($ $) 165 (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-776) $) 69)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3548 (((-867) $ (-867)) 148)) (-1466 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2349 (((-112) $) 48)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) 73) (($ (-1181 $) (-1090)) 89)) (-3003 (($ $ (-776)) 51)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 87) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 153)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-1181 |#1|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) 76)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) 60)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 50)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 103 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 167 (|has| |#1| (-457)))) (-2448 (($ $ (-776) |#1| $) 123)) (-2156 (((-423 (-1181 $)) (-1181 $)) 101 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 100 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 108 (|has| |#1| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-649 (-1090)) (-649 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) 54)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 172 (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $) 156 (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4339 (((-776) $) 78) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 162 (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3796 (((-867) $) 149) (($ (-569)) NIL) (($ |#1|) 77) (($ (-1090)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) 41 (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 17 T CONST)) (-1815 (($) 19 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) 120)) (-3035 (($ $ |#1|) 173 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 90)) (** (($ $ (-927)) 14) (($ $ (-776)) 12)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1181 |#1|) (-13 (-1251 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867))) (-15 -2448 ($ $ (-776) |#1| $)))) (-1057)) (T -1181))
+((-3548 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1181 *3)) (-4 *3 (-1057)))) (-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1181 *3)) (-4 *3 (-1057)))))
+(-13 (-1251 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867))) (-15 -2448 ($ $ (-776) |#1| $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 11)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 36)) (-3150 (((-1176 |#1| |#2| |#3|) $) NIL) (((-1183 |#1| |#2| |#3|) $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3646 (((-412 (-569)) $) 59)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) (-1176 |#1| |#2| |#3|)) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) 20) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4029 (((-1176 |#1| |#2| |#3|) $) 41)) (-4380 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) NIL)) (-1784 (((-1176 |#1| |#2| |#3|) $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1271 |#2|)) 38)) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 62) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1176 |#1| |#2| |#3|)) 30) (($ (-1183 |#1| |#2| |#3|)) 31) (($ (-1271 |#2|)) 26) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 12)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 22 T CONST)) (-1815 (($) 16 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 24)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1182 |#1| |#2| |#3|) (-13 (-1258 |#1| (-1176 |#1| |#2| |#3|)) (-1046 (-1183 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1182))
+((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(-13 (-1258 |#1| (-1176 |#1| |#2| |#3|)) (-1046 (-1183 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 129)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 119)) (-2020 (((-1248 |#2| |#1|) $ (-776)) 69)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-776)) 85) (($ $ (-776) (-776)) 82)) (-2300 (((-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 105)) (-2771 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 169 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 118) (($ (-1165 |#1|)) 113)) (-4118 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) 25)) (-3938 (($ $) 28)) (-3278 (((-958 |#1|) $ (-776)) 81) (((-958 |#1|) $ (-776) (-776)) 83)) (-1677 (((-112) $) 124)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $) 126) (((-776) $ (-776)) 128)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL)) (-2148 (($ (-1 |#1| (-569)) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 13) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $) 133 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 134 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-3166 (($ $ (-776)) 15)) (-2407 (((-3 $ "failed") $ $) 26 (|has| |#1| (-561)))) (-4389 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1869 ((|#1| $ (-776)) 122) (($ $ $) 132 (|has| (-776) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1271 |#2|)) 31)) (-4339 (((-776) $) NIL)) (-4128 (($ $) 179 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 206) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 130 (|has| |#1| (-173))) (($ (-1248 |#2| |#1|)) 55) (($ (-1271 |#2|)) 36)) (-2512 (((-1165 |#1|) $) 101)) (-4383 ((|#1| $ (-776)) 121)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 58)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 161 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 181 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 165 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-776)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 167 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 159 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 17 T CONST)) (-1815 (($) 20 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 198)) (-3012 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 203 (|has| |#1| (-367))) (($ $ $) 138 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 141 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1183 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1183))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-1183 *3 *4 *5)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1183 *4 *5 *6)) (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|)))
+((-3796 (((-867) $) 33) (($ (-1185)) 35)) (-2776 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 46)) (-2764 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 39) (($ $) 40)) (-2690 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 41)) (-2676 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 43)) (-2663 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 42)) (-2649 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 44)) (-2091 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 45)))
+(((-1184) (-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -2690 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2663 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2676 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2649 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2776 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2091 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ $))))) (T -1184))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))) (-2690 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2663 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2676 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2649 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2776 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2091 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2764 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2764 (*1 *1 *1) (-5 *1 (-1184))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -2690 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2663 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2676 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2649 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2776 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2091 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ $))))
+((-2417 (((-112) $ $) NIL)) (-2906 (($ $ (-649 (-867))) 62)) (-2639 (($ $ (-649 (-867))) 60)) (-3390 (((-1167) $) 101)) (-3857 (((-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))) $) 108)) (-2376 (((-112) $) 23)) (-4364 (($ $ (-649 (-649 (-867)))) 59) (($ $ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867))))) 99)) (-4427 (($) 163 T CONST)) (-4015 (((-1280)) 135)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 69) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 76)) (-4300 (($) 122) (($ $) 131)) (-3573 (($ $) 100)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3382 (((-649 $) $) 136)) (-3435 (((-1167) $) 114)) (-3547 (((-1128) $) NIL)) (-1869 (($ $ (-649 (-867))) 61)) (-1410 (((-541) $) 48) (((-1185) $) 49) (((-898 (-569)) $) 80) (((-898 (-383)) $) 78)) (-3796 (((-867) $) 55) (($ (-1167)) 50)) (-1520 (((-112) $ $) NIL)) (-3155 (($ $ (-649 (-867))) 63)) (-3266 (((-1167) $) 34) (((-1167) $ (-112)) 35) (((-1280) (-827) $) 36) (((-1280) (-827) $ (-112)) 37)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 51)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 52)))
+(((-1185) (-13 (-855) (-619 (-541)) (-833) (-619 (-1185)) (-621 (-1167)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4300 ($)) (-15 -4300 ($ $)) (-15 -4015 ((-1280))) (-15 -3573 ($ $)) (-15 -2376 ((-112) $)) (-15 -3857 ((-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -4364 ($ $ (-649 (-649 (-867))))) (-15 -4364 ($ $ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -2639 ($ $ (-649 (-867)))) (-15 -2906 ($ $ (-649 (-867)))) (-15 -3155 ($ $ (-649 (-867)))) (-15 -1869 ($ $ (-649 (-867)))) (-15 -3390 ((-1167) $)) (-15 -3382 ((-649 $) $)) (-15 -4427 ($) -3709)))) (T -1185))
+((-4300 (*1 *1) (-5 *1 (-1185))) (-4300 (*1 *1 *1) (-5 *1 (-1185))) (-4015 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1185)))) (-3573 (*1 *1 *1) (-5 *1 (-1185))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1185)))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1185)))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1185)))) (-2639 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-2906 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-3155 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1185)))) (-4427 (*1 *1) (-5 *1 (-1185))))
+(-13 (-855) (-619 (-541)) (-833) (-619 (-1185)) (-621 (-1167)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4300 ($)) (-15 -4300 ($ $)) (-15 -4015 ((-1280))) (-15 -3573 ($ $)) (-15 -2376 ((-112) $)) (-15 -3857 ((-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -4364 ($ $ (-649 (-649 (-867))))) (-15 -4364 ($ $ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -2639 ($ $ (-649 (-867)))) (-15 -2906 ($ $ (-649 (-867)))) (-15 -3155 ($ $ (-649 (-867)))) (-15 -1869 ($ $ (-649 (-867)))) (-15 -3390 ((-1167) $)) (-15 -3382 ((-649 $) $)) (-15 -4427 ($) -3709)))
+((-2480 (((-1275 |#1|) |#1| (-927)) 18) (((-1275 |#1|) (-649 |#1|)) 25)))
+(((-1186 |#1|) (-10 -7 (-15 -2480 ((-1275 |#1|) (-649 |#1|))) (-15 -2480 ((-1275 |#1|) |#1| (-927)))) (-1057)) (T -1186))
+((-2480 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1275 *3)) (-5 *1 (-1186 *3)) (-4 *3 (-1057)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1057)) (-5 *2 (-1275 *4)) (-5 *1 (-1186 *4)))))
+(-10 -7 (-15 -2480 ((-1275 |#1|) (-649 |#1|))) (-15 -2480 ((-1275 |#1|) |#1| (-927))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2870 (($ $ |#1| (-979) $) NIL)) (-2349 (((-112) $) 17)) (-3366 (((-776) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-979)) NIL)) (-2272 (((-979) $) NIL)) (-2492 (($ (-1 (-979) (-979)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2448 (($ $ (-979) |#1| $) NIL (-12 (|has| (-979) (-131)) (|has| |#1| (-561))))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-4339 (((-979) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-979)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 11 T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 21)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1187 |#1|) (-13 (-329 |#1| (-979)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-979) (-131)) (-15 -2448 ($ $ (-979) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) (-1057)) (T -1187))
+((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-979)) (-4 *2 (-131)) (-5 *1 (-1187 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))))
+(-13 (-329 |#1| (-979)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-979) (-131)) (-15 -2448 ($ $ (-979) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|)))
+((-2161 (((-1189) (-1185) $) 25)) (-2096 (($) 29)) (-1566 (((-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-1185) $) 22)) (-3000 (((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) $) 41) (((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) 42) (((-1280) (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) 43)) (-1785 (((-1280) (-1185)) 58)) (-1442 (((-1280) (-1185) $) 55) (((-1280) (-1185)) 56) (((-1280)) 57)) (-3999 (((-1280) (-1185)) 37)) (-1460 (((-1185)) 36)) (-3635 (($) 34)) (-2739 (((-442) (-1185) (-442) (-1185) $) 45) (((-442) (-649 (-1185)) (-442) (-1185) $) 49) (((-442) (-1185) (-442)) 46) (((-442) (-1185) (-442) (-1185)) 50)) (-4214 (((-1185)) 35)) (-3796 (((-867) $) 28)) (-3688 (((-1280)) 30) (((-1280) (-1185)) 33)) (-1847 (((-649 (-1185)) (-1185) $) 24)) (-2888 (((-1280) (-1185) (-649 (-1185)) $) 38) (((-1280) (-1185) (-649 (-1185))) 39) (((-1280) (-649 (-1185))) 40)))
+(((-1188) (-13 (-618 (-867)) (-10 -8 (-15 -2096 ($)) (-15 -3688 ((-1280))) (-15 -3688 ((-1280) (-1185))) (-15 -2739 ((-442) (-1185) (-442) (-1185) $)) (-15 -2739 ((-442) (-649 (-1185)) (-442) (-1185) $)) (-15 -2739 ((-442) (-1185) (-442))) (-15 -2739 ((-442) (-1185) (-442) (-1185))) (-15 -3999 ((-1280) (-1185))) (-15 -4214 ((-1185))) (-15 -1460 ((-1185))) (-15 -2888 ((-1280) (-1185) (-649 (-1185)) $)) (-15 -2888 ((-1280) (-1185) (-649 (-1185)))) (-15 -2888 ((-1280) (-649 (-1185)))) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -3000 ((-1280) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -1442 ((-1280) (-1185) $)) (-15 -1442 ((-1280) (-1185))) (-15 -1442 ((-1280))) (-15 -1785 ((-1280) (-1185))) (-15 -3635 ($)) (-15 -1566 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-1185) $)) (-15 -1847 ((-649 (-1185)) (-1185) $)) (-15 -2161 ((-1189) (-1185) $))))) (T -1188))
+((-2096 (*1 *1) (-5 *1 (-1188))) (-3688 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *4 (-1185)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-4214 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188)))) (-1460 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188)))) (-2888 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3000 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1185)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1442 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1442 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3635 (*1 *1) (-5 *1 (-1188))) (-1566 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *1 (-1188)))) (-1847 (*1 *2 *3 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1188)) (-5 *3 (-1185)))) (-2161 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1189)) (-5 *1 (-1188)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2096 ($)) (-15 -3688 ((-1280))) (-15 -3688 ((-1280) (-1185))) (-15 -2739 ((-442) (-1185) (-442) (-1185) $)) (-15 -2739 ((-442) (-649 (-1185)) (-442) (-1185) $)) (-15 -2739 ((-442) (-1185) (-442))) (-15 -2739 ((-442) (-1185) (-442) (-1185))) (-15 -3999 ((-1280) (-1185))) (-15 -4214 ((-1185))) (-15 -1460 ((-1185))) (-15 -2888 ((-1280) (-1185) (-649 (-1185)) $)) (-15 -2888 ((-1280) (-1185) (-649 (-1185)))) (-15 -2888 ((-1280) (-649 (-1185)))) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -3000 ((-1280) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -1442 ((-1280) (-1185) $)) (-15 -1442 ((-1280) (-1185))) (-15 -1442 ((-1280))) (-15 -1785 ((-1280) (-1185))) (-15 -3635 ($)) (-15 -1566 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-1185) $)) (-15 -1847 ((-649 (-1185)) (-1185) $)) (-15 -2161 ((-1189) (-1185) $))))
+((-2921 (((-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) $) 66)) (-3584 (((-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))) (-439) $) 47)) (-3300 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))) 17)) (-1785 (((-1280) $) 73)) (-2162 (((-649 (-1185)) $) 22)) (-3289 (((-1112) $) 60)) (-3856 (((-442) (-1185) $) 27)) (-1381 (((-649 (-1185)) $) 30)) (-3635 (($) 19)) (-2739 (((-442) (-649 (-1185)) (-442) $) 25) (((-442) (-1185) (-442) $) 24)) (-3796 (((-867) $) 9) (((-1198 (-1185) (-442)) $) 13)))
+(((-1189) (-13 (-618 (-867)) (-10 -8 (-15 -3796 ((-1198 (-1185) (-442)) $)) (-15 -3635 ($)) (-15 -2739 ((-442) (-649 (-1185)) (-442) $)) (-15 -2739 ((-442) (-1185) (-442) $)) (-15 -3856 ((-442) (-1185) $)) (-15 -2162 ((-649 (-1185)) $)) (-15 -3584 ((-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -1381 ((-649 (-1185)) $)) (-15 -2921 ((-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) $)) (-15 -3289 ((-1112) $)) (-15 -1785 ((-1280) $)) (-15 -3300 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))))))) (T -1189))
+((-3796 (*1 *2 *1) (-12 (-5 *2 (-1198 (-1185) (-442))) (-5 *1 (-1189)))) (-3635 (*1 *1) (-5 *1 (-1189))) (-2739 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *1 (-1189)))) (-2739 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1189)))) (-3856 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-442)) (-5 *1 (-1189)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189)))) (-3584 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) (-5 *1 (-1189)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))))) (-5 *1 (-1189)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1189)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1189)))) (-3300 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))) (-5 *1 (-1189)))))
+(-13 (-618 (-867)) (-10 -8 (-15 -3796 ((-1198 (-1185) (-442)) $)) (-15 -3635 ($)) (-15 -2739 ((-442) (-649 (-1185)) (-442) $)) (-15 -2739 ((-442) (-1185) (-442) $)) (-15 -3856 ((-442) (-1185) $)) (-15 -2162 ((-649 (-1185)) $)) (-15 -3584 ((-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -1381 ((-649 (-1185)) $)) (-15 -2921 ((-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) $)) (-15 -3289 ((-1112) $)) (-15 -1785 ((-1280) $)) (-15 -3300 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))))))
+((-2417 (((-112) $ $) NIL)) (-4381 (((-3 (-569) "failed") $) 29) (((-3 (-226) "failed") $) 35) (((-3 (-511) "failed") $) 43) (((-3 (-1167) "failed") $) 47)) (-3150 (((-569) $) 30) (((-226) $) 36) (((-511) $) 40) (((-1167) $) 48)) (-1843 (((-112) $) 53)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2060 (((-3 (-569) (-226) (-511) (-1167) $) $) 55)) (-1822 (((-649 $) $) 57)) (-1410 (((-1112) $) 24) (($ (-1112)) 25)) (-2129 (((-112) $) 56)) (-3796 (((-867) $) 23) (($ (-569)) 26) (($ (-226)) 32) (($ (-511)) 38) (($ (-1167)) 44) (((-541) $) 59) (((-569) $) 31) (((-226) $) 37) (((-511) $) 41) (((-1167) $) 49)) (-1795 (((-112) $ (|[\|\|]| (-569))) 10) (((-112) $ (|[\|\|]| (-226))) 13) (((-112) $ (|[\|\|]| (-511))) 19) (((-112) $ (|[\|\|]| (-1167))) 16)) (-3498 (($ (-511) (-649 $)) 51) (($ $ (-649 $)) 52)) (-1520 (((-112) $ $) NIL)) (-3993 (((-569) $) 27) (((-226) $) 33) (((-511) $) 39) (((-1167) $) 45)) (-2920 (((-112) $ $) 7)))
+(((-1190) (-13 (-1270) (-1108) (-1046 (-569)) (-1046 (-226)) (-1046 (-511)) (-1046 (-1167)) (-618 (-541)) (-10 -8 (-15 -1410 ((-1112) $)) (-15 -1410 ($ (-1112))) (-15 -3796 ((-569) $)) (-15 -3993 ((-569) $)) (-15 -3796 ((-226) $)) (-15 -3993 ((-226) $)) (-15 -3796 ((-511) $)) (-15 -3993 ((-511) $)) (-15 -3796 ((-1167) $)) (-15 -3993 ((-1167) $)) (-15 -3498 ($ (-511) (-649 $))) (-15 -3498 ($ $ (-649 $))) (-15 -1843 ((-112) $)) (-15 -2060 ((-3 (-569) (-226) (-511) (-1167) $) $)) (-15 -1822 ((-649 $) $)) (-15 -2129 ((-112) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-569)))) (-15 -1795 ((-112) $ (|[\|\|]| (-226)))) (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -1795 ((-112) $ (|[\|\|]| (-1167))))))) (T -1190))
+((-1410 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1190)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190)))) (-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1190))) (-5 *1 (-1190)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1167) (-1190))) (-5 *1 (-1190)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-1190)))))
+(-13 (-1270) (-1108) (-1046 (-569)) (-1046 (-226)) (-1046 (-511)) (-1046 (-1167)) (-618 (-541)) (-10 -8 (-15 -1410 ((-1112) $)) (-15 -1410 ($ (-1112))) (-15 -3796 ((-569) $)) (-15 -3993 ((-569) $)) (-15 -3796 ((-226) $)) (-15 -3993 ((-226) $)) (-15 -3796 ((-511) $)) (-15 -3993 ((-511) $)) (-15 -3796 ((-1167) $)) (-15 -3993 ((-1167) $)) (-15 -3498 ($ (-511) (-649 $))) (-15 -3498 ($ $ (-649 $))) (-15 -1843 ((-112) $)) (-15 -2060 ((-3 (-569) (-226) (-511) (-1167) $) $)) (-15 -1822 ((-649 $) $)) (-15 -2129 ((-112) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-569)))) (-15 -1795 ((-112) $ (|[\|\|]| (-226)))) (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -1795 ((-112) $ (|[\|\|]| (-1167))))))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) 22)) (-4427 (($) 12 T CONST)) (-3406 (($) 26)) (-3380 (($ $ $) NIL) (($) 19 T CONST)) (-2839 (($ $ $) NIL) (($) 20 T CONST)) (-2731 (((-927) $) 24)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 23)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-1191 |#1|) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709))) (-927)) (T -1191))
+((-4427 (*1 *1) (-12 (-5 *1 (-1191 *2)) (-14 *2 (-927)))))
+(-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) 19 T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) 12 T CONST)) (-3969 (($ $ $) NIL) (($) 18 T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1367 (($ $ $) 21)) (-1351 (($ $ $) 20)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-1190 |#1|) (-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706))) (-927)) (T -1190))
-((-1351 (*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927)))) (-1367 (*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927)))) (-4188 (*1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927)))))
-(-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) 19 T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) 12 T CONST)) (-2839 (($ $ $) NIL) (($) 18 T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) 21)) (-1353 (($ $ $) 20)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-1192 |#1|) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) (-927)) (T -1192))
+((-1353 (*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))) (-1368 (*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))) (-4427 (*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))))
+(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 9)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 7)))
-(((-1191) (-1106)) (T -1191))
-NIL
-(-1106)
-((-3027 (((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 67)) (-2912 (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|)))) 78) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|))) 74) (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183)) 79) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183)) 73) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|))))) 106) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|)))) 105) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183))) 107) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1183))) 104)))
-(((-1192 |#1|) (-10 -7 (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -3027 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183))))) (-561)) (T -1192))
-((-3027 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1192 *5)))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1192 *4)) (-5 *3 (-297 (-412 (-958 *4)))))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1192 *4)) (-5 *3 (-412 (-958 *4))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5)) (-5 *3 (-297 (-412 (-958 *5)))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-1183)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5)) (-5 *3 (-412 (-958 *5))))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1192 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4))))))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1192 *4)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1192 *5)) (-5 *3 (-649 (-297 (-412 (-958 *5))))))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1192 *5)))))
-(-10 -7 (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1183)))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -2912 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1183))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1183))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -2912 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -3027 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1183)))))
-((-3309 (((-1165)) 7)) (-3128 (((-1165)) 11 T CONST)) (-3687 (((-1278) (-1165)) 13)) (-3205 (((-1165)) 8 T CONST)) (-3109 (((-130)) 10 T CONST)))
-(((-1193) (-13 (-1223) (-10 -7 (-15 -3309 ((-1165))) (-15 -3205 ((-1165)) -3706) (-15 -3109 ((-130)) -3706) (-15 -3128 ((-1165)) -3706) (-15 -3687 ((-1278) (-1165)))))) (T -1193))
-((-3309 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-3205 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-3109 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1193)))) (-3128 (*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1193)))))
-(-13 (-1223) (-10 -7 (-15 -3309 ((-1165))) (-15 -3205 ((-1165)) -3706) (-15 -3109 ((-130)) -3706) (-15 -3128 ((-1165)) -3706) (-15 -3687 ((-1278) (-1165)))))
-((-2444 (((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 56)) (-2723 (((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|))) 38)) (-2828 (((-1195 (-649 |#1|)) (-649 |#1|)) 49)) (-3004 (((-649 (-649 |#1|)) (-649 |#1|)) 45)) (-3563 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))) 53)) (-2829 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|)))) 52)) (-2904 (((-649 (-649 |#1|)) (-649 (-649 |#1|))) 43)) (-1933 (((-649 |#1|) (-649 |#1|)) 46)) (-3640 (((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 32)) (-3536 (((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 29)) (-3439 (((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|))) 24)) (-2512 (((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 58)) (-2614 (((-649 (-649 |#1|)) (-1195 (-649 |#1|))) 60)))
-(((-1194 |#1|) (-10 -7 (-15 -3439 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -3536 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -3640 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2444 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2512 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2614 ((-649 (-649 |#1|)) (-1195 (-649 |#1|)))) (-15 -2723 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -2828 ((-1195 (-649 |#1|)) (-649 |#1|))) (-15 -2904 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -3004 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -1933 ((-649 |#1|) (-649 |#1|))) (-15 -2829 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3563 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))))) (-855)) (T -1194))
-((-3563 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-2 (|:| |f1| (-649 *4)) (|:| |f2| (-649 (-649 (-649 *4)))) (|:| |f3| (-649 (-649 *4))) (|:| |f4| (-649 (-649 (-649 *4)))))) (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 (-649 *4)))))) (-2829 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5) (|:| |f4| (-649 *5)))) (-5 *1 (-1194 *6)) (-5 *4 (-649 *5)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1194 *3)))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)) (-5 *3 (-649 *4)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1194 *3)))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-1195 (-649 *4))) (-5 *1 (-1194 *4)) (-5 *3 (-649 *4)))) (-2723 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 *4))))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-1195 (-649 *4))) (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)) (-4 *4 (-855)))) (-2444 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-4 *4 (-855)) (-5 *1 (-1194 *4)))) (-3640 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *1 (-1194 *4)))) (-3536 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1194 *5)))) (-3439 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4)))) (-5 *1 (-1194 *6)) (-5 *5 (-649 *4)))))
-(-10 -7 (-15 -3439 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -3536 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -3640 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2444 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2512 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2614 ((-649 (-649 |#1|)) (-1195 (-649 |#1|)))) (-15 -2723 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -2828 ((-1195 (-649 |#1|)) (-649 |#1|))) (-15 -2904 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -3004 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -1933 ((-649 |#1|) (-649 |#1|))) (-15 -2829 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3563 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|))))))
-((-2915 (($ (-649 (-649 |#1|))) 10)) (-3005 (((-649 (-649 |#1|)) $) 11)) (-3793 (((-867) $) 36)))
-(((-1195 |#1|) (-10 -8 (-15 -2915 ($ (-649 (-649 |#1|)))) (-15 -3005 ((-649 (-649 |#1|)) $)) (-15 -3793 ((-867) $))) (-1106)) (T -1195))
-((-3793 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1195 *3)) (-4 *3 (-1106)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1106)))) (-2915 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-1195 *3)))))
-(-10 -8 (-15 -2915 ($ (-649 (-649 |#1|)))) (-15 -3005 ((-649 (-649 |#1|)) $)) (-15 -3793 ((-867) $)))
-((-2415 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4286 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-4321 (((-1278) $ |#1| |#1|) NIL (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#2| $ |#1| |#2|) NIL)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) NIL)) (-4188 (($) NIL T CONST)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) NIL)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) NIL)) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) NIL)) (-1420 ((|#1| $) NIL (|has| |#1| (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-649 |#2|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-1535 ((|#1| $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2796 (((-649 |#1|) $) NIL)) (-3937 (((-112) |#1| $) NIL)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-1755 (((-649 |#1|) $) NIL)) (-3748 (((-112) |#1| $) NIL)) (-3545 (((-1126) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-3510 ((|#2| $) NIL (|has| |#1| (-855)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL)) (-4420 (($ $ |#2|) NIL (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1906 (($) NIL) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) NIL (-12 (|has| $ (-6 -4444)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3793 (((-867) $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1441 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) NIL)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) NIL (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) NIL (-2774 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| |#2| (-1106))))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1196 |#1| |#2|) (-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444))) (-1106) (-1106)) (T -1196))
-NIL
-(-13 (-1199 |#1| |#2|) (-10 -7 (-6 -4444)))
-((-1916 ((|#1| (-649 |#1|)) 49)) (-2086 ((|#1| |#1| (-569)) 24)) (-1996 (((-1179 |#1|) |#1| (-927)) 20)))
-(((-1197 |#1|) (-10 -7 (-15 -1916 (|#1| (-649 |#1|))) (-15 -1996 ((-1179 |#1|) |#1| (-927))) (-15 -2086 (|#1| |#1| (-569)))) (-367)) (T -1197))
-((-2086 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1179 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-367)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
-(-10 -7 (-15 -1916 (|#1| (-649 |#1|))) (-15 -1996 ((-1179 |#1|) |#1| (-927))) (-15 -2086 (|#1| |#1| (-569))))
-((-4286 (($) 10) (($ (-649 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)))) 14)) (-3463 (($ (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2880 (((-649 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) 39) (((-649 |#3|) $) 41)) (-3831 (($ (-1 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1344 (($ (-1 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1640 (((-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) $) 60)) (-3813 (($ (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) $) 16)) (-1755 (((-649 |#2|) $) 19)) (-3748 (((-112) |#2| $) 65)) (-3123 (((-3 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) "failed") (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) 64)) (-1764 (((-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) $) 69)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3851 (((-649 |#3|) $) 43)) (-1866 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) NIL) (((-776) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) $) NIL) (((-776) |#3| $) NIL) (((-776) (-1 (-112) |#3|) $) 79)) (-3793 (((-867) $) 27)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2919 (((-112) $ $) 51)))
-(((-1198 |#1| |#2| |#3|) (-10 -8 (-15 -2919 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -1344 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4286 (|#1| (-649 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))))) (-15 -4286 (|#1|)) (-15 -1344 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3831 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3558 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2880 ((-649 |#3|) |#1|)) (-15 -3558 ((-776) |#3| |#1|)) (-15 -1866 (|#3| |#1| |#2| |#3|)) (-15 -1866 (|#3| |#1| |#2|)) (-15 -3851 ((-649 |#3|) |#1|)) (-15 -3748 ((-112) |#2| |#1|)) (-15 -1755 ((-649 |#2|) |#1|)) (-15 -3463 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3463 (|#1| (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3463 (|#1| (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -3123 ((-3 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) "failed") (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -1640 ((-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -3813 (|#1| (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -1764 ((-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -3558 ((-776) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -2880 ((-649 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3558 ((-776) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -2911 ((-112) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3037 ((-112) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3831 (|#1| (-1 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -1344 (|#1| (-1 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|))) (-1199 |#2| |#3|) (-1106) (-1106)) (T -1198))
-NIL
-(-10 -8 (-15 -2919 ((-112) |#1| |#1|)) (-15 -3793 ((-867) |#1|)) (-15 -1344 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4286 (|#1| (-649 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))))) (-15 -4286 (|#1|)) (-15 -1344 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3831 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3037 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2911 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3558 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2880 ((-649 |#3|) |#1|)) (-15 -3558 ((-776) |#3| |#1|)) (-15 -1866 (|#3| |#1| |#2| |#3|)) (-15 -1866 (|#3| |#1| |#2|)) (-15 -3851 ((-649 |#3|) |#1|)) (-15 -3748 ((-112) |#2| |#1|)) (-15 -1755 ((-649 |#2|) |#1|)) (-15 -3463 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3463 (|#1| (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3463 (|#1| (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -3123 ((-3 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) "failed") (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -1640 ((-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -3813 (|#1| (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -1764 ((-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -3558 ((-776) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) |#1|)) (-15 -2880 ((-649 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3558 ((-776) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -2911 ((-112) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3037 ((-112) (-1 (-112) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -3831 (|#1| (-1 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)) (-15 -1344 (|#1| (-1 (-2 (|:| -2003 |#2|) (|:| -2214 |#3|)) (-2 (|:| -2003 |#2|) (|:| -2214 |#3|))) |#1|)))
-((-2415 (((-112) $ $) 19 (-2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-4286 (($) 73) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 72)) (-4321 (((-1278) $ |#1| |#1|) 100 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#2| $ |#1| |#2|) 74)) (-4101 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 46 (|has| $ (-6 -4444)))) (-1415 (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 56 (|has| $ (-6 -4444)))) (-2356 (((-3 |#2| "failed") |#1| $) 62)) (-4188 (($) 7 T CONST)) (-3547 (($ $) 59 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444))))) (-3463 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 48 (|has| $ (-6 -4444))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 47 (|has| $ (-6 -4444))) (((-3 |#2| "failed") |#1| $) 63)) (-1696 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 55 (|has| $ (-6 -4444)))) (-3596 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 57 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 54 (|has| $ (-6 -4444))) (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 53 (|has| $ (-6 -4444)))) (-3843 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4445)))) (-3773 ((|#2| $ |#1|) 89)) (-2880 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 31 (|has| $ (-6 -4444))) (((-649 |#2|) $) 80 (|has| $ (-6 -4444)))) (-1689 (((-112) $ (-776)) 9)) (-1420 ((|#1| $) 97 (|has| |#1| (-855)))) (-3040 (((-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 30 (|has| $ (-6 -4444))) (((-649 |#2|) $) 81 (|has| $ (-6 -4444)))) (-1655 (((-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444))))) (-1535 ((|#1| $) 96 (|has| |#1| (-855)))) (-3831 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 35 (|has| $ (-6 -4445))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4445)))) (-1344 (($ (-1 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2433 (((-112) $ (-776)) 10)) (-1550 (((-1165) $) 22 (-2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-2796 (((-649 |#1|) $) 64)) (-3937 (((-112) |#1| $) 65)) (-1640 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 40)) (-3813 (($ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 41)) (-1755 (((-649 |#1|) $) 94)) (-3748 (((-112) |#1| $) 93)) (-3545 (((-1126) $) 21 (-2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-3510 ((|#2| $) 98 (|has| |#1| (-855)))) (-3123 (((-3 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) "failed") (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 52)) (-4420 (($ $ |#2|) 99 (|has| $ (-6 -4445)))) (-1764 (((-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 42)) (-2911 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 33 (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))))) 27 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-297 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 26 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) 25 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 24 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4444)) (|has| |#2| (-1106))))) (-3851 (((-649 |#2|) $) 92)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1906 (($) 50) (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 49)) (-3558 (((-776) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 32 (|has| $ (-6 -4444))) (((-776) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| $ (-6 -4444)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4444)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 60 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))))) (-3806 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 51)) (-3793 (((-867) $) 18 (-2774 (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867)))))) (-1441 (((-112) $ $) 23 (-2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-4209 (($ (-649 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) 43)) (-3037 (((-112) (-1 (-112) (-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) $) 34 (|has| $ (-6 -4444))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (-2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1199 |#1| |#2|) (-140) (-1106) (-1106)) (T -1199))
-((-3940 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))) (-4286 (*1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))) (-4286 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2003 *3) (|:| -2214 *4)))) (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *1 (-1199 *3 *4)))) (-1344 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))))
-(-13 (-615 |t#1| |t#2|) (-609 |t#1| |t#2|) (-10 -8 (-15 -3940 (|t#2| $ |t#1| |t#2|)) (-15 -4286 ($)) (-15 -4286 ($ (-649 (-2 (|:| -2003 |t#1|) (|:| -2214 |t#2|))))) (-15 -1344 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2003 |#1|) (|:| -2214 |#2|))) . T) ((-102) -2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-618 (-867)) -2774 (|has| |#2| (-1106)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 #0#) -12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-494 #0#) . T) ((-494 |#2|) . T) ((-609 |#1| |#2|) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-312 (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)))) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1106))) ((-615 |#1| |#2|) . T) ((-1106) -2774 (|has| |#2| (-1106)) (|has| (-2 (|:| -2003 |#1|) (|:| -2214 |#2|)) (-1106))) ((-1223) . T))
-((-1496 (((-112)) 29)) (-2355 (((-1278) (-1165)) 31)) (-1610 (((-112)) 41)) (-4394 (((-1278)) 39)) (-2258 (((-1278) (-1165) (-1165)) 30)) (-1713 (((-112)) 42)) (-3813 (((-1278) |#1| |#2|) 53)) (-2172 (((-1278)) 26)) (-1817 (((-3 |#2| "failed") |#1|) 51)) (-1375 (((-1278)) 40)))
-(((-1200 |#1| |#2|) (-10 -7 (-15 -2172 ((-1278))) (-15 -2258 ((-1278) (-1165) (-1165))) (-15 -2355 ((-1278) (-1165))) (-15 -4394 ((-1278))) (-15 -1375 ((-1278))) (-15 -1496 ((-112))) (-15 -1610 ((-112))) (-15 -1713 ((-112))) (-15 -1817 ((-3 |#2| "failed") |#1|)) (-15 -3813 ((-1278) |#1| |#2|))) (-1106) (-1106)) (T -1200))
-((-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-1817 (*1 *2 *3) (|partial| -12 (-4 *2 (-1106)) (-5 *1 (-1200 *3 *2)) (-4 *3 (-1106)))) (-1713 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-1610 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-1496 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-1375 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-4394 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)))) (-2258 (*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106)))) (-2172 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106)))))
-(-10 -7 (-15 -2172 ((-1278))) (-15 -2258 ((-1278) (-1165) (-1165))) (-15 -2355 ((-1278) (-1165))) (-15 -4394 ((-1278))) (-15 -1375 ((-1278))) (-15 -1496 ((-112))) (-15 -1610 ((-112))) (-15 -1713 ((-112))) (-15 -1817 ((-3 |#2| "failed") |#1|)) (-15 -3813 ((-1278) |#1| |#2|)))
-((-4003 (((-1165) (-1165)) 22)) (-3910 (((-52) (-1165)) 25)))
-(((-1201) (-10 -7 (-15 -3910 ((-52) (-1165))) (-15 -4003 ((-1165) (-1165))))) (T -1201))
-((-4003 (*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1201)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-1201)))))
-(-10 -7 (-15 -3910 ((-52) (-1165))) (-15 -4003 ((-1165) (-1165))))
-((-3793 (((-1203) |#1|) 11)))
-(((-1202 |#1|) (-10 -7 (-15 -3793 ((-1203) |#1|))) (-1106)) (T -1202))
-((-3793 (*1 *2 *3) (-12 (-5 *2 (-1203)) (-5 *1 (-1202 *3)) (-4 *3 (-1106)))))
-(-10 -7 (-15 -3793 ((-1203) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-4392 (((-649 (-1165)) $) 39)) (-4186 (((-649 (-1165)) $ (-649 (-1165))) 42)) (-4088 (((-649 (-1165)) $ (-649 (-1165))) 41)) (-4275 (((-649 (-1165)) $ (-649 (-1165))) 43)) (-3126 (((-649 (-1165)) $) 38)) (-4295 (($) 28)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3222 (((-649 (-1165)) $) 40)) (-4155 (((-1278) $ (-569)) 35) (((-1278) $) 36)) (-1408 (($ (-867) (-569)) 33) (($ (-867) (-569) (-867)) NIL)) (-3793 (((-867) $) 49) (($ (-867)) 32)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1203) (-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1408 ($ (-867) (-569))) (-15 -1408 ($ (-867) (-569) (-867))) (-15 -4155 ((-1278) $ (-569))) (-15 -4155 ((-1278) $)) (-15 -3222 ((-649 (-1165)) $)) (-15 -4392 ((-649 (-1165)) $)) (-15 -4295 ($)) (-15 -3126 ((-649 (-1165)) $)) (-15 -4275 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -4186 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -4088 ((-649 (-1165)) $ (-649 (-1165))))))) (T -1203))
-((-1408 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203)))) (-1408 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203)))) (-4155 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1203)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1203)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-4392 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-4295 (*1 *1) (-5 *1 (-1203))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-4275 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-4186 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))) (-4088 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
-(-13 (-1106) (-621 (-867)) (-10 -8 (-15 -1408 ($ (-867) (-569))) (-15 -1408 ($ (-867) (-569) (-867))) (-15 -4155 ((-1278) $ (-569))) (-15 -4155 ((-1278) $)) (-15 -3222 ((-649 (-1165)) $)) (-15 -4392 ((-649 (-1165)) $)) (-15 -4295 ($)) (-15 -3126 ((-649 (-1165)) $)) (-15 -4275 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -4186 ((-649 (-1165)) $ (-649 (-1165)))) (-15 -4088 ((-649 (-1165)) $ (-649 (-1165))))))
-((-2415 (((-112) $ $) NIL)) (-2460 (((-1165) $ (-1165)) 17) (((-1165) $) 16)) (-2523 (((-1165) $ (-1165)) 15)) (-2914 (($ $ (-1165)) NIL)) (-3556 (((-3 (-1165) "failed") $) 11)) (-3662 (((-1165) $) 8)) (-3444 (((-3 (-1165) "failed") $) 12)) (-2625 (((-1165) $) 9)) (-1717 (($ (-393)) NIL) (($ (-393) (-1165)) NIL)) (-3570 (((-393) $) NIL)) (-1550 (((-1165) $) NIL)) (-2733 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3334 (((-112) $) 21)) (-3793 (((-867) $) NIL)) (-2839 (($ $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1204) (-13 (-368 (-393) (-1165)) (-10 -8 (-15 -2460 ((-1165) $ (-1165))) (-15 -2460 ((-1165) $)) (-15 -3662 ((-1165) $)) (-15 -3556 ((-3 (-1165) "failed") $)) (-15 -3444 ((-3 (-1165) "failed") $)) (-15 -3334 ((-112) $))))) (T -1204))
-((-2460 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-3556 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-3444 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204)))))
-(-13 (-368 (-393) (-1165)) (-10 -8 (-15 -2460 ((-1165) $ (-1165))) (-15 -2460 ((-1165) $)) (-15 -3662 ((-1165) $)) (-15 -3556 ((-3 (-1165) "failed") $)) (-15 -3444 ((-3 (-1165) "failed") $)) (-15 -3334 ((-112) $))))
-((-2552 (((-3 (-569) "failed") |#1|) 19)) (-2658 (((-3 (-569) "failed") |#1|) 14)) (-2767 (((-569) (-1165)) 33)))
-(((-1205 |#1|) (-10 -7 (-15 -2552 ((-3 (-569) "failed") |#1|)) (-15 -2658 ((-3 (-569) "failed") |#1|)) (-15 -2767 ((-569) (-1165)))) (-1055)) (T -1205))
-((-2767 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-1205 *4)) (-4 *4 (-1055)))) (-2658 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))) (-2552 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
-(-10 -7 (-15 -2552 ((-3 (-569) "failed") |#1|)) (-15 -2658 ((-3 (-569) "failed") |#1|)) (-15 -2767 ((-569) (-1165))))
-((-2866 (((-1139 (-226))) 9)))
-(((-1206) (-10 -7 (-15 -2866 ((-1139 (-226)))))) (T -1206))
-((-2866 (*1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1206)))))
-(-10 -7 (-15 -2866 ((-1139 (-226)))))
-((-1310 (($) 12)) (-4161 (($ $) 36)) (-4133 (($ $) 34)) (-2673 (($ $) 26)) (-4182 (($ $) 18)) (-1501 (($ $) 16)) (-4170 (($ $) 20)) (-2710 (($ $) 31)) (-4147 (($ $) 35)) (-2687 (($ $) 30)))
-(((-1207 |#1|) (-10 -8 (-15 -1310 (|#1|)) (-15 -4161 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4182 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -2687 (|#1| |#1|))) (-1208)) (T -1207))
-NIL
-(-10 -8 (-15 -1310 (|#1|)) (-15 -4161 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4182 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)))
-((-2769 (($ $) 26)) (-2624 (($ $) 11)) (-2744 (($ $) 27)) (-2600 (($ $) 10)) (-4114 (($ $) 28)) (-2645 (($ $) 9)) (-1310 (($) 16)) (-2660 (($ $) 19)) (-4386 (($ $) 18)) (-4124 (($ $) 29)) (-2659 (($ $) 8)) (-2781 (($ $) 30)) (-2632 (($ $) 7)) (-2756 (($ $) 31)) (-2609 (($ $) 6)) (-4161 (($ $) 20)) (-2699 (($ $) 32)) (-4133 (($ $) 21)) (-2673 (($ $) 33)) (-4182 (($ $) 22)) (-2721 (($ $) 34)) (-1501 (($ $) 23)) (-2732 (($ $) 35)) (-4170 (($ $) 24)) (-2710 (($ $) 36)) (-4147 (($ $) 25)) (-2687 (($ $) 37)) (** (($ $ $) 17)))
-(((-1208) (-140)) (T -1208))
-((-1310 (*1 *1) (-4 *1 (-1208))))
-(-13 (-1211) (-95) (-498) (-35) (-287) (-10 -8 (-15 -1310 ($))))
-(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-1211) . T))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2185 ((|#1| $) 19)) (-2275 (($ |#1| (-649 $)) 28) (($ (-649 |#1|)) 35) (($ |#1|) 30)) (-2716 (((-112) $ (-776)) 71)) (-1660 ((|#1| $ |#1|) 14 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 13 (|has| $ (-6 -4445)))) (-4188 (($) NIL T CONST)) (-2880 (((-649 |#1|) $) 75 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 63)) (-3759 (((-112) $ $) 49 (|has| |#1| (-1106)))) (-1689 (((-112) $ (-776)) 61)) (-3040 (((-649 |#1|) $) 76 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3831 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 27)) (-2433 (((-112) $ (-776)) 59)) (-2273 (((-649 |#1|) $) 54)) (-2703 (((-112) $) 52)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2911 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 105)) (-3218 (((-112) $) 9)) (-3597 (($) 10)) (-1866 ((|#1| $ "value") NIL)) (-3947 (((-569) $ $) 48)) (-2957 (((-649 $) $) 87)) (-3046 (((-112) $ $) 108)) (-1948 (((-649 $) $) 103)) (-2022 (($ $) 104)) (-2102 (((-112) $) 82)) (-3558 (((-776) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4444))) (((-776) |#1| $) 17 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3959 (($ $) 86)) (-3793 (((-867) $) 89 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 12)) (-3860 (((-112) $ $) 39 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 37 (|has| |#1| (-1106)))) (-2426 (((-776) $) 57 (|has| $ (-6 -4444)))))
-(((-1209 |#1|) (-13 (-1016 |#1|) (-10 -8 (-6 -4444) (-6 -4445) (-15 -2275 ($ |#1| (-649 $))) (-15 -2275 ($ (-649 |#1|))) (-15 -2275 ($ |#1|)) (-15 -2102 ((-112) $)) (-15 -2022 ($ $)) (-15 -1948 ((-649 $) $)) (-15 -3046 ((-112) $ $)) (-15 -2957 ((-649 $) $)))) (-1106)) (T -1209))
-((-2102 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1209 *2))) (-5 *1 (-1209 *2)) (-4 *2 (-1106)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1209 *3)))) (-2275 (*1 *1 *2) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106)))) (-2022 (*1 *1 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))) (-3046 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
-(-13 (-1016 |#1|) (-10 -8 (-6 -4444) (-6 -4445) (-15 -2275 ($ |#1| (-649 $))) (-15 -2275 ($ (-649 |#1|))) (-15 -2275 ($ |#1|)) (-15 -2102 ((-112) $)) (-15 -2022 ($ $)) (-15 -1948 ((-649 $) $)) (-15 -3046 ((-112) $ $)) (-15 -2957 ((-649 $) $))))
-((-2624 (($ $) 15)) (-2645 (($ $) 12)) (-2659 (($ $) 10)) (-2632 (($ $) 17)))
-(((-1210 |#1|) (-10 -8 (-15 -2632 (|#1| |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2624 (|#1| |#1|))) (-1211)) (T -1210))
-NIL
-(-10 -8 (-15 -2632 (|#1| |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)))
-((-2624 (($ $) 11)) (-2600 (($ $) 10)) (-2645 (($ $) 9)) (-2659 (($ $) 8)) (-2632 (($ $) 7)) (-2609 (($ $) 6)))
-(((-1211) (-140)) (T -1211))
-((-2624 (*1 *1 *1) (-4 *1 (-1211))) (-2600 (*1 *1 *1) (-4 *1 (-1211))) (-2645 (*1 *1 *1) (-4 *1 (-1211))) (-2659 (*1 *1 *1) (-4 *1 (-1211))) (-2632 (*1 *1 *1) (-4 *1 (-1211))) (-2609 (*1 *1 *1) (-4 *1 (-1211))))
-(-13 (-10 -8 (-15 -2609 ($ $)) (-15 -2632 ($ $)) (-15 -2659 ($ $)) (-15 -2645 ($ $)) (-15 -2600 ($ $)) (-15 -2624 ($ $))))
-((-2333 ((|#2| |#2|) 98)) (-2410 (((-112) |#2|) 29)) (-3822 ((|#2| |#2|) 33)) (-3834 ((|#2| |#2|) 35)) (-2179 ((|#2| |#2| (-1183)) 92) ((|#2| |#2|) 93)) (-1313 (((-170 |#2|) |#2|) 31)) (-2256 ((|#2| |#2| (-1183)) 94) ((|#2| |#2|) 95)))
-(((-1212 |#1| |#2|) (-10 -7 (-15 -2179 (|#2| |#2|)) (-15 -2179 (|#2| |#2| (-1183))) (-15 -2256 (|#2| |#2|)) (-15 -2256 (|#2| |#2| (-1183))) (-15 -2333 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2410 ((-112) |#2|)) (-15 -1313 ((-170 |#2|) |#2|))) (-13 (-457) (-1044 (-569)) (-644 (-569))) (-13 (-27) (-1208) (-435 |#1|))) (T -1212))
-((-1313 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-170 *3)) (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))) (-2179 (*1 *2 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))) (-2179 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
-(-10 -7 (-15 -2179 (|#2| |#2|)) (-15 -2179 (|#2| |#2| (-1183))) (-15 -2256 (|#2| |#2|)) (-15 -2256 (|#2| |#2| (-1183))) (-15 -2333 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -2410 ((-112) |#2|)) (-15 -1313 ((-170 |#2|) |#2|)))
-((-1394 ((|#4| |#4| |#1|) 32)) (-1492 ((|#4| |#4| |#1|) 33)))
-(((-1213 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1394 (|#4| |#4| |#1|)) (-15 -1492 (|#4| |#4| |#1|))) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1213))
-((-1492 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1394 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
-(-10 -7 (-15 -1394 (|#4| |#4| |#1|)) (-15 -1492 (|#4| |#4| |#1|)))
-((-3093 ((|#2| |#2|) 148)) (-1435 ((|#2| |#2|) 145)) (-3714 ((|#2| |#2|) 136)) (-3913 ((|#2| |#2|) 133)) (-2088 ((|#2| |#2|) 141)) (-1927 ((|#2| |#2|) 129)) (-1834 ((|#2| |#2|) 44)) (-1746 ((|#2| |#2|) 105)) (-1582 ((|#2| |#2|) 88)) (-1850 ((|#2| |#2|) 143)) (-1742 ((|#2| |#2|) 131)) (-3908 ((|#2| |#2|) 153)) (-3711 ((|#2| |#2|) 151)) (-3811 ((|#2| |#2|) 152)) (-1549 ((|#2| |#2|) 150)) (-1674 ((|#2| |#2|) 163)) (-4001 ((|#2| |#2|) 30 (-12 (|has| |#2| (-619 (-898 |#1|))) (|has| |#2| (-892 |#1|)) (|has| |#1| (-619 (-898 |#1|))) (|has| |#1| (-892 |#1|))))) (-3817 ((|#2| |#2|) 89)) (-3896 ((|#2| |#2|) 154)) (-1378 ((|#2| |#2|) 155)) (-3132 ((|#2| |#2|) 142)) (-4290 ((|#2| |#2|) 130)) (-4213 ((|#2| |#2|) 149)) (-1439 ((|#2| |#2|) 147)) (-4148 ((|#2| |#2|) 137)) (-1314 ((|#2| |#2|) 135)) (-4066 ((|#2| |#2|) 139)) (-3989 ((|#2| |#2|) 127)))
-(((-1214 |#1| |#2|) (-10 -7 (-15 -1378 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1746 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4148 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -4290 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -3714 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -4001 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-457) (-13 (-435 |#1|) (-1208))) (T -1214))
-((-4001 (*1 *2 *2) (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1439 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3714 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-2088 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1850 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3132 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-4290 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-4148 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3896 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1746 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-435 *3) (-1208))))))
-(-10 -7 (-15 -1378 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1746 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -3896 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4148 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -4290 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -1850 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -3714 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -4001 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2206 (((-112) |#5| $) 68) (((-112) $) 110)) (-2874 ((|#5| |#5| $) 83)) (-1415 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1821 (((-649 |#5|) (-649 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4378 (((-3 $ "failed") (-649 |#5|)) 135)) (-3522 (((-3 $ "failed") $) 120)) (-2516 ((|#5| |#5| $) 102)) (-2303 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3593 ((|#5| |#5| $) 106)) (-3596 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1320 (((-2 (|:| -4130 (-649 |#5|)) (|:| -1717 (-649 |#5|))) $) 63)) (-4337 (((-112) |#5| $) 66) (((-112) $) 111)) (-1873 ((|#4| $) 116)) (-1722 (((-3 |#5| "failed") $) 118)) (-1447 (((-649 |#5|) $) 55)) (-2010 (((-112) |#5| $) 75) (((-112) $) 115)) (-2642 ((|#5| |#5| $) 89)) (-1672 (((-112) $ $) 29)) (-2110 (((-112) |#5| $) 71) (((-112) $) 113)) (-2765 ((|#5| |#5| $) 86)) (-3510 (((-3 |#5| "failed") $) 117)) (-2907 (($ $ |#5|) 136)) (-3868 (((-776) $) 60)) (-3806 (($ (-649 |#5|)) 133)) (-2792 (($ $ |#4|) 131)) (-3013 (($ $ |#4|) 129)) (-2408 (($ $) 128)) (-3793 (((-867) $) NIL) (((-649 |#5|) $) 121)) (-3023 (((-776) $) 140)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1917 (((-112) $ (-1 (-112) |#5| (-649 |#5|))) 108)) (-3220 (((-649 |#4|) $) 123)) (-2133 (((-112) |#4| $) 126)) (-2919 (((-112) $ $) 20)))
-(((-1215 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3023 ((-776) |#1|)) (-15 -2907 (|#1| |#1| |#5|)) (-15 -1415 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2133 ((-112) |#4| |#1|)) (-15 -3220 ((-649 |#4|) |#1|)) (-15 -3522 ((-3 |#1| "failed") |#1|)) (-15 -1722 ((-3 |#5| "failed") |#1|)) (-15 -3510 ((-3 |#5| "failed") |#1|)) (-15 -3593 (|#5| |#5| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2516 (|#5| |#5| |#1|)) (-15 -2642 (|#5| |#5| |#1|)) (-15 -2765 (|#5| |#5| |#1|)) (-15 -2874 (|#5| |#5| |#1|)) (-15 -1821 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3596 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2010 ((-112) |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2206 ((-112) |#1|)) (-15 -1917 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -2010 ((-112) |#5| |#1|)) (-15 -2110 ((-112) |#5| |#1|)) (-15 -2206 ((-112) |#5| |#1|)) (-15 -2303 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4337 ((-112) |#1|)) (-15 -4337 ((-112) |#5| |#1|)) (-15 -1320 ((-2 (|:| -4130 (-649 |#5|)) (|:| -1717 (-649 |#5|))) |#1|)) (-15 -3868 ((-776) |#1|)) (-15 -1447 ((-649 |#5|) |#1|)) (-15 -1555 ((-3 (-2 (|:| |bas| |#1|) (|:| -3307 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1555 ((-3 (-2 (|:| |bas| |#1|) (|:| -3307 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1672 ((-112) |#1| |#1|)) (-15 -2792 (|#1| |#1| |#4|)) (-15 -3013 (|#1| |#1| |#4|)) (-15 -1873 (|#4| |#1|)) (-15 -4378 ((-3 |#1| "failed") (-649 |#5|))) (-15 -3793 ((-649 |#5|) |#1|)) (-15 -3806 (|#1| (-649 |#5|))) (-15 -3596 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3596 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1415 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3596 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|))) (-1216 |#2| |#3| |#4| |#5|) (-561) (-798) (-855) (-1071 |#2| |#3| |#4|)) (T -1215))
-NIL
-(-10 -8 (-15 -3023 ((-776) |#1|)) (-15 -2907 (|#1| |#1| |#5|)) (-15 -1415 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2133 ((-112) |#4| |#1|)) (-15 -3220 ((-649 |#4|) |#1|)) (-15 -3522 ((-3 |#1| "failed") |#1|)) (-15 -1722 ((-3 |#5| "failed") |#1|)) (-15 -3510 ((-3 |#5| "failed") |#1|)) (-15 -3593 (|#5| |#5| |#1|)) (-15 -2408 (|#1| |#1|)) (-15 -2516 (|#5| |#5| |#1|)) (-15 -2642 (|#5| |#5| |#1|)) (-15 -2765 (|#5| |#5| |#1|)) (-15 -2874 (|#5| |#5| |#1|)) (-15 -1821 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3596 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2010 ((-112) |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2206 ((-112) |#1|)) (-15 -1917 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -2010 ((-112) |#5| |#1|)) (-15 -2110 ((-112) |#5| |#1|)) (-15 -2206 ((-112) |#5| |#1|)) (-15 -2303 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4337 ((-112) |#1|)) (-15 -4337 ((-112) |#5| |#1|)) (-15 -1320 ((-2 (|:| -4130 (-649 |#5|)) (|:| -1717 (-649 |#5|))) |#1|)) (-15 -3868 ((-776) |#1|)) (-15 -1447 ((-649 |#5|) |#1|)) (-15 -1555 ((-3 (-2 (|:| |bas| |#1|) (|:| -3307 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1555 ((-3 (-2 (|:| |bas| |#1|) (|:| -3307 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1672 ((-112) |#1| |#1|)) (-15 -2792 (|#1| |#1| |#4|)) (-15 -3013 (|#1| |#1| |#4|)) (-15 -1873 (|#4| |#1|)) (-15 -4378 ((-3 |#1| "failed") (-649 |#5|))) (-15 -3793 ((-649 |#5|) |#1|)) (-15 -3806 (|#1| (-649 |#5|))) (-15 -3596 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3596 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1415 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3596 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3793 ((-867) |#1|)) (-15 -2919 ((-112) |#1| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) 86)) (-3465 (((-649 $) (-649 |#4|)) 87)) (-1710 (((-649 |#3|) $) 34)) (-2686 (((-112) $) 27)) (-4276 (((-112) $) 18 (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) 102) (((-112) $) 98)) (-2874 ((|#4| |#4| $) 93)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) 28)) (-2716 (((-112) $ (-776)) 45)) (-1415 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) 80)) (-4188 (($) 46 T CONST)) (-3584 (((-112) $) 23 (|has| |#1| (-561)))) (-3778 (((-112) $ $) 25 (|has| |#1| (-561)))) (-3685 (((-112) $ $) 24 (|has| |#1| (-561)))) (-2576 (((-112) $) 26 (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4374 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) 37)) (-3148 (($ (-649 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2516 ((|#4| |#4| $) 90)) (-3547 (($ $) 69 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#4| $) 68 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3593 ((|#4| |#4| $) 88)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) 106)) (-2880 (((-649 |#4|) $) 53 (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) 105) (((-112) $) 104)) (-1873 ((|#3| $) 35)) (-1689 (((-112) $ (-776)) 44)) (-3040 (((-649 |#4|) $) 54 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) 48)) (-3097 (((-649 |#3|) $) 33)) (-3116 (((-112) |#3| $) 32)) (-2433 (((-112) $ (-776)) 43)) (-1550 (((-1165) $) 10)) (-1722 (((-3 |#4| "failed") $) 84)) (-1447 (((-649 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-2642 ((|#4| |#4| $) 91)) (-1672 (((-112) $ $) 111)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) 101) (((-112) $) 97)) (-2765 ((|#4| |#4| $) 92)) (-3545 (((-1126) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3124 (((-3 $ "failed") $ |#4|) 79)) (-2907 (($ $ |#4|) 78)) (-2911 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) 39)) (-3218 (((-112) $) 42)) (-3597 (($) 41)) (-3868 (((-776) $) 107)) (-3558 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1106)) (|has| $ (-6 -4444)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4444)))) (-3959 (($ $) 40)) (-1408 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) 61)) (-2792 (($ $ |#3|) 29)) (-3013 (($ $ |#3|) 31)) (-2408 (($ $) 89)) (-2900 (($ $ |#3|) 30)) (-3793 (((-867) $) 12) (((-649 |#4|) $) 38)) (-3023 (((-776) $) 77 (|has| |#3| (-372)))) (-1441 (((-112) $ $) 9)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-3037 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) 82)) (-2133 (((-112) |#3| $) 81)) (-2919 (((-112) $ $) 6)) (-2426 (((-776) $) 47 (|has| $ (-6 -4444)))))
-(((-1216 |#1| |#2| |#3| |#4|) (-140) (-561) (-798) (-855) (-1071 |t#1| |t#2| |t#3|)) (T -1216))
-((-1672 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-1555 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-649 *8)))) (-5 *3 (-649 *8)) (-4 *1 (-1216 *5 *6 *7 *8)))) (-1555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-649 *9)))) (-5 *3 (-649 *9)) (-4 *1 (-1216 *6 *7 *8 *9)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *6)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-776)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-2 (|:| -4130 (-649 *6)) (|:| -1717 (-649 *6)))))) (-4337 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-2303 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1216 *5 *6 *7 *3)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)))) (-2206 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2110 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2010 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-1917 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1216 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))) (-3596 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1216 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *2 (-1071 *5 *6 *7)))) (-1821 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1216 *5 *6 *7 *8)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)))) (-2874 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-2765 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-2642 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-2516 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-2408 (*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))) (-3593 (*1 *2 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1216 *4 *5 *6 *7)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| -4130 *1) (|:| -1717 (-649 *7))))) (-5 *3 (-649 *7)) (-4 *1 (-1216 *4 *5 *6 *7)))) (-3510 (*1 *2 *1) (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-1722 (*1 *2 *1) (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-3522 (*1 *1 *1) (|partial| -12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))) (-2133 (*1 *2 *3 *1) (-12 (-4 *1 (-1216 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))) (-1415 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1216 *4 *5 *3 *2)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1071 *4 *5 *3)))) (-3124 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *5 (-372)) (-5 *2 (-776)))))
-(-13 (-982 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4444) (-6 -4445) (-15 -1672 ((-112) $ $)) (-15 -1555 ((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1555 ((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1447 ((-649 |t#4|) $)) (-15 -3868 ((-776) $)) (-15 -1320 ((-2 (|:| -4130 (-649 |t#4|)) (|:| -1717 (-649 |t#4|))) $)) (-15 -4337 ((-112) |t#4| $)) (-15 -4337 ((-112) $)) (-15 -2303 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2206 ((-112) |t#4| $)) (-15 -2110 ((-112) |t#4| $)) (-15 -2010 ((-112) |t#4| $)) (-15 -1917 ((-112) $ (-1 (-112) |t#4| (-649 |t#4|)))) (-15 -2206 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -2010 ((-112) $)) (-15 -3596 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1821 ((-649 |t#4|) (-649 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2874 (|t#4| |t#4| $)) (-15 -2765 (|t#4| |t#4| $)) (-15 -2642 (|t#4| |t#4| $)) (-15 -2516 (|t#4| |t#4| $)) (-15 -2408 ($ $)) (-15 -3593 (|t#4| |t#4| $)) (-15 -3465 ((-649 $) (-649 |t#4|))) (-15 -3346 ((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |t#4|)))) (-649 |t#4|))) (-15 -3510 ((-3 |t#4| "failed") $)) (-15 -1722 ((-3 |t#4| "failed") $)) (-15 -3522 ((-3 $ "failed") $)) (-15 -3220 ((-649 |t#3|) $)) (-15 -2133 ((-112) |t#3| $)) (-15 -1415 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3124 ((-3 $ "failed") $ |t#4|)) (-15 -2907 ($ $ |t#4|)) (IF (|has| |t#3| (-372)) (-15 -3023 ((-776) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1106) . T) ((-1223) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1183)) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-2769 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2744 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4114 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-3275 (((-958 |#1|) $ (-776)) 20) (((-958 |#1|) $ (-776) (-776)) NIL)) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-776) $ (-1183)) NIL) (((-776) $ (-1183) (-776)) NIL)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4343 (((-112) $) NIL)) (-3920 (($ $ (-649 (-1183)) (-649 (-536 (-1183)))) NIL) (($ $ (-1183) (-536 (-1183))) NIL) (($ |#1| (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2660 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-2488 (($ $ (-1183)) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-4087 (($ (-1 $) (-1183) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2907 (($ $ (-776)) NIL)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4386 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1723 (($ $ (-1183) $) NIL) (($ $ (-649 (-1183)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3514 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-3868 (((-536 (-1183)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-1183)) NIL) (($ (-958 |#1|)) NIL)) (-4184 ((|#1| $ (-536 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (((-958 |#1|) $ (-776)) NIL)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2830 (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1217 |#1|) (-13 (-745 |#1| (-1183)) (-10 -8 (-15 -4184 ((-958 |#1|) $ (-776))) (-15 -3793 ($ (-1183))) (-15 -3793 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $ (-1183) |#1|)) (-15 -4087 ($ (-1 $) (-1183) |#1|))) |%noBranch|))) (-1055)) (T -1217))
-((-4184 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1217 *4)) (-4 *4 (-1055)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-1055)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-5 *1 (-1217 *3)))) (-2488 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))) (-4087 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1217 *4))) (-5 *3 (-1183)) (-5 *1 (-1217 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))))
-(-13 (-745 |#1| (-1183)) (-10 -8 (-15 -4184 ((-958 |#1|) $ (-776))) (-15 -3793 ($ (-1183))) (-15 -3793 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $ (-1183) |#1|)) (-15 -4087 ($ (-1 $) (-1183) |#1|))) |%noBranch|)))
-((-4135 (($ |#1| (-649 (-649 (-949 (-226)))) (-112)) 19)) (-4046 (((-112) $ (-112)) 18)) (-3957 (((-112) $) 17)) (-3770 (((-649 (-649 (-949 (-226)))) $) 13)) (-1778 ((|#1| $) 8)) (-3872 (((-112) $) 15)))
-(((-1218 |#1|) (-10 -8 (-15 -1778 (|#1| $)) (-15 -3770 ((-649 (-649 (-949 (-226)))) $)) (-15 -3872 ((-112) $)) (-15 -3957 ((-112) $)) (-15 -4046 ((-112) $ (-112))) (-15 -4135 ($ |#1| (-649 (-649 (-949 (-226)))) (-112)))) (-980)) (T -1218))
-((-4135 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112)) (-5 *1 (-1218 *2)) (-4 *2 (-980)))) (-4046 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1218 *3)) (-4 *3 (-980)))) (-1778 (*1 *2 *1) (-12 (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
-(-10 -8 (-15 -1778 (|#1| $)) (-15 -3770 ((-649 (-649 (-949 (-226)))) $)) (-15 -3872 ((-112) $)) (-15 -3957 ((-112) $)) (-15 -4046 ((-112) $ (-112))) (-15 -4135 ($ |#1| (-649 (-649 (-949 (-226)))) (-112))))
-((-4230 (((-949 (-226)) (-949 (-226))) 31)) (-3281 (((-949 (-226)) (-226) (-226) (-226) (-226)) 10)) (-3162 (((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226)))) 60)) (-3990 (((-226) (-949 (-226)) (-949 (-226))) 27)) (-3885 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 28)) (-3064 (((-649 (-649 (-226))) (-569)) 48)) (-3021 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 26)) (-3009 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 24)) (* (((-949 (-226)) (-226) (-949 (-226))) 22)))
-(((-1219) (-10 -7 (-15 -3281 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -3009 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3021 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3990 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3885 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4230 ((-949 (-226)) (-949 (-226)))) (-15 -3064 ((-649 (-649 (-226))) (-569))) (-15 -3162 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226))))))) (T -1219))
-((-3162 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 (-949 *4))) (-5 *1 (-1219)) (-5 *3 (-949 *4)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1219)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-3885 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-3990 (*1 *2 *3 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1219)))) (-3021 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (-3009 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1219)))) (-3281 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)) (-5 *3 (-226)))))
-(-10 -7 (-15 -3281 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -3009 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3021 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3990 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3885 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -4230 ((-949 (-226)) (-949 (-226)))) (-15 -3064 ((-649 (-649 (-226))) (-569))) (-15 -3162 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226))))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-1415 ((|#1| $ (-776)) 18)) (-3842 (((-776) $) 13)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3793 (((-964 |#1|) $) 12) (($ (-964 |#1|)) 11) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2919 (((-112) $ $) 22 (|has| |#1| (-1106)))))
-(((-1220 |#1|) (-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1415 (|#1| $ (-776))) (-15 -3842 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|))) (-1223)) (T -1220))
-((-1415 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-1220 *2)) (-4 *2 (-1223)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1220 *3)) (-4 *3 (-1223)))))
-(-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1415 (|#1| $ (-776))) (-15 -3842 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|)))
-((-3450 (((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)) (-569)) 94)) (-3259 (((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|))) 86)) (-3356 (((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|))) 70)))
-(((-1221 |#1|) (-10 -7 (-15 -3259 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -3356 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -3450 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)) (-569)))) (-353)) (T -1221))
-((-3450 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1179 (-1179 *5)))) (-5 *1 (-1221 *5)) (-5 *3 (-1179 (-1179 *5))))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4)))) (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))) (-3259 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4)))) (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))))
-(-10 -7 (-15 -3259 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -3356 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)))) (-15 -3450 ((-423 (-1179 (-1179 |#1|))) (-1179 (-1179 |#1|)) (-569))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 9) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1222) (-1089)) (T -1222))
-NIL
-(-1089)
-NIL
-(((-1223) (-140)) (T -1223))
-NIL
-(-13 (-10 -7 (-6 -3053)))
-((-2524 (((-112)) 18)) (-3561 (((-1278) (-649 |#1|) (-649 |#1|)) 22) (((-1278) (-649 |#1|)) 23)) (-1689 (((-112) |#1| |#1|) 37 (|has| |#1| (-855)))) (-2433 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2626 ((|#1| (-649 |#1|)) 38 (|has| |#1| (-855))) ((|#1| (-649 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3655 (((-2 (|:| -2035 (-649 |#1|)) (|:| -1950 (-649 |#1|)))) 20)))
-(((-1224 |#1|) (-10 -7 (-15 -3561 ((-1278) (-649 |#1|))) (-15 -3561 ((-1278) (-649 |#1|) (-649 |#1|))) (-15 -3655 ((-2 (|:| -2035 (-649 |#1|)) (|:| -1950 (-649 |#1|))))) (-15 -2433 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2433 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2626 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2524 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -2626 (|#1| (-649 |#1|))) (-15 -1689 ((-112) |#1| |#1|))) |%noBranch|)) (-1106)) (T -1224))
-((-1689 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-855)) (-4 *3 (-1106)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-855)) (-5 *1 (-1224 *2)))) (-2524 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1224 *2)) (-4 *2 (-1106)))) (-2433 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1106)) (-5 *2 (-112)) (-5 *1 (-1224 *3)))) (-2433 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))) (-3655 (*1 *2) (-12 (-5 *2 (-2 (|:| -2035 (-649 *3)) (|:| -1950 (-649 *3)))) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))) (-3561 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278)) (-5 *1 (-1224 *4)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278)) (-5 *1 (-1224 *4)))))
-(-10 -7 (-15 -3561 ((-1278) (-649 |#1|))) (-15 -3561 ((-1278) (-649 |#1|) (-649 |#1|))) (-15 -3655 ((-2 (|:| -2035 (-649 |#1|)) (|:| -1950 (-649 |#1|))))) (-15 -2433 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2433 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2626 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2524 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -2626 (|#1| (-649 |#1|))) (-15 -1689 ((-112) |#1| |#1|))) |%noBranch|))
-((-1829 (((-1278) (-649 (-1183)) (-649 (-1183))) 14) (((-1278) (-649 (-1183))) 12)) (-3965 (((-1278)) 16)) (-3850 (((-2 (|:| -1950 (-649 (-1183))) (|:| -2035 (-649 (-1183))))) 20)))
-(((-1225) (-10 -7 (-15 -1829 ((-1278) (-649 (-1183)))) (-15 -1829 ((-1278) (-649 (-1183)) (-649 (-1183)))) (-15 -3850 ((-2 (|:| -1950 (-649 (-1183))) (|:| -2035 (-649 (-1183)))))) (-15 -3965 ((-1278))))) (T -1225))
-((-3965 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1225)))) (-3850 (*1 *2) (-12 (-5 *2 (-2 (|:| -1950 (-649 (-1183))) (|:| -2035 (-649 (-1183))))) (-5 *1 (-1225)))) (-1829 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))))
-(-10 -7 (-15 -1829 ((-1278) (-649 (-1183)))) (-15 -1829 ((-1278) (-649 (-1183)) (-649 (-1183)))) (-15 -3850 ((-2 (|:| -1950 (-649 (-1183))) (|:| -2035 (-649 (-1183)))))) (-15 -3965 ((-1278))))
-((-2078 (($ $) 17)) (-4073 (((-112) $) 28)))
-(((-1226 |#1|) (-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -4073 ((-112) |#1|))) (-1227)) (T -1226))
-NIL
-(-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -4073 ((-112) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 57)) (-2508 (((-423 $) $) 58)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-4073 (((-112) $) 59)) (-2623 (((-112) $) 35)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3796 (((-423 $) $) 56)) (-2405 (((-3 $ "failed") $ $) 48)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
-(((-1227) (-140)) (T -1227))
-((-4073 (*1 *2 *1) (-12 (-4 *1 (-1227)) (-5 *2 (-112)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227)))) (-2078 (*1 *1 *1) (-4 *1 (-1227))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227)))))
-(-13 (-457) (-10 -8 (-15 -4073 ((-112) $)) (-15 -2508 ((-423 $) $)) (-15 -2078 ($ $)) (-15 -3796 ((-423 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1057 $) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1367 (($ $ $) NIL)) (-1351 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-1228) (-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))) (T -1228))
-((-1351 (*1 *1 *1 *1) (-5 *1 (-1228))) (-1367 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4188 (*1 *1) (-5 *1 (-1228))))
-(-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 7)))
+(((-1193) (-1108)) (T -1193))
+NIL
+(-1108)
+((-1910 (((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 67)) (-3218 (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|)))) 78) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|))) 74) (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185)) 79) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185)) 73) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|))))) 106) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|)))) 105) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185))) 107) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 104)))
+(((-1194 |#1|) (-10 -7 (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -1910 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185))))) (-561)) (T -1194))
+((-1910 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1194 *5)))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1194 *4)) (-5 *3 (-297 (-412 (-958 *4)))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1194 *4)) (-5 *3 (-412 (-958 *4))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5)) (-5 *3 (-297 (-412 (-958 *5)))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5)) (-5 *3 (-412 (-958 *5))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1194 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4))))))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1194 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1194 *5)) (-5 *3 (-649 (-297 (-412 (-958 *5))))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1194 *5)))))
+(-10 -7 (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -1910 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))))
+((-2792 (((-1167)) 7)) (-1636 (((-1167)) 11 T CONST)) (-3691 (((-1280) (-1167)) 13)) (-4268 (((-1167)) 8 T CONST)) (-1455 (((-130)) 10 T CONST)))
+(((-1195) (-13 (-1225) (-10 -7 (-15 -2792 ((-1167))) (-15 -4268 ((-1167)) -3709) (-15 -1455 ((-130)) -3709) (-15 -1636 ((-1167)) -3709) (-15 -3691 ((-1280) (-1167)))))) (T -1195))
+((-2792 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))) (-4268 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))) (-1455 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1195)))) (-1636 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1195)))))
+(-13 (-1225) (-10 -7 (-15 -2792 ((-1167))) (-15 -4268 ((-1167)) -3709) (-15 -1455 ((-130)) -3709) (-15 -1636 ((-1167)) -3709) (-15 -3691 ((-1280) (-1167)))))
+((-4343 (((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 56)) (-3979 (((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|))) 38)) (-3739 (((-1197 (-649 |#1|)) (-649 |#1|)) 49)) (-2872 (((-649 (-649 |#1|)) (-649 |#1|)) 45)) (-3565 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))) 53)) (-3750 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|)))) 52)) (-3133 (((-649 (-649 |#1|)) (-649 (-649 |#1|))) 43)) (-2725 (((-649 |#1|) (-649 |#1|)) 46)) (-2819 (((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 32)) (-4293 (((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 29)) (-1528 (((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|))) 24)) (-2505 (((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 58)) (-2273 (((-649 (-649 |#1|)) (-1197 (-649 |#1|))) 60)))
+(((-1196 |#1|) (-10 -7 (-15 -1528 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -4293 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2819 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -4343 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2505 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2273 ((-649 (-649 |#1|)) (-1197 (-649 |#1|)))) (-15 -3979 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -3739 ((-1197 (-649 |#1|)) (-649 |#1|))) (-15 -3133 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -2872 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -2725 ((-649 |#1|) (-649 |#1|))) (-15 -3750 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3565 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))))) (-855)) (T -1196))
+((-3565 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-2 (|:| |f1| (-649 *4)) (|:| |f2| (-649 (-649 (-649 *4)))) (|:| |f3| (-649 (-649 *4))) (|:| |f4| (-649 (-649 (-649 *4)))))) (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 (-649 *4)))))) (-3750 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5) (|:| |f4| (-649 *5)))) (-5 *1 (-1196 *6)) (-5 *4 (-649 *5)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1196 *3)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)) (-5 *3 (-649 *4)))) (-3133 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1196 *3)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-1197 (-649 *4))) (-5 *1 (-1196 *4)) (-5 *3 (-649 *4)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4)))) (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 *4))))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-1197 (-649 *4))) (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)) (-4 *4 (-855)))) (-4343 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-4 *4 (-855)) (-5 *1 (-1196 *4)))) (-2819 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *1 (-1196 *4)))) (-4293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1196 *5)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4)))) (-5 *1 (-1196 *6)) (-5 *5 (-649 *4)))))
+(-10 -7 (-15 -1528 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -4293 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2819 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -4343 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2505 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2273 ((-649 (-649 |#1|)) (-1197 (-649 |#1|)))) (-15 -3979 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -3739 ((-1197 (-649 |#1|)) (-649 |#1|))) (-15 -3133 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -2872 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -2725 ((-649 |#1|) (-649 |#1|))) (-15 -3750 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3565 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|))))))
+((-3241 (($ (-649 (-649 |#1|))) 10)) (-2884 (((-649 (-649 |#1|)) $) 11)) (-3796 (((-867) $) 36)))
+(((-1197 |#1|) (-10 -8 (-15 -3241 ($ (-649 (-649 |#1|)))) (-15 -2884 ((-649 (-649 |#1|)) $)) (-15 -3796 ((-867) $))) (-1108)) (T -1197))
+((-3796 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1197 *3)) (-4 *3 (-1108)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1197 *3)) (-4 *3 (-1108)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-1197 *3)))))
+(-10 -8 (-15 -3241 ($ (-649 (-649 |#1|)))) (-15 -2884 ((-649 (-649 |#1|)) $)) (-15 -3796 ((-867) $)))
+((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1198 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108)) (T -1198))
+NIL
+(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447)))
+((-2537 ((|#1| (-649 |#1|)) 49)) (-3816 ((|#1| |#1| (-569)) 24)) (-2186 (((-1181 |#1|) |#1| (-927)) 20)))
+(((-1199 |#1|) (-10 -7 (-15 -2537 (|#1| (-649 |#1|))) (-15 -2186 ((-1181 |#1|) |#1| (-927))) (-15 -3816 (|#1| |#1| (-569)))) (-367)) (T -1199))
+((-3816 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1199 *2)) (-4 *2 (-367)))) (-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1181 *3)) (-5 *1 (-1199 *3)) (-4 *3 (-367)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1199 *2)) (-4 *2 (-367)))))
+(-10 -7 (-15 -2537 (|#1| (-649 |#1|))) (-15 -2186 ((-1181 |#1|) |#1| (-927))) (-15 -3816 (|#1| |#1| (-569))))
+((-4287 (($) 10) (($ (-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)))) 14)) (-1794 (($ (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 39) (((-649 |#3|) $) 41)) (-3834 (($ (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1346 (($ (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1877 (((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 60)) (-3894 (($ (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 16)) (-1696 (((-649 |#2|) $) 19)) (-1414 (((-112) |#2| $) 65)) (-1574 (((-3 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) "failed") (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 64)) (-1781 (((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 69)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-4199 (((-649 |#3|) $) 43)) (-1869 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-776) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) NIL) (((-776) |#3| $) NIL) (((-776) (-1 (-112) |#3|) $) 79)) (-3796 (((-867) $) 27)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2920 (((-112) $ $) 51)))
+(((-1200 |#1| |#2| |#3|) (-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4287 (|#1| (-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))))) (-15 -4287 (|#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2882 ((-649 |#3|) |#1|)) (-15 -3560 ((-776) |#3| |#1|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1414 ((-112) |#2| |#1|)) (-15 -1696 ((-649 |#2|) |#1|)) (-15 -1794 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1794 (|#1| (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1794 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1574 ((-3 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) "failed") (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1877 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3894 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1781 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3560 ((-776) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -2882 ((-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3560 ((-776) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3208 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1980 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3834 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1346 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|))) (-1201 |#2| |#3|) (-1108) (-1108)) (T -1200))
+NIL
+(-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4287 (|#1| (-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))))) (-15 -4287 (|#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2882 ((-649 |#3|) |#1|)) (-15 -3560 ((-776) |#3| |#1|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1414 ((-112) |#2| |#1|)) (-15 -1696 ((-649 |#2|) |#1|)) (-15 -1794 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1794 (|#1| (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1794 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1574 ((-3 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) "failed") (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1877 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3894 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1781 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3560 ((-776) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -2882 ((-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3560 ((-776) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3208 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1980 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3834 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1346 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)))
+((-2417 (((-112) $ $) 19 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-4287 (($) 73) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 72)) (-2002 (((-1280) $ |#1| |#1|) 100 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#2| $ |#1| |#2|) 74)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 56 (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 62)) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 47 (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 63)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 55 (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 57 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 54 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 53 (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 89)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 31 (|has| $ (-6 -4447))) (((-649 |#2|) $) 80 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-4426 ((|#1| $) 97 (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 30 (|has| $ (-6 -4447))) (((-649 |#2|) $) 81 (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3256 ((|#1| $) 96 (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 35 (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2795 (((-649 |#1|) $) 64)) (-3804 (((-112) |#1| $) 65)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 40)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 41)) (-1696 (((-649 |#1|) $) 94)) (-1414 (((-112) |#1| $) 93)) (-3547 (((-1128) $) 21 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3513 ((|#2| $) 98 (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 52)) (-1682 (($ $ |#2|) 99 (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 42)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 33 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 27 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 26 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 25 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 24 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) 92)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2434 (($) 50) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 49)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 32 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 51)) (-3796 (((-867) $) 18 (-2776 (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))))) (-1520 (((-112) $ $) 23 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 43)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 34 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1201 |#1| |#2|) (-140) (-1108) (-1108)) (T -1201))
+((-3943 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-4287 (*1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 *3) (|:| -2216 *4)))) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *1 (-1201 *3 *4)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))))
+(-13 (-615 |t#1| |t#2|) (-609 |t#1| |t#2|) (-10 -8 (-15 -3943 (|t#2| $ |t#1| |t#2|)) (-15 -4287 ($)) (-15 -4287 ($ (-649 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|))))) (-15 -1346 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-102) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-494 #0#) . T) ((-494 |#2|) . T) ((-609 |#1| |#2|) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-615 |#1| |#2|) . T) ((-1108) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-1225) . T))
+((-4131 (((-112)) 29)) (-1654 (((-1280) (-1167)) 31)) (-2754 (((-112)) 41)) (-1469 (((-1280)) 39)) (-3062 (((-1280) (-1167) (-1167)) 30)) (-1313 (((-112)) 42)) (-3894 (((-1280) |#1| |#2|) 53)) (-3437 (((-1280)) 26)) (-4105 (((-3 |#2| "failed") |#1|) 51)) (-2990 (((-1280)) 40)))
+(((-1202 |#1| |#2|) (-10 -7 (-15 -3437 ((-1280))) (-15 -3062 ((-1280) (-1167) (-1167))) (-15 -1654 ((-1280) (-1167))) (-15 -1469 ((-1280))) (-15 -2990 ((-1280))) (-15 -4131 ((-112))) (-15 -2754 ((-112))) (-15 -1313 ((-112))) (-15 -4105 ((-3 |#2| "failed") |#1|)) (-15 -3894 ((-1280) |#1| |#2|))) (-1108) (-1108)) (T -1202))
+((-3894 (*1 *2 *3 *4) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-4105 (*1 *2 *3) (|partial| -12 (-4 *2 (-1108)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-1108)))) (-1313 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2754 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-4131 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2990 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-1469 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)))) (-3062 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)))) (-3437 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))))
+(-10 -7 (-15 -3437 ((-1280))) (-15 -3062 ((-1280) (-1167) (-1167))) (-15 -1654 ((-1280) (-1167))) (-15 -1469 ((-1280))) (-15 -2990 ((-1280))) (-15 -4131 ((-112))) (-15 -2754 ((-112))) (-15 -1313 ((-112))) (-15 -4105 ((-3 |#2| "failed") |#1|)) (-15 -3894 ((-1280) |#1| |#2|)))
+((-1988 (((-1167) (-1167)) 22)) (-3549 (((-52) (-1167)) 25)))
+(((-1203) (-10 -7 (-15 -3549 ((-52) (-1167))) (-15 -1988 ((-1167) (-1167))))) (T -1203))
+((-1988 (*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1203)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-1203)))))
+(-10 -7 (-15 -3549 ((-52) (-1167))) (-15 -1988 ((-1167) (-1167))))
+((-3796 (((-1205) |#1|) 11)))
+(((-1204 |#1|) (-10 -7 (-15 -3796 ((-1205) |#1|))) (-1108)) (T -1204))
+((-3796 (*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-1204 *3)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -3796 ((-1205) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4395 (((-649 (-1167)) $) 39)) (-4404 (((-649 (-1167)) $ (-649 (-1167))) 42)) (-1644 (((-649 (-1167)) $ (-649 (-1167))) 41)) (-2789 (((-649 (-1167)) $ (-649 (-1167))) 43)) (-1612 (((-649 (-1167)) $) 38)) (-4300 (($) 28)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3193 (((-649 (-1167)) $) 40)) (-4158 (((-1280) $ (-569)) 35) (((-1280) $) 36)) (-1410 (($ (-867) (-569)) 33) (($ (-867) (-569) (-867)) NIL)) (-3796 (((-867) $) 49) (($ (-867)) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1205) (-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -1410 ($ (-867) (-569) (-867))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -4395 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -4404 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167))))))) (T -1205))
+((-1410 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205)))) (-1410 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1205)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1205)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-4395 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-4300 (*1 *1) (-5 *1 (-1205))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-2789 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-4404 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-1644 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))))
+(-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -1410 ($ (-867) (-569) (-867))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -4395 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -4404 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167))))))
+((-2417 (((-112) $ $) NIL)) (-3265 (((-1167) $ (-1167)) 17) (((-1167) $) 16)) (-2617 (((-1167) $ (-1167)) 15)) (-3229 (($ $ (-1167)) NIL)) (-3243 (((-3 (-1167) "failed") $) 11)) (-2998 (((-1167) $) 8)) (-1584 (((-3 (-1167) "failed") $) 12)) (-2358 (((-1167) $) 9)) (-1721 (($ (-393)) NIL) (($ (-393) (-1167)) NIL)) (-3573 (((-393) $) NIL)) (-3435 (((-1167) $) NIL)) (-4065 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3002 (((-112) $) 21)) (-3796 (((-867) $) NIL)) (-2543 (($ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1206) (-13 (-368 (-393) (-1167)) (-10 -8 (-15 -3265 ((-1167) $ (-1167))) (-15 -3265 ((-1167) $)) (-15 -2998 ((-1167) $)) (-15 -3243 ((-3 (-1167) "failed") $)) (-15 -1584 ((-3 (-1167) "failed") $)) (-15 -3002 ((-112) $))))) (T -1206))
+((-3265 (*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-3243 (*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-1584 (*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))))
+(-13 (-368 (-393) (-1167)) (-10 -8 (-15 -3265 ((-1167) $ (-1167))) (-15 -3265 ((-1167) $)) (-15 -2998 ((-1167) $)) (-15 -3243 ((-3 (-1167) "failed") $)) (-15 -1584 ((-3 (-1167) "failed") $)) (-15 -3002 ((-112) $))))
+((-2919 (((-3 (-569) "failed") |#1|) 19)) (-1501 (((-3 (-569) "failed") |#1|) 14)) (-4367 (((-569) (-1167)) 33)))
+(((-1207 |#1|) (-10 -7 (-15 -2919 ((-3 (-569) "failed") |#1|)) (-15 -1501 ((-3 (-569) "failed") |#1|)) (-15 -4367 ((-569) (-1167)))) (-1057)) (T -1207))
+((-4367 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-1207 *4)) (-4 *4 (-1057)))) (-1501 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057)))) (-2919 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057)))))
+(-10 -7 (-15 -2919 ((-3 (-569) "failed") |#1|)) (-15 -1501 ((-3 (-569) "failed") |#1|)) (-15 -4367 ((-569) (-1167))))
+((-2860 (((-1141 (-226))) 9)))
+(((-1208) (-10 -7 (-15 -2860 ((-1141 (-226)))))) (T -1208))
+((-2860 (*1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1208)))))
+(-10 -7 (-15 -2860 ((-1141 (-226)))))
+((-1312 (($) 12)) (-4161 (($ $) 36)) (-4140 (($ $) 34)) (-2675 (($ $) 26)) (-4183 (($ $) 18)) (-1503 (($ $) 16)) (-4175 (($ $) 20)) (-2712 (($ $) 31)) (-4151 (($ $) 35)) (-2689 (($ $) 30)))
+(((-1209 |#1|) (-10 -8 (-15 -1312 (|#1|)) (-15 -4161 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2689 (|#1| |#1|))) (-1210)) (T -1209))
+NIL
+(-10 -8 (-15 -1312 (|#1|)) (-15 -4161 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)))
+((-2771 (($ $) 26)) (-2626 (($ $) 11)) (-2746 (($ $) 27)) (-2601 (($ $) 10)) (-4118 (($ $) 28)) (-2647 (($ $) 9)) (-1312 (($) 16)) (-2662 (($ $) 19)) (-4389 (($ $) 18)) (-4128 (($ $) 29)) (-2661 (($ $) 8)) (-2783 (($ $) 30)) (-2635 (($ $) 7)) (-2758 (($ $) 31)) (-2614 (($ $) 6)) (-4161 (($ $) 20)) (-2701 (($ $) 32)) (-4140 (($ $) 21)) (-2675 (($ $) 33)) (-4183 (($ $) 22)) (-2723 (($ $) 34)) (-1503 (($ $) 23)) (-2734 (($ $) 35)) (-4175 (($ $) 24)) (-2712 (($ $) 36)) (-4151 (($ $) 25)) (-2689 (($ $) 37)) (** (($ $ $) 17)))
+(((-1210) (-140)) (T -1210))
+((-1312 (*1 *1) (-4 *1 (-1210))))
+(-13 (-1213) (-95) (-498) (-35) (-287) (-10 -8 (-15 -1312 ($))))
+(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-1213) . T))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 19)) (-2277 (($ |#1| (-649 $)) 28) (($ (-649 |#1|)) 35) (($ |#1|) 30)) (-3914 (((-112) $ (-776)) 71)) (-2052 ((|#1| $ |#1|) 14 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 13 (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-2882 (((-649 |#1|) $) 75 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 63)) (-1534 (((-112) $ $) 49 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 61)) (-2009 (((-649 |#1|) $) 76 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 27)) (-4254 (((-112) $ (-776)) 59)) (-2275 (((-649 |#1|) $) 54)) (-1887 (((-112) $) 52)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 105)) (-3162 (((-112) $) 9)) (-3635 (($) 10)) (-1869 ((|#1| $ "value") NIL)) (-2602 (((-569) $ $) 48)) (-3680 (((-649 $) $) 87)) (-2067 (((-112) $ $) 108)) (-2894 (((-649 $) $) 103)) (-4356 (($ $) 104)) (-3966 (((-112) $) 82)) (-3560 (((-776) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4447))) (((-776) |#1| $) 17 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 86)) (-3796 (((-867) $) 89 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 12)) (-4280 (((-112) $ $) 39 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 37 (|has| |#1| (-1108)))) (-2428 (((-776) $) 57 (|has| $ (-6 -4447)))))
+(((-1211 |#1|) (-13 (-1018 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2277 ($ |#1| (-649 $))) (-15 -2277 ($ (-649 |#1|))) (-15 -2277 ($ |#1|)) (-15 -3966 ((-112) $)) (-15 -4356 ($ $)) (-15 -2894 ((-649 $) $)) (-15 -2067 ((-112) $ $)) (-15 -3680 ((-649 $) $)))) (-1108)) (T -1211))
+((-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))) (-2277 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1211 *2))) (-5 *1 (-1211 *2)) (-4 *2 (-1108)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1211 *3)))) (-2277 (*1 *1 *2) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108)))) (-4356 (*1 *1 *1) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))) (-2067 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))))
+(-13 (-1018 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2277 ($ |#1| (-649 $))) (-15 -2277 ($ (-649 |#1|))) (-15 -2277 ($ |#1|)) (-15 -3966 ((-112) $)) (-15 -4356 ($ $)) (-15 -2894 ((-649 $) $)) (-15 -2067 ((-112) $ $)) (-15 -3680 ((-649 $) $))))
+((-2626 (($ $) 15)) (-2647 (($ $) 12)) (-2661 (($ $) 10)) (-2635 (($ $) 17)))
+(((-1212 |#1|) (-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2626 (|#1| |#1|))) (-1213)) (T -1212))
+NIL
+(-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)))
+((-2626 (($ $) 11)) (-2601 (($ $) 10)) (-2647 (($ $) 9)) (-2661 (($ $) 8)) (-2635 (($ $) 7)) (-2614 (($ $) 6)))
+(((-1213) (-140)) (T -1213))
+((-2626 (*1 *1 *1) (-4 *1 (-1213))) (-2601 (*1 *1 *1) (-4 *1 (-1213))) (-2647 (*1 *1 *1) (-4 *1 (-1213))) (-2661 (*1 *1 *1) (-4 *1 (-1213))) (-2635 (*1 *1 *1) (-4 *1 (-1213))) (-2614 (*1 *1 *1) (-4 *1 (-1213))))
+(-13 (-10 -8 (-15 -2614 ($ $)) (-15 -2635 ($ $)) (-15 -2661 ($ $)) (-15 -2647 ($ $)) (-15 -2601 ($ $)) (-15 -2626 ($ $))))
+((-1396 ((|#2| |#2|) 98)) (-4060 (((-112) |#2|) 29)) (-3824 ((|#2| |#2|) 33)) (-3836 ((|#2| |#2|) 35)) (-3509 ((|#2| |#2| (-1185)) 92) ((|#2| |#2|) 93)) (-1628 (((-170 |#2|) |#2|) 31)) (-3038 ((|#2| |#2| (-1185)) 94) ((|#2| |#2|) 95)))
+(((-1214 |#1| |#2|) (-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -1396 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1628 ((-170 |#2|) |#2|))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -1214))
+((-1628 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-170 *3)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-1396 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3038 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3038 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3509 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))))
+(-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -1396 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1628 ((-170 |#2|) |#2|)))
+((-3928 ((|#4| |#4| |#1|) 32)) (-4090 ((|#4| |#4| |#1|) 33)))
+(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3928 (|#4| |#4| |#1|)) (-15 -4090 (|#4| |#4| |#1|))) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1215))
+((-4090 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3928 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(-10 -7 (-15 -3928 (|#4| |#4| |#1|)) (-15 -4090 (|#4| |#4| |#1|)))
+((-4408 ((|#2| |#2|) 148)) (-1453 ((|#2| |#2|) 145)) (-2293 ((|#2| |#2|) 136)) (-3587 ((|#2| |#2|) 133)) (-3827 ((|#2| |#2|) 141)) (-2665 ((|#2| |#2|) 129)) (-4261 ((|#2| |#2|) 44)) (-1607 ((|#2| |#2|) 105)) (-2469 ((|#2| |#2|) 88)) (-3165 ((|#2| |#2|) 143)) (-1582 ((|#2| |#2|) 131)) (-3524 ((|#2| |#2|) 153)) (-2263 ((|#2| |#2|) 151)) (-3874 ((|#2| |#2|) 152)) (-3424 ((|#2| |#2|) 150)) (-2169 ((|#2| |#2|) 163)) (-1969 ((|#2| |#2|) 30 (-12 (|has| |#2| (-619 (-898 |#1|))) (|has| |#2| (-892 |#1|)) (|has| |#1| (-619 (-898 |#1|))) (|has| |#1| (-892 |#1|))))) (-3937 ((|#2| |#2|) 89)) (-3394 ((|#2| |#2|) 154)) (-1380 ((|#2| |#2|) 155)) (-1678 ((|#2| |#2|) 142)) (-2945 ((|#2| |#2|) 130)) (-3445 ((|#2| |#2|) 149)) (-1496 ((|#2| |#2|) 147)) (-4089 ((|#2| |#2|) 137)) (-1640 ((|#2| |#2|) 135)) (-1397 ((|#2| |#2|) 139)) (-3030 ((|#2| |#2|) 127)))
+(((-1216 |#1| |#2|) (-10 -7 (-15 -1380 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2169 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -3587 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -1969 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-457) (-13 (-435 |#1|) (-1210))) (T -1216))
+((-1969 (*1 *2 *2) (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3524 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3587 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-4408 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1397 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3030 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-4261 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2169 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1380 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))))
+(-10 -7 (-15 -1380 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2169 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -3587 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -1969 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2501 (((-112) |#5| $) 68) (((-112) $) 110)) (-2950 ((|#5| |#5| $) 83)) (-1417 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4149 (((-649 |#5|) (-649 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4381 (((-3 $ "failed") (-649 |#5|)) 135)) (-3525 (((-3 $ "failed") $) 120)) (-2548 ((|#5| |#5| $) 102)) (-2288 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3604 ((|#5| |#5| $) 106)) (-3598 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1694 (((-2 (|:| -4133 (-649 |#5|)) (|:| -1721 (-649 |#5|))) $) 63)) (-2140 (((-112) |#5| $) 66) (((-112) $) 111)) (-3372 ((|#4| $) 116)) (-1724 (((-3 |#5| "failed") $) 118)) (-1586 (((-649 |#5|) $) 55)) (-2310 (((-112) |#5| $) 75) (((-112) $) 115)) (-1341 ((|#5| |#5| $) 89)) (-2151 (((-112) $ $) 29)) (-4046 (((-112) |#5| $) 71) (((-112) $) 113)) (-4348 ((|#5| |#5| $) 86)) (-3513 (((-3 |#5| "failed") $) 117)) (-3166 (($ $ |#5|) 136)) (-4339 (((-776) $) 60)) (-3809 (($ (-649 |#5|)) 133)) (-3381 (($ $ |#4|) 131)) (-2963 (($ $ |#4|) 129)) (-4039 (($ $) 128)) (-3796 (((-867) $) NIL) (((-649 |#5|) $) 121)) (-1873 (((-776) $) 140)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2546 (((-112) $ (-1 (-112) |#5| (-649 |#5|))) 108)) (-3183 (((-649 |#4|) $) 123)) (-4269 (((-112) |#4| $) 126)) (-2920 (((-112) $ $) 20)))
+(((-1217 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1873 ((-776) |#1|)) (-15 -3166 (|#1| |#1| |#5|)) (-15 -1417 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4269 ((-112) |#4| |#1|)) (-15 -3183 ((-649 |#4|) |#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -1724 ((-3 |#5| "failed") |#1|)) (-15 -3513 ((-3 |#5| "failed") |#1|)) (-15 -3604 (|#5| |#5| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2548 (|#5| |#5| |#1|)) (-15 -1341 (|#5| |#5| |#1|)) (-15 -4348 (|#5| |#5| |#1|)) (-15 -2950 (|#5| |#5| |#1|)) (-15 -4149 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3598 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2310 ((-112) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -2501 ((-112) |#1|)) (-15 -2546 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -2310 ((-112) |#5| |#1|)) (-15 -4046 ((-112) |#5| |#1|)) (-15 -2501 ((-112) |#5| |#1|)) (-15 -2288 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2140 ((-112) |#1|)) (-15 -2140 ((-112) |#5| |#1|)) (-15 -1694 ((-2 (|:| -4133 (-649 |#5|)) (|:| -1721 (-649 |#5|))) |#1|)) (-15 -4339 ((-776) |#1|)) (-15 -1586 ((-649 |#5|) |#1|)) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2151 ((-112) |#1| |#1|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -3372 (|#4| |#1|)) (-15 -4381 ((-3 |#1| "failed") (-649 |#5|))) (-15 -3796 ((-649 |#5|) |#1|)) (-15 -3809 (|#1| (-649 |#5|))) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1417 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-1218 |#2| |#3| |#4| |#5|) (-561) (-798) (-855) (-1073 |#2| |#3| |#4|)) (T -1217))
+NIL
+(-10 -8 (-15 -1873 ((-776) |#1|)) (-15 -3166 (|#1| |#1| |#5|)) (-15 -1417 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4269 ((-112) |#4| |#1|)) (-15 -3183 ((-649 |#4|) |#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -1724 ((-3 |#5| "failed") |#1|)) (-15 -3513 ((-3 |#5| "failed") |#1|)) (-15 -3604 (|#5| |#5| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2548 (|#5| |#5| |#1|)) (-15 -1341 (|#5| |#5| |#1|)) (-15 -4348 (|#5| |#5| |#1|)) (-15 -2950 (|#5| |#5| |#1|)) (-15 -4149 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3598 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2310 ((-112) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -2501 ((-112) |#1|)) (-15 -2546 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -2310 ((-112) |#5| |#1|)) (-15 -4046 ((-112) |#5| |#1|)) (-15 -2501 ((-112) |#5| |#1|)) (-15 -2288 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2140 ((-112) |#1|)) (-15 -2140 ((-112) |#5| |#1|)) (-15 -1694 ((-2 (|:| -4133 (-649 |#5|)) (|:| -1721 (-649 |#5|))) |#1|)) (-15 -4339 ((-776) |#1|)) (-15 -1586 ((-649 |#5|) |#1|)) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2151 ((-112) |#1| |#1|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -3372 (|#4| |#1|)) (-15 -4381 ((-3 |#1| "failed") (-649 |#5|))) (-15 -3796 ((-649 |#5|) |#1|)) (-15 -3809 (|#1| (-649 |#5|))) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1417 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)))
+((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-1724 (((-3 |#4| "failed") $) 84)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447)))))
+(((-1218 |#1| |#2| |#3| |#4|) (-140) (-561) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1218))
+((-2151 (*1 *2 *1 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *8)))) (-5 *3 (-649 *8)) (-4 *1 (-1218 *5 *6 *7 *8)))) (-3494 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *9)))) (-5 *3 (-649 *9)) (-4 *1 (-1218 *6 *7 *8 *9)))) (-1586 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *6)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-776)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-2 (|:| -4133 (-649 *6)) (|:| -1721 (-649 *6)))))) (-2140 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-2288 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1218 *5 *6 *7 *3)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)))) (-2501 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-4046 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2310 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2546 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1218 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-3598 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1218 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *2 (-1073 *5 *6 *7)))) (-4149 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1218 *5 *6 *7 *8)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)))) (-2950 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-4348 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1341 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-2548 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4)))) (-3604 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1218 *4 *5 *6 *7)))) (-1923 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| -4133 *1) (|:| -1721 (-649 *7))))) (-5 *3 (-649 *7)) (-4 *1 (-1218 *4 *5 *6 *7)))) (-3513 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1724 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-3525 (*1 *1 *1) (|partial| -12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))) (-4269 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112)))) (-1417 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1218 *4 *5 *3 *2)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1073 *4 *5 *3)))) (-1589 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *5 (-372)) (-5 *2 (-776)))))
+(-13 (-984 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2151 ((-112) $ $)) (-15 -3494 ((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3494 ((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1586 ((-649 |t#4|) $)) (-15 -4339 ((-776) $)) (-15 -1694 ((-2 (|:| -4133 (-649 |t#4|)) (|:| -1721 (-649 |t#4|))) $)) (-15 -2140 ((-112) |t#4| $)) (-15 -2140 ((-112) $)) (-15 -2288 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2501 ((-112) |t#4| $)) (-15 -4046 ((-112) |t#4| $)) (-15 -2310 ((-112) |t#4| $)) (-15 -2546 ((-112) $ (-1 (-112) |t#4| (-649 |t#4|)))) (-15 -2501 ((-112) $)) (-15 -4046 ((-112) $)) (-15 -2310 ((-112) $)) (-15 -3598 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4149 ((-649 |t#4|) (-649 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2950 (|t#4| |t#4| $)) (-15 -4348 (|t#4| |t#4| $)) (-15 -1341 (|t#4| |t#4| $)) (-15 -2548 (|t#4| |t#4| $)) (-15 -4039 ($ $)) (-15 -3604 (|t#4| |t#4| $)) (-15 -1806 ((-649 $) (-649 |t#4|))) (-15 -1923 ((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |t#4|)))) (-649 |t#4|))) (-15 -3513 ((-3 |t#4| "failed") $)) (-15 -1724 ((-3 |t#4| "failed") $)) (-15 -3525 ((-3 $ "failed") $)) (-15 -3183 ((-649 |t#3|) $)) (-15 -4269 ((-112) |t#3| $)) (-15 -1417 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1589 ((-3 $ "failed") $ |t#4|)) (-15 -3166 ($ $ |t#4|)) (IF (|has| |t#3| (-372)) (-15 -1873 ((-776) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1225) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1185)) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3278 (((-958 |#1|) $ (-776)) 20) (((-958 |#1|) $ (-776) (-776)) NIL)) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $ (-1185)) NIL) (((-776) $ (-1185) (-776)) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2198 (((-112) $) NIL)) (-3923 (($ $ (-649 (-1185)) (-649 (-536 (-1185)))) NIL) (($ $ (-1185) (-536 (-1185))) NIL) (($ |#1| (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $ (-1185)) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-1632 (($ (-1 $) (-1185) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3166 (($ $ (-776)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (($ $ (-1185) $) NIL) (($ $ (-649 (-1185)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3517 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-4339 (((-536 (-1185)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-1185)) NIL) (($ (-958 |#1|)) NIL)) (-4383 ((|#1| $ (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (((-958 |#1|) $ (-776)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1219 |#1|) (-13 (-745 |#1| (-1185)) (-10 -8 (-15 -4383 ((-958 |#1|) $ (-776))) (-15 -3796 ($ (-1185))) (-15 -3796 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ (-1185) |#1|)) (-15 -1632 ($ (-1 $) (-1185) |#1|))) |%noBranch|))) (-1057)) (T -1219))
+((-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1219 *4)) (-4 *4 (-1057)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-1057)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-5 *1 (-1219 *3)))) (-3579 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)))) (-1632 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1219 *4))) (-5 *3 (-1185)) (-5 *1 (-1219 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057)))))
+(-13 (-745 |#1| (-1185)) (-10 -8 (-15 -4383 ((-958 |#1|) $ (-776))) (-15 -3796 ($ (-1185))) (-15 -3796 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ (-1185) |#1|)) (-15 -1632 ($ (-1 $) (-1185) |#1|))) |%noBranch|)))
+((-3983 (($ |#1| (-649 (-649 (-949 (-226)))) (-112)) 19)) (-2363 (((-112) $ (-112)) 18)) (-2722 (((-112) $) 17)) (-1649 (((-649 (-649 (-949 (-226)))) $) 13)) (-3794 ((|#1| $) 8)) (-4368 (((-112) $) 15)))
+(((-1220 |#1|) (-10 -8 (-15 -3794 (|#1| $)) (-15 -1649 ((-649 (-649 (-949 (-226)))) $)) (-15 -4368 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -2363 ((-112) $ (-112))) (-15 -3983 ($ |#1| (-649 (-649 (-949 (-226)))) (-112)))) (-982)) (T -1220))
+((-3983 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112)) (-5 *1 (-1220 *2)) (-4 *2 (-982)))) (-2363 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-3794 (*1 *2 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-982)))))
+(-10 -8 (-15 -3794 (|#1| $)) (-15 -1649 ((-649 (-649 (-949 (-226)))) $)) (-15 -4368 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -2363 ((-112) $ (-112))) (-15 -3983 ($ |#1| (-649 (-649 (-949 (-226)))) (-112))))
+((-3636 (((-949 (-226)) (-949 (-226))) 31)) (-3283 (((-949 (-226)) (-226) (-226) (-226) (-226)) 10)) (-3860 (((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226)))) 60)) (-3040 (((-226) (-949 (-226)) (-949 (-226))) 27)) (-3260 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 28)) (-2213 (((-649 (-649 (-226))) (-569)) 48)) (-3024 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 26)) (-3012 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 24)) (* (((-949 (-226)) (-226) (-949 (-226))) 22)))
+(((-1221) (-10 -7 (-15 -3283 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -3012 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3024 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3040 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3260 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3636 ((-949 (-226)) (-949 (-226)))) (-15 -2213 ((-649 (-649 (-226))) (-569))) (-15 -3860 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226))))))) (T -1221))
+((-3860 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 (-949 *4))) (-5 *1 (-1221)) (-5 *3 (-949 *4)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1221)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (-3260 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (-3040 (*1 *2 *3 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1221)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1221)))) (-3283 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)) (-5 *3 (-226)))))
+(-10 -7 (-15 -3283 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -3012 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3024 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3040 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3260 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3636 ((-949 (-226)) (-949 (-226)))) (-15 -2213 ((-649 (-649 (-226))) (-569))) (-15 -3860 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226))))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1417 ((|#1| $ (-776)) 18)) (-3845 (((-776) $) 13)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3796 (((-964 |#1|) $) 12) (($ (-964 |#1|)) 11) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2920 (((-112) $ $) 22 (|has| |#1| (-1108)))))
+(((-1222 |#1|) (-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1417 (|#1| $ (-776))) (-15 -3845 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) (-1225)) (T -1222))
+((-1417 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-1222 *2)) (-4 *2 (-1225)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1222 *3)) (-4 *3 (-1225)))))
+(-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1417 (|#1| $ (-776))) (-15 -3845 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|)))
+((-1643 (((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)) (-569)) 94)) (-3597 (((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|))) 86)) (-1987 (((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|))) 70)))
+(((-1223 |#1|) (-10 -7 (-15 -3597 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1987 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1643 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)) (-569)))) (-353)) (T -1223))
+((-1643 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1181 (-1181 *5)))) (-5 *1 (-1223 *5)) (-5 *3 (-1181 (-1181 *5))))) (-1987 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4)))) (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4))))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4)))) (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4))))))
+(-10 -7 (-15 -3597 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1987 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1643 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)) (-569))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 9) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1224) (-1091)) (T -1224))
+NIL
+(-1091)
+NIL
+(((-1225) (-140)) (T -1225))
+NIL
+(-13 (-10 -7 (-6 -3057)))
+((-2630 (((-112)) 18)) (-3288 (((-1280) (-649 |#1|) (-649 |#1|)) 22) (((-1280) (-649 |#1|)) 23)) (-2314 (((-112) |#1| |#1|) 37 (|has| |#1| (-855)))) (-4254 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2369 ((|#1| (-649 |#1|)) 38 (|has| |#1| (-855))) ((|#1| (-649 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2943 (((-2 (|:| -1365 (-649 |#1|)) (|:| -2916 (-649 |#1|)))) 20)))
+(((-1226 |#1|) (-10 -7 (-15 -3288 ((-1280) (-649 |#1|))) (-15 -3288 ((-1280) (-649 |#1|) (-649 |#1|))) (-15 -2943 ((-2 (|:| -1365 (-649 |#1|)) (|:| -2916 (-649 |#1|))))) (-15 -4254 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4254 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2369 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2630 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -2369 (|#1| (-649 |#1|))) (-15 -2314 ((-112) |#1| |#1|))) |%noBranch|)) (-1108)) (T -1226))
+((-2314 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-855)) (-4 *3 (-1108)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-855)) (-5 *1 (-1226 *2)))) (-2630 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1226 *2)) (-4 *2 (-1108)))) (-4254 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1108)) (-5 *2 (-112)) (-5 *1 (-1226 *3)))) (-4254 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))) (-2943 (*1 *2) (-12 (-5 *2 (-2 (|:| -1365 (-649 *3)) (|:| -2916 (-649 *3)))) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))) (-3288 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280)) (-5 *1 (-1226 *4)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280)) (-5 *1 (-1226 *4)))))
+(-10 -7 (-15 -3288 ((-1280) (-649 |#1|))) (-15 -3288 ((-1280) (-649 |#1|) (-649 |#1|))) (-15 -2943 ((-2 (|:| -1365 (-649 |#1|)) (|:| -2916 (-649 |#1|))))) (-15 -4254 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4254 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2369 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2630 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -2369 (|#1| (-649 |#1|))) (-15 -2314 ((-112) |#1| |#1|))) |%noBranch|))
+((-4224 (((-1280) (-649 (-1185)) (-649 (-1185))) 14) (((-1280) (-649 (-1185))) 12)) (-2806 (((-1280)) 16)) (-4191 (((-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185))))) 20)))
+(((-1227) (-10 -7 (-15 -4224 ((-1280) (-649 (-1185)))) (-15 -4224 ((-1280) (-649 (-1185)) (-649 (-1185)))) (-15 -4191 ((-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185)))))) (-15 -2806 ((-1280))))) (T -1227))
+((-2806 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1227)))) (-4191 (*1 *2) (-12 (-5 *2 (-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185))))) (-5 *1 (-1227)))) (-4224 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227)))))
+(-10 -7 (-15 -4224 ((-1280) (-649 (-1185)))) (-15 -4224 ((-1280) (-649 (-1185)) (-649 (-1185)))) (-15 -4191 ((-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185)))))) (-15 -2806 ((-1280))))
+((-1830 (($ $) 17)) (-1473 (((-112) $) 28)))
+(((-1228 |#1|) (-10 -8 (-15 -1830 (|#1| |#1|)) (-15 -1473 ((-112) |#1|))) (-1229)) (T -1228))
+NIL
+(-10 -8 (-15 -1830 (|#1| |#1|)) (-15 -1473 ((-112) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 57)) (-3764 (((-423 $) $) 58)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-1473 (((-112) $) 59)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 56)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27)))
+(((-1229) (-140)) (T -1229))
+((-1473 (*1 *2 *1) (-12 (-4 *1 (-1229)) (-5 *2 (-112)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229)))) (-1830 (*1 *1 *1) (-4 *1 (-1229))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229)))))
+(-13 (-457) (-10 -8 (-15 -1473 ((-112) $)) (-15 -3764 ((-423 $) $)) (-15 -1830 ($ $)) (-15 -3800 ((-423 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-1230) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1230))
+((-1353 (*1 *1 *1 *1) (-5 *1 (-1230))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1230))) (-4427 (*1 *1) (-5 *1 (-1230))))
+(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1367 (($ $ $) NIL)) (-1351 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-1229) (-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))) (T -1229))
-((-1351 (*1 *1 *1 *1) (-5 *1 (-1229))) (-1367 (*1 *1 *1 *1) (-5 *1 (-1229))) (-4188 (*1 *1) (-5 *1 (-1229))))
-(-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-1231) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1231))
+((-1353 (*1 *1 *1 *1) (-5 *1 (-1231))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1231))) (-4427 (*1 *1) (-5 *1 (-1231))))
+(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1367 (($ $ $) NIL)) (-1351 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-1230) (-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))) (T -1230))
-((-1351 (*1 *1 *1 *1) (-5 *1 (-1230))) (-1367 (*1 *1 *1 *1) (-5 *1 (-1230))) (-4188 (*1 *1) (-5 *1 (-1230))))
-(-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-1232) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1232))
+((-1353 (*1 *1 *1 *1) (-5 *1 (-1232))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1232))) (-4427 (*1 *1) (-5 *1 (-1232))))
+(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-2415 (((-112) $ $) NIL)) (-3470 (((-776)) NIL)) (-4188 (($) NIL T CONST)) (-3403 (($) NIL)) (-3377 (($ $ $) NIL) (($) NIL T CONST)) (-3969 (($ $ $) NIL) (($) NIL T CONST)) (-2855 (((-927) $) NIL)) (-1550 (((-1165) $) NIL)) (-2150 (($ (-927)) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) NIL)) (-1367 (($ $ $) NIL)) (-1351 (($ $ $) NIL)) (-1441 (((-112) $ $) NIL)) (-2976 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL)) (-2942 (((-112) $ $) NIL)))
-(((-1231) (-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))) (T -1231))
-((-1351 (*1 *1 *1 *1) (-5 *1 (-1231))) (-1367 (*1 *1 *1 *1) (-5 *1 (-1231))) (-4188 (*1 *1) (-5 *1 (-1231))))
-(-13 (-849) (-10 -8 (-15 -1351 ($ $ $)) (-15 -1367 ($ $ $)) (-15 -4188 ($) -3706)))
+((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)))
+(((-1233) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1233))
+((-1353 (*1 *1 *1 *1) (-5 *1 (-1233))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1233))) (-4427 (*1 *1) (-5 *1 (-1233))))
+(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-1344 (((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|)) 23)))
-(((-1232 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1344 ((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|)))) (-1055) (-1055) (-1183) (-1183) |#1| |#2|) (T -1232))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5 *7 *9)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1237 *6 *8 *10)) (-5 *1 (-1232 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1183)))))
-(-10 -7 (-15 -1344 ((-1237 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1237 |#1| |#3| |#5|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 (-1088)) $) 86)) (-2671 (((-1183) $) 115)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-3008 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-2009 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-2769 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 174 (|has| |#1| (-367)))) (-2508 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3807 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2744 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-4114 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) 18 T CONST)) (-2366 (($ $ $) 169 (|has| |#1| (-367)))) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-4299 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-2373 (($ $ $) 168 (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-4073 (((-112) $) 176 (|has| |#1| (-367)))) (-4091 (((-112) $) 85)) (-1310 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) 113)) (-2598 (($ (-1 |#1| (-569)) $) 184)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-4343 (((-112) $) 74)) (-3920 (($ |#1| (-569)) 73) (($ $ (-1088) (-569)) 88) (($ $ (-649 (-1088)) (-649 (-569))) 87)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-2660 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1835 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-1550 (((-1165) $) 10)) (-1814 (($ $) 177 (|has| |#1| (-367)))) (-2488 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2774 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1864 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3796 (((-423 $) $) 173 (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 170 (|has| |#1| (-367)))) (-2907 (($ $ (-569)) 107)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4386 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-1578 (((-776) $) 166 (|has| |#1| (-367)))) (-1866 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 167 (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-3868 (((-569) $) 76)) (-4124 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 84)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4184 ((|#1| $ (-569)) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-2167 ((|#1| $) 114)) (-1441 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4133 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-1233 |#1|) (-140) (-1055)) (T -1233))
-((-3317 (*1 *1 *2) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1055)) (-4 *1 (-1233 *3)))) (-2598 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1233 *3)) (-4 *3 (-1055)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-4299 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))) (-2488 (*1 *1 *1 *2) (-2774 (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -1710 ((-649 *2) *3))) (|has| *3 (-15 -2488 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
-(-13 (-1251 |t#1| (-569)) (-10 -8 (-15 -3317 ($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |t#1|))))) (-15 -2598 ($ (-1 |t#1| (-569)) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -4299 ((-412 (-958 |t#1|)) $ (-569))) (-15 -4299 ((-412 (-958 |t#1|)) $ (-569) (-569)))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $)) (IF (|has| |t#1| (-15 -2488 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -1710 ((-649 (-1183)) |t#1|))) (-15 -2488 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -2488 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-569) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-569) (-1118)) ((-293) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #0#) . T))
-((-3192 (((-112) $) 12)) (-4378 (((-3 |#3| "failed") $) 17) (((-3 (-1183) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL)) (-3148 ((|#3| $) 14) (((-1183) $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL)))
-(((-1234 |#1| |#2| |#3|) (-10 -8 (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-1183) "failed") |#1|)) (-15 -3148 ((-1183) |#1|)) (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3148 (|#3| |#1|)) (-15 -3192 ((-112) |#1|))) (-1235 |#2| |#3|) (-1055) (-1264 |#2|)) (T -1234))
-NIL
-(-10 -8 (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -4378 ((-3 (-1183) "failed") |#1|)) (-15 -3148 ((-1183) |#1|)) (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3148 (|#3| |#1|)) (-15 -3192 ((-112) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3673 ((|#2| $) 242 (-1756 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-1710 (((-649 (-1088)) $) 86)) (-2671 (((-1183) $) 115)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-3008 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-2009 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-3435 ((|#2| $) 278)) (-3171 (((-3 |#2| "failed") $) 274)) (-1770 ((|#2| $) 275)) (-2769 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) 20)) (-3253 (((-423 (-1179 $)) (-1179 $)) 251 (-1756 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2078 (($ $) 174 (|has| |#1| (-367)))) (-2508 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3807 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 248 (-1756 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1680 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2744 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2552 (((-569) $) 260 (-1756 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3317 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-4114 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#2| "failed") $) 281) (((-3 (-569) "failed") $) 271 (-1756 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) 269 (-1756 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-1183) "failed") $) 253 (-1756 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3148 ((|#2| $) 282) (((-569) $) 270 (-1756 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) 268 (-1756 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-1183) $) 252 (-1756 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3292 (($ $) 277) (($ (-569) $) 276)) (-2366 (($ $ $) 169 (|has| |#1| (-367)))) (-1879 (($ $) 72)) (-1630 (((-694 |#2|) (-694 $)) 232 (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) 231 (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 230 (-1756 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) 229 (-1756 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-2888 (((-3 $ "failed") $) 37)) (-4299 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-3403 (($) 244 (-1756 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2373 (($ $ $) 168 (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-4073 (((-112) $) 176 (|has| |#1| (-367)))) (-4237 (((-112) $) 258 (-1756 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-4091 (((-112) $) 85)) (-1310 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 236 (-1756 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 235 (-1756 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-3110 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2623 (((-112) $) 35)) (-3700 (($ $) 240 (|has| |#1| (-367)))) (-4396 ((|#2| $) 238 (|has| |#1| (-367)))) (-2506 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3812 (((-3 $ "failed") $) 272 (-1756 (|has| |#2| (-1158)) (|has| |#1| (-367))))) (-4327 (((-112) $) 259 (-1756 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-2253 (($ $ (-927)) 113)) (-2598 (($ (-1 |#1| (-569)) $) 184)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-4343 (((-112) $) 74)) (-3920 (($ |#1| (-569)) 73) (($ $ (-1088) (-569)) 88) (($ $ (-649 (-1088)) (-649 (-569))) 87)) (-3377 (($ $ $) 262 (-1756 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3969 (($ $ $) 263 (-1756 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1344 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-367)))) (-2660 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1835 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-1781 (($ (-569) |#2|) 279)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 177 (|has| |#1| (-367)))) (-2488 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2774 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-2305 (($) 273 (-1756 (|has| |#2| (-1158)) (|has| |#1| (-367))) CONST)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1864 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3555 (($ $) 243 (-1756 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-2478 ((|#2| $) 246 (-1756 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-3057 (((-423 (-1179 $)) (-1179 $)) 249 (-1756 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3157 (((-423 (-1179 $)) (-1179 $)) 250 (-1756 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3796 (((-423 $) $) 173 (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 170 (|has| |#1| (-367)))) (-2907 (($ $ (-569)) 107)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4386 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) |#2|) 223 (-1756 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 |#2|)) 222 (-1756 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) 221 (-1756 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) 220 (-1756 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) 219 (-1756 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) 218 (-1756 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-1578 (((-776) $) 166 (|has| |#1| (-367)))) (-1866 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1118))) (($ $ |#2|) 217 (-1756 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 167 (|has| |#1| (-367)))) (-3514 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 227 (|has| |#1| (-367))) (($ $ (-776)) 96 (-2774 (-1756 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 94 (-2774 (-1756 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) 101 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183) (-776)) 100 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1183))) 99 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183)) 98 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-1528 (($ $) 241 (|has| |#1| (-367)))) (-4409 ((|#2| $) 239 (|has| |#1| (-367)))) (-3868 (((-569) $) 76)) (-4124 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1408 (((-226) $) 257 (-1756 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-383) $) 256 (-1756 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-541) $) 255 (-1756 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) 234 (-1756 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) 233 (-1756 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 247 (-1756 (-1756 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#1| (-367))))) (-4005 (($ $) 84)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 280) (($ (-1183)) 254 (-1756 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367)))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4184 ((|#1| $ (-569)) 71)) (-4030 (((-3 $ "failed") $) 60 (-2774 (-1756 (-2774 (|has| |#2| (-145)) (-1756 (|has| $ (-145)) (|has| |#2| (-915)))) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3302 (((-776)) 32 T CONST)) (-2167 ((|#1| $) 114)) (-2586 ((|#2| $) 245 (-1756 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1441 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4133 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-3070 (($ $) 261 (-1756 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 225 (|has| |#1| (-367))) (($ $ (-776)) 97 (-2774 (-1756 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 95 (-2774 (-1756 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) 105 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183) (-776)) 104 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1183))) 103 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1183)) 102 (-2774 (-1756 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-2976 (((-112) $ $) 265 (-1756 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2954 (((-112) $ $) 266 (-1756 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2919 (((-112) $ $) 6)) (-2964 (((-112) $ $) 264 (-1756 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2942 (((-112) $ $) 267 (-1756 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367))) (($ |#2| |#2|) 237 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-367))) (($ |#2| $) 215 (|has| |#1| (-367))) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-1235 |#1| |#2|) (-140) (-1055) (-1264 |t#1|)) (T -1235))
-((-3868 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1264 *3)) (-5 *2 (-569)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *4 (-1055)) (-4 *1 (-1235 *4 *3)) (-4 *3 (-1264 *4)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1264 *2)))) (-3292 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1264 *3)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))) (-3171 (*1 *2 *1) (|partial| -12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))))
-(-13 (-1233 |t#1|) (-1044 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1781 ($ (-569) |t#2|)) (-15 -3868 ((-569) $)) (-15 -3435 (|t#2| $)) (-15 -3292 ($ $)) (-15 -3292 ($ (-569) $)) (-15 -1770 (|t#2| $)) (-15 -3171 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-367)) (-6 (-998 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 |#2|) |has| |#1| (-367)) ((-38 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-367)) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) -2774 (-12 (|has| |#1| (-367)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2774 (-12 (|has| |#1| (-367)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-621 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1183)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) ((-619 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) ((-619 (-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) ((-232 |#2|) |has| |#1| (-367)) ((-234) -2774 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 |#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) ((-289 $ $) |has| (-569) (-1118)) ((-293) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-367) |has| |#1| (-367)) ((-342 |#2|) |has| |#1| (-367)) ((-381 |#2|) |has| |#1| (-367)) ((-405 |#2|) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 (-1183) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1183) |#2|))) ((-519 |#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-561) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 |#2|) |has| |#1| (-367)) ((-651 $) . T) ((-653 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 |#2|) |has| |#1| (-367)) ((-653 $) . T) ((-645 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 |#2|) |has| |#1| (-367)) ((-645 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-644 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-569)))) ((-644 |#2|) |has| |#1| (-367)) ((-722 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 |#2|) |has| |#1| (-367)) ((-722 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-796) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-797) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-799) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-800) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-825) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-853) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-855) -2774 (-12 (|has| |#1| (-367)) (|has| |#2| (-855))) (-12 (|has| |#1| (-367)) (|has| |#2| (-825)))) ((-906 (-1183)) -2774 (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1183)))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))) ((-892 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-569)))) ((-890 |#2|) |has| |#1| (-367)) ((-915) -12 (|has| |#1| (-367)) (|has| |#2| (-915))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-998 |#2|) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1028) -12 (|has| |#1| (-367)) (|has| |#2| (-1028))) ((-1044 (-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))) ((-1044 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-569)))) ((-1044 #2#) -12 (|has| |#1| (-367)) (|has| |#2| (-1044 (-1183)))) ((-1044 |#2|) . T) ((-1057 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 |#2|) |has| |#1| (-367)) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 |#2|) |has| |#1| (-367)) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) -12 (|has| |#1| (-367)) (|has| |#2| (-1158))) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1223) |has| |#1| (-367)) ((-1227) |has| |#1| (-367)) ((-1233 |#1|) . T) ((-1251 |#1| #0#) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 81)) (-3673 ((|#2| $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 100)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-569)) 109) (($ $ (-569) (-569)) 111)) (-2009 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 51)) (-3435 ((|#2| $) 11)) (-3171 (((-3 |#2| "failed") $) 35)) (-1770 ((|#2| $) 36)) (-2769 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-2552 (((-569) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3317 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 59)) (-4114 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) 157) (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-1183) "failed") $) NIL (-12 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3148 ((|#2| $) 156) (((-569) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1044 (-569))) (|has| |#1| (-367)))) (((-1183) $) NIL (-12 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367))))) (-3292 (($ $) 65) (($ (-569) $) 28)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-1630 (((-694 |#2|) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-2888 (((-3 $ "failed") $) 88)) (-4299 (((-412 (-958 |#1|)) $ (-569)) 124 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 126 (|has| |#1| (-561)))) (-3403 (($) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4237 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-4091 (((-112) $) 74)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-3110 (((-569) $) 105) (((-569) $ (-569)) 107)) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL (|has| |#1| (-367)))) (-4396 ((|#2| $) 165 (|has| |#1| (-367)))) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3812 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1158)) (|has| |#1| (-367))))) (-4327 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-2253 (($ $ (-927)) 148)) (-2598 (($ (-1 |#1| (-569)) $) 144)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-569)) 20) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-3377 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3969 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1344 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-367)))) (-2660 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1781 (($ (-569) |#2|) 10)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 159 (|has| |#1| (-367)))) (-2488 (($ $) 228 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 233 (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208)))))) (-2305 (($) NIL (-12 (|has| |#2| (-1158)) (|has| |#1| (-367))) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3555 (($ $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-2478 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-569)) 138)) (-2405 (((-3 $ "failed") $ $) 128 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4386 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) |#2|) NIL (-12 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 |#2|)) NIL (-12 (|has| |#2| (-519 (-1183) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-569)) 103) (($ $ $) 90 (|has| (-569) (-1118))) (($ $ |#2|) NIL (-12 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2774 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 149 (-2774 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) 153 (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-1528 (($ $) NIL (|has| |#1| (-367)))) (-4409 ((|#2| $) 166 (|has| |#1| (-367)))) (-3868 (((-569) $) 12)) (-4124 (($ $) 212 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-1408 (((-226) $) NIL (-12 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| |#2| (-1028)) (|has| |#1| (-367)))) (((-541) $) NIL (-12 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))))) (-4005 (($ $) 136)) (-3793 (((-867) $) 267) (($ (-569)) 24) (($ |#1|) 22 (|has| |#1| (-173))) (($ |#2|) 21) (($ (-1183)) NIL (-12 (|has| |#2| (-1044 (-1183))) (|has| |#1| (-367)))) (($ (-412 (-569))) 169 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4184 ((|#1| $ (-569)) 85)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))) (-12 (|has| |#2| (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3302 (((-776)) 155 T CONST)) (-2167 ((|#1| $) 102)) (-2586 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) 214 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 222 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-569)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 224 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 220 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 216 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-3070 (($ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1803 (($) 13 T CONST)) (-1813 (($) 18 T CONST)) (-2830 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2774 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2774 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| |#2| (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-2976 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2954 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2919 (((-112) $ $) 72)) (-2964 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2942 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 163 (|has| |#1| (-367))) (($ |#2| |#2|) 164 (|has| |#1| (-367)))) (-3021 (($ $) 227) (($ $ $) 78)) (-3009 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 84) (($ $ (-569)) 160 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 172 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-367))) (($ |#2| $) 161 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1236 |#1| |#2|) (-1235 |#1| |#2|) (-1055) (-1264 |#1|)) (T -1236))
-NIL
-(-1235 |#1| |#2|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3673 (((-1265 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 10)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3087 (($ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2883 (((-112) $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3008 (($ $ (-569)) NIL) (($ $ (-569) (-569)) NIL)) (-2009 (((-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-3435 (((-1265 |#1| |#2| |#3|) $) NIL)) (-3171 (((-3 (-1265 |#1| |#2| |#3|) "failed") $) NIL)) (-1770 (((-1265 |#1| |#2| |#3|) $) NIL)) (-2769 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2552 (((-569) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3317 (($ (-1163 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-1265 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1183) "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3148 (((-1265 |#1| |#2| |#3|) $) NIL) (((-1183) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))))) (-3292 (($ $) NIL) (($ (-569) $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-1265 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 (-1265 |#1| |#2| |#3|))) (|:| |vec| (-1273 (-1265 |#1| |#2| |#3|)))) (-694 $) (-1273 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-2888 (((-3 $ "failed") $) NIL)) (-4299 (((-412 (-958 |#1|)) $ (-569)) NIL (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) NIL (|has| |#1| (-561)))) (-3403 (($) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4237 (((-112) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-3110 (((-569) $) NIL) (((-569) $ (-569)) NIL)) (-2623 (((-112) $) NIL)) (-3700 (($ $) NIL (|has| |#1| (-367)))) (-4396 (((-1265 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3812 (((-3 $ "failed") $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))))) (-4327 (((-112) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-2253 (($ $ (-927)) NIL)) (-2598 (($ (-1 |#1| (-569)) $) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-569)) 18) (($ $ (-1088) (-569)) NIL) (($ $ (-649 (-1088)) (-649 (-569))) NIL)) (-3377 (($ $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3969 (($ $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2660 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1781 (($ (-569) (-1265 |#1| |#2| |#3|)) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2488 (($ $) 27 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 28 (|has| |#1| (-38 (-412 (-569)))))) (-2305 (($) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1158)) (|has| |#1| (-367))) CONST)) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3555 (($ $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-2478 (((-1265 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-569)) NIL)) (-2405 (((-3 $ "failed") $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4386 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1183) (-1265 |#1| |#2| |#3|)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-519 (-1183) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1183)) (-649 (-1265 |#1| |#2| |#3|))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-519 (-1183) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1265 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1265 |#1| |#2| |#3|))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1265 |#1| |#2| |#3|)) (-649 (-1265 |#1| |#2| |#3|))) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-312 (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-569)) NIL) (($ $ $) NIL (|has| (-569) (-1118))) (($ $ (-1265 |#1| |#2| |#3|)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-289 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1269 |#2|)) 26) (($ $ (-776)) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 25 (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-1528 (($ $) NIL (|has| |#1| (-367)))) (-4409 (((-1265 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-3868 (((-569) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1408 (((-541) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1028)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-4005 (($ $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1265 |#1| |#2| |#3|)) NIL) (($ (-1269 |#2|)) 24) (($ (-1183)) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-1183))) (|has| |#1| (-367)))) (($ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-1044 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-4184 ((|#1| $ (-569)) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) 11)) (-2586 (((-1265 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4133 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3070 (($ $) NIL (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1803 (($) 20 T CONST)) (-1813 (($) 15 T CONST)) (-2830 (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183) (-776)) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-649 (-1183))) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183)))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-906 (-1183))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1183))))))) (-2976 (((-112) $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2954 (((-112) $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2919 (((-112) $ $) NIL)) (-2964 (((-112) $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2942 (((-112) $ $) NIL (-2774 (-12 (|has| (-1265 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1265 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367))) (($ (-1265 |#1| |#2| |#3|) (-1265 |#1| |#2| |#3|)) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1265 |#1| |#2| |#3|)) NIL (|has| |#1| (-367))) (($ (-1265 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1237 |#1| |#2| |#3|) (-13 (-1235 |#1| (-1265 |#1| |#2| |#3|)) (-10 -8 (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1237))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1235 |#1| (-1265 |#1| |#2| |#3|)) (-10 -8 (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-3696 (((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112)) 13)) (-3572 (((-423 |#1|) |#1|) 26)) (-3796 (((-423 |#1|) |#1|) 24)))
-(((-1238 |#1|) (-10 -7 (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3572 ((-423 |#1|) |#1|)) (-15 -3696 ((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112)))) (-1249 (-569))) (T -1238))
-((-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569))))))) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))) (-3572 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
-(-10 -7 (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3572 ((-423 |#1|) |#1|)) (-15 -3696 ((-2 (|:| |contp| (-569)) (|:| -1411 (-649 (-2 (|:| |irr| |#1|) (|:| -3849 (-569)))))) |#1| (-112))))
-((-1344 (((-1163 |#2|) (-1 |#2| |#1|) (-1240 |#1|)) 23 (|has| |#1| (-853))) (((-1240 |#2|) (-1 |#2| |#1|) (-1240 |#1|)) 17)))
-(((-1239 |#1| |#2|) (-10 -7 (-15 -1344 ((-1240 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) (IF (|has| |#1| (-853)) (-15 -1344 ((-1163 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) |%noBranch|)) (-1223) (-1223)) (T -1239))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-853)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1163 *6)) (-5 *1 (-1239 *5 *6)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1240 *6)) (-5 *1 (-1239 *5 *6)))))
-(-10 -7 (-15 -1344 ((-1240 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) (IF (|has| |#1| (-853)) (-15 -1344 ((-1163 |#2|) (-1 |#2| |#1|) (-1240 |#1|))) |%noBranch|))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2819 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1344 (((-1163 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-853)))) (-2035 ((|#1| $) 15)) (-1488 ((|#1| $) 12)) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-1498 (((-569) $) 19)) (-1950 ((|#1| $) 18)) (-1809 ((|#1| $) 13)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-2510 (((-112) $) 17)) (-1378 (((-1163 |#1|) $) 41 (|has| |#1| (-853))) (((-1163 |#1|) (-649 $)) 40 (|has| |#1| (-853)))) (-1408 (($ |#1|) 26)) (-3793 (($ (-1100 |#1|)) 25) (((-867) $) 37 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3642 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2683 (($ $ (-569)) 14)) (-2919 (((-112) $ $) 30 (|has| |#1| (-1106)))))
-(((-1240 |#1|) (-13 (-1099 |#1|) (-10 -8 (-15 -3642 ($ |#1|)) (-15 -2819 ($ |#1|)) (-15 -3793 ($ (-1100 |#1|))) (-15 -2510 ((-112) $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-1163 |#1|))) |%noBranch|))) (-1223)) (T -1240))
-((-3642 (*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))) (-2819 (*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1100 *3)) (-4 *3 (-1223)) (-5 *1 (-1240 *3)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1223)))))
-(-13 (-1099 |#1|) (-10 -8 (-15 -3642 ($ |#1|)) (-15 -2819 ($ |#1|)) (-15 -3793 ($ (-1100 |#1|))) (-15 -2510 ((-112) $)) (IF (|has| |#1| (-1106)) (-6 (-1106)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1101 |#1| (-1163 |#1|))) |%noBranch|)))
-((-1344 (((-1246 |#3| |#4|) (-1 |#4| |#2|) (-1246 |#1| |#2|)) 15)))
-(((-1241 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 ((-1246 |#3| |#4|) (-1 |#4| |#2|) (-1246 |#1| |#2|)))) (-1183) (-1055) (-1183) (-1055)) (T -1241))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1246 *5 *6)) (-14 *5 (-1183)) (-4 *6 (-1055)) (-4 *8 (-1055)) (-5 *2 (-1246 *7 *8)) (-5 *1 (-1241 *5 *6 *7 *8)) (-14 *7 (-1183)))))
-(-10 -7 (-15 -1344 ((-1246 |#3| |#4|) (-1 |#4| |#2|) (-1246 |#1| |#2|))))
-((-3014 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2768 ((|#1| |#3|) 13)) (-2890 ((|#3| |#3|) 19)))
-(((-1242 |#1| |#2| |#3|) (-10 -7 (-15 -2768 (|#1| |#3|)) (-15 -2890 (|#3| |#3|)) (-15 -3014 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-998 |#1|) (-1249 |#2|)) (T -1242))
-((-3014 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1242 *4 *5 *3)) (-4 *3 (-1249 *5)))) (-2890 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-1242 *3 *4 *2)) (-4 *2 (-1249 *4)))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-1242 *2 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -2768 (|#1| |#3|)) (-15 -2890 (|#3| |#3|)) (-15 -3014 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2053 (((-3 |#2| "failed") |#2| (-776) |#1|) 37)) (-3139 (((-3 |#2| "failed") |#2| (-776)) 38)) (-2267 (((-3 (-2 (|:| -4395 |#2|) (|:| -4407 |#2|)) "failed") |#2|) 52)) (-2372 (((-649 |#2|) |#2|) 54)) (-2160 (((-3 |#2| "failed") |#2| |#2|) 48)))
-(((-1243 |#1| |#2|) (-10 -7 (-15 -3139 ((-3 |#2| "failed") |#2| (-776))) (-15 -2053 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -2160 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2267 ((-3 (-2 (|:| -4395 |#2|) (|:| -4407 |#2|)) "failed") |#2|)) (-15 -2372 ((-649 |#2|) |#2|))) (-13 (-561) (-147)) (-1249 |#1|)) (T -1243))
-((-2372 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3)) (-5 *1 (-1243 *4 *3)) (-4 *3 (-1249 *4)))) (-2267 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| -4395 *3) (|:| -4407 *3))) (-5 *1 (-1243 *4 *3)) (-4 *3 (-1249 *4)))) (-2160 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1249 *3)))) (-2053 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))) (-3139 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))))
-(-10 -7 (-15 -3139 ((-3 |#2| "failed") |#2| (-776))) (-15 -2053 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -2160 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2267 ((-3 (-2 (|:| -4395 |#2|) (|:| -4407 |#2|)) "failed") |#2|)) (-15 -2372 ((-649 |#2|) |#2|)))
-((-2479 (((-3 (-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1244 |#1| |#2|) (-10 -7 (-15 -2479 ((-3 (-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) "failed") |#2| |#2|))) (-561) (-1249 |#1|)) (T -1244))
-((-2479 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-1244 *4 *3)) (-4 *3 (-1249 *4)))))
-(-10 -7 (-15 -2479 ((-3 (-2 (|:| -2726 |#2|) (|:| -3365 |#2|)) "failed") |#2| |#2|)))
-((-1438 ((|#2| |#2| |#2|) 22)) (-1548 ((|#2| |#2| |#2|) 36)) (-1663 ((|#2| |#2| |#2| (-776) (-776)) 44)))
-(((-1245 |#1| |#2|) (-10 -7 (-15 -1438 (|#2| |#2| |#2|)) (-15 -1548 (|#2| |#2| |#2|)) (-15 -1663 (|#2| |#2| |#2| (-776) (-776)))) (-1055) (-1249 |#1|)) (T -1245))
-((-1663 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-1245 *4 *2)) (-4 *2 (-1249 *4)))) (-1548 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))) (-1438 (*1 *2 *2 *2) (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))))
-(-10 -7 (-15 -1438 (|#2| |#2| |#2|)) (-15 -1548 (|#2| |#2| |#2|)) (-15 -1663 (|#2| |#2| |#2| (-776) (-776))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-2822 (((-1273 |#2|) $ (-776)) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2571 (($ (-1179 |#2|)) NIL)) (-3763 (((-1179 $) $ (-1088)) NIL) (((-1179 |#2|) $) NIL)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-3087 (($ $) NIL (|has| |#2| (-561)))) (-2883 (((-112) $) NIL (|has| |#2| (-561)))) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-1088))) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4095 (($ $ $) NIL (|has| |#2| (-561)))) (-3253 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-2078 (($ $) NIL (|has| |#2| (-457)))) (-2508 (((-423 $) $) NIL (|has| |#2| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-1680 (((-112) $ $) NIL (|has| |#2| (-367)))) (-3409 (($ $ (-776)) NIL)) (-3274 (($ $ (-776)) NIL)) (-1782 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-457)))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1044 (-569)))) (((-3 (-1088) "failed") $) NIL)) (-3148 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1044 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1044 (-569)))) (((-1088) $) NIL)) (-4202 (($ $ $ (-1088)) NIL (|has| |#2| (-173))) ((|#2| $ $) NIL (|has| |#2| (-173)))) (-2366 (($ $ $) NIL (|has| |#2| (-367)))) (-1879 (($ $) NIL)) (-1630 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#2|)) (|:| |vec| (-1273 |#2|))) (-694 $) (-1273 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2373 (($ $ $) NIL (|has| |#2| (-367)))) (-4401 (($ $ $) NIL)) (-3897 (($ $ $) NIL (|has| |#2| (-561)))) (-1887 (((-2 (|:| -1433 |#2|) (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#2| (-561)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-4260 (($ $) NIL (|has| |#2| (-457))) (($ $ (-1088)) NIL (|has| |#2| (-457)))) (-1863 (((-649 $) $) NIL)) (-4073 (((-112) $) NIL (|has| |#2| (-915)))) (-3972 (($ $ |#2| (-776) $) NIL)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1088) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1088) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-3110 (((-776) $ $) NIL (|has| |#2| (-561)))) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-3812 (((-3 $ "failed") $) NIL (|has| |#2| (-1158)))) (-1697 (($ (-1179 |#2|) (-1088)) NIL) (($ (-1179 $) (-1088)) NIL)) (-2253 (($ $ (-776)) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3920 (($ |#2| (-776)) 18) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-1088)) NIL) (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL)) (-3712 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-4059 (($ (-1 (-776) (-776)) $) NIL)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-2704 (((-1179 |#2|) $) NIL)) (-3397 (((-3 (-1088) "failed") $) NIL)) (-1846 (($ $) NIL)) (-1855 ((|#2| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-1550 (((-1165) $) NIL)) (-3528 (((-2 (|:| -2726 $) (|:| -3365 $)) $ (-776)) NIL)) (-2753 (((-3 (-649 $) "failed") $) NIL)) (-2633 (((-3 (-649 $) "failed") $) NIL)) (-2865 (((-3 (-2 (|:| |var| (-1088)) (|:| -4320 (-776))) "failed") $) NIL)) (-2488 (($ $) NIL (|has| |#2| (-38 (-412 (-569)))))) (-2305 (($) NIL (|has| |#2| (-1158)) CONST)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 ((|#2| $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#2| (-457)))) (-1864 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2635 (($ $ (-776) |#2| $) NIL)) (-3057 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) NIL (|has| |#2| (-915)))) (-3796 (((-423 $) $) NIL (|has| |#2| (-915)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#2| (-367)))) (-2405 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1723 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#2|) NIL) (($ $ (-649 (-1088)) (-649 |#2|)) NIL) (($ $ (-1088) $) NIL) (($ $ (-649 (-1088)) (-649 $)) NIL)) (-1578 (((-776) $) NIL (|has| |#2| (-367)))) (-1866 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#2| (-561))) ((|#2| (-412 $) |#2|) NIL (|has| |#2| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#2| (-561)))) (-3762 (((-3 $ "failed") $ (-776)) NIL)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#2| (-367)))) (-4304 (($ $ (-1088)) NIL (|has| |#2| (-173))) ((|#2| $) NIL (|has| |#2| (-173)))) (-3514 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3868 (((-776) $) NIL) (((-776) $ (-1088)) NIL) (((-649 (-776)) $ (-649 (-1088))) NIL)) (-1408 (((-898 (-383)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1088) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3479 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-1088)) NIL (|has| |#2| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#2| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#2| (-561)))) (-3793 (((-867) $) 13) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1088)) NIL) (($ (-1269 |#1|)) 20) (($ (-412 (-569))) NIL (-2774 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1044 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-776)) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-4030 (((-3 $ "failed") $) NIL (-2774 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1803 (($) NIL T CONST)) (-1813 (($) 14 T CONST)) (-2830 (($ $ (-1088)) NIL) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1183)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1183) (-776)) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) NIL (|has| |#2| (-906 (-1183)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1246 |#1| |#2|) (-13 (-1249 |#2|) (-621 (-1269 |#1|)) (-10 -8 (-15 -2635 ($ $ (-776) |#2| $)))) (-1183) (-1055)) (T -1246))
-((-2635 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1246 *4 *3)) (-14 *4 (-1183)) (-4 *3 (-1055)))))
-(-13 (-1249 |#2|) (-621 (-1269 |#1|)) (-10 -8 (-15 -2635 ($ $ (-776) |#2| $))))
-((-1344 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|))) (-1055) (-1249 |#1|) (-1055) (-1249 |#3|)) (T -1247))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1249 *6)) (-5 *1 (-1247 *5 *4 *6 *2)) (-4 *4 (-1249 *5)))))
-(-10 -7 (-15 -1344 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2822 (((-1273 |#2|) $ (-776)) 129)) (-1710 (((-649 (-1088)) $) 16)) (-2571 (($ (-1179 |#2|)) 80)) (-3605 (((-776) $) NIL) (((-776) $ (-649 (-1088))) 21)) (-3253 (((-423 (-1179 $)) (-1179 $)) 204)) (-2078 (($ $) 194)) (-2508 (((-423 $) $) 192)) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 95)) (-3409 (($ $ (-776)) 84)) (-3274 (($ $ (-776)) 86)) (-1782 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4378 (((-3 |#2| "failed") $) 132) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-1088) "failed") $) NIL)) (-3148 ((|#2| $) 130) (((-412 (-569)) $) NIL) (((-569) $) NIL) (((-1088) $) NIL)) (-3897 (($ $ $) 170)) (-1887 (((-2 (|:| -1433 |#2|) (|:| -2726 $) (|:| -3365 $)) $ $) 172)) (-3110 (((-776) $ $) 189)) (-3812 (((-3 $ "failed") $) 138)) (-3920 (($ |#2| (-776)) NIL) (($ $ (-1088) (-776)) 59) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-3712 (((-776) $) NIL) (((-776) $ (-1088)) 54) (((-649 (-776)) $ (-649 (-1088))) 55)) (-2704 (((-1179 |#2|) $) 72)) (-3397 (((-3 (-1088) "failed") $) 52)) (-3528 (((-2 (|:| -2726 $) (|:| -3365 $)) $ (-776)) 83)) (-2488 (($ $) 219)) (-2305 (($) 134)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 201)) (-3057 (((-423 (-1179 $)) (-1179 $)) 101)) (-3157 (((-423 (-1179 $)) (-1179 $)) 99)) (-3796 (((-423 $) $) 120)) (-1723 (($ $ (-649 (-297 $))) 51) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1088) |#2|) 39) (($ $ (-649 (-1088)) (-649 |#2|)) 36) (($ $ (-1088) $) 32) (($ $ (-649 (-1088)) (-649 $)) 30)) (-1578 (((-776) $) 207)) (-1866 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) 164) ((|#2| (-412 $) |#2|) 206) (((-412 $) $ (-412 $)) 188)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 212)) (-3514 (($ $ (-1088)) 157) (($ $ (-649 (-1088))) NIL) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) 155) (($ $ (-1183)) NIL) (($ $ (-649 (-1183))) NIL) (($ $ (-1183) (-776)) NIL) (($ $ (-649 (-1183)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3868 (((-776) $) NIL) (((-776) $ (-1088)) 17) (((-649 (-776)) $ (-649 (-1088))) 23)) (-3479 ((|#2| $) NIL) (($ $ (-1088)) 140)) (-4000 (((-3 $ "failed") $ $) 180) (((-3 (-412 $) "failed") (-412 $) $) 176)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1088)) 64) (($ (-412 (-569))) NIL) (($ $) NIL)))
-(((-1248 |#1| |#2|) (-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -1866 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -1578 ((-776) |#1|)) (-15 -2282 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -1866 (|#2| (-412 |#1|) |#2|)) (-15 -1782 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1887 ((-2 (|:| -1433 |#2|) (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 -4000 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -4000 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3110 ((-776) |#1| |#1|)) (-15 -1866 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3274 (|#1| |#1| (-776))) (-15 -3409 (|#1| |#1| (-776))) (-15 -3528 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| (-776))) (-15 -2571 (|#1| (-1179 |#2|))) (-15 -2704 ((-1179 |#2|) |#1|)) (-15 -2822 ((-1273 |#2|) |#1| (-776))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -1866 (|#1| |#1| |#1|)) (-15 -1866 (|#2| |#1| |#2|)) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3253 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3157 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3057 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -3479 (|#1| |#1| (-1088))) (-15 -1710 ((-649 (-1088)) |#1|)) (-15 -3605 ((-776) |#1| (-649 (-1088)))) (-15 -3605 ((-776) |#1|)) (-15 -3920 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3920 (|#1| |#1| (-1088) (-776))) (-15 -3712 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -3712 ((-776) |#1| (-1088))) (-15 -3397 ((-3 (-1088) "failed") |#1|)) (-15 -3868 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -3868 ((-776) |#1| (-1088))) (-15 -3793 (|#1| (-1088))) (-15 -4378 ((-3 (-1088) "failed") |#1|)) (-15 -3148 ((-1088) |#1|)) (-15 -1723 (|#1| |#1| (-649 (-1088)) (-649 |#1|))) (-15 -1723 (|#1| |#1| (-1088) |#1|)) (-15 -1723 (|#1| |#1| (-649 (-1088)) (-649 |#2|))) (-15 -1723 (|#1| |#1| (-1088) |#2|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3868 ((-776) |#1|)) (-15 -3920 (|#1| |#2| (-776))) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3712 ((-776) |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -3514 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1088) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1088)))) (-15 -3514 (|#1| |#1| (-1088))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|))) (-1249 |#2|) (-1055)) (T -1248))
-NIL
-(-10 -8 (-15 -3793 (|#1| |#1|)) (-15 -3386 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2508 ((-423 |#1|) |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -2305 (|#1|)) (-15 -3812 ((-3 |#1| "failed") |#1|)) (-15 -1866 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -1578 ((-776) |#1|)) (-15 -2282 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -1866 (|#2| (-412 |#1|) |#2|)) (-15 -1782 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1887 ((-2 (|:| -1433 |#2|) (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 -4000 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -4000 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3110 ((-776) |#1| |#1|)) (-15 -1866 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3274 (|#1| |#1| (-776))) (-15 -3409 (|#1| |#1| (-776))) (-15 -3528 ((-2 (|:| -2726 |#1|) (|:| -3365 |#1|)) |#1| (-776))) (-15 -2571 (|#1| (-1179 |#2|))) (-15 -2704 ((-1179 |#2|) |#1|)) (-15 -2822 ((-1273 |#2|) |#1| (-776))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3514 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1183) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1183)))) (-15 -3514 (|#1| |#1| (-1183))) (-15 -3514 (|#1| |#1|)) (-15 -3514 (|#1| |#1| (-776))) (-15 -1866 (|#1| |#1| |#1|)) (-15 -1866 (|#2| |#1| |#2|)) (-15 -3796 ((-423 |#1|) |#1|)) (-15 -3253 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3157 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -3057 ((-423 (-1179 |#1|)) (-1179 |#1|))) (-15 -4216 ((-3 (-649 (-1179 |#1|)) "failed") (-649 (-1179 |#1|)) (-1179 |#1|))) (-15 -3479 (|#1| |#1| (-1088))) (-15 -1710 ((-649 (-1088)) |#1|)) (-15 -3605 ((-776) |#1| (-649 (-1088)))) (-15 -3605 ((-776) |#1|)) (-15 -3920 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3920 (|#1| |#1| (-1088) (-776))) (-15 -3712 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -3712 ((-776) |#1| (-1088))) (-15 -3397 ((-3 (-1088) "failed") |#1|)) (-15 -3868 ((-649 (-776)) |#1| (-649 (-1088)))) (-15 -3868 ((-776) |#1| (-1088))) (-15 -3793 (|#1| (-1088))) (-15 -4378 ((-3 (-1088) "failed") |#1|)) (-15 -3148 ((-1088) |#1|)) (-15 -1723 (|#1| |#1| (-649 (-1088)) (-649 |#1|))) (-15 -1723 (|#1| |#1| (-1088) |#1|)) (-15 -1723 (|#1| |#1| (-649 (-1088)) (-649 |#2|))) (-15 -1723 (|#1| |#1| (-1088) |#2|)) (-15 -1723 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1723 (|#1| |#1| |#1| |#1|)) (-15 -1723 (|#1| |#1| (-297 |#1|))) (-15 -1723 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3868 ((-776) |#1|)) (-15 -3920 (|#1| |#2| (-776))) (-15 -4378 ((-3 (-569) "failed") |#1|)) (-15 -3148 ((-569) |#1|)) (-15 -4378 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3148 ((-412 (-569)) |#1|)) (-15 -3148 (|#2| |#1|)) (-15 -4378 ((-3 |#2| "failed") |#1|)) (-15 -3793 (|#1| |#2|)) (-15 -3712 ((-776) |#1|)) (-15 -3479 (|#2| |#1|)) (-15 -3514 (|#1| |#1| (-649 (-1088)) (-649 (-776)))) (-15 -3514 (|#1| |#1| (-1088) (-776))) (-15 -3514 (|#1| |#1| (-649 (-1088)))) (-15 -3514 (|#1| |#1| (-1088))) (-15 -3793 (|#1| (-569))) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-2822 (((-1273 |#1|) $ (-776)) 240)) (-1710 (((-649 (-1088)) $) 112)) (-2571 (($ (-1179 |#1|)) 238)) (-3763 (((-1179 $) $ (-1088)) 127) (((-1179 |#1|) $) 126)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-3087 (($ $) 90 (|has| |#1| (-561)))) (-2883 (((-112) $) 92 (|has| |#1| (-561)))) (-3605 (((-776) $) 114) (((-776) $ (-649 (-1088))) 113)) (-1678 (((-3 $ "failed") $ $) 20)) (-4095 (($ $ $) 225 (|has| |#1| (-561)))) (-3253 (((-423 (-1179 $)) (-1179 $)) 102 (|has| |#1| (-915)))) (-2078 (($ $) 100 (|has| |#1| (-457)))) (-2508 (((-423 $) $) 99 (|has| |#1| (-457)))) (-4216 (((-3 (-649 (-1179 $)) "failed") (-649 (-1179 $)) (-1179 $)) 105 (|has| |#1| (-915)))) (-1680 (((-112) $ $) 210 (|has| |#1| (-367)))) (-3409 (($ $ (-776)) 233)) (-3274 (($ $ (-776)) 232)) (-1782 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-457)))) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1044 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1044 (-569)))) (((-3 (-1088) "failed") $) 138)) (-3148 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1044 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1044 (-569)))) (((-1088) $) 139)) (-4202 (($ $ $ (-1088)) 110 (|has| |#1| (-173))) ((|#1| $ $) 228 (|has| |#1| (-173)))) (-2366 (($ $ $) 214 (|has| |#1| (-367)))) (-1879 (($ $) 156)) (-1630 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 (-569))) (|:| |vec| (-1273 (-569)))) (-694 $) (-1273 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -2378 (-694 |#1|)) (|:| |vec| (-1273 |#1|))) (-694 $) (-1273 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 213 (|has| |#1| (-367)))) (-4401 (($ $ $) 231)) (-3897 (($ $ $) 222 (|has| |#1| (-561)))) (-1887 (((-2 (|:| -1433 |#1|) (|:| -2726 $) (|:| -3365 $)) $ $) 221 (|has| |#1| (-561)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 208 (|has| |#1| (-367)))) (-4260 (($ $) 178 (|has| |#1| (-457))) (($ $ (-1088)) 107 (|has| |#1| (-457)))) (-1863 (((-649 $) $) 111)) (-4073 (((-112) $) 98 (|has| |#1| (-915)))) (-3972 (($ $ |#1| (-776) $) 174)) (-2892 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3110 (((-776) $ $) 226 (|has| |#1| (-561)))) (-2623 (((-112) $) 35)) (-3238 (((-776) $) 171)) (-3812 (((-3 $ "failed") $) 206 (|has| |#1| (-1158)))) (-1697 (($ (-1179 |#1|) (-1088)) 119) (($ (-1179 $) (-1088)) 118)) (-2253 (($ $ (-776)) 237)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 217 (|has| |#1| (-367)))) (-2518 (((-649 $) $) 128)) (-4343 (((-112) $) 154)) (-3920 (($ |#1| (-776)) 155) (($ $ (-1088) (-776)) 121) (($ $ (-649 (-1088)) (-649 (-776))) 120)) (-3659 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $ (-1088)) 122) (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 235)) (-3712 (((-776) $) 172) (((-776) $ (-1088)) 124) (((-649 (-776)) $ (-649 (-1088))) 123)) (-4059 (($ (-1 (-776) (-776)) $) 173)) (-1344 (($ (-1 |#1| |#1|) $) 153)) (-2704 (((-1179 |#1|) $) 239)) (-3397 (((-3 (-1088) "failed") $) 125)) (-1846 (($ $) 151)) (-1855 ((|#1| $) 150)) (-1835 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-1550 (((-1165) $) 10)) (-3528 (((-2 (|:| -2726 $) (|:| -3365 $)) $ (-776)) 234)) (-2753 (((-3 (-649 $) "failed") $) 116)) (-2633 (((-3 (-649 $) "failed") $) 117)) (-2865 (((-3 (-2 (|:| |var| (-1088)) (|:| -4320 (-776))) "failed") $) 115)) (-2488 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2305 (($) 205 (|has| |#1| (-1158)) CONST)) (-3545 (((-1126) $) 11)) (-1824 (((-112) $) 168)) (-1833 ((|#1| $) 169)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 97 (|has| |#1| (-457)))) (-1864 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-3057 (((-423 (-1179 $)) (-1179 $)) 104 (|has| |#1| (-915)))) (-3157 (((-423 (-1179 $)) (-1179 $)) 103 (|has| |#1| (-915)))) (-3796 (((-423 $) $) 101 (|has| |#1| (-915)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 215 (|has| |#1| (-367)))) (-2405 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 209 (|has| |#1| (-367)))) (-1723 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ (-1088) |#1|) 143) (($ $ (-649 (-1088)) (-649 |#1|)) 142) (($ $ (-1088) $) 141) (($ $ (-649 (-1088)) (-649 $)) 140)) (-1578 (((-776) $) 211 (|has| |#1| (-367)))) (-1866 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-412 $) (-412 $) (-412 $)) 227 (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) 219 (|has| |#1| (-367))) (((-412 $) $ (-412 $)) 207 (|has| |#1| (-561)))) (-3762 (((-3 $ "failed") $ (-776)) 236)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 212 (|has| |#1| (-367)))) (-4304 (($ $ (-1088)) 109 (|has| |#1| (-173))) ((|#1| $) 229 (|has| |#1| (-173)))) (-3514 (($ $ (-1088)) 46) (($ $ (-649 (-1088))) 45) (($ $ (-1088) (-776)) 44) (($ $ (-649 (-1088)) (-649 (-776))) 43) (($ $ (-776)) 255) (($ $) 253) (($ $ (-1183)) 252 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 251 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 250 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 249 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3868 (((-776) $) 152) (((-776) $ (-1088)) 132) (((-649 (-776)) $ (-649 (-1088))) 131)) (-1408 (((-898 (-383)) $) 84 (-12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3479 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ (-1088)) 108 (|has| |#1| (-457)))) (-4117 (((-3 (-1273 $) "failed") (-694 $)) 106 (-1756 (|has| $ (-145)) (|has| |#1| (-915))))) (-4000 (((-3 $ "failed") $ $) 224 (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) 223 (|has| |#1| (-561)))) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ (-1088)) 137) (($ (-412 (-569))) 80 (-2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2836 (((-649 |#1|) $) 170)) (-4184 ((|#1| $ (-776)) 157) (($ $ (-1088) (-776)) 130) (($ $ (-649 (-1088)) (-649 (-776))) 129)) (-4030 (((-3 $ "failed") $) 81 (-2774 (-1756 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-3302 (((-776)) 32 T CONST)) (-3877 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-1088)) 42) (($ $ (-649 (-1088))) 41) (($ $ (-1088) (-776)) 40) (($ $ (-649 (-1088)) (-649 (-776))) 39) (($ $ (-776)) 256) (($ $) 254) (($ $ (-1183)) 248 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183))) 247 (|has| |#1| (-906 (-1183)))) (($ $ (-1183) (-776)) 246 (|has| |#1| (-906 (-1183)))) (($ $ (-649 (-1183)) (-649 (-776))) 245 (|has| |#1| (-906 (-1183)))) (($ $ (-1 |#1| |#1|) (-776)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1249 |#1|) (-140) (-1055)) (T -1249))
-((-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1249 *4)) (-4 *4 (-1055)) (-5 *2 (-1273 *4)))) (-2704 (*1 *2 *1) (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-5 *2 (-1179 *3)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1055)) (-4 *1 (-1249 *3)))) (-2253 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-3762 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-3659 (*1 *2 *1 *1) (-12 (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1249 *3)))) (-3528 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1249 *4)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-3274 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-4401 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)))) (-3514 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))) (-4202 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))) (-1866 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561)))) (-3110 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561)) (-5 *2 (-776)))) (-4095 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-4000 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-4000 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561)))) (-3897 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))) (-1887 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| -1433 *3) (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1249 *3)))) (-1782 (*1 *2 *1 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1249 *3)))) (-1866 (*1 *2 *3 *2) (-12 (-5 *3 (-412 *1)) (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))))
-(-13 (-955 |t#1| (-776) (-1088)) (-289 |t#1| |t#1|) (-289 $ $) (-234) (-232 |t#1|) (-10 -8 (-15 -2822 ((-1273 |t#1|) $ (-776))) (-15 -2704 ((-1179 |t#1|) $)) (-15 -2571 ($ (-1179 |t#1|))) (-15 -2253 ($ $ (-776))) (-15 -3762 ((-3 $ "failed") $ (-776))) (-15 -3659 ((-2 (|:| -2726 $) (|:| -3365 $)) $ $)) (-15 -3528 ((-2 (|:| -2726 $) (|:| -3365 $)) $ (-776))) (-15 -3409 ($ $ (-776))) (-15 -3274 ($ $ (-776))) (-15 -4401 ($ $ $)) (-15 -3514 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -4304 (|t#1| $)) (-15 -4202 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-289 (-412 $) (-412 $))) (-15 -1866 ((-412 $) (-412 $) (-412 $))) (-15 -3110 ((-776) $ $)) (-15 -4095 ($ $ $)) (-15 -4000 ((-3 $ "failed") $ $)) (-15 -4000 ((-3 (-412 $) "failed") (-412 $) $)) (-15 -3897 ($ $ $)) (-15 -1887 ((-2 (|:| -1433 |t#1|) (|:| -2726 $) (|:| -3365 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (-15 -1782 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-310)) (-6 -4440) (-15 -1866 (|t#1| (-412 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-15 -2488 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2774 (|has| |#1| (-1044 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1088)) . T) ((-621 |#1|) . T) ((-621 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| (-1088) (-619 (-541))) (|has| |#1| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| (-1088) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| (-1088) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) . T) ((-289 (-412 $) (-412 $)) |has| |#1| (-561)) ((-289 |#1| |#1|) . T) ((-289 $ $) . T) ((-293) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 $) . T) ((-329 |#1| #0#) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2774 (|has| |#1| (-915)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-519 #2# |#1|) . T) ((-519 #2# $) . T) ((-519 $ $) . T) ((-561) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-731) . T) ((-906 #2#) . T) ((-906 (-1183)) |has| |#1| (-906 (-1183))) ((-892 (-383)) -12 (|has| (-1088) (-892 (-383))) (|has| |#1| (-892 (-383)))) ((-892 (-569)) -12 (|has| (-1088) (-892 (-569))) (|has| |#1| (-892 (-569)))) ((-955 |#1| #0# #2#) . T) ((-915) |has| |#1| (-915)) ((-926) |has| |#1| (-367)) ((-1044 (-412 (-569))) |has| |#1| (-1044 (-412 (-569)))) ((-1044 (-569)) |has| |#1| (-1044 (-569))) ((-1044 #2#) . T) ((-1044 |#1|) . T) ((-1057 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1158) |has| |#1| (-1158)) ((-1227) |has| |#1| (-915)))
-((-1710 (((-649 (-1088)) $) 34)) (-1879 (($ $) 31)) (-3920 (($ |#2| |#3|) NIL) (($ $ (-1088) |#3|) 28) (($ $ (-649 (-1088)) (-649 |#3|)) 27)) (-1846 (($ $) 14)) (-1855 ((|#2| $) 12)) (-3868 ((|#3| $) 10)))
-(((-1250 |#1| |#2| |#3|) (-10 -8 (-15 -1710 ((-649 (-1088)) |#1|)) (-15 -3920 (|#1| |#1| (-649 (-1088)) (-649 |#3|))) (-15 -3920 (|#1| |#1| (-1088) |#3|)) (-15 -1879 (|#1| |#1|)) (-15 -3920 (|#1| |#2| |#3|)) (-15 -3868 (|#3| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1855 (|#2| |#1|))) (-1251 |#2| |#3|) (-1055) (-797)) (T -1250))
-NIL
-(-10 -8 (-15 -1710 ((-649 (-1088)) |#1|)) (-15 -3920 (|#1| |#1| (-649 (-1088)) (-649 |#3|))) (-15 -3920 (|#1| |#1| (-1088) |#3|)) (-15 -1879 (|#1| |#1|)) (-15 -3920 (|#1| |#2| |#3|)) (-15 -3868 (|#3| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1855 (|#2| |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 (-1088)) $) 86)) (-2671 (((-1183) $) 115)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-3008 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-2009 (((-1163 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-4091 (((-112) $) 85)) (-3110 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2623 (((-112) $) 35)) (-2253 (($ $ (-927)) 113)) (-4343 (((-112) $) 74)) (-3920 (($ |#1| |#2|) 73) (($ $ (-1088) |#2|) 88) (($ $ (-649 (-1088)) (-649 |#2|)) 87)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-2907 (($ $ |#2|) 107)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-1723 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1866 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1118)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3868 ((|#2| $) 76)) (-4005 (($ $) 84)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4184 ((|#1| $ |#2|) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-2167 ((|#1| $) 114)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3088 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-1251 |#1| |#2|) (-140) (-1055) (-797)) (T -1251))
-((-2009 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-1163 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1866 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (-5 *2 (-1183)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))) (-2253 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-3110 (*1 *2 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-3008 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-3008 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-3088 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3793 (*2 (-1183)))) (-4 *2 (-1055)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))) (-1723 (*1 *2 *1 *3) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1163 *3)))))
-(-13 (-979 |t#1| |t#2| (-1088)) (-10 -8 (-15 -2009 ((-1163 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1866 (|t#1| $ |t#2|)) (-15 -2671 ((-1183) $)) (-15 -2167 (|t#1| $)) (-15 -2253 ($ $ (-927))) (-15 -3110 (|t#2| $)) (-15 -3110 (|t#2| $ |t#2|)) (-15 -3008 ($ $ |t#2|)) (-15 -3008 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3793 (|t#1| (-1183)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3088 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2907 ($ $ |t#2|)) (IF (|has| |t#2| (-1118)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-234)) (IF (|has| |t#1| (-906 (-1183))) (-6 (-906 (-1183))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1723 ((-1163 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-289 $ $) |has| |#2| (-1118)) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| |#2| (-1088)) . T) ((-1057 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2078 ((|#2| |#2|) 12)) (-2508 (((-423 |#2|) |#2|) 14)) (-2165 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))) 30)))
-(((-1252 |#1| |#2|) (-10 -7 (-15 -2508 ((-423 |#2|) |#2|)) (-15 -2078 (|#2| |#2|)) (-15 -2165 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))))) (-561) (-13 (-1249 |#1|) (-561) (-10 -8 (-15 -1864 ($ $ $))))) (T -1252))
-((-2165 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-569)))) (-4 *4 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1864 ($ $ $))))) (-4 *3 (-561)) (-5 *1 (-1252 *3 *4)))) (-2078 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-1252 *3 *2)) (-4 *2 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1864 ($ $ $))))))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1252 *4 *3)) (-4 *3 (-13 (-1249 *4) (-561) (-10 -8 (-15 -1864 ($ $ $))))))))
-(-10 -7 (-15 -2508 ((-423 |#2|) |#2|)) (-15 -2078 (|#2| |#2|)) (-15 -2165 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))))))
-((-1344 (((-1258 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1258 |#1| |#3| |#5|)) 24)))
-(((-1253 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1344 ((-1258 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1258 |#1| |#3| |#5|)))) (-1055) (-1055) (-1183) (-1183) |#1| |#2|) (T -1253))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1258 *5 *7 *9)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1258 *6 *8 *10)) (-5 *1 (-1253 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1183)))))
-(-10 -7 (-15 -1344 ((-1258 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1258 |#1| |#3| |#5|))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 (-1088)) $) 86)) (-2671 (((-1183) $) 115)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-3008 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-2009 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2769 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 174 (|has| |#1| (-367)))) (-2508 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3807 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2744 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-4114 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) 18 T CONST)) (-2366 (($ $ $) 169 (|has| |#1| (-367)))) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 168 (|has| |#1| (-367)))) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-4073 (((-112) $) 176 (|has| |#1| (-367)))) (-4091 (((-112) $) 85)) (-1310 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-4343 (((-112) $) 74)) (-3920 (($ |#1| (-412 (-569))) 73) (($ $ (-1088) (-412 (-569))) 88) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) 87)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-2660 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1835 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-1550 (((-1165) $) 10)) (-1814 (($ $) 177 (|has| |#1| (-367)))) (-2488 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2774 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1864 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3796 (((-423 $) $) 173 (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 170 (|has| |#1| (-367)))) (-2907 (($ $ (-412 (-569))) 107)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4386 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-1578 (((-776) $) 166 (|has| |#1| (-367)))) (-1866 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 167 (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-3868 (((-412 (-569)) $) 76)) (-4124 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 84)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4184 ((|#1| $ (-412 (-569))) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-2167 ((|#1| $) 114)) (-1441 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4133 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-1254 |#1|) (-140) (-1055)) (T -1254))
-((-3317 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))) (-4 *4 (-1055)) (-4 *1 (-1254 *4)))) (-2253 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1254 *3)) (-4 *3 (-1055)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))) (-2488 (*1 *1 *1 *2) (-2774 (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -1710 ((-649 *2) *3))) (|has| *3 (-15 -2488 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
-(-13 (-1251 |t#1| (-412 (-569))) (-10 -8 (-15 -3317 ($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |t#1|))))) (-15 -2253 ($ $ (-412 (-569)))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $)) (IF (|has| |t#1| (-15 -2488 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -1710 ((-649 (-1183)) |t#1|))) (-15 -2488 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -2488 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1118)) ((-293) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #0#) . T))
-((-3192 (((-112) $) 12)) (-4378 (((-3 |#3| "failed") $) 17)) (-3148 ((|#3| $) 14)))
-(((-1255 |#1| |#2| |#3|) (-10 -8 (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3148 (|#3| |#1|)) (-15 -3192 ((-112) |#1|))) (-1256 |#2| |#3|) (-1055) (-1233 |#2|)) (T -1255))
-NIL
-(-10 -8 (-15 -4378 ((-3 |#3| "failed") |#1|)) (-15 -3148 (|#3| |#1|)) (-15 -3192 ((-112) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 (-1088)) $) 86)) (-2671 (((-1183) $) 115)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-3008 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-2009 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2769 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 174 (|has| |#1| (-367)))) (-2508 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3807 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2744 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-4114 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#2| "failed") $) 194)) (-3148 ((|#2| $) 195)) (-2366 (($ $ $) 169 (|has| |#1| (-367)))) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-2496 (((-412 (-569)) $) 191)) (-2373 (($ $ $) 168 (|has| |#1| (-367)))) (-1794 (($ (-412 (-569)) |#2|) 192)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-4073 (((-112) $) 176 (|has| |#1| (-367)))) (-4091 (((-112) $) 85)) (-1310 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-4343 (((-112) $) 74)) (-3920 (($ |#1| (-412 (-569))) 73) (($ $ (-1088) (-412 (-569))) 88) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) 87)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-2660 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1835 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-2407 ((|#2| $) 190)) (-2320 (((-3 |#2| "failed") $) 188)) (-1781 ((|#2| $) 189)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 177 (|has| |#1| (-367)))) (-2488 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 180 (-2774 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 162 (|has| |#1| (-367)))) (-1864 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3796 (((-423 $) $) 173 (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 170 (|has| |#1| (-367)))) (-2907 (($ $ (-412 (-569))) 107)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4386 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-1578 (((-776) $) 166 (|has| |#1| (-367)))) (-1866 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 167 (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-3868 (((-412 (-569)) $) 76)) (-4124 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 84)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 193) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4184 ((|#1| $ (-412 (-569))) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-2167 ((|#1| $) 114)) (-1441 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4133 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-1256 |#1| |#2|) (-140) (-1055) (-1233 |t#1|)) (T -1256))
-((-3868 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3)) (-5 *2 (-412 (-569))))) (-1794 (*1 *1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1055)) (-4 *1 (-1256 *4 *3)) (-4 *3 (-1233 *4)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3)) (-5 *2 (-412 (-569))))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))) (-2320 (*1 *2 *1) (|partial| -12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))))
-(-13 (-1254 |t#1|) (-1044 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1794 ($ (-412 (-569)) |t#2|)) (-15 -2496 ((-412 (-569)) $)) (-15 -2407 (|t#2| $)) (-15 -3868 ((-412 (-569)) $)) (-15 -1781 (|t#2| $)) (-15 -2320 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1118)) ((-293) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-926) |has| |#1| (-367)) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1044 |#2|) . T) ((-1057 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1062 #1#) -2774 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1227) |has| |#1| (-367)) ((-1251 |#1| #0#) . T) ((-1254 |#1|) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 104)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-412 (-569))) 116) (($ $ (-412 (-569)) (-412 (-569))) 118)) (-2009 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 54)) (-2769 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 65)) (-4114 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 172 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) NIL)) (-3148 ((|#2| $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) 85)) (-2496 (((-412 (-569)) $) 13)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1794 (($ (-412 (-569)) |#2|) 11)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4091 (((-112) $) 74)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-412 (-569)) $) 113) (((-412 (-569)) $ (-412 (-569))) 114)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) 130) (($ $ (-412 (-569))) 128)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-412 (-569))) 33) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) 125)) (-2660 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2407 ((|#2| $) 12)) (-2320 (((-3 |#2| "failed") $) 44)) (-1781 ((|#2| $) 45)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) 101 (|has| |#1| (-367)))) (-2488 (($ $) 146 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 151 (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208)))))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-412 (-569))) 122)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4386 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-412 (-569))) 108) (($ $ $) 94 (|has| (-412 (-569)) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) 138 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-3868 (((-412 (-569)) $) 16)) (-4124 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 120)) (-3793 (((-867) $) NIL) (($ (-569)) 37) (($ |#1|) 27 (|has| |#1| (-173))) (($ |#2|) 34) (($ (-412 (-569))) 139 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4184 ((|#1| $ (-412 (-569))) 107)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) 127 T CONST)) (-2167 ((|#1| $) 106)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 21 T CONST)) (-1813 (($) 17 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2919 (((-112) $ $) 72)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 100 (|has| |#1| (-367)))) (-3021 (($ $) 142) (($ $ $) 78)) (-3009 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 82) (($ $ (-569)) 157 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 158 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1257 |#1| |#2|) (-1256 |#1| |#2|) (-1055) (-1233 |#1|)) (T -1257))
-NIL
-(-1256 |#1| |#2|)
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 11)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) NIL (|has| |#1| (-561)))) (-3008 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2009 (((-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2769 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-367)))) (-2508 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1680 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2744 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-776) (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-1237 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1265 |#1| |#2| |#3|) "failed") $) 22)) (-3148 (((-1237 |#1| |#2| |#3|) $) NIL) (((-1265 |#1| |#2| |#3|) $) NIL)) (-2366 (($ $ $) NIL (|has| |#1| (-367)))) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2496 (((-412 (-569)) $) 69)) (-2373 (($ $ $) NIL (|has| |#1| (-367)))) (-1794 (($ (-412 (-569)) (-1237 |#1| |#2| |#3|)) NIL)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-4073 (((-112) $) NIL (|has| |#1| (-367)))) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2623 (((-112) $) NIL)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-412 (-569))) 30) (($ $ (-1088) (-412 (-569))) NIL) (($ $ (-649 (-1088)) (-649 (-412 (-569)))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-2660 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1835 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-2407 (((-1237 |#1| |#2| |#3|) $) 72)) (-2320 (((-3 (-1237 |#1| |#2| |#3|) "failed") $) NIL)) (-1781 (((-1237 |#1| |#2| |#3|) $) NIL)) (-1550 (((-1165) $) NIL)) (-1814 (($ $) NIL (|has| |#1| (-367)))) (-2488 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) NIL (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) NIL (|has| |#1| (-367)))) (-1864 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3796 (((-423 $) $) NIL (|has| |#1| (-367)))) (-1477 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) NIL (|has| |#1| (-367)))) (-2907 (($ $ (-412 (-569))) NIL)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-2404 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4386 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-1578 (((-776) $) NIL (|has| |#1| (-367)))) (-1866 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1118)))) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) NIL (|has| |#1| (-367)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1269 |#2|)) 38)) (-3868 (((-412 (-569)) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) NIL)) (-3793 (((-867) $) 109) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1237 |#1| |#2| |#3|)) 16) (($ (-1265 |#1| |#2| |#3|)) 17) (($ (-1269 |#2|)) 36) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4184 ((|#1| $ (-412 (-569))) NIL)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) 12)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-412 (-569))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 32 T CONST)) (-1813 (($) 26 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 34)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1258 |#1| |#2| |#3|) (-13 (-1256 |#1| (-1237 |#1| |#2| |#3|)) (-1044 (-1265 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1258))
-((-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1256 |#1| (-1237 |#1| |#2| |#3|)) (-1044 (-1265 |#1| |#2| |#3|)) (-621 (-1269 |#2|)) (-10 -8 (-15 -3514 ($ $ (-1269 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 37)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL)) (-3087 (($ $) NIL)) (-2883 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 (-569) "failed") $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-412 (-569))))) (((-3 (-1258 |#2| |#3| |#4|) "failed") $) 22)) (-3148 (((-569) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-569)))) (((-412 (-569)) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-1044 (-412 (-569))))) (((-1258 |#2| |#3| |#4|) $) NIL)) (-1879 (($ $) 41)) (-2888 (((-3 $ "failed") $) 27)) (-4260 (($ $) NIL (|has| (-1258 |#2| |#3| |#4|) (-457)))) (-3972 (($ $ (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|) $) NIL)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) 11)) (-4343 (((-112) $) NIL)) (-3920 (($ (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) 25)) (-3712 (((-322 |#2| |#3| |#4|) $) NIL)) (-4059 (($ (-1 (-322 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) $) NIL)) (-1344 (($ (-1 (-1258 |#2| |#3| |#4|) (-1258 |#2| |#3| |#4|)) $) NIL)) (-1513 (((-3 (-848 |#2|) "failed") $) 90)) (-1846 (($ $) NIL)) (-1855 (((-1258 |#2| |#3| |#4|) $) 20)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1824 (((-112) $) NIL)) (-1833 (((-1258 |#2| |#3| |#4|) $) NIL)) (-2405 (((-3 $ "failed") $ (-1258 |#2| |#3| |#4|)) NIL (|has| (-1258 |#2| |#3| |#4|) (-561))) (((-3 $ "failed") $ $) NIL)) (-1432 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $) 74)) (-3868 (((-322 |#2| |#3| |#4|) $) 17)) (-3479 (((-1258 |#2| |#3| |#4|) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-457)))) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ (-1258 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL (-2774 (|has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569)))) (|has| (-1258 |#2| |#3| |#4|) (-1044 (-412 (-569))))))) (-2836 (((-649 (-1258 |#2| |#3| |#4|)) $) NIL)) (-4184 (((-1258 |#2| |#3| |#4|) $ (-322 |#2| |#3| |#4|)) NIL)) (-4030 (((-3 $ "failed") $) NIL (|has| (-1258 |#2| |#3| |#4|) (-145)))) (-3302 (((-776)) NIL T CONST)) (-3877 (($ $ $ (-776)) NIL (|has| (-1258 |#2| |#3| |#4|) (-173)))) (-1441 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ (-1258 |#2| |#3| |#4|)) NIL (|has| (-1258 |#2| |#3| |#4|) (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-1258 |#2| |#3| |#4|)) NIL) (($ (-1258 |#2| |#3| |#4|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| (-1258 |#2| |#3| |#4|) (-38 (-412 (-569)))))))
-(((-1259 |#1| |#2| |#3| |#4|) (-13 (-329 (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -1513 ((-3 (-848 |#2|) "failed") $)) (-15 -1432 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $)))) (-13 (-1044 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1208) (-435 |#1|)) (-1183) |#2|) (T -1259))
-((-1513 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4))) (-1432 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 *4 *5 *6)) (|:| |%expon| (-322 *4 *5 *6)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))))) (|:| |%type| (-1165)))) (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183)) (-14 *6 *4))))
-(-13 (-329 (-1258 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -1513 ((-3 (-848 |#2|) "failed") $)) (-15 -1432 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1258 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1165))) "failed") $))))
-((-2185 ((|#2| $) 34)) (-2561 ((|#2| $) 18)) (-1566 (($ $) 52)) (-1613 (($ $ (-569)) 85)) (-2716 (((-112) $ (-776)) 46)) (-1660 ((|#2| $ |#2|) 82)) (-1716 ((|#2| $ |#2|) 78)) (-3940 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1767 (($ $ (-649 $)) 81)) (-2548 ((|#2| $) 17)) (-3522 (($ $) NIL) (($ $ (-776)) 59)) (-4035 (((-649 $) $) 31)) (-3759 (((-112) $ $) 69)) (-1689 (((-112) $ (-776)) 45)) (-2433 (((-112) $ (-776)) 43)) (-2703 (((-112) $) 33)) (-1722 ((|#2| $) 25) (($ $ (-776)) 64)) (-1866 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2102 (((-112) $) 23)) (-1750 (($ $) 55)) (-1497 (($ $) 86)) (-3754 (((-776) $) 58)) (-3866 (($ $) 57)) (-2441 (($ $ $) 77) (($ |#2| $) NIL)) (-3500 (((-649 $) $) 32)) (-2919 (((-112) $ $) 67)) (-2426 (((-776) $) 51)))
-(((-1260 |#1| |#2|) (-10 -8 (-15 -1613 (|#1| |#1| (-569))) (-15 -3940 (|#2| |#1| "last" |#2|)) (-15 -1716 (|#2| |#1| |#2|)) (-15 -3940 (|#1| |#1| "rest" |#1|)) (-15 -3940 (|#2| |#1| "first" |#2|)) (-15 -1497 (|#1| |#1|)) (-15 -1750 (|#1| |#1|)) (-15 -3754 ((-776) |#1|)) (-15 -3866 (|#1| |#1|)) (-15 -2561 (|#2| |#1|)) (-15 -2548 (|#2| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1722 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "last")) (-15 -1722 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-776))) (-15 -1866 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -1866 (|#2| |#1| "first")) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -1660 (|#2| |#1| |#2|)) (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -1767 (|#1| |#1| (-649 |#1|))) (-15 -3759 ((-112) |#1| |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1866 (|#2| |#1| "value")) (-15 -2185 (|#2| |#1|)) (-15 -2703 ((-112) |#1|)) (-15 -4035 ((-649 |#1|) |#1|)) (-15 -3500 ((-649 |#1|) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776)))) (-1261 |#2|) (-1223)) (T -1260))
-NIL
-(-10 -8 (-15 -1613 (|#1| |#1| (-569))) (-15 -3940 (|#2| |#1| "last" |#2|)) (-15 -1716 (|#2| |#1| |#2|)) (-15 -3940 (|#1| |#1| "rest" |#1|)) (-15 -3940 (|#2| |#1| "first" |#2|)) (-15 -1497 (|#1| |#1|)) (-15 -1750 (|#1| |#1|)) (-15 -3754 ((-776) |#1|)) (-15 -3866 (|#1| |#1|)) (-15 -2561 (|#2| |#1|)) (-15 -2548 (|#2| |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1722 (|#1| |#1| (-776))) (-15 -1866 (|#2| |#1| "last")) (-15 -1722 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-776))) (-15 -1866 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -1866 (|#2| |#1| "first")) (-15 -2441 (|#1| |#2| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -1660 (|#2| |#1| |#2|)) (-15 -3940 (|#2| |#1| "value" |#2|)) (-15 -1767 (|#1| |#1| (-649 |#1|))) (-15 -3759 ((-112) |#1| |#1|)) (-15 -2102 ((-112) |#1|)) (-15 -1866 (|#2| |#1| "value")) (-15 -2185 (|#2| |#1|)) (-15 -2703 ((-112) |#1|)) (-15 -4035 ((-649 |#1|) |#1|)) (-15 -3500 ((-649 |#1|) |#1|)) (-15 -2919 ((-112) |#1| |#1|)) (-15 -2426 ((-776) |#1|)) (-15 -2716 ((-112) |#1| (-776))) (-15 -1689 ((-112) |#1| (-776))) (-15 -2433 ((-112) |#1| (-776))))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-2185 ((|#1| $) 49)) (-2561 ((|#1| $) 66)) (-1566 (($ $) 68)) (-1613 (($ $ (-569)) 53 (|has| $ (-6 -4445)))) (-2716 (((-112) $ (-776)) 8)) (-1660 ((|#1| $ |#1|) 40 (|has| $ (-6 -4445)))) (-4382 (($ $ $) 57 (|has| $ (-6 -4445)))) (-1716 ((|#1| $ |#1|) 55 (|has| $ (-6 -4445)))) (-1376 ((|#1| $ |#1|) 59 (|has| $ (-6 -4445)))) (-3940 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4445))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4445))) (($ $ "rest" $) 56 (|has| $ (-6 -4445))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4445)))) (-1767 (($ $ (-649 $)) 42 (|has| $ (-6 -4445)))) (-2548 ((|#1| $) 67)) (-4188 (($) 7 T CONST)) (-3522 (($ $) 74) (($ $ (-776)) 72)) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-4035 (((-649 $) $) 51)) (-3759 (((-112) $ $) 43 (|has| |#1| (-1106)))) (-1689 (((-112) $ (-776)) 9)) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36)) (-2433 (((-112) $ (-776)) 10)) (-2273 (((-649 |#1|) $) 46)) (-2703 (((-112) $) 50)) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-1722 ((|#1| $) 71) (($ $ (-776)) 69)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 77) (($ $ (-776)) 75)) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3947 (((-569) $ $) 45)) (-2102 (((-112) $) 47)) (-1750 (($ $) 63)) (-1497 (($ $) 60 (|has| $ (-6 -4445)))) (-3754 (((-776) $) 64)) (-3866 (($ $) 65)) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-3959 (($ $) 13)) (-1621 (($ $ $) 62 (|has| $ (-6 -4445))) (($ $ |#1|) 61 (|has| $ (-6 -4445)))) (-2441 (($ $ $) 79) (($ |#1| $) 78)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-3500 (((-649 $) $) 52)) (-3860 (((-112) $ $) 44 (|has| |#1| (-1106)))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1261 |#1|) (-140) (-1223)) (T -1261))
-((-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-2441 (*1 *1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-1566 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3866 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))) (-1750 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1621 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1621 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1497 (*1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1376 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3940 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-4382 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3940 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4445)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))) (-1716 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-3940 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))) (-1613 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4445)) (-4 *1 (-1261 *3)) (-4 *3 (-1223)))))
-(-13 (-1016 |t#1|) (-10 -8 (-15 -2441 ($ $ $)) (-15 -2441 ($ |t#1| $)) (-15 -3510 (|t#1| $)) (-15 -1866 (|t#1| $ "first")) (-15 -3510 ($ $ (-776))) (-15 -3522 ($ $)) (-15 -1866 ($ $ "rest")) (-15 -3522 ($ $ (-776))) (-15 -1722 (|t#1| $)) (-15 -1866 (|t#1| $ "last")) (-15 -1722 ($ $ (-776))) (-15 -1566 ($ $)) (-15 -2548 (|t#1| $)) (-15 -2561 (|t#1| $)) (-15 -3866 ($ $)) (-15 -3754 ((-776) $)) (-15 -1750 ($ $)) (IF (|has| $ (-6 -4445)) (PROGN (-15 -1621 ($ $ $)) (-15 -1621 ($ $ |t#1|)) (-15 -1497 ($ $)) (-15 -1376 (|t#1| $ |t#1|)) (-15 -3940 (|t#1| $ "first" |t#1|)) (-15 -4382 ($ $ $)) (-15 -3940 ($ $ "rest" $)) (-15 -1716 (|t#1| $ |t#1|)) (-15 -3940 (|t#1| $ "last" |t#1|)) (-15 -1613 ($ $ (-569)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1106)) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-1016 |#1|) . T) ((-1106) |has| |#1| (-1106)) ((-1223) . T))
-((-1344 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1262 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1344 (|#4| (-1 |#2| |#1|) |#3|))) (-1055) (-1055) (-1264 |#1|) (-1264 |#2|)) (T -1262))
-((-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055)) (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *6 *4 *2)) (-4 *4 (-1264 *5)))))
-(-10 -7 (-15 -1344 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3192 (((-112) $) 17)) (-2769 (($ $) 106)) (-2624 (($ $) 82)) (-2744 (($ $) 102)) (-2600 (($ $) 78)) (-4114 (($ $) 110)) (-2645 (($ $) 86)) (-2660 (($ $) 76)) (-4386 (($ $) 74)) (-4124 (($ $) 112)) (-2659 (($ $) 88)) (-2781 (($ $) 108)) (-2632 (($ $) 84)) (-2756 (($ $) 104)) (-2609 (($ $) 80)) (-3793 (((-867) $) 62) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4161 (($ $) 118)) (-2699 (($ $) 94)) (-4133 (($ $) 114)) (-2673 (($ $) 90)) (-4182 (($ $) 122)) (-2721 (($ $) 98)) (-1501 (($ $) 124)) (-2732 (($ $) 100)) (-4170 (($ $) 120)) (-2710 (($ $) 96)) (-4147 (($ $) 116)) (-2687 (($ $) 92)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-412 (-569))) 72)))
-(((-1263 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2624 (|#1| |#1|)) (-15 -2600 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -2732 (|#1| |#1|)) (-15 -2721 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2699 (|#1| |#1|)) (-15 -2756 (|#1| |#1|)) (-15 -2781 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2769 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -4182 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -4386 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3192 ((-112) |#1|)) (-15 -3793 ((-867) |#1|))) (-1264 |#2|) (-1055)) (T -1263))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2624 (|#1| |#1|)) (-15 -2600 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2710 (|#1| |#1|)) (-15 -2732 (|#1| |#1|)) (-15 -2721 (|#1| |#1|)) (-15 -2673 (|#1| |#1|)) (-15 -2699 (|#1| |#1|)) (-15 -2756 (|#1| |#1|)) (-15 -2781 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -2769 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -4182 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -4386 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3793 (|#1| |#2|)) (-15 -3793 (|#1| |#1|)) (-15 -3793 (|#1| (-412 (-569)))) (-15 -3793 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3192 ((-112) |#1|)) (-15 -3793 ((-867) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1710 (((-649 (-1088)) $) 86)) (-2671 (((-1183) $) 115)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-3087 (($ $) 64 (|has| |#1| (-561)))) (-2883 (((-112) $) 66 (|has| |#1| (-561)))) (-3008 (($ $ (-776)) 110) (($ $ (-776) (-776)) 109)) (-2009 (((-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 117)) (-2769 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) 20)) (-3807 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2744 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 167) (($ (-1163 |#1|)) 165)) (-4114 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) 18 T CONST)) (-1879 (($ $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-2718 (($ $) 164)) (-3275 (((-958 |#1|) $ (-776)) 162) (((-958 |#1|) $ (-776) (-776)) 161)) (-4091 (((-112) $) 85)) (-1310 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-776) $) 112) (((-776) $ (-776)) 111)) (-2623 (((-112) $) 35)) (-2506 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2253 (($ $ (-927)) 113)) (-2598 (($ (-1 |#1| (-569)) $) 163)) (-4343 (((-112) $) 74)) (-3920 (($ |#1| (-776)) 73) (($ $ (-1088) (-776)) 88) (($ $ (-649 (-1088)) (-649 (-776))) 87)) (-1344 (($ (-1 |#1| |#1|) $) 75)) (-2660 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) 77)) (-1855 ((|#1| $) 78)) (-1550 (((-1165) $) 10)) (-2488 (($ $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 158 (-2774 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1208)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3545 (((-1126) $) 11)) (-2907 (($ $ (-776)) 107)) (-2405 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4386 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1723 (((-1163 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1866 ((|#1| $ (-776)) 116) (($ $ $) 93 (|has| (-776) (-1118)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) 100 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1183))) 99 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) 98 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-3868 (((-776) $) 76)) (-4124 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 84)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-2836 (((-1163 |#1|) $) 166)) (-4184 ((|#1| $ (-776)) 71)) (-4030 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3302 (((-776)) 32 T CONST)) (-2167 ((|#1| $) 114)) (-1441 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4133 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-776)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183) (-776)) 104 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1183))) 103 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1183)) 102 (-12 (|has| |#1| (-906 (-1183))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ |#1|) 160 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
-(((-1264 |#1|) (-140) (-1055)) (T -1264))
-((-3317 (*1 *1 *2) (-12 (-5 *2 (-1163 (-2 (|:| |k| (-776)) (|:| |c| *3)))) (-4 *3 (-1055)) (-4 *1 (-1264 *3)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-5 *2 (-1163 *3)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-4 *1 (-1264 *3)))) (-2718 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)))) (-2598 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1264 *3)) (-4 *3 (-1055)))) (-3275 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055)) (-5 *2 (-958 *4)))) (-3275 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055)) (-5 *2 (-958 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569)))))) (-2488 (*1 *1 *1 *2) (-2774 (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-12 (|has| *3 (-15 -1710 ((-649 *2) *3))) (|has| *3 (-15 -2488 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
-(-13 (-1251 |t#1| (-776)) (-10 -8 (-15 -3317 ($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |t#1|))))) (-15 -2836 ((-1163 |t#1|) $)) (-15 -3317 ($ (-1163 |t#1|))) (-15 -2718 ($ $)) (-15 -2598 ($ (-1 |t#1| (-569)) $)) (-15 -3275 ((-958 |t#1|) $ (-776))) (-15 -3275 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-367)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -2488 ($ $)) (IF (|has| |t#1| (-15 -2488 (|t#1| |t#1| (-1183)))) (IF (|has| |t#1| (-15 -1710 ((-649 (-1183)) |t#1|))) (-15 -2488 ($ $ (-1183))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1208)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -2488 ($ $ (-1183))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1008)) (-6 (-1208))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-776) |#1|))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-776) (-1118)) ((-293) |has| |#1| (-561)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1183)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183)))) ((-979 |#1| #0# (-1088)) . T) ((-1008) |has| |#1| (-38 (-412 (-569)))) ((-1057 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1057 |#1|) . T) ((-1057 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1062 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1062 |#1|) . T) ((-1062 $) -2774 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1208) |has| |#1| (-38 (-412 (-569)))) ((-1211) |has| |#1| (-38 (-412 (-569)))) ((-1251 |#1| #0#) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1710 (((-649 (-1088)) $) NIL)) (-2671 (((-1183) $) 92)) (-3683 (((-1246 |#2| |#1|) $ (-776)) 73)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-3087 (($ $) NIL (|has| |#1| (-561)))) (-2883 (((-112) $) 144 (|has| |#1| (-561)))) (-3008 (($ $ (-776)) 129) (($ $ (-776) (-776)) 132)) (-2009 (((-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 43)) (-2769 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2624 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1678 (((-3 $ "failed") $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2744 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2600 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3317 (($ (-1163 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 52) (($ (-1163 |#1|)) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2645 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4188 (($) NIL T CONST)) (-4218 (($ $) 136)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-2718 (($ $) 142)) (-3275 (((-958 |#1|) $ (-776)) 63) (((-958 |#1|) $ (-776) (-776)) 65)) (-4091 (((-112) $) NIL)) (-1310 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3110 (((-776) $) NIL) (((-776) $ (-776)) NIL)) (-2623 (((-112) $) NIL)) (-3319 (($ $) 119)) (-2506 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4089 (($ (-569) (-569) $) 138)) (-2253 (($ $ (-927)) 141)) (-2598 (($ (-1 |#1| (-569)) $) 113)) (-4343 (((-112) $) NIL)) (-3920 (($ |#1| (-776)) 16) (($ $ (-1088) (-776)) NIL) (($ $ (-649 (-1088)) (-649 (-776))) NIL)) (-1344 (($ (-1 |#1| |#1|) $) 100)) (-2660 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1846 (($ $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3445 (($ $) 117)) (-3569 (($ $) 115)) (-3974 (($ (-569) (-569) $) 140)) (-2488 (($ $) 152 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1183)) 158 (-2774 (-12 (|has| |#1| (-15 -2488 (|#1| |#1| (-1183)))) (|has| |#1| (-15 -1710 ((-649 (-1183)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1208))))) (($ $ (-1269 |#2|)) 153 (|has| |#1| (-38 (-412 (-569)))))) (-3545 (((-1126) $) NIL)) (-3079 (($ $ (-569) (-569)) 123)) (-2907 (($ $ (-776)) 125)) (-2405 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4386 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3200 (($ $) 121)) (-1723 (((-1163 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1866 ((|#1| $ (-776)) 97) (($ $ $) 134 (|has| (-776) (-1118)))) (-3514 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) 110 (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1269 |#2|)) 105)) (-3868 (((-776) $) NIL)) (-4124 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2659 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2781 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2756 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2609 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4005 (($ $) 127)) (-3793 (((-867) $) NIL) (($ (-569)) 26) (($ (-412 (-569))) 150 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 25 (|has| |#1| (-173))) (($ (-1246 |#2| |#1|)) 83) (($ (-1269 |#2|)) 22)) (-2836 (((-1163 |#1|) $) NIL)) (-4184 ((|#1| $ (-776)) 96)) (-4030 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3302 (((-776)) NIL T CONST)) (-2167 ((|#1| $) 93)) (-1441 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2699 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4133 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2673 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4182 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2721 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3088 ((|#1| $ (-776)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3793 (|#1| (-1183))))))) (-1501 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4170 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2710 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4147 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2687 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1803 (($) 18 T CONST)) (-1813 (($) 13 T CONST)) (-2830 (($ $ (-649 (-1183)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-649 (-1183))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-1183)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1183))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2919 (((-112) $ $) NIL)) (-3032 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) 109)) (-3009 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 147 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
-(((-1265 |#1| |#2| |#3|) (-13 (-1264 |#1|) (-10 -8 (-15 -3793 ($ (-1246 |#2| |#1|))) (-15 -3683 ((-1246 |#2| |#1|) $ (-776))) (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (-15 -3569 ($ $)) (-15 -3445 ($ $)) (-15 -3319 ($ $)) (-15 -3200 ($ $)) (-15 -3079 ($ $ (-569) (-569))) (-15 -4218 ($ $)) (-15 -4089 ($ (-569) (-569) $)) (-15 -3974 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|))) (-1055) (-1183) |#1|) (T -1265))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3) (-5 *1 (-1265 *3 *4 *5)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1265 *4 *5 *6)) (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *5 *3))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3445 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3319 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-3079 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-4218 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183)) (-14 *4 *2))) (-4089 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-3974 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183)) (-14 *5 *3))) (-2488 (*1 *1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(-13 (-1264 |#1|) (-10 -8 (-15 -3793 ($ (-1246 |#2| |#1|))) (-15 -3683 ((-1246 |#2| |#1|) $ (-776))) (-15 -3793 ($ (-1269 |#2|))) (-15 -3514 ($ $ (-1269 |#2|))) (-15 -3569 ($ $)) (-15 -3445 ($ $)) (-15 -3319 ($ $)) (-15 -3200 ($ $)) (-15 -3079 ($ $ (-569) (-569))) (-15 -4218 ($ $)) (-15 -4089 ($ (-569) (-569) $)) (-15 -3974 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2488 ($ $ (-1269 |#2|))) |%noBranch|)))
-((-1975 (((-1 (-1163 |#1|) (-649 (-1163 |#1|))) (-1 |#2| (-649 |#2|))) 24)) (-3059 (((-1 (-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2946 (((-1 (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2|)) 13)) (-2266 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2169 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2360 ((|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|)) 60)) (-4399 (((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))) 66)) (-2070 ((|#2| |#2| |#2|) 43)))
-(((-1266 |#1| |#2|) (-10 -7 (-15 -2946 ((-1 (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2|))) (-15 -3059 ((-1 (-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1975 ((-1 (-1163 |#1|) (-649 (-1163 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -2070 (|#2| |#2| |#2|)) (-15 -2169 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2266 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2360 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -4399 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))))) (-38 (-412 (-569))) (-1264 |#1|)) (T -1266))
-((-4399 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6)))) (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1264 *5)) (-5 *2 (-649 *6)) (-5 *1 (-1266 *5 *6)))) (-2360 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5)) (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1264 *5)) (-5 *1 (-1266 *5 *2)))) (-2266 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-2070 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1266 *3 *2)) (-4 *2 (-1264 *3)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-649 (-1163 *4)))) (-5 *1 (-1266 *4 *5)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-1163 *4) (-1163 *4))) (-5 *1 (-1266 *4 *5)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-1163 *4))) (-5 *1 (-1266 *4 *5)))))
-(-10 -7 (-15 -2946 ((-1 (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2|))) (-15 -3059 ((-1 (-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1975 ((-1 (-1163 |#1|) (-649 (-1163 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -2070 (|#2| |#2| |#2|)) (-15 -2169 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2266 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2360 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -4399 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|))))))
-((-1516 ((|#2| |#4| (-776)) 34)) (-1407 ((|#4| |#2|) 29)) (-1757 ((|#4| (-412 |#2|)) 53 (|has| |#1| (-561)))) (-1629 (((-1 |#4| (-649 |#4|)) |#3|) 46)))
-(((-1267 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1407 (|#4| |#2|)) (-15 -1516 (|#2| |#4| (-776))) (-15 -1629 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -1757 (|#4| (-412 |#2|))) |%noBranch|)) (-1055) (-1249 |#1|) (-661 |#2|) (-1264 |#1|)) (T -1267))
-((-1757 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-561)) (-4 *4 (-1055)) (-4 *2 (-1264 *4)) (-5 *1 (-1267 *4 *5 *6 *2)) (-4 *6 (-661 *5)))) (-1629 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *5 (-1249 *4)) (-5 *2 (-1 *6 (-649 *6))) (-5 *1 (-1267 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1264 *4)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-1267 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1264 *5)))) (-1407 (*1 *2 *3) (-12 (-4 *4 (-1055)) (-4 *3 (-1249 *4)) (-4 *2 (-1264 *4)) (-5 *1 (-1267 *4 *3 *5 *2)) (-4 *5 (-661 *3)))))
-(-10 -7 (-15 -1407 (|#4| |#2|)) (-15 -1516 (|#2| |#4| (-776))) (-15 -1629 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -1757 (|#4| (-412 |#2|))) |%noBranch|))
-NIL
-(((-1268) (-140)) (T -1268))
-NIL
-(-13 (-10 -7 (-6 -3053)))
-((-2415 (((-112) $ $) NIL)) (-2671 (((-1183)) 12)) (-1550 (((-1165) $) 18)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 11) (((-1183) $) 8)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) 15)))
-(((-1269 |#1|) (-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -3793 ((-1183) $)) (-15 -2671 ((-1183))))) (-1183)) (T -1269))
-((-3793 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))) (-2671 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))))
-(-13 (-1106) (-618 (-1183)) (-10 -8 (-15 -3793 ((-1183) $)) (-15 -2671 ((-1183)))))
-((-3464 (($ (-776)) 19)) (-1365 (((-694 |#2|) $ $) 41)) (-1878 ((|#2| $) 51)) (-3842 ((|#2| $) 50)) (-3990 ((|#2| $ $) 36)) (-3885 (($ $ $) 47)) (-3021 (($ $) 23) (($ $ $) 29)) (-3009 (($ $ $) 15)) (* (($ (-569) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1270 |#1| |#2|) (-10 -8 (-15 -1878 (|#2| |#1|)) (-15 -3842 (|#2| |#1|)) (-15 -3885 (|#1| |#1| |#1|)) (-15 -1365 ((-694 |#2|) |#1| |#1|)) (-15 -3990 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3464 (|#1| (-776))) (-15 -3009 (|#1| |#1| |#1|))) (-1271 |#2|) (-1223)) (T -1270))
-NIL
-(-10 -8 (-15 -1878 (|#2| |#1|)) (-15 -3842 (|#2| |#1|)) (-15 -3885 (|#1| |#1| |#1|)) (-15 -1365 ((-694 |#2|) |#1| |#1|)) (-15 -3990 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1|)) (-15 -3464 (|#1| (-776))) (-15 -3009 (|#1| |#1| |#1|)))
-((-2415 (((-112) $ $) 19 (|has| |#1| (-1106)))) (-3464 (($ (-776)) 113 (|has| |#1| (-23)))) (-4321 (((-1278) $ (-569) (-569)) 41 (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4445))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4445))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) 8)) (-3940 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) 59 (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4444)))) (-4188 (($) 7 T CONST)) (-4380 (($ $) 91 (|has| $ (-6 -4445)))) (-2248 (($ $) 101)) (-3547 (($ $) 79 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1696 (($ |#1| $) 78 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) 52)) (-4034 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) 31 (|has| $ (-6 -4444)))) (-1365 (((-694 |#1|) $ $) 106 (|has| |#1| (-1055)))) (-4295 (($ (-776) |#1|) 70)) (-1689 (((-112) $ (-776)) 9)) (-1420 (((-569) $) 44 (|has| (-569) (-855)))) (-3377 (($ $ $) 88 (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) 30 (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1535 (((-569) $) 45 (|has| (-569) (-855)))) (-3969 (($ $ $) 87 (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1878 ((|#1| $) 103 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-2433 (((-112) $ (-776)) 10)) (-3842 ((|#1| $) 104 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1008))))) (-1550 (((-1165) $) 22 (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1755 (((-649 (-569)) $) 47)) (-3748 (((-112) (-569) $) 48)) (-3545 (((-1126) $) 21 (|has| |#1| (-1106)))) (-3510 ((|#1| $) 43 (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4420 (($ $ |#1|) 42 (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) 14)) (-1650 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) 49)) (-3218 (((-112) $) 11)) (-3597 (($) 12)) (-1866 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1240 (-569))) 64)) (-3990 ((|#1| $ $) 107 (|has| |#1| (-1055)))) (-4325 (($ $ (-569)) 63) (($ $ (-1240 (-569))) 62)) (-3885 (($ $ $) 105 (|has| |#1| (-1055)))) (-3558 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4444))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1106)) (|has| $ (-6 -4444))))) (-1938 (($ $ $ (-569)) 92 (|has| $ (-6 -4445)))) (-3959 (($ $) 13)) (-1408 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 71)) (-2441 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3793 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) 23 (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2954 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2919 (((-112) $ $) 20 (|has| |#1| (-1106)))) (-2964 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2942 (((-112) $ $) 83 (|has| |#1| (-855)))) (-3021 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3009 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2426 (((-776) $) 6 (|has| $ (-6 -4444)))))
-(((-1271 |#1|) (-140) (-1223)) (T -1271))
-((-3009 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-25)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1271 *3)) (-4 *3 (-23)) (-4 *3 (-1223)))) (-3021 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731)))) (-3990 (*1 *2 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))) (-1365 (*1 *2 *1 *1) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-1055)) (-5 *2 (-694 *3)))) (-3885 (*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008)) (-4 *2 (-1055)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008)) (-4 *2 (-1055)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3009 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3464 ($ (-776))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3021 ($ $)) (-15 -3021 ($ $ $)) (-15 * ($ (-569) $))) |%noBranch|) (IF (|has| |t#1| (-731)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1055)) (PROGN (-15 -3990 (|t#1| $ $)) (-15 -1365 ((-694 |t#1|) $ $)) (-15 -3885 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1008)) (IF (|has| |t#1| (-1055)) (PROGN (-15 -3842 (|t#1| $)) (-15 -1878 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-618 (-867)) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1106) -2774 (|has| |#1| (-1106)) (|has| |#1| (-855))) ((-1223) . T))
-((-4085 (((-1273 |#2|) (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|) 13)) (-3596 ((|#2| (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|) 15)) (-1344 (((-3 (-1273 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1273 |#1|)) 30) (((-1273 |#2|) (-1 |#2| |#1|) (-1273 |#1|)) 18)))
-(((-1272 |#1| |#2|) (-10 -7 (-15 -4085 ((-1273 |#2|) (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -1344 ((-1273 |#2|) (-1 |#2| |#1|) (-1273 |#1|))) (-15 -1344 ((-3 (-1273 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1273 |#1|)))) (-1223) (-1223)) (T -1272))
-((-1344 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1273 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1273 *6)) (-5 *1 (-1272 *5 *6)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1273 *6)) (-5 *1 (-1272 *5 *6)))) (-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1273 *5)) (-4 *5 (-1223)) (-4 *2 (-1223)) (-5 *1 (-1272 *5 *2)))) (-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1273 *6)) (-4 *6 (-1223)) (-4 *5 (-1223)) (-5 *2 (-1273 *5)) (-5 *1 (-1272 *6 *5)))))
-(-10 -7 (-15 -4085 ((-1273 |#2|) (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -3596 (|#2| (-1 |#2| |#1| |#2|) (-1273 |#1|) |#2|)) (-15 -1344 ((-1273 |#2|) (-1 |#2| |#1|) (-1273 |#1|))) (-15 -1344 ((-3 (-1273 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1273 |#1|))))
-((-2415 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3464 (($ (-776)) NIL (|has| |#1| (-23)))) (-3501 (($ (-649 |#1|)) 11)) (-4321 (((-1278) $ (-569) (-569)) NIL (|has| $ (-6 -4445)))) (-2031 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-3012 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4445))) (($ $) NIL (-12 (|has| $ (-6 -4445)) (|has| |#1| (-855))))) (-3355 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-2716 (((-112) $ (-776)) NIL)) (-3940 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445))) ((|#1| $ (-1240 (-569)) |#1|) NIL (|has| $ (-6 -4445)))) (-1415 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-4188 (($) NIL T CONST)) (-4380 (($ $) NIL (|has| $ (-6 -4445)))) (-2248 (($ $) NIL)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1696 (($ |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-3596 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4444))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4444)))) (-3843 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4445)))) (-3773 ((|#1| $ (-569)) NIL)) (-4034 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1106))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1106)))) (-2880 (((-649 |#1|) $) 16 (|has| $ (-6 -4444)))) (-1365 (((-694 |#1|) $ $) NIL (|has| |#1| (-1055)))) (-4295 (($ (-776) |#1|) NIL)) (-1689 (((-112) $ (-776)) NIL)) (-1420 (((-569) $) NIL (|has| (-569) (-855)))) (-3377 (($ $ $) NIL (|has| |#1| (-855)))) (-2126 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-3040 (((-649 |#1|) $) NIL (|has| $ (-6 -4444)))) (-1655 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1535 (((-569) $) 12 (|has| (-569) (-855)))) (-3969 (($ $ $) NIL (|has| |#1| (-855)))) (-3831 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1878 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-2433 (((-112) $ (-776)) NIL)) (-3842 ((|#1| $) NIL (-12 (|has| |#1| (-1008)) (|has| |#1| (-1055))))) (-1550 (((-1165) $) NIL (|has| |#1| (-1106)))) (-4294 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1755 (((-649 (-569)) $) NIL)) (-3748 (((-112) (-569) $) NIL)) (-3545 (((-1126) $) NIL (|has| |#1| (-1106)))) (-3510 ((|#1| $) NIL (|has| (-569) (-855)))) (-3123 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4420 (($ $ |#1|) NIL (|has| $ (-6 -4445)))) (-2911 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1106))))) (-2834 (((-112) $ $) NIL)) (-1650 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-3851 (((-649 |#1|) $) NIL)) (-3218 (((-112) $) NIL)) (-3597 (($) NIL)) (-1866 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3990 ((|#1| $ $) NIL (|has| |#1| (-1055)))) (-4325 (($ $ (-569)) NIL) (($ $ (-1240 (-569))) NIL)) (-3885 (($ $ $) NIL (|has| |#1| (-1055)))) (-3558 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#1| (-1106))))) (-1938 (($ $ $ (-569)) NIL (|has| $ (-6 -4445)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) 20 (|has| |#1| (-619 (-541))))) (-3806 (($ (-649 |#1|)) 10)) (-2441 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3793 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1441 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-3037 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4444)))) (-2976 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2919 (((-112) $ $) NIL (|has| |#1| (-1106)))) (-2964 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2942 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3021 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3009 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1273 |#1|) (-13 (-1271 |#1|) (-10 -8 (-15 -3501 ($ (-649 |#1|))))) (-1223)) (T -1273))
-((-3501 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1273 *3)))))
-(-13 (-1271 |#1|) (-10 -8 (-15 -3501 ($ (-649 |#1|)))))
-((-2415 (((-112) $ $) NIL)) (-1748 (((-1165) $ (-1165)) 107) (((-1165) $ (-1165) (-1165)) 105) (((-1165) $ (-1165) (-649 (-1165))) 104)) (-3065 (($) 69)) (-3986 (((-1278) $ (-473) (-927)) 54)) (-3154 (((-1278) $ (-927) (-1165)) 89) (((-1278) $ (-927) (-879)) 90)) (-2913 (((-1278) $ (-927) (-383) (-383)) 57)) (-3328 (((-1278) $ (-1165)) 84)) (-3115 (((-1278) $ (-927) (-1165)) 94)) (-3186 (((-1278) $ (-927) (-383) (-383)) 58)) (-2338 (((-1278) $ (-927) (-927)) 55)) (-1725 (((-1278) $) 85)) (-3419 (((-1278) $ (-927) (-1165)) 93)) (-3761 (((-1278) $ (-473) (-927)) 41)) (-3538 (((-1278) $ (-927) (-1165)) 92)) (-3347 (((-649 (-265)) $) 29) (($ $ (-649 (-265))) 30)) (-2425 (((-1278) $ (-776) (-776)) 52)) (-2952 (($ $) 70) (($ (-473) (-649 (-265))) 71)) (-1550 (((-1165) $) NIL)) (-2003 (((-569) $) 48)) (-3545 (((-1126) $) NIL)) (-2581 (((-1273 (-3 (-473) "undefined")) $) 47)) (-2714 (((-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3538 (-569)) (|:| -3285 (-569)) (|:| |spline| (-569)) (|:| -1970 (-569)) (|:| |axesColor| (-879)) (|:| -3154 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $) 46)) (-2820 (((-1278) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569)) 83)) (-1969 (((-649 (-949 (-226))) $) NIL)) (-3643 (((-473) $ (-927)) 43)) (-2252 (((-1278) $ (-776) (-776) (-927) (-927)) 50)) (-2066 (((-1278) $ (-1165)) 95)) (-3285 (((-1278) $ (-927) (-1165)) 91)) (-3793 (((-867) $) 102)) (-4130 (((-1278) $) 96)) (-1441 (((-112) $ $) NIL)) (-1970 (((-1278) $ (-927) (-1165)) 87) (((-1278) $ (-927) (-879)) 88)) (-2919 (((-112) $ $) NIL)))
-(((-1274) (-13 (-1106) (-10 -8 (-15 -1969 ((-649 (-949 (-226))) $)) (-15 -3065 ($)) (-15 -2952 ($ $)) (-15 -3347 ((-649 (-265)) $)) (-15 -3347 ($ $ (-649 (-265)))) (-15 -2952 ($ (-473) (-649 (-265)))) (-15 -2820 ((-1278) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -2714 ((-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3538 (-569)) (|:| -3285 (-569)) (|:| |spline| (-569)) (|:| -1970 (-569)) (|:| |axesColor| (-879)) (|:| -3154 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -2581 ((-1273 (-3 (-473) "undefined")) $)) (-15 -3328 ((-1278) $ (-1165))) (-15 -3761 ((-1278) $ (-473) (-927))) (-15 -3643 ((-473) $ (-927))) (-15 -1970 ((-1278) $ (-927) (-1165))) (-15 -1970 ((-1278) $ (-927) (-879))) (-15 -3154 ((-1278) $ (-927) (-1165))) (-15 -3154 ((-1278) $ (-927) (-879))) (-15 -3538 ((-1278) $ (-927) (-1165))) (-15 -3419 ((-1278) $ (-927) (-1165))) (-15 -3285 ((-1278) $ (-927) (-1165))) (-15 -2066 ((-1278) $ (-1165))) (-15 -4130 ((-1278) $)) (-15 -2252 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -3186 ((-1278) $ (-927) (-383) (-383))) (-15 -2913 ((-1278) $ (-927) (-383) (-383))) (-15 -3115 ((-1278) $ (-927) (-1165))) (-15 -2425 ((-1278) $ (-776) (-776))) (-15 -3986 ((-1278) $ (-473) (-927))) (-15 -2338 ((-1278) $ (-927) (-927))) (-15 -1748 ((-1165) $ (-1165))) (-15 -1748 ((-1165) $ (-1165) (-1165))) (-15 -1748 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -1725 ((-1278) $)) (-15 -2003 ((-569) $)) (-15 -3793 ((-867) $))))) (T -1274))
-((-3793 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1274)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1274)))) (-3065 (*1 *1) (-5 *1 (-1274))) (-2952 (*1 *1 *1) (-5 *1 (-1274))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274)))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274)))) (-2952 (*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1274)))) (-2820 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3538 (-569)) (|:| -3285 (-569)) (|:| |spline| (-569)) (|:| -1970 (-569)) (|:| |axesColor| (-879)) (|:| -3154 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569))))) (-5 *1 (-1274)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-1273 (-3 (-473) "undefined"))) (-5 *1 (-1274)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3761 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3643 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1274)))) (-1970 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-1970 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3154 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3154 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3538 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3419 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2066 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2252 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3186 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2913 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3115 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2425 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-3986 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2338 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))) (-1748 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274)))) (-1748 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274)))) (-1748 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1274)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1274)))))
-(-13 (-1106) (-10 -8 (-15 -1969 ((-649 (-949 (-226))) $)) (-15 -3065 ($)) (-15 -2952 ($ $)) (-15 -3347 ((-649 (-265)) $)) (-15 -3347 ($ $ (-649 (-265)))) (-15 -2952 ($ (-473) (-649 (-265)))) (-15 -2820 ((-1278) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -2714 ((-1273 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3538 (-569)) (|:| -3285 (-569)) (|:| |spline| (-569)) (|:| -1970 (-569)) (|:| |axesColor| (-879)) (|:| -3154 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -2581 ((-1273 (-3 (-473) "undefined")) $)) (-15 -3328 ((-1278) $ (-1165))) (-15 -3761 ((-1278) $ (-473) (-927))) (-15 -3643 ((-473) $ (-927))) (-15 -1970 ((-1278) $ (-927) (-1165))) (-15 -1970 ((-1278) $ (-927) (-879))) (-15 -3154 ((-1278) $ (-927) (-1165))) (-15 -3154 ((-1278) $ (-927) (-879))) (-15 -3538 ((-1278) $ (-927) (-1165))) (-15 -3419 ((-1278) $ (-927) (-1165))) (-15 -3285 ((-1278) $ (-927) (-1165))) (-15 -2066 ((-1278) $ (-1165))) (-15 -4130 ((-1278) $)) (-15 -2252 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -3186 ((-1278) $ (-927) (-383) (-383))) (-15 -2913 ((-1278) $ (-927) (-383) (-383))) (-15 -3115 ((-1278) $ (-927) (-1165))) (-15 -2425 ((-1278) $ (-776) (-776))) (-15 -3986 ((-1278) $ (-473) (-927))) (-15 -2338 ((-1278) $ (-927) (-927))) (-15 -1748 ((-1165) $ (-1165))) (-15 -1748 ((-1165) $ (-1165) (-1165))) (-15 -1748 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -1725 ((-1278) $)) (-15 -2003 ((-569) $)) (-15 -3793 ((-867) $))))
-((-2415 (((-112) $ $) NIL)) (-2652 (((-1278) $ (-383)) 169) (((-1278) $ (-383) (-383) (-383)) 170)) (-1748 (((-1165) $ (-1165)) 179) (((-1165) $ (-1165) (-1165)) 177) (((-1165) $ (-1165) (-649 (-1165))) 176)) (-1679 (($) 67)) (-2164 (((-1278) $ (-383) (-383) (-383) (-383) (-383)) 141) (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $) 139) (((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 140) (((-1278) $ (-569) (-569) (-383) (-383) (-383)) 144) (((-1278) $ (-383) (-383)) 145) (((-1278) $ (-383) (-383) (-383)) 152)) (-3882 (((-383)) 122) (((-383) (-383)) 123)) (-4063 (((-383)) 117) (((-383) (-383)) 119)) (-3976 (((-383)) 120) (((-383) (-383)) 121)) (-1786 (((-383)) 126) (((-383) (-383)) 127)) (-1884 (((-383)) 124) (((-383) (-383)) 125)) (-2913 (((-1278) $ (-383) (-383)) 171)) (-3328 (((-1278) $ (-1165)) 153)) (-1466 (((-1139 (-226)) $) 68) (($ $ (-1139 (-226))) 69)) (-1465 (((-1278) $ (-1165)) 187)) (-1309 (((-1278) $ (-1165)) 188)) (-2762 (((-1278) $ (-383) (-383)) 151) (((-1278) $ (-569) (-569)) 168)) (-2338 (((-1278) $ (-927) (-927)) 160)) (-1725 (((-1278) $) 137)) (-2546 (((-1278) $ (-1165)) 186)) (-2963 (((-1278) $ (-1165)) 134)) (-3347 (((-649 (-265)) $) 70) (($ $ (-649 (-265))) 71)) (-2425 (((-1278) $ (-776) (-776)) 159)) (-1339 (((-1278) $ (-776) (-949 (-226))) 193)) (-1577 (($ $) 73) (($ (-1139 (-226)) (-1165)) 74) (($ (-1139 (-226)) (-649 (-265))) 75)) (-2291 (((-1278) $ (-383) (-383) (-383)) 131)) (-1550 (((-1165) $) NIL)) (-2003 (((-569) $) 128)) (-2195 (((-1278) $ (-383)) 174)) (-3657 (((-1278) $ (-383)) 191)) (-3545 (((-1126) $) NIL)) (-3750 (((-1278) $ (-383)) 190)) (-2862 (((-1278) $ (-1165)) 136)) (-2252 (((-1278) $ (-776) (-776) (-927) (-927)) 158)) (-3066 (((-1278) $ (-1165)) 133)) (-2066 (((-1278) $ (-1165)) 135)) (-2097 (((-1278) $ (-157) (-157)) 157)) (-3793 (((-867) $) 166)) (-4130 (((-1278) $) 138)) (-2377 (((-1278) $ (-1165)) 189)) (-1441 (((-112) $ $) NIL)) (-1970 (((-1278) $ (-1165)) 132)) (-2919 (((-112) $ $) NIL)))
-(((-1275) (-13 (-1106) (-10 -8 (-15 -4063 ((-383))) (-15 -4063 ((-383) (-383))) (-15 -3976 ((-383))) (-15 -3976 ((-383) (-383))) (-15 -3882 ((-383))) (-15 -3882 ((-383) (-383))) (-15 -1884 ((-383))) (-15 -1884 ((-383) (-383))) (-15 -1786 ((-383))) (-15 -1786 ((-383) (-383))) (-15 -1679 ($)) (-15 -1577 ($ $)) (-15 -1577 ($ (-1139 (-226)) (-1165))) (-15 -1577 ($ (-1139 (-226)) (-649 (-265)))) (-15 -1466 ((-1139 (-226)) $)) (-15 -1466 ($ $ (-1139 (-226)))) (-15 -1339 ((-1278) $ (-776) (-949 (-226)))) (-15 -3347 ((-649 (-265)) $)) (-15 -3347 ($ $ (-649 (-265)))) (-15 -2425 ((-1278) $ (-776) (-776))) (-15 -2338 ((-1278) $ (-927) (-927))) (-15 -3328 ((-1278) $ (-1165))) (-15 -2252 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -2164 ((-1278) $ (-383) (-383) (-383) (-383) (-383))) (-15 -2164 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -2164 ((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -2164 ((-1278) $ (-569) (-569) (-383) (-383) (-383))) (-15 -2164 ((-1278) $ (-383) (-383))) (-15 -2164 ((-1278) $ (-383) (-383) (-383))) (-15 -2066 ((-1278) $ (-1165))) (-15 -1970 ((-1278) $ (-1165))) (-15 -3066 ((-1278) $ (-1165))) (-15 -2963 ((-1278) $ (-1165))) (-15 -2862 ((-1278) $ (-1165))) (-15 -2762 ((-1278) $ (-383) (-383))) (-15 -2762 ((-1278) $ (-569) (-569))) (-15 -2652 ((-1278) $ (-383))) (-15 -2652 ((-1278) $ (-383) (-383) (-383))) (-15 -2913 ((-1278) $ (-383) (-383))) (-15 -2546 ((-1278) $ (-1165))) (-15 -3750 ((-1278) $ (-383))) (-15 -3657 ((-1278) $ (-383))) (-15 -1465 ((-1278) $ (-1165))) (-15 -1309 ((-1278) $ (-1165))) (-15 -2377 ((-1278) $ (-1165))) (-15 -2291 ((-1278) $ (-383) (-383) (-383))) (-15 -2195 ((-1278) $ (-383))) (-15 -1725 ((-1278) $)) (-15 -2097 ((-1278) $ (-157) (-157))) (-15 -1748 ((-1165) $ (-1165))) (-15 -1748 ((-1165) $ (-1165) (-1165))) (-15 -1748 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -4130 ((-1278) $)) (-15 -2003 ((-569) $))))) (T -1275))
-((-4063 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-3976 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-3976 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-3882 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-1884 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-1786 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-1786 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))) (-1679 (*1 *1) (-5 *1 (-1275))) (-1577 (*1 *1 *1) (-5 *1 (-1275))) (-1577 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1165)) (-5 *1 (-1275)))) (-1577 (*1 *1 *2 *3) (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1275)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275)))) (-1466 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275)))) (-1339 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275)))) (-3347 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275)))) (-2425 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2338 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2252 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2164 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-1275)))) (-2164 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2164 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2164 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2164 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2066 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3066 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2963 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2762 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2762 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2652 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2652 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2913 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2546 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1465 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2291 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2097 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1278)) (-5 *1 (-1275)))) (-1748 (*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))) (-1748 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))) (-1748 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1275)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1275)))))
-(-13 (-1106) (-10 -8 (-15 -4063 ((-383))) (-15 -4063 ((-383) (-383))) (-15 -3976 ((-383))) (-15 -3976 ((-383) (-383))) (-15 -3882 ((-383))) (-15 -3882 ((-383) (-383))) (-15 -1884 ((-383))) (-15 -1884 ((-383) (-383))) (-15 -1786 ((-383))) (-15 -1786 ((-383) (-383))) (-15 -1679 ($)) (-15 -1577 ($ $)) (-15 -1577 ($ (-1139 (-226)) (-1165))) (-15 -1577 ($ (-1139 (-226)) (-649 (-265)))) (-15 -1466 ((-1139 (-226)) $)) (-15 -1466 ($ $ (-1139 (-226)))) (-15 -1339 ((-1278) $ (-776) (-949 (-226)))) (-15 -3347 ((-649 (-265)) $)) (-15 -3347 ($ $ (-649 (-265)))) (-15 -2425 ((-1278) $ (-776) (-776))) (-15 -2338 ((-1278) $ (-927) (-927))) (-15 -3328 ((-1278) $ (-1165))) (-15 -2252 ((-1278) $ (-776) (-776) (-927) (-927))) (-15 -2164 ((-1278) $ (-383) (-383) (-383) (-383) (-383))) (-15 -2164 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -2164 ((-1278) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -2164 ((-1278) $ (-569) (-569) (-383) (-383) (-383))) (-15 -2164 ((-1278) $ (-383) (-383))) (-15 -2164 ((-1278) $ (-383) (-383) (-383))) (-15 -2066 ((-1278) $ (-1165))) (-15 -1970 ((-1278) $ (-1165))) (-15 -3066 ((-1278) $ (-1165))) (-15 -2963 ((-1278) $ (-1165))) (-15 -2862 ((-1278) $ (-1165))) (-15 -2762 ((-1278) $ (-383) (-383))) (-15 -2762 ((-1278) $ (-569) (-569))) (-15 -2652 ((-1278) $ (-383))) (-15 -2652 ((-1278) $ (-383) (-383) (-383))) (-15 -2913 ((-1278) $ (-383) (-383))) (-15 -2546 ((-1278) $ (-1165))) (-15 -3750 ((-1278) $ (-383))) (-15 -3657 ((-1278) $ (-383))) (-15 -1465 ((-1278) $ (-1165))) (-15 -1309 ((-1278) $ (-1165))) (-15 -2377 ((-1278) $ (-1165))) (-15 -2291 ((-1278) $ (-383) (-383) (-383))) (-15 -2195 ((-1278) $ (-383))) (-15 -1725 ((-1278) $)) (-15 -2097 ((-1278) $ (-157) (-157))) (-15 -1748 ((-1165) $ (-1165))) (-15 -1748 ((-1165) $ (-1165) (-1165))) (-15 -1748 ((-1165) $ (-1165) (-649 (-1165)))) (-15 -4130 ((-1278) $)) (-15 -2003 ((-569) $))))
-((-3747 (((-649 (-1165)) (-649 (-1165))) 104) (((-649 (-1165))) 96)) (-2542 (((-649 (-1165))) 94)) (-3546 (((-649 (-927)) (-649 (-927))) 69) (((-649 (-927))) 64)) (-3436 (((-649 (-776)) (-649 (-776))) 61) (((-649 (-776))) 55)) (-3651 (((-1278)) 71)) (-2755 (((-927) (-927)) 87) (((-927)) 86)) (-2646 (((-927) (-927)) 85) (((-927)) 84)) (-3213 (((-879) (-879)) 81) (((-879)) 80)) (-2970 (((-226)) 91) (((-226) (-383)) 93)) (-2858 (((-927)) 88) (((-927) (-927)) 89)) (-3320 (((-927) (-927)) 83) (((-927)) 82)) (-4156 (((-879) (-879)) 75) (((-879)) 73)) (-4248 (((-879) (-879)) 77) (((-879)) 76)) (-4345 (((-879) (-879)) 79) (((-879)) 78)))
-(((-1276) (-10 -7 (-15 -4156 ((-879))) (-15 -4156 ((-879) (-879))) (-15 -4248 ((-879))) (-15 -4248 ((-879) (-879))) (-15 -4345 ((-879))) (-15 -4345 ((-879) (-879))) (-15 -3213 ((-879))) (-15 -3213 ((-879) (-879))) (-15 -3320 ((-927))) (-15 -3320 ((-927) (-927))) (-15 -3436 ((-649 (-776)))) (-15 -3436 ((-649 (-776)) (-649 (-776)))) (-15 -3546 ((-649 (-927)))) (-15 -3546 ((-649 (-927)) (-649 (-927)))) (-15 -3651 ((-1278))) (-15 -3747 ((-649 (-1165)))) (-15 -3747 ((-649 (-1165)) (-649 (-1165)))) (-15 -2542 ((-649 (-1165)))) (-15 -2646 ((-927))) (-15 -2755 ((-927))) (-15 -2646 ((-927) (-927))) (-15 -2755 ((-927) (-927))) (-15 -2858 ((-927) (-927))) (-15 -2858 ((-927))) (-15 -2970 ((-226) (-383))) (-15 -2970 ((-226))))) (T -1276))
-((-2970 (*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1276)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1276)))) (-2858 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2858 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2646 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2755 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2646 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-2542 (*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))) (-3747 (*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))) (-3651 (*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276)))) (-3546 (*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276)))) (-3436 (*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276)))) (-3320 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-3320 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))) (-3213 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-3213 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-4345 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-4345 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-4248 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-4156 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))) (-4156 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
-(-10 -7 (-15 -4156 ((-879))) (-15 -4156 ((-879) (-879))) (-15 -4248 ((-879))) (-15 -4248 ((-879) (-879))) (-15 -4345 ((-879))) (-15 -4345 ((-879) (-879))) (-15 -3213 ((-879))) (-15 -3213 ((-879) (-879))) (-15 -3320 ((-927))) (-15 -3320 ((-927) (-927))) (-15 -3436 ((-649 (-776)))) (-15 -3436 ((-649 (-776)) (-649 (-776)))) (-15 -3546 ((-649 (-927)))) (-15 -3546 ((-649 (-927)) (-649 (-927)))) (-15 -3651 ((-1278))) (-15 -3747 ((-649 (-1165)))) (-15 -3747 ((-649 (-1165)) (-649 (-1165)))) (-15 -2542 ((-649 (-1165)))) (-15 -2646 ((-927))) (-15 -2755 ((-927))) (-15 -2646 ((-927) (-927))) (-15 -2755 ((-927) (-927))) (-15 -2858 ((-927) (-927))) (-15 -2858 ((-927))) (-15 -2970 ((-226) (-383))) (-15 -2970 ((-226))))
-((-4201 (((-473) (-649 (-649 (-949 (-226)))) (-649 (-265))) 22) (((-473) (-649 (-649 (-949 (-226))))) 21) (((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 20)) (-4314 (((-1274) (-649 (-649 (-949 (-226)))) (-649 (-265))) 33) (((-1274) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 32)) (-3793 (((-1274) (-473)) 48)))
-(((-1277) (-10 -7 (-15 -4201 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -4201 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -4201 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -4314 ((-1274) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -4314 ((-1274) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3793 ((-1274) (-473))))) (T -1277))
-((-3793 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1274)) (-5 *1 (-1277)))) (-4314 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-1277)))) (-4314 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-1277)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1277)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473)) (-5 *1 (-1277)))) (-4201 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1277)))))
-(-10 -7 (-15 -4201 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -4201 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -4201 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -4314 ((-1274) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -4314 ((-1274) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3793 ((-1274) (-473))))
-((-2577 (($) 6)) (-3793 (((-867) $) 9)))
-(((-1278) (-13 (-618 (-867)) (-10 -8 (-15 -2577 ($))))) (T -1278))
-((-2577 (*1 *1) (-5 *1 (-1278))))
-(-13 (-618 (-867)) (-10 -8 (-15 -2577 ($))))
-((-3032 (($ $ |#2|) 10)))
-(((-1279 |#1| |#2|) (-10 -8 (-15 -3032 (|#1| |#1| |#2|))) (-1280 |#2|) (-367)) (T -1279))
-NIL
-(-10 -8 (-15 -3032 (|#1| |#1| |#2|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3083 (((-134)) 33)) (-3793 (((-867) $) 12)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-2919 (((-112) $ $) 6)) (-3032 (($ $ |#1|) 34)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-1280 |#1|) (-140) (-367)) (T -1280))
-((-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-367)))) (-3083 (*1 *2) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
-(-13 (-722 |t#1|) (-10 -8 (-15 -3032 ($ $ |t#1|)) (-15 -3083 ((-134)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1106) . T))
-((-3484 (((-649 (-1217 |#1|)) (-1183) (-1217 |#1|)) 83)) (-3260 (((-1163 (-1163 (-958 |#1|))) (-1183) (-1163 (-958 |#1|))) 63)) (-3599 (((-1 (-1163 (-1217 |#1|)) (-1163 (-1217 |#1|))) (-776) (-1217 |#1|) (-1163 (-1217 |#1|))) 74)) (-3073 (((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776)) 65)) (-3394 (((-1 (-1179 (-958 |#1|)) (-958 |#1|)) (-1183)) 32)) (-3163 (((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776)) 64)))
-(((-1281 |#1|) (-10 -7 (-15 -3073 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -3163 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -3260 ((-1163 (-1163 (-958 |#1|))) (-1183) (-1163 (-958 |#1|)))) (-15 -3394 ((-1 (-1179 (-958 |#1|)) (-958 |#1|)) (-1183))) (-15 -3484 ((-649 (-1217 |#1|)) (-1183) (-1217 |#1|))) (-15 -3599 ((-1 (-1163 (-1217 |#1|)) (-1163 (-1217 |#1|))) (-776) (-1217 |#1|) (-1163 (-1217 |#1|))))) (-367)) (T -1281))
-((-3599 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1217 *6)) (-5 *2 (-1 (-1163 *4) (-1163 *4))) (-5 *1 (-1281 *6)) (-5 *5 (-1163 *4)))) (-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-649 (-1217 *5))) (-5 *1 (-1281 *5)) (-5 *4 (-1217 *5)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1 (-1179 (-958 *4)) (-958 *4))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))) (-3260 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-1163 (-1163 (-958 *5)))) (-5 *1 (-1281 *5)) (-5 *4 (-1163 (-958 *5))))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4)))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4)))) (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
-(-10 -7 (-15 -3073 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -3163 ((-1 (-1163 (-958 |#1|)) (-1163 (-958 |#1|))) (-776))) (-15 -3260 ((-1163 (-1163 (-958 |#1|))) (-1183) (-1163 (-958 |#1|)))) (-15 -3394 ((-1 (-1179 (-958 |#1|)) (-958 |#1|)) (-1183))) (-15 -3484 ((-649 (-1217 |#1|)) (-1183) (-1217 |#1|))) (-15 -3599 ((-1 (-1163 (-1217 |#1|)) (-1163 (-1217 |#1|))) (-776) (-1217 |#1|) (-1163 (-1217 |#1|)))))
-((-2493 (((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 82)) (-2402 (((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 81)))
-(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2402 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2493 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|))) (-353) (-1249 |#1|) (-1249 |#2|) (-414 |#2| |#3|)) (T -1282))
-((-2493 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3)) (-5 *2 (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-1282 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))) (-2402 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4)) (-5 *2 (-2 (|:| -1903 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-1282 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5)))))
-(-10 -7 (-15 -2402 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -2493 ((-2 (|:| -1903 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)))
-((-2415 (((-112) $ $) NIL)) (-2568 (((-1141) $) 11)) (-2676 (((-1141) $) 9)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 17) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1283) (-13 (-1089) (-10 -8 (-15 -2676 ((-1141) $)) (-15 -2568 ((-1141) $))))) (T -1283))
-((-2676 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
-(-13 (-1089) (-10 -8 (-15 -2676 ((-1141) $)) (-15 -2568 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-2383 (((-1141) $) 9)) (-3793 (((-867) $) 15) (($ (-1188)) NIL) (((-1188) $) NIL)) (-1441 (((-112) $ $) NIL)) (-2919 (((-112) $ $) NIL)))
-(((-1284) (-13 (-1089) (-10 -8 (-15 -2383 ((-1141) $))))) (T -1284))
-((-2383 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1284)))))
-(-13 (-1089) (-10 -8 (-15 -2383 ((-1141) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 58)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) NIL)) (-2623 (((-112) $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3793 (((-867) $) 81) (($ (-569)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-173)))) (-3302 (((-776)) NIL T CONST)) (-2784 (((-1278) (-776)) 16)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 37 T CONST)) (-1813 (($) 84 T CONST)) (-2919 (((-112) $ $) 87)) (-3032 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3021 (($ $) 89) (($ $ $) NIL)) (-3009 (($ $ $) 63)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
-(((-1285 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1055) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3032 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2784 ((-1278) (-776))))) (-1055) (-855) (-798) (-955 |#1| |#3| |#2|) (-649 |#2|) (-649 (-776)) (-776)) (T -1285))
-((-3032 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-855)) (-4 *4 (-798)) (-14 *6 (-649 *3)) (-5 *1 (-1285 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3)) (-14 *7 (-649 (-776))) (-14 *8 (-776)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-4 *5 (-855)) (-4 *6 (-798)) (-14 *8 (-649 *5)) (-5 *2 (-1278)) (-5 *1 (-1285 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5)) (-14 *9 (-649 *3)) (-14 *10 *3))))
-(-13 (-1055) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3032 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2784 ((-1278) (-776)))))
-((-2415 (((-112) $ $) NIL)) (-3346 (((-649 (-2 (|:| -4130 $) (|:| -1717 (-649 |#4|)))) (-649 |#4|)) NIL)) (-3465 (((-649 $) (-649 |#4|)) 96)) (-1710 (((-649 |#3|) $) NIL)) (-2686 (((-112) $) NIL)) (-4276 (((-112) $) NIL (|has| |#1| (-561)))) (-2206 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2874 ((|#4| |#4| $) NIL)) (-3355 (((-2 (|:| |under| $) (|:| -2478 $) (|:| |upper| $)) $ |#3|) NIL)) (-2716 (((-112) $ (-776)) NIL)) (-1415 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4188 (($) NIL T CONST)) (-3584 (((-112) $) NIL (|has| |#1| (-561)))) (-3778 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2576 (((-112) $) NIL (|has| |#1| (-561)))) (-1821 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-4374 (((-649 |#4|) (-649 |#4|) $) 28 (|has| |#1| (-561)))) (-3247 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4378 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3148 (($ (-649 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 78)) (-2516 ((|#4| |#4| $) 83)) (-3547 (($ $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-1696 (($ |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3365 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2303 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3593 ((|#4| |#4| $) NIL)) (-3596 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4444))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4444))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1320 (((-2 (|:| -4130 (-649 |#4|)) (|:| -1717 (-649 |#4|))) $) NIL)) (-2880 (((-649 |#4|) $) NIL (|has| $ (-6 -4444)))) (-4337 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1873 ((|#3| $) 84)) (-1689 (((-112) $ (-776)) NIL)) (-3040 (((-649 |#4|) $) 32 (|has| $ (-6 -4444)))) (-1655 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106))))) (-1898 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-649 |#4|)) 38)) (-3831 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4445)))) (-1344 (($ (-1 |#4| |#4|) $) NIL)) (-3097 (((-649 |#3|) $) NIL)) (-3116 (((-112) |#3| $) NIL)) (-2433 (((-112) $ (-776)) NIL)) (-1550 (((-1165) $) NIL)) (-1722 (((-3 |#4| "failed") $) NIL)) (-1447 (((-649 |#4|) $) 54)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2642 ((|#4| |#4| $) 82)) (-1672 (((-112) $ $) 93)) (-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2110 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2765 ((|#4| |#4| $) NIL)) (-3545 (((-1126) $) NIL)) (-3510 (((-3 |#4| "failed") $) 77)) (-3123 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3124 (((-3 $ "failed") $ |#4|) NIL)) (-2907 (($ $ |#4|) NIL)) (-2911 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-1723 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1106))))) (-2834 (((-112) $ $) NIL)) (-3218 (((-112) $) 75)) (-3597 (($) 46)) (-3868 (((-776) $) NIL)) (-3558 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4444)) (|has| |#4| (-1106)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3959 (($ $) NIL)) (-1408 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3806 (($ (-649 |#4|)) NIL)) (-2792 (($ $ |#3|) NIL)) (-3013 (($ $ |#3|) NIL)) (-2408 (($ $) NIL)) (-2900 (($ $ |#3|) NIL)) (-3793 (((-867) $) NIL) (((-649 |#4|) $) 63)) (-3023 (((-776) $) NIL (|has| |#3| (-372)))) (-2961 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-649 |#4|)) 45)) (-2860 (((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-649 $) (-649 |#4|)) 74)) (-1441 (((-112) $ $) NIL)) (-1555 (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3307 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1917 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-3037 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4444)))) (-3220 (((-649 |#3|) $) NIL)) (-2133 (((-112) |#3| $) NIL)) (-2919 (((-112) $ $) NIL)) (-2426 (((-776) $) NIL (|has| $ (-6 -4444)))))
-(((-1286 |#1| |#2| |#3| |#4|) (-13 (-1216 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1898 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1898 ((-3 $ "failed") (-649 |#4|))) (-15 -2961 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2961 ((-3 $ "failed") (-649 |#4|))) (-15 -2860 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2860 ((-649 $) (-649 |#4|))))) (-561) (-798) (-855) (-1071 |#1| |#2| |#3|)) (T -1286))
-((-1898 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))) (-1898 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6)))) (-2961 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))) (-2961 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1286 *3 *4 *5 *6)))) (-2860 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1286 *6 *7 *8 *9))) (-5 *1 (-1286 *6 *7 *8 *9)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1286 *4 *5 *6 *7))) (-5 *1 (-1286 *4 *5 *6 *7)))))
-(-13 (-1216 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1898 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1898 ((-3 $ "failed") (-649 |#4|))) (-15 -2961 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2961 ((-3 $ "failed") (-649 |#4|))) (-15 -2860 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2860 ((-649 $) (-649 |#4|)))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1678 (((-3 $ "failed") $ $) 20)) (-4188 (($) 18 T CONST)) (-2888 (((-3 $ "failed") $) 37)) (-2623 (((-112) $) 35)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-1287 |#1|) (-140) (-1055)) (T -1287))
-NIL
-(-13 (-1055) (-111 |t#1| |t#1|) (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1057 |#1|) . T) ((-1062 |#1|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T))
-((-2415 (((-112) $ $) 67)) (-3192 (((-112) $) NIL)) (-3102 (((-649 |#1|) $) 52)) (-3766 (($ $ (-776)) 46)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2221 (($ $ (-776)) 24 (|has| |#2| (-173))) (($ $ $) 25 (|has| |#2| (-173)))) (-4188 (($) NIL T CONST)) (-1326 (($ $ $) 70) (($ $ (-824 |#1|)) 56) (($ $ |#1|) 60)) (-4378 (((-3 (-824 |#1|) "failed") $) NIL)) (-3148 (((-824 |#1|) $) NIL)) (-1879 (($ $) 39)) (-2888 (((-3 $ "failed") $) NIL)) (-4052 (((-112) $) NIL)) (-3963 (($ $) NIL)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3345 (($ (-824 |#1|) |#2|) 38)) (-2308 (($ $) 40)) (-1561 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 12)) (-4236 (((-824 |#1|) $) NIL)) (-3080 (((-824 |#1|) $) 41)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (($ $ $) 69) (($ $ (-824 |#1|)) 58) (($ $ |#1|) 62)) (-3239 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1846 (((-824 |#1|) $) 35)) (-1855 ((|#2| $) 37)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-3868 (((-776) $) 43)) (-4141 (((-112) $) 47)) (-3706 ((|#2| $) NIL)) (-3793 (((-867) $) NIL) (($ (-824 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-569)) NIL)) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-824 |#1|)) NIL)) (-1433 ((|#2| $ $) 76) ((|#2| $ (-824 |#1|)) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 13 T CONST)) (-1813 (($) 19 T CONST)) (-2198 (((-649 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2919 (((-112) $ $) 44)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 28)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-824 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1288 |#1| |#2|) (-13 (-386 |#2| (-824 |#1|)) (-1294 |#1| |#2|)) (-855) (-1055)) (T -1288))
-NIL
-(-13 (-386 |#2| (-824 |#1|)) (-1294 |#1| |#2|))
-((-2660 ((|#3| |#3| (-776)) 30)) (-4386 ((|#3| |#3| (-776)) 36)) (-1987 ((|#3| |#3| |#3| (-776)) 37)))
-(((-1289 |#1| |#2| |#3|) (-10 -7 (-15 -4386 (|#3| |#3| (-776))) (-15 -2660 (|#3| |#3| (-776))) (-15 -1987 (|#3| |#3| |#3| (-776)))) (-13 (-1055) (-722 (-412 (-569)))) (-855) (-1294 |#2| |#1|)) (T -1289))
-((-1987 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))) (-4386 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))))
-(-10 -7 (-15 -4386 (|#3| |#3| (-776))) (-15 -2660 (|#3| |#3| (-776))) (-15 -1987 (|#3| |#3| |#3| (-776))))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3102 (((-649 |#1|) $) 47)) (-1678 (((-3 $ "failed") $ $) 20)) (-2221 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4188 (($) 18 T CONST)) (-1326 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4378 (((-3 (-824 |#1|) "failed") $) 71)) (-3148 (((-824 |#1|) $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-4052 (((-112) $) 52)) (-3963 (($ $) 51)) (-2623 (((-112) $) 35)) (-4343 (((-112) $) 57)) (-3345 (($ (-824 |#1|) |#2|) 58)) (-2308 (($ $) 56)) (-1561 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-4236 (((-824 |#1|) $) 68)) (-1344 (($ (-1 |#2| |#2|) $) 48)) (-1453 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-4141 (((-112) $) 54)) (-3706 ((|#2| $) 53)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1433 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1290 |#1| |#2|) (-140) (-855) (-1055)) (T -1290))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3)))) (-1561 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-824 *4)) (-4 *1 (-1290 *4 *2)) (-4 *4 (-855)) (-4 *2 (-1055)))) (-1433 (*1 *2 *1 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (-1453 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-1453 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-1453 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-1326 (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-1326 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-3345 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1290 *4 *3)) (-4 *3 (-1055)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-3793 (*1 *1 *2) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-112)))) (-3963 (*1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))) (-2221 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)) (-4 *3 (-173)))) (-2221 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-4 *4 (-173)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-649 *3)))))
-(-13 (-1055) (-1287 |t#2|) (-1044 (-824 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4236 ((-824 |t#1|) $)) (-15 -1561 ((-2 (|:| |k| (-824 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1433 (|t#2| $ (-824 |t#1|))) (-15 -1433 (|t#2| $ $)) (-15 -1453 ($ $ |t#1|)) (-15 -1453 ($ $ (-824 |t#1|))) (-15 -1453 ($ $ $)) (-15 -1326 ($ $ |t#1|)) (-15 -1326 ($ $ (-824 |t#1|))) (-15 -1326 ($ $ $)) (-15 -3345 ($ (-824 |t#1|) |t#2|)) (-15 -4343 ((-112) $)) (-15 -2308 ($ $)) (-15 -3793 ($ |t#1|)) (-15 -4141 ((-112) $)) (-15 -3706 (|t#2| $)) (-15 -4052 ((-112) $)) (-15 -3963 ($ $)) (IF (|has| |t#2| (-173)) (PROGN (-15 -2221 ($ $ $)) (-15 -2221 ($ $ (-776)))) |%noBranch|) (-15 -1344 ($ (-1 |t#2| |t#2|) $)) (-15 -3102 ((-649 |t#1|) $)) (IF (|has| |t#2| (-6 -4437)) (-6 -4437) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1044 #0#) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1287 |#2|) . T))
-((-2045 (((-112) $) 15)) (-2133 (((-112) $) 14)) (-2064 (($ $) 19) (($ $ (-776)) 21)))
-(((-1291 |#1| |#2|) (-10 -8 (-15 -2064 (|#1| |#1| (-776))) (-15 -2064 (|#1| |#1|)) (-15 -2045 ((-112) |#1|)) (-15 -2133 ((-112) |#1|))) (-1292 |#2|) (-367)) (T -1291))
-NIL
-(-10 -8 (-15 -2064 (|#1| |#1| (-776))) (-15 -2064 (|#1| |#1|)) (-15 -2045 ((-112) |#1|)) (-15 -2133 ((-112) |#1|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-1997 (((-2 (|:| -1934 $) (|:| -4431 $) (|:| |associate| $)) $) 47)) (-3087 (($ $) 46)) (-2883 (((-112) $) 44)) (-2045 (((-112) $) 104)) (-2162 (((-776)) 100)) (-1678 (((-3 $ "failed") $ $) 20)) (-2078 (($ $) 81)) (-2508 (((-423 $) $) 80)) (-1680 (((-112) $ $) 65)) (-4188 (($) 18 T CONST)) (-4378 (((-3 |#1| "failed") $) 111)) (-3148 ((|#1| $) 112)) (-2366 (($ $ $) 61)) (-2888 (((-3 $ "failed") $) 37)) (-2373 (($ $ $) 62)) (-1336 (((-2 (|:| -1433 (-649 $)) (|:| -2330 $)) (-649 $)) 57)) (-2501 (($ $ (-776)) 97 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-4073 (((-112) $) 79)) (-3110 (((-838 (-927)) $) 94 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2623 (((-112) $) 35)) (-1391 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1835 (($ $ $) 52) (($ (-649 $)) 51)) (-1550 (((-1165) $) 10)) (-1814 (($ $) 78)) (-1959 (((-112) $) 103)) (-3545 (((-1126) $) 11)) (-3386 (((-1179 $) (-1179 $) (-1179 $)) 50)) (-1864 (($ $ $) 54) (($ (-649 $)) 53)) (-3796 (((-423 $) $) 82)) (-2259 (((-838 (-927))) 101)) (-1477 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2330 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2405 (((-3 $ "failed") $ $) 48)) (-2404 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1578 (((-776) $) 64)) (-2282 (((-2 (|:| -2726 $) (|:| -3365 $)) $ $) 63)) (-2601 (((-3 (-776) "failed") $ $) 95 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3083 (((-134)) 109)) (-3868 (((-838 (-927)) $) 102)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-4030 (((-3 $ "failed") $) 93 (-2774 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-2985 (((-112) $ $) 45)) (-2133 (((-112) $) 105)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2064 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2919 (((-112) $ $) 6)) (-3032 (($ $ $) 73) (($ $ |#1|) 108)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1292 |#1|) (-140) (-367)) (T -1292))
-((-2133 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-2259 (*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-2162 (*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-776)))) (-2064 (*1 *1 *1) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-367)) (-4 *2 (-372)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-4 *3 (-372)))))
-(-13 (-367) (-1044 |t#1|) (-1280 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-407)) |%noBranch|) (-15 -2133 ((-112) $)) (-15 -2045 ((-112) $)) (-15 -1959 ((-112) $)) (-15 -3868 ((-838 (-927)) $)) (-15 -2259 ((-838 (-927)))) (-15 -2162 ((-776))) (IF (|has| |t#1| (-372)) (PROGN (-6 (-407)) (-15 -2064 ($ $)) (-15 -2064 ($ $ (-776)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2774 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) -2774 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1044 |#1|) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1227) . T) ((-1280 |#1|) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3102 (((-649 |#1|) $) 98)) (-3766 (($ $ (-776)) 102)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2221 (($ $ $) NIL (|has| |#2| (-173))) (($ $ (-776)) NIL (|has| |#2| (-173)))) (-4188 (($) NIL T CONST)) (-1326 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-4378 (((-3 (-824 |#1|) "failed") $) NIL) (((-3 (-899 |#1|) "failed") $) NIL)) (-3148 (((-824 |#1|) $) NIL) (((-899 |#1|) $) NIL)) (-1879 (($ $) 101)) (-2888 (((-3 $ "failed") $) NIL)) (-4052 (((-112) $) 90)) (-3963 (($ $) 93)) (-1667 (($ $ $ (-776)) 103)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3345 (($ (-824 |#1|) |#2|) NIL) (($ (-899 |#1|) |#2|) 29)) (-2308 (($ $) 120)) (-1561 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4236 (((-824 |#1|) $) NIL)) (-3080 (((-824 |#1|) $) NIL)) (-1344 (($ (-1 |#2| |#2|) $) NIL)) (-1453 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-2660 (($ $ (-776)) 113 (|has| |#2| (-722 (-412 (-569)))))) (-3239 (((-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1846 (((-899 |#1|) $) 83)) (-1855 ((|#2| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-4386 (($ $ (-776)) 110 (|has| |#2| (-722 (-412 (-569)))))) (-3868 (((-776) $) 99)) (-4141 (((-112) $) 84)) (-3706 ((|#2| $) 88)) (-3793 (((-867) $) 69) (($ (-569)) NIL) (($ |#2|) 60) (($ (-824 |#1|)) NIL) (($ |#1|) 71) (($ (-899 |#1|)) NIL) (($ (-669 |#1| |#2|)) 48) (((-1288 |#1| |#2|) $) 76) (((-1297 |#1| |#2|) $) 81)) (-2836 (((-649 |#2|) $) NIL)) (-4184 ((|#2| $ (-899 |#1|)) NIL)) (-1433 ((|#2| $ (-824 |#1|)) NIL) ((|#2| $ $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 21 T CONST)) (-1813 (($) 28 T CONST)) (-2198 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1773 (((-3 (-669 |#1| |#2|) "failed") $) 119)) (-2919 (((-112) $ $) 77)) (-3021 (($ $) 112) (($ $ $) 111)) (-3009 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-899 |#1|)) NIL)))
-(((-1293 |#1| |#2|) (-13 (-1294 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -3793 ($ (-669 |#1| |#2|))) (-15 -3793 ((-1288 |#1| |#2|) $)) (-15 -3793 ((-1297 |#1| |#2|) $)) (-15 -1773 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -1667 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4386 ($ $ (-776))) (-15 -2660 ($ $ (-776)))) |%noBranch|))) (-855) (-173)) (T -1293))
-((-3793 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-1293 *3 *4)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-1773 (*1 *2 *1) (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-1667 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4386 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))))
-(-13 (-1294 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -3793 ($ (-669 |#1| |#2|))) (-15 -3793 ((-1288 |#1| |#2|) $)) (-15 -3793 ((-1297 |#1| |#2|) $)) (-15 -1773 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -1667 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4386 ($ $ (-776))) (-15 -2660 ($ $ (-776)))) |%noBranch|)))
-((-2415 (((-112) $ $) 7)) (-3192 (((-112) $) 17)) (-3102 (((-649 |#1|) $) 47)) (-3766 (($ $ (-776)) 80)) (-1678 (((-3 $ "failed") $ $) 20)) (-2221 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4188 (($) 18 T CONST)) (-1326 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4378 (((-3 (-824 |#1|) "failed") $) 71)) (-3148 (((-824 |#1|) $) 72)) (-2888 (((-3 $ "failed") $) 37)) (-4052 (((-112) $) 52)) (-3963 (($ $) 51)) (-2623 (((-112) $) 35)) (-4343 (((-112) $) 57)) (-3345 (($ (-824 |#1|) |#2|) 58)) (-2308 (($ $) 56)) (-1561 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-4236 (((-824 |#1|) $) 68)) (-3080 (((-824 |#1|) $) 82)) (-1344 (($ (-1 |#2| |#2|) $) 48)) (-1453 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-1550 (((-1165) $) 10)) (-3545 (((-1126) $) 11)) (-3868 (((-776) $) 81)) (-4141 (((-112) $) 54)) (-3706 ((|#2| $) 53)) (-3793 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1433 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-3302 (((-776)) 32 T CONST)) (-1441 (((-112) $ $) 9)) (-1803 (($) 19 T CONST)) (-1813 (($) 34 T CONST)) (-2919 (((-112) $ $) 6)) (-3021 (($ $) 23) (($ $ $) 22)) (-3009 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1294 |#1| |#2|) (-140) (-855) (-1055)) (T -1294))
-((-3080 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-824 *3)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *2 (-776)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
-(-13 (-1290 |t#1| |t#2|) (-10 -8 (-15 -3080 ((-824 |t#1|) $)) (-15 -3868 ((-776) $)) (-15 -3766 ($ $ (-776)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1044 #0#) . T) ((-1057 |#2|) . T) ((-1062 |#2|) . T) ((-1055) . T) ((-1064) . T) ((-1118) . T) ((-1106) . T) ((-1287 |#2|) . T) ((-1290 |#1| |#2|) . T))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-3102 (((-649 (-1183)) $) NIL)) (-3279 (($ (-1288 (-1183) |#1|)) NIL)) (-3766 (($ $ (-776)) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2221 (($ $ $) NIL (|has| |#1| (-173))) (($ $ (-776)) NIL (|has| |#1| (-173)))) (-4188 (($) NIL T CONST)) (-1326 (($ $ (-1183)) NIL) (($ $ (-824 (-1183))) NIL) (($ $ $) NIL)) (-4378 (((-3 (-824 (-1183)) "failed") $) NIL)) (-3148 (((-824 (-1183)) $) NIL)) (-2888 (((-3 $ "failed") $) NIL)) (-4052 (((-112) $) NIL)) (-3963 (($ $) NIL)) (-2623 (((-112) $) NIL)) (-4343 (((-112) $) NIL)) (-3345 (($ (-824 (-1183)) |#1|) NIL)) (-2308 (($ $) NIL)) (-1561 (((-2 (|:| |k| (-824 (-1183))) (|:| |c| |#1|)) $) NIL)) (-4236 (((-824 (-1183)) $) NIL)) (-3080 (((-824 (-1183)) $) NIL)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-1453 (($ $ (-1183)) NIL) (($ $ (-824 (-1183))) NIL) (($ $ $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1378 (((-1288 (-1183) |#1|) $) NIL)) (-3868 (((-776) $) NIL)) (-4141 (((-112) $) NIL)) (-3706 ((|#1| $) NIL)) (-3793 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-824 (-1183))) NIL) (($ (-1183)) NIL)) (-1433 ((|#1| $ (-824 (-1183))) NIL) ((|#1| $ $) NIL)) (-3302 (((-776)) NIL T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) NIL T CONST)) (-3180 (((-649 (-2 (|:| |k| (-1183)) (|:| |c| $))) $) NIL)) (-1813 (($) NIL T CONST)) (-2919 (((-112) $ $) NIL)) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1183) $) NIL)))
-(((-1295 |#1|) (-13 (-1294 (-1183) |#1|) (-10 -8 (-15 -1378 ((-1288 (-1183) |#1|) $)) (-15 -3279 ($ (-1288 (-1183) |#1|))) (-15 -3180 ((-649 (-2 (|:| |k| (-1183)) (|:| |c| $))) $)))) (-1055)) (T -1295))
-((-1378 (*1 *2 *1) (-12 (-5 *2 (-1288 (-1183) *3)) (-5 *1 (-1295 *3)) (-4 *3 (-1055)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1183) *3)) (-4 *3 (-1055)) (-5 *1 (-1295 *3)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-1183)) (|:| |c| (-1295 *3))))) (-5 *1 (-1295 *3)) (-4 *3 (-1055)))))
-(-13 (-1294 (-1183) |#1|) (-10 -8 (-15 -1378 ((-1288 (-1183) |#1|) $)) (-15 -3279 ($ (-1288 (-1183) |#1|))) (-15 -3180 ((-649 (-2 (|:| |k| (-1183)) (|:| |c| $))) $))))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) NIL)) (-1678 (((-3 $ "failed") $ $) NIL)) (-4188 (($) NIL T CONST)) (-4378 (((-3 |#2| "failed") $) NIL)) (-3148 ((|#2| $) NIL)) (-1879 (($ $) NIL)) (-2888 (((-3 $ "failed") $) 42)) (-4052 (((-112) $) 35)) (-3963 (($ $) 37)) (-2623 (((-112) $) NIL)) (-3238 (((-776) $) NIL)) (-2518 (((-649 $) $) NIL)) (-4343 (((-112) $) NIL)) (-3345 (($ |#2| |#1|) NIL)) (-4236 ((|#2| $) 24)) (-3080 ((|#2| $) 22)) (-1344 (($ (-1 |#1| |#1|) $) NIL)) (-3239 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1846 ((|#2| $) NIL)) (-1855 ((|#1| $) NIL)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-4141 (((-112) $) 32)) (-3706 ((|#1| $) 33)) (-3793 (((-867) $) 65) (($ (-569)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2836 (((-649 |#1|) $) NIL)) (-4184 ((|#1| $ |#2|) NIL)) (-1433 ((|#1| $ |#2|) 28)) (-3302 (((-776)) 14 T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 29 T CONST)) (-1813 (($) 11 T CONST)) (-2198 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2919 (((-112) $ $) 30)) (-3032 (($ $ |#1|) 67 (|has| |#1| (-367)))) (-3021 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ $) 50)) (** (($ $ (-927)) NIL) (($ $ (-776)) 52)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2426 (((-776) $) 16)))
-(((-1296 |#1| |#2|) (-13 (-1055) (-1287 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2426 ((-776) $)) (-15 -3080 (|#2| $)) (-15 -4236 (|#2| $)) (-15 -1879 ($ $)) (-15 -1433 (|#1| $ |#2|)) (-15 -4141 ((-112) $)) (-15 -3706 (|#1| $)) (-15 -4052 ((-112) $)) (-15 -3963 ($ $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -3032 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4437)) (-6 -4437) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|))) (-1055) (-851)) (T -1296))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-1879 (*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-1296 *3 *4)) (-4 *4 (-851)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))) (-4236 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))) (-1433 (*1 *2 *1 *3) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-3706 (*1 *2 *1) (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-851)))) (-3963 (*1 *1 *1) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))) (-3032 (*1 *1 *1 *2) (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(-13 (-1055) (-1287 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2426 ((-776) $)) (-15 -3080 (|#2| $)) (-15 -4236 (|#2| $)) (-15 -1879 ($ $)) (-15 -1433 (|#1| $ |#2|)) (-15 -4141 ((-112) $)) (-15 -3706 (|#1| $)) (-15 -4052 ((-112) $)) (-15 -3963 ($ $)) (-15 -1344 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -3032 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4437)) (-6 -4437) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) (IF (|has| |#1| (-6 -4442)) (-6 -4442) |%noBranch|)))
-((-2415 (((-112) $ $) 27)) (-3192 (((-112) $) NIL)) (-3102 (((-649 |#1|) $) 132)) (-3279 (($ (-1288 |#1| |#2|)) 50)) (-3766 (($ $ (-776)) 38)) (-1678 (((-3 $ "failed") $ $) NIL)) (-2221 (($ $ $) 54 (|has| |#2| (-173))) (($ $ (-776)) 52 (|has| |#2| (-173)))) (-4188 (($) NIL T CONST)) (-1326 (($ $ |#1|) 114) (($ $ (-824 |#1|)) 115) (($ $ $) 26)) (-4378 (((-3 (-824 |#1|) "failed") $) NIL)) (-3148 (((-824 |#1|) $) NIL)) (-2888 (((-3 $ "failed") $) 122)) (-4052 (((-112) $) 117)) (-3963 (($ $) 118)) (-2623 (((-112) $) NIL)) (-4343 (((-112) $) NIL)) (-3345 (($ (-824 |#1|) |#2|) 20)) (-2308 (($ $) NIL)) (-1561 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4236 (((-824 |#1|) $) 123)) (-3080 (((-824 |#1|) $) 126)) (-1344 (($ (-1 |#2| |#2|) $) 131)) (-1453 (($ $ |#1|) 112) (($ $ (-824 |#1|)) 113) (($ $ $) 62)) (-1550 (((-1165) $) NIL)) (-3545 (((-1126) $) NIL)) (-1378 (((-1288 |#1| |#2|) $) 94)) (-3868 (((-776) $) 129)) (-4141 (((-112) $) 81)) (-3706 ((|#2| $) 32)) (-3793 (((-867) $) 73) (($ (-569)) 87) (($ |#2|) 85) (($ (-824 |#1|)) 18) (($ |#1|) 84)) (-1433 ((|#2| $ (-824 |#1|)) 116) ((|#2| $ $) 28)) (-3302 (((-776)) 120 T CONST)) (-1441 (((-112) $ $) NIL)) (-1803 (($) 15 T CONST)) (-3180 (((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1813 (($) 33 T CONST)) (-2919 (((-112) $ $) 14)) (-3021 (($ $) 98) (($ $ $) 101)) (-3009 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) 53) (($ (-569) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1297 |#1| |#2|) (-13 (-1294 |#1| |#2|) (-10 -8 (-15 -1378 ((-1288 |#1| |#2|) $)) (-15 -3279 ($ (-1288 |#1| |#2|))) (-15 -3180 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-855) (-1055)) (T -1297))
-((-1378 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)) (-5 *1 (-1297 *3 *4)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1297 *3 *4))))) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
-(-13 (-1294 |#1| |#2|) (-10 -8 (-15 -1378 ((-1288 |#1| |#2|) $)) (-15 -3279 ($ (-1288 |#1| |#2|))) (-15 -3180 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1539 (((-649 (-1163 |#1|)) (-1 (-649 (-1163 |#1|)) (-649 (-1163 |#1|))) (-569)) 20) (((-1163 |#1|) (-1 (-1163 |#1|) (-1163 |#1|))) 13)))
-(((-1298 |#1|) (-10 -7 (-15 -1539 ((-1163 |#1|) (-1 (-1163 |#1|) (-1163 |#1|)))) (-15 -1539 ((-649 (-1163 |#1|)) (-1 (-649 (-1163 |#1|)) (-649 (-1163 |#1|))) (-569)))) (-1223)) (T -1298))
-((-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 (-1163 *5)) (-649 (-1163 *5)))) (-5 *4 (-569)) (-5 *2 (-649 (-1163 *5))) (-5 *1 (-1298 *5)) (-4 *5 (-1223)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-1 (-1163 *4) (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1298 *4)) (-4 *4 (-1223)))))
-(-10 -7 (-15 -1539 ((-1163 |#1|) (-1 (-1163 |#1|) (-1163 |#1|)))) (-15 -1539 ((-649 (-1163 |#1|)) (-1 (-649 (-1163 |#1|)) (-649 (-1163 |#1|))) (-569))))
-((-3506 (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 174) (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 173) (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 172) (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 171) (((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-1052 |#1| |#2|)) 156)) (-3400 (((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|))) 85) (((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112)) 84) (((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112)) 83)) (-2508 (((-649 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|)) 73)) (-3616 (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|))) 140) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 139) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 138) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 137) (((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|)) 132)) (-3713 (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|))) 145) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 144) (((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 143) (((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|)) 142)) (-1408 (((-649 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) 111) (((-1179 (-1030 (-412 |#1|))) (-1179 |#1|)) 102) (((-958 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|))) 109) (((-958 (-1030 (-412 |#1|))) (-958 |#1|)) 107) (((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|))) 33)))
-(((-1299 |#1| |#2| |#3|) (-10 -7 (-15 -3400 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3400 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -3400 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-1052 |#1| |#2|))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2508 ((-649 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|))) (-15 -1408 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1408 ((-958 (-1030 (-412 |#1|))) (-958 |#1|))) (-15 -1408 ((-958 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1408 ((-1179 (-1030 (-412 |#1|))) (-1179 |#1|))) (-15 -1408 ((-649 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))))) (-13 (-853) (-310) (-147) (-1028)) (-649 (-1183)) (-649 (-1183))) (T -1299))
-((-1408 (*1 *2 *3) (-12 (-5 *3 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-1179 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *6))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183))) (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *5))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3713 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3616 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3616 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-3506 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *4)) (|:| -2960 (-649 (-958 *4)))))) (-5 *1 (-1299 *4 *5 *6)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-3506 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3506 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3506 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5)))))) (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-2 (|:| -4270 (-1179 *4)) (|:| -2960 (-649 (-958 *4)))))) (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-1052 *4 *5))) (-5 *1 (-1299 *4 *5 *6)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))) (-3400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028))) (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7)) (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183))))))
-(-10 -7 (-15 -3400 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3400 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -3400 ((-649 (-1052 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-1052 |#1| |#2|))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -3506 ((-649 (-2 (|:| -4270 (-1179 |#1|)) (|:| -2960 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -3616 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-1052 |#1| |#2|))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -3713 ((-649 (-649 (-1030 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2508 ((-649 (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1052 |#1| |#2|))) (-15 -1408 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1408 ((-958 (-1030 (-412 |#1|))) (-958 |#1|))) (-15 -1408 ((-958 (-1030 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1408 ((-1179 (-1030 (-412 |#1|))) (-1179 |#1|))) (-15 -1408 ((-649 (-785 |#1| (-869 |#3|))) (-1152 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|))))))
-((-2825 (((-3 (-1273 (-412 (-569))) "failed") (-1273 |#1|) |#1|) 21)) (-2610 (((-112) (-1273 |#1|)) 12)) (-2719 (((-3 (-1273 (-569)) "failed") (-1273 |#1|)) 16)))
-(((-1300 |#1|) (-10 -7 (-15 -2610 ((-112) (-1273 |#1|))) (-15 -2719 ((-3 (-1273 (-569)) "failed") (-1273 |#1|))) (-15 -2825 ((-3 (-1273 (-412 (-569))) "failed") (-1273 |#1|) |#1|))) (-644 (-569))) (T -1300))
-((-2825 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1273 (-412 (-569)))) (-5 *1 (-1300 *4)))) (-2719 (*1 *2 *3) (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1273 (-569))) (-5 *1 (-1300 *4)))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112)) (-5 *1 (-1300 *4)))))
-(-10 -7 (-15 -2610 ((-112) (-1273 |#1|))) (-15 -2719 ((-3 (-1273 (-569)) "failed") (-1273 |#1|))) (-15 -2825 ((-3 (-1273 (-412 (-569))) "failed") (-1273 |#1|) |#1|)))
-((-2415 (((-112) $ $) NIL)) (-3192 (((-112) $) 11)) (-1678 (((-3 $ "failed") $ $) NIL)) (-3470 (((-776)) 8)) (-4188 (($) NIL T CONST)) (-2888 (((-3 $ "failed") $) 58)) (-3403 (($) 49)) (-2623 (((-112) $) 57)) (-3812 (((-3 $ "failed") $) 40)) (-2855 (((-927) $) 15)) (-1550 (((-1165) $) NIL)) (-2305 (($) 32 T CONST)) (-2150 (($ (-927)) 50)) (-3545 (((-1126) $) NIL)) (-1408 (((-569) $) 13)) (-3793 (((-867) $) 27) (($ (-569)) 24)) (-3302 (((-776)) 9 T CONST)) (-1441 (((-112) $ $) 60)) (-1803 (($) 29 T CONST)) (-1813 (($) 31 T CONST)) (-2919 (((-112) $ $) 38)) (-3021 (($ $) 52) (($ $ $) 47)) (-3009 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) 54)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 44) (($ $ $) 43)))
-(((-1301 |#1|) (-13 (-173) (-372) (-619 (-569)) (-1158)) (-927)) (T -1301))
-NIL
-(-13 (-173) (-372) (-619 (-569)) (-1158))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3226982 3226987 3226992 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3226967 3226972 3226977 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3226952 3226957 3226962 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3226937 3226942 3226947 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1301 3226080 3226812 3226889 "ZMOD" 3226894 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1300 3225190 3225354 3225563 "ZLINDEP" 3225912 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1299 3214490 3216258 3218230 "ZDSOLVE" 3223320 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1298 3213736 3213877 3214066 "YSTREAM" 3214336 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1297 3211510 3213037 3213241 "XRPOLY" 3213579 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1296 3208063 3209381 3209956 "XPR" 3210982 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1295 3205784 3207394 3207598 "XPOLY" 3207894 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1294 3203437 3204805 3204860 "XPOLYC" 3205148 NIL XPOLYC (NIL T T) -9 NIL 3205261 NIL) (-1293 3199813 3201954 3202342 "XPBWPOLY" 3203095 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1292 3195508 3197803 3197845 "XF" 3198466 NIL XF (NIL T) -9 NIL 3198866 NIL) (-1291 3195129 3195217 3195386 "XF-" 3195391 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1290 3190325 3191614 3191669 "XFALG" 3193841 NIL XFALG (NIL T T) -9 NIL 3194630 NIL) (-1289 3189458 3189562 3189767 "XEXPPKG" 3190217 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1288 3187567 3189308 3189404 "XDPOLY" 3189409 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3186374 3186974 3187017 "XALG" 3187022 NIL XALG (NIL T) -9 NIL 3187133 NIL) (-1286 3179816 3184351 3184845 "WUTSET" 3185966 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1285 3178072 3178868 3179191 "WP" 3179627 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1284 3177674 3177894 3177964 "WHILEAST" 3178024 T WHILEAST (NIL) -8 NIL NIL NIL) (-1283 3177146 3177391 3177485 "WHEREAST" 3177602 T WHEREAST (NIL) -8 NIL NIL NIL) (-1282 3176032 3176230 3176525 "WFFINTBS" 3176943 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1281 3173936 3174363 3174825 "WEIER" 3175604 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1280 3172982 3173432 3173474 "VSPACE" 3173610 NIL VSPACE (NIL T) -9 NIL 3173684 NIL) (-1279 3172820 3172847 3172938 "VSPACE-" 3172943 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1278 3172629 3172671 3172739 "VOID" 3172774 T VOID (NIL) -8 NIL NIL NIL) (-1277 3170765 3171124 3171530 "VIEW" 3172245 T VIEW (NIL) -7 NIL NIL NIL) (-1276 3167189 3167828 3168565 "VIEWDEF" 3170050 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1275 3156493 3158737 3160910 "VIEW3D" 3165038 T VIEW3D (NIL) -8 NIL NIL NIL) (-1274 3148744 3150404 3151983 "VIEW2D" 3154936 T VIEW2D (NIL) -8 NIL NIL NIL) (-1273 3144097 3148514 3148606 "VECTOR" 3148687 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1272 3142674 3142933 3143251 "VECTOR2" 3143827 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1271 3136148 3140455 3140498 "VECTCAT" 3141493 NIL VECTCAT (NIL T) -9 NIL 3142080 NIL) (-1270 3135162 3135416 3135806 "VECTCAT-" 3135811 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1269 3134616 3134813 3134933 "VARIABLE" 3135077 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1268 3134549 3134554 3134584 "UTYPE" 3134589 T UTYPE (NIL) -9 NIL NIL NIL) (-1267 3133379 3133533 3133795 "UTSODETL" 3134375 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1266 3130819 3131279 3131803 "UTSODE" 3132920 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1265 3122656 3128445 3128934 "UTS" 3130388 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1264 3113530 3118897 3118940 "UTSCAT" 3120052 NIL UTSCAT (NIL T) -9 NIL 3120810 NIL) (-1263 3110877 3111600 3112589 "UTSCAT-" 3112594 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1262 3110504 3110547 3110680 "UTS2" 3110828 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1261 3104730 3107342 3107385 "URAGG" 3109455 NIL URAGG (NIL T) -9 NIL 3110178 NIL) (-1260 3101669 3102532 3103655 "URAGG-" 3103660 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1259 3097378 3100304 3100769 "UPXSSING" 3101333 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1258 3089444 3096625 3096898 "UPXS" 3097163 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1257 3082517 3089348 3089420 "UPXSCONS" 3089425 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1256 3072262 3079055 3079117 "UPXSCCA" 3079691 NIL UPXSCCA (NIL T T) -9 NIL 3079924 NIL) (-1255 3071900 3071985 3072159 "UPXSCCA-" 3072164 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1254 3061497 3068063 3068106 "UPXSCAT" 3068754 NIL UPXSCAT (NIL T) -9 NIL 3069363 NIL) (-1253 3060927 3061006 3061185 "UPXS2" 3061412 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1252 3059581 3059834 3060185 "UPSQFREE" 3060670 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1251 3053002 3056059 3056114 "UPSCAT" 3057275 NIL UPSCAT (NIL T T) -9 NIL 3058049 NIL) (-1250 3052206 3052413 3052740 "UPSCAT-" 3052745 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1249 3037861 3045629 3045672 "UPOLYC" 3047773 NIL UPOLYC (NIL T) -9 NIL 3048994 NIL) (-1248 3029189 3031615 3034762 "UPOLYC-" 3034767 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1247 3028816 3028859 3028992 "UPOLYC2" 3029140 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1246 3020627 3028499 3028628 "UP" 3028735 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1245 3019966 3020073 3020237 "UPMP" 3020516 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1244 3019519 3019600 3019739 "UPDIVP" 3019879 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1243 3018087 3018336 3018652 "UPDECOMP" 3019268 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1242 3017322 3017434 3017619 "UPCDEN" 3017971 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1241 3016841 3016910 3017059 "UP2" 3017247 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1240 3015308 3016045 3016322 "UNISEG" 3016599 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1239 3014523 3014650 3014855 "UNISEG2" 3015151 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1238 3013583 3013763 3013989 "UNIFACT" 3014339 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1237 2997515 3012760 3013011 "ULS" 3013390 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1236 2985513 2997419 2997491 "ULSCONS" 2997496 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1235 2967532 2979517 2979579 "ULSCCAT" 2980217 NIL ULSCCAT (NIL T T) -9 NIL 2980505 NIL) (-1234 2966582 2966827 2967215 "ULSCCAT-" 2967220 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1233 2955956 2962436 2962479 "ULSCAT" 2963342 NIL ULSCAT (NIL T) -9 NIL 2964073 NIL) (-1232 2955386 2955465 2955644 "ULS2" 2955871 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1231 2954513 2955023 2955130 "UINT8" 2955241 T UINT8 (NIL) -8 NIL NIL 2955326) (-1230 2953639 2954149 2954256 "UINT64" 2954367 T UINT64 (NIL) -8 NIL NIL 2954452) (-1229 2952765 2953275 2953382 "UINT32" 2953493 T UINT32 (NIL) -8 NIL NIL 2953578) (-1228 2951891 2952401 2952508 "UINT16" 2952619 T UINT16 (NIL) -8 NIL NIL 2952704) (-1227 2950194 2951151 2951181 "UFD" 2951393 T UFD (NIL) -9 NIL 2951507 NIL) (-1226 2949988 2950034 2950129 "UFD-" 2950134 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1225 2949070 2949253 2949469 "UDVO" 2949794 T UDVO (NIL) -7 NIL NIL NIL) (-1224 2946886 2947295 2947766 "UDPO" 2948634 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1223 2946819 2946824 2946854 "TYPE" 2946859 T TYPE (NIL) -9 NIL NIL NIL) (-1222 2946579 2946774 2946805 "TYPEAST" 2946810 T TYPEAST (NIL) -8 NIL NIL NIL) (-1221 2945550 2945752 2945992 "TWOFACT" 2946373 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1220 2944573 2944959 2945194 "TUPLE" 2945350 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1219 2942264 2942783 2943322 "TUBETOOL" 2944056 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1218 2941113 2941318 2941559 "TUBE" 2942057 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1217 2935842 2940085 2940368 "TS" 2940865 NIL TS (NIL T) -8 NIL NIL NIL) (-1216 2924482 2928601 2928698 "TSETCAT" 2933967 NIL TSETCAT (NIL T T T T) -9 NIL 2935498 NIL) (-1215 2919214 2920814 2922705 "TSETCAT-" 2922710 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1214 2913853 2914700 2915629 "TRMANIP" 2918350 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1213 2913294 2913357 2913520 "TRIMAT" 2913785 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1212 2911160 2911397 2911754 "TRIGMNIP" 2913043 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1211 2910680 2910793 2910823 "TRIGCAT" 2911036 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1210 2910349 2910428 2910569 "TRIGCAT-" 2910574 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1209 2907194 2909207 2909488 "TREE" 2910103 NIL TREE (NIL T) -8 NIL NIL NIL) (-1208 2906468 2906996 2907026 "TRANFUN" 2907061 T TRANFUN (NIL) -9 NIL 2907127 NIL) (-1207 2905747 2905938 2906218 "TRANFUN-" 2906223 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1206 2905551 2905583 2905644 "TOPSP" 2905708 T TOPSP (NIL) -7 NIL NIL NIL) (-1205 2904899 2905014 2905168 "TOOLSIGN" 2905432 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1204 2903533 2904076 2904315 "TEXTFILE" 2904682 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1203 2901445 2901986 2902415 "TEX" 2903126 T TEX (NIL) -8 NIL NIL NIL) (-1202 2901226 2901257 2901329 "TEX1" 2901408 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1201 2900874 2900937 2901027 "TEMUTL" 2901158 T TEMUTL (NIL) -7 NIL NIL NIL) (-1200 2899028 2899308 2899633 "TBCMPPK" 2900597 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1199 2890805 2897188 2897244 "TBAGG" 2897644 NIL TBAGG (NIL T T) -9 NIL 2897855 NIL) (-1198 2885875 2887363 2889117 "TBAGG-" 2889122 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1197 2885259 2885366 2885511 "TANEXP" 2885764 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1196 2878649 2885116 2885209 "TABLE" 2885214 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1195 2878061 2878160 2878298 "TABLEAU" 2878546 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1194 2872669 2873889 2875137 "TABLBUMP" 2876847 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1193 2871891 2872038 2872219 "SYSTEM" 2872510 T SYSTEM (NIL) -8 NIL NIL NIL) (-1192 2868350 2869049 2869832 "SYSSOLP" 2871142 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1191 2868148 2868305 2868336 "SYSPTR" 2868341 T SYSPTR (NIL) -8 NIL NIL NIL) (-1190 2867192 2867697 2867816 "SYSNNI" 2868002 NIL SYSNNI (NIL NIL) -8 NIL NIL 2868087) (-1189 2866499 2866958 2867037 "SYSINT" 2867097 NIL SYSINT (NIL NIL) -8 NIL NIL 2867142) (-1188 2862831 2863777 2864487 "SYNTAX" 2865811 T SYNTAX (NIL) -8 NIL NIL NIL) (-1187 2859989 2860591 2861223 "SYMTAB" 2862221 T SYMTAB (NIL) -8 NIL NIL NIL) (-1186 2855238 2856140 2857123 "SYMS" 2859028 T SYMS (NIL) -8 NIL NIL NIL) (-1185 2852473 2854696 2854926 "SYMPOLY" 2855043 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1184 2851990 2852065 2852188 "SYMFUNC" 2852385 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1183 2848010 2849302 2850115 "SYMBOL" 2851199 T SYMBOL (NIL) -8 NIL NIL NIL) (-1182 2841549 2843238 2844958 "SWITCH" 2846312 T SWITCH (NIL) -8 NIL NIL NIL) (-1181 2834783 2840370 2840673 "SUTS" 2841304 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1180 2826849 2834030 2834303 "SUPXS" 2834568 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1179 2818608 2826467 2826593 "SUP" 2826758 NIL SUP (NIL T) -8 NIL NIL NIL) (-1178 2817767 2817894 2818111 "SUPFRACF" 2818476 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1177 2817388 2817447 2817560 "SUP2" 2817702 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1176 2815836 2816110 2816466 "SUMRF" 2817087 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1175 2815171 2815237 2815429 "SUMFS" 2815757 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1174 2799138 2814348 2814599 "SULS" 2814978 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1173 2798740 2798960 2799030 "SUCHTAST" 2799090 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1172 2798035 2798265 2798405 "SUCH" 2798648 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1171 2791901 2792941 2793900 "SUBSPACE" 2797123 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1170 2791331 2791421 2791585 "SUBRESP" 2791789 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1169 2784697 2785996 2787307 "STTF" 2790067 NIL STTF (NIL T) -7 NIL NIL NIL) (-1168 2778870 2779990 2781137 "STTFNC" 2783597 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1167 2770181 2772052 2773846 "STTAYLOR" 2777111 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1166 2763311 2770045 2770128 "STRTBL" 2770133 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1165 2758675 2763266 2763297 "STRING" 2763302 T STRING (NIL) -8 NIL NIL NIL) (-1164 2753536 2758048 2758078 "STRICAT" 2758137 T STRICAT (NIL) -9 NIL 2758199 NIL) (-1163 2746289 2751155 2751766 "STREAM" 2752960 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1162 2745799 2745876 2746020 "STREAM3" 2746206 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1161 2744781 2744964 2745199 "STREAM2" 2745612 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1160 2744469 2744521 2744614 "STREAM1" 2744723 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1159 2743485 2743666 2743897 "STINPROD" 2744285 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1158 2743037 2743247 2743277 "STEP" 2743357 T STEP (NIL) -9 NIL 2743435 NIL) (-1157 2742224 2742526 2742674 "STEPAST" 2742911 T STEPAST (NIL) -8 NIL NIL NIL) (-1156 2735656 2742123 2742200 "STBL" 2742205 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1155 2730782 2734877 2734920 "STAGG" 2735073 NIL STAGG (NIL T) -9 NIL 2735162 NIL) (-1154 2728484 2729086 2729958 "STAGG-" 2729963 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1153 2726631 2728254 2728346 "STACK" 2728427 NIL STACK (NIL T) -8 NIL NIL NIL) (-1152 2719326 2724772 2725228 "SREGSET" 2726261 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1151 2711751 2713120 2714633 "SRDCMPK" 2717932 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1150 2704668 2709191 2709221 "SRAGG" 2710524 T SRAGG (NIL) -9 NIL 2711132 NIL) (-1149 2703685 2703940 2704319 "SRAGG-" 2704324 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1148 2698145 2702632 2703053 "SQMATRIX" 2703311 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1147 2691830 2694863 2695590 "SPLTREE" 2697490 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1146 2687793 2688486 2689132 "SPLNODE" 2691256 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1145 2686840 2687073 2687103 "SPFCAT" 2687547 T SPFCAT (NIL) -9 NIL NIL NIL) (-1144 2685577 2685787 2686051 "SPECOUT" 2686598 T SPECOUT (NIL) -7 NIL NIL NIL) (-1143 2676687 2678559 2678589 "SPADXPT" 2683265 T SPADXPT (NIL) -9 NIL 2685429 NIL) (-1142 2676448 2676488 2676557 "SPADPRSR" 2676640 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1141 2674497 2676403 2676434 "SPADAST" 2676439 T SPADAST (NIL) -8 NIL NIL NIL) (-1140 2666442 2668215 2668258 "SPACEC" 2672631 NIL SPACEC (NIL T) -9 NIL 2674447 NIL) (-1139 2664572 2666374 2666423 "SPACE3" 2666428 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1138 2663324 2663495 2663786 "SORTPAK" 2664377 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1137 2661416 2661719 2662131 "SOLVETRA" 2662988 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1136 2660466 2660688 2660949 "SOLVESER" 2661189 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1135 2655770 2656658 2657653 "SOLVERAD" 2659518 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1134 2651585 2652194 2652923 "SOLVEFOR" 2655137 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1133 2645855 2650934 2651031 "SNTSCAT" 2651036 NIL SNTSCAT (NIL T T T T) -9 NIL 2651106 NIL) (-1132 2639961 2644178 2644569 "SMTS" 2645545 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1131 2634646 2639849 2639926 "SMP" 2639931 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1130 2632805 2633106 2633504 "SMITH" 2634343 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1129 2625518 2629714 2629817 "SMATCAT" 2631168 NIL SMATCAT (NIL NIL T T T) -9 NIL 2631718 NIL) (-1128 2622458 2623281 2624459 "SMATCAT-" 2624464 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1127 2620124 2621694 2621737 "SKAGG" 2621998 NIL SKAGG (NIL T) -9 NIL 2622133 NIL) (-1126 2616435 2619540 2619735 "SINT" 2619922 T SINT (NIL) -8 NIL NIL 2620095) (-1125 2616207 2616245 2616311 "SIMPAN" 2616391 T SIMPAN (NIL) -7 NIL NIL NIL) (-1124 2615486 2615742 2615882 "SIG" 2616089 T SIG (NIL) -8 NIL NIL NIL) (-1123 2614324 2614545 2614820 "SIGNRF" 2615245 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1122 2613157 2613308 2613592 "SIGNEF" 2614153 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1121 2612463 2612740 2612864 "SIGAST" 2613055 T SIGAST (NIL) -8 NIL NIL NIL) (-1120 2610153 2610607 2611113 "SHP" 2612004 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1119 2604005 2610054 2610130 "SHDP" 2610135 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1118 2603578 2603770 2603800 "SGROUP" 2603893 T SGROUP (NIL) -9 NIL 2603955 NIL) (-1117 2603436 2603462 2603535 "SGROUP-" 2603540 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1116 2600271 2600969 2601692 "SGCF" 2602735 T SGCF (NIL) -7 NIL NIL NIL) (-1115 2594639 2599718 2599815 "SFRTCAT" 2599820 NIL SFRTCAT (NIL T T T T) -9 NIL 2599859 NIL) (-1114 2588060 2589078 2590214 "SFRGCD" 2593622 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1113 2581186 2582259 2583445 "SFQCMPK" 2586993 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1112 2580806 2580895 2581006 "SFORT" 2581127 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1111 2579924 2580646 2580767 "SEXOF" 2580772 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1110 2579031 2579805 2579873 "SEX" 2579878 T SEX (NIL) -8 NIL NIL NIL) (-1109 2574544 2575259 2575354 "SEXCAT" 2578291 NIL SEXCAT (NIL T T T T T) -9 NIL 2578869 NIL) (-1108 2571697 2574478 2574526 "SET" 2574531 NIL SET (NIL T) -8 NIL NIL NIL) (-1107 2569921 2570410 2570715 "SETMN" 2571438 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1106 2569417 2569569 2569599 "SETCAT" 2569775 T SETCAT (NIL) -9 NIL 2569885 NIL) (-1105 2569109 2569187 2569317 "SETCAT-" 2569322 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1104 2565470 2567570 2567613 "SETAGG" 2568483 NIL SETAGG (NIL T) -9 NIL 2568823 NIL) (-1103 2564928 2565044 2565281 "SETAGG-" 2565286 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1102 2564371 2564624 2564725 "SEQAST" 2564849 T SEQAST (NIL) -8 NIL NIL NIL) (-1101 2563570 2563864 2563925 "SEGXCAT" 2564211 NIL SEGXCAT (NIL T T) -9 NIL 2564331 NIL) (-1100 2562576 2563236 2563418 "SEG" 2563423 NIL SEG (NIL T) -8 NIL NIL NIL) (-1099 2561555 2561769 2561812 "SEGCAT" 2562334 NIL SEGCAT (NIL T) -9 NIL 2562555 NIL) (-1098 2560487 2560918 2561126 "SEGBIND" 2561382 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1097 2560108 2560167 2560280 "SEGBIND2" 2560422 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1096 2559681 2559909 2559986 "SEGAST" 2560053 T SEGAST (NIL) -8 NIL NIL NIL) (-1095 2558900 2559026 2559230 "SEG2" 2559525 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1094 2558310 2558835 2558882 "SDVAR" 2558887 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1093 2550837 2558080 2558210 "SDPOL" 2558215 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1092 2549430 2549696 2550015 "SCPKG" 2550552 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1091 2548594 2548766 2548958 "SCOPE" 2549260 T SCOPE (NIL) -8 NIL NIL NIL) (-1090 2547814 2547948 2548127 "SCACHE" 2548449 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1089 2547460 2547646 2547676 "SASTCAT" 2547681 T SASTCAT (NIL) -9 NIL 2547694 NIL) (-1088 2546947 2547295 2547371 "SAOS" 2547406 T SAOS (NIL) -8 NIL NIL NIL) (-1087 2546512 2546547 2546720 "SAERFFC" 2546906 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1086 2540451 2546409 2546489 "SAE" 2546494 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1085 2540044 2540079 2540238 "SAEFACT" 2540410 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1084 2538365 2538679 2539080 "RURPK" 2539710 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1083 2537002 2537308 2537613 "RULESET" 2538199 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1082 2534225 2534755 2535213 "RULE" 2536683 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1081 2533837 2534019 2534102 "RULECOLD" 2534177 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1080 2533627 2533655 2533726 "RTVALUE" 2533788 T RTVALUE (NIL) -8 NIL NIL NIL) (-1079 2533098 2533344 2533438 "RSTRCAST" 2533555 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1078 2527946 2528741 2529661 "RSETGCD" 2532297 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1077 2517176 2522255 2522352 "RSETCAT" 2526471 NIL RSETCAT (NIL T T T T) -9 NIL 2527568 NIL) (-1076 2515103 2515642 2516466 "RSETCAT-" 2516471 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1075 2507489 2508865 2510385 "RSDCMPK" 2513702 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1074 2505468 2505935 2506009 "RRCC" 2507095 NIL RRCC (NIL T T) -9 NIL 2507439 NIL) (-1073 2504819 2504993 2505272 "RRCC-" 2505277 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1072 2504262 2504515 2504616 "RPTAST" 2504740 T RPTAST (NIL) -8 NIL NIL NIL) (-1071 2478113 2487470 2487537 "RPOLCAT" 2498201 NIL RPOLCAT (NIL T T T) -9 NIL 2501360 NIL) (-1070 2469611 2471951 2475073 "RPOLCAT-" 2475078 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1069 2460542 2467822 2468304 "ROUTINE" 2469151 T ROUTINE (NIL) -8 NIL NIL NIL) (-1068 2457340 2460168 2460308 "ROMAN" 2460424 T ROMAN (NIL) -8 NIL NIL NIL) (-1067 2455584 2456200 2456460 "ROIRC" 2457145 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1066 2451816 2454100 2454130 "RNS" 2454434 T RNS (NIL) -9 NIL 2454708 NIL) (-1065 2450325 2450708 2451242 "RNS-" 2451317 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1064 2449728 2450136 2450166 "RNG" 2450171 T RNG (NIL) -9 NIL 2450192 NIL) (-1063 2448731 2449093 2449295 "RNGBIND" 2449579 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1062 2448130 2448518 2448561 "RMODULE" 2448566 NIL RMODULE (NIL T) -9 NIL 2448593 NIL) (-1061 2446966 2447060 2447396 "RMCAT2" 2448031 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1060 2443816 2446312 2446609 "RMATRIX" 2446728 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1059 2436643 2438903 2439018 "RMATCAT" 2442377 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2443359 NIL) (-1058 2436018 2436165 2436472 "RMATCAT-" 2436477 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1057 2435419 2435640 2435683 "RLINSET" 2435877 NIL RLINSET (NIL T) -9 NIL 2435968 NIL) (-1056 2434986 2435061 2435189 "RINTERP" 2435338 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1055 2434044 2434598 2434628 "RING" 2434684 T RING (NIL) -9 NIL 2434776 NIL) (-1054 2433836 2433880 2433977 "RING-" 2433982 NIL RING- (NIL T) -8 NIL NIL NIL) (-1053 2432677 2432914 2433172 "RIDIST" 2433600 T RIDIST (NIL) -7 NIL NIL NIL) (-1052 2423966 2432145 2432351 "RGCHAIN" 2432525 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1051 2423316 2423722 2423763 "RGBCSPC" 2423821 NIL RGBCSPC (NIL T) -9 NIL 2423873 NIL) (-1050 2422474 2422855 2422896 "RGBCMDL" 2423128 NIL RGBCMDL (NIL T) -9 NIL 2423242 NIL) (-1049 2419468 2420082 2420752 "RF" 2421838 NIL RF (NIL T) -7 NIL NIL NIL) (-1048 2419114 2419177 2419280 "RFFACTOR" 2419399 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1047 2418839 2418874 2418971 "RFFACT" 2419073 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1046 2416956 2417320 2417702 "RFDIST" 2418479 T RFDIST (NIL) -7 NIL NIL NIL) (-1045 2416409 2416501 2416664 "RETSOL" 2416858 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1044 2416045 2416125 2416168 "RETRACT" 2416301 NIL RETRACT (NIL T) -9 NIL 2416388 NIL) (-1043 2415894 2415919 2416006 "RETRACT-" 2416011 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1042 2415496 2415716 2415786 "RETAST" 2415846 T RETAST (NIL) -8 NIL NIL NIL) (-1041 2408234 2415149 2415276 "RESULT" 2415391 T RESULT (NIL) -8 NIL NIL NIL) (-1040 2406825 2407503 2407702 "RESRING" 2408137 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1039 2406461 2406510 2406608 "RESLATC" 2406762 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1038 2406166 2406201 2406308 "REPSQ" 2406420 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1037 2403588 2404168 2404770 "REP" 2405586 T REP (NIL) -7 NIL NIL NIL) (-1036 2403285 2403320 2403431 "REPDB" 2403547 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1035 2397185 2398574 2399797 "REP2" 2402097 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1034 2393562 2394243 2395051 "REP1" 2396412 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1033 2386258 2391703 2392159 "REGSET" 2393192 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1032 2385023 2385406 2385656 "REF" 2386043 NIL REF (NIL T) -8 NIL NIL NIL) (-1031 2384400 2384503 2384670 "REDORDER" 2384907 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1030 2380368 2383613 2383840 "RECLOS" 2384228 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1029 2379420 2379601 2379816 "REALSOLV" 2380175 T REALSOLV (NIL) -7 NIL NIL NIL) (-1028 2379266 2379307 2379337 "REAL" 2379342 T REAL (NIL) -9 NIL 2379377 NIL) (-1027 2375749 2376551 2377435 "REAL0Q" 2378431 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1026 2371350 2372338 2373399 "REAL0" 2374730 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1025 2370821 2371067 2371161 "RDUCEAST" 2371278 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1024 2370226 2370298 2370505 "RDIV" 2370743 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1023 2369294 2369468 2369681 "RDIST" 2370048 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1022 2367891 2368178 2368550 "RDETRS" 2369002 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1021 2365703 2366157 2366695 "RDETR" 2367433 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1020 2364328 2364606 2365003 "RDEEFS" 2365419 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1019 2362837 2363143 2363568 "RDEEF" 2364016 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1018 2356898 2359818 2359848 "RCFIELD" 2361143 T RCFIELD (NIL) -9 NIL 2361874 NIL) (-1017 2354962 2355466 2356162 "RCFIELD-" 2356237 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1016 2351231 2353063 2353106 "RCAGG" 2354190 NIL RCAGG (NIL T) -9 NIL 2354655 NIL) (-1015 2350859 2350953 2351116 "RCAGG-" 2351121 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1014 2350194 2350306 2350471 "RATRET" 2350743 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1013 2349747 2349814 2349935 "RATFACT" 2350122 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1012 2349055 2349175 2349327 "RANDSRC" 2349617 T RANDSRC (NIL) -7 NIL NIL NIL) (-1011 2348789 2348833 2348906 "RADUTIL" 2349004 T RADUTIL (NIL) -7 NIL NIL NIL) (-1010 2341905 2347622 2347932 "RADIX" 2348513 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1009 2333524 2341747 2341877 "RADFF" 2341882 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1008 2333171 2333246 2333276 "RADCAT" 2333436 T RADCAT (NIL) -9 NIL NIL NIL) (-1007 2332953 2333001 2333101 "RADCAT-" 2333106 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1006 2331051 2332723 2332815 "QUEUE" 2332896 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1005 2327588 2330984 2331032 "QUAT" 2331037 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1004 2327219 2327262 2327393 "QUATCT2" 2327539 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1003 2320668 2324013 2324055 "QUATCAT" 2324846 NIL QUATCAT (NIL T) -9 NIL 2325612 NIL) (-1002 2316807 2317844 2319234 "QUATCAT-" 2319330 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1001 2314272 2315883 2315926 "QUAGG" 2316307 NIL QUAGG (NIL T) -9 NIL 2316482 NIL) (-1000 2313874 2314094 2314164 "QQUTAST" 2314224 T QQUTAST (NIL) -8 NIL NIL NIL) (-999 2312772 2313272 2313444 "QFORM" 2313746 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-998 2303777 2309016 2309056 "QFCAT" 2309714 NIL QFCAT (NIL T) -9 NIL 2310715 NIL) (-997 2299349 2300550 2302141 "QFCAT-" 2302235 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-996 2298987 2299030 2299157 "QFCAT2" 2299300 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-995 2298447 2298557 2298687 "QEQUAT" 2298877 T QEQUAT (NIL) -8 NIL NIL NIL) (-994 2291593 2292666 2293850 "QCMPACK" 2297380 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-993 2289142 2289590 2290018 "QALGSET" 2291248 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-992 2288387 2288561 2288793 "QALGSET2" 2288962 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-991 2287077 2287301 2287618 "PWFFINTB" 2288160 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-990 2285259 2285427 2285781 "PUSHVAR" 2286891 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-989 2281177 2282231 2282272 "PTRANFN" 2284156 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-988 2279579 2279870 2280192 "PTPACK" 2280888 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-987 2279211 2279268 2279377 "PTFUNC2" 2279516 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-986 2273688 2278083 2278124 "PTCAT" 2278420 NIL PTCAT (NIL T) -9 NIL 2278573 NIL) (-985 2273346 2273381 2273505 "PSQFR" 2273647 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-984 2271941 2272239 2272573 "PSEUDLIN" 2273044 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-983 2258704 2261075 2263399 "PSETPK" 2269701 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-982 2251722 2254462 2254558 "PSETCAT" 2257579 NIL PSETCAT (NIL T T T T) -9 NIL 2258393 NIL) (-981 2249558 2250192 2251013 "PSETCAT-" 2251018 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-980 2248907 2249072 2249100 "PSCURVE" 2249368 T PSCURVE (NIL) -9 NIL 2249535 NIL) (-979 2244905 2246421 2246486 "PSCAT" 2247330 NIL PSCAT (NIL T T T) -9 NIL 2247570 NIL) (-978 2243968 2244184 2244584 "PSCAT-" 2244589 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-977 2242673 2243333 2243538 "PRTITION" 2243783 T PRTITION (NIL) -8 NIL NIL NIL) (-976 2242148 2242394 2242486 "PRTDAST" 2242601 T PRTDAST (NIL) -8 NIL NIL NIL) (-975 2231238 2233452 2235640 "PRS" 2240010 NIL PRS (NIL T T) -7 NIL NIL NIL) (-974 2229049 2230588 2230628 "PRQAGG" 2230811 NIL PRQAGG (NIL T) -9 NIL 2230913 NIL) (-973 2228253 2228558 2228586 "PROPLOG" 2228833 T PROPLOG (NIL) -9 NIL 2228999 NIL) (-972 2226434 2227000 2227297 "PROPFRML" 2227989 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-971 2225903 2226010 2226138 "PROPERTY" 2226326 T PROPERTY (NIL) -8 NIL NIL NIL) (-970 2219961 2224069 2224889 "PRODUCT" 2225129 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-969 2217239 2219419 2219653 "PR" 2219772 NIL PR (NIL T T) -8 NIL NIL NIL) (-968 2217035 2217067 2217126 "PRINT" 2217200 T PRINT (NIL) -7 NIL NIL NIL) (-967 2216375 2216492 2216644 "PRIMES" 2216915 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-966 2214440 2214841 2215307 "PRIMELT" 2215954 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-965 2214169 2214218 2214246 "PRIMCAT" 2214370 T PRIMCAT (NIL) -9 NIL NIL NIL) (-964 2210284 2214107 2214152 "PRIMARR" 2214157 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-963 2209291 2209469 2209697 "PRIMARR2" 2210102 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-962 2208934 2208990 2209101 "PREASSOC" 2209229 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-961 2208409 2208542 2208570 "PPCURVE" 2208775 T PPCURVE (NIL) -9 NIL 2208911 NIL) (-960 2208004 2208204 2208287 "PORTNUM" 2208346 T PORTNUM (NIL) -8 NIL NIL NIL) (-959 2205363 2205762 2206354 "POLYROOT" 2207585 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-958 2199545 2204967 2205127 "POLY" 2205236 NIL POLY (NIL T) -8 NIL NIL NIL) (-957 2198928 2198986 2199220 "POLYLIFT" 2199481 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-956 2195203 2195652 2196281 "POLYCATQ" 2198473 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-955 2181915 2187043 2187108 "POLYCAT" 2190622 NIL POLYCAT (NIL T T T) -9 NIL 2192500 NIL) (-954 2175364 2177226 2179610 "POLYCAT-" 2179615 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-953 2174951 2175019 2175139 "POLY2UP" 2175290 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-952 2174583 2174640 2174749 "POLY2" 2174888 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-951 2173268 2173507 2173783 "POLUTIL" 2174357 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-950 2171623 2171900 2172231 "POLTOPOL" 2172990 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-949 2167088 2171559 2171605 "POINT" 2171610 NIL POINT (NIL T) -8 NIL NIL NIL) (-948 2165275 2165632 2166007 "PNTHEORY" 2166733 T PNTHEORY (NIL) -7 NIL NIL NIL) (-947 2163733 2164030 2164429 "PMTOOLS" 2164973 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-946 2163326 2163404 2163521 "PMSYM" 2163649 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-945 2162836 2162905 2163079 "PMQFCAT" 2163251 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-944 2162191 2162301 2162457 "PMPRED" 2162713 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-943 2161584 2161670 2161832 "PMPREDFS" 2162092 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-942 2160248 2160456 2160834 "PMPLCAT" 2161346 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-941 2159780 2159859 2160011 "PMLSAGG" 2160163 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-940 2159253 2159329 2159511 "PMKERNEL" 2159698 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-939 2158870 2158945 2159058 "PMINS" 2159172 NIL PMINS (NIL T) -7 NIL NIL NIL) (-938 2158312 2158381 2158590 "PMFS" 2158795 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-937 2157540 2157658 2157863 "PMDOWN" 2158189 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-936 2156707 2156865 2157046 "PMASS" 2157379 T PMASS (NIL) -7 NIL NIL NIL) (-935 2155980 2156090 2156253 "PMASSFS" 2156594 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-934 2155635 2155703 2155797 "PLOTTOOL" 2155906 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-933 2150242 2151446 2152594 "PLOT" 2154507 T PLOT (NIL) -8 NIL NIL NIL) (-932 2146046 2147090 2148011 "PLOT3D" 2149341 T PLOT3D (NIL) -8 NIL NIL NIL) (-931 2144958 2145135 2145370 "PLOT1" 2145850 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-930 2120347 2125024 2129875 "PLEQN" 2140224 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-929 2119665 2119787 2119967 "PINTERP" 2120212 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-928 2119358 2119405 2119508 "PINTERPA" 2119612 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-927 2118579 2119127 2119214 "PI" 2119254 T PI (NIL) -8 NIL NIL 2119321) (-926 2116876 2117851 2117879 "PID" 2118061 T PID (NIL) -9 NIL 2118195 NIL) (-925 2116627 2116664 2116739 "PICOERCE" 2116833 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-924 2115947 2116086 2116262 "PGROEB" 2116483 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-923 2111534 2112348 2113253 "PGE" 2115062 T PGE (NIL) -7 NIL NIL NIL) (-922 2109657 2109904 2110270 "PGCD" 2111251 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-921 2108995 2109098 2109259 "PFRPAC" 2109541 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-920 2105635 2107543 2107896 "PFR" 2108674 NIL PFR (NIL T) -8 NIL NIL NIL) (-919 2104024 2104268 2104593 "PFOTOOLS" 2105382 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-918 2102557 2102796 2103147 "PFOQ" 2103781 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-917 2101058 2101270 2101626 "PFO" 2102341 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-916 2097611 2100947 2101016 "PF" 2101021 NIL PF (NIL NIL) -8 NIL NIL NIL) (-915 2094945 2096216 2096244 "PFECAT" 2096829 T PFECAT (NIL) -9 NIL 2097213 NIL) (-914 2094390 2094544 2094758 "PFECAT-" 2094763 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-913 2092993 2093245 2093546 "PFBRU" 2094139 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-912 2090859 2091211 2091643 "PFBR" 2092644 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-911 2086741 2088235 2088911 "PERM" 2090216 NIL PERM (NIL T) -8 NIL NIL NIL) (-910 2081975 2082948 2083818 "PERMGRP" 2085904 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-909 2080081 2081038 2081079 "PERMCAT" 2081525 NIL PERMCAT (NIL T) -9 NIL 2081830 NIL) (-908 2079734 2079775 2079899 "PERMAN" 2080034 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-907 2077222 2079399 2079521 "PENDTREE" 2079645 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-906 2075246 2076014 2076055 "PDRING" 2076712 NIL PDRING (NIL T) -9 NIL 2076998 NIL) (-905 2074349 2074567 2074929 "PDRING-" 2074934 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-904 2071564 2072342 2073010 "PDEPROB" 2073701 T PDEPROB (NIL) -8 NIL NIL NIL) (-903 2069109 2069613 2070168 "PDEPACK" 2071029 T PDEPACK (NIL) -7 NIL NIL NIL) (-902 2068021 2068211 2068462 "PDECOMP" 2068908 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-901 2065600 2066443 2066471 "PDECAT" 2067258 T PDECAT (NIL) -9 NIL 2067971 NIL) (-900 2065351 2065384 2065474 "PCOMP" 2065561 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-899 2063529 2064152 2064449 "PBWLB" 2065080 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-898 2056002 2057602 2058940 "PATTERN" 2062212 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-897 2055634 2055691 2055800 "PATTERN2" 2055939 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-896 2053391 2053779 2054236 "PATTERN1" 2055223 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-895 2050759 2051340 2051821 "PATRES" 2052956 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-894 2050323 2050390 2050522 "PATRES2" 2050686 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-893 2048206 2048611 2049018 "PATMATCH" 2049990 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-892 2047716 2047925 2047966 "PATMAB" 2048073 NIL PATMAB (NIL T) -9 NIL 2048156 NIL) (-891 2046234 2046570 2046828 "PATLRES" 2047521 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-890 2045780 2045903 2045944 "PATAB" 2045949 NIL PATAB (NIL T) -9 NIL 2046121 NIL) (-889 2043261 2043793 2044366 "PARTPERM" 2045227 T PARTPERM (NIL) -7 NIL NIL NIL) (-888 2042882 2042945 2043047 "PARSURF" 2043192 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-887 2042514 2042571 2042680 "PARSU2" 2042819 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-886 2042278 2042318 2042385 "PARSER" 2042467 T PARSER (NIL) -7 NIL NIL NIL) (-885 2041899 2041962 2042064 "PARSCURV" 2042209 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-884 2041531 2041588 2041697 "PARSC2" 2041836 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-883 2041170 2041228 2041325 "PARPCURV" 2041467 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-882 2040802 2040859 2040968 "PARPC2" 2041107 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-881 2039863 2040175 2040357 "PARAMAST" 2040640 T PARAMAST (NIL) -8 NIL NIL NIL) (-880 2039383 2039469 2039588 "PAN2EXPR" 2039764 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-879 2038160 2038504 2038732 "PALETTE" 2039175 T PALETTE (NIL) -8 NIL NIL NIL) (-878 2036553 2037165 2037525 "PAIR" 2037846 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-877 2030423 2035812 2036006 "PADICRC" 2036408 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-876 2023652 2029769 2029953 "PADICRAT" 2030271 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-875 2021967 2023589 2023634 "PADIC" 2023639 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-874 2019077 2020641 2020681 "PADICCT" 2021262 NIL PADICCT (NIL NIL) -9 NIL 2021544 NIL) (-873 2018034 2018234 2018502 "PADEPAC" 2018864 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-872 2017246 2017379 2017585 "PADE" 2017896 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-871 2015633 2016454 2016734 "OWP" 2017050 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-870 2015126 2015339 2015436 "OVERSET" 2015556 T OVERSET (NIL) -8 NIL NIL NIL) (-869 2014172 2014731 2014903 "OVAR" 2014994 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-868 2013436 2013557 2013718 "OUT" 2014031 T OUT (NIL) -7 NIL NIL NIL) (-867 2002308 2004545 2006745 "OUTFORM" 2011256 T OUTFORM (NIL) -8 NIL NIL NIL) (-866 2001644 2001905 2002032 "OUTBFILE" 2002201 T OUTBFILE (NIL) -8 NIL NIL NIL) (-865 2000951 2001116 2001144 "OUTBCON" 2001462 T OUTBCON (NIL) -9 NIL 2001628 NIL) (-864 2000552 2000664 2000821 "OUTBCON-" 2000826 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-863 1999932 2000281 2000370 "OSI" 2000483 T OSI (NIL) -8 NIL NIL NIL) (-862 1999462 1999800 1999828 "OSGROUP" 1999833 T OSGROUP (NIL) -9 NIL 1999855 NIL) (-861 1998207 1998434 1998719 "ORTHPOL" 1999209 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-860 1995758 1998042 1998163 "OREUP" 1998168 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-859 1993161 1995449 1995576 "ORESUP" 1995700 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-858 1990689 1991189 1991750 "OREPCTO" 1992650 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-857 1984375 1986576 1986617 "OREPCAT" 1988965 NIL OREPCAT (NIL T) -9 NIL 1990069 NIL) (-856 1981522 1982304 1983362 "OREPCAT-" 1983367 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-855 1980673 1980971 1980999 "ORDSET" 1981308 T ORDSET (NIL) -9 NIL 1981472 NIL) (-854 1980104 1980252 1980476 "ORDSET-" 1980481 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-853 1978669 1979460 1979488 "ORDRING" 1979690 T ORDRING (NIL) -9 NIL 1979815 NIL) (-852 1978314 1978408 1978552 "ORDRING-" 1978557 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-851 1977694 1978157 1978185 "ORDMON" 1978190 T ORDMON (NIL) -9 NIL 1978211 NIL) (-850 1976856 1977003 1977198 "ORDFUNS" 1977543 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-849 1976194 1976613 1976641 "ORDFIN" 1976706 T ORDFIN (NIL) -9 NIL 1976780 NIL) (-848 1972753 1974780 1975189 "ORDCOMP" 1975818 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-847 1972019 1972146 1972332 "ORDCOMP2" 1972613 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-846 1968600 1969510 1970324 "OPTPROB" 1971225 T OPTPROB (NIL) -8 NIL NIL NIL) (-845 1965402 1966041 1966745 "OPTPACK" 1967916 T OPTPACK (NIL) -7 NIL NIL NIL) (-844 1963089 1963855 1963883 "OPTCAT" 1964702 T OPTCAT (NIL) -9 NIL 1965352 NIL) (-843 1962473 1962766 1962871 "OPSIG" 1963004 T OPSIG (NIL) -8 NIL NIL NIL) (-842 1962241 1962280 1962346 "OPQUERY" 1962427 T OPQUERY (NIL) -7 NIL NIL NIL) (-841 1959372 1960552 1961056 "OP" 1961770 NIL OP (NIL T) -8 NIL NIL NIL) (-840 1958746 1958972 1959013 "OPERCAT" 1959225 NIL OPERCAT (NIL T) -9 NIL 1959322 NIL) (-839 1958501 1958557 1958674 "OPERCAT-" 1958679 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-838 1955314 1957298 1957667 "ONECOMP" 1958165 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-837 1954619 1954734 1954908 "ONECOMP2" 1955186 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1954038 1954144 1954274 "OMSERVER" 1954509 T OMSERVER (NIL) -7 NIL NIL NIL) (-835 1950900 1953478 1953518 "OMSAGG" 1953579 NIL OMSAGG (NIL T) -9 NIL 1953643 NIL) (-834 1949523 1949786 1950068 "OMPKG" 1950638 T OMPKG (NIL) -7 NIL NIL NIL) (-833 1948953 1949056 1949084 "OM" 1949383 T OM (NIL) -9 NIL NIL NIL) (-832 1947500 1948502 1948671 "OMLO" 1948834 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-831 1946460 1946607 1946827 "OMEXPR" 1947326 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-830 1945751 1946006 1946142 "OMERR" 1946344 T OMERR (NIL) -8 NIL NIL NIL) (-829 1944902 1945172 1945332 "OMERRK" 1945611 T OMERRK (NIL) -8 NIL NIL NIL) (-828 1944353 1944579 1944687 "OMENC" 1944814 T OMENC (NIL) -8 NIL NIL NIL) (-827 1938248 1939433 1940604 "OMDEV" 1943202 T OMDEV (NIL) -8 NIL NIL NIL) (-826 1937317 1937488 1937682 "OMCONN" 1938074 T OMCONN (NIL) -8 NIL NIL NIL) (-825 1935838 1936814 1936842 "OINTDOM" 1936847 T OINTDOM (NIL) -9 NIL 1936868 NIL) (-824 1933176 1934526 1934863 "OFMONOID" 1935533 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-823 1932587 1933113 1933158 "ODVAR" 1933163 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-822 1930010 1932332 1932487 "ODR" 1932492 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-821 1922591 1929786 1929912 "ODPOL" 1929917 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-820 1916413 1922463 1922568 "ODP" 1922573 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-819 1915179 1915394 1915669 "ODETOOLS" 1916187 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-818 1912146 1912804 1913520 "ODESYS" 1914512 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-817 1907028 1907936 1908961 "ODERTRIC" 1911221 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-816 1906454 1906536 1906730 "ODERED" 1906940 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-815 1903342 1903890 1904567 "ODERAT" 1905877 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-814 1900299 1900766 1901363 "ODEPRRIC" 1902871 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-813 1898242 1898838 1899324 "ODEPROB" 1899833 T ODEPROB (NIL) -8 NIL NIL NIL) (-812 1894762 1895247 1895894 "ODEPRIM" 1897721 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-811 1894011 1894113 1894373 "ODEPAL" 1894654 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-810 1890173 1890964 1891828 "ODEPACK" 1893167 T ODEPACK (NIL) -7 NIL NIL NIL) (-809 1889234 1889341 1889563 "ODEINT" 1890062 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-808 1883335 1884760 1886207 "ODEIFTBL" 1887807 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-807 1878733 1879519 1880471 "ODEEF" 1882494 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-806 1878082 1878171 1878394 "ODECONST" 1878638 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-805 1876207 1876868 1876896 "ODECAT" 1877501 T ODECAT (NIL) -9 NIL 1878032 NIL) (-804 1873062 1875912 1876034 "OCT" 1876117 NIL OCT (NIL T) -8 NIL NIL NIL) (-803 1872700 1872743 1872870 "OCTCT2" 1873013 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-802 1867349 1869784 1869824 "OC" 1870921 NIL OC (NIL T) -9 NIL 1871779 NIL) (-801 1864576 1865324 1866314 "OC-" 1866408 NIL OC- (NIL T T) -8 NIL NIL NIL) (-800 1863928 1864396 1864424 "OCAMON" 1864429 T OCAMON (NIL) -9 NIL 1864450 NIL) (-799 1863459 1863800 1863828 "OASGP" 1863833 T OASGP (NIL) -9 NIL 1863853 NIL) (-798 1862720 1863209 1863237 "OAMONS" 1863277 T OAMONS (NIL) -9 NIL 1863320 NIL) (-797 1862134 1862567 1862595 "OAMON" 1862600 T OAMON (NIL) -9 NIL 1862620 NIL) (-796 1861392 1861910 1861938 "OAGROUP" 1861943 T OAGROUP (NIL) -9 NIL 1861963 NIL) (-795 1861082 1861132 1861220 "NUMTUBE" 1861336 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-794 1854655 1856173 1857709 "NUMQUAD" 1859566 T NUMQUAD (NIL) -7 NIL NIL NIL) (-793 1850411 1851399 1852424 "NUMODE" 1853650 T NUMODE (NIL) -7 NIL NIL NIL) (-792 1847766 1848646 1848674 "NUMINT" 1849597 T NUMINT (NIL) -9 NIL 1850361 NIL) (-791 1846714 1846911 1847129 "NUMFMT" 1847568 T NUMFMT (NIL) -7 NIL NIL NIL) (-790 1833073 1836018 1838550 "NUMERIC" 1844221 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-789 1827443 1832522 1832617 "NTSCAT" 1832622 NIL NTSCAT (NIL T T T T) -9 NIL 1832661 NIL) (-788 1826637 1826802 1826995 "NTPOLFN" 1827282 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-787 1814714 1823462 1824274 "NSUP" 1825858 NIL NSUP (NIL T) -8 NIL NIL NIL) (-786 1814346 1814403 1814512 "NSUP2" 1814651 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-785 1804574 1814120 1814253 "NSMP" 1814258 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-784 1803006 1803307 1803664 "NREP" 1804262 NIL NREP (NIL T) -7 NIL NIL NIL) (-783 1801597 1801849 1802207 "NPCOEF" 1802749 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-782 1800663 1800778 1800994 "NORMRETR" 1801478 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-781 1798704 1798994 1799403 "NORMPK" 1800371 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-780 1798389 1798417 1798541 "NORMMA" 1798670 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-779 1798189 1798346 1798375 "NONE" 1798380 T NONE (NIL) -8 NIL NIL NIL) (-778 1797978 1798007 1798076 "NONE1" 1798153 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-777 1797475 1797537 1797716 "NODE1" 1797910 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-776 1795760 1796611 1796866 "NNI" 1797213 T NNI (NIL) -8 NIL NIL 1797448) (-775 1794180 1794493 1794857 "NLINSOL" 1795428 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-774 1790421 1791416 1792315 "NIPROB" 1793301 T NIPROB (NIL) -8 NIL NIL NIL) (-773 1789178 1789412 1789714 "NFINTBAS" 1790183 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-772 1788352 1788828 1788869 "NETCLT" 1789041 NIL NETCLT (NIL T) -9 NIL 1789123 NIL) (-771 1787060 1787291 1787572 "NCODIV" 1788120 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-770 1786822 1786859 1786934 "NCNTFRAC" 1787017 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-769 1785002 1785366 1785786 "NCEP" 1786447 NIL NCEP (NIL T) -7 NIL NIL NIL) (-768 1783853 1784626 1784654 "NASRING" 1784764 T NASRING (NIL) -9 NIL 1784844 NIL) (-767 1783648 1783692 1783786 "NASRING-" 1783791 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-766 1782755 1783280 1783308 "NARNG" 1783425 T NARNG (NIL) -9 NIL 1783516 NIL) (-765 1782447 1782514 1782648 "NARNG-" 1782653 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-764 1781326 1781533 1781768 "NAGSP" 1782232 T NAGSP (NIL) -7 NIL NIL NIL) (-763 1772598 1774282 1775955 "NAGS" 1779673 T NAGS (NIL) -7 NIL NIL NIL) (-762 1771146 1771454 1771785 "NAGF07" 1772287 T NAGF07 (NIL) -7 NIL NIL NIL) (-761 1765684 1766975 1768282 "NAGF04" 1769859 T NAGF04 (NIL) -7 NIL NIL NIL) (-760 1758652 1760266 1761899 "NAGF02" 1764071 T NAGF02 (NIL) -7 NIL NIL NIL) (-759 1753876 1754976 1756093 "NAGF01" 1757555 T NAGF01 (NIL) -7 NIL NIL NIL) (-758 1747504 1749070 1750655 "NAGE04" 1752311 T NAGE04 (NIL) -7 NIL NIL NIL) (-757 1738673 1740794 1742924 "NAGE02" 1745394 T NAGE02 (NIL) -7 NIL NIL NIL) (-756 1734626 1735573 1736537 "NAGE01" 1737729 T NAGE01 (NIL) -7 NIL NIL NIL) (-755 1732421 1732955 1733513 "NAGD03" 1734088 T NAGD03 (NIL) -7 NIL NIL NIL) (-754 1724171 1726099 1728053 "NAGD02" 1730487 T NAGD02 (NIL) -7 NIL NIL NIL) (-753 1717982 1719407 1720847 "NAGD01" 1722751 T NAGD01 (NIL) -7 NIL NIL NIL) (-752 1714191 1715013 1715850 "NAGC06" 1717165 T NAGC06 (NIL) -7 NIL NIL NIL) (-751 1712656 1712988 1713344 "NAGC05" 1713855 T NAGC05 (NIL) -7 NIL NIL NIL) (-750 1712032 1712151 1712295 "NAGC02" 1712532 T NAGC02 (NIL) -7 NIL NIL NIL) (-749 1710991 1711574 1711614 "NAALG" 1711693 NIL NAALG (NIL T) -9 NIL 1711754 NIL) (-748 1710826 1710855 1710945 "NAALG-" 1710950 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-747 1704776 1705884 1707071 "MULTSQFR" 1709722 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-746 1704095 1704170 1704354 "MULTFACT" 1704688 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-745 1696819 1700732 1700785 "MTSCAT" 1701855 NIL MTSCAT (NIL T T) -9 NIL 1702370 NIL) (-744 1696531 1696585 1696677 "MTHING" 1696759 NIL MTHING (NIL T) -7 NIL NIL NIL) (-743 1696323 1696356 1696416 "MSYSCMD" 1696491 T MSYSCMD (NIL) -7 NIL NIL NIL) (-742 1692405 1695078 1695398 "MSET" 1696036 NIL MSET (NIL T) -8 NIL NIL NIL) (-741 1689474 1691966 1692007 "MSETAGG" 1692012 NIL MSETAGG (NIL T) -9 NIL 1692046 NIL) (-740 1685315 1686853 1687598 "MRING" 1688774 NIL MRING (NIL T T) -8 NIL NIL NIL) (-739 1684881 1684948 1685079 "MRF2" 1685242 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-738 1684499 1684534 1684678 "MRATFAC" 1684840 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-737 1682111 1682406 1682837 "MPRFF" 1684204 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-736 1676408 1681965 1682062 "MPOLY" 1682067 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-735 1675898 1675933 1676141 "MPCPF" 1676367 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-734 1675412 1675455 1675639 "MPC3" 1675849 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-733 1674607 1674688 1674909 "MPC2" 1675327 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-732 1672908 1673245 1673635 "MONOTOOL" 1674267 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-731 1672133 1672450 1672478 "MONOID" 1672697 T MONOID (NIL) -9 NIL 1672844 NIL) (-730 1671679 1671798 1671979 "MONOID-" 1671984 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-729 1662154 1668105 1668164 "MONOGEN" 1668838 NIL MONOGEN (NIL T T) -9 NIL 1669294 NIL) (-728 1659372 1660107 1661107 "MONOGEN-" 1661226 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-727 1658205 1658651 1658679 "MONADWU" 1659071 T MONADWU (NIL) -9 NIL 1659309 NIL) (-726 1657577 1657736 1657984 "MONADWU-" 1657989 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-725 1656936 1657180 1657208 "MONAD" 1657415 T MONAD (NIL) -9 NIL 1657527 NIL) (-724 1656621 1656699 1656831 "MONAD-" 1656836 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-723 1654910 1655534 1655813 "MOEBIUS" 1656374 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-722 1654188 1654592 1654632 "MODULE" 1654637 NIL MODULE (NIL T) -9 NIL 1654676 NIL) (-721 1653756 1653852 1654042 "MODULE-" 1654047 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-720 1651436 1652120 1652447 "MODRING" 1653580 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-719 1648380 1649541 1650062 "MODOP" 1650965 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-718 1646968 1647447 1647724 "MODMONOM" 1648243 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-717 1637010 1645259 1645673 "MODMON" 1646605 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-716 1634166 1635854 1636130 "MODFIELD" 1636885 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1633143 1633447 1633637 "MMLFORM" 1633996 T MMLFORM (NIL) -8 NIL NIL NIL) (-714 1632669 1632712 1632891 "MMAP" 1633094 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-713 1630748 1631515 1631556 "MLO" 1631979 NIL MLO (NIL T) -9 NIL 1632221 NIL) (-712 1628114 1628630 1629232 "MLIFT" 1630229 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-711 1627505 1627589 1627743 "MKUCFUNC" 1628025 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-710 1627104 1627174 1627297 "MKRECORD" 1627428 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-709 1626151 1626313 1626541 "MKFUNC" 1626915 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-708 1625539 1625643 1625799 "MKFLCFN" 1626034 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-707 1624816 1624918 1625103 "MKBCFUNC" 1625432 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-706 1621523 1624370 1624506 "MINT" 1624700 T MINT (NIL) -8 NIL NIL NIL) (-705 1620335 1620578 1620855 "MHROWRED" 1621278 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-704 1615715 1618870 1619275 "MFLOAT" 1619950 T MFLOAT (NIL) -8 NIL NIL NIL) (-703 1615072 1615148 1615319 "MFINFACT" 1615627 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-702 1611387 1612235 1613119 "MESH" 1614208 T MESH (NIL) -7 NIL NIL NIL) (-701 1609777 1610089 1610442 "MDDFACT" 1611074 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-700 1606572 1608936 1608977 "MDAGG" 1609232 NIL MDAGG (NIL T) -9 NIL 1609375 NIL) (-699 1596312 1605865 1606072 "MCMPLX" 1606385 T MCMPLX (NIL) -8 NIL NIL NIL) (-698 1595453 1595599 1595799 "MCDEN" 1596161 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-697 1593343 1593613 1593993 "MCALCFN" 1595183 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-696 1592268 1592508 1592741 "MAYBE" 1593149 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-695 1589880 1590403 1590965 "MATSTOR" 1591739 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-694 1585837 1589252 1589500 "MATRIX" 1589665 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-693 1581601 1582310 1583046 "MATLIN" 1585194 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-692 1571707 1574893 1574970 "MATCAT" 1579850 NIL MATCAT (NIL T T T) -9 NIL 1581267 NIL) (-691 1568063 1569084 1570440 "MATCAT-" 1570445 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-690 1566657 1566810 1567143 "MATCAT2" 1567898 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-689 1564769 1565093 1565477 "MAPPKG3" 1566332 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-688 1563750 1563923 1564145 "MAPPKG2" 1564593 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-687 1562249 1562533 1562860 "MAPPKG1" 1563456 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-686 1561328 1561655 1561832 "MAPPAST" 1562092 T MAPPAST (NIL) -8 NIL NIL NIL) (-685 1560939 1560997 1561120 "MAPHACK3" 1561264 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-684 1560531 1560592 1560706 "MAPHACK2" 1560871 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-683 1559968 1560072 1560214 "MAPHACK1" 1560422 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-682 1558047 1558668 1558972 "MAGMA" 1559696 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-681 1557526 1557771 1557862 "MACROAST" 1557976 T MACROAST (NIL) -8 NIL NIL NIL) (-680 1553944 1555765 1556226 "M3D" 1557098 NIL M3D (NIL T) -8 NIL NIL NIL) (-679 1548050 1552313 1552354 "LZSTAGG" 1553136 NIL LZSTAGG (NIL T) -9 NIL 1553431 NIL) (-678 1544007 1545181 1546638 "LZSTAGG-" 1546643 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-677 1541094 1541898 1542385 "LWORD" 1543552 NIL LWORD (NIL T) -8 NIL NIL NIL) (-676 1540670 1540898 1540973 "LSTAST" 1541039 T LSTAST (NIL) -8 NIL NIL NIL) (-675 1533836 1540441 1540575 "LSQM" 1540580 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-674 1533060 1533199 1533427 "LSPP" 1533691 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-673 1530872 1531173 1531629 "LSMP" 1532749 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-672 1527651 1528325 1529055 "LSMP1" 1530174 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-671 1521528 1526818 1526859 "LSAGG" 1526921 NIL LSAGG (NIL T) -9 NIL 1526999 NIL) (-670 1518223 1519147 1520360 "LSAGG-" 1520365 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-669 1515822 1517367 1517616 "LPOLY" 1518018 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-668 1515404 1515489 1515612 "LPEFRAC" 1515731 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-667 1513725 1514498 1514751 "LO" 1515236 NIL LO (NIL T T T) -8 NIL NIL NIL) (-666 1513377 1513489 1513517 "LOGIC" 1513628 T LOGIC (NIL) -9 NIL 1513709 NIL) (-665 1513239 1513262 1513333 "LOGIC-" 1513338 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-664 1512432 1512572 1512765 "LODOOPS" 1513095 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-663 1509855 1512348 1512414 "LODO" 1512419 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-662 1508393 1508628 1508981 "LODOF" 1509602 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-661 1504611 1507042 1507083 "LODOCAT" 1507521 NIL LODOCAT (NIL T) -9 NIL 1507732 NIL) (-660 1504344 1504402 1504529 "LODOCAT-" 1504534 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-659 1501664 1504185 1504303 "LODO2" 1504308 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-658 1499099 1501601 1501646 "LODO1" 1501651 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-657 1497980 1498145 1498450 "LODEEF" 1498922 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-656 1493219 1496110 1496151 "LNAGG" 1497098 NIL LNAGG (NIL T) -9 NIL 1497542 NIL) (-655 1492366 1492580 1492922 "LNAGG-" 1492927 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-654 1488502 1489291 1489930 "LMOPS" 1491781 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-653 1487905 1488293 1488334 "LMODULE" 1488339 NIL LMODULE (NIL T) -9 NIL 1488365 NIL) (-652 1485103 1487550 1487673 "LMDICT" 1487815 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-651 1484509 1484730 1484771 "LLINSET" 1484962 NIL LLINSET (NIL T) -9 NIL 1485053 NIL) (-650 1484208 1484417 1484477 "LITERAL" 1484482 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-649 1477371 1483142 1483446 "LIST" 1483937 NIL LIST (NIL T) -8 NIL NIL NIL) (-648 1476896 1476970 1477109 "LIST3" 1477291 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-647 1475903 1476081 1476309 "LIST2" 1476714 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-646 1474037 1474349 1474748 "LIST2MAP" 1475550 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-645 1473633 1473870 1473911 "LINSET" 1473916 NIL LINSET (NIL T) -9 NIL 1473950 NIL) (-644 1472294 1472964 1473005 "LINEXP" 1473260 NIL LINEXP (NIL T) -9 NIL 1473409 NIL) (-643 1470941 1471201 1471498 "LINDEP" 1472046 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-642 1467708 1468427 1469204 "LIMITRF" 1470196 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-641 1466011 1466307 1466716 "LIMITPS" 1467403 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-640 1460439 1465522 1465750 "LIE" 1465832 NIL LIE (NIL T T) -8 NIL NIL NIL) (-639 1459387 1459856 1459896 "LIECAT" 1460036 NIL LIECAT (NIL T) -9 NIL 1460187 NIL) (-638 1459228 1459255 1459343 "LIECAT-" 1459348 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-637 1451724 1458677 1458842 "LIB" 1459083 T LIB (NIL) -8 NIL NIL NIL) (-636 1447359 1448242 1449177 "LGROBP" 1450841 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-635 1445357 1445631 1445981 "LF" 1447080 NIL LF (NIL T T) -7 NIL NIL NIL) (-634 1444197 1444889 1444917 "LFCAT" 1445124 T LFCAT (NIL) -9 NIL 1445263 NIL) (-633 1441099 1441729 1442417 "LEXTRIPK" 1443561 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-632 1437843 1438669 1439172 "LEXP" 1440679 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-631 1437319 1437564 1437656 "LETAST" 1437771 T LETAST (NIL) -8 NIL NIL NIL) (-630 1435717 1436030 1436431 "LEADCDET" 1437001 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-629 1434907 1434981 1435210 "LAZM3PK" 1435638 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-628 1429824 1432984 1433522 "LAUPOL" 1434419 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-627 1429403 1429447 1429608 "LAPLACE" 1429774 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-626 1427342 1428504 1428755 "LA" 1429236 NIL LA (NIL T T T) -8 NIL NIL NIL) (-625 1426336 1426920 1426961 "LALG" 1427023 NIL LALG (NIL T) -9 NIL 1427082 NIL) (-624 1426050 1426109 1426245 "LALG-" 1426250 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-623 1425885 1425909 1425950 "KVTFROM" 1426012 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-622 1424808 1425252 1425437 "KTVLOGIC" 1425720 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-621 1424643 1424667 1424708 "KRCFROM" 1424770 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-620 1423547 1423734 1424033 "KOVACIC" 1424443 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-619 1423382 1423406 1423447 "KONVERT" 1423509 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-618 1423217 1423241 1423282 "KOERCE" 1423344 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-617 1421047 1421810 1422187 "KERNEL" 1422873 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-616 1420543 1420624 1420756 "KERNEL2" 1420961 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-615 1414313 1419082 1419136 "KDAGG" 1419513 NIL KDAGG (NIL T T) -9 NIL 1419719 NIL) (-614 1413842 1413966 1414171 "KDAGG-" 1414176 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-613 1406990 1413503 1413658 "KAFILE" 1413720 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-612 1401418 1406501 1406729 "JORDAN" 1406811 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-611 1400797 1401067 1401188 "JOINAST" 1401317 T JOINAST (NIL) -8 NIL NIL NIL) (-610 1400643 1400702 1400757 "JAVACODE" 1400762 T JAVACODE (NIL) -8 NIL NIL NIL) (-609 1396895 1398848 1398902 "IXAGG" 1399831 NIL IXAGG (NIL T T) -9 NIL 1400290 NIL) (-608 1395814 1396120 1396539 "IXAGG-" 1396544 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-607 1391344 1395736 1395795 "IVECTOR" 1395800 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-606 1390110 1390347 1390613 "ITUPLE" 1391111 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-605 1388612 1388789 1389084 "ITRIGMNP" 1389932 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-604 1387357 1387561 1387844 "ITFUN3" 1388388 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-603 1386989 1387046 1387155 "ITFUN2" 1387294 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-602 1386148 1386469 1386643 "ITFORM" 1386835 T ITFORM (NIL) -8 NIL NIL NIL) (-601 1384109 1385168 1385446 "ITAYLOR" 1385903 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-600 1373054 1378246 1379409 "ISUPS" 1382979 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-599 1372158 1372298 1372534 "ISUMP" 1372901 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-598 1367533 1372103 1372144 "ISTRING" 1372149 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-597 1367009 1367254 1367346 "ISAST" 1367461 T ISAST (NIL) -8 NIL NIL NIL) (-596 1366218 1366300 1366516 "IRURPK" 1366923 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-595 1365154 1365355 1365595 "IRSN" 1365998 T IRSN (NIL) -7 NIL NIL NIL) (-594 1363225 1363580 1364009 "IRRF2F" 1364792 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-593 1362972 1363010 1363086 "IRREDFFX" 1363181 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-592 1361587 1361846 1362145 "IROOT" 1362705 NIL IROOT (NIL T) -7 NIL NIL NIL) (-591 1358191 1359271 1359963 "IR" 1360927 NIL IR (NIL T) -8 NIL NIL NIL) (-590 1357396 1357684 1357835 "IRFORM" 1358060 T IRFORM (NIL) -8 NIL NIL NIL) (-589 1355009 1355504 1356070 "IR2" 1356874 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-588 1354109 1354222 1354436 "IR2F" 1354892 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-587 1353900 1353934 1353994 "IPRNTPK" 1354069 T IPRNTPK (NIL) -7 NIL NIL NIL) (-586 1350481 1353789 1353858 "IPF" 1353863 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-585 1348808 1350406 1350463 "IPADIC" 1350468 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-584 1348120 1348368 1348498 "IP4ADDR" 1348698 T IP4ADDR (NIL) -8 NIL NIL NIL) (-583 1347494 1347749 1347881 "IOMODE" 1348008 T IOMODE (NIL) -8 NIL NIL NIL) (-582 1346567 1347091 1347218 "IOBFILE" 1347387 T IOBFILE (NIL) -8 NIL NIL NIL) (-581 1346055 1346471 1346499 "IOBCON" 1346504 T IOBCON (NIL) -9 NIL 1346525 NIL) (-580 1345566 1345624 1345807 "INVLAPLA" 1345991 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-579 1335214 1337568 1339954 "INTTR" 1343230 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-578 1331549 1332291 1333156 "INTTOOLS" 1334399 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-577 1331135 1331226 1331343 "INTSLPE" 1331452 T INTSLPE (NIL) -7 NIL NIL NIL) (-576 1329088 1331058 1331117 "INTRVL" 1331122 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-575 1326690 1327202 1327777 "INTRF" 1328573 NIL INTRF (NIL T) -7 NIL NIL NIL) (-574 1326101 1326198 1326340 "INTRET" 1326588 NIL INTRET (NIL T) -7 NIL NIL NIL) (-573 1324098 1324487 1324957 "INTRAT" 1325709 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-572 1321361 1321944 1322563 "INTPM" 1323583 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-571 1318106 1318705 1319443 "INTPAF" 1320747 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-570 1313285 1314247 1315298 "INTPACK" 1317075 T INTPACK (NIL) -7 NIL NIL NIL) (-569 1310233 1313082 1313191 "INT" 1313196 T INT (NIL) -8 NIL NIL NIL) (-568 1309485 1309637 1309845 "INTHERTR" 1310075 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-567 1308924 1309004 1309192 "INTHERAL" 1309399 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-566 1306770 1307213 1307670 "INTHEORY" 1308487 T INTHEORY (NIL) -7 NIL NIL NIL) (-565 1298176 1299797 1301569 "INTG0" 1305122 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-564 1278749 1283539 1288349 "INTFTBL" 1293386 T INTFTBL (NIL) -8 NIL NIL NIL) (-563 1277998 1278136 1278309 "INTFACT" 1278608 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-562 1275425 1275871 1276428 "INTEF" 1277552 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-561 1273792 1274531 1274559 "INTDOM" 1274860 T INTDOM (NIL) -9 NIL 1275067 NIL) (-560 1273161 1273335 1273577 "INTDOM-" 1273582 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-559 1269549 1271477 1271531 "INTCAT" 1272330 NIL INTCAT (NIL T) -9 NIL 1272651 NIL) (-558 1269021 1269124 1269252 "INTBIT" 1269441 T INTBIT (NIL) -7 NIL NIL NIL) (-557 1267720 1267874 1268181 "INTALG" 1268866 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-556 1267203 1267293 1267450 "INTAF" 1267624 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-555 1260546 1267013 1267153 "INTABL" 1267158 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-554 1259887 1260353 1260418 "INT8" 1260452 T INT8 (NIL) -8 NIL NIL 1260497) (-553 1259227 1259693 1259758 "INT64" 1259792 T INT64 (NIL) -8 NIL NIL 1259837) (-552 1258567 1259033 1259098 "INT32" 1259132 T INT32 (NIL) -8 NIL NIL 1259177) (-551 1257907 1258373 1258438 "INT16" 1258472 T INT16 (NIL) -8 NIL NIL 1258517) (-550 1252817 1255530 1255558 "INS" 1256492 T INS (NIL) -9 NIL 1257157 NIL) (-549 1250057 1250828 1251802 "INS-" 1251875 NIL INS- (NIL T) -8 NIL NIL NIL) (-548 1248832 1249059 1249357 "INPSIGN" 1249810 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-547 1247950 1248067 1248264 "INPRODPF" 1248712 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-546 1246844 1246961 1247198 "INPRODFF" 1247830 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-545 1245844 1245996 1246256 "INNMFACT" 1246680 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-544 1245041 1245138 1245326 "INMODGCD" 1245743 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-543 1243549 1243794 1244118 "INFSP" 1244786 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-542 1242733 1242850 1243033 "INFPROD0" 1243429 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-541 1239588 1240798 1241313 "INFORM" 1242226 T INFORM (NIL) -8 NIL NIL NIL) (-540 1239198 1239258 1239356 "INFORM1" 1239523 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-539 1238721 1238810 1238924 "INFINITY" 1239104 T INFINITY (NIL) -7 NIL NIL NIL) (-538 1237897 1238441 1238542 "INETCLTS" 1238640 T INETCLTS (NIL) -8 NIL NIL NIL) (-537 1236513 1236763 1237084 "INEP" 1237645 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-536 1235762 1236410 1236475 "INDE" 1236480 NIL INDE (NIL T) -8 NIL NIL NIL) (-535 1235326 1235394 1235511 "INCRMAPS" 1235689 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-534 1234144 1234595 1234801 "INBFILE" 1235140 T INBFILE (NIL) -8 NIL NIL NIL) (-533 1229444 1230380 1231324 "INBFF" 1233232 NIL INBFF (NIL T) -7 NIL NIL NIL) (-532 1228352 1228621 1228649 "INBCON" 1229162 T INBCON (NIL) -9 NIL 1229428 NIL) (-531 1227604 1227827 1228103 "INBCON-" 1228108 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-530 1227083 1227328 1227419 "INAST" 1227533 T INAST (NIL) -8 NIL NIL NIL) (-529 1226510 1226762 1226868 "IMPTAST" 1226997 T IMPTAST (NIL) -8 NIL NIL NIL) (-528 1222956 1226354 1226458 "IMATRIX" 1226463 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-527 1221668 1221791 1222106 "IMATQF" 1222812 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-526 1219888 1220115 1220452 "IMATLIN" 1221424 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-525 1214466 1219812 1219870 "ILIST" 1219875 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-524 1212371 1214326 1214439 "IIARRAY2" 1214444 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-523 1207769 1212282 1212346 "IFF" 1212351 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-522 1207116 1207386 1207502 "IFAST" 1207673 T IFAST (NIL) -8 NIL NIL NIL) (-521 1202111 1206408 1206596 "IFARRAY" 1206973 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-520 1201291 1202015 1202088 "IFAMON" 1202093 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-519 1200875 1200940 1200994 "IEVALAB" 1201201 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-518 1200550 1200618 1200778 "IEVALAB-" 1200783 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-517 1200181 1200464 1200527 "IDPO" 1200532 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-516 1199431 1200070 1200145 "IDPOAMS" 1200150 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-515 1198738 1199320 1199395 "IDPOAM" 1199400 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-514 1197797 1198073 1198126 "IDPC" 1198539 NIL IDPC (NIL T T) -9 NIL 1198688 NIL) (-513 1197266 1197689 1197762 "IDPAM" 1197767 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-512 1196642 1197158 1197231 "IDPAG" 1197236 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-511 1196287 1196478 1196553 "IDENT" 1196587 T IDENT (NIL) -8 NIL NIL NIL) (-510 1192542 1193390 1194285 "IDECOMP" 1195444 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-509 1185380 1186465 1187512 "IDEAL" 1191578 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-508 1184544 1184656 1184855 "ICDEN" 1185264 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-507 1183615 1184024 1184171 "ICARD" 1184417 T ICARD (NIL) -8 NIL NIL NIL) (-506 1181675 1181988 1182393 "IBPTOOLS" 1183292 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-505 1177282 1181295 1181408 "IBITS" 1181594 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-504 1174005 1174581 1175276 "IBATOOL" 1176699 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-503 1171784 1172246 1172779 "IBACHIN" 1173540 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-502 1169613 1171630 1171733 "IARRAY2" 1171738 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-501 1165719 1169539 1169596 "IARRAY1" 1169601 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-500 1159828 1164131 1164612 "IAN" 1165258 T IAN (NIL) -8 NIL NIL NIL) (-499 1159339 1159396 1159569 "IALGFACT" 1159765 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-498 1158867 1158980 1159008 "HYPCAT" 1159215 T HYPCAT (NIL) -9 NIL NIL NIL) (-497 1158405 1158522 1158708 "HYPCAT-" 1158713 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-496 1158000 1158200 1158283 "HOSTNAME" 1158342 T HOSTNAME (NIL) -8 NIL NIL NIL) (-495 1157845 1157882 1157923 "HOMOTOP" 1157928 NIL HOMOTOP (NIL T) -9 NIL 1157961 NIL) (-494 1154477 1155855 1155896 "HOAGG" 1156877 NIL HOAGG (NIL T) -9 NIL 1157556 NIL) (-493 1153071 1153470 1153996 "HOAGG-" 1154001 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-492 1147075 1152666 1152815 "HEXADEC" 1152942 T HEXADEC (NIL) -8 NIL NIL NIL) (-491 1145823 1146045 1146308 "HEUGCD" 1146852 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-490 1144899 1145660 1145790 "HELLFDIV" 1145795 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-489 1143078 1144676 1144764 "HEAP" 1144843 NIL HEAP (NIL T) -8 NIL NIL NIL) (-488 1142341 1142630 1142764 "HEADAST" 1142964 T HEADAST (NIL) -8 NIL NIL NIL) (-487 1136207 1142256 1142318 "HDP" 1142323 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-486 1130195 1135842 1135994 "HDMP" 1136108 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-485 1129519 1129659 1129823 "HB" 1130051 T HB (NIL) -7 NIL NIL NIL) (-484 1122905 1129365 1129469 "HASHTBL" 1129474 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-483 1122381 1122626 1122718 "HASAST" 1122833 T HASAST (NIL) -8 NIL NIL NIL) (-482 1120159 1122003 1122185 "HACKPI" 1122219 T HACKPI (NIL) -8 NIL NIL NIL) (-481 1115827 1120012 1120125 "GTSET" 1120130 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-480 1109242 1115705 1115803 "GSTBL" 1115808 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-479 1101520 1108273 1108538 "GSERIES" 1109033 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-478 1100661 1101078 1101106 "GROUP" 1101309 T GROUP (NIL) -9 NIL 1101443 NIL) (-477 1100027 1100186 1100437 "GROUP-" 1100442 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-476 1098394 1098715 1099102 "GROEBSOL" 1099704 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-475 1097308 1097596 1097647 "GRMOD" 1098176 NIL GRMOD (NIL T T) -9 NIL 1098344 NIL) (-474 1097076 1097112 1097240 "GRMOD-" 1097245 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-473 1092366 1093430 1094430 "GRIMAGE" 1096096 T GRIMAGE (NIL) -8 NIL NIL NIL) (-472 1090832 1091093 1091417 "GRDEF" 1092062 T GRDEF (NIL) -7 NIL NIL NIL) (-471 1090276 1090392 1090533 "GRAY" 1090711 T GRAY (NIL) -7 NIL NIL NIL) (-470 1089463 1089869 1089920 "GRALG" 1090073 NIL GRALG (NIL T T) -9 NIL 1090166 NIL) (-469 1089124 1089197 1089360 "GRALG-" 1089365 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-468 1085901 1088709 1088887 "GPOLSET" 1089031 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-467 1085255 1085312 1085570 "GOSPER" 1085838 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-466 1080987 1081693 1082219 "GMODPOL" 1084954 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-465 1079992 1080176 1080414 "GHENSEL" 1080799 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-464 1074148 1074991 1076011 "GENUPS" 1079076 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-463 1073845 1073896 1073985 "GENUFACT" 1074091 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-462 1073257 1073334 1073499 "GENPGCD" 1073763 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-461 1072731 1072766 1072979 "GENMFACT" 1073216 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-460 1071297 1071554 1071861 "GENEEZ" 1072474 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-459 1065443 1070908 1071070 "GDMP" 1071220 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-458 1054785 1059214 1060320 "GCNAALG" 1064426 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-457 1053112 1053974 1054002 "GCDDOM" 1054257 T GCDDOM (NIL) -9 NIL 1054414 NIL) (-456 1052582 1052709 1052924 "GCDDOM-" 1052929 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-455 1051254 1051439 1051743 "GB" 1052361 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-454 1039870 1042200 1044592 "GBINTERN" 1048945 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-453 1037707 1037999 1038420 "GBF" 1039545 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-452 1036488 1036653 1036920 "GBEUCLID" 1037523 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-451 1035837 1035962 1036111 "GAUSSFAC" 1036359 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-450 1034204 1034506 1034820 "GALUTIL" 1035556 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-449 1032512 1032786 1033110 "GALPOLYU" 1033931 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-448 1029877 1030167 1030574 "GALFACTU" 1032209 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-447 1021682 1023182 1024790 "GALFACT" 1028309 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-446 1019070 1019728 1019756 "FVFUN" 1020912 T FVFUN (NIL) -9 NIL 1021632 NIL) (-445 1018336 1018518 1018546 "FVC" 1018837 T FVC (NIL) -9 NIL 1019020 NIL) (-444 1017979 1018161 1018229 "FUNDESC" 1018288 T FUNDESC (NIL) -8 NIL NIL NIL) (-443 1017594 1017776 1017857 "FUNCTION" 1017931 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-442 1015338 1015916 1016382 "FT" 1017148 T FT (NIL) -8 NIL NIL NIL) (-441 1014129 1014639 1014842 "FTEM" 1015155 T FTEM (NIL) -8 NIL NIL NIL) (-440 1012420 1012709 1013106 "FSUPFACT" 1013820 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-439 1010817 1011106 1011438 "FST" 1012108 T FST (NIL) -8 NIL NIL NIL) (-438 1010016 1010122 1010310 "FSRED" 1010699 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-437 1008715 1008971 1009318 "FSPRMELT" 1009731 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-436 1006021 1006459 1006945 "FSPECF" 1008278 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-435 987659 995990 996031 "FS" 999915 NIL FS (NIL T) -9 NIL 1002204 NIL) (-434 976302 979295 983352 "FS-" 983652 NIL FS- (NIL T T) -8 NIL NIL NIL) (-433 975830 975884 976054 "FSINT" 976243 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-432 974122 974823 975126 "FSERIES" 975609 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-431 973164 973280 973504 "FSCINT" 974002 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-430 969372 972108 972149 "FSAGG" 972519 NIL FSAGG (NIL T) -9 NIL 972778 NIL) (-429 967134 967735 968531 "FSAGG-" 968626 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-428 966176 966319 966546 "FSAGG2" 966987 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-427 963858 964138 964685 "FS2UPS" 965894 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-426 963492 963535 963664 "FS2" 963809 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-425 962370 962541 962843 "FS2EXPXP" 963317 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-424 961796 961911 962063 "FRUTIL" 962250 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-423 953209 957291 958649 "FR" 960470 NIL FR (NIL T) -8 NIL NIL NIL) (-422 948178 950852 950892 "FRNAALG" 952288 NIL FRNAALG (NIL T) -9 NIL 952895 NIL) (-421 943851 944927 946202 "FRNAALG-" 946952 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-420 943489 943532 943659 "FRNAAF2" 943802 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-419 941869 942343 942638 "FRMOD" 943301 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-418 939620 940252 940569 "FRIDEAL" 941660 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-417 938815 938902 939191 "FRIDEAL2" 939527 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-416 937948 938362 938403 "FRETRCT" 938408 NIL FRETRCT (NIL T) -9 NIL 938584 NIL) (-415 937060 937291 937642 "FRETRCT-" 937647 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-414 934148 935358 935417 "FRAMALG" 936299 NIL FRAMALG (NIL T T) -9 NIL 936591 NIL) (-413 932282 932737 933367 "FRAMALG-" 933590 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-412 926203 931757 932033 "FRAC" 932038 NIL FRAC (NIL T) -8 NIL NIL NIL) (-411 925839 925896 926003 "FRAC2" 926140 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-410 925475 925532 925639 "FR2" 925776 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-409 919988 922881 922909 "FPS" 924028 T FPS (NIL) -9 NIL 924585 NIL) (-408 919437 919546 919710 "FPS-" 919856 NIL FPS- (NIL T) -8 NIL NIL NIL) (-407 916739 918408 918436 "FPC" 918661 T FPC (NIL) -9 NIL 918803 NIL) (-406 916532 916572 916669 "FPC-" 916674 NIL FPC- (NIL T) -8 NIL NIL NIL) (-405 915322 916020 916061 "FPATMAB" 916066 NIL FPATMAB (NIL T) -9 NIL 916218 NIL) (-404 912995 913498 913924 "FPARFRAC" 914959 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-403 908389 908887 909569 "FORTRAN" 912427 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-402 906105 906605 907144 "FORT" 907870 T FORT (NIL) -7 NIL NIL NIL) (-401 903781 904343 904371 "FORTFN" 905431 T FORTFN (NIL) -9 NIL 906055 NIL) (-400 903545 903595 903623 "FORTCAT" 903682 T FORTCAT (NIL) -9 NIL 903744 NIL) (-399 901651 902161 902551 "FORMULA" 903175 T FORMULA (NIL) -8 NIL NIL NIL) (-398 901439 901469 901538 "FORMULA1" 901615 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-397 900962 901014 901187 "FORDER" 901381 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-396 900058 900222 900415 "FOP" 900789 T FOP (NIL) -7 NIL NIL NIL) (-395 898639 899338 899512 "FNLA" 899940 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-394 897368 897783 897811 "FNCAT" 898271 T FNCAT (NIL) -9 NIL 898531 NIL) (-393 896907 897327 897355 "FNAME" 897360 T FNAME (NIL) -8 NIL NIL NIL) (-392 895470 896433 896461 "FMTC" 896466 T FMTC (NIL) -9 NIL 896502 NIL) (-391 894216 895406 895452 "FMONOID" 895457 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-390 891044 892212 892253 "FMONCAT" 893470 NIL FMONCAT (NIL T) -9 NIL 894075 NIL) (-389 890236 890786 890935 "FM" 890940 NIL FM (NIL T T) -8 NIL NIL NIL) (-388 887660 888306 888334 "FMFUN" 889478 T FMFUN (NIL) -9 NIL 890186 NIL) (-387 886929 887110 887138 "FMC" 887428 T FMC (NIL) -9 NIL 887610 NIL) (-386 884008 884868 884922 "FMCAT" 886117 NIL FMCAT (NIL T T) -9 NIL 886612 NIL) (-385 882874 883774 883874 "FM1" 883953 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-384 880648 881064 881558 "FLOATRP" 882425 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-383 874222 878377 878998 "FLOAT" 880047 T FLOAT (NIL) -8 NIL NIL NIL) (-382 871660 872160 872738 "FLOATCP" 873689 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-381 870400 871238 871279 "FLINEXP" 871284 NIL FLINEXP (NIL T) -9 NIL 871377 NIL) (-380 869554 869789 870117 "FLINEXP-" 870122 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-379 868630 868774 868998 "FLASORT" 869406 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-378 865746 866614 866666 "FLALG" 867893 NIL FLALG (NIL T T) -9 NIL 868360 NIL) (-377 859482 863232 863273 "FLAGG" 864535 NIL FLAGG (NIL T) -9 NIL 865187 NIL) (-376 858208 858547 859037 "FLAGG-" 859042 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-375 857250 857393 857620 "FLAGG2" 858061 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-374 854101 855109 855168 "FINRALG" 856296 NIL FINRALG (NIL T T) -9 NIL 856804 NIL) (-373 853261 853490 853829 "FINRALG-" 853834 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-372 852641 852880 852908 "FINITE" 853104 T FINITE (NIL) -9 NIL 853211 NIL) (-371 844998 847185 847225 "FINAALG" 850892 NIL FINAALG (NIL T) -9 NIL 852345 NIL) (-370 840330 841380 842524 "FINAALG-" 843903 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-369 839698 840085 840188 "FILE" 840260 NIL FILE (NIL T) -8 NIL NIL NIL) (-368 838356 838694 838748 "FILECAT" 839432 NIL FILECAT (NIL T T) -9 NIL 839648 NIL) (-367 836072 837600 837628 "FIELD" 837668 T FIELD (NIL) -9 NIL 837748 NIL) (-366 834692 835077 835588 "FIELD-" 835593 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-365 832542 833327 833674 "FGROUP" 834378 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-364 831632 831796 832016 "FGLMICPK" 832374 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-363 827464 831557 831614 "FFX" 831619 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-362 827065 827126 827261 "FFSLPE" 827397 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-361 823055 823837 824633 "FFPOLY" 826301 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-360 822559 822595 822804 "FFPOLY2" 823013 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-359 818403 822478 822541 "FFP" 822546 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-358 813801 818314 818378 "FF" 818383 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-357 808927 813144 813334 "FFNBX" 813655 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-356 803855 808062 808320 "FFNBP" 808781 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-355 798488 803139 803350 "FFNB" 803688 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-354 797320 797518 797833 "FFINTBAS" 798285 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-353 793389 795609 795637 "FFIELDC" 796257 T FFIELDC (NIL) -9 NIL 796633 NIL) (-352 792051 792422 792919 "FFIELDC-" 792924 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-351 791620 791666 791790 "FFHOM" 791993 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-350 789315 789802 790319 "FFF" 791135 NIL FFF (NIL T) -7 NIL NIL NIL) (-349 784933 789057 789158 "FFCGX" 789258 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-348 780555 784665 784772 "FFCGP" 784876 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-347 775738 780282 780390 "FFCG" 780491 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-346 757134 766215 766301 "FFCAT" 771466 NIL FFCAT (NIL T T T) -9 NIL 772917 NIL) (-345 752331 753379 754693 "FFCAT-" 755923 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-344 751742 751785 752020 "FFCAT2" 752282 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 741065 744714 745934 "FEXPR" 750594 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-342 740065 740500 740541 "FEVALAB" 740625 NIL FEVALAB (NIL T) -9 NIL 740886 NIL) (-341 739224 739434 739772 "FEVALAB-" 739777 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-340 737790 738607 738810 "FDIV" 739123 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-339 734810 735551 735666 "FDIVCAT" 737234 NIL FDIVCAT (NIL T T T T) -9 NIL 737671 NIL) (-338 734572 734599 734769 "FDIVCAT-" 734774 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-337 733792 733879 734156 "FDIV2" 734479 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-336 732766 733087 733289 "FCTRDATA" 733610 T FCTRDATA (NIL) -8 NIL NIL NIL) (-335 731452 731711 732000 "FCPAK1" 732497 T FCPAK1 (NIL) -7 NIL NIL NIL) (-334 730551 730952 731093 "FCOMP" 731343 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-333 714256 717701 721239 "FC" 727033 T FC (NIL) -8 NIL NIL NIL) (-332 706619 710647 710687 "FAXF" 712489 NIL FAXF (NIL T) -9 NIL 713181 NIL) (-331 703895 704553 705378 "FAXF-" 705843 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-330 698947 703271 703447 "FARRAY" 703752 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-329 693841 695908 695961 "FAMR" 696984 NIL FAMR (NIL T T) -9 NIL 697444 NIL) (-328 692731 693033 693468 "FAMR-" 693473 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-327 691900 692653 692706 "FAMONOID" 692711 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-326 689686 690396 690449 "FAMONC" 691390 NIL FAMONC (NIL T T) -9 NIL 691776 NIL) (-325 688350 689440 689577 "FAGROUP" 689582 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-324 686145 686464 686867 "FACUTIL" 688031 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-323 685244 685429 685651 "FACTFUNC" 685955 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-322 677666 684547 684746 "EXPUPXS" 685100 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-321 675149 675689 676275 "EXPRTUBE" 677100 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-320 671420 672012 672742 "EXPRODE" 674488 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-319 656905 670069 670498 "EXPR" 671024 NIL EXPR (NIL T) -8 NIL NIL NIL) (-318 651459 652046 652852 "EXPR2UPS" 656203 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-317 651091 651148 651257 "EXPR2" 651396 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-316 642481 650244 650534 "EXPEXPAN" 650928 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-315 642281 642438 642467 "EXIT" 642472 T EXIT (NIL) -8 NIL NIL NIL) (-314 641761 642005 642096 "EXITAST" 642210 T EXITAST (NIL) -8 NIL NIL NIL) (-313 641388 641450 641563 "EVALCYC" 641693 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-312 640929 641047 641088 "EVALAB" 641258 NIL EVALAB (NIL T) -9 NIL 641362 NIL) (-311 640410 640532 640753 "EVALAB-" 640758 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-310 637778 639080 639108 "EUCDOM" 639663 T EUCDOM (NIL) -9 NIL 640013 NIL) (-309 636183 636625 637215 "EUCDOM-" 637220 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-308 623721 626481 629231 "ESTOOLS" 633453 T ESTOOLS (NIL) -7 NIL NIL NIL) (-307 623353 623410 623519 "ESTOOLS2" 623658 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-306 623104 623146 623226 "ESTOOLS1" 623305 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-305 617141 618749 618777 "ES" 621545 T ES (NIL) -9 NIL 622955 NIL) (-304 612088 613375 615192 "ES-" 615356 NIL ES- (NIL T) -8 NIL NIL NIL) (-303 608462 609223 610003 "ESCONT" 611328 T ESCONT (NIL) -7 NIL NIL NIL) (-302 608207 608239 608321 "ESCONT1" 608424 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-301 607882 607932 608032 "ES2" 608151 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-300 607512 607570 607679 "ES1" 607818 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-299 606728 606857 607033 "ERROR" 607356 T ERROR (NIL) -7 NIL NIL NIL) (-298 600120 606587 606678 "EQTBL" 606683 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-297 592623 595434 596883 "EQ" 598704 NIL -2087 (NIL T) -8 NIL NIL NIL) (-296 592255 592312 592421 "EQ2" 592560 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-295 587545 588593 589686 "EP" 591194 NIL EP (NIL T) -7 NIL NIL NIL) (-294 586145 586436 586742 "ENV" 587259 T ENV (NIL) -8 NIL NIL NIL) (-293 585239 585793 585821 "ENTIRER" 585826 T ENTIRER (NIL) -9 NIL 585872 NIL) (-292 581706 583194 583564 "EMR" 585038 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-291 580850 581035 581089 "ELTAGG" 581469 NIL ELTAGG (NIL T T) -9 NIL 581680 NIL) (-290 580569 580631 580772 "ELTAGG-" 580777 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-289 580358 580387 580441 "ELTAB" 580525 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-288 579484 579630 579829 "ELFUTS" 580209 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-287 579226 579282 579310 "ELEMFUN" 579415 T ELEMFUN (NIL) -9 NIL NIL NIL) (-286 579096 579117 579185 "ELEMFUN-" 579190 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-285 573940 577196 577237 "ELAGG" 578177 NIL ELAGG (NIL T) -9 NIL 578640 NIL) (-284 572225 572659 573322 "ELAGG-" 573327 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-283 571537 571674 571830 "ELABOR" 572089 T ELABOR (NIL) -8 NIL NIL NIL) (-282 570198 570477 570771 "ELABEXPR" 571263 T ELABEXPR (NIL) -8 NIL NIL NIL) (-281 563062 564865 565692 "EFUPXS" 569474 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-280 556512 558313 559123 "EFULS" 562338 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-279 553997 554355 554827 "EFSTRUC" 556144 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-278 543788 545354 546902 "EF" 552512 NIL EF (NIL T T) -7 NIL NIL NIL) (-277 542862 543273 543422 "EAB" 543659 T EAB (NIL) -8 NIL NIL NIL) (-276 542044 542821 542849 "E04UCFA" 542854 T E04UCFA (NIL) -8 NIL NIL NIL) (-275 541226 542003 542031 "E04NAFA" 542036 T E04NAFA (NIL) -8 NIL NIL NIL) (-274 540408 541185 541213 "E04MBFA" 541218 T E04MBFA (NIL) -8 NIL NIL NIL) (-273 539590 540367 540395 "E04JAFA" 540400 T E04JAFA (NIL) -8 NIL NIL NIL) (-272 538774 539549 539577 "E04GCFA" 539582 T E04GCFA (NIL) -8 NIL NIL NIL) (-271 537958 538733 538761 "E04FDFA" 538766 T E04FDFA (NIL) -8 NIL NIL NIL) (-270 537140 537917 537945 "E04DGFA" 537950 T E04DGFA (NIL) -8 NIL NIL NIL) (-269 531313 532665 534029 "E04AGNT" 535796 T E04AGNT (NIL) -7 NIL NIL NIL) (-268 529993 530499 530539 "DVARCAT" 531014 NIL DVARCAT (NIL T) -9 NIL 531213 NIL) (-267 529197 529409 529723 "DVARCAT-" 529728 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-266 522334 528996 529125 "DSMP" 529130 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-265 517115 518279 519347 "DROPT" 521286 T DROPT (NIL) -8 NIL NIL NIL) (-264 516780 516839 516937 "DROPT1" 517050 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-263 511895 513021 514158 "DROPT0" 515663 T DROPT0 (NIL) -7 NIL NIL NIL) (-262 510240 510565 510951 "DRAWPT" 511529 T DRAWPT (NIL) -7 NIL NIL NIL) (-261 504827 505750 506829 "DRAW" 509214 NIL DRAW (NIL T) -7 NIL NIL NIL) (-260 504460 504513 504631 "DRAWHACK" 504768 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-259 503191 503460 503751 "DRAWCX" 504189 T DRAWCX (NIL) -7 NIL NIL NIL) (-258 502706 502775 502926 "DRAWCURV" 503117 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-257 493174 495136 497251 "DRAWCFUN" 500611 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-256 489938 491867 491908 "DQAGG" 492537 NIL DQAGG (NIL T) -9 NIL 492811 NIL) (-255 478062 484531 484614 "DPOLCAT" 486466 NIL DPOLCAT (NIL T T T T) -9 NIL 487011 NIL) (-254 472898 474247 476205 "DPOLCAT-" 476210 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-253 466020 472759 472857 "DPMO" 472862 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-252 459045 465800 465967 "DPMM" 465972 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-251 458523 458737 458835 "DOMTMPLT" 458967 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-250 457956 458325 458405 "DOMCTOR" 458463 T DOMCTOR (NIL) -8 NIL NIL NIL) (-249 457168 457436 457587 "DOMAIN" 457825 T DOMAIN (NIL) -8 NIL NIL NIL) (-248 451156 456803 456955 "DMP" 457069 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-247 450756 450812 450956 "DLP" 451094 NIL DLP (NIL T) -7 NIL NIL NIL) (-246 444578 450083 450273 "DLIST" 450598 NIL DLIST (NIL T) -8 NIL NIL NIL) (-245 441375 443431 443472 "DLAGG" 444022 NIL DLAGG (NIL T) -9 NIL 444252 NIL) (-244 440051 440715 440743 "DIVRING" 440835 T DIVRING (NIL) -9 NIL 440918 NIL) (-243 439288 439478 439778 "DIVRING-" 439783 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-242 437390 437747 438153 "DISPLAY" 438902 T DISPLAY (NIL) -7 NIL NIL NIL) (-241 431278 437304 437367 "DIRPROD" 437372 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-240 430126 430329 430594 "DIRPROD2" 431071 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-239 418901 424907 424960 "DIRPCAT" 425370 NIL DIRPCAT (NIL NIL T) -9 NIL 426210 NIL) (-238 416227 416869 417750 "DIRPCAT-" 418087 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-237 415514 415674 415860 "DIOSP" 416061 T DIOSP (NIL) -7 NIL NIL NIL) (-236 412169 414426 414467 "DIOPS" 414901 NIL DIOPS (NIL T) -9 NIL 415130 NIL) (-235 411718 411832 412023 "DIOPS-" 412028 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-234 410541 411169 411197 "DIFRING" 411384 T DIFRING (NIL) -9 NIL 411494 NIL) (-233 410187 410264 410416 "DIFRING-" 410421 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-232 407923 409195 409236 "DIFEXT" 409599 NIL DIFEXT (NIL T) -9 NIL 409893 NIL) (-231 406208 406636 407302 "DIFEXT-" 407307 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-230 403483 405740 405781 "DIAGG" 405786 NIL DIAGG (NIL T) -9 NIL 405806 NIL) (-229 402867 403024 403276 "DIAGG-" 403281 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-228 398284 401826 402103 "DHMATRIX" 402636 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-227 393896 394805 395815 "DFSFUN" 397294 T DFSFUN (NIL) -7 NIL NIL NIL) (-226 388975 392827 393139 "DFLOAT" 393604 T DFLOAT (NIL) -8 NIL NIL NIL) (-225 387238 387519 387908 "DFINTTLS" 388683 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-224 384267 385259 385659 "DERHAM" 386904 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-223 382068 384042 384131 "DEQUEUE" 384211 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-222 381322 381455 381638 "DEGRED" 381930 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-221 377752 378497 379343 "DEFINTRF" 380550 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-220 375307 375776 376368 "DEFINTEF" 377271 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-219 374657 374927 375042 "DEFAST" 375212 T DEFAST (NIL) -8 NIL NIL NIL) (-218 368661 374252 374401 "DECIMAL" 374528 T DECIMAL (NIL) -8 NIL NIL NIL) (-217 366173 366631 367137 "DDFACT" 368205 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-216 365769 365812 365963 "DBLRESP" 366124 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-215 363641 364002 364362 "DBASE" 365536 NIL DBASE (NIL T) -8 NIL NIL NIL) (-214 362883 363121 363267 "DATAARY" 363540 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-213 361989 362842 362870 "D03FAFA" 362875 T D03FAFA (NIL) -8 NIL NIL NIL) (-212 361096 361948 361976 "D03EEFA" 361981 T D03EEFA (NIL) -8 NIL NIL NIL) (-211 359046 359512 360001 "D03AGNT" 360627 T D03AGNT (NIL) -7 NIL NIL NIL) (-210 358335 359005 359033 "D02EJFA" 359038 T D02EJFA (NIL) -8 NIL NIL NIL) (-209 357624 358294 358322 "D02CJFA" 358327 T D02CJFA (NIL) -8 NIL NIL NIL) (-208 356913 357583 357611 "D02BHFA" 357616 T D02BHFA (NIL) -8 NIL NIL NIL) (-207 356202 356872 356900 "D02BBFA" 356905 T D02BBFA (NIL) -8 NIL NIL NIL) (-206 349399 350988 352594 "D02AGNT" 354616 T D02AGNT (NIL) -7 NIL NIL NIL) (-205 347167 347690 348236 "D01WGTS" 348873 T D01WGTS (NIL) -7 NIL NIL NIL) (-204 346234 347126 347154 "D01TRNS" 347159 T D01TRNS (NIL) -8 NIL NIL NIL) (-203 345302 346193 346221 "D01GBFA" 346226 T D01GBFA (NIL) -8 NIL NIL NIL) (-202 344370 345261 345289 "D01FCFA" 345294 T D01FCFA (NIL) -8 NIL NIL NIL) (-201 343438 344329 344357 "D01ASFA" 344362 T D01ASFA (NIL) -8 NIL NIL NIL) (-200 342506 343397 343425 "D01AQFA" 343430 T D01AQFA (NIL) -8 NIL NIL NIL) (-199 341574 342465 342493 "D01APFA" 342498 T D01APFA (NIL) -8 NIL NIL NIL) (-198 340642 341533 341561 "D01ANFA" 341566 T D01ANFA (NIL) -8 NIL NIL NIL) (-197 339710 340601 340629 "D01AMFA" 340634 T D01AMFA (NIL) -8 NIL NIL NIL) (-196 338778 339669 339697 "D01ALFA" 339702 T D01ALFA (NIL) -8 NIL NIL NIL) (-195 337846 338737 338765 "D01AKFA" 338770 T D01AKFA (NIL) -8 NIL NIL NIL) (-194 336914 337805 337833 "D01AJFA" 337838 T D01AJFA (NIL) -8 NIL NIL NIL) (-193 330209 331762 333323 "D01AGNT" 335373 T D01AGNT (NIL) -7 NIL NIL NIL) (-192 329546 329674 329826 "CYCLOTOM" 330077 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-191 326281 326994 327721 "CYCLES" 328839 T CYCLES (NIL) -7 NIL NIL NIL) (-190 325593 325727 325898 "CVMP" 326142 NIL CVMP (NIL T) -7 NIL NIL NIL) (-189 323434 323692 324061 "CTRIGMNP" 325321 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-188 322870 323228 323301 "CTOR" 323381 T CTOR (NIL) -8 NIL NIL NIL) (-187 322379 322601 322702 "CTORKIND" 322789 T CTORKIND (NIL) -8 NIL NIL NIL) (-186 321670 321986 322014 "CTORCAT" 322196 T CTORCAT (NIL) -9 NIL 322309 NIL) (-185 321268 321379 321538 "CTORCAT-" 321543 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-184 320730 320942 321050 "CTORCALL" 321192 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-183 320104 320203 320356 "CSTTOOLS" 320627 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-182 315903 316560 317318 "CRFP" 319416 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-181 315378 315624 315716 "CRCEAST" 315831 T CRCEAST (NIL) -8 NIL NIL NIL) (-180 314425 314610 314838 "CRAPACK" 315182 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-179 313809 313910 314114 "CPMATCH" 314301 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-178 313534 313562 313668 "CPIMA" 313775 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-177 309882 310554 311273 "COORDSYS" 312869 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-176 309294 309415 309557 "CONTOUR" 309760 T CONTOUR (NIL) -8 NIL NIL NIL) (-175 305185 307297 307789 "CONTFRAC" 308834 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-174 305065 305086 305114 "CONDUIT" 305151 T CONDUIT (NIL) -9 NIL NIL NIL) (-173 304153 304707 304735 "COMRING" 304740 T COMRING (NIL) -9 NIL 304792 NIL) (-172 303207 303511 303695 "COMPPROP" 303989 T COMPPROP (NIL) -8 NIL NIL NIL) (-171 302868 302903 303031 "COMPLPAT" 303166 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-170 293159 302677 302786 "COMPLEX" 302791 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-169 292795 292852 292959 "COMPLEX2" 293096 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-168 292134 292255 292415 "COMPILER" 292655 T COMPILER (NIL) -8 NIL NIL NIL) (-167 291852 291887 291985 "COMPFACT" 292093 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275932 285926 285966 "COMPCAT" 286970 NIL COMPCAT (NIL T) -9 NIL 288318 NIL) (-165 265444 268371 271998 "COMPCAT-" 272354 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265173 265201 265304 "COMMUPC" 265410 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264967 265001 265060 "COMMONOP" 265134 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264523 264718 264805 "COMM" 264900 T COMM (NIL) -8 NIL NIL NIL) (-161 264099 264327 264402 "COMMAAST" 264468 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263348 263542 263570 "COMBOPC" 263908 T COMBOPC (NIL) -9 NIL 264083 NIL) (-159 262244 262454 262696 "COMBINAT" 263138 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258701 259275 259902 "COMBF" 261666 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257459 257817 258052 "COLOR" 258486 T COLOR (NIL) -8 NIL NIL NIL) (-156 256935 257180 257272 "COLONAST" 257387 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256575 256622 256747 "CMPLXRT" 256882 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256023 256275 256374 "CLLCTAST" 256496 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251522 252553 253633 "CLIP" 254963 T CLIP (NIL) -7 NIL NIL NIL) (-152 249868 250628 250867 "CLIF" 251349 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246043 248014 248055 "CLAGG" 248984 NIL CLAGG (NIL T) -9 NIL 249520 NIL) (-150 244465 244922 245505 "CLAGG-" 245510 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244009 244094 244234 "CINTSLPE" 244374 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241510 241981 242529 "CHVAR" 243537 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240684 241238 241266 "CHARZ" 241271 T CHARZ (NIL) -9 NIL 241286 NIL) (-146 240438 240478 240556 "CHARPOL" 240638 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239496 240083 240111 "CHARNZ" 240158 T CHARNZ (NIL) -9 NIL 240214 NIL) (-144 237402 238150 238503 "CHAR" 239163 T CHAR (NIL) -8 NIL NIL NIL) (-143 237128 237189 237217 "CFCAT" 237328 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236373 236484 236666 "CDEN" 237012 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232338 235526 235806 "CCLASS" 236113 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231589 231746 231923 "CATEGORY" 232181 T -10 (NIL) -8 NIL NIL NIL) (-139 231162 231508 231556 "CATCTOR" 231561 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230613 230865 230963 "CATAST" 231084 T CATAST (NIL) -8 NIL NIL NIL) (-137 230089 230334 230426 "CASEAST" 230541 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225098 226118 226871 "CARTEN" 229392 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224206 224354 224575 "CARTEN2" 224945 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222522 223356 223613 "CARD" 223969 T CARD (NIL) -8 NIL NIL NIL) (-133 222098 222326 222401 "CAPSLAST" 222467 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221602 221810 221838 "CACHSET" 221970 T CACHSET (NIL) -9 NIL 222048 NIL) (-131 221072 221394 221422 "CABMON" 221472 T CABMON (NIL) -9 NIL 221528 NIL) (-130 220545 220776 220886 "BYTEORD" 220982 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219527 220079 220221 "BYTE" 220384 T BYTE (NIL) -8 NIL NIL 220506) (-128 214877 219032 219204 "BYTEBUF" 219375 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212386 214569 214676 "BTREE" 214803 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209835 212034 212156 "BTOURN" 212296 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207205 209305 209346 "BTCAT" 209414 NIL BTCAT (NIL T) -9 NIL 209491 NIL) (-124 206872 206952 207101 "BTCAT-" 207106 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202137 206015 206043 "BTAGG" 206265 T BTAGG (NIL) -9 NIL 206426 NIL) (-122 201627 201752 201958 "BTAGG-" 201963 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198622 200905 201120 "BSTREE" 201444 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197760 197886 198070 "BRILL" 198478 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194412 196486 196527 "BRAGG" 197176 NIL BRAGG (NIL T) -9 NIL 197434 NIL) (-118 192941 193347 193902 "BRAGG-" 193907 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186170 192287 192471 "BPADICRT" 192789 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184485 186107 186152 "BPADIC" 186157 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184183 184213 184327 "BOUNDZRO" 184449 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179411 180609 181521 "BOP" 183291 T BOP (NIL) -8 NIL NIL NIL) (-113 177192 177596 178071 "BOP1" 178969 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176017 176766 176915 "BOOLEAN" 177063 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175296 175700 175754 "BMODULE" 175759 NIL BMODULE (NIL T T) -9 NIL 175824 NIL) (-110 171097 175094 175167 "BITS" 175243 T BITS (NIL) -8 NIL NIL NIL) (-109 170518 170637 170777 "BINDING" 170977 T BINDING (NIL) -8 NIL NIL NIL) (-108 164525 170115 170263 "BINARY" 170390 T BINARY (NIL) -8 NIL NIL NIL) (-107 162305 163780 163821 "BGAGG" 164081 NIL BGAGG (NIL T) -9 NIL 164218 NIL) (-106 162136 162168 162259 "BGAGG-" 162264 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161207 161520 161725 "BFUNCT" 161951 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159897 160075 160363 "BEZOUT" 161031 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156366 158749 159079 "BBTREE" 159600 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156100 156153 156181 "BASTYPE" 156300 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155952 155981 156054 "BASTYPE-" 156059 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155386 155462 155614 "BALFACT" 155863 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154242 154801 154987 "AUTOMOR" 155231 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153968 153973 153999 "ATTREG" 154004 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152220 152665 153017 "ATTRBUT" 153634 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151828 152048 152114 "ATTRAST" 152172 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151364 151477 151503 "ATRIG" 151704 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151173 151214 151301 "ATRIG-" 151306 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150818 151004 151030 "ASTCAT" 151035 T ASTCAT (NIL) -9 NIL 151065 NIL) (-92 150545 150604 150723 "ASTCAT-" 150728 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148694 150321 150409 "ASTACK" 150488 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147199 147496 147861 "ASSOCEQ" 148376 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146231 146858 146982 "ASP9" 147106 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145994 146179 146218 "ASP8" 146223 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144862 145599 145741 "ASP80" 145883 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143760 144497 144629 "ASP7" 144761 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142714 143437 143555 "ASP78" 143673 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141683 142394 142511 "ASP77" 142628 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140595 141321 141452 "ASP74" 141583 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139495 140230 140362 "ASP73" 140494 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138599 139321 139421 "ASP6" 139426 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137544 138276 138394 "ASP55" 138512 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136493 137218 137337 "ASP50" 137456 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135581 136194 136304 "ASP4" 136414 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134669 135282 135392 "ASP49" 135502 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133453 134208 134376 "ASP42" 134558 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132229 132986 133156 "ASP41" 133340 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131179 131906 132024 "ASP35" 132142 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130944 131127 131166 "ASP34" 131171 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130681 130748 130824 "ASP33" 130899 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129574 130316 130448 "ASP31" 130580 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129339 129522 129561 "ASP30" 129566 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129074 129143 129219 "ASP29" 129294 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128839 129022 129061 "ASP28" 129066 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128604 128787 128826 "ASP27" 128831 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127688 128302 128413 "ASP24" 128524 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126764 127490 127602 "ASP20" 127607 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125852 126465 126575 "ASP1" 126685 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124794 125526 125645 "ASP19" 125764 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124531 124598 124674 "ASP12" 124749 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123383 124130 124274 "ASP10" 124418 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121234 123227 123318 "ARRAY2" 123323 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116999 120882 120996 "ARRAY1" 121151 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116031 116204 116425 "ARRAY12" 116822 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110343 112261 112336 "ARR2CAT" 114966 NIL ARR2CAT (NIL T T T) -9 NIL 115724 NIL) (-56 107777 108521 109475 "ARR2CAT-" 109480 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107094 107404 107529 "ARITY" 107670 T ARITY (NIL) -8 NIL NIL NIL) (-54 105870 106022 106321 "APPRULE" 106930 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105521 105569 105688 "APPLYORE" 105816 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104875 105114 105234 "ANY" 105419 T ANY (NIL) -8 NIL NIL NIL) (-51 104153 104276 104433 "ANY1" 104749 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101683 102590 102917 "ANTISYM" 103877 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101175 101390 101486 "ANON" 101605 T ANON (NIL) -8 NIL NIL NIL) (-48 95424 99714 100168 "AN" 100739 T AN (NIL) -8 NIL NIL NIL) (-47 91322 92710 92761 "AMR" 93509 NIL AMR (NIL T T) -9 NIL 94109 NIL) (-46 90434 90655 91018 "AMR-" 91023 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74873 90351 90412 "ALIST" 90417 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74467 74636 "ALGSC" 74791 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-1346 (((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|)) 23)))
+(((-1234 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1346 ((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|)))) (-1057) (-1057) (-1185) (-1185) |#1| |#2|) (T -1234))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5 *7 *9)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1239 *6 *8 *10)) (-5 *1 (-1234 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1185)))))
+(-10 -7 (-15 -1346 ((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113)) (-2148 (($ (-1 |#1| (-569)) $) 184)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-569)) 73) (($ $ (-1090) (-569)) 88) (($ $ (-649 (-1090)) (-649 (-569))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-4339 (((-569) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-569)) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1235 |#1|) (-140) (-1057)) (T -1235))
+((-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1057)) (-4 *1 (-1235 *3)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1235 *3)) (-4 *3 (-1057)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-3011 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) (-3579 (*1 *1 *1 *2) (-2776 (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057)) (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
+(-13 (-1253 |t#1| (-569)) (-10 -8 (-15 -3323 ($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |t#1|))))) (-15 -2148 ($ (-1 |t#1| (-569)) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -3011 ((-412 (-958 |t#1|)) $ (-569))) (-15 -3011 ((-412 (-958 |t#1|)) $ (-569) (-569)))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (IF (|has| |t#1| (-15 -3579 (|t#1| |t#1| (-1185)))) (IF (|has| |t#1| (-15 -1712 ((-649 (-1185)) |t#1|))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1210)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1010)) (-6 (-1210))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-569) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-569) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1229) |has| |#1| (-367)) ((-1253 |#1| #0#) . T))
+((-4143 (((-112) $) 12)) (-4381 (((-3 |#3| "failed") $) 17) (((-3 (-1185) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL)) (-3150 ((|#3| $) 14) (((-1185) $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL)))
+(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|))) (-1237 |#2| |#3|) (-1057) (-1266 |#2|)) (T -1236))
+NIL
+(-10 -8 (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 ((|#2| $) 242 (-1759 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-1494 ((|#2| $) 278)) (-3956 (((-3 |#2| "failed") $) 274)) (-1773 ((|#2| $) 275)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 251 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 248 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) 260 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#2| "failed") $) 281) (((-3 (-569) "failed") $) 271 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) 269 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-1185) "failed") $) 253 (-1759 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-3150 ((|#2| $) 282) (((-569) $) 270 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) 268 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-1185) $) 252 (-1759 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-2612 (($ $) 277) (($ (-569) $) 276)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-2957 (((-694 |#2|) (-694 $)) 232 (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 231 (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 230 (-1759 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) 229 (-1759 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) 37)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-3406 (($) 244 (-1759 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-3712 (((-112) $) 258 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 236 (-1759 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 235 (-1759 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2349 (((-112) $) 35)) (-2177 (($ $) 240 (|has| |#1| (-367)))) (-4399 ((|#2| $) 238 (|has| |#1| (-367)))) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) 272 (-1759 (|has| |#2| (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) 259 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) 113)) (-2148 (($ (-1 |#1| (-569)) $) 184)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-569)) 73) (($ $ (-1090) (-569)) 88) (($ $ (-649 (-1090)) (-649 (-569))) 87)) (-3380 (($ $ $) 262 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2839 (($ $ $) 263 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1346 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-367)))) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-1784 (($ (-569) |#2|) 279)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-2307 (($) 273 (-1759 (|has| |#2| (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3231 (($ $) 243 (-1759 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3465 ((|#2| $) 246 (-1759 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) 249 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) 250 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) |#2|) 223 (-1759 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 |#2|)) 222 (-1759 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) 221 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) 220 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) 219 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) 218 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1120))) (($ $ |#2|) 217 (-1759 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 227 (|has| |#1| (-367))) (($ $ (-776)) 96 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 94 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) 101 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185) (-776)) 100 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1185))) 99 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185)) 98 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-3181 (($ $) 241 (|has| |#1| (-367)))) (-4412 ((|#2| $) 239 (|has| |#1| (-367)))) (-4339 (((-569) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-226) $) 257 (-1759 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-383) $) 256 (-1759 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-541) $) 255 (-1759 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) 234 (-1759 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) 233 (-1759 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 247 (-1759 (-1759 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#1| (-367))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 280) (($ (-1185)) 254 (-1759 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367)))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-569)) 71)) (-2239 (((-3 $ "failed") $) 60 (-2776 (-1759 (-2776 (|has| |#2| (-145)) (-1759 (|has| $ (-145)) (|has| |#2| (-915)))) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-2040 ((|#2| $) 245 (-1759 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) 261 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 225 (|has| |#1| (-367))) (($ $ (-776)) 97 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 95 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) 105 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185) (-776)) 104 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1185))) 103 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185)) 102 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-2978 (((-112) $ $) 265 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2956 (((-112) $ $) 266 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 264 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2944 (((-112) $ $) 267 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367))) (($ |#2| |#2|) 237 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-367))) (($ |#2| $) 215 (|has| |#1| (-367))) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1237 |#1| |#2|) (-140) (-1057) (-1266 |t#1|)) (T -1237))
+((-4339 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1266 *3)) (-5 *2 (-569)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *4 (-1057)) (-4 *1 (-1237 *4 *3)) (-4 *3 (-1266 *4)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3)))) (-2612 (*1 *1 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1266 *2)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1266 *3)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3)))) (-3956 (*1 *2 *1) (|partial| -12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3)))))
+(-13 (-1235 |t#1|) (-1046 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1784 ($ (-569) |t#2|)) (-15 -4339 ((-569) $)) (-15 -1494 (|t#2| $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)) (-15 -1773 (|t#2| $)) (-15 -3956 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-367)) (-6 (-1000 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 |#2|) |has| |#1| (-367)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-367)) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1185)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) ((-619 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) ((-619 (-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) ((-232 |#2|) |has| |#1| (-367)) ((-234) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 |#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) ((-289 $ $) |has| (-569) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-367) |has| |#1| (-367)) ((-342 |#2|) |has| |#1| (-367)) ((-381 |#2|) |has| |#1| (-367)) ((-405 |#2|) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 (-1185) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1185) |#2|))) ((-519 |#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 |#2|) |has| |#1| (-367)) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 |#2|) |has| |#1| (-367)) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 |#2|) |has| |#1| (-367)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-644 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-569)))) ((-644 |#2|) |has| |#1| (-367)) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 |#2|) |has| |#1| (-367)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-796) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-797) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-799) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-800) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-825) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-853) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-855) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-855))) (-12 (|has| |#1| (-367)) (|has| |#2| (-825)))) ((-906 (-1185)) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1185)))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) ((-892 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-569)))) ((-890 |#2|) |has| |#1| (-367)) ((-915) -12 (|has| |#1| (-367)) (|has| |#2| (-915))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1000 |#2|) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1030) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) ((-1046 (-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569)))) ((-1046 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569)))) ((-1046 #2#) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) ((-1046 |#2|) . T) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 |#2|) |has| |#1| (-367)) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 |#2|) |has| |#1| (-367)) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) -12 (|has| |#1| (-367)) (|has| |#2| (-1160))) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1225) |has| |#1| (-367)) ((-1229) |has| |#1| (-367)) ((-1235 |#1|) . T) ((-1253 |#1| #0#) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 81)) (-1938 ((|#2| $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 100)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 109) (($ $ (-569) (-569)) 111)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 51)) (-1494 ((|#2| $) 11)) (-3956 (((-3 |#2| "failed") $) 35)) (-1773 ((|#2| $) 36)) (-2771 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 59)) (-4118 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 157) (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-1185) "failed") $) NIL (-12 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-3150 ((|#2| $) 156) (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-1185) $) NIL (-12 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-2612 (($ $) 65) (($ (-569) $) 28)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 |#2|) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) 88)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 124 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 126 (|has| |#1| (-561)))) (-3406 (($) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-3712 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) 74)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) 105) (((-569) $ (-569)) 107)) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-367)))) (-4399 ((|#2| $) 165 (|has| |#1| (-367)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) 148)) (-2148 (($ (-1 |#1| (-569)) $) 144)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-569)) 20) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-3380 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2839 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1346 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-367)))) (-2662 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1784 (($ (-569) |#2|) 10)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 159 (|has| |#1| (-367)))) (-3579 (($ $) 228 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 233 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210)))))) (-2307 (($) NIL (-12 (|has| |#2| (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3231 (($ $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3465 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 138)) (-2407 (((-3 $ "failed") $ $) 128 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) |#2|) NIL (-12 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 |#2|)) NIL (-12 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) 103) (($ $ $) 90 (|has| (-569) (-1120))) (($ $ |#2|) NIL (-12 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 149 (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) 153 (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-3181 (($ $) NIL (|has| |#1| (-367)))) (-4412 ((|#2| $) 166 (|has| |#1| (-367)))) (-4339 (((-569) $) 12)) (-4128 (($ $) 212 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-226) $) NIL (-12 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-541) $) NIL (-12 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2007 (($ $) 136)) (-3796 (((-867) $) 267) (($ (-569)) 24) (($ |#1|) 22 (|has| |#1| (-173))) (($ |#2|) 21) (($ (-1185)) NIL (-12 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367)))) (($ (-412 (-569))) 169 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-569)) 85)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))) (-12 (|has| |#2| (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) 155 T CONST)) (-2170 ((|#1| $) 102)) (-2040 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 214 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 222 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 224 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 220 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 216 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1804 (($) 13 T CONST)) (-1815 (($) 18 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-2978 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2956 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2920 (((-112) $ $) 72)) (-2966 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2944 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 163 (|has| |#1| (-367))) (($ |#2| |#2|) 164 (|has| |#1| (-367)))) (-3024 (($ $) 227) (($ $ $) 78)) (-3012 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 84) (($ $ (-569)) 160 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 172 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-367))) (($ |#2| $) 161 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1238 |#1| |#2|) (-1237 |#1| |#2|) (-1057) (-1266 |#1|)) (T -1238))
+NIL
+(-1237 |#1| |#2|)
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-1267 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 10)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4355 (($ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3039 (((-112) $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2917 (($ $ (-569)) NIL) (($ $ (-569) (-569)) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-1494 (((-1267 |#1| |#2| |#3|) $) NIL)) (-3956 (((-3 (-1267 |#1| |#2| |#3|) "failed") $) NIL)) (-1773 (((-1267 |#1| |#2| |#3|) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1267 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-3150 (((-1267 |#1| |#2| |#3|) $) NIL) (((-1185) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-2612 (($ $) NIL) (($ (-569) $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-1267 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-1267 |#1| |#2| |#3|))) (|:| |vec| (-1275 (-1267 |#1| |#2| |#3|)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) NIL)) (-3011 (((-412 (-958 |#1|)) $ (-569)) NIL (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) NIL (|has| |#1| (-561)))) (-3406 (($) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-3712 (((-112) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) NIL) (((-569) $ (-569)) NIL)) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-367)))) (-4399 (((-1267 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) NIL)) (-2148 (($ (-1 |#1| (-569)) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-569)) 18) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-3380 (($ $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2839 (($ $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1784 (($ (-569) (-1267 |#1| |#2| |#3|)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 27 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 28 (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3231 (($ $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3465 (((-1267 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-569)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) (-1267 |#1| |#2| |#3|)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-519 (-1185) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-1267 |#1| |#2| |#3|))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-519 (-1185) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1267 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1267 |#1| |#2| |#3|))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1267 |#1| |#2| |#3|)) (-649 (-1267 |#1| |#2| |#3|))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) NIL) (($ $ $) NIL (|has| (-569) (-1120))) (($ $ (-1267 |#1| |#2| |#3|)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-289 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1271 |#2|)) 26) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 25 (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-3181 (($ $) NIL (|has| |#1| (-367)))) (-4412 (((-1267 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-4339 (((-569) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-541) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1267 |#1| |#2| |#3|)) NIL) (($ (-1271 |#2|)) 24) (($ (-1185)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (($ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-4383 ((|#1| $ (-569)) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 11)) (-2040 (((-1267 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1804 (($) 20 T CONST)) (-1815 (($) 15 T CONST)) (-2832 (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-2978 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2956 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2944 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367))) (($ (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1267 |#1| |#2| |#3|)) NIL (|has| |#1| (-367))) (($ (-1267 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1239 |#1| |#2| |#3|) (-13 (-1237 |#1| (-1267 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1239))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(-13 (-1237 |#1| (-1267 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|)))
+((-2138 (((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112)) 13)) (-3386 (((-423 |#1|) |#1|) 26)) (-3800 (((-423 |#1|) |#1|) 24)))
+(((-1240 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112)))) (-1251 (-569))) (T -1240))
+((-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))))
+(-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112))))
+((-1346 (((-1165 |#2|) (-1 |#2| |#1|) (-1242 |#1|)) 23 (|has| |#1| (-853))) (((-1242 |#2|) (-1 |#2| |#1|) (-1242 |#1|)) 17)))
+(((-1241 |#1| |#2|) (-10 -7 (-15 -1346 ((-1242 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) |%noBranch|)) (-1225) (-1225)) (T -1241))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-853)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1165 *6)) (-5 *1 (-1241 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1242 *6)) (-5 *1 (-1241 *5 *6)))))
+(-10 -7 (-15 -1346 ((-1242 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) |%noBranch|))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2821 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1346 (((-1165 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-853)))) (-1365 ((|#1| $) 15)) (-1487 ((|#1| $) 12)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1500 (((-569) $) 19)) (-2916 ((|#1| $) 18)) (-1812 ((|#1| $) 13)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-2485 (((-112) $) 17)) (-1380 (((-1165 |#1|) $) 41 (|has| |#1| (-853))) (((-1165 |#1|) (-649 $)) 40 (|has| |#1| (-853)))) (-1410 (($ |#1|) 26)) (-3796 (($ (-1102 |#1|)) 25) (((-867) $) 37 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3645 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2686 (($ $ (-569)) 14)) (-2920 (((-112) $ $) 30 (|has| |#1| (-1108)))))
+(((-1242 |#1|) (-13 (-1101 |#1|) (-10 -8 (-15 -3645 ($ |#1|)) (-15 -2821 ($ |#1|)) (-15 -3796 ($ (-1102 |#1|))) (-15 -2485 ((-112) $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-1165 |#1|))) |%noBranch|))) (-1225)) (T -1242))
+((-3645 (*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225)))) (-2821 (*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1102 *3)) (-4 *3 (-1225)) (-5 *1 (-1242 *3)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1225)))))
+(-13 (-1101 |#1|) (-10 -8 (-15 -3645 ($ |#1|)) (-15 -2821 ($ |#1|)) (-15 -3796 ($ (-1102 |#1|))) (-15 -2485 ((-112) $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-1165 |#1|))) |%noBranch|)))
+((-1346 (((-1248 |#3| |#4|) (-1 |#4| |#2|) (-1248 |#1| |#2|)) 15)))
+(((-1243 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 ((-1248 |#3| |#4|) (-1 |#4| |#2|) (-1248 |#1| |#2|)))) (-1185) (-1057) (-1185) (-1057)) (T -1243))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1248 *5 *6)) (-14 *5 (-1185)) (-4 *6 (-1057)) (-4 *8 (-1057)) (-5 *2 (-1248 *7 *8)) (-5 *1 (-1243 *5 *6 *7 *8)) (-14 *7 (-1185)))))
+(-10 -7 (-15 -1346 ((-1248 |#3| |#4|) (-1 |#4| |#2|) (-1248 |#1| |#2|))))
+((-2974 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4377 ((|#1| |#3|) 13)) (-3110 ((|#3| |#3|) 19)))
+(((-1244 |#1| |#2| |#3|) (-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-1000 |#1|) (-1251 |#2|)) (T -1244))
+((-2974 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1244 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-1244 *3 *4 *2)) (-4 *2 (-1251 *4)))) (-4377 (*1 *2 *3) (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-1244 *2 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1553 (((-3 |#2| "failed") |#2| (-776) |#1|) 37)) (-1752 (((-3 |#2| "failed") |#2| (-776)) 38)) (-1959 (((-3 (-2 (|:| -4398 |#2|) (|:| -4410 |#2|)) "failed") |#2|) 52)) (-1816 (((-649 |#2|) |#2|) 54)) (-3293 (((-3 |#2| "failed") |#2| |#2|) 48)))
+(((-1245 |#1| |#2|) (-10 -7 (-15 -1752 ((-3 |#2| "failed") |#2| (-776))) (-15 -1553 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -3293 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1959 ((-3 (-2 (|:| -4398 |#2|) (|:| -4410 |#2|)) "failed") |#2|)) (-15 -1816 ((-649 |#2|) |#2|))) (-13 (-561) (-147)) (-1251 |#1|)) (T -1245))
+((-1816 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3)) (-5 *1 (-1245 *4 *3)) (-4 *3 (-1251 *4)))) (-1959 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-1245 *4 *3)) (-4 *3 (-1251 *4)))) (-3293 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1251 *3)))) (-1553 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4)))) (-1752 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4)))))
+(-10 -7 (-15 -1752 ((-3 |#2| "failed") |#2| (-776))) (-15 -1553 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -3293 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1959 ((-3 (-2 (|:| -4398 |#2|) (|:| -4410 |#2|)) "failed") |#2|)) (-15 -1816 ((-649 |#2|) |#2|)))
+((-3477 (((-3 (-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1246 |#1| |#2|) (-10 -7 (-15 -3477 ((-3 (-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) "failed") |#2| |#2|))) (-561) (-1251 |#1|)) (T -1246))
+((-3477 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-1246 *4 *3)) (-4 *3 (-1251 *4)))))
+(-10 -7 (-15 -3477 ((-3 (-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) "failed") |#2| |#2|)))
+((-1484 ((|#2| |#2| |#2|) 22)) (-3413 ((|#2| |#2| |#2|) 36)) (-2082 ((|#2| |#2| |#2| (-776) (-776)) 44)))
+(((-1247 |#1| |#2|) (-10 -7 (-15 -1484 (|#2| |#2| |#2|)) (-15 -3413 (|#2| |#2| |#2|)) (-15 -2082 (|#2| |#2| |#2| (-776) (-776)))) (-1057) (-1251 |#1|)) (T -1247))
+((-2082 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-1247 *4 *2)) (-4 *2 (-1251 *4)))) (-3413 (*1 *2 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3)))) (-1484 (*1 *2 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3)))))
+(-10 -7 (-15 -1484 (|#2| |#2| |#2|)) (-15 -3413 (|#2| |#2| |#2|)) (-15 -2082 (|#2| |#2| |#2| (-776) (-776))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3678 (((-1275 |#2|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#2|)) NIL)) (-3767 (((-1181 $) $ (-1090)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) NIL (|has| |#2| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#2| (-367)))) (-2401 (($ $ (-776)) NIL)) (-2452 (($ $ (-776)) NIL)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-1090) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#2| (-173))) ((|#2| $ $) NIL (|has| |#2| (-173)))) (-2368 (($ $ $) NIL (|has| |#2| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#2| (-367)))) (-1525 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#2| (-561)))) (-3514 (((-2 (|:| -1435 |#2|) (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-1090)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-776) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-1466 (((-776) $ $) NIL (|has| |#2| (-561)))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#2| (-1160)))) (-1700 (($ (-1181 |#2|) (-1090)) NIL) (($ (-1181 $) (-1090)) NIL)) (-3003 (($ $ (-776)) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-776)) 18) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-1894 (((-1181 |#2|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#2| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#2| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2448 (($ $ (-776) |#2| $) NIL)) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#2|) NIL) (($ $ (-649 (-1090)) (-649 |#2|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#2| (-367)))) (-1869 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#2| (-561))) ((|#2| (-412 $) |#2|) NIL (|has| |#2| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#2| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#2| (-173))) ((|#2| $) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4339 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-1090)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#2| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#2| (-561)))) (-3796 (((-867) $) 13) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1090)) NIL) (($ (-1271 |#1|)) 20) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) 14 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1248 |#1| |#2|) (-13 (-1251 |#2|) (-621 (-1271 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#2| $)))) (-1185) (-1057)) (T -1248))
+((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1248 *4 *3)) (-14 *4 (-1185)) (-4 *3 (-1057)))))
+(-13 (-1251 |#2|) (-621 (-1271 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#2| $))))
+((-1346 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1249 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|))) (-1057) (-1251 |#1|) (-1057) (-1251 |#3|)) (T -1249))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *2 (-1251 *6)) (-5 *1 (-1249 *5 *4 *6 *2)) (-4 *4 (-1251 *5)))))
+(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3678 (((-1275 |#2|) $ (-776)) 129)) (-1712 (((-649 (-1090)) $) 16)) (-3103 (($ (-1181 |#2|)) 80)) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) 21)) (-3534 (((-423 (-1181 $)) (-1181 $)) 204)) (-1830 (($ $) 194)) (-3764 (((-423 $) $) 192)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 95)) (-2401 (($ $ (-776)) 84)) (-2452 (($ $ (-776)) 86)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4381 (((-3 |#2| "failed") $) 132) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#2| $) 130) (((-412 (-569)) $) NIL) (((-569) $) NIL) (((-1090) $) NIL)) (-3405 (($ $ $) 170)) (-3514 (((-2 (|:| -1435 |#2|) (|:| -4007 $) (|:| -2054 $)) $ $) 172)) (-1466 (((-776) $ $) 189)) (-3885 (((-3 $ "failed") $) 138)) (-3923 (($ |#2| (-776)) NIL) (($ $ (-1090) (-776)) 59) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) 54) (((-649 (-776)) $ (-649 (-1090))) 55)) (-1894 (((-1181 |#2|) $) 72)) (-2306 (((-3 (-1090) "failed") $) 52)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) 83)) (-3579 (($ $) 219)) (-2307 (($) 134)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 201)) (-2156 (((-423 (-1181 $)) (-1181 $)) 101)) (-3814 (((-423 (-1181 $)) (-1181 $)) 99)) (-3800 (((-423 $) $) 120)) (-1725 (($ $ (-649 (-297 $))) 51) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#2|) 39) (($ $ (-649 (-1090)) (-649 |#2|)) 36) (($ $ (-1090) $) 32) (($ $ (-649 (-1090)) (-649 $)) 30)) (-2431 (((-776) $) 207)) (-1869 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) 164) ((|#2| (-412 $) |#2|) 206) (((-412 $) $ (-412 $)) 188)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 212)) (-3517 (($ $ (-1090)) 157) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) 155) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4339 (((-776) $) NIL) (((-776) $ (-1090)) 17) (((-649 (-776)) $ (-649 (-1090))) 23)) (-3833 ((|#2| $) NIL) (($ $ (-1090)) 140)) (-1960 (((-3 $ "failed") $ $) 180) (((-3 (-412 $) "failed") (-412 $) $) 176)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1090)) 64) (($ (-412 (-569))) NIL) (($ $) NIL)))
+(((-1250 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1869 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -1869 (|#2| (-412 |#1|) |#2|)) (-15 -3818 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3514 ((-2 (|:| -1435 |#2|) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -1960 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -1960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1466 ((-776) |#1| |#1|)) (-15 -1869 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2452 (|#1| |#1| (-776))) (-15 -2401 (|#1| |#1| (-776))) (-15 -4226 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| (-776))) (-15 -3103 (|#1| (-1181 |#2|))) (-15 -1894 ((-1181 |#2|) |#1|)) (-15 -3678 ((-1275 |#2|) |#1| (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| |#2|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3534 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3833 (|#1| |#1| (-1090))) (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3722 ((-776) |#1| (-649 (-1090)))) (-15 -3722 ((-776) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3923 (|#1| |#1| (-1090) (-776))) (-15 -2272 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -2272 ((-776) |#1| (-1090))) (-15 -2306 ((-3 (-1090) "failed") |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -4339 ((-776) |#1| (-1090))) (-15 -3796 (|#1| (-1090))) (-15 -4381 ((-3 (-1090) "failed") |#1|)) (-15 -3150 ((-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1090) |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 ((-776) |#1|)) (-15 -3923 (|#1| |#2| (-776))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -2272 ((-776) |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -3517 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1090) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1090)))) (-15 -3517 (|#1| |#1| (-1090))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1251 |#2|) (-1057)) (T -1250))
+NIL
+(-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1869 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -1869 (|#2| (-412 |#1|) |#2|)) (-15 -3818 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3514 ((-2 (|:| -1435 |#2|) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -1960 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -1960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1466 ((-776) |#1| |#1|)) (-15 -1869 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2452 (|#1| |#1| (-776))) (-15 -2401 (|#1| |#1| (-776))) (-15 -4226 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| (-776))) (-15 -3103 (|#1| (-1181 |#2|))) (-15 -1894 ((-1181 |#2|) |#1|)) (-15 -3678 ((-1275 |#2|) |#1| (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| |#2|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3534 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3833 (|#1| |#1| (-1090))) (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3722 ((-776) |#1| (-649 (-1090)))) (-15 -3722 ((-776) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3923 (|#1| |#1| (-1090) (-776))) (-15 -2272 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -2272 ((-776) |#1| (-1090))) (-15 -2306 ((-3 (-1090) "failed") |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -4339 ((-776) |#1| (-1090))) (-15 -3796 (|#1| (-1090))) (-15 -4381 ((-3 (-1090) "failed") |#1|)) (-15 -3150 ((-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1090) |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 ((-776) |#1|)) (-15 -3923 (|#1| |#2| (-776))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -2272 ((-776) |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -3517 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1090) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1090)))) (-15 -3517 (|#1| |#1| (-1090))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3678 (((-1275 |#1|) $ (-776)) 240)) (-1712 (((-649 (-1090)) $) 112)) (-3103 (($ (-1181 |#1|)) 238)) (-3767 (((-1181 $) $ (-1090)) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 (-1090))) 113)) (-2208 (((-3 $ "failed") $ $) 20)) (-1726 (($ $ $) 225 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-2227 (((-112) $ $) 210 (|has| |#1| (-367)))) (-2401 (($ $ (-776)) 233)) (-2452 (($ $ (-776)) 232)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-457)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) 138)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) (((-1090) $) 139)) (-3346 (($ $ $ (-1090)) 110 (|has| |#1| (-173))) ((|#1| $ $) 228 (|has| |#1| (-173)))) (-2368 (($ $ $) 214 (|has| |#1| (-367)))) (-1883 (($ $) 156)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 213 (|has| |#1| (-367)))) (-1525 (($ $ $) 231)) (-3405 (($ $ $) 222 (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) 221 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 208 (|has| |#1| (-367)))) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ (-1090)) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-776) $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ $) 226 (|has| |#1| (-561)))) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-3885 (((-3 $ "failed") $) 206 (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) 119) (($ (-1181 $) (-1090)) 118)) (-3003 (($ $ (-776)) 237)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 217 (|has| |#1| (-367)))) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| (-776)) 155) (($ $ (-1090) (-776)) 121) (($ $ (-649 (-1090)) (-649 (-776))) 120)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) 122) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 235)) (-2272 (((-776) $) 172) (((-776) $ (-1090)) 124) (((-649 (-776)) $ (-649 (-1090))) 123)) (-2492 (($ (-1 (-776) (-776)) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-1894 (((-1181 |#1|) $) 239)) (-2306 (((-3 (-1090) "failed") $) 125)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3435 (((-1167) $) 10)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) 234)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) 115)) (-3579 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) 205 (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 215 (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 209 (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ (-1090) |#1|) 143) (($ $ (-649 (-1090)) (-649 |#1|)) 142) (($ $ (-1090) $) 141) (($ $ (-649 (-1090)) (-649 $)) 140)) (-2431 (((-776) $) 211 (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-412 $) (-412 $) (-412 $)) 227 (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) 219 (|has| |#1| (-367))) (((-412 $) $ (-412 $)) 207 (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) 236)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 212 (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) 109 (|has| |#1| (-173))) ((|#1| $) 229 (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) 46) (($ $ (-649 (-1090))) 45) (($ $ (-1090) (-776)) 44) (($ $ (-649 (-1090)) (-649 (-776))) 43) (($ $ (-776)) 255) (($ $) 253) (($ $ (-1185)) 252 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 251 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 250 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 249 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-4339 (((-776) $) 152) (((-776) $ (-1090)) 132) (((-649 (-776)) $ (-649 (-1090))) 131)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ (-1090)) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-1960 (((-3 $ "failed") $ $) 224 (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) 223 (|has| |#1| (-561)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ (-1090)) 137) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ (-776)) 157) (($ $ (-1090) (-776)) 130) (($ $ (-649 (-1090)) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1090)) 42) (($ $ (-649 (-1090))) 41) (($ $ (-1090) (-776)) 40) (($ $ (-649 (-1090)) (-649 (-776))) 39) (($ $ (-776)) 256) (($ $) 254) (($ $ (-1185)) 248 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 247 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 246 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 245 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1251 |#1|) (-140) (-1057)) (T -1251))
+((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1251 *4)) (-4 *4 (-1057)) (-5 *2 (-1275 *4)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-5 *2 (-1181 *3)))) (-3103 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1057)) (-4 *1 (-1251 *3)))) (-3003 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-1565 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-2976 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *3)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *4)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-1525 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)))) (-3517 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173)))) (-3346 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173)))) (-1869 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561)))) (-1466 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561)) (-5 *2 (-776)))) (-1726 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-1960 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-1960 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -1435 *3) (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *3)))) (-3818 (*1 *2 *1 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1251 *3)))) (-1869 (*1 *2 *3 *2) (-12 (-5 *3 (-412 *1)) (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))))
+(-13 (-955 |t#1| (-776) (-1090)) (-289 |t#1| |t#1|) (-289 $ $) (-234) (-232 |t#1|) (-10 -8 (-15 -3678 ((-1275 |t#1|) $ (-776))) (-15 -1894 ((-1181 |t#1|) $)) (-15 -3103 ($ (-1181 |t#1|))) (-15 -3003 ($ $ (-776))) (-15 -1565 ((-3 $ "failed") $ (-776))) (-15 -2976 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -4226 ((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776))) (-15 -2401 ($ $ (-776))) (-15 -2452 ($ $ (-776))) (-15 -1525 ($ $ $)) (-15 -3517 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1160)) (-6 (-1160)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -3059 (|t#1| $)) (-15 -3346 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-289 (-412 $) (-412 $))) (-15 -1869 ((-412 $) (-412 $) (-412 $))) (-15 -1466 ((-776) $ $)) (-15 -1726 ($ $ $)) (-15 -1960 ((-3 $ "failed") $ $)) (-15 -1960 ((-3 (-412 $) "failed") (-412 $) $)) (-15 -3405 ($ $ $)) (-15 -3514 ((-2 (|:| -1435 |t#1|) (|:| -4007 $) (|:| -2054 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (-15 -3818 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-310)) (-6 -4443) (-15 -1869 (|t#1| (-412 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-15 -3579 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1090)) . T) ((-621 |#1|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) . T) ((-289 (-412 $) (-412 $)) |has| |#1| (-561)) ((-289 |#1| |#1|) . T) ((-289 $ $) . T) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 $) . T) ((-329 |#1| #0#) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-519 #2# |#1|) . T) ((-519 #2# $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-731) . T) ((-906 #2#) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-892 (-383)) -12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383)))) ((-892 (-569)) -12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))) ((-955 |#1| #0# #2#) . T) ((-915) |has| |#1| (-915)) ((-926) |has| |#1| (-367)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #2#) . T) ((-1046 |#1|) . T) ((-1059 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-1160)) ((-1229) |has| |#1| (-915)))
+((-1712 (((-649 (-1090)) $) 34)) (-1883 (($ $) 31)) (-3923 (($ |#2| |#3|) NIL) (($ $ (-1090) |#3|) 28) (($ $ (-649 (-1090)) (-649 |#3|)) 27)) (-1849 (($ $) 14)) (-1857 ((|#2| $) 12)) (-4339 ((|#3| $) 10)))
+(((-1252 |#1| |#2| |#3|) (-10 -8 (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 |#3|))) (-15 -3923 (|#1| |#1| (-1090) |#3|)) (-15 -1883 (|#1| |#1|)) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4339 (|#3| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1857 (|#2| |#1|))) (-1253 |#2| |#3|) (-1057) (-797)) (T -1252))
+NIL
+(-10 -8 (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 |#3|))) (-15 -3923 (|#1| |#1| (-1090) |#3|)) (-15 -1883 (|#1| |#1|)) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4339 (|#3| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1857 (|#2| |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-2300 (((-1165 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-1677 (((-112) $) 85)) (-1466 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2349 (((-112) $) 35)) (-3003 (($ $ (-927)) 113)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73) (($ $ (-1090) |#2|) 88) (($ $ (-649 (-1090)) (-649 |#2|)) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3166 (($ $ |#2|) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1869 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4339 ((|#2| $) 76)) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3091 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1253 |#1| |#2|) (-140) (-1057) (-797)) (T -1253))
+((-2300 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-1165 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1869 (*1 *2 *1 *3) (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-1185)))) (-2170 (*1 *2 *1) (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-3003 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-1466 (*1 *2 *1 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-2917 (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-2917 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-3091 (*1 *2 *1 *3) (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3796 (*2 (-1185)))) (-4 *2 (-1057)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-1725 (*1 *2 *1 *3) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1165 *3)))))
+(-13 (-981 |t#1| |t#2| (-1090)) (-10 -8 (-15 -2300 ((-1165 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1869 (|t#1| $ |t#2|)) (-15 -2672 ((-1185) $)) (-15 -2170 (|t#1| $)) (-15 -3003 ($ $ (-927))) (-15 -1466 (|t#2| $)) (-15 -1466 (|t#2| $ |t#2|)) (-15 -2917 ($ $ |t#2|)) (-15 -2917 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3796 (|t#1| (-1185)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3091 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3166 ($ $ |t#2|)) (IF (|has| |t#2| (-1120)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-234)) (IF (|has| |t#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1725 ((-1165 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-289 $ $) |has| |#2| (-1120)) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| |#2| (-1090)) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-1830 ((|#2| |#2|) 12)) (-3764 (((-423 |#2|) |#2|) 14)) (-3367 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))) 30)))
+(((-1254 |#1| |#2|) (-10 -7 (-15 -3764 ((-423 |#2|) |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -3367 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))))) (-561) (-13 (-1251 |#1|) (-561) (-10 -8 (-15 -1870 ($ $ $))))) (T -1254))
+((-3367 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-569)))) (-4 *4 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $))))) (-4 *3 (-561)) (-5 *1 (-1254 *3 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-1254 *3 *2)) (-4 *2 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $))))))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1254 *4 *3)) (-4 *3 (-13 (-1251 *4) (-561) (-10 -8 (-15 -1870 ($ $ $))))))))
+(-10 -7 (-15 -3764 ((-423 |#2|) |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -3367 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))))))
+((-1346 (((-1260 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1260 |#1| |#3| |#5|)) 24)))
+(((-1255 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1346 ((-1260 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1260 |#1| |#3| |#5|)))) (-1057) (-1057) (-1185) (-1185) |#1| |#2|) (T -1255))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1260 *5 *7 *9)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1260 *6 *8 *10)) (-5 *1 (-1255 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1185)))))
+(-10 -7 (-15 -1346 ((-1260 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1260 |#1| |#3| |#5|))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-412 (-569))) 73) (($ $ (-1090) (-412 (-569))) 88) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1256 |#1|) (-140) (-1057)) (T -1256))
+((-3323 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))) (-4 *4 (-1057)) (-4 *1 (-1256 *4)))) (-3003 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1256 *3)) (-4 *3 (-1057)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) (-3579 (*1 *1 *1 *2) (-2776 (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057)) (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
+(-13 (-1253 |t#1| (-412 (-569))) (-10 -8 (-15 -3323 ($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |t#1|))))) (-15 -3003 ($ $ (-412 (-569)))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (IF (|has| |t#1| (-15 -3579 (|t#1| |t#1| (-1185)))) (IF (|has| |t#1| (-15 -1712 ((-649 (-1185)) |t#1|))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1210)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1010)) (-6 (-1210))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1229) |has| |#1| (-367)) ((-1253 |#1| #0#) . T))
+((-4143 (((-112) $) 12)) (-4381 (((-3 |#3| "failed") $) 17)) (-3150 ((|#3| $) 14)))
+(((-1257 |#1| |#2| |#3|) (-10 -8 (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|))) (-1258 |#2| |#3|) (-1057) (-1235 |#2|)) (T -1257))
+NIL
+(-10 -8 (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#2| "failed") $) 194)) (-3150 ((|#2| $) 195)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-3646 (((-412 (-569)) $) 191)) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) |#2|) 192)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-412 (-569))) 73) (($ $ (-1090) (-412 (-569))) 88) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-4029 ((|#2| $) 190)) (-4380 (((-3 |#2| "failed") $) 188)) (-1784 ((|#2| $) 189)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 193) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1258 |#1| |#2|) (-140) (-1057) (-1235 |t#1|)) (T -1258))
+((-4339 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3)) (-5 *2 (-412 (-569))))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1057)) (-4 *1 (-1258 *4 *3)) (-4 *3 (-1235 *4)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3)) (-5 *2 (-412 (-569))))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3)))) (-4380 (*1 *2 *1) (|partial| -12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3)))))
+(-13 (-1256 |t#1|) (-1046 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1797 ($ (-412 (-569)) |t#2|)) (-15 -3646 ((-412 (-569)) $)) (-15 -4029 (|t#2| $)) (-15 -4339 ((-412 (-569)) $)) (-15 -1784 (|t#2| $)) (-15 -4380 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1046 |#2|) . T) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1229) |has| |#1| (-367)) ((-1253 |#1| #0#) . T) ((-1256 |#1|) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 104)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) 116) (($ $ (-412 (-569)) (-412 (-569))) 118)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 54)) (-2771 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 65)) (-4118 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 172 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL)) (-3150 ((|#2| $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) 85)) (-3646 (((-412 (-569)) $) 13)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) |#2|) 11)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) 74)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) 113) (((-412 (-569)) $ (-412 (-569))) 114)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 130) (($ $ (-412 (-569))) 128)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) 33) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 125)) (-2662 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4029 ((|#2| $) 12)) (-4380 (((-3 |#2| "failed") $) 44)) (-1784 ((|#2| $) 45)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 101 (|has| |#1| (-367)))) (-3579 (($ $) 146 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 151 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) 122)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) 108) (($ $ $) 94 (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) 138 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) 16)) (-4128 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 120)) (-3796 (((-867) $) NIL) (($ (-569)) 37) (($ |#1|) 27 (|has| |#1| (-173))) (($ |#2|) 34) (($ (-412 (-569))) 139 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 107)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 127 T CONST)) (-2170 ((|#1| $) 106)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 21 T CONST)) (-1815 (($) 17 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) 72)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 100 (|has| |#1| (-367)))) (-3024 (($ $) 142) (($ $ $) 78)) (-3012 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 82) (($ $ (-569)) 157 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 158 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1259 |#1| |#2|) (-1258 |#1| |#2|) (-1057) (-1235 |#1|)) (T -1259))
+NIL
+(-1258 |#1| |#2|)
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 11)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1239 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1267 |#1| |#2| |#3|) "failed") $) 22)) (-3150 (((-1239 |#1| |#2| |#3|) $) NIL) (((-1267 |#1| |#2| |#3|) $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3646 (((-412 (-569)) $) 69)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) (-1239 |#1| |#2| |#3|)) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) 30) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4029 (((-1239 |#1| |#2| |#3|) $) 72)) (-4380 (((-3 (-1239 |#1| |#2| |#3|) "failed") $) NIL)) (-1784 (((-1239 |#1| |#2| |#3|) $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1271 |#2|)) 38)) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 109) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1239 |#1| |#2| |#3|)) 16) (($ (-1267 |#1| |#2| |#3|)) 17) (($ (-1271 |#2|)) 36) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 12)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 32 T CONST)) (-1815 (($) 26 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 34)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1260 |#1| |#2| |#3|) (-13 (-1258 |#1| (-1239 |#1| |#2| |#3|)) (-1046 (-1267 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1260))
+((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(-13 (-1258 |#1| (-1239 |#1| |#2| |#3|)) (-1046 (-1267 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 37)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-412 (-569))))) (((-3 (-1260 |#2| |#3| |#4|) "failed") $) 22)) (-3150 (((-569) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-412 (-569))))) (((-1260 |#2| |#3| |#4|) $) NIL)) (-1883 (($ $) 41)) (-3086 (((-3 $ "failed") $) 27)) (-2642 (($ $) NIL (|has| (-1260 |#2| |#3| |#4|) (-457)))) (-2870 (($ $ (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|) $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 11)) (-2198 (((-112) $) NIL)) (-3923 (($ (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) 25)) (-2272 (((-322 |#2| |#3| |#4|) $) NIL)) (-2492 (($ (-1 (-322 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) $) NIL)) (-1346 (($ (-1 (-1260 |#2| |#3| |#4|) (-1260 |#2| |#3| |#4|)) $) NIL)) (-3013 (((-3 (-848 |#2|) "failed") $) 90)) (-1849 (($ $) NIL)) (-1857 (((-1260 |#2| |#3| |#4|) $) 20)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 (((-1260 |#2| |#3| |#4|) $) NIL)) (-2407 (((-3 $ "failed") $ (-1260 |#2| |#3| |#4|)) NIL (|has| (-1260 |#2| |#3| |#4|) (-561))) (((-3 $ "failed") $ $) NIL)) (-1426 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1167))) "failed") $) 74)) (-4339 (((-322 |#2| |#3| |#4|) $) 17)) (-3833 (((-1260 |#2| |#3| |#4|) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-1260 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL (-2776 (|has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569)))) (|has| (-1260 |#2| |#3| |#4|) (-1046 (-412 (-569))))))) (-2512 (((-649 (-1260 |#2| |#3| |#4|)) $) NIL)) (-4383 (((-1260 |#2| |#3| |#4|) $ (-322 |#2| |#3| |#4|)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| (-1260 |#2| |#3| |#4|) (-145)))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| (-1260 |#2| |#3| |#4|) (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ (-1260 |#2| |#3| |#4|)) NIL (|has| (-1260 |#2| |#3| |#4|) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-1260 |#2| |#3| |#4|)) NIL) (($ (-1260 |#2| |#3| |#4|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569)))))))
+(((-1261 |#1| |#2| |#3| |#4|) (-13 (-329 (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -1426 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1167))) "failed") $)))) (-13 (-1046 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1210) (-435 |#1|)) (-1185) |#2|) (T -1261))
+((-3013 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-1261 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4))) (-1426 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 *4 *5 *6)) (|:| |%expon| (-322 *4 *5 *6)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))))) (|:| |%type| (-1167)))) (-5 *1 (-1261 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4))))
+(-13 (-329 (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -1426 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1167))) "failed") $))))
+((-2188 ((|#2| $) 34)) (-2563 ((|#2| $) 18)) (-1568 (($ $) 52)) (-2790 (($ $ (-569)) 85)) (-3914 (((-112) $ (-776)) 46)) (-2052 ((|#2| $ |#2|) 82)) (-1344 ((|#2| $ |#2|) 78)) (-3943 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1803 (($ $ (-649 $)) 81)) (-2550 ((|#2| $) 17)) (-3525 (($ $) NIL) (($ $ (-776)) 59)) (-2280 (((-649 $) $) 31)) (-1534 (((-112) $ $) 69)) (-2314 (((-112) $ (-776)) 45)) (-4254 (((-112) $ (-776)) 43)) (-1887 (((-112) $) 33)) (-1724 ((|#2| $) 25) (($ $ (-776)) 64)) (-1869 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3966 (((-112) $) 23)) (-1641 (($ $) 55)) (-4142 (($ $) 86)) (-1490 (((-776) $) 58)) (-4322 (($ $) 57)) (-2443 (($ $ $) 77) (($ |#2| $) NIL)) (-4001 (((-649 $) $) 32)) (-2920 (((-112) $ $) 67)) (-2428 (((-776) $) 51)))
+(((-1262 |#1| |#2|) (-10 -8 (-15 -2790 (|#1| |#1| (-569))) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -1344 (|#2| |#1| |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -4142 (|#1| |#1|)) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -2563 (|#2| |#1|)) (-15 -2550 (|#2| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -1869 (|#2| |#1| "first")) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2052 (|#2| |#1| |#2|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1803 (|#1| |#1| (-649 |#1|))) (-15 -1534 ((-112) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776)))) (-1263 |#2|) (-1225)) (T -1262))
+NIL
+(-10 -8 (-15 -2790 (|#1| |#1| (-569))) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -1344 (|#2| |#1| |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -4142 (|#1| |#1|)) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -2563 (|#2| |#1|)) (-15 -2550 (|#2| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -1869 (|#2| |#1| "first")) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2052 (|#2| |#1| |#2|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1803 (|#1| |#1| (-649 |#1|))) (-15 -1534 ((-112) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-2866 (($ $ $) 62 (|has| $ (-6 -4448))) (($ $ |#1|) 61 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 79) (($ |#1| $) 78)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1263 |#1|) (-140) (-1225)) (T -1263))
+((-2443 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-3525 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-3525 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1724 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-4322 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-1641 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-4142 (*1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2747 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2530 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3943 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-1344 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))))
+(-13 (-1018 |t#1|) (-10 -8 (-15 -2443 ($ $ $)) (-15 -2443 ($ |t#1| $)) (-15 -3513 (|t#1| $)) (-15 -1869 (|t#1| $ "first")) (-15 -3513 ($ $ (-776))) (-15 -3525 ($ $)) (-15 -1869 ($ $ "rest")) (-15 -3525 ($ $ (-776))) (-15 -1724 (|t#1| $)) (-15 -1869 (|t#1| $ "last")) (-15 -1724 ($ $ (-776))) (-15 -1568 ($ $)) (-15 -2550 (|t#1| $)) (-15 -2563 (|t#1| $)) (-15 -4322 ($ $)) (-15 -1490 ((-776) $)) (-15 -1641 ($ $)) (IF (|has| $ (-6 -4448)) (PROGN (-15 -2866 ($ $ $)) (-15 -2866 ($ $ |t#1|)) (-15 -4142 ($ $)) (-15 -2747 (|t#1| $ |t#1|)) (-15 -3943 (|t#1| $ "first" |t#1|)) (-15 -2530 ($ $ $)) (-15 -3943 ($ $ "rest" $)) (-15 -1344 (|t#1| $ |t#1|)) (-15 -3943 (|t#1| $ "last" |t#1|)) (-15 -2790 ($ $ (-569)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T))
+((-1346 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1264 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|))) (-1057) (-1057) (-1266 |#1|) (-1266 |#2|)) (T -1264))
+((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *2 (-1266 *6)) (-5 *1 (-1264 *5 *6 *4 *2)) (-4 *4 (-1266 *5)))))
+(-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|)))
+((-4143 (((-112) $) 17)) (-2771 (($ $) 106)) (-2626 (($ $) 82)) (-2746 (($ $) 102)) (-2601 (($ $) 78)) (-4118 (($ $) 110)) (-2647 (($ $) 86)) (-2662 (($ $) 76)) (-4389 (($ $) 74)) (-4128 (($ $) 112)) (-2661 (($ $) 88)) (-2783 (($ $) 108)) (-2635 (($ $) 84)) (-2758 (($ $) 104)) (-2614 (($ $) 80)) (-3796 (((-867) $) 62) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4161 (($ $) 118)) (-2701 (($ $) 94)) (-4140 (($ $) 114)) (-2675 (($ $) 90)) (-4183 (($ $) 122)) (-2723 (($ $) 98)) (-1503 (($ $) 124)) (-2734 (($ $) 100)) (-4175 (($ $) 120)) (-2712 (($ $) 96)) (-4151 (($ $) 116)) (-2689 (($ $) 92)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-412 (-569))) 72)))
+(((-1265 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -4143 ((-112) |#1|)) (-15 -3796 ((-867) |#1|))) (-1266 |#2|) (-1057)) (T -1265))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -4143 ((-112) |#1|)) (-15 -3796 ((-867) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-776)) 110) (($ $ (-776) (-776)) 109)) (-2300 (((-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 167) (($ (-1165 |#1|)) 165)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-3938 (($ $) 164)) (-3278 (((-958 |#1|) $ (-776)) 162) (((-958 |#1|) $ (-776) (-776)) 161)) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $) 112) (((-776) $ (-776)) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113)) (-2148 (($ (-1 |#1| (-569)) $) 163)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-776)) 73) (($ $ (-1090) (-776)) 88) (($ $ (-649 (-1090)) (-649 (-776))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3579 (($ $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 158 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-3166 (($ $ (-776)) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1869 ((|#1| $ (-776)) 116) (($ $ $) 93 (|has| (-776) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-4339 (((-776) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-2512 (((-1165 |#1|) $) 166)) (-4383 ((|#1| $ (-776)) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-776)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ |#1|) 160 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569)))))))
+(((-1266 |#1|) (-140) (-1057)) (T -1266))
+((-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-776)) (|:| |c| *3)))) (-4 *3 (-1057)) (-4 *1 (-1266 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-5 *2 (-1165 *3)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-4 *1 (-1266 *3)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1266 *3)) (-4 *3 (-1057)))) (-3278 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057)) (-5 *2 (-958 *4)))) (-3278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057)) (-5 *2 (-958 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) (-3579 (*1 *1 *1 *2) (-2776 (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))))
+(-13 (-1253 |t#1| (-776)) (-10 -8 (-15 -3323 ($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |t#1|))))) (-15 -2512 ((-1165 |t#1|) $)) (-15 -3323 ($ (-1165 |t#1|))) (-15 -3938 ($ $)) (-15 -2148 ($ (-1 |t#1| (-569)) $)) (-15 -3278 ((-958 |t#1|) $ (-776))) (-15 -3278 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-367)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (IF (|has| |t#1| (-15 -3579 (|t#1| |t#1| (-1185)))) (IF (|has| |t#1| (-15 -1712 ((-649 (-1185)) |t#1|))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1210)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1010)) (-6 (-1210))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-776) |#1|))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-776) (-1120)) ((-293) |has| |#1| (-561)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1253 |#1| #0#) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 92)) (-2020 (((-1248 |#2| |#1|) $ (-776)) 73)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) 144 (|has| |#1| (-561)))) (-2917 (($ $ (-776)) 129) (($ $ (-776) (-776)) 132)) (-2300 (((-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 43)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 52) (($ (-1165 |#1|)) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-3490 (($ $) 136)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3938 (($ $) 142)) (-3278 (((-958 |#1|) $ (-776)) 63) (((-958 |#1|) $ (-776) (-776)) 65)) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $) NIL) (((-776) $ (-776)) NIL)) (-2349 (((-112) $) NIL)) (-2868 (($ $) 119)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1655 (($ (-569) (-569) $) 138)) (-3003 (($ $ (-927)) 141)) (-2148 (($ (-1 |#1| (-569)) $) 113)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 16) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 100)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-1597 (($ $) 117)) (-3374 (($ $) 115)) (-2892 (($ (-569) (-569) $) 140)) (-3579 (($ $) 152 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 158 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 153 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2347 (($ $ (-569) (-569)) 123)) (-3166 (($ $ (-776)) 125)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4230 (($ $) 121)) (-1725 (((-1165 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1869 ((|#1| $ (-776)) 97) (($ $ $) 134 (|has| (-776) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) 110 (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1271 |#2|)) 105)) (-4339 (((-776) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 127)) (-3796 (((-867) $) NIL) (($ (-569)) 26) (($ (-412 (-569))) 150 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 25 (|has| |#1| (-173))) (($ (-1248 |#2| |#1|)) 83) (($ (-1271 |#2|)) 22)) (-2512 (((-1165 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) 96)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 93)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-776)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 18 T CONST)) (-1815 (($) 13 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 109)) (-3012 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 147 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))))
+(((-1267 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (-15 -3374 ($ $)) (-15 -1597 ($ $)) (-15 -2868 ($ $)) (-15 -4230 ($ $)) (-15 -2347 ($ $ (-569) (-569))) (-15 -3490 ($ $)) (-15 -1655 ($ (-569) (-569) $)) (-15 -2892 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1267))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-1267 *3 *4 *5)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1267 *4 *5 *6)) (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3374 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-1597 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-2868 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-2347 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3))) (-3490 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-1655 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3))) (-2892 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (-15 -3374 ($ $)) (-15 -1597 ($ $)) (-15 -2868 ($ $)) (-15 -4230 ($ $)) (-15 -2347 ($ $ (-569) (-569))) (-15 -3490 ($ $)) (-15 -1655 ($ (-569) (-569) $)) (-15 -2892 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|)))
+((-1990 (((-1 (-1165 |#1|) (-649 (-1165 |#1|))) (-1 |#2| (-649 |#2|))) 24)) (-2175 (((-1 (-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3564 (((-1 (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2|)) 13)) (-1951 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3403 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1697 ((|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|)) 60)) (-1502 (((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))) 66)) (-1753 ((|#2| |#2| |#2|) 43)))
+(((-1268 |#1| |#2|) (-10 -7 (-15 -3564 ((-1 (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2|))) (-15 -2175 ((-1 (-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1990 ((-1 (-1165 |#1|) (-649 (-1165 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -1753 (|#2| |#2| |#2|)) (-15 -3403 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1951 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1697 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -1502 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))))) (-38 (-412 (-569))) (-1266 |#1|)) (T -1268))
+((-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6)))) (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1266 *5)) (-5 *2 (-649 *6)) (-5 *1 (-1268 *5 *6)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5)) (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1266 *5)) (-5 *1 (-1268 *5 *2)))) (-1951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-1753 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1268 *3 *2)) (-4 *2 (-1266 *3)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1266 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-649 (-1165 *4)))) (-5 *1 (-1268 *4 *5)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1266 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-1165 *4) (-1165 *4))) (-5 *1 (-1268 *4 *5)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1266 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-1165 *4))) (-5 *1 (-1268 *4 *5)))))
+(-10 -7 (-15 -3564 ((-1 (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2|))) (-15 -2175 ((-1 (-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1990 ((-1 (-1165 |#1|) (-649 (-1165 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -1753 (|#2| |#2| |#2|)) (-15 -3403 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1951 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1697 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -1502 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|))))))
+((-3047 ((|#2| |#4| (-776)) 34)) (-1452 ((|#4| |#2|) 29)) (-1709 ((|#4| (-412 |#2|)) 53 (|has| |#1| (-561)))) (-2946 (((-1 |#4| (-649 |#4|)) |#3|) 46)))
+(((-1269 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 (|#4| |#2|)) (-15 -3047 (|#2| |#4| (-776))) (-15 -2946 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -1709 (|#4| (-412 |#2|))) |%noBranch|)) (-1057) (-1251 |#1|) (-661 |#2|) (-1266 |#1|)) (T -1269))
+((-1709 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-561)) (-4 *4 (-1057)) (-4 *2 (-1266 *4)) (-5 *1 (-1269 *4 *5 *6 *2)) (-4 *6 (-661 *5)))) (-2946 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-1251 *4)) (-5 *2 (-1 *6 (-649 *6))) (-5 *1 (-1269 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1266 *4)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-1269 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1266 *5)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *3 (-1251 *4)) (-4 *2 (-1266 *4)) (-5 *1 (-1269 *4 *3 *5 *2)) (-4 *5 (-661 *3)))))
+(-10 -7 (-15 -1452 (|#4| |#2|)) (-15 -3047 (|#2| |#4| (-776))) (-15 -2946 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -1709 (|#4| (-412 |#2|))) |%noBranch|))
+NIL
+(((-1270) (-140)) (T -1270))
+NIL
+(-13 (-10 -7 (-6 -3057)))
+((-2417 (((-112) $ $) NIL)) (-2672 (((-1185)) 12)) (-3435 (((-1167) $) 18)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11) (((-1185) $) 8)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 15)))
+(((-1271 |#1|) (-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -3796 ((-1185) $)) (-15 -2672 ((-1185))))) (-1185)) (T -1271))
+((-3796 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2))) (-2672 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2))))
+(-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -3796 ((-1185) $)) (-15 -2672 ((-1185)))))
+((-3467 (($ (-776)) 19)) (-1367 (((-694 |#2|) $ $) 41)) (-3420 ((|#2| $) 51)) (-3845 ((|#2| $) 50)) (-3040 ((|#2| $ $) 36)) (-3260 (($ $ $) 47)) (-3024 (($ $) 23) (($ $ $) 29)) (-3012 (($ $ $) 15)) (* (($ (-569) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1272 |#1| |#2|) (-10 -8 (-15 -3420 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -1367 ((-694 |#2|) |#1| |#1|)) (-15 -3040 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3467 (|#1| (-776))) (-15 -3012 (|#1| |#1| |#1|))) (-1273 |#2|) (-1225)) (T -1272))
+NIL
+(-10 -8 (-15 -3420 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -1367 ((-694 |#2|) |#1| |#1|)) (-15 -3040 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3467 (|#1| (-776))) (-15 -3012 (|#1| |#1| |#1|)))
+((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3467 (($ (-776)) 113 (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) 106 (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3420 ((|#1| $) 103 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-4254 (((-112) $ (-776)) 10)) (-3845 ((|#1| $) 104 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-3040 ((|#1| $ $) 107 (|has| |#1| (-1057)))) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3260 (($ $ $) 105 (|has| |#1| (-1057)))) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-3024 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3012 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447)))))
+(((-1273 |#1|) (-140) (-1225)) (T -1273))
+((-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-25)))) (-3467 (*1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1273 *3)) (-4 *3 (-23)) (-4 *3 (-1225)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))) (-1367 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-1057)) (-5 *2 (-694 *3)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010)) (-4 *2 (-1057)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010)) (-4 *2 (-1057)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3012 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3467 ($ (-776))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3024 ($ $)) (-15 -3024 ($ $ $)) (-15 * ($ (-569) $))) |%noBranch|) (IF (|has| |t#1| (-731)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1057)) (PROGN (-15 -3040 (|t#1| $ $)) (-15 -1367 ((-694 |t#1|) $ $)) (-15 -3260 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1010)) (IF (|has| |t#1| (-1057)) (PROGN (-15 -3845 (|t#1| $)) (-15 -3420 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T))
+((-1610 (((-1275 |#2|) (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|) 13)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|) 15)) (-1346 (((-3 (-1275 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1275 |#1|)) 30) (((-1275 |#2|) (-1 |#2| |#1|) (-1275 |#1|)) 18)))
+(((-1274 |#1| |#2|) (-10 -7 (-15 -1610 ((-1275 |#2|) (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -1346 ((-1275 |#2|) (-1 |#2| |#1|) (-1275 |#1|))) (-15 -1346 ((-3 (-1275 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1275 |#1|)))) (-1225) (-1225)) (T -1274))
+((-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1275 *6)) (-5 *1 (-1274 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1275 *6)) (-5 *1 (-1274 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-1274 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1275 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-1275 *5)) (-5 *1 (-1274 *6 *5)))))
+(-10 -7 (-15 -1610 ((-1275 |#2|) (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -1346 ((-1275 |#2|) (-1 |#2| |#1|) (-1275 |#1|))) (-15 -1346 ((-3 (-1275 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1275 |#1|))))
+((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776)) NIL (|has| |#1| (-23)))) (-3504 (($ (-649 |#1|)) 11)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 16 (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) NIL (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) 12 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3420 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-4254 (((-112) $ (-776)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3040 ((|#1| $ $) NIL (|has| |#1| (-1057)))) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3260 (($ $ $) NIL (|has| |#1| (-1057)))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 20 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 10)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1275 |#1|) (-13 (-1273 |#1|) (-10 -8 (-15 -3504 ($ (-649 |#1|))))) (-1225)) (T -1275))
+((-3504 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1275 *3)))))
+(-13 (-1273 |#1|) (-10 -8 (-15 -3504 ($ (-649 |#1|)))))
+((-2417 (((-112) $ $) NIL)) (-1751 (((-1167) $ (-1167)) 107) (((-1167) $ (-1167) (-1167)) 105) (((-1167) $ (-1167) (-649 (-1167))) 104)) (-2223 (($) 69)) (-3989 (((-1280) $ (-473) (-927)) 54)) (-3157 (((-1280) $ (-927) (-1167)) 89) (((-1280) $ (-927) (-879)) 90)) (-2915 (((-1280) $ (-927) (-383) (-383)) 57)) (-3331 (((-1280) $ (-1167)) 84)) (-3118 (((-1280) $ (-927) (-1167)) 94)) (-4092 (((-1280) $ (-927) (-383) (-383)) 58)) (-1461 (((-1280) $ (-927) (-927)) 55)) (-1727 (((-1280) $) 85)) (-1315 (((-1280) $ (-927) (-1167)) 93)) (-1555 (((-1280) $ (-473) (-927)) 41)) (-4317 (((-1280) $ (-927) (-1167)) 92)) (-3350 (((-649 (-265)) $) 29) (($ $ (-649 (-265))) 30)) (-4204 (((-1280) $ (-776) (-776)) 52)) (-3633 (($ $) 70) (($ (-473) (-649 (-265))) 71)) (-3435 (((-1167) $) NIL)) (-2006 (((-569) $) 48)) (-3547 (((-1128) $) NIL)) (-2001 (((-1275 (-3 (-473) "undefined")) $) 47)) (-3895 (((-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $) 46)) (-3667 (((-1280) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569)) 83)) (-1945 (((-649 (-949 (-226))) $) NIL)) (-2844 (((-473) $ (-927)) 43)) (-2992 (((-1280) $ (-776) (-776) (-927) (-927)) 50)) (-1702 (((-1280) $ (-1167)) 95)) (-2542 (((-1280) $ (-927) (-1167)) 91)) (-3796 (((-867) $) 102)) (-4133 (((-1280) $) 96)) (-1520 (((-112) $ $) NIL)) (-1953 (((-1280) $ (-927) (-1167)) 87) (((-1280) $ (-927) (-879)) 88)) (-2920 (((-112) $ $) NIL)))
+(((-1276) (-13 (-1108) (-10 -8 (-15 -1945 ((-649 (-949 (-226))) $)) (-15 -2223 ($)) (-15 -3633 ($ $)) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -3633 ($ (-473) (-649 (-265)))) (-15 -3667 ((-1280) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -3895 ((-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -2001 ((-1275 (-3 (-473) "undefined")) $)) (-15 -3331 ((-1280) $ (-1167))) (-15 -1555 ((-1280) $ (-473) (-927))) (-15 -2844 ((-473) $ (-927))) (-15 -1953 ((-1280) $ (-927) (-1167))) (-15 -1953 ((-1280) $ (-927) (-879))) (-15 -3157 ((-1280) $ (-927) (-1167))) (-15 -3157 ((-1280) $ (-927) (-879))) (-15 -4317 ((-1280) $ (-927) (-1167))) (-15 -1315 ((-1280) $ (-927) (-1167))) (-15 -2542 ((-1280) $ (-927) (-1167))) (-15 -1702 ((-1280) $ (-1167))) (-15 -4133 ((-1280) $)) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -4092 ((-1280) $ (-927) (-383) (-383))) (-15 -2915 ((-1280) $ (-927) (-383) (-383))) (-15 -3118 ((-1280) $ (-927) (-1167))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -3989 ((-1280) $ (-473) (-927))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -1727 ((-1280) $)) (-15 -2006 ((-569) $)) (-15 -3796 ((-867) $))))) (T -1276))
+((-3796 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1276)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1276)))) (-2223 (*1 *1) (-5 *1 (-1276))) (-3633 (*1 *1 *1) (-5 *1 (-1276))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276)))) (-3350 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276)))) (-3633 (*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1276)))) (-3667 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569))))) (-5 *1 (-1276)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1275 (-3 (-473) "undefined"))) (-5 *1 (-1276)))) (-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1555 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1276)))) (-1953 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1953 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3157 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3157 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4317 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1315 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2542 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2992 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4092 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2915 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3118 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3989 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1461 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276)))) (-1751 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276)))) (-1751 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1276)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1276)))))
+(-13 (-1108) (-10 -8 (-15 -1945 ((-649 (-949 (-226))) $)) (-15 -2223 ($)) (-15 -3633 ($ $)) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -3633 ($ (-473) (-649 (-265)))) (-15 -3667 ((-1280) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -3895 ((-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -2001 ((-1275 (-3 (-473) "undefined")) $)) (-15 -3331 ((-1280) $ (-1167))) (-15 -1555 ((-1280) $ (-473) (-927))) (-15 -2844 ((-473) $ (-927))) (-15 -1953 ((-1280) $ (-927) (-1167))) (-15 -1953 ((-1280) $ (-927) (-879))) (-15 -3157 ((-1280) $ (-927) (-1167))) (-15 -3157 ((-1280) $ (-927) (-879))) (-15 -4317 ((-1280) $ (-927) (-1167))) (-15 -1315 ((-1280) $ (-927) (-1167))) (-15 -2542 ((-1280) $ (-927) (-1167))) (-15 -1702 ((-1280) $ (-1167))) (-15 -4133 ((-1280) $)) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -4092 ((-1280) $ (-927) (-383) (-383))) (-15 -2915 ((-1280) $ (-927) (-383) (-383))) (-15 -3118 ((-1280) $ (-927) (-1167))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -3989 ((-1280) $ (-473) (-927))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -1727 ((-1280) $)) (-15 -2006 ((-569) $)) (-15 -3796 ((-867) $))))
+((-2417 (((-112) $ $) NIL)) (-1432 (((-1280) $ (-383)) 169) (((-1280) $ (-383) (-383) (-383)) 170)) (-1751 (((-1167) $ (-1167)) 179) (((-1167) $ (-1167) (-1167)) 177) (((-1167) $ (-1167) (-649 (-1167))) 176)) (-2218 (($) 67)) (-3352 (((-1280) $ (-383) (-383) (-383) (-383) (-383)) 141) (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $) 139) (((-1280) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 140) (((-1280) $ (-569) (-569) (-383) (-383) (-383)) 144) (((-1280) $ (-383) (-383)) 145) (((-1280) $ (-383) (-383) (-383)) 152)) (-3227 (((-383)) 122) (((-383) (-383)) 123)) (-1359 (((-383)) 117) (((-383) (-383)) 119)) (-2902 (((-383)) 120) (((-383) (-383)) 121)) (-3863 (((-383)) 126) (((-383) (-383)) 127)) (-3475 (((-383)) 124) (((-383) (-383)) 125)) (-2915 (((-1280) $ (-383) (-383)) 171)) (-3331 (((-1280) $ (-1167)) 153)) (-3849 (((-1141 (-226)) $) 68) (($ $ (-1141 (-226))) 69)) (-3837 (((-1280) $ (-1167)) 187)) (-1593 (((-1280) $ (-1167)) 188)) (-4323 (((-1280) $ (-383) (-383)) 151) (((-1280) $ (-569) (-569)) 168)) (-1461 (((-1280) $ (-927) (-927)) 160)) (-1727 (((-1280) $) 137)) (-2864 (((-1280) $ (-1167)) 186)) (-2446 (((-1280) $ (-1167)) 134)) (-3350 (((-649 (-265)) $) 70) (($ $ (-649 (-265))) 71)) (-4204 (((-1280) $ (-776) (-776)) 159)) (-1889 (((-1280) $ (-776) (-949 (-226))) 193)) (-2420 (($ $) 73) (($ (-1141 (-226)) (-1167)) 74) (($ (-1141 (-226)) (-649 (-265))) 75)) (-2172 (((-1280) $ (-383) (-383) (-383)) 131)) (-3435 (((-1167) $) NIL)) (-2006 (((-569) $) 128)) (-3686 (((-1280) $ (-383)) 174)) (-2965 (((-1280) $ (-383)) 191)) (-3547 (((-1128) $) NIL)) (-1446 (((-1280) $ (-383)) 190)) (-2816 (((-1280) $ (-1167)) 136)) (-2992 (((-1280) $ (-776) (-776) (-927) (-927)) 158)) (-2232 (((-1280) $ (-1167)) 133)) (-1702 (((-1280) $ (-1167)) 135)) (-3925 (((-1280) $ (-157) (-157)) 157)) (-3796 (((-867) $) 166)) (-4133 (((-1280) $) 138)) (-1856 (((-1280) $ (-1167)) 189)) (-1520 (((-112) $ $) NIL)) (-1953 (((-1280) $ (-1167)) 132)) (-2920 (((-112) $ $) NIL)))
+(((-1277) (-13 (-1108) (-10 -8 (-15 -1359 ((-383))) (-15 -1359 ((-383) (-383))) (-15 -2902 ((-383))) (-15 -2902 ((-383) (-383))) (-15 -3227 ((-383))) (-15 -3227 ((-383) (-383))) (-15 -3475 ((-383))) (-15 -3475 ((-383) (-383))) (-15 -3863 ((-383))) (-15 -3863 ((-383) (-383))) (-15 -2218 ($)) (-15 -2420 ($ $)) (-15 -2420 ($ (-1141 (-226)) (-1167))) (-15 -2420 ($ (-1141 (-226)) (-649 (-265)))) (-15 -3849 ((-1141 (-226)) $)) (-15 -3849 ($ $ (-1141 (-226)))) (-15 -1889 ((-1280) $ (-776) (-949 (-226)))) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -3331 ((-1280) $ (-1167))) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -3352 ((-1280) $ (-383) (-383) (-383) (-383) (-383))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -3352 ((-1280) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3352 ((-1280) $ (-569) (-569) (-383) (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383) (-383))) (-15 -1702 ((-1280) $ (-1167))) (-15 -1953 ((-1280) $ (-1167))) (-15 -2232 ((-1280) $ (-1167))) (-15 -2446 ((-1280) $ (-1167))) (-15 -2816 ((-1280) $ (-1167))) (-15 -4323 ((-1280) $ (-383) (-383))) (-15 -4323 ((-1280) $ (-569) (-569))) (-15 -1432 ((-1280) $ (-383))) (-15 -1432 ((-1280) $ (-383) (-383) (-383))) (-15 -2915 ((-1280) $ (-383) (-383))) (-15 -2864 ((-1280) $ (-1167))) (-15 -1446 ((-1280) $ (-383))) (-15 -2965 ((-1280) $ (-383))) (-15 -3837 ((-1280) $ (-1167))) (-15 -1593 ((-1280) $ (-1167))) (-15 -1856 ((-1280) $ (-1167))) (-15 -2172 ((-1280) $ (-383) (-383) (-383))) (-15 -3686 ((-1280) $ (-383))) (-15 -1727 ((-1280) $)) (-15 -3925 ((-1280) $ (-157) (-157))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -4133 ((-1280) $)) (-15 -2006 ((-569) $))))) (T -1277))
+((-1359 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-2902 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3227 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3475 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3863 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-2218 (*1 *1) (-5 *1 (-1277))) (-2420 (*1 *1 *1) (-5 *1 (-1277))) (-2420 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1167)) (-5 *1 (-1277)))) (-2420 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1277)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277)))) (-3849 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277)))) (-1889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277)))) (-3350 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1461 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2992 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1953 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2232 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2816 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-4323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-4323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1432 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1432 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2915 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2864 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1446 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3837 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1593 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1856 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2172 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3925 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1277)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1277)))))
+(-13 (-1108) (-10 -8 (-15 -1359 ((-383))) (-15 -1359 ((-383) (-383))) (-15 -2902 ((-383))) (-15 -2902 ((-383) (-383))) (-15 -3227 ((-383))) (-15 -3227 ((-383) (-383))) (-15 -3475 ((-383))) (-15 -3475 ((-383) (-383))) (-15 -3863 ((-383))) (-15 -3863 ((-383) (-383))) (-15 -2218 ($)) (-15 -2420 ($ $)) (-15 -2420 ($ (-1141 (-226)) (-1167))) (-15 -2420 ($ (-1141 (-226)) (-649 (-265)))) (-15 -3849 ((-1141 (-226)) $)) (-15 -3849 ($ $ (-1141 (-226)))) (-15 -1889 ((-1280) $ (-776) (-949 (-226)))) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -3331 ((-1280) $ (-1167))) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -3352 ((-1280) $ (-383) (-383) (-383) (-383) (-383))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -3352 ((-1280) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3352 ((-1280) $ (-569) (-569) (-383) (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383) (-383))) (-15 -1702 ((-1280) $ (-1167))) (-15 -1953 ((-1280) $ (-1167))) (-15 -2232 ((-1280) $ (-1167))) (-15 -2446 ((-1280) $ (-1167))) (-15 -2816 ((-1280) $ (-1167))) (-15 -4323 ((-1280) $ (-383) (-383))) (-15 -4323 ((-1280) $ (-569) (-569))) (-15 -1432 ((-1280) $ (-383))) (-15 -1432 ((-1280) $ (-383) (-383) (-383))) (-15 -2915 ((-1280) $ (-383) (-383))) (-15 -2864 ((-1280) $ (-1167))) (-15 -1446 ((-1280) $ (-383))) (-15 -2965 ((-1280) $ (-383))) (-15 -3837 ((-1280) $ (-1167))) (-15 -1593 ((-1280) $ (-1167))) (-15 -1856 ((-1280) $ (-1167))) (-15 -2172 ((-1280) $ (-383) (-383) (-383))) (-15 -3686 ((-1280) $ (-383))) (-15 -1727 ((-1280) $)) (-15 -3925 ((-1280) $ (-157) (-157))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -4133 ((-1280) $)) (-15 -2006 ((-569) $))))
+((-1403 (((-649 (-1167)) (-649 (-1167))) 104) (((-649 (-1167))) 96)) (-2822 (((-649 (-1167))) 94)) (-3146 (((-649 (-927)) (-649 (-927))) 69) (((-649 (-927))) 64)) (-1507 (((-649 (-776)) (-649 (-776))) 61) (((-649 (-776))) 55)) (-2908 (((-1280)) 71)) (-4271 (((-927) (-927)) 87) (((-927)) 86)) (-1379 (((-927) (-927)) 85) (((-927)) 84)) (-3108 (((-879) (-879)) 81) (((-879)) 80)) (-2504 (((-226)) 91) (((-226) (-383)) 93)) (-2770 (((-927)) 88) (((-927) (-927)) 89)) (-2878 (((-927) (-927)) 83) (((-927)) 82)) (-4152 (((-879) (-879)) 75) (((-879)) 73)) (-3823 (((-879) (-879)) 77) (((-879)) 76)) (-2217 (((-879) (-879)) 79) (((-879)) 78)))
+(((-1278) (-10 -7 (-15 -4152 ((-879))) (-15 -4152 ((-879) (-879))) (-15 -3823 ((-879))) (-15 -3823 ((-879) (-879))) (-15 -2217 ((-879))) (-15 -2217 ((-879) (-879))) (-15 -3108 ((-879))) (-15 -3108 ((-879) (-879))) (-15 -2878 ((-927))) (-15 -2878 ((-927) (-927))) (-15 -1507 ((-649 (-776)))) (-15 -1507 ((-649 (-776)) (-649 (-776)))) (-15 -3146 ((-649 (-927)))) (-15 -3146 ((-649 (-927)) (-649 (-927)))) (-15 -2908 ((-1280))) (-15 -1403 ((-649 (-1167)))) (-15 -1403 ((-649 (-1167)) (-649 (-1167)))) (-15 -2822 ((-649 (-1167)))) (-15 -1379 ((-927))) (-15 -4271 ((-927))) (-15 -1379 ((-927) (-927))) (-15 -4271 ((-927) (-927))) (-15 -2770 ((-927) (-927))) (-15 -2770 ((-927))) (-15 -2504 ((-226) (-383))) (-15 -2504 ((-226))))) (T -1278))
+((-2504 (*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1278)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1278)))) (-2770 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-4271 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-4271 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-1379 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-2822 (*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))) (-1403 (*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))) (-2908 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1278)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278)))) (-3146 (*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278)))) (-1507 (*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278)))) (-2878 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-2878 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-3108 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-2217 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-2217 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-3823 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-4152 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))))
+(-10 -7 (-15 -4152 ((-879))) (-15 -4152 ((-879) (-879))) (-15 -3823 ((-879))) (-15 -3823 ((-879) (-879))) (-15 -2217 ((-879))) (-15 -2217 ((-879) (-879))) (-15 -3108 ((-879))) (-15 -3108 ((-879) (-879))) (-15 -2878 ((-927))) (-15 -2878 ((-927) (-927))) (-15 -1507 ((-649 (-776)))) (-15 -1507 ((-649 (-776)) (-649 (-776)))) (-15 -3146 ((-649 (-927)))) (-15 -3146 ((-649 (-927)) (-649 (-927)))) (-15 -2908 ((-1280))) (-15 -1403 ((-649 (-1167)))) (-15 -1403 ((-649 (-1167)) (-649 (-1167)))) (-15 -2822 ((-649 (-1167)))) (-15 -1379 ((-927))) (-15 -4271 ((-927))) (-15 -1379 ((-927) (-927))) (-15 -4271 ((-927) (-927))) (-15 -2770 ((-927) (-927))) (-15 -2770 ((-927))) (-15 -2504 ((-226) (-383))) (-15 -2504 ((-226))))
+((-3333 (((-473) (-649 (-649 (-949 (-226)))) (-649 (-265))) 22) (((-473) (-649 (-649 (-949 (-226))))) 21) (((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 20)) (-3136 (((-1276) (-649 (-649 (-949 (-226)))) (-649 (-265))) 33) (((-1276) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 32)) (-3796 (((-1276) (-473)) 48)))
+(((-1279) (-10 -7 (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3796 ((-1276) (-473))))) (T -1279))
+((-3796 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1276)) (-5 *1 (-1279)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-1279)))) (-3136 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-1279)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1279)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473)) (-5 *1 (-1279)))) (-3333 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1279)))))
+(-10 -7 (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3796 ((-1276) (-473))))
+((-2579 (($) 6)) (-3796 (((-867) $) 9)))
+(((-1280) (-13 (-618 (-867)) (-10 -8 (-15 -2579 ($))))) (T -1280))
+((-2579 (*1 *1) (-5 *1 (-1280))))
+(-13 (-618 (-867)) (-10 -8 (-15 -2579 ($))))
+((-3035 (($ $ |#2|) 10)))
+(((-1281 |#1| |#2|) (-10 -8 (-15 -3035 (|#1| |#1| |#2|))) (-1282 |#2|) (-367)) (T -1281))
+NIL
+(-10 -8 (-15 -3035 (|#1| |#1| |#2|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2377 (((-134)) 33)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 34)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1282 |#1|) (-140) (-367)) (T -1282))
+((-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-367)))) (-2377 (*1 *2) (-12 (-4 *1 (-1282 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
+(-13 (-722 |t#1|) (-10 -8 (-15 -3035 ($ $ |t#1|)) (-15 -2377 ((-134)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T))
+((-3877 (((-649 (-1219 |#1|)) (-1185) (-1219 |#1|)) 83)) (-3609 (((-1165 (-1165 (-958 |#1|))) (-1185) (-1165 (-958 |#1|))) 63)) (-3660 (((-1 (-1165 (-1219 |#1|)) (-1165 (-1219 |#1|))) (-776) (-1219 |#1|) (-1165 (-1219 |#1|))) 74)) (-2291 (((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776)) 65)) (-2279 (((-1 (-1181 (-958 |#1|)) (-958 |#1|)) (-1185)) 32)) (-3871 (((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776)) 64)))
+(((-1283 |#1|) (-10 -7 (-15 -2291 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3871 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3609 ((-1165 (-1165 (-958 |#1|))) (-1185) (-1165 (-958 |#1|)))) (-15 -2279 ((-1 (-1181 (-958 |#1|)) (-958 |#1|)) (-1185))) (-15 -3877 ((-649 (-1219 |#1|)) (-1185) (-1219 |#1|))) (-15 -3660 ((-1 (-1165 (-1219 |#1|)) (-1165 (-1219 |#1|))) (-776) (-1219 |#1|) (-1165 (-1219 |#1|))))) (-367)) (T -1283))
+((-3660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1219 *6)) (-5 *2 (-1 (-1165 *4) (-1165 *4))) (-5 *1 (-1283 *6)) (-5 *5 (-1165 *4)))) (-3877 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-649 (-1219 *5))) (-5 *1 (-1283 *5)) (-5 *4 (-1219 *5)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1 (-1181 (-958 *4)) (-958 *4))) (-5 *1 (-1283 *4)) (-4 *4 (-367)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-1165 (-1165 (-958 *5)))) (-5 *1 (-1283 *5)) (-5 *4 (-1165 (-958 *5))))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4)))) (-5 *1 (-1283 *4)) (-4 *4 (-367)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4)))) (-5 *1 (-1283 *4)) (-4 *4 (-367)))))
+(-10 -7 (-15 -2291 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3871 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3609 ((-1165 (-1165 (-958 |#1|))) (-1185) (-1165 (-958 |#1|)))) (-15 -2279 ((-1 (-1181 (-958 |#1|)) (-958 |#1|)) (-1185))) (-15 -3877 ((-649 (-1219 |#1|)) (-1185) (-1219 |#1|))) (-15 -3660 ((-1 (-1165 (-1219 |#1|)) (-1165 (-1219 |#1|))) (-776) (-1219 |#1|) (-1165 (-1219 |#1|)))))
+((-3615 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 82)) (-4002 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 81)))
+(((-1284 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|))) (-353) (-1251 |#1|) (-1251 |#2|) (-414 |#2| |#3|)) (T -1284))
+((-3615 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-1284 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))) (-4002 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5)))))
+(-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)))
+((-2417 (((-112) $ $) NIL)) (-3069 (((-1143) $) 11)) (-1638 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1285) (-13 (-1091) (-10 -8 (-15 -1638 ((-1143) $)) (-15 -3069 ((-1143) $))))) (T -1285))
+((-1638 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285)))))
+(-13 (-1091) (-10 -8 (-15 -1638 ((-1143) $)) (-15 -3069 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2385 (((-1143) $) 9)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)))
+(((-1286) (-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $))))) (T -1286))
+((-2385 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1286)))))
+(-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 58)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 81) (($ (-569)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-173)))) (-2721 (((-776)) NIL T CONST)) (-3284 (((-1280) (-776)) 16)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 37 T CONST)) (-1815 (($) 84 T CONST)) (-2920 (((-112) $ $) 87)) (-3035 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) 89) (($ $ $) NIL)) (-3012 (($ $ $) 63)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173)))))
+(((-1287 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1057) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776))))) (-1057) (-855) (-798) (-955 |#1| |#3| |#2|) (-649 |#2|) (-649 (-776)) (-776)) (T -1287))
+((-3035 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1057)) (-4 *3 (-855)) (-4 *4 (-798)) (-14 *6 (-649 *3)) (-5 *1 (-1287 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3)) (-14 *7 (-649 (-776))) (-14 *8 (-776)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) (-14 *8 (-649 *5)) (-5 *2 (-1280)) (-5 *1 (-1287 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5)) (-14 *9 (-649 *3)) (-14 *10 *3))))
+(-13 (-1057) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776)))))
+((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) 96)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) NIL (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2459 (((-649 |#4|) (-649 |#4|) $) 28 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 78)) (-2548 ((|#4| |#4| $) 83)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2882 (((-649 |#4|) $) NIL (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 84)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 32 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3644 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-649 |#4|)) 38)) (-3834 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) NIL)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1724 (((-3 |#4| "failed") $) NIL)) (-1586 (((-649 |#4|) $) 54)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) 82)) (-2151 (((-112) $ $) 93)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 77)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) NIL)) (-3166 (($ $ |#4|) NIL)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 75)) (-3635 (($) 46)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) NIL)) (-3381 (($ $ |#3|) NIL)) (-2963 (($ $ |#3|) NIL)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) NIL) (((-649 |#4|) $) 63)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-2425 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-649 |#4|)) 45)) (-2794 (((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-649 $) (-649 |#4|)) 74)) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4269 (((-112) |#3| $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447)))))
+(((-1288 |#1| |#2| |#3| |#4|) (-13 (-1218 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3644 ((-3 $ "failed") (-649 |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|))) (-15 -2794 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2794 ((-649 $) (-649 |#4|))))) (-561) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -1288))
+((-3644 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8)))) (-3644 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1288 *3 *4 *5 *6)))) (-2425 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8)))) (-2425 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1288 *3 *4 *5 *6)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1288 *6 *7 *8 *9))) (-5 *1 (-1288 *6 *7 *8 *9)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1288 *4 *5 *6 *7))) (-5 *1 (-1288 *4 *5 *6 *7)))))
+(-13 (-1218 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3644 ((-3 $ "failed") (-649 |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|))) (-15 -2794 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2794 ((-649 $) (-649 |#4|)))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1289 |#1|) (-140) (-1057)) (T -1289))
+NIL
+(-13 (-1057) (-111 |t#1| |t#1|) (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T))
+((-2417 (((-112) $ $) 67)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 52)) (-1604 (($ $ (-776)) 46)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ (-776)) 24 (|has| |#2| (-173))) (($ $ $) 25 (|has| |#2| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ $) 70) (($ $ (-824 |#1|)) 56) (($ $ |#1|) 60)) (-4381 (((-3 (-824 |#1|) "failed") $) NIL)) (-3150 (((-824 |#1|) $) NIL)) (-1883 (($ $) 39)) (-3086 (((-3 $ "failed") $) NIL)) (-2423 (((-112) $) NIL)) (-2782 (($ $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 |#1|) |#2|) 38)) (-2325 (($ $) 40)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 12)) (-3702 (((-824 |#1|) $) NIL)) (-2357 (((-824 |#1|) $) 41)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-3714 (($ $ $) 69) (($ $ (-824 |#1|)) 58) (($ $ |#1|) 62)) (-3379 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1849 (((-824 |#1|) $) 35)) (-1857 ((|#2| $) 37)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4339 (((-776) $) 43)) (-4041 (((-112) $) 47)) (-3709 ((|#2| $) NIL)) (-3796 (((-867) $) NIL) (($ (-824 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-569)) NIL)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-824 |#1|)) NIL)) (-1435 ((|#2| $ $) 76) ((|#2| $ (-824 |#1|)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 13 T CONST)) (-1815 (($) 19 T CONST)) (-3717 (((-649 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2920 (((-112) $ $) 44)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 28)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-824 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1290 |#1| |#2|) (-13 (-386 |#2| (-824 |#1|)) (-1296 |#1| |#2|)) (-855) (-1057)) (T -1290))
+NIL
+(-13 (-386 |#2| (-824 |#1|)) (-1296 |#1| |#2|))
+((-2662 ((|#3| |#3| (-776)) 30)) (-4389 ((|#3| |#3| (-776)) 36)) (-2098 ((|#3| |#3| |#3| (-776)) 37)))
+(((-1291 |#1| |#2| |#3|) (-10 -7 (-15 -4389 (|#3| |#3| (-776))) (-15 -2662 (|#3| |#3| (-776))) (-15 -2098 (|#3| |#3| |#3| (-776)))) (-13 (-1057) (-722 (-412 (-569)))) (-855) (-1296 |#2| |#1|)) (T -1291))
+((-2098 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))) (-4389 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))))
+(-10 -7 (-15 -4389 (|#3| |#3| (-776))) (-15 -2662 (|#3| |#3| (-776))) (-15 -2098 (|#3| |#3| |#3| (-776))))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3105 (((-649 |#1|) $) 47)) (-2208 (((-3 $ "failed") $ $) 20)) (-2660 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4427 (($) 18 T CONST)) (-1768 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4381 (((-3 (-824 |#1|) "failed") $) 71)) (-3150 (((-824 |#1|) $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2423 (((-112) $) 52)) (-2782 (($ $) 51)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 57)) (-3348 (($ (-824 |#1|) |#2|) 58)) (-2325 (($ $) 56)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-3702 (((-824 |#1|) $) 68)) (-1346 (($ (-1 |#2| |#2|) $) 48)) (-3714 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4041 (((-112) $) 54)) (-3709 ((|#2| $) 53)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1435 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1292 |#1| |#2|) (-140) (-855) (-1057)) (T -1292))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-824 *3)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))) (-1435 (*1 *2 *1 *3) (-12 (-5 *3 (-824 *4)) (-4 *1 (-1292 *4 *2)) (-4 *4 (-855)) (-4 *2 (-1057)))) (-1435 (*1 *2 *1 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) (-3714 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3714 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-3714 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-1768 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-1768 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-1768 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3348 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1292 *4 *3)) (-4 *3 (-1057)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-112)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3796 (*1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-112)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-112)))) (-2782 (*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-2660 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)) (-4 *3 (-173)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-4 *4 (-173)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-649 *3)))))
+(-13 (-1057) (-1289 |t#2|) (-1046 (-824 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3702 ((-824 |t#1|) $)) (-15 -3571 ((-2 (|:| |k| (-824 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1435 (|t#2| $ (-824 |t#1|))) (-15 -1435 (|t#2| $ $)) (-15 -3714 ($ $ |t#1|)) (-15 -3714 ($ $ (-824 |t#1|))) (-15 -3714 ($ $ $)) (-15 -1768 ($ $ |t#1|)) (-15 -1768 ($ $ (-824 |t#1|))) (-15 -1768 ($ $ $)) (-15 -3348 ($ (-824 |t#1|) |t#2|)) (-15 -2198 ((-112) $)) (-15 -2325 ($ $)) (-15 -3796 ($ |t#1|)) (-15 -4041 ((-112) $)) (-15 -3709 (|t#2| $)) (-15 -2423 ((-112) $)) (-15 -2782 ($ $)) (IF (|has| |t#2| (-173)) (PROGN (-15 -2660 ($ $ $)) (-15 -2660 ($ $ (-776)))) |%noBranch|) (-15 -1346 ($ (-1 |t#2| |t#2|) $)) (-15 -3105 ((-649 |t#1|) $)) (IF (|has| |t#2| (-6 -4440)) (-6 -4440) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1046 #0#) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1289 |#2|) . T))
+((-1476 (((-112) $) 15)) (-4269 (((-112) $) 14)) (-1679 (($ $) 19) (($ $ (-776)) 21)))
+(((-1293 |#1| |#2|) (-10 -8 (-15 -1679 (|#1| |#1| (-776))) (-15 -1679 (|#1| |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|))) (-1294 |#2|) (-367)) (T -1293))
+NIL
+(-10 -8 (-15 -1679 (|#1| |#1| (-776))) (-15 -1679 (|#1| |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-1476 (((-112) $) 104)) (-3322 (((-776)) 100)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 111)) (-3150 ((|#1| $) 112)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-3701 (($ $ (-776)) 97 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) 79)) (-1466 (((-838 (-927)) $) 94 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3020 (((-112) $) 103)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-1898 (((-838 (-927))) 101)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-3 (-776) "failed") $ $) 95 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) 109)) (-4339 (((-838 (-927)) $) 102)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-2239 (((-3 $ "failed") $) 93 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-4269 (((-112) $) 105)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-1679 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73) (($ $ |#1|) 108)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1294 |#1|) (-140) (-367)) (T -1294))
+((-4269 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-1898 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-3322 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-776)))) (-1679 (*1 *1 *1) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-367)) (-4 *2 (-372)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-4 *3 (-372)))))
+(-13 (-367) (-1046 |t#1|) (-1282 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-407)) |%noBranch|) (-15 -4269 ((-112) $)) (-15 -1476 ((-112) $)) (-15 -3020 ((-112) $)) (-15 -4339 ((-838 (-927)) $)) (-15 -1898 ((-838 (-927)))) (-15 -3322 ((-776))) (IF (|has| |t#1| (-372)) (PROGN (-6 (-407)) (-15 -1679 ($ $)) (-15 -1679 ($ $ (-776)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T) ((-1282 |#1|) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 98)) (-1604 (($ $ (-776)) 102)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ $) NIL (|has| |#2| (-173))) (($ $ (-776)) NIL (|has| |#2| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-4381 (((-3 (-824 |#1|) "failed") $) NIL) (((-3 (-899 |#1|) "failed") $) NIL)) (-3150 (((-824 |#1|) $) NIL) (((-899 |#1|) $) NIL)) (-1883 (($ $) 101)) (-3086 (((-3 $ "failed") $) NIL)) (-2423 (((-112) $) 90)) (-2782 (($ $) 93)) (-2103 (($ $ $ (-776)) 103)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 |#1|) |#2|) NIL) (($ (-899 |#1|) |#2|) 29)) (-2325 (($ $) 120)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3702 (((-824 |#1|) $) NIL)) (-2357 (((-824 |#1|) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-3714 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-2662 (($ $ (-776)) 113 (|has| |#2| (-722 (-412 (-569)))))) (-3379 (((-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1849 (((-899 |#1|) $) 83)) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4389 (($ $ (-776)) 110 (|has| |#2| (-722 (-412 (-569)))))) (-4339 (((-776) $) 99)) (-4041 (((-112) $) 84)) (-3709 ((|#2| $) 88)) (-3796 (((-867) $) 69) (($ (-569)) NIL) (($ |#2|) 60) (($ (-824 |#1|)) NIL) (($ |#1|) 71) (($ (-899 |#1|)) NIL) (($ (-669 |#1| |#2|)) 48) (((-1290 |#1| |#2|) $) 76) (((-1299 |#1| |#2|) $) 81)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-899 |#1|)) NIL)) (-1435 ((|#2| $ (-824 |#1|)) NIL) ((|#2| $ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 21 T CONST)) (-1815 (($) 28 T CONST)) (-3717 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3740 (((-3 (-669 |#1| |#2|) "failed") $) 119)) (-2920 (((-112) $ $) 77)) (-3024 (($ $) 112) (($ $ $) 111)) (-3012 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-899 |#1|)) NIL)))
+(((-1295 |#1| |#2|) (-13 (-1296 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -3796 ($ (-669 |#1| |#2|))) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1299 |#1| |#2|) $)) (-15 -3740 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -2103 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4389 ($ $ (-776))) (-15 -2662 ($ $ (-776)))) |%noBranch|))) (-855) (-173)) (T -1295))
+((-3796 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-1295 *3 *4)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3740 (*1 *2 *1) (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2103 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4389 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))))
+(-13 (-1296 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -3796 ($ (-669 |#1| |#2|))) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1299 |#1| |#2|) $)) (-15 -3740 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -2103 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4389 ($ $ (-776))) (-15 -2662 ($ $ (-776)))) |%noBranch|)))
+((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3105 (((-649 |#1|) $) 47)) (-1604 (($ $ (-776)) 80)) (-2208 (((-3 $ "failed") $ $) 20)) (-2660 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4427 (($) 18 T CONST)) (-1768 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4381 (((-3 (-824 |#1|) "failed") $) 71)) (-3150 (((-824 |#1|) $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2423 (((-112) $) 52)) (-2782 (($ $) 51)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 57)) (-3348 (($ (-824 |#1|) |#2|) 58)) (-2325 (($ $) 56)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-3702 (((-824 |#1|) $) 68)) (-2357 (((-824 |#1|) $) 82)) (-1346 (($ (-1 |#2| |#2|) $) 48)) (-3714 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 (((-776) $) 81)) (-4041 (((-112) $) 54)) (-3709 ((|#2| $) 53)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1435 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1296 |#1| |#2|) (-140) (-855) (-1057)) (T -1296))
+((-2357 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-824 *3)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-776)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))))
+(-13 (-1292 |t#1| |t#2|) (-10 -8 (-15 -2357 ((-824 |t#1|) $)) (-15 -4339 ((-776) $)) (-15 -1604 ($ $ (-776)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1046 #0#) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1289 |#2|) . T) ((-1292 |#1| |#2|) . T))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3105 (((-649 (-1185)) $) NIL)) (-2490 (($ (-1290 (-1185) |#1|)) NIL)) (-1604 (($ $ (-776)) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ $) NIL (|has| |#1| (-173))) (($ $ (-776)) NIL (|has| |#1| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ (-1185)) NIL) (($ $ (-824 (-1185))) NIL) (($ $ $) NIL)) (-4381 (((-3 (-824 (-1185)) "failed") $) NIL)) (-3150 (((-824 (-1185)) $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2423 (((-112) $) NIL)) (-2782 (($ $) NIL)) (-2349 (((-112) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 (-1185)) |#1|) NIL)) (-2325 (($ $) NIL)) (-3571 (((-2 (|:| |k| (-824 (-1185))) (|:| |c| |#1|)) $) NIL)) (-3702 (((-824 (-1185)) $) NIL)) (-2357 (((-824 (-1185)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3714 (($ $ (-1185)) NIL) (($ $ (-824 (-1185))) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1380 (((-1290 (-1185) |#1|) $) NIL)) (-4339 (((-776) $) NIL)) (-4041 (((-112) $) NIL)) (-3709 ((|#1| $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-824 (-1185))) NIL) (($ (-1185)) NIL)) (-1435 ((|#1| $ (-824 (-1185))) NIL) ((|#1| $ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-4035 (((-649 (-2 (|:| |k| (-1185)) (|:| |c| $))) $) NIL)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1185) $) NIL)))
+(((-1297 |#1|) (-13 (-1296 (-1185) |#1|) (-10 -8 (-15 -1380 ((-1290 (-1185) |#1|) $)) (-15 -2490 ($ (-1290 (-1185) |#1|))) (-15 -4035 ((-649 (-2 (|:| |k| (-1185)) (|:| |c| $))) $)))) (-1057)) (T -1297))
+((-1380 (*1 *2 *1) (-12 (-5 *2 (-1290 (-1185) *3)) (-5 *1 (-1297 *3)) (-4 *3 (-1057)))) (-2490 (*1 *1 *2) (-12 (-5 *2 (-1290 (-1185) *3)) (-4 *3 (-1057)) (-5 *1 (-1297 *3)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-1185)) (|:| |c| (-1297 *3))))) (-5 *1 (-1297 *3)) (-4 *3 (-1057)))))
+(-13 (-1296 (-1185) |#1|) (-10 -8 (-15 -1380 ((-1290 (-1185) |#1|) $)) (-15 -2490 ($ (-1290 (-1185) |#1|))) (-15 -4035 ((-649 (-2 (|:| |k| (-1185)) (|:| |c| $))) $))))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL)) (-3150 ((|#2| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) 42)) (-2423 (((-112) $) 35)) (-2782 (($ $) 37)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ |#2| |#1|) NIL)) (-3702 ((|#2| $) 24)) (-2357 ((|#2| $) 22)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3379 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1849 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4041 (((-112) $) 32)) (-3709 ((|#1| $) 33)) (-3796 (((-867) $) 65) (($ (-569)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ |#2|) NIL)) (-1435 ((|#1| $ |#2|) 28)) (-2721 (((-776)) 14 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 29 T CONST)) (-1815 (($) 11 T CONST)) (-3717 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2920 (((-112) $ $) 30)) (-3035 (($ $ |#1|) 67 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 50)) (** (($ $ (-927)) NIL) (($ $ (-776)) 52)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2428 (((-776) $) 16)))
+(((-1298 |#1| |#2|) (-13 (-1057) (-1289 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2428 ((-776) $)) (-15 -2357 (|#2| $)) (-15 -3702 (|#2| $)) (-15 -1883 ($ $)) (-15 -1435 (|#1| $ |#2|)) (-15 -4041 ((-112) $)) (-15 -3709 (|#1| $)) (-15 -2423 ((-112) $)) (-15 -2782 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -3035 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4444)) (-6 -4444) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) (-1057) (-851)) (T -1298))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-1298 *3 *4)) (-4 *4 (-851)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-851)))) (-2357 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057)))) (-3702 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057)))) (-1435 (*1 *2 *1 *3) (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-851)))) (-3709 (*1 *2 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-851)))) (-2782 (*1 *1 *1) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1057)) (-4 *3 (-851)))))
+(-13 (-1057) (-1289 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2428 ((-776) $)) (-15 -2357 (|#2| $)) (-15 -3702 (|#2| $)) (-15 -1883 ($ $)) (-15 -1435 (|#1| $ |#2|)) (-15 -4041 ((-112) $)) (-15 -3709 (|#1| $)) (-15 -2423 ((-112) $)) (-15 -2782 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -3035 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4444)) (-6 -4444) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|)))
+((-2417 (((-112) $ $) 27)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 132)) (-2490 (($ (-1290 |#1| |#2|)) 50)) (-1604 (($ $ (-776)) 38)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ $) 54 (|has| |#2| (-173))) (($ $ (-776)) 52 (|has| |#2| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ |#1|) 114) (($ $ (-824 |#1|)) 115) (($ $ $) 26)) (-4381 (((-3 (-824 |#1|) "failed") $) NIL)) (-3150 (((-824 |#1|) $) NIL)) (-3086 (((-3 $ "failed") $) 122)) (-2423 (((-112) $) 117)) (-2782 (($ $) 118)) (-2349 (((-112) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 |#1|) |#2|) 20)) (-2325 (($ $) NIL)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3702 (((-824 |#1|) $) 123)) (-2357 (((-824 |#1|) $) 126)) (-1346 (($ (-1 |#2| |#2|) $) 131)) (-3714 (($ $ |#1|) 112) (($ $ (-824 |#1|)) 113) (($ $ $) 62)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1380 (((-1290 |#1| |#2|) $) 94)) (-4339 (((-776) $) 129)) (-4041 (((-112) $) 81)) (-3709 ((|#2| $) 32)) (-3796 (((-867) $) 73) (($ (-569)) 87) (($ |#2|) 85) (($ (-824 |#1|)) 18) (($ |#1|) 84)) (-1435 ((|#2| $ (-824 |#1|)) 116) ((|#2| $ $) 28)) (-2721 (((-776)) 120 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 15 T CONST)) (-4035 (((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1815 (($) 33 T CONST)) (-2920 (((-112) $ $) 14)) (-3024 (($ $) 98) (($ $ $) 101)) (-3012 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) 53) (($ (-569) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1299 |#1| |#2|) (-13 (-1296 |#1| |#2|) (-10 -8 (-15 -1380 ((-1290 |#1| |#2|) $)) (-15 -2490 ($ (-1290 |#1| |#2|))) (-15 -4035 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-855) (-1057)) (T -1299))
+((-1380 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-2490 (*1 *1 *2) (-12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *1 (-1299 *3 *4)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1299 *3 *4))))) (-5 *1 (-1299 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))))
+(-13 (-1296 |#1| |#2|) (-10 -8 (-15 -1380 ((-1290 |#1| |#2|) $)) (-15 -2490 ($ (-1290 |#1| |#2|))) (-15 -4035 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1541 (((-649 (-1165 |#1|)) (-1 (-649 (-1165 |#1|)) (-649 (-1165 |#1|))) (-569)) 20) (((-1165 |#1|) (-1 (-1165 |#1|) (-1165 |#1|))) 13)))
+(((-1300 |#1|) (-10 -7 (-15 -1541 ((-1165 |#1|) (-1 (-1165 |#1|) (-1165 |#1|)))) (-15 -1541 ((-649 (-1165 |#1|)) (-1 (-649 (-1165 |#1|)) (-649 (-1165 |#1|))) (-569)))) (-1225)) (T -1300))
+((-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 (-1165 *5)) (-649 (-1165 *5)))) (-5 *4 (-569)) (-5 *2 (-649 (-1165 *5))) (-5 *1 (-1300 *5)) (-4 *5 (-1225)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1 (-1165 *4) (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1300 *4)) (-4 *4 (-1225)))))
+(-10 -7 (-15 -1541 ((-1165 |#1|) (-1 (-1165 |#1|) (-1165 |#1|)))) (-15 -1541 ((-649 (-1165 |#1|)) (-1 (-649 (-1165 |#1|)) (-649 (-1165 |#1|))) (-569))))
+((-4040 (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 174) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 173) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 172) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 171) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-1054 |#1| |#2|)) 156)) (-2335 (((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|))) 85) (((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112)) 84) (((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112)) 83)) (-3764 (((-649 (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1054 |#1| |#2|)) 73)) (-2539 (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|))) 140) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 139) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 138) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 137) (((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|)) 132)) (-2284 (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|))) 145) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 144) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 143) (((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|)) 142)) (-1410 (((-649 (-785 |#1| (-869 |#3|))) (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) 111) (((-1181 (-1032 (-412 |#1|))) (-1181 |#1|)) 102) (((-958 (-1032 (-412 |#1|))) (-785 |#1| (-869 |#3|))) 109) (((-958 (-1032 (-412 |#1|))) (-958 |#1|)) 107) (((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|))) 33)))
+(((-1301 |#1| |#2| |#3|) (-10 -7 (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-1054 |#1| |#2|))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -3764 ((-649 (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1054 |#1| |#2|))) (-15 -1410 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-958 |#1|))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1410 ((-1181 (-1032 (-412 |#1|))) (-1181 |#1|))) (-15 -1410 ((-649 (-785 |#1| (-869 |#3|))) (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))))) (-13 (-853) (-310) (-147) (-1030)) (-649 (-1185)) (-649 (-1185))) (T -1301))
+((-1410 (*1 *2 *3) (-12 (-5 *3 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-1181 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *6))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185))) (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *5))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2284 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-2539 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2539 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-4040 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) (-5 *1 (-1301 *4 *5 *6)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-4040 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-4040 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-4040 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-1054 *4 *5))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2335 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))))
+(-10 -7 (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-1054 |#1| |#2|))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -3764 ((-649 (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1054 |#1| |#2|))) (-15 -1410 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-958 |#1|))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1410 ((-1181 (-1032 (-412 |#1|))) (-1181 |#1|))) (-15 -1410 ((-649 (-785 |#1| (-869 |#3|))) (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|))))))
+((-3707 (((-3 (-1275 (-412 (-569))) "failed") (-1275 |#1|) |#1|) 21)) (-2234 (((-112) (-1275 |#1|)) 12)) (-3949 (((-3 (-1275 (-569)) "failed") (-1275 |#1|)) 16)))
+(((-1302 |#1|) (-10 -7 (-15 -2234 ((-112) (-1275 |#1|))) (-15 -3949 ((-3 (-1275 (-569)) "failed") (-1275 |#1|))) (-15 -3707 ((-3 (-1275 (-412 (-569))) "failed") (-1275 |#1|) |#1|))) (-644 (-569))) (T -1302))
+((-3707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1275 (-412 (-569)))) (-5 *1 (-1302 *4)))) (-3949 (*1 *2 *3) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1275 (-569))) (-5 *1 (-1302 *4)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112)) (-5 *1 (-1302 *4)))))
+(-10 -7 (-15 -2234 ((-112) (-1275 |#1|))) (-15 -3949 ((-3 (-1275 (-569)) "failed") (-1275 |#1|))) (-15 -3707 ((-3 (-1275 (-412 (-569))) "failed") (-1275 |#1|) |#1|)))
+((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 11)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776)) 8)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) 58)) (-3406 (($) 49)) (-2349 (((-112) $) 57)) (-3885 (((-3 $ "failed") $) 40)) (-2731 (((-927) $) 15)) (-3435 (((-1167) $) NIL)) (-2307 (($) 32 T CONST)) (-2150 (($ (-927)) 50)) (-3547 (((-1128) $) NIL)) (-1410 (((-569) $) 13)) (-3796 (((-867) $) 27) (($ (-569)) 24)) (-2721 (((-776)) 9 T CONST)) (-1520 (((-112) $ $) 60)) (-1804 (($) 29 T CONST)) (-1815 (($) 31 T CONST)) (-2920 (((-112) $ $) 38)) (-3024 (($ $) 52) (($ $ $) 47)) (-3012 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) 54)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 44) (($ $ $) 43)))
+(((-1303 |#1|) (-13 (-173) (-372) (-619 (-569)) (-1160)) (-927)) (T -1303))
+NIL
+(-13 (-173) (-372) (-619 (-569)) (-1160))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3227965 3227970 3227975 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3227950 3227955 3227960 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3227935 3227940 3227945 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3227920 3227925 3227930 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1303 3227063 3227795 3227872 "ZMOD" 3227877 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1302 3226173 3226337 3226546 "ZLINDEP" 3226895 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1301 3215473 3217241 3219213 "ZDSOLVE" 3224303 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1300 3214719 3214860 3215049 "YSTREAM" 3215319 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1299 3212493 3214020 3214224 "XRPOLY" 3214562 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1298 3209046 3210364 3210939 "XPR" 3211965 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1297 3206767 3208377 3208581 "XPOLY" 3208877 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1296 3204420 3205788 3205843 "XPOLYC" 3206131 NIL XPOLYC (NIL T T) -9 NIL 3206244 NIL) (-1295 3200796 3202937 3203325 "XPBWPOLY" 3204078 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1294 3196491 3198786 3198828 "XF" 3199449 NIL XF (NIL T) -9 NIL 3199849 NIL) (-1293 3196112 3196200 3196369 "XF-" 3196374 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1292 3191308 3192597 3192652 "XFALG" 3194824 NIL XFALG (NIL T T) -9 NIL 3195613 NIL) (-1291 3190441 3190545 3190750 "XEXPPKG" 3191200 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1290 3188550 3190291 3190387 "XDPOLY" 3190392 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1289 3187357 3187957 3188000 "XALG" 3188005 NIL XALG (NIL T) -9 NIL 3188116 NIL) (-1288 3180799 3185334 3185828 "WUTSET" 3186949 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1287 3179055 3179851 3180174 "WP" 3180610 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1286 3178657 3178877 3178947 "WHILEAST" 3179007 T WHILEAST (NIL) -8 NIL NIL NIL) (-1285 3178129 3178374 3178468 "WHEREAST" 3178585 T WHEREAST (NIL) -8 NIL NIL NIL) (-1284 3177015 3177213 3177508 "WFFINTBS" 3177926 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1283 3174919 3175346 3175808 "WEIER" 3176587 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1282 3173965 3174415 3174457 "VSPACE" 3174593 NIL VSPACE (NIL T) -9 NIL 3174667 NIL) (-1281 3173803 3173830 3173921 "VSPACE-" 3173926 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1280 3173612 3173654 3173722 "VOID" 3173757 T VOID (NIL) -8 NIL NIL NIL) (-1279 3171748 3172107 3172513 "VIEW" 3173228 T VIEW (NIL) -7 NIL NIL NIL) (-1278 3168172 3168811 3169548 "VIEWDEF" 3171033 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1277 3157476 3159720 3161893 "VIEW3D" 3166021 T VIEW3D (NIL) -8 NIL NIL NIL) (-1276 3149727 3151387 3152966 "VIEW2D" 3155919 T VIEW2D (NIL) -8 NIL NIL NIL) (-1275 3145080 3149497 3149589 "VECTOR" 3149670 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1274 3143657 3143916 3144234 "VECTOR2" 3144810 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1273 3137131 3141438 3141481 "VECTCAT" 3142476 NIL VECTCAT (NIL T) -9 NIL 3143063 NIL) (-1272 3136145 3136399 3136789 "VECTCAT-" 3136794 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1271 3135599 3135796 3135916 "VARIABLE" 3136060 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1270 3135532 3135537 3135567 "UTYPE" 3135572 T UTYPE (NIL) -9 NIL NIL NIL) (-1269 3134362 3134516 3134778 "UTSODETL" 3135358 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1268 3131802 3132262 3132786 "UTSODE" 3133903 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1267 3123639 3129428 3129917 "UTS" 3131371 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1266 3114513 3119880 3119923 "UTSCAT" 3121035 NIL UTSCAT (NIL T) -9 NIL 3121793 NIL) (-1265 3111860 3112583 3113572 "UTSCAT-" 3113577 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1264 3111487 3111530 3111663 "UTS2" 3111811 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1263 3105713 3108325 3108368 "URAGG" 3110438 NIL URAGG (NIL T) -9 NIL 3111161 NIL) (-1262 3102652 3103515 3104638 "URAGG-" 3104643 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1261 3098361 3101287 3101752 "UPXSSING" 3102316 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1260 3090427 3097608 3097881 "UPXS" 3098146 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1259 3083500 3090331 3090403 "UPXSCONS" 3090408 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1258 3073245 3080038 3080100 "UPXSCCA" 3080674 NIL UPXSCCA (NIL T T) -9 NIL 3080907 NIL) (-1257 3072883 3072968 3073142 "UPXSCCA-" 3073147 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1256 3062480 3069046 3069089 "UPXSCAT" 3069737 NIL UPXSCAT (NIL T) -9 NIL 3070346 NIL) (-1255 3061910 3061989 3062168 "UPXS2" 3062395 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1254 3060564 3060817 3061168 "UPSQFREE" 3061653 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1253 3053985 3057042 3057097 "UPSCAT" 3058258 NIL UPSCAT (NIL T T) -9 NIL 3059032 NIL) (-1252 3053189 3053396 3053723 "UPSCAT-" 3053728 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1251 3038844 3046612 3046655 "UPOLYC" 3048756 NIL UPOLYC (NIL T) -9 NIL 3049977 NIL) (-1250 3030172 3032598 3035745 "UPOLYC-" 3035750 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1249 3029799 3029842 3029975 "UPOLYC2" 3030123 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1248 3021610 3029482 3029611 "UP" 3029718 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1247 3020949 3021056 3021220 "UPMP" 3021499 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1246 3020502 3020583 3020722 "UPDIVP" 3020862 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1245 3019070 3019319 3019635 "UPDECOMP" 3020251 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1244 3018301 3018413 3018599 "UPCDEN" 3018954 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1243 3017820 3017889 3018038 "UP2" 3018226 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1242 3016287 3017024 3017301 "UNISEG" 3017578 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1241 3015502 3015629 3015834 "UNISEG2" 3016130 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1240 3014562 3014742 3014968 "UNIFACT" 3015318 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1239 2998494 3013739 3013990 "ULS" 3014369 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1238 2986492 2998398 2998470 "ULSCONS" 2998475 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1237 2968509 2980494 2980556 "ULSCCAT" 2981194 NIL ULSCCAT (NIL T T) -9 NIL 2981483 NIL) (-1236 2967559 2967804 2968192 "ULSCCAT-" 2968197 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 2956933 2963413 2963456 "ULSCAT" 2964319 NIL ULSCAT (NIL T) -9 NIL 2965050 NIL) (-1234 2956363 2956442 2956621 "ULS2" 2956848 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1233 2955490 2956000 2956107 "UINT8" 2956218 T UINT8 (NIL) -8 NIL NIL 2956303) (-1232 2954616 2955126 2955233 "UINT64" 2955344 T UINT64 (NIL) -8 NIL NIL 2955429) (-1231 2953742 2954252 2954359 "UINT32" 2954470 T UINT32 (NIL) -8 NIL NIL 2954555) (-1230 2952868 2953378 2953485 "UINT16" 2953596 T UINT16 (NIL) -8 NIL NIL 2953681) (-1229 2951171 2952128 2952158 "UFD" 2952370 T UFD (NIL) -9 NIL 2952484 NIL) (-1228 2950965 2951011 2951106 "UFD-" 2951111 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1227 2950047 2950230 2950446 "UDVO" 2950771 T UDVO (NIL) -7 NIL NIL NIL) (-1226 2947863 2948272 2948743 "UDPO" 2949611 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1225 2947796 2947801 2947831 "TYPE" 2947836 T TYPE (NIL) -9 NIL NIL NIL) (-1224 2947556 2947751 2947782 "TYPEAST" 2947787 T TYPEAST (NIL) -8 NIL NIL NIL) (-1223 2946527 2946729 2946969 "TWOFACT" 2947350 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1222 2945550 2945936 2946171 "TUPLE" 2946327 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1221 2943241 2943760 2944299 "TUBETOOL" 2945033 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1220 2942090 2942295 2942536 "TUBE" 2943034 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1219 2936819 2941062 2941345 "TS" 2941842 NIL TS (NIL T) -8 NIL NIL NIL) (-1218 2925459 2929578 2929675 "TSETCAT" 2934944 NIL TSETCAT (NIL T T T T) -9 NIL 2936475 NIL) (-1217 2920191 2921791 2923682 "TSETCAT-" 2923687 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1216 2914830 2915677 2916606 "TRMANIP" 2919327 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1215 2914271 2914334 2914497 "TRIMAT" 2914762 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1214 2912137 2912374 2912731 "TRIGMNIP" 2914020 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1213 2911657 2911770 2911800 "TRIGCAT" 2912013 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1212 2911326 2911405 2911546 "TRIGCAT-" 2911551 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1211 2908171 2910184 2910465 "TREE" 2911080 NIL TREE (NIL T) -8 NIL NIL NIL) (-1210 2907445 2907973 2908003 "TRANFUN" 2908038 T TRANFUN (NIL) -9 NIL 2908104 NIL) (-1209 2906724 2906915 2907195 "TRANFUN-" 2907200 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1208 2906528 2906560 2906621 "TOPSP" 2906685 T TOPSP (NIL) -7 NIL NIL NIL) (-1207 2905876 2905991 2906145 "TOOLSIGN" 2906409 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1206 2904510 2905053 2905292 "TEXTFILE" 2905659 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1205 2902422 2902963 2903392 "TEX" 2904103 T TEX (NIL) -8 NIL NIL NIL) (-1204 2902203 2902234 2902306 "TEX1" 2902385 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1203 2901851 2901914 2902004 "TEMUTL" 2902135 T TEMUTL (NIL) -7 NIL NIL NIL) (-1202 2900005 2900285 2900610 "TBCMPPK" 2901574 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1201 2891782 2898165 2898221 "TBAGG" 2898621 NIL TBAGG (NIL T T) -9 NIL 2898832 NIL) (-1200 2886852 2888340 2890094 "TBAGG-" 2890099 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1199 2886236 2886343 2886488 "TANEXP" 2886741 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1198 2879626 2886093 2886186 "TABLE" 2886191 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1197 2879038 2879137 2879275 "TABLEAU" 2879523 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1196 2873646 2874866 2876114 "TABLBUMP" 2877824 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1195 2872868 2873015 2873196 "SYSTEM" 2873487 T SYSTEM (NIL) -8 NIL NIL NIL) (-1194 2869327 2870026 2870809 "SYSSOLP" 2872119 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1193 2869125 2869282 2869313 "SYSPTR" 2869318 T SYSPTR (NIL) -8 NIL NIL NIL) (-1192 2868169 2868674 2868793 "SYSNNI" 2868979 NIL SYSNNI (NIL NIL) -8 NIL NIL 2869064) (-1191 2867476 2867935 2868014 "SYSINT" 2868074 NIL SYSINT (NIL NIL) -8 NIL NIL 2868119) (-1190 2863808 2864754 2865464 "SYNTAX" 2866788 T SYNTAX (NIL) -8 NIL NIL NIL) (-1189 2860966 2861568 2862200 "SYMTAB" 2863198 T SYMTAB (NIL) -8 NIL NIL NIL) (-1188 2856215 2857117 2858100 "SYMS" 2860005 T SYMS (NIL) -8 NIL NIL NIL) (-1187 2853450 2855673 2855903 "SYMPOLY" 2856020 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1186 2852967 2853042 2853165 "SYMFUNC" 2853362 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1185 2848987 2850279 2851092 "SYMBOL" 2852176 T SYMBOL (NIL) -8 NIL NIL NIL) (-1184 2842526 2844215 2845935 "SWITCH" 2847289 T SWITCH (NIL) -8 NIL NIL NIL) (-1183 2835760 2841347 2841650 "SUTS" 2842281 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1182 2827826 2835007 2835280 "SUPXS" 2835545 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1181 2819585 2827444 2827570 "SUP" 2827735 NIL SUP (NIL T) -8 NIL NIL NIL) (-1180 2818744 2818871 2819088 "SUPFRACF" 2819453 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1179 2818365 2818424 2818537 "SUP2" 2818679 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1178 2816813 2817087 2817443 "SUMRF" 2818064 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1177 2816148 2816214 2816406 "SUMFS" 2816734 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1176 2800115 2815325 2815576 "SULS" 2815955 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1175 2799717 2799937 2800007 "SUCHTAST" 2800067 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1174 2799012 2799242 2799382 "SUCH" 2799625 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1173 2792878 2793918 2794877 "SUBSPACE" 2798100 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1172 2792308 2792398 2792562 "SUBRESP" 2792766 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1171 2785674 2786973 2788284 "STTF" 2791044 NIL STTF (NIL T) -7 NIL NIL NIL) (-1170 2779847 2780967 2782114 "STTFNC" 2784574 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1169 2771158 2773029 2774823 "STTAYLOR" 2778088 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1168 2764288 2771022 2771105 "STRTBL" 2771110 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1167 2759652 2764243 2764274 "STRING" 2764279 T STRING (NIL) -8 NIL NIL NIL) (-1166 2754513 2759025 2759055 "STRICAT" 2759114 T STRICAT (NIL) -9 NIL 2759176 NIL) (-1165 2747266 2752132 2752743 "STREAM" 2753937 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1164 2746776 2746853 2746997 "STREAM3" 2747183 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1163 2745758 2745941 2746176 "STREAM2" 2746589 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1162 2745446 2745498 2745591 "STREAM1" 2745700 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1161 2744462 2744643 2744874 "STINPROD" 2745262 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1160 2744014 2744224 2744254 "STEP" 2744334 T STEP (NIL) -9 NIL 2744412 NIL) (-1159 2743201 2743503 2743651 "STEPAST" 2743888 T STEPAST (NIL) -8 NIL NIL NIL) (-1158 2736633 2743100 2743177 "STBL" 2743182 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1157 2731759 2735854 2735897 "STAGG" 2736050 NIL STAGG (NIL T) -9 NIL 2736139 NIL) (-1156 2729461 2730063 2730935 "STAGG-" 2730940 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1155 2727608 2729231 2729323 "STACK" 2729404 NIL STACK (NIL T) -8 NIL NIL NIL) (-1154 2720303 2725749 2726205 "SREGSET" 2727238 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1153 2712728 2714097 2715610 "SRDCMPK" 2718909 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1152 2705645 2710168 2710198 "SRAGG" 2711501 T SRAGG (NIL) -9 NIL 2712109 NIL) (-1151 2704662 2704917 2705296 "SRAGG-" 2705301 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1150 2699122 2703609 2704030 "SQMATRIX" 2704288 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1149 2692807 2695840 2696567 "SPLTREE" 2698467 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1148 2688770 2689463 2690109 "SPLNODE" 2692233 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1147 2687817 2688050 2688080 "SPFCAT" 2688524 T SPFCAT (NIL) -9 NIL NIL NIL) (-1146 2686554 2686764 2687028 "SPECOUT" 2687575 T SPECOUT (NIL) -7 NIL NIL NIL) (-1145 2677664 2679536 2679566 "SPADXPT" 2684242 T SPADXPT (NIL) -9 NIL 2686406 NIL) (-1144 2677425 2677465 2677534 "SPADPRSR" 2677617 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1143 2675474 2677380 2677411 "SPADAST" 2677416 T SPADAST (NIL) -8 NIL NIL NIL) (-1142 2667419 2669192 2669235 "SPACEC" 2673608 NIL SPACEC (NIL T) -9 NIL 2675424 NIL) (-1141 2665549 2667351 2667400 "SPACE3" 2667405 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1140 2664301 2664472 2664763 "SORTPAK" 2665354 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1139 2662393 2662696 2663108 "SOLVETRA" 2663965 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1138 2661443 2661665 2661926 "SOLVESER" 2662166 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1137 2656747 2657635 2658630 "SOLVERAD" 2660495 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1136 2652562 2653171 2653900 "SOLVEFOR" 2656114 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1135 2646832 2651911 2652008 "SNTSCAT" 2652013 NIL SNTSCAT (NIL T T T T) -9 NIL 2652083 NIL) (-1134 2640938 2645155 2645546 "SMTS" 2646522 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1133 2635623 2640826 2640903 "SMP" 2640908 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1132 2633782 2634083 2634481 "SMITH" 2635320 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1131 2626495 2630691 2630794 "SMATCAT" 2632145 NIL SMATCAT (NIL NIL T T T) -9 NIL 2632695 NIL) (-1130 2623435 2624258 2625436 "SMATCAT-" 2625441 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1129 2621101 2622671 2622714 "SKAGG" 2622975 NIL SKAGG (NIL T) -9 NIL 2623110 NIL) (-1128 2617412 2620517 2620712 "SINT" 2620899 T SINT (NIL) -8 NIL NIL 2621072) (-1127 2617184 2617222 2617288 "SIMPAN" 2617368 T SIMPAN (NIL) -7 NIL NIL NIL) (-1126 2616463 2616719 2616859 "SIG" 2617066 T SIG (NIL) -8 NIL NIL NIL) (-1125 2615301 2615522 2615797 "SIGNRF" 2616222 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1124 2614134 2614285 2614569 "SIGNEF" 2615130 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1123 2613440 2613717 2613841 "SIGAST" 2614032 T SIGAST (NIL) -8 NIL NIL NIL) (-1122 2611130 2611584 2612090 "SHP" 2612981 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1121 2604982 2611031 2611107 "SHDP" 2611112 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1120 2604555 2604747 2604777 "SGROUP" 2604870 T SGROUP (NIL) -9 NIL 2604932 NIL) (-1119 2604413 2604439 2604512 "SGROUP-" 2604517 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1118 2601248 2601946 2602669 "SGCF" 2603712 T SGCF (NIL) -7 NIL NIL NIL) (-1117 2595616 2600695 2600792 "SFRTCAT" 2600797 NIL SFRTCAT (NIL T T T T) -9 NIL 2600836 NIL) (-1116 2589037 2590055 2591191 "SFRGCD" 2594599 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1115 2582163 2583236 2584422 "SFQCMPK" 2587970 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1114 2581783 2581872 2581983 "SFORT" 2582104 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1113 2580901 2581623 2581744 "SEXOF" 2581749 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1112 2580008 2580782 2580850 "SEX" 2580855 T SEX (NIL) -8 NIL NIL NIL) (-1111 2575521 2576236 2576331 "SEXCAT" 2579268 NIL SEXCAT (NIL T T T T T) -9 NIL 2579846 NIL) (-1110 2572674 2575455 2575503 "SET" 2575508 NIL SET (NIL T) -8 NIL NIL NIL) (-1109 2570898 2571387 2571692 "SETMN" 2572415 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1108 2570394 2570546 2570576 "SETCAT" 2570752 T SETCAT (NIL) -9 NIL 2570862 NIL) (-1107 2570086 2570164 2570294 "SETCAT-" 2570299 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1106 2566447 2568547 2568590 "SETAGG" 2569460 NIL SETAGG (NIL T) -9 NIL 2569800 NIL) (-1105 2565905 2566021 2566258 "SETAGG-" 2566263 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1104 2565348 2565601 2565702 "SEQAST" 2565826 T SEQAST (NIL) -8 NIL NIL NIL) (-1103 2564547 2564841 2564902 "SEGXCAT" 2565188 NIL SEGXCAT (NIL T T) -9 NIL 2565308 NIL) (-1102 2563553 2564213 2564395 "SEG" 2564400 NIL SEG (NIL T) -8 NIL NIL NIL) (-1101 2562532 2562746 2562789 "SEGCAT" 2563311 NIL SEGCAT (NIL T) -9 NIL 2563532 NIL) (-1100 2561464 2561895 2562103 "SEGBIND" 2562359 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1099 2561085 2561144 2561257 "SEGBIND2" 2561399 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1098 2560658 2560886 2560963 "SEGAST" 2561030 T SEGAST (NIL) -8 NIL NIL NIL) (-1097 2559877 2560003 2560207 "SEG2" 2560502 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1096 2559287 2559812 2559859 "SDVAR" 2559864 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1095 2551814 2559057 2559187 "SDPOL" 2559192 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1094 2550407 2550673 2550992 "SCPKG" 2551529 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1093 2549571 2549743 2549935 "SCOPE" 2550237 T SCOPE (NIL) -8 NIL NIL NIL) (-1092 2548791 2548925 2549104 "SCACHE" 2549426 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1091 2548437 2548623 2548653 "SASTCAT" 2548658 T SASTCAT (NIL) -9 NIL 2548671 NIL) (-1090 2547924 2548272 2548348 "SAOS" 2548383 T SAOS (NIL) -8 NIL NIL NIL) (-1089 2547489 2547524 2547697 "SAERFFC" 2547883 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1088 2541428 2547386 2547466 "SAE" 2547471 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1087 2541021 2541056 2541215 "SAEFACT" 2541387 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1086 2539342 2539656 2540057 "RURPK" 2540687 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1085 2537979 2538285 2538590 "RULESET" 2539176 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1084 2535202 2535732 2536190 "RULE" 2537660 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1083 2534814 2534996 2535079 "RULECOLD" 2535154 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1082 2534604 2534632 2534703 "RTVALUE" 2534765 T RTVALUE (NIL) -8 NIL NIL NIL) (-1081 2534075 2534321 2534415 "RSTRCAST" 2534532 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1080 2528923 2529718 2530638 "RSETGCD" 2533274 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1079 2518153 2523232 2523329 "RSETCAT" 2527448 NIL RSETCAT (NIL T T T T) -9 NIL 2528545 NIL) (-1078 2516080 2516619 2517443 "RSETCAT-" 2517448 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1077 2508466 2509842 2511362 "RSDCMPK" 2514679 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1076 2506445 2506912 2506986 "RRCC" 2508072 NIL RRCC (NIL T T) -9 NIL 2508416 NIL) (-1075 2505796 2505970 2506249 "RRCC-" 2506254 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1074 2505239 2505492 2505593 "RPTAST" 2505717 T RPTAST (NIL) -8 NIL NIL NIL) (-1073 2479085 2488444 2488511 "RPOLCAT" 2499177 NIL RPOLCAT (NIL T T T) -9 NIL 2502337 NIL) (-1072 2470583 2472923 2476045 "RPOLCAT-" 2476050 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1071 2461514 2468794 2469276 "ROUTINE" 2470123 T ROUTINE (NIL) -8 NIL NIL NIL) (-1070 2458312 2461140 2461280 "ROMAN" 2461396 T ROMAN (NIL) -8 NIL NIL NIL) (-1069 2456556 2457172 2457432 "ROIRC" 2458117 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1068 2452788 2455072 2455102 "RNS" 2455406 T RNS (NIL) -9 NIL 2455680 NIL) (-1067 2451297 2451680 2452214 "RNS-" 2452289 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1066 2450700 2451108 2451138 "RNG" 2451143 T RNG (NIL) -9 NIL 2451164 NIL) (-1065 2449703 2450065 2450267 "RNGBIND" 2450551 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1064 2449102 2449490 2449533 "RMODULE" 2449538 NIL RMODULE (NIL T) -9 NIL 2449565 NIL) (-1063 2447938 2448032 2448368 "RMCAT2" 2449003 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1062 2444788 2447284 2447581 "RMATRIX" 2447700 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1061 2437615 2439875 2439990 "RMATCAT" 2443349 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2444331 NIL) (-1060 2436990 2437137 2437444 "RMATCAT-" 2437449 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1059 2436391 2436612 2436655 "RLINSET" 2436849 NIL RLINSET (NIL T) -9 NIL 2436940 NIL) (-1058 2435958 2436033 2436161 "RINTERP" 2436310 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1057 2435016 2435570 2435600 "RING" 2435656 T RING (NIL) -9 NIL 2435748 NIL) (-1056 2434808 2434852 2434949 "RING-" 2434954 NIL RING- (NIL T) -8 NIL NIL NIL) (-1055 2433649 2433886 2434144 "RIDIST" 2434572 T RIDIST (NIL) -7 NIL NIL NIL) (-1054 2424938 2433117 2433323 "RGCHAIN" 2433497 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1053 2424288 2424694 2424735 "RGBCSPC" 2424793 NIL RGBCSPC (NIL T) -9 NIL 2424845 NIL) (-1052 2423446 2423827 2423868 "RGBCMDL" 2424100 NIL RGBCMDL (NIL T) -9 NIL 2424214 NIL) (-1051 2420440 2421054 2421724 "RF" 2422810 NIL RF (NIL T) -7 NIL NIL NIL) (-1050 2420086 2420149 2420252 "RFFACTOR" 2420371 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1049 2419811 2419846 2419943 "RFFACT" 2420045 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1048 2417928 2418292 2418674 "RFDIST" 2419451 T RFDIST (NIL) -7 NIL NIL NIL) (-1047 2417381 2417473 2417636 "RETSOL" 2417830 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1046 2417017 2417097 2417140 "RETRACT" 2417273 NIL RETRACT (NIL T) -9 NIL 2417360 NIL) (-1045 2416866 2416891 2416978 "RETRACT-" 2416983 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1044 2416468 2416688 2416758 "RETAST" 2416818 T RETAST (NIL) -8 NIL NIL NIL) (-1043 2409206 2416121 2416248 "RESULT" 2416363 T RESULT (NIL) -8 NIL NIL NIL) (-1042 2407797 2408475 2408674 "RESRING" 2409109 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1041 2407433 2407482 2407580 "RESLATC" 2407734 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1040 2407138 2407173 2407280 "REPSQ" 2407392 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1039 2404560 2405140 2405742 "REP" 2406558 T REP (NIL) -7 NIL NIL NIL) (-1038 2404257 2404292 2404403 "REPDB" 2404519 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1037 2398157 2399546 2400769 "REP2" 2403069 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1036 2394534 2395215 2396023 "REP1" 2397384 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1035 2387230 2392675 2393131 "REGSET" 2394164 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1034 2385995 2386378 2386628 "REF" 2387015 NIL REF (NIL T) -8 NIL NIL NIL) (-1033 2385372 2385475 2385642 "REDORDER" 2385879 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1032 2381340 2384585 2384812 "RECLOS" 2385200 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1031 2380392 2380573 2380788 "REALSOLV" 2381147 T REALSOLV (NIL) -7 NIL NIL NIL) (-1030 2380238 2380279 2380309 "REAL" 2380314 T REAL (NIL) -9 NIL 2380349 NIL) (-1029 2376721 2377523 2378407 "REAL0Q" 2379403 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1028 2372322 2373310 2374371 "REAL0" 2375702 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1027 2371793 2372039 2372133 "RDUCEAST" 2372250 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1026 2371198 2371270 2371477 "RDIV" 2371715 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1025 2370266 2370440 2370653 "RDIST" 2371020 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1024 2368863 2369150 2369522 "RDETRS" 2369974 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1023 2366675 2367129 2367667 "RDETR" 2368405 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1022 2365300 2365578 2365975 "RDEEFS" 2366391 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1021 2363809 2364115 2364540 "RDEEF" 2364988 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1020 2357870 2360790 2360820 "RCFIELD" 2362115 T RCFIELD (NIL) -9 NIL 2362846 NIL) (-1019 2355934 2356438 2357134 "RCFIELD-" 2357209 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1018 2352203 2354035 2354078 "RCAGG" 2355162 NIL RCAGG (NIL T) -9 NIL 2355627 NIL) (-1017 2351831 2351925 2352088 "RCAGG-" 2352093 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1016 2351166 2351278 2351443 "RATRET" 2351715 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1015 2350719 2350786 2350907 "RATFACT" 2351094 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1014 2350027 2350147 2350299 "RANDSRC" 2350589 T RANDSRC (NIL) -7 NIL NIL NIL) (-1013 2349761 2349805 2349878 "RADUTIL" 2349976 T RADUTIL (NIL) -7 NIL NIL NIL) (-1012 2342875 2348592 2348903 "RADIX" 2349484 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1011 2334494 2342717 2342847 "RADFF" 2342852 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1010 2334141 2334216 2334246 "RADCAT" 2334406 T RADCAT (NIL) -9 NIL NIL NIL) (-1009 2333923 2333971 2334071 "RADCAT-" 2334076 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1008 2332021 2333693 2333785 "QUEUE" 2333866 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1007 2328558 2331954 2332002 "QUAT" 2332007 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1006 2328189 2328232 2328363 "QUATCT2" 2328509 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1005 2321638 2324983 2325025 "QUATCAT" 2325816 NIL QUATCAT (NIL T) -9 NIL 2326582 NIL) (-1004 2317777 2318814 2320204 "QUATCAT-" 2320300 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1003 2315242 2316853 2316896 "QUAGG" 2317277 NIL QUAGG (NIL T) -9 NIL 2317452 NIL) (-1002 2314844 2315064 2315134 "QQUTAST" 2315194 T QQUTAST (NIL) -8 NIL NIL NIL) (-1001 2313737 2314237 2314411 "QFORM" 2314716 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1000 2304730 2309969 2310011 "QFCAT" 2310679 NIL QFCAT (NIL T) -9 NIL 2311680 NIL) (-999 2300300 2301501 2303093 "QFCAT-" 2303188 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-998 2299934 2299977 2300106 "QFCAT2" 2300251 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-997 2299394 2299504 2299634 "QEQUAT" 2299824 T QEQUAT (NIL) -8 NIL NIL NIL) (-996 2292540 2293613 2294797 "QCMPACK" 2298327 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-995 2290089 2290537 2290965 "QALGSET" 2292195 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-994 2289334 2289508 2289740 "QALGSET2" 2289909 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-993 2288024 2288248 2288565 "PWFFINTB" 2289107 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-992 2286206 2286374 2286728 "PUSHVAR" 2287838 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-991 2282124 2283178 2283219 "PTRANFN" 2285103 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-990 2280526 2280817 2281139 "PTPACK" 2281835 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-989 2280158 2280215 2280324 "PTFUNC2" 2280463 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-988 2274635 2279030 2279071 "PTCAT" 2279367 NIL PTCAT (NIL T) -9 NIL 2279520 NIL) (-987 2274293 2274328 2274452 "PSQFR" 2274594 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-986 2272888 2273186 2273520 "PSEUDLIN" 2273991 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-985 2259651 2262022 2264346 "PSETPK" 2270648 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-984 2252669 2255409 2255505 "PSETCAT" 2258526 NIL PSETCAT (NIL T T T T) -9 NIL 2259340 NIL) (-983 2250505 2251139 2251960 "PSETCAT-" 2251965 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-982 2249854 2250019 2250047 "PSCURVE" 2250315 T PSCURVE (NIL) -9 NIL 2250482 NIL) (-981 2245852 2247368 2247433 "PSCAT" 2248277 NIL PSCAT (NIL T T T) -9 NIL 2248517 NIL) (-980 2244915 2245131 2245531 "PSCAT-" 2245536 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-979 2243620 2244280 2244485 "PRTITION" 2244730 T PRTITION (NIL) -8 NIL NIL NIL) (-978 2243095 2243341 2243433 "PRTDAST" 2243548 T PRTDAST (NIL) -8 NIL NIL NIL) (-977 2232185 2234399 2236587 "PRS" 2240957 NIL PRS (NIL T T) -7 NIL NIL NIL) (-976 2229996 2231535 2231575 "PRQAGG" 2231758 NIL PRQAGG (NIL T) -9 NIL 2231860 NIL) (-975 2229200 2229505 2229533 "PROPLOG" 2229780 T PROPLOG (NIL) -9 NIL 2229946 NIL) (-974 2228804 2228861 2228984 "PROPFUN2" 2229123 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-973 2228311 2228393 2228527 "PROPFUN1" 2228703 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-972 2226492 2227058 2227355 "PROPFRML" 2228047 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-971 2225961 2226068 2226196 "PROPERTY" 2226384 T PROPERTY (NIL) -8 NIL NIL NIL) (-970 2220019 2224127 2224947 "PRODUCT" 2225187 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-969 2217297 2219477 2219711 "PR" 2219830 NIL PR (NIL T T) -8 NIL NIL NIL) (-968 2217093 2217125 2217184 "PRINT" 2217258 T PRINT (NIL) -7 NIL NIL NIL) (-967 2216433 2216550 2216702 "PRIMES" 2216973 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-966 2214498 2214899 2215365 "PRIMELT" 2216012 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-965 2214227 2214276 2214304 "PRIMCAT" 2214428 T PRIMCAT (NIL) -9 NIL NIL NIL) (-964 2210342 2214165 2214210 "PRIMARR" 2214215 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-963 2209349 2209527 2209755 "PRIMARR2" 2210160 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-962 2208992 2209048 2209159 "PREASSOC" 2209287 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-961 2208467 2208600 2208628 "PPCURVE" 2208833 T PPCURVE (NIL) -9 NIL 2208969 NIL) (-960 2208062 2208262 2208345 "PORTNUM" 2208404 T PORTNUM (NIL) -8 NIL NIL NIL) (-959 2205421 2205820 2206412 "POLYROOT" 2207643 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-958 2199603 2205025 2205185 "POLY" 2205294 NIL POLY (NIL T) -8 NIL NIL NIL) (-957 2198986 2199044 2199278 "POLYLIFT" 2199539 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-956 2195261 2195710 2196339 "POLYCATQ" 2198531 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-955 2181973 2187101 2187166 "POLYCAT" 2190680 NIL POLYCAT (NIL T T T) -9 NIL 2192558 NIL) (-954 2175422 2177284 2179668 "POLYCAT-" 2179673 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-953 2175009 2175077 2175197 "POLY2UP" 2175348 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-952 2174641 2174698 2174807 "POLY2" 2174946 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-951 2173326 2173565 2173841 "POLUTIL" 2174415 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-950 2171681 2171958 2172289 "POLTOPOL" 2173048 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-949 2167146 2171617 2171663 "POINT" 2171668 NIL POINT (NIL T) -8 NIL NIL NIL) (-948 2165333 2165690 2166065 "PNTHEORY" 2166791 T PNTHEORY (NIL) -7 NIL NIL NIL) (-947 2163791 2164088 2164487 "PMTOOLS" 2165031 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-946 2163384 2163462 2163579 "PMSYM" 2163707 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-945 2162892 2162961 2163136 "PMQFCAT" 2163309 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-944 2162247 2162357 2162513 "PMPRED" 2162769 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-943 2161640 2161726 2161888 "PMPREDFS" 2162148 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-942 2160304 2160512 2160890 "PMPLCAT" 2161402 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-941 2159836 2159915 2160067 "PMLSAGG" 2160219 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-940 2159309 2159385 2159567 "PMKERNEL" 2159754 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-939 2158926 2159001 2159114 "PMINS" 2159228 NIL PMINS (NIL T) -7 NIL NIL NIL) (-938 2158368 2158437 2158646 "PMFS" 2158851 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-937 2157596 2157714 2157919 "PMDOWN" 2158245 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-936 2156763 2156921 2157102 "PMASS" 2157435 T PMASS (NIL) -7 NIL NIL NIL) (-935 2156036 2156146 2156309 "PMASSFS" 2156650 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-934 2155691 2155759 2155853 "PLOTTOOL" 2155962 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-933 2150298 2151502 2152650 "PLOT" 2154563 T PLOT (NIL) -8 NIL NIL NIL) (-932 2146102 2147146 2148067 "PLOT3D" 2149397 T PLOT3D (NIL) -8 NIL NIL NIL) (-931 2145014 2145191 2145426 "PLOT1" 2145906 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-930 2120403 2125080 2129931 "PLEQN" 2140280 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-929 2119721 2119843 2120023 "PINTERP" 2120268 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-928 2119414 2119461 2119564 "PINTERPA" 2119668 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-927 2118635 2119183 2119270 "PI" 2119310 T PI (NIL) -8 NIL NIL 2119377) (-926 2116932 2117907 2117935 "PID" 2118117 T PID (NIL) -9 NIL 2118251 NIL) (-925 2116683 2116720 2116795 "PICOERCE" 2116889 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-924 2116003 2116142 2116318 "PGROEB" 2116539 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-923 2111590 2112404 2113309 "PGE" 2115118 T PGE (NIL) -7 NIL NIL NIL) (-922 2109713 2109960 2110326 "PGCD" 2111307 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-921 2109051 2109154 2109315 "PFRPAC" 2109597 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-920 2105691 2107599 2107952 "PFR" 2108730 NIL PFR (NIL T) -8 NIL NIL NIL) (-919 2104080 2104324 2104649 "PFOTOOLS" 2105438 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-918 2102613 2102852 2103203 "PFOQ" 2103837 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-917 2101114 2101326 2101682 "PFO" 2102397 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-916 2097667 2101003 2101072 "PF" 2101077 NIL PF (NIL NIL) -8 NIL NIL NIL) (-915 2095001 2096272 2096300 "PFECAT" 2096885 T PFECAT (NIL) -9 NIL 2097269 NIL) (-914 2094446 2094600 2094814 "PFECAT-" 2094819 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-913 2093049 2093301 2093602 "PFBRU" 2094195 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-912 2090915 2091267 2091699 "PFBR" 2092700 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-911 2086797 2088291 2088967 "PERM" 2090272 NIL PERM (NIL T) -8 NIL NIL NIL) (-910 2082031 2083004 2083874 "PERMGRP" 2085960 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-909 2080137 2081094 2081135 "PERMCAT" 2081581 NIL PERMCAT (NIL T) -9 NIL 2081886 NIL) (-908 2079790 2079831 2079955 "PERMAN" 2080090 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-907 2077278 2079455 2079577 "PENDTREE" 2079701 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-906 2075302 2076070 2076111 "PDRING" 2076768 NIL PDRING (NIL T) -9 NIL 2077054 NIL) (-905 2074405 2074623 2074985 "PDRING-" 2074990 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-904 2071620 2072398 2073066 "PDEPROB" 2073757 T PDEPROB (NIL) -8 NIL NIL NIL) (-903 2069165 2069669 2070224 "PDEPACK" 2071085 T PDEPACK (NIL) -7 NIL NIL NIL) (-902 2068077 2068267 2068518 "PDECOMP" 2068964 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-901 2065656 2066499 2066527 "PDECAT" 2067314 T PDECAT (NIL) -9 NIL 2068027 NIL) (-900 2065407 2065440 2065530 "PCOMP" 2065617 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-899 2063585 2064208 2064505 "PBWLB" 2065136 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-898 2056058 2057658 2058996 "PATTERN" 2062268 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-897 2055690 2055747 2055856 "PATTERN2" 2055995 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-896 2053447 2053835 2054292 "PATTERN1" 2055279 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-895 2050815 2051396 2051877 "PATRES" 2053012 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-894 2050379 2050446 2050578 "PATRES2" 2050742 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-893 2048262 2048667 2049074 "PATMATCH" 2050046 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-892 2047772 2047981 2048022 "PATMAB" 2048129 NIL PATMAB (NIL T) -9 NIL 2048212 NIL) (-891 2046290 2046626 2046884 "PATLRES" 2047577 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-890 2045836 2045959 2046000 "PATAB" 2046005 NIL PATAB (NIL T) -9 NIL 2046177 NIL) (-889 2043317 2043849 2044422 "PARTPERM" 2045283 T PARTPERM (NIL) -7 NIL NIL NIL) (-888 2042938 2043001 2043103 "PARSURF" 2043248 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-887 2042570 2042627 2042736 "PARSU2" 2042875 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-886 2042334 2042374 2042441 "PARSER" 2042523 T PARSER (NIL) -7 NIL NIL NIL) (-885 2041955 2042018 2042120 "PARSCURV" 2042265 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-884 2041587 2041644 2041753 "PARSC2" 2041892 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-883 2041226 2041284 2041381 "PARPCURV" 2041523 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-882 2040858 2040915 2041024 "PARPC2" 2041163 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-881 2039919 2040231 2040413 "PARAMAST" 2040696 T PARAMAST (NIL) -8 NIL NIL NIL) (-880 2039439 2039525 2039644 "PAN2EXPR" 2039820 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-879 2038216 2038560 2038788 "PALETTE" 2039231 T PALETTE (NIL) -8 NIL NIL NIL) (-878 2036609 2037221 2037581 "PAIR" 2037902 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-877 2030477 2035866 2036061 "PADICRC" 2036463 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-876 2023704 2029821 2030006 "PADICRAT" 2030324 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-875 2022019 2023641 2023686 "PADIC" 2023691 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-874 2019129 2020693 2020733 "PADICCT" 2021314 NIL PADICCT (NIL NIL) -9 NIL 2021596 NIL) (-873 2018086 2018286 2018554 "PADEPAC" 2018916 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-872 2017298 2017431 2017637 "PADE" 2017948 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-871 2015685 2016506 2016786 "OWP" 2017102 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-870 2015178 2015391 2015488 "OVERSET" 2015608 T OVERSET (NIL) -8 NIL NIL NIL) (-869 2014224 2014783 2014955 "OVAR" 2015046 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-868 2013488 2013609 2013770 "OUT" 2014083 T OUT (NIL) -7 NIL NIL NIL) (-867 2002360 2004597 2006797 "OUTFORM" 2011308 T OUTFORM (NIL) -8 NIL NIL NIL) (-866 2001696 2001957 2002084 "OUTBFILE" 2002253 T OUTBFILE (NIL) -8 NIL NIL NIL) (-865 2001003 2001168 2001196 "OUTBCON" 2001514 T OUTBCON (NIL) -9 NIL 2001680 NIL) (-864 2000604 2000716 2000873 "OUTBCON-" 2000878 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-863 1999984 2000333 2000422 "OSI" 2000535 T OSI (NIL) -8 NIL NIL NIL) (-862 1999514 1999852 1999880 "OSGROUP" 1999885 T OSGROUP (NIL) -9 NIL 1999907 NIL) (-861 1998259 1998486 1998771 "ORTHPOL" 1999261 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-860 1995810 1998094 1998215 "OREUP" 1998220 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-859 1993213 1995501 1995628 "ORESUP" 1995752 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-858 1990741 1991241 1991802 "OREPCTO" 1992702 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-857 1984427 1986628 1986669 "OREPCAT" 1989017 NIL OREPCAT (NIL T) -9 NIL 1990121 NIL) (-856 1981574 1982356 1983414 "OREPCAT-" 1983419 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-855 1980725 1981023 1981051 "ORDSET" 1981360 T ORDSET (NIL) -9 NIL 1981524 NIL) (-854 1980156 1980304 1980528 "ORDSET-" 1980533 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-853 1978721 1979512 1979540 "ORDRING" 1979742 T ORDRING (NIL) -9 NIL 1979867 NIL) (-852 1978366 1978460 1978604 "ORDRING-" 1978609 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-851 1977746 1978209 1978237 "ORDMON" 1978242 T ORDMON (NIL) -9 NIL 1978263 NIL) (-850 1976908 1977055 1977250 "ORDFUNS" 1977595 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-849 1976246 1976665 1976693 "ORDFIN" 1976758 T ORDFIN (NIL) -9 NIL 1976832 NIL) (-848 1972805 1974832 1975241 "ORDCOMP" 1975870 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-847 1972071 1972198 1972384 "ORDCOMP2" 1972665 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-846 1968652 1969562 1970376 "OPTPROB" 1971277 T OPTPROB (NIL) -8 NIL NIL NIL) (-845 1965454 1966093 1966797 "OPTPACK" 1967968 T OPTPACK (NIL) -7 NIL NIL NIL) (-844 1963141 1963907 1963935 "OPTCAT" 1964754 T OPTCAT (NIL) -9 NIL 1965404 NIL) (-843 1962525 1962818 1962923 "OPSIG" 1963056 T OPSIG (NIL) -8 NIL NIL NIL) (-842 1962293 1962332 1962398 "OPQUERY" 1962479 T OPQUERY (NIL) -7 NIL NIL NIL) (-841 1959424 1960604 1961108 "OP" 1961822 NIL OP (NIL T) -8 NIL NIL NIL) (-840 1958798 1959024 1959065 "OPERCAT" 1959277 NIL OPERCAT (NIL T) -9 NIL 1959374 NIL) (-839 1958553 1958609 1958726 "OPERCAT-" 1958731 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-838 1955366 1957350 1957719 "ONECOMP" 1958217 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-837 1954671 1954786 1954960 "ONECOMP2" 1955238 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1954090 1954196 1954326 "OMSERVER" 1954561 T OMSERVER (NIL) -7 NIL NIL NIL) (-835 1950952 1953530 1953570 "OMSAGG" 1953631 NIL OMSAGG (NIL T) -9 NIL 1953695 NIL) (-834 1949575 1949838 1950120 "OMPKG" 1950690 T OMPKG (NIL) -7 NIL NIL NIL) (-833 1949005 1949108 1949136 "OM" 1949435 T OM (NIL) -9 NIL NIL NIL) (-832 1947552 1948554 1948723 "OMLO" 1948886 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-831 1946512 1946659 1946879 "OMEXPR" 1947378 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-830 1945803 1946058 1946194 "OMERR" 1946396 T OMERR (NIL) -8 NIL NIL NIL) (-829 1944954 1945224 1945384 "OMERRK" 1945663 T OMERRK (NIL) -8 NIL NIL NIL) (-828 1944405 1944631 1944739 "OMENC" 1944866 T OMENC (NIL) -8 NIL NIL NIL) (-827 1938300 1939485 1940656 "OMDEV" 1943254 T OMDEV (NIL) -8 NIL NIL NIL) (-826 1937369 1937540 1937734 "OMCONN" 1938126 T OMCONN (NIL) -8 NIL NIL NIL) (-825 1935890 1936866 1936894 "OINTDOM" 1936899 T OINTDOM (NIL) -9 NIL 1936920 NIL) (-824 1933228 1934578 1934915 "OFMONOID" 1935585 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-823 1932639 1933165 1933210 "ODVAR" 1933215 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-822 1930062 1932384 1932539 "ODR" 1932544 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-821 1922643 1929838 1929964 "ODPOL" 1929969 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-820 1916465 1922515 1922620 "ODP" 1922625 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-819 1915231 1915446 1915721 "ODETOOLS" 1916239 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-818 1912198 1912856 1913572 "ODESYS" 1914564 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-817 1907080 1907988 1909013 "ODERTRIC" 1911273 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-816 1906506 1906588 1906782 "ODERED" 1906992 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-815 1903394 1903942 1904619 "ODERAT" 1905929 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-814 1900351 1900818 1901415 "ODEPRRIC" 1902923 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-813 1898294 1898890 1899376 "ODEPROB" 1899885 T ODEPROB (NIL) -8 NIL NIL NIL) (-812 1894814 1895299 1895946 "ODEPRIM" 1897773 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-811 1894063 1894165 1894425 "ODEPAL" 1894706 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-810 1890225 1891016 1891880 "ODEPACK" 1893219 T ODEPACK (NIL) -7 NIL NIL NIL) (-809 1889286 1889393 1889615 "ODEINT" 1890114 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-808 1883387 1884812 1886259 "ODEIFTBL" 1887859 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-807 1878785 1879571 1880523 "ODEEF" 1882546 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-806 1878134 1878223 1878446 "ODECONST" 1878690 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-805 1876259 1876920 1876948 "ODECAT" 1877553 T ODECAT (NIL) -9 NIL 1878084 NIL) (-804 1873114 1875964 1876086 "OCT" 1876169 NIL OCT (NIL T) -8 NIL NIL NIL) (-803 1872752 1872795 1872922 "OCTCT2" 1873065 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-802 1867401 1869836 1869876 "OC" 1870973 NIL OC (NIL T) -9 NIL 1871831 NIL) (-801 1864628 1865376 1866366 "OC-" 1866460 NIL OC- (NIL T T) -8 NIL NIL NIL) (-800 1863980 1864448 1864476 "OCAMON" 1864481 T OCAMON (NIL) -9 NIL 1864502 NIL) (-799 1863511 1863852 1863880 "OASGP" 1863885 T OASGP (NIL) -9 NIL 1863905 NIL) (-798 1862772 1863261 1863289 "OAMONS" 1863329 T OAMONS (NIL) -9 NIL 1863372 NIL) (-797 1862186 1862619 1862647 "OAMON" 1862652 T OAMON (NIL) -9 NIL 1862672 NIL) (-796 1861444 1861962 1861990 "OAGROUP" 1861995 T OAGROUP (NIL) -9 NIL 1862015 NIL) (-795 1861134 1861184 1861272 "NUMTUBE" 1861388 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-794 1854707 1856225 1857761 "NUMQUAD" 1859618 T NUMQUAD (NIL) -7 NIL NIL NIL) (-793 1850463 1851451 1852476 "NUMODE" 1853702 T NUMODE (NIL) -7 NIL NIL NIL) (-792 1847818 1848698 1848726 "NUMINT" 1849649 T NUMINT (NIL) -9 NIL 1850413 NIL) (-791 1846766 1846963 1847181 "NUMFMT" 1847620 T NUMFMT (NIL) -7 NIL NIL NIL) (-790 1833125 1836070 1838602 "NUMERIC" 1844273 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-789 1827495 1832574 1832669 "NTSCAT" 1832674 NIL NTSCAT (NIL T T T T) -9 NIL 1832713 NIL) (-788 1826689 1826854 1827047 "NTPOLFN" 1827334 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-787 1814766 1823514 1824326 "NSUP" 1825910 NIL NSUP (NIL T) -8 NIL NIL NIL) (-786 1814398 1814455 1814564 "NSUP2" 1814703 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-785 1804624 1814172 1814305 "NSMP" 1814310 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-784 1803056 1803357 1803714 "NREP" 1804312 NIL NREP (NIL T) -7 NIL NIL NIL) (-783 1801647 1801899 1802257 "NPCOEF" 1802799 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-782 1800713 1800828 1801044 "NORMRETR" 1801528 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-781 1798754 1799044 1799453 "NORMPK" 1800421 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-780 1798439 1798467 1798591 "NORMMA" 1798720 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-779 1798239 1798396 1798425 "NONE" 1798430 T NONE (NIL) -8 NIL NIL NIL) (-778 1798028 1798057 1798126 "NONE1" 1798203 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-777 1797525 1797587 1797766 "NODE1" 1797960 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-776 1795810 1796661 1796916 "NNI" 1797263 T NNI (NIL) -8 NIL NIL 1797498) (-775 1794230 1794543 1794907 "NLINSOL" 1795478 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-774 1790471 1791466 1792365 "NIPROB" 1793351 T NIPROB (NIL) -8 NIL NIL NIL) (-773 1789228 1789462 1789764 "NFINTBAS" 1790233 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-772 1788402 1788878 1788919 "NETCLT" 1789091 NIL NETCLT (NIL T) -9 NIL 1789173 NIL) (-771 1787110 1787341 1787622 "NCODIV" 1788170 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-770 1786872 1786909 1786984 "NCNTFRAC" 1787067 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-769 1785052 1785416 1785836 "NCEP" 1786497 NIL NCEP (NIL T) -7 NIL NIL NIL) (-768 1783903 1784676 1784704 "NASRING" 1784814 T NASRING (NIL) -9 NIL 1784894 NIL) (-767 1783698 1783742 1783836 "NASRING-" 1783841 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-766 1782805 1783330 1783358 "NARNG" 1783475 T NARNG (NIL) -9 NIL 1783566 NIL) (-765 1782497 1782564 1782698 "NARNG-" 1782703 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-764 1781376 1781583 1781818 "NAGSP" 1782282 T NAGSP (NIL) -7 NIL NIL NIL) (-763 1772648 1774332 1776005 "NAGS" 1779723 T NAGS (NIL) -7 NIL NIL NIL) (-762 1771196 1771504 1771835 "NAGF07" 1772337 T NAGF07 (NIL) -7 NIL NIL NIL) (-761 1765734 1767025 1768332 "NAGF04" 1769909 T NAGF04 (NIL) -7 NIL NIL NIL) (-760 1758702 1760316 1761949 "NAGF02" 1764121 T NAGF02 (NIL) -7 NIL NIL NIL) (-759 1753926 1755026 1756143 "NAGF01" 1757605 T NAGF01 (NIL) -7 NIL NIL NIL) (-758 1747554 1749120 1750705 "NAGE04" 1752361 T NAGE04 (NIL) -7 NIL NIL NIL) (-757 1738723 1740844 1742974 "NAGE02" 1745444 T NAGE02 (NIL) -7 NIL NIL NIL) (-756 1734676 1735623 1736587 "NAGE01" 1737779 T NAGE01 (NIL) -7 NIL NIL NIL) (-755 1732471 1733005 1733563 "NAGD03" 1734138 T NAGD03 (NIL) -7 NIL NIL NIL) (-754 1724221 1726149 1728103 "NAGD02" 1730537 T NAGD02 (NIL) -7 NIL NIL NIL) (-753 1718032 1719457 1720897 "NAGD01" 1722801 T NAGD01 (NIL) -7 NIL NIL NIL) (-752 1714241 1715063 1715900 "NAGC06" 1717215 T NAGC06 (NIL) -7 NIL NIL NIL) (-751 1712706 1713038 1713394 "NAGC05" 1713905 T NAGC05 (NIL) -7 NIL NIL NIL) (-750 1712082 1712201 1712345 "NAGC02" 1712582 T NAGC02 (NIL) -7 NIL NIL NIL) (-749 1711041 1711624 1711664 "NAALG" 1711743 NIL NAALG (NIL T) -9 NIL 1711804 NIL) (-748 1710876 1710905 1710995 "NAALG-" 1711000 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-747 1704826 1705934 1707121 "MULTSQFR" 1709772 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-746 1704145 1704220 1704404 "MULTFACT" 1704738 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-745 1696869 1700782 1700835 "MTSCAT" 1701905 NIL MTSCAT (NIL T T) -9 NIL 1702420 NIL) (-744 1696581 1696635 1696727 "MTHING" 1696809 NIL MTHING (NIL T) -7 NIL NIL NIL) (-743 1696373 1696406 1696466 "MSYSCMD" 1696541 T MSYSCMD (NIL) -7 NIL NIL NIL) (-742 1692455 1695128 1695448 "MSET" 1696086 NIL MSET (NIL T) -8 NIL NIL NIL) (-741 1689524 1692016 1692057 "MSETAGG" 1692062 NIL MSETAGG (NIL T) -9 NIL 1692096 NIL) (-740 1685365 1686903 1687648 "MRING" 1688824 NIL MRING (NIL T T) -8 NIL NIL NIL) (-739 1684931 1684998 1685129 "MRF2" 1685292 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-738 1684549 1684584 1684728 "MRATFAC" 1684890 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-737 1682161 1682456 1682887 "MPRFF" 1684254 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-736 1676458 1682015 1682112 "MPOLY" 1682117 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-735 1675948 1675983 1676191 "MPCPF" 1676417 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-734 1675462 1675505 1675689 "MPC3" 1675899 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-733 1674657 1674738 1674959 "MPC2" 1675377 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-732 1672958 1673295 1673685 "MONOTOOL" 1674317 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-731 1672183 1672500 1672528 "MONOID" 1672747 T MONOID (NIL) -9 NIL 1672894 NIL) (-730 1671729 1671848 1672029 "MONOID-" 1672034 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-729 1662204 1668155 1668214 "MONOGEN" 1668888 NIL MONOGEN (NIL T T) -9 NIL 1669344 NIL) (-728 1659422 1660157 1661157 "MONOGEN-" 1661276 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-727 1658255 1658701 1658729 "MONADWU" 1659121 T MONADWU (NIL) -9 NIL 1659359 NIL) (-726 1657627 1657786 1658034 "MONADWU-" 1658039 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-725 1656986 1657230 1657258 "MONAD" 1657465 T MONAD (NIL) -9 NIL 1657577 NIL) (-724 1656671 1656749 1656881 "MONAD-" 1656886 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-723 1654960 1655584 1655863 "MOEBIUS" 1656424 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-722 1654238 1654642 1654682 "MODULE" 1654687 NIL MODULE (NIL T) -9 NIL 1654726 NIL) (-721 1653806 1653902 1654092 "MODULE-" 1654097 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-720 1651486 1652170 1652497 "MODRING" 1653630 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-719 1648430 1649591 1650112 "MODOP" 1651015 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-718 1647018 1647497 1647774 "MODMONOM" 1648293 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-717 1637060 1645309 1645723 "MODMON" 1646655 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-716 1634216 1635904 1636180 "MODFIELD" 1636935 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1633193 1633497 1633687 "MMLFORM" 1634046 T MMLFORM (NIL) -8 NIL NIL NIL) (-714 1632719 1632762 1632941 "MMAP" 1633144 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-713 1630798 1631565 1631606 "MLO" 1632029 NIL MLO (NIL T) -9 NIL 1632271 NIL) (-712 1628164 1628680 1629282 "MLIFT" 1630279 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-711 1627555 1627639 1627793 "MKUCFUNC" 1628075 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-710 1627154 1627224 1627347 "MKRECORD" 1627478 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-709 1626201 1626363 1626591 "MKFUNC" 1626965 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-708 1625589 1625693 1625849 "MKFLCFN" 1626084 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-707 1624866 1624968 1625153 "MKBCFUNC" 1625482 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-706 1621573 1624420 1624556 "MINT" 1624750 T MINT (NIL) -8 NIL NIL NIL) (-705 1620385 1620628 1620905 "MHROWRED" 1621328 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-704 1615765 1618920 1619325 "MFLOAT" 1620000 T MFLOAT (NIL) -8 NIL NIL NIL) (-703 1615122 1615198 1615369 "MFINFACT" 1615677 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-702 1611437 1612285 1613169 "MESH" 1614258 T MESH (NIL) -7 NIL NIL NIL) (-701 1609827 1610139 1610492 "MDDFACT" 1611124 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-700 1606622 1608986 1609027 "MDAGG" 1609282 NIL MDAGG (NIL T) -9 NIL 1609425 NIL) (-699 1596362 1605915 1606122 "MCMPLX" 1606435 T MCMPLX (NIL) -8 NIL NIL NIL) (-698 1595499 1595645 1595846 "MCDEN" 1596211 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-697 1593389 1593659 1594039 "MCALCFN" 1595229 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-696 1592314 1592554 1592787 "MAYBE" 1593195 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-695 1589926 1590449 1591011 "MATSTOR" 1591785 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-694 1585883 1589298 1589546 "MATRIX" 1589711 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-693 1581647 1582356 1583092 "MATLIN" 1585240 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-692 1571753 1574939 1575016 "MATCAT" 1579896 NIL MATCAT (NIL T T T) -9 NIL 1581313 NIL) (-691 1568109 1569130 1570486 "MATCAT-" 1570491 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-690 1566703 1566856 1567189 "MATCAT2" 1567944 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-689 1564815 1565139 1565523 "MAPPKG3" 1566378 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-688 1563796 1563969 1564191 "MAPPKG2" 1564639 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-687 1562295 1562579 1562906 "MAPPKG1" 1563502 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-686 1561374 1561701 1561878 "MAPPAST" 1562138 T MAPPAST (NIL) -8 NIL NIL NIL) (-685 1560985 1561043 1561166 "MAPHACK3" 1561310 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-684 1560577 1560638 1560752 "MAPHACK2" 1560917 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-683 1560014 1560118 1560260 "MAPHACK1" 1560468 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-682 1558093 1558714 1559018 "MAGMA" 1559742 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-681 1557572 1557817 1557908 "MACROAST" 1558022 T MACROAST (NIL) -8 NIL NIL NIL) (-680 1553990 1555811 1556272 "M3D" 1557144 NIL M3D (NIL T) -8 NIL NIL NIL) (-679 1548096 1552359 1552400 "LZSTAGG" 1553182 NIL LZSTAGG (NIL T) -9 NIL 1553477 NIL) (-678 1544053 1545227 1546684 "LZSTAGG-" 1546689 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-677 1541140 1541944 1542431 "LWORD" 1543598 NIL LWORD (NIL T) -8 NIL NIL NIL) (-676 1540716 1540944 1541019 "LSTAST" 1541085 T LSTAST (NIL) -8 NIL NIL NIL) (-675 1533882 1540487 1540621 "LSQM" 1540626 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-674 1533106 1533245 1533473 "LSPP" 1533737 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-673 1530918 1531219 1531675 "LSMP" 1532795 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-672 1527697 1528371 1529101 "LSMP1" 1530220 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-671 1521574 1526864 1526905 "LSAGG" 1526967 NIL LSAGG (NIL T) -9 NIL 1527045 NIL) (-670 1518269 1519193 1520406 "LSAGG-" 1520411 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-669 1515868 1517413 1517662 "LPOLY" 1518064 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-668 1515450 1515535 1515658 "LPEFRAC" 1515777 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-667 1513771 1514544 1514797 "LO" 1515282 NIL LO (NIL T T T) -8 NIL NIL NIL) (-666 1513423 1513535 1513563 "LOGIC" 1513674 T LOGIC (NIL) -9 NIL 1513755 NIL) (-665 1513285 1513308 1513379 "LOGIC-" 1513384 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-664 1512478 1512618 1512811 "LODOOPS" 1513141 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-663 1509901 1512394 1512460 "LODO" 1512465 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-662 1508439 1508674 1509027 "LODOF" 1509648 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-661 1504657 1507088 1507129 "LODOCAT" 1507567 NIL LODOCAT (NIL T) -9 NIL 1507778 NIL) (-660 1504390 1504448 1504575 "LODOCAT-" 1504580 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-659 1501710 1504231 1504349 "LODO2" 1504354 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-658 1499145 1501647 1501692 "LODO1" 1501697 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-657 1498026 1498191 1498496 "LODEEF" 1498968 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-656 1493265 1496156 1496197 "LNAGG" 1497144 NIL LNAGG (NIL T) -9 NIL 1497588 NIL) (-655 1492412 1492626 1492968 "LNAGG-" 1492973 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-654 1488548 1489337 1489976 "LMOPS" 1491827 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-653 1487951 1488339 1488380 "LMODULE" 1488385 NIL LMODULE (NIL T) -9 NIL 1488411 NIL) (-652 1485149 1487596 1487719 "LMDICT" 1487861 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-651 1484555 1484776 1484817 "LLINSET" 1485008 NIL LLINSET (NIL T) -9 NIL 1485099 NIL) (-650 1484254 1484463 1484523 "LITERAL" 1484528 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-649 1477417 1483188 1483492 "LIST" 1483983 NIL LIST (NIL T) -8 NIL NIL NIL) (-648 1476942 1477016 1477155 "LIST3" 1477337 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-647 1475949 1476127 1476355 "LIST2" 1476760 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-646 1474083 1474395 1474794 "LIST2MAP" 1475596 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-645 1473679 1473916 1473957 "LINSET" 1473962 NIL LINSET (NIL T) -9 NIL 1473996 NIL) (-644 1472340 1473010 1473051 "LINEXP" 1473306 NIL LINEXP (NIL T) -9 NIL 1473455 NIL) (-643 1470987 1471247 1471544 "LINDEP" 1472092 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-642 1467754 1468473 1469250 "LIMITRF" 1470242 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-641 1466057 1466353 1466762 "LIMITPS" 1467449 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-640 1460485 1465568 1465796 "LIE" 1465878 NIL LIE (NIL T T) -8 NIL NIL NIL) (-639 1459433 1459902 1459942 "LIECAT" 1460082 NIL LIECAT (NIL T) -9 NIL 1460233 NIL) (-638 1459274 1459301 1459389 "LIECAT-" 1459394 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-637 1451770 1458723 1458888 "LIB" 1459129 T LIB (NIL) -8 NIL NIL NIL) (-636 1447405 1448288 1449223 "LGROBP" 1450887 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-635 1445403 1445677 1446027 "LF" 1447126 NIL LF (NIL T T) -7 NIL NIL NIL) (-634 1444243 1444935 1444963 "LFCAT" 1445170 T LFCAT (NIL) -9 NIL 1445309 NIL) (-633 1441145 1441775 1442463 "LEXTRIPK" 1443607 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-632 1437889 1438715 1439218 "LEXP" 1440725 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-631 1437365 1437610 1437702 "LETAST" 1437817 T LETAST (NIL) -8 NIL NIL NIL) (-630 1435763 1436076 1436477 "LEADCDET" 1437047 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-629 1434953 1435027 1435256 "LAZM3PK" 1435684 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-628 1429870 1433030 1433568 "LAUPOL" 1434465 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-627 1429449 1429493 1429654 "LAPLACE" 1429820 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-626 1427388 1428550 1428801 "LA" 1429282 NIL LA (NIL T T T) -8 NIL NIL NIL) (-625 1426382 1426966 1427007 "LALG" 1427069 NIL LALG (NIL T) -9 NIL 1427128 NIL) (-624 1426096 1426155 1426291 "LALG-" 1426296 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-623 1425931 1425955 1425996 "KVTFROM" 1426058 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-622 1424854 1425298 1425483 "KTVLOGIC" 1425766 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-621 1424689 1424713 1424754 "KRCFROM" 1424816 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-620 1423593 1423780 1424079 "KOVACIC" 1424489 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-619 1423428 1423452 1423493 "KONVERT" 1423555 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-618 1423263 1423287 1423328 "KOERCE" 1423390 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-617 1421093 1421856 1422233 "KERNEL" 1422919 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-616 1420589 1420670 1420802 "KERNEL2" 1421007 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-615 1414359 1419128 1419182 "KDAGG" 1419559 NIL KDAGG (NIL T T) -9 NIL 1419765 NIL) (-614 1413888 1414012 1414217 "KDAGG-" 1414222 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-613 1407036 1413549 1413704 "KAFILE" 1413766 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-612 1401464 1406547 1406775 "JORDAN" 1406857 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-611 1400843 1401113 1401234 "JOINAST" 1401363 T JOINAST (NIL) -8 NIL NIL NIL) (-610 1400689 1400748 1400803 "JAVACODE" 1400808 T JAVACODE (NIL) -8 NIL NIL NIL) (-609 1396941 1398894 1398948 "IXAGG" 1399877 NIL IXAGG (NIL T T) -9 NIL 1400336 NIL) (-608 1395860 1396166 1396585 "IXAGG-" 1396590 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-607 1391390 1395782 1395841 "IVECTOR" 1395846 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-606 1390156 1390393 1390659 "ITUPLE" 1391157 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-605 1388658 1388835 1389130 "ITRIGMNP" 1389978 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-604 1387403 1387607 1387890 "ITFUN3" 1388434 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-603 1387035 1387092 1387201 "ITFUN2" 1387340 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-602 1386194 1386515 1386689 "ITFORM" 1386881 T ITFORM (NIL) -8 NIL NIL NIL) (-601 1384155 1385214 1385492 "ITAYLOR" 1385949 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-600 1373100 1378292 1379455 "ISUPS" 1383025 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-599 1372204 1372344 1372580 "ISUMP" 1372947 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-598 1367579 1372149 1372190 "ISTRING" 1372195 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-597 1367055 1367300 1367392 "ISAST" 1367507 T ISAST (NIL) -8 NIL NIL NIL) (-596 1366264 1366346 1366562 "IRURPK" 1366969 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-595 1365200 1365401 1365641 "IRSN" 1366044 T IRSN (NIL) -7 NIL NIL NIL) (-594 1363271 1363626 1364055 "IRRF2F" 1364838 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-593 1363018 1363056 1363132 "IRREDFFX" 1363227 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-592 1361633 1361892 1362191 "IROOT" 1362751 NIL IROOT (NIL T) -7 NIL NIL NIL) (-591 1358237 1359317 1360009 "IR" 1360973 NIL IR (NIL T) -8 NIL NIL NIL) (-590 1357442 1357730 1357881 "IRFORM" 1358106 T IRFORM (NIL) -8 NIL NIL NIL) (-589 1355055 1355550 1356116 "IR2" 1356920 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-588 1354155 1354268 1354482 "IR2F" 1354938 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-587 1353946 1353980 1354040 "IPRNTPK" 1354115 T IPRNTPK (NIL) -7 NIL NIL NIL) (-586 1350527 1353835 1353904 "IPF" 1353909 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-585 1348854 1350452 1350509 "IPADIC" 1350514 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-584 1348166 1348414 1348544 "IP4ADDR" 1348744 T IP4ADDR (NIL) -8 NIL NIL NIL) (-583 1347540 1347795 1347927 "IOMODE" 1348054 T IOMODE (NIL) -8 NIL NIL NIL) (-582 1346613 1347137 1347264 "IOBFILE" 1347433 T IOBFILE (NIL) -8 NIL NIL NIL) (-581 1346101 1346517 1346545 "IOBCON" 1346550 T IOBCON (NIL) -9 NIL 1346571 NIL) (-580 1345612 1345670 1345853 "INVLAPLA" 1346037 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-579 1335260 1337614 1340000 "INTTR" 1343276 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-578 1331595 1332337 1333202 "INTTOOLS" 1334445 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-577 1331181 1331272 1331389 "INTSLPE" 1331498 T INTSLPE (NIL) -7 NIL NIL NIL) (-576 1329134 1331104 1331163 "INTRVL" 1331168 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-575 1326736 1327248 1327823 "INTRF" 1328619 NIL INTRF (NIL T) -7 NIL NIL NIL) (-574 1326147 1326244 1326386 "INTRET" 1326634 NIL INTRET (NIL T) -7 NIL NIL NIL) (-573 1324144 1324533 1325003 "INTRAT" 1325755 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-572 1321407 1321990 1322609 "INTPM" 1323629 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-571 1318152 1318751 1319489 "INTPAF" 1320793 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-570 1313331 1314293 1315344 "INTPACK" 1317121 T INTPACK (NIL) -7 NIL NIL NIL) (-569 1310279 1313128 1313237 "INT" 1313242 T INT (NIL) -8 NIL NIL NIL) (-568 1309531 1309683 1309891 "INTHERTR" 1310121 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-567 1308970 1309050 1309238 "INTHERAL" 1309445 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-566 1306816 1307259 1307716 "INTHEORY" 1308533 T INTHEORY (NIL) -7 NIL NIL NIL) (-565 1298222 1299843 1301615 "INTG0" 1305168 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-564 1278795 1283585 1288395 "INTFTBL" 1293432 T INTFTBL (NIL) -8 NIL NIL NIL) (-563 1278044 1278182 1278355 "INTFACT" 1278654 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-562 1275471 1275917 1276474 "INTEF" 1277598 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-561 1273838 1274577 1274605 "INTDOM" 1274906 T INTDOM (NIL) -9 NIL 1275113 NIL) (-560 1273207 1273381 1273623 "INTDOM-" 1273628 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-559 1269595 1271523 1271577 "INTCAT" 1272376 NIL INTCAT (NIL T) -9 NIL 1272697 NIL) (-558 1269067 1269170 1269298 "INTBIT" 1269487 T INTBIT (NIL) -7 NIL NIL NIL) (-557 1267766 1267920 1268227 "INTALG" 1268912 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-556 1267249 1267339 1267496 "INTAF" 1267670 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-555 1260592 1267059 1267199 "INTABL" 1267204 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-554 1259933 1260399 1260464 "INT8" 1260498 T INT8 (NIL) -8 NIL NIL 1260543) (-553 1259273 1259739 1259804 "INT64" 1259838 T INT64 (NIL) -8 NIL NIL 1259883) (-552 1258613 1259079 1259144 "INT32" 1259178 T INT32 (NIL) -8 NIL NIL 1259223) (-551 1257953 1258419 1258484 "INT16" 1258518 T INT16 (NIL) -8 NIL NIL 1258563) (-550 1252863 1255576 1255604 "INS" 1256538 T INS (NIL) -9 NIL 1257203 NIL) (-549 1250103 1250874 1251848 "INS-" 1251921 NIL INS- (NIL T) -8 NIL NIL NIL) (-548 1248878 1249105 1249403 "INPSIGN" 1249856 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-547 1247996 1248113 1248310 "INPRODPF" 1248758 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-546 1246890 1247007 1247244 "INPRODFF" 1247876 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-545 1245890 1246042 1246302 "INNMFACT" 1246726 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-544 1245087 1245184 1245372 "INMODGCD" 1245789 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-543 1243595 1243840 1244164 "INFSP" 1244832 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-542 1242779 1242896 1243079 "INFPROD0" 1243475 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-541 1239634 1240844 1241359 "INFORM" 1242272 T INFORM (NIL) -8 NIL NIL NIL) (-540 1239244 1239304 1239402 "INFORM1" 1239569 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-539 1238767 1238856 1238970 "INFINITY" 1239150 T INFINITY (NIL) -7 NIL NIL NIL) (-538 1237943 1238487 1238588 "INETCLTS" 1238686 T INETCLTS (NIL) -8 NIL NIL NIL) (-537 1236559 1236809 1237130 "INEP" 1237691 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-536 1235808 1236456 1236521 "INDE" 1236526 NIL INDE (NIL T) -8 NIL NIL NIL) (-535 1235372 1235440 1235557 "INCRMAPS" 1235735 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-534 1234190 1234641 1234847 "INBFILE" 1235186 T INBFILE (NIL) -8 NIL NIL NIL) (-533 1229490 1230426 1231370 "INBFF" 1233278 NIL INBFF (NIL T) -7 NIL NIL NIL) (-532 1228398 1228667 1228695 "INBCON" 1229208 T INBCON (NIL) -9 NIL 1229474 NIL) (-531 1227650 1227873 1228149 "INBCON-" 1228154 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-530 1227129 1227374 1227465 "INAST" 1227579 T INAST (NIL) -8 NIL NIL NIL) (-529 1226556 1226808 1226914 "IMPTAST" 1227043 T IMPTAST (NIL) -8 NIL NIL NIL) (-528 1223002 1226400 1226504 "IMATRIX" 1226509 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-527 1221710 1221833 1222149 "IMATQF" 1222858 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-526 1219930 1220157 1220494 "IMATLIN" 1221466 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-525 1214508 1219854 1219912 "ILIST" 1219917 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-524 1212413 1214368 1214481 "IIARRAY2" 1214486 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-523 1207811 1212324 1212388 "IFF" 1212393 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-522 1207158 1207428 1207544 "IFAST" 1207715 T IFAST (NIL) -8 NIL NIL NIL) (-521 1202153 1206450 1206638 "IFARRAY" 1207015 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-520 1201333 1202057 1202130 "IFAMON" 1202135 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-519 1200917 1200982 1201036 "IEVALAB" 1201243 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-518 1200592 1200660 1200820 "IEVALAB-" 1200825 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-517 1200223 1200506 1200569 "IDPO" 1200574 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-516 1199473 1200112 1200187 "IDPOAMS" 1200192 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-515 1198780 1199362 1199437 "IDPOAM" 1199442 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-514 1197839 1198115 1198168 "IDPC" 1198581 NIL IDPC (NIL T T) -9 NIL 1198730 NIL) (-513 1197308 1197731 1197804 "IDPAM" 1197809 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-512 1196684 1197200 1197273 "IDPAG" 1197278 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-511 1196329 1196520 1196595 "IDENT" 1196629 T IDENT (NIL) -8 NIL NIL NIL) (-510 1192584 1193432 1194327 "IDECOMP" 1195486 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-509 1185422 1186507 1187554 "IDEAL" 1191620 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-508 1184582 1184694 1184894 "ICDEN" 1185306 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-507 1183653 1184062 1184209 "ICARD" 1184455 T ICARD (NIL) -8 NIL NIL NIL) (-506 1181713 1182026 1182431 "IBPTOOLS" 1183330 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-505 1177320 1181333 1181446 "IBITS" 1181632 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-504 1174043 1174619 1175314 "IBATOOL" 1176737 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-503 1171822 1172284 1172817 "IBACHIN" 1173578 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-502 1169651 1171668 1171771 "IARRAY2" 1171776 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-501 1165757 1169577 1169634 "IARRAY1" 1169639 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-500 1159866 1164169 1164650 "IAN" 1165296 T IAN (NIL) -8 NIL NIL NIL) (-499 1159377 1159434 1159607 "IALGFACT" 1159803 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-498 1158905 1159018 1159046 "HYPCAT" 1159253 T HYPCAT (NIL) -9 NIL NIL NIL) (-497 1158443 1158560 1158746 "HYPCAT-" 1158751 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-496 1158038 1158238 1158321 "HOSTNAME" 1158380 T HOSTNAME (NIL) -8 NIL NIL NIL) (-495 1157883 1157920 1157961 "HOMOTOP" 1157966 NIL HOMOTOP (NIL T) -9 NIL 1157999 NIL) (-494 1154515 1155893 1155934 "HOAGG" 1156915 NIL HOAGG (NIL T) -9 NIL 1157594 NIL) (-493 1153109 1153508 1154034 "HOAGG-" 1154039 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-492 1147111 1152702 1152852 "HEXADEC" 1152979 T HEXADEC (NIL) -8 NIL NIL NIL) (-491 1145859 1146081 1146344 "HEUGCD" 1146888 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-490 1144935 1145696 1145826 "HELLFDIV" 1145831 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-489 1143114 1144712 1144800 "HEAP" 1144879 NIL HEAP (NIL T) -8 NIL NIL NIL) (-488 1142377 1142666 1142800 "HEADAST" 1143000 T HEADAST (NIL) -8 NIL NIL NIL) (-487 1136243 1142292 1142354 "HDP" 1142359 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-486 1130231 1135878 1136030 "HDMP" 1136144 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-485 1129555 1129695 1129859 "HB" 1130087 T HB (NIL) -7 NIL NIL NIL) (-484 1122941 1129401 1129505 "HASHTBL" 1129510 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-483 1122417 1122662 1122754 "HASAST" 1122869 T HASAST (NIL) -8 NIL NIL NIL) (-482 1120195 1122039 1122221 "HACKPI" 1122255 T HACKPI (NIL) -8 NIL NIL NIL) (-481 1115863 1120048 1120161 "GTSET" 1120166 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-480 1109278 1115741 1115839 "GSTBL" 1115844 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-479 1101556 1108309 1108574 "GSERIES" 1109069 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-478 1100697 1101114 1101142 "GROUP" 1101345 T GROUP (NIL) -9 NIL 1101479 NIL) (-477 1100063 1100222 1100473 "GROUP-" 1100478 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-476 1098430 1098751 1099138 "GROEBSOL" 1099740 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-475 1097344 1097632 1097683 "GRMOD" 1098212 NIL GRMOD (NIL T T) -9 NIL 1098380 NIL) (-474 1097112 1097148 1097276 "GRMOD-" 1097281 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-473 1092402 1093466 1094466 "GRIMAGE" 1096132 T GRIMAGE (NIL) -8 NIL NIL NIL) (-472 1090868 1091129 1091453 "GRDEF" 1092098 T GRDEF (NIL) -7 NIL NIL NIL) (-471 1090312 1090428 1090569 "GRAY" 1090747 T GRAY (NIL) -7 NIL NIL NIL) (-470 1089499 1089905 1089956 "GRALG" 1090109 NIL GRALG (NIL T T) -9 NIL 1090202 NIL) (-469 1089160 1089233 1089396 "GRALG-" 1089401 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-468 1085937 1088745 1088923 "GPOLSET" 1089067 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-467 1085291 1085348 1085606 "GOSPER" 1085874 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-466 1081023 1081729 1082255 "GMODPOL" 1084990 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-465 1080028 1080212 1080450 "GHENSEL" 1080835 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-464 1074184 1075027 1076047 "GENUPS" 1079112 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-463 1073881 1073932 1074021 "GENUFACT" 1074127 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-462 1073293 1073370 1073535 "GENPGCD" 1073799 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-461 1072767 1072802 1073015 "GENMFACT" 1073252 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-460 1071333 1071590 1071897 "GENEEZ" 1072510 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-459 1065479 1070944 1071106 "GDMP" 1071256 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-458 1054821 1059250 1060356 "GCNAALG" 1064462 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-457 1053148 1054010 1054038 "GCDDOM" 1054293 T GCDDOM (NIL) -9 NIL 1054450 NIL) (-456 1052618 1052745 1052960 "GCDDOM-" 1052965 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-455 1051290 1051475 1051779 "GB" 1052397 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-454 1039906 1042236 1044628 "GBINTERN" 1048981 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-453 1037743 1038035 1038456 "GBF" 1039581 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-452 1036524 1036689 1036956 "GBEUCLID" 1037559 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-451 1035873 1035998 1036147 "GAUSSFAC" 1036395 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-450 1034240 1034542 1034856 "GALUTIL" 1035592 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-449 1032548 1032822 1033146 "GALPOLYU" 1033967 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-448 1029913 1030203 1030610 "GALFACTU" 1032245 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-447 1021718 1023218 1024826 "GALFACT" 1028345 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-446 1019106 1019764 1019792 "FVFUN" 1020948 T FVFUN (NIL) -9 NIL 1021668 NIL) (-445 1018372 1018554 1018582 "FVC" 1018873 T FVC (NIL) -9 NIL 1019056 NIL) (-444 1018015 1018197 1018265 "FUNDESC" 1018324 T FUNDESC (NIL) -8 NIL NIL NIL) (-443 1017630 1017812 1017893 "FUNCTION" 1017967 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-442 1015374 1015952 1016418 "FT" 1017184 T FT (NIL) -8 NIL NIL NIL) (-441 1014165 1014675 1014878 "FTEM" 1015191 T FTEM (NIL) -8 NIL NIL NIL) (-440 1012456 1012745 1013142 "FSUPFACT" 1013856 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-439 1010853 1011142 1011474 "FST" 1012144 T FST (NIL) -8 NIL NIL NIL) (-438 1010052 1010158 1010346 "FSRED" 1010735 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-437 1008751 1009007 1009354 "FSPRMELT" 1009767 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-436 1006057 1006495 1006981 "FSPECF" 1008314 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-435 987695 996026 996067 "FS" 999951 NIL FS (NIL T) -9 NIL 1002240 NIL) (-434 976338 979331 983388 "FS-" 983688 NIL FS- (NIL T T) -8 NIL NIL NIL) (-433 975866 975920 976090 "FSINT" 976279 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-432 974158 974859 975162 "FSERIES" 975645 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-431 973200 973316 973540 "FSCINT" 974038 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-430 969408 972144 972185 "FSAGG" 972555 NIL FSAGG (NIL T) -9 NIL 972814 NIL) (-429 967170 967771 968567 "FSAGG-" 968662 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-428 966212 966355 966582 "FSAGG2" 967023 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-427 963894 964174 964721 "FS2UPS" 965930 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-426 963528 963571 963700 "FS2" 963845 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-425 962406 962577 962879 "FS2EXPXP" 963353 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-424 961832 961947 962099 "FRUTIL" 962286 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-423 953245 957327 958685 "FR" 960506 NIL FR (NIL T) -8 NIL NIL NIL) (-422 948214 950888 950928 "FRNAALG" 952324 NIL FRNAALG (NIL T) -9 NIL 952931 NIL) (-421 943887 944963 946238 "FRNAALG-" 946988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-420 943525 943568 943695 "FRNAAF2" 943838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-419 941900 942374 942670 "FRMOD" 943337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-418 939643 940275 940593 "FRIDEAL" 941691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-417 938834 938921 939212 "FRIDEAL2" 939550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-416 937967 938381 938422 "FRETRCT" 938427 NIL FRETRCT (NIL T) -9 NIL 938603 NIL) (-415 937079 937310 937661 "FRETRCT-" 937666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-414 934167 935377 935436 "FRAMALG" 936318 NIL FRAMALG (NIL T T) -9 NIL 936610 NIL) (-413 932301 932756 933386 "FRAMALG-" 933609 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-412 926220 931774 932051 "FRAC" 932056 NIL FRAC (NIL T) -8 NIL NIL NIL) (-411 925856 925913 926020 "FRAC2" 926157 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-410 925492 925549 925656 "FR2" 925793 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-409 920005 922898 922926 "FPS" 924045 T FPS (NIL) -9 NIL 924602 NIL) (-408 919454 919563 919727 "FPS-" 919873 NIL FPS- (NIL T) -8 NIL NIL NIL) (-407 916756 918425 918453 "FPC" 918678 T FPC (NIL) -9 NIL 918820 NIL) (-406 916549 916589 916686 "FPC-" 916691 NIL FPC- (NIL T) -8 NIL NIL NIL) (-405 915339 916037 916078 "FPATMAB" 916083 NIL FPATMAB (NIL T) -9 NIL 916235 NIL) (-404 913012 913515 913941 "FPARFRAC" 914976 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-403 908406 908904 909586 "FORTRAN" 912444 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-402 906122 906622 907161 "FORT" 907887 T FORT (NIL) -7 NIL NIL NIL) (-401 903798 904360 904388 "FORTFN" 905448 T FORTFN (NIL) -9 NIL 906072 NIL) (-400 903562 903612 903640 "FORTCAT" 903699 T FORTCAT (NIL) -9 NIL 903761 NIL) (-399 901668 902178 902568 "FORMULA" 903192 T FORMULA (NIL) -8 NIL NIL NIL) (-398 901456 901486 901555 "FORMULA1" 901632 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-397 900979 901031 901204 "FORDER" 901398 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-396 900075 900239 900432 "FOP" 900806 T FOP (NIL) -7 NIL NIL NIL) (-395 898656 899355 899529 "FNLA" 899957 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-394 897385 897800 897828 "FNCAT" 898288 T FNCAT (NIL) -9 NIL 898548 NIL) (-393 896924 897344 897372 "FNAME" 897377 T FNAME (NIL) -8 NIL NIL NIL) (-392 895487 896450 896478 "FMTC" 896483 T FMTC (NIL) -9 NIL 896519 NIL) (-391 894233 895423 895469 "FMONOID" 895474 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-390 891061 892229 892270 "FMONCAT" 893487 NIL FMONCAT (NIL T) -9 NIL 894092 NIL) (-389 890253 890803 890952 "FM" 890957 NIL FM (NIL T T) -8 NIL NIL NIL) (-388 887677 888323 888351 "FMFUN" 889495 T FMFUN (NIL) -9 NIL 890203 NIL) (-387 886946 887127 887155 "FMC" 887445 T FMC (NIL) -9 NIL 887627 NIL) (-386 884025 884885 884939 "FMCAT" 886134 NIL FMCAT (NIL T T) -9 NIL 886629 NIL) (-385 882891 883791 883891 "FM1" 883970 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-384 880665 881081 881575 "FLOATRP" 882442 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-383 874239 878394 879015 "FLOAT" 880064 T FLOAT (NIL) -8 NIL NIL NIL) (-382 871677 872177 872755 "FLOATCP" 873706 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-381 870417 871255 871296 "FLINEXP" 871301 NIL FLINEXP (NIL T) -9 NIL 871394 NIL) (-380 869571 869806 870134 "FLINEXP-" 870139 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-379 868647 868791 869015 "FLASORT" 869423 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-378 865763 866631 866683 "FLALG" 867910 NIL FLALG (NIL T T) -9 NIL 868377 NIL) (-377 859499 863249 863290 "FLAGG" 864552 NIL FLAGG (NIL T) -9 NIL 865204 NIL) (-376 858225 858564 859054 "FLAGG-" 859059 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-375 857267 857410 857637 "FLAGG2" 858078 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-374 854118 855126 855185 "FINRALG" 856313 NIL FINRALG (NIL T T) -9 NIL 856821 NIL) (-373 853278 853507 853846 "FINRALG-" 853851 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-372 852658 852897 852925 "FINITE" 853121 T FINITE (NIL) -9 NIL 853228 NIL) (-371 845015 847202 847242 "FINAALG" 850909 NIL FINAALG (NIL T) -9 NIL 852362 NIL) (-370 840347 841397 842541 "FINAALG-" 843920 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-369 839715 840102 840205 "FILE" 840277 NIL FILE (NIL T) -8 NIL NIL NIL) (-368 838373 838711 838765 "FILECAT" 839449 NIL FILECAT (NIL T T) -9 NIL 839665 NIL) (-367 836089 837617 837645 "FIELD" 837685 T FIELD (NIL) -9 NIL 837765 NIL) (-366 834709 835094 835605 "FIELD-" 835610 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-365 832559 833344 833691 "FGROUP" 834395 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-364 831649 831813 832033 "FGLMICPK" 832391 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-363 827481 831574 831631 "FFX" 831636 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-362 827082 827143 827278 "FFSLPE" 827414 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-361 823072 823854 824650 "FFPOLY" 826318 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-360 822576 822612 822821 "FFPOLY2" 823030 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-359 818420 822495 822558 "FFP" 822563 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-358 813818 818331 818395 "FF" 818400 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-357 808944 813161 813351 "FFNBX" 813672 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-356 803872 808079 808337 "FFNBP" 808798 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-355 798505 803156 803367 "FFNB" 803705 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-354 797337 797535 797850 "FFINTBAS" 798302 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-353 793406 795626 795654 "FFIELDC" 796274 T FFIELDC (NIL) -9 NIL 796650 NIL) (-352 792068 792439 792936 "FFIELDC-" 792941 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-351 791637 791683 791807 "FFHOM" 792010 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-350 789332 789819 790336 "FFF" 791152 NIL FFF (NIL T) -7 NIL NIL NIL) (-349 784950 789074 789175 "FFCGX" 789275 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-348 780572 784682 784789 "FFCGP" 784893 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-347 775755 780299 780407 "FFCG" 780508 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-346 757151 766232 766318 "FFCAT" 771483 NIL FFCAT (NIL T T T) -9 NIL 772934 NIL) (-345 752348 753396 754710 "FFCAT-" 755940 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-344 751759 751802 752037 "FFCAT2" 752299 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 741082 744731 745951 "FEXPR" 750611 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-342 740082 740517 740558 "FEVALAB" 740642 NIL FEVALAB (NIL T) -9 NIL 740903 NIL) (-341 739241 739451 739789 "FEVALAB-" 739794 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-340 737807 738624 738827 "FDIV" 739140 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-339 734827 735568 735683 "FDIVCAT" 737251 NIL FDIVCAT (NIL T T T T) -9 NIL 737688 NIL) (-338 734589 734616 734786 "FDIVCAT-" 734791 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-337 733809 733896 734173 "FDIV2" 734496 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-336 732783 733104 733306 "FCTRDATA" 733627 T FCTRDATA (NIL) -8 NIL NIL NIL) (-335 731469 731728 732017 "FCPAK1" 732514 T FCPAK1 (NIL) -7 NIL NIL NIL) (-334 730568 730969 731110 "FCOMP" 731360 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-333 714273 717718 721256 "FC" 727050 T FC (NIL) -8 NIL NIL NIL) (-332 706636 710664 710704 "FAXF" 712506 NIL FAXF (NIL T) -9 NIL 713198 NIL) (-331 703912 704570 705395 "FAXF-" 705860 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-330 698964 703288 703464 "FARRAY" 703769 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-329 693858 695925 695978 "FAMR" 697001 NIL FAMR (NIL T T) -9 NIL 697461 NIL) (-328 692748 693050 693485 "FAMR-" 693490 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-327 691917 692670 692723 "FAMONOID" 692728 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-326 689703 690413 690466 "FAMONC" 691407 NIL FAMONC (NIL T T) -9 NIL 691793 NIL) (-325 688367 689457 689594 "FAGROUP" 689599 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-324 686162 686481 686884 "FACUTIL" 688048 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-323 685261 685446 685668 "FACTFUNC" 685972 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-322 677683 684564 684763 "EXPUPXS" 685117 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-321 675166 675706 676292 "EXPRTUBE" 677117 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-320 671437 672029 672759 "EXPRODE" 674505 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-319 656922 670086 670515 "EXPR" 671041 NIL EXPR (NIL T) -8 NIL NIL NIL) (-318 651476 652063 652869 "EXPR2UPS" 656220 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-317 651108 651165 651274 "EXPR2" 651413 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-316 642496 650259 650550 "EXPEXPAN" 650944 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-315 642296 642453 642482 "EXIT" 642487 T EXIT (NIL) -8 NIL NIL NIL) (-314 641776 642020 642111 "EXITAST" 642225 T EXITAST (NIL) -8 NIL NIL NIL) (-313 641403 641465 641578 "EVALCYC" 641708 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-312 640944 641062 641103 "EVALAB" 641273 NIL EVALAB (NIL T) -9 NIL 641377 NIL) (-311 640425 640547 640768 "EVALAB-" 640773 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-310 637793 639095 639123 "EUCDOM" 639678 T EUCDOM (NIL) -9 NIL 640028 NIL) (-309 636198 636640 637230 "EUCDOM-" 637235 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-308 623736 626496 629246 "ESTOOLS" 633468 T ESTOOLS (NIL) -7 NIL NIL NIL) (-307 623368 623425 623534 "ESTOOLS2" 623673 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-306 623119 623161 623241 "ESTOOLS1" 623320 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-305 617156 618764 618792 "ES" 621560 T ES (NIL) -9 NIL 622970 NIL) (-304 612103 613390 615207 "ES-" 615371 NIL ES- (NIL T) -8 NIL NIL NIL) (-303 608477 609238 610018 "ESCONT" 611343 T ESCONT (NIL) -7 NIL NIL NIL) (-302 608222 608254 608336 "ESCONT1" 608439 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-301 607897 607947 608047 "ES2" 608166 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-300 607527 607585 607694 "ES1" 607833 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-299 606743 606872 607048 "ERROR" 607371 T ERROR (NIL) -7 NIL NIL NIL) (-298 600135 606602 606693 "EQTBL" 606698 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-297 592638 595449 596898 "EQ" 598719 NIL -2091 (NIL T) -8 NIL NIL NIL) (-296 592270 592327 592436 "EQ2" 592575 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-295 587560 588608 589701 "EP" 591209 NIL EP (NIL T) -7 NIL NIL NIL) (-294 586160 586451 586757 "ENV" 587274 T ENV (NIL) -8 NIL NIL NIL) (-293 585254 585808 585836 "ENTIRER" 585841 T ENTIRER (NIL) -9 NIL 585887 NIL) (-292 581721 583209 583579 "EMR" 585053 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-291 580865 581050 581104 "ELTAGG" 581484 NIL ELTAGG (NIL T T) -9 NIL 581695 NIL) (-290 580584 580646 580787 "ELTAGG-" 580792 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-289 580373 580402 580456 "ELTAB" 580540 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-288 579499 579645 579844 "ELFUTS" 580224 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-287 579241 579297 579325 "ELEMFUN" 579430 T ELEMFUN (NIL) -9 NIL NIL NIL) (-286 579111 579132 579200 "ELEMFUN-" 579205 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-285 573955 577211 577252 "ELAGG" 578192 NIL ELAGG (NIL T) -9 NIL 578655 NIL) (-284 572240 572674 573337 "ELAGG-" 573342 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-283 571552 571689 571845 "ELABOR" 572104 T ELABOR (NIL) -8 NIL NIL NIL) (-282 570213 570492 570786 "ELABEXPR" 571278 T ELABEXPR (NIL) -8 NIL NIL NIL) (-281 563077 564880 565707 "EFUPXS" 569489 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-280 556527 558328 559138 "EFULS" 562353 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-279 554012 554370 554842 "EFSTRUC" 556159 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-278 543803 545369 546917 "EF" 552527 NIL EF (NIL T T) -7 NIL NIL NIL) (-277 542877 543288 543437 "EAB" 543674 T EAB (NIL) -8 NIL NIL NIL) (-276 542059 542836 542864 "E04UCFA" 542869 T E04UCFA (NIL) -8 NIL NIL NIL) (-275 541241 542018 542046 "E04NAFA" 542051 T E04NAFA (NIL) -8 NIL NIL NIL) (-274 540423 541200 541228 "E04MBFA" 541233 T E04MBFA (NIL) -8 NIL NIL NIL) (-273 539605 540382 540410 "E04JAFA" 540415 T E04JAFA (NIL) -8 NIL NIL NIL) (-272 538789 539564 539592 "E04GCFA" 539597 T E04GCFA (NIL) -8 NIL NIL NIL) (-271 537973 538748 538776 "E04FDFA" 538781 T E04FDFA (NIL) -8 NIL NIL NIL) (-270 537155 537932 537960 "E04DGFA" 537965 T E04DGFA (NIL) -8 NIL NIL NIL) (-269 531328 532680 534044 "E04AGNT" 535811 T E04AGNT (NIL) -7 NIL NIL NIL) (-268 530008 530514 530554 "DVARCAT" 531029 NIL DVARCAT (NIL T) -9 NIL 531228 NIL) (-267 529212 529424 529738 "DVARCAT-" 529743 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-266 522349 529011 529140 "DSMP" 529145 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-265 517130 518294 519362 "DROPT" 521301 T DROPT (NIL) -8 NIL NIL NIL) (-264 516795 516854 516952 "DROPT1" 517065 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-263 511910 513036 514173 "DROPT0" 515678 T DROPT0 (NIL) -7 NIL NIL NIL) (-262 510255 510580 510966 "DRAWPT" 511544 T DRAWPT (NIL) -7 NIL NIL NIL) (-261 504842 505765 506844 "DRAW" 509229 NIL DRAW (NIL T) -7 NIL NIL NIL) (-260 504475 504528 504646 "DRAWHACK" 504783 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-259 503206 503475 503766 "DRAWCX" 504204 T DRAWCX (NIL) -7 NIL NIL NIL) (-258 502721 502790 502941 "DRAWCURV" 503132 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-257 493189 495151 497266 "DRAWCFUN" 500626 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-256 489953 491882 491923 "DQAGG" 492552 NIL DQAGG (NIL T) -9 NIL 492826 NIL) (-255 478077 484546 484629 "DPOLCAT" 486481 NIL DPOLCAT (NIL T T T T) -9 NIL 487026 NIL) (-254 472913 474262 476220 "DPOLCAT-" 476225 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-253 466035 472774 472872 "DPMO" 472877 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-252 459060 465815 465982 "DPMM" 465987 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-251 458538 458752 458850 "DOMTMPLT" 458982 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-250 457971 458340 458420 "DOMCTOR" 458478 T DOMCTOR (NIL) -8 NIL NIL NIL) (-249 457183 457451 457602 "DOMAIN" 457840 T DOMAIN (NIL) -8 NIL NIL NIL) (-248 451171 456818 456970 "DMP" 457084 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-247 450771 450827 450971 "DLP" 451109 NIL DLP (NIL T) -7 NIL NIL NIL) (-246 444593 450098 450288 "DLIST" 450613 NIL DLIST (NIL T) -8 NIL NIL NIL) (-245 441390 443446 443487 "DLAGG" 444037 NIL DLAGG (NIL T) -9 NIL 444267 NIL) (-244 440066 440730 440758 "DIVRING" 440850 T DIVRING (NIL) -9 NIL 440933 NIL) (-243 439303 439493 439793 "DIVRING-" 439798 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-242 437405 437762 438168 "DISPLAY" 438917 T DISPLAY (NIL) -7 NIL NIL NIL) (-241 431293 437319 437382 "DIRPROD" 437387 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-240 430141 430344 430609 "DIRPROD2" 431086 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-239 418916 424922 424975 "DIRPCAT" 425385 NIL DIRPCAT (NIL NIL T) -9 NIL 426225 NIL) (-238 416242 416884 417765 "DIRPCAT-" 418102 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-237 415529 415689 415875 "DIOSP" 416076 T DIOSP (NIL) -7 NIL NIL NIL) (-236 412184 414441 414482 "DIOPS" 414916 NIL DIOPS (NIL T) -9 NIL 415145 NIL) (-235 411733 411847 412038 "DIOPS-" 412043 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-234 410556 411184 411212 "DIFRING" 411399 T DIFRING (NIL) -9 NIL 411509 NIL) (-233 410202 410279 410431 "DIFRING-" 410436 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-232 407938 409210 409251 "DIFEXT" 409614 NIL DIFEXT (NIL T) -9 NIL 409908 NIL) (-231 406223 406651 407317 "DIFEXT-" 407322 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-230 403498 405755 405796 "DIAGG" 405801 NIL DIAGG (NIL T) -9 NIL 405821 NIL) (-229 402882 403039 403291 "DIAGG-" 403296 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-228 398299 401841 402118 "DHMATRIX" 402651 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-227 393911 394820 395830 "DFSFUN" 397309 T DFSFUN (NIL) -7 NIL NIL NIL) (-226 388990 392842 393154 "DFLOAT" 393619 T DFLOAT (NIL) -8 NIL NIL NIL) (-225 387253 387534 387923 "DFINTTLS" 388698 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-224 384282 385274 385674 "DERHAM" 386919 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-223 382083 384057 384146 "DEQUEUE" 384226 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-222 381337 381470 381653 "DEGRED" 381945 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-221 377767 378512 379358 "DEFINTRF" 380565 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-220 375322 375791 376383 "DEFINTEF" 377286 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-219 374672 374942 375057 "DEFAST" 375227 T DEFAST (NIL) -8 NIL NIL NIL) (-218 368674 374265 374415 "DECIMAL" 374542 T DECIMAL (NIL) -8 NIL NIL NIL) (-217 366186 366644 367150 "DDFACT" 368218 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-216 365782 365825 365976 "DBLRESP" 366137 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-215 363654 364015 364375 "DBASE" 365549 NIL DBASE (NIL T) -8 NIL NIL NIL) (-214 362896 363134 363280 "DATAARY" 363553 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-213 362002 362855 362883 "D03FAFA" 362888 T D03FAFA (NIL) -8 NIL NIL NIL) (-212 361109 361961 361989 "D03EEFA" 361994 T D03EEFA (NIL) -8 NIL NIL NIL) (-211 359059 359525 360014 "D03AGNT" 360640 T D03AGNT (NIL) -7 NIL NIL NIL) (-210 358348 359018 359046 "D02EJFA" 359051 T D02EJFA (NIL) -8 NIL NIL NIL) (-209 357637 358307 358335 "D02CJFA" 358340 T D02CJFA (NIL) -8 NIL NIL NIL) (-208 356926 357596 357624 "D02BHFA" 357629 T D02BHFA (NIL) -8 NIL NIL NIL) (-207 356215 356885 356913 "D02BBFA" 356918 T D02BBFA (NIL) -8 NIL NIL NIL) (-206 349412 351001 352607 "D02AGNT" 354629 T D02AGNT (NIL) -7 NIL NIL NIL) (-205 347180 347703 348249 "D01WGTS" 348886 T D01WGTS (NIL) -7 NIL NIL NIL) (-204 346247 347139 347167 "D01TRNS" 347172 T D01TRNS (NIL) -8 NIL NIL NIL) (-203 345315 346206 346234 "D01GBFA" 346239 T D01GBFA (NIL) -8 NIL NIL NIL) (-202 344383 345274 345302 "D01FCFA" 345307 T D01FCFA (NIL) -8 NIL NIL NIL) (-201 343451 344342 344370 "D01ASFA" 344375 T D01ASFA (NIL) -8 NIL NIL NIL) (-200 342519 343410 343438 "D01AQFA" 343443 T D01AQFA (NIL) -8 NIL NIL NIL) (-199 341587 342478 342506 "D01APFA" 342511 T D01APFA (NIL) -8 NIL NIL NIL) (-198 340655 341546 341574 "D01ANFA" 341579 T D01ANFA (NIL) -8 NIL NIL NIL) (-197 339723 340614 340642 "D01AMFA" 340647 T D01AMFA (NIL) -8 NIL NIL NIL) (-196 338791 339682 339710 "D01ALFA" 339715 T D01ALFA (NIL) -8 NIL NIL NIL) (-195 337859 338750 338778 "D01AKFA" 338783 T D01AKFA (NIL) -8 NIL NIL NIL) (-194 336927 337818 337846 "D01AJFA" 337851 T D01AJFA (NIL) -8 NIL NIL NIL) (-193 330222 331775 333336 "D01AGNT" 335386 T D01AGNT (NIL) -7 NIL NIL NIL) (-192 329559 329687 329839 "CYCLOTOM" 330090 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-191 326294 327007 327734 "CYCLES" 328852 T CYCLES (NIL) -7 NIL NIL NIL) (-190 325606 325740 325911 "CVMP" 326155 NIL CVMP (NIL T) -7 NIL NIL NIL) (-189 323447 323705 324074 "CTRIGMNP" 325334 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-188 322883 323241 323314 "CTOR" 323394 T CTOR (NIL) -8 NIL NIL NIL) (-187 322392 322614 322715 "CTORKIND" 322802 T CTORKIND (NIL) -8 NIL NIL NIL) (-186 321683 321999 322027 "CTORCAT" 322209 T CTORCAT (NIL) -9 NIL 322322 NIL) (-185 321281 321392 321551 "CTORCAT-" 321556 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-184 320743 320955 321063 "CTORCALL" 321205 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-183 320117 320216 320369 "CSTTOOLS" 320640 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-182 315916 316573 317331 "CRFP" 319429 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-181 315391 315637 315729 "CRCEAST" 315844 T CRCEAST (NIL) -8 NIL NIL NIL) (-180 314438 314623 314851 "CRAPACK" 315195 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-179 313822 313923 314127 "CPMATCH" 314314 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-178 313547 313575 313681 "CPIMA" 313788 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-177 309895 310567 311286 "COORDSYS" 312882 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-176 309307 309428 309570 "CONTOUR" 309773 T CONTOUR (NIL) -8 NIL NIL NIL) (-175 305198 307310 307802 "CONTFRAC" 308847 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-174 305078 305099 305127 "CONDUIT" 305164 T CONDUIT (NIL) -9 NIL NIL NIL) (-173 304166 304720 304748 "COMRING" 304753 T COMRING (NIL) -9 NIL 304805 NIL) (-172 303220 303524 303708 "COMPPROP" 304002 T COMPPROP (NIL) -8 NIL NIL NIL) (-171 302881 302916 303044 "COMPLPAT" 303179 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-170 293172 302690 302799 "COMPLEX" 302804 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-169 292808 292865 292972 "COMPLEX2" 293109 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-168 292147 292268 292428 "COMPILER" 292668 T COMPILER (NIL) -8 NIL NIL NIL) (-167 291865 291900 291998 "COMPFACT" 292106 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275945 285939 285979 "COMPCAT" 286983 NIL COMPCAT (NIL T) -9 NIL 288331 NIL) (-165 265457 268384 272011 "COMPCAT-" 272367 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265186 265214 265317 "COMMUPC" 265423 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264980 265014 265073 "COMMONOP" 265147 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264536 264731 264818 "COMM" 264913 T COMM (NIL) -8 NIL NIL NIL) (-161 264112 264340 264415 "COMMAAST" 264481 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263361 263555 263583 "COMBOPC" 263921 T COMBOPC (NIL) -9 NIL 264096 NIL) (-159 262257 262467 262709 "COMBINAT" 263151 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258714 259288 259915 "COMBF" 261679 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257472 257830 258065 "COLOR" 258499 T COLOR (NIL) -8 NIL NIL NIL) (-156 256948 257193 257285 "COLONAST" 257400 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256588 256635 256760 "CMPLXRT" 256895 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256036 256288 256387 "CLLCTAST" 256509 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251535 252566 253646 "CLIP" 254976 T CLIP (NIL) -7 NIL NIL NIL) (-152 249876 250636 250876 "CLIF" 251362 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246051 248022 248063 "CLAGG" 248992 NIL CLAGG (NIL T) -9 NIL 249528 NIL) (-150 244473 244930 245513 "CLAGG-" 245518 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244017 244102 244242 "CINTSLPE" 244382 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241518 241989 242537 "CHVAR" 243545 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240692 241246 241274 "CHARZ" 241279 T CHARZ (NIL) -9 NIL 241294 NIL) (-146 240446 240486 240564 "CHARPOL" 240646 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239504 240091 240119 "CHARNZ" 240166 T CHARNZ (NIL) -9 NIL 240222 NIL) (-144 237410 238158 238511 "CHAR" 239171 T CHAR (NIL) -8 NIL NIL NIL) (-143 237136 237197 237225 "CFCAT" 237336 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236377 236488 236671 "CDEN" 237020 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232342 235530 235810 "CCLASS" 236117 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231593 231750 231927 "CATEGORY" 232185 T -10 (NIL) -8 NIL NIL NIL) (-139 231166 231512 231560 "CATCTOR" 231565 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230617 230869 230967 "CATAST" 231088 T CATAST (NIL) -8 NIL NIL NIL) (-137 230093 230338 230430 "CASEAST" 230545 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225102 226122 226875 "CARTEN" 229396 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224210 224358 224579 "CARTEN2" 224949 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222526 223360 223617 "CARD" 223973 T CARD (NIL) -8 NIL NIL NIL) (-133 222102 222330 222405 "CAPSLAST" 222471 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221606 221814 221842 "CACHSET" 221974 T CACHSET (NIL) -9 NIL 222052 NIL) (-131 221076 221398 221426 "CABMON" 221476 T CABMON (NIL) -9 NIL 221532 NIL) (-130 220549 220780 220890 "BYTEORD" 220986 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219531 220083 220225 "BYTE" 220388 T BYTE (NIL) -8 NIL NIL 220510) (-128 214881 219036 219208 "BYTEBUF" 219379 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212390 214573 214680 "BTREE" 214807 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209839 212038 212160 "BTOURN" 212300 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207209 209309 209350 "BTCAT" 209418 NIL BTCAT (NIL T) -9 NIL 209495 NIL) (-124 206876 206956 207105 "BTCAT-" 207110 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202141 206019 206047 "BTAGG" 206269 T BTAGG (NIL) -9 NIL 206430 NIL) (-122 201631 201756 201962 "BTAGG-" 201967 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198626 200909 201124 "BSTREE" 201448 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197764 197890 198074 "BRILL" 198482 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194416 196490 196531 "BRAGG" 197180 NIL BRAGG (NIL T) -9 NIL 197438 NIL) (-118 192945 193351 193906 "BRAGG-" 193911 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192474 "BPADICRT" 192792 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164525 170115 170264 "BINARY" 170391 T BINARY (NIL) -8 NIL NIL NIL) (-107 162305 163780 163821 "BGAGG" 164081 NIL BGAGG (NIL T) -9 NIL 164218 NIL) (-106 162136 162168 162259 "BGAGG-" 162264 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161207 161520 161725 "BFUNCT" 161951 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159897 160075 160363 "BEZOUT" 161031 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156366 158749 159079 "BBTREE" 159600 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156100 156153 156181 "BASTYPE" 156300 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155952 155981 156054 "BASTYPE-" 156059 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155386 155462 155614 "BALFACT" 155863 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154242 154801 154987 "AUTOMOR" 155231 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153968 153973 153999 "ATTREG" 154004 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152220 152665 153017 "ATTRBUT" 153634 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151828 152048 152114 "ATTRAST" 152172 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151364 151477 151503 "ATRIG" 151704 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151173 151214 151301 "ATRIG-" 151306 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150818 151004 151030 "ASTCAT" 151035 T ASTCAT (NIL) -9 NIL 151065 NIL) (-92 150545 150604 150723 "ASTCAT-" 150728 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148694 150321 150409 "ASTACK" 150488 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147199 147496 147861 "ASSOCEQ" 148376 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146231 146858 146982 "ASP9" 147106 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145994 146179 146218 "ASP8" 146223 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144862 145599 145741 "ASP80" 145883 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143760 144497 144629 "ASP7" 144761 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142714 143437 143555 "ASP78" 143673 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141683 142394 142511 "ASP77" 142628 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140595 141321 141452 "ASP74" 141583 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139495 140230 140362 "ASP73" 140494 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138599 139321 139421 "ASP6" 139426 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137544 138276 138394 "ASP55" 138512 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136493 137218 137337 "ASP50" 137456 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135581 136194 136304 "ASP4" 136414 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134669 135282 135392 "ASP49" 135502 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133453 134208 134376 "ASP42" 134558 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132229 132986 133156 "ASP41" 133340 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131179 131906 132024 "ASP35" 132142 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130944 131127 131166 "ASP34" 131171 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130681 130748 130824 "ASP33" 130899 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129574 130316 130448 "ASP31" 130580 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129339 129522 129561 "ASP30" 129566 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129074 129143 129219 "ASP29" 129294 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128839 129022 129061 "ASP28" 129066 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128604 128787 128826 "ASP27" 128831 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127688 128302 128413 "ASP24" 128524 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126764 127490 127602 "ASP20" 127607 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125852 126465 126575 "ASP1" 126685 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124794 125526 125645 "ASP19" 125764 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124531 124598 124674 "ASP12" 124749 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123383 124130 124274 "ASP10" 124418 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121234 123227 123318 "ARRAY2" 123323 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116999 120882 120996 "ARRAY1" 121151 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116031 116204 116425 "ARRAY12" 116822 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110343 112261 112336 "ARR2CAT" 114966 NIL ARR2CAT (NIL T T T) -9 NIL 115724 NIL) (-56 107777 108521 109475 "ARR2CAT-" 109480 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107094 107404 107529 "ARITY" 107670 T ARITY (NIL) -8 NIL NIL NIL) (-54 105870 106022 106321 "APPRULE" 106930 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105521 105569 105688 "APPLYORE" 105816 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104875 105114 105234 "ANY" 105419 T ANY (NIL) -8 NIL NIL NIL) (-51 104153 104276 104433 "ANY1" 104749 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101683 102590 102917 "ANTISYM" 103877 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101175 101390 101486 "ANON" 101605 T ANON (NIL) -8 NIL NIL NIL) (-48 95424 99714 100168 "AN" 100739 T AN (NIL) -8 NIL NIL NIL) (-47 91322 92710 92761 "AMR" 93509 NIL AMR (NIL T T) -9 NIL 94109 NIL) (-46 90434 90655 91018 "AMR-" 91023 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74873 90351 90412 "ALIST" 90417 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74467 74636 "ALGSC" 74791 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 8e2b47b0..5f5756b0 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,297 +1,279 @@
-(733187 . 3479296390)
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(733544 . 3479376212)
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173))))
+ ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552)))
+ ((*1 *1) (-5 *1 (-553))) ((*1 *1) (-5 *1 (-554)))
+ ((*1 *1) (-4 *1 (-731))) ((*1 *1) (-5 *1 (-1185)))
+ ((*1 *1) (-12 (-5 *1 (-1191 *2)) (-14 *2 (-927))))
+ ((*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927))))
+ ((*1 *1) (-5 *1 (-1230))) ((*1 *1) (-5 *1 (-1231)))
+ ((*1 *1) (-5 *1 (-1232))) ((*1 *1) (-5 *1 (-1233))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108))
+ (-4 *2 (-855)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-402)))))
(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-377 *2))
- (-4 *4 (-377 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1106))
- (-4 *2 (-1223)))))
-(((*1 *1 *1 *1) (-4 *1 (-666))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6)))
- (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4))
- (-4 *3 (-1044 (-1183))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-5 *2 (-649 (-297 (-958 *3))))
- (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1055))
- (-1745 (-4 *3 (-1044 (-1183)))) (-4 *3 (-892 *5))
- (-4 *4 (-619 (-898 *5)))))
+ (-12 (-4 *1 (-353))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *1))))
+ (-4 *1 (-1079 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4))
- (-1745 (-4 *3 (-1044 (-1183)))) (-1745 (-4 *3 (-1055)))
- (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
- (-4 *2 (-1249 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457))
- (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-993 *4 *5 *6 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1208) (-29 *4)))))
+ (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-226))) (-5 *2 (-1112))
+ (-5 *1 (-764))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *5))
- (-5 *1 (-594 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-933))
- (-5 *2
- (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
- (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569)))
- (-5 *2
- (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
- (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
- (-5 *1 (-153))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
- (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
- (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
- (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
- (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))))
-(((*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-569))) (-5 *2 (-1112))
+ (-5 *1 (-764)))))
+(((*1 *1 *1 *1) (-4 *1 (-666))))
+(((*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283)))))
+(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-649 (-649 (-949 (-226))))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569))))
+ (-4 *5 (-892 (-569)))
+ (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-572 *5 *3)) (-4 *3 (-634))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5))))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1167))
+ (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-998 *2)) (-4 *4 (-1249 *3)) (-4 *2 (-310))
- (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3)))))
+ (-12 (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3)) (-4 *2 (-310))
+ (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1)))
+ (-12 (-4 *3 (-561)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1)))
(-4 *1 (-435 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500))))
((*1 *2 *1)
(-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4))
(-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
(-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4))
(-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
-(((*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1278)) (-5 *1 (-868)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1280)) (-5 *1 (-868)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225))))
((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855))))
((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
((*1 *1 *1) (-5 *1 (-867)))
((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1183))
- (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *1 (-1186)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1249 *6))
- (-4 *6 (-13 (-367) (-147) (-1044 *4))) (-5 *4 (-569))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -4309
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1021 *6 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-666))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-5 *1 (-442)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6))))
- (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1264 *5)) (-5 *2 (-649 *6))
- (-5 *1 (-1266 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $))
- (-15 -4409 ((-1131 *3 (-617 $)) $))
- (-15 -3793 ($ (-1131 *3 (-617 $))))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *1 *1) (-4 *1 (-666))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383))))
+ ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4))
- (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6))
- (-4 *6 (-13 (-414 *4 *5) (-1044 *4)))))
+ (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4))
+ (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6))
+ (-4 *6 (-13 (-414 *4 *5) (-1046 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *3 (-1106)) (-5 *2 (-1131 *3 (-617 *1)))
+ (-12 (-4 *3 (-1057)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1)))
(-4 *1 (-435 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500))))
((*1 *2 *1)
(-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-626 *2 *3 *4))
(-4 *4 (|SubsetCategory| (-731) *3))))
((*1 *2 *1)
(-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-667 *2 *3 *4))
(-4 *4 (|SubsetCategory| (-731) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225))))
((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855))))
((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
((*1 *1 *1) (-5 *1 (-867)))
((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *2)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1179 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-5 *1 (-324 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9))
- (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *9 (-1071 *6 *7 *8))
- (-5 *2
- (-649
- (-2 (|:| -4309 (-649 *9)) (|:| -3660 *10) (|:| |ineq| (-649 *9)))))
- (-5 *1 (-994 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1077 *6 *7 *8 *9))
- (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *9 (-1071 *6 *7 *8))
- (-5 *2
- (-649
- (-2 (|:| -4309 (-649 *9)) (|:| -3660 *10) (|:| |ineq| (-649 *9)))))
- (-5 *1 (-1113 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-383)) (-5 *1 (-1069)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1273 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367))
- (-5 *1 (-672 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-367))
- (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4445))))
- (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445))))
- (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367))
- (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229))
+ (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
+ (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1))))
+ (-4 *1 (-371 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-458 *3 *4 *5 *6))
+ (|:| -2403 (-649 (-458 *3 *4 *5 *6)))))
+ (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-649 (-1183)))))
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057))
+ (-14 *4 (-649 (-1185)))))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1) (-4 *1 (-287)))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *1 *2)
(-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855))
(-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-5 *1 (-632 *3 *4 *5))
(-14 *5 (-927))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569)))))
- (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4))))
+ (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569)))))
+ (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4))
(-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-367)) (-5 *1 (-1031 *3 *2)) (-4 *2 (-661 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4309 *3) (|:| -3903 (-649 *5))))
- (-5 *1 (-1031 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5)))))
+(((*1 *1 *1) (-5 *1 (-1071))))
(((*1 *1 *1) (-5 *1 (-541))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-569)) (-5 *1 (-1163 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-983 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-377 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-569)) (-5 *1 (-1116))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1273 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569))
- (-5 *1 (-1116)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1043))
+ (-5 *1 (-751)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1181 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3))
+ (-4 *3 (-367)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5))
+ (-14 *4 (-927)) (-14 *5 (-1001 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4))
+ (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4))
+ (-4 *4 (-1251 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5))
+ (-4 *4 (-1057)) (-4 *5 (-855))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057))
+ (-4 *2 (-855))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6))
+ (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057))
+ (-4 *5 (-798)) (-4 *2 (-855))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5))
+ (-5 *1 (-1134 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-855))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1219 *4))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6)
+ (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3676 *6)))
+ (-5 *1 (-1024 *5 *6)) (-5 *3 (-412 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5))
+ (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5))
(-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-319 *5)) (-4 *5 (-392))
- (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183)))))
+ (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185)))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388))))
((*1 *1 *2)
@@ -313,1116 +295,976 @@
((*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-4 *1 (-401))))
((*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-4 *1 (-401))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446))))
+ (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446))))
+ (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446))))
+ (|partial| -12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446))))
+ (|partial| -12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446))))
+ (|partial| -12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446))))
+ (|partial| -12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5))
- (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7))
- (-4 *3 (-1249 *6)) (-14 *7 (-927))))
+ (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5))
+ (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7))
+ (-4 *3 (-1251 *6)) (-14 *7 (-927))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *1 (-982 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1044 *2)) (-4 *2 (-1223))))
+ (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *1 (-984 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1046 *2)) (-4 *2 (-1225))))
((*1 *1 *2)
- (|partial| -2774
+ (|partial| -2776
(-12 (-5 *2 (-958 *3))
- (-12 (-1745 (-4 *3 (-38 (-412 (-569)))))
- (-1745 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-12 (-1749 (-4 *3 (-38 (-412 (-569)))))
+ (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798))
(-4 *5 (-855)))
(-12 (-5 *2 (-958 *3))
- (-12 (-1745 (-4 *3 (-550))) (-1745 (-4 *3 (-38 (-412 (-569)))))
- (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569)))))
+ (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798))
(-4 *5 (-855)))
(-12 (-5 *2 (-958 *3))
- (-12 (-1745 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569))))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569))))
+ (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798))
(-4 *5 (-855)))))
((*1 *1 *2)
- (|partial| -2774
- (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
+ (|partial| -2776
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5))
+ (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
+ (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183)))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2))
- (-4 *2 (-692 *4 *5 *6)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-4 *3 (-561)))))
-(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))))
+ (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057))
+ (-4 *2 (-1235 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
+ ((*1 *1 *1) (|partial| -4 *1 (-727))))
(((*1 *2 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
- (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
- (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9))
- (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6))
- (-4 *8 (-377 *7)) (-4 *9 (-377 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
- (-4 *4 (-377 *2)) (-4 *2 (-310))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
- (-4 *2 (-692 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1059 *2 *3 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2530 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-367)) (-4 *7 (-1249 *6))
+ (-12
(-5 *2
- (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
- (-2 (|:| -2530 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4))
- (-4 *2 (-1249 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3))
- (-4 *3 (-653 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3))
- (-4 *3 (-653 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055))))
- ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))))
-(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
-(((*1 *1 *1) (-4 *1 (-634)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
-(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (-5 *1 (-269)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1044 (-569)))
- (-4 *4 (-561)) (-5 *2 (-1179 *5)) (-5 *1 (-32 *4 *5))))
+ (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3))
+ (-4 *3 (-377 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-617 *1)) (-4 *1 (-1055)) (-4 *1 (-305))
- (-5 *2 (-1179 *1)))))
+ (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3))
+ (-4 *5 (-377 *2)) (-4 *3 (-377 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 *4)) (-4 *4 (-1000 *2)) (-4 *2 (-561))
+ (-5 *1 (-698 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-1244 *2 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
+ (-5 *2 (-1181 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-752)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457))
+ (-5 *1 (-924 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1108)) (-4 *5 (-1108))
+ (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-1207 *4))
+ (-4 *4 (-1057)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1181 *4))) (-5 *3 (-1181 *4))
+ (-4 *4 (-915)) (-5 *1 (-668 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-457))
+ (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867)))
- (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867)))
+ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867)))
+ (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867)))
(|:| |args| (-649 (-867)))))
- (-5 *1 (-1183))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
+ (-5 *1 (-1185))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1185)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31))))
((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) ((*1 *1) (-4 *1 (-550)))
((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
- (-4 *4 (-353)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-569)))))
+ (-5 *1 (-365 *3)) (-4 *3 (-1108))))
((*1 *2 *1)
- (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-310))
- (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-435 *4) (-1008))) (-4 *4 (-561))
- (-5 *1 (-278 *4 *2)))))
-(((*1 *1) (-5 *1 (-828))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1223))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-59 *3)))))
+ (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108))
+ (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-776)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -1993 (-569)))))
+ (-5 *1 (-423 *3)) (-4 *3 (-561)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1032 *3))
+ (-4 *3 (-13 (-853) (-367) (-1030)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3))
+ (-4 *3 (-1251 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367)))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1) (-4 *1 (-561))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057))
(-5 *2
- (-2 (|:| -3538 (-776)) (|:| |curves| (-776))
+ (-2 (|:| -4317 (-776)) (|:| |curves| (-776))
(|:| |polygons| (-776)) (|:| |constructs| (-776)))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1106)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1179 *3) (-1179 *3)))
- (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3))
- (-5 *1 (-556 *6 *3)))))
-(((*1 *2 *2 *2)
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5)))
+ (-5 *1 (-1137 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185)))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5))))
+ (-5 *1 (-1137 *5)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-649
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
- (-5 *1 (-454 *3 *4 *5 *6)))))
+ (-995 (-412 (-569)) (-869 *3) (-241 *4 (-776))
+ (-248 *3 (-412 (-569)))))
+ (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-994 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1108)) (-4 *5 (-1108))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1185)) (-5 *6 (-649 (-617 *3)))
+ (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *7)))
+ (-4 *7 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-562 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-564)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457))
+ (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7))
+ (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
+(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4)))
+ (-4 *4 (-855)) (-5 *1 (-1196 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1275 (-1275 *4))) (-4 *4 (-1057)) (-5 *2 (-694 *4))
+ (-5 *1 (-1037 *4)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1185))
+ (-5 *4 (-1102 (-412 (-569)))) (-5 *1 (-30)))))
+(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797))))
((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-5 *2 (-112))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057))
+ (-14 *4 (-649 (-1185)))))
((*1 *2 *1)
- (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855)))
+ (-14 *4 (-649 (-1185)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1181 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855))
+ (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1057))
+ (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927))))
((*1 *2 *1)
- (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4))
- (-4 *4 (-1249 *3))))
+ (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-731))))
+ (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-1251 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-5 *2 (-776))))
((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1183))) (-4 *6 (-367))
- (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7))
- (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226)))
- (|:| |lb| (-649 (-848 (-226))))
- (|:| |cf| (-649 (-319 (-226))))
- (|:| |ub| (-649 (-848 (-226))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-649 (-319 (-226))))
- (|:| -2305 (-649 (-226)))))))
- (-5 *2 (-649 (-1165))) (-5 *1 (-269)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1066)) (-4 *3 (-1208))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-981 *3 *2 *4)) (-4 *3 (-1057)) (-4 *4 (-855))
+ (-4 *2 (-797))))
((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-561))
- (-5 *2 (-2 (|:| -2378 (-694 *5)) (|:| |vec| (-1273 (-649 (-927))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-649 *11))
- (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3660 *11))))))
- (-5 *6 (-776))
- (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3660 *11))))
- (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9))
- (-4 *11 (-1077 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798))
- (-4 *9 (-855)) (-5 *1 (-1075 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-649 *11))
- (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3660 *11))))))
- (-5 *6 (-776))
- (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3660 *11))))
- (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1071 *7 *8 *9))
- (-4 *11 (-1115 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798))
- (-4 *9 (-855)) (-5 *1 (-1151 *7 *8 *9 *10 *11)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
- (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-444))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-843))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1121))))
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1266 *3))
+ (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *2 (-776)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
+(((*1 *1 *1) (-4 *1 (-874 *2))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-617 *4)) (-5 *6 (-1181 *4))
+ (-4 *4 (-13 (-435 *7) (-27) (-1210)))
+ (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1181 *4)))
+ (-4 *4 (-13 (-435 *7) (-27) (-1210)))
+ (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-985 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-444))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-843))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1123))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1188))) (-5 *3 (-1188)) (-5 *1 (-1124)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
- (-4 *3 (-1249 *4)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-649 (-1190))) (-5 *3 (-1190)) (-5 *1 (-1126)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-694 *4)) (-4 *4 (-1057)) (-5 *1 (-1150 *3 *4))
+ (-14 *3 (-776)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7))))
- (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+ (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4)))
+ (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1183)))
- (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *2 (-1172 (-649 (-958 *4)) (-649 (-297 (-958 *4)))))
- (-5 *1 (-509 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109)))))
+ (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))))
+(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1185)) (-5 *6 (-112))
+ (-4 *7 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-4 *3 (-13 (-1210) (-965) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1223)) (-5 *2 (-1278)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1258 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
- (-14 *4 (-1183)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1106)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855))
- (-14 *4
- (-1 (-112) (-2 (|:| -2150 *3) (|:| -4320 *2))
- (-2 (|:| -2150 *3) (|:| -4320 *2)))))))
+ (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1277))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057))
+ (-5 *1 (-719 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1106))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1108))
(-5 *1 (-683 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
- (-4 *2 (-1249 *4)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879))
- (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1274))
- (-5 *1 (-1277))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265)))
- (-5 *2 (-1274)) (-5 *1 (-1277)))))
-(((*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3796 *3) (|:| -3868 *4))))
- (-5 *1 (-701 *3)) (-4 *3 (-1249 *4)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-367)) (-5 *1 (-986 *5)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1225)))))
+(((*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-132)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1080))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1082))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))
- (-5 *2 (-1041)) (-5 *1 (-753)))))
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1106))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569))
- (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1106)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))))
-(((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1249 *2))
- (-4 *2 (-173))))
- ((*1 *2)
- (-12 (-4 *4 (-1249 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4))
- (-4 *3 (-414 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173))))
- ((*1 *2)
- (-12 (-4 *3 (-1249 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4))
- (-4 *4 (-414 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)) (-4 *3 (-173))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
+ (-12 (-5 *3 (-569)) (-4 *4 (-1251 (-412 *3))) (-5 *2 (-927))
+ (-5 *1 (-919 *4 *5)) (-4 *5 (-1251 (-412 *4))))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226)))
+ (-5 *1 (-702)))))
(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-52)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $))
- (-15 -4409 ((-1131 *3 (-617 $)) $))
- (-15 -3793 ($ (-1131 *3 (-617 $))))))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561))
- (-5 *2 (-412 (-958 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-1233 *4)) (-4 *4 (-1055)) (-4 *4 (-561))
- (-5 *2 (-412 (-958 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-694 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4))
- (-4 *3 (-422 *4))))
- ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-52)) (-5 *1 (-898 *4))
- (-4 *4 (-1106)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1055)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057))
+ (-5 *1 (-1169 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8)))
+ (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798))
+ (-5 *2
+ (-2 (|:| |upol| (-1181 *8)) (|:| |Lval| (-649 *8))
+ (|:| |Lfact|
+ (-649 (-2 (|:| -3800 (-1181 *8)) (|:| -1993 (-569)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-747 *6 *7 *8 *9)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-776)) (-4 *3 (-1223)) (-4 *1 (-57 *3 *4 *5))
+ (-12 (-5 *2 (-776)) (-4 *3 (-1225)) (-4 *1 (-57 *3 *4 *5))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1) (-5 *1 (-172)))
- ((*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1106))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394))))
+ ((*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1108))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394))))
((*1 *1) (-5 *1 (-399)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1225))))
((*1 *1)
- (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106))
+ (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108))
(-4 *4 (-671 *3))))
- ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106))))
+ ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))
((*1 *1 *2)
- (-12 (-5 *1 (-1148 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1055))))
- ((*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055))))
- ((*1 *1 *1) (-5 *1 (-1183))) ((*1 *1) (-5 *1 (-1183)))
- ((*1 *1) (-5 *1 (-1203))))
+ (-12 (-5 *1 (-1150 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1057))))
+ ((*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057))))
+ ((*1 *1 *1) (-5 *1 (-1185))) ((*1 *1) (-5 *1 (-1185)))
+ ((*1 *1) (-5 *1 (-1205))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1223))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1225))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 (-617 *1))) (-5 *3 (-649 *1)) (-4 *1 (-305))))
((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *1))) (-4 *1 (-305))))
((*1 *1 *1 *2) (-12 (-5 *2 (-297 *1)) (-4 *1 (-305)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1041)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
- (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1196 *5)))))
(((*1 *2 *1)
(-12
(-5 *2
(-649
- (-649
- (-3 (|:| -3570 (-1183))
- (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569))))))))))
- (-5 *1 (-1187)))))
+ (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *3))
+ (|:| |logand| (-1181 *3)))))
+ (-5 *1 (-591 *3)) (-4 *3 (-367)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-569)) (-14 *4 (-776)))))
+ (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-2 (|:| -2003 *3) (|:| -2214 *4))))
- (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *1 (-1199 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-561)))))
-(((*1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-12 (-5 *2 (-649 (-2 (|:| -2006 *3) (|:| -2216 *4))))
+ (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *1 (-1201 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-752)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
(-14 *4 *3))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2))
- (-4 *4 (-457)) (-4 *6 (-855)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2))
- (-4 *2 (-1249 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112))
- (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1067 (-1030 *4) (-1179 (-1030 *4)))) (-5 *3 (-867))
- (-5 *1 (-1030 *4)) (-4 *4 (-13 (-853) (-367) (-1028))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
+ (|partial| -12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561))
+ (-5 *2 (-1275 *4)) (-5 *1 (-643 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108))
(-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1229))
+ (-4 *6 (-1251 (-412 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-346 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4)))
+ (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1)))
+ (-4 *1 (-1079 *4 *5 *6 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1106))
- (-4 *5 (-1223)) (-5 *1 (-896 *4 *5))))
+ (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1108))
+ (-4 *5 (-1225)) (-5 *1 (-896 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1106))
- (-4 *5 (-1223)) (-5 *1 (-896 *4 *5))))
+ (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1108))
+ (-4 *5 (-1225)) (-5 *1 (-896 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1183)))
- (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1106)) (-4 *6 (-1223))
+ (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1185)))
+ (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1108)) (-4 *6 (-1225))
(-5 *1 (-896 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1223)) (-4 *4 (-1106))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1225)) (-4 *4 (-1108))
(-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1223)) (-4 *4 (-1106))
+ (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1225)) (-4 *4 (-1108))
(-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1223))
+ (-12 (-5 *3 (-1185)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1225))
(-5 *2 (-319 (-569))) (-5 *1 (-944 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1223))
+ (-12 (-5 *3 (-1185)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1225))
(-5 *2 (-319 (-569))) (-5 *1 (-944 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1 (-112) (-649 *6)))
- (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1106))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
- (-5 *1 (-1082 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4)))
- (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569))))))
- (-5 *4 (-649 (-1183))) (-5 *2 (-649 (-649 (-170 *5))))
- (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853))))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *1 *1) (-4 *1 (-634)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310))
- (-5 *1 (-180 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 *8))
- (-5 *4
- (-649
- (-2 (|:| -1903 (-694 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-694 *7)))))
- (-5 *5 (-776)) (-4 *8 (-1249 *7)) (-4 *7 (-1249 *6)) (-4 *6 (-353))
- (-5 *2
- (-2 (|:| -1903 (-694 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-694 *7))))
- (-5 *1 (-503 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1264 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3))
- (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1264 *3))))
+ (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1 (-112) (-649 *6)))
+ (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1108))
+ (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1084 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147)))
- (-5 *1 (-1159 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367))
- (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5)))))
- (-5 *1 (-984 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)))))
-(((*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1106)))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1218 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))))
+(((*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1108)))))
(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
- (-4 *4 (-353)))))
-(((*1 *1 *1 *1) (-5 *1 (-162)))
- ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112))
+ (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))
- (-4 *2 (-457))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2))
- (-4 *4 (-1249 (-412 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)) (-4 *3 (-457))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-457))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1170 *3 *2))
- (-4 *2 (-1249 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-269)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5)))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147)))
- (-5 *2 (-1172 (-649 (-319 *5)) (-649 (-297 (-319 *5)))))
- (-5 *1 (-1135 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-826)))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-112)) (-5 *1 (-826)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3))))
- ((*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4202 *3) (|:| |coef1| (-787 *3))))
- (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-582))))
- ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1146 *3 *2)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *2 (-13 (-1106) (-34))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1864 (-787 *3)) (|:| |coef1| (-787 *3))
- (|:| |coef2| (-787 *3))))
- (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -1864 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
- (-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-569)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041))
- (-5 *1 (-761)))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
- (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-776)) (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3))
- (-4 *3 (-1249 *4)))))
+ (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308)))))
+ (-12 (-5 *3 (-1275 *4)) (-4 *4 (-1057)) (-4 *2 (-1251 *4))
+ (-5 *1 (-449 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-412 (-1181 (-319 *5)))) (-5 *3 (-1275 (-319 *5)))
+ (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1138 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226))))
+ (-5 *2 (-1043)) (-5 *1 (-760)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1108)) (-5 *2 (-112))
+ (-5 *1 (-1226 *3)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834)))))
+(((*1 *1) (-5 *1 (-226))) ((*1 *1) (-5 *1 (-383))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-676))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
- (-5 *2 (-1179 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108)) (-5 *2 (-649 *1))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $))
+ (-15 -4412 (*7 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185))))
+ (-4 *7 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| -3978 (-776))
+ (|:| |eqns|
+ (-649
+ (-2 (|:| |det| *8) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (|:| |fgb| (-649 *8)))))
+ (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))))
+(((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1) (-5 *1 (-637))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1106)))))
+ (|partial| -12 (-5 *2 (-1069 (-1032 *3) (-1181 (-1032 *3))))
+ (-5 *1 (-1032 *3)) (-4 *3 (-13 (-853) (-367) (-1030))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-1082 *3 *4 *5))) (-4 *3 (-1106))
- (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
+ (-12 (-5 *2 (-649 (-1084 *3 *4 *5))) (-4 *3 (-1108))
+ (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3))))
(-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))
- (-5 *1 (-1083 *3 *4 *5)))))
+ (-5 *1 (-1085 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-1044 (-412 *2)))) (-5 *2 (-569))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
- (-4 *3 (-1249 *4)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-798))
+ (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561))
+ (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1057)) (-4 *5 (-798))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1410 ((-1185) $))
+ (-15 -2672 ((-3 $ "failed") (-1185))))))
+ (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *6))
+ (-4 *6
+ (-13 (-855)
+ (-10 -8 (-15 -1410 ((-1185) $))
+ (-15 -2672 ((-3 $ "failed") (-1185))))))
+ (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2))
+ (-4 *2 (-955 (-958 *4) *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-824 *3))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
((*1 *2 *1)
- (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))))
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183))
- (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933))
- (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-933)) (-5 *1 (-931 *3))
- (-4 *3 (-619 (-541)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-4 *6 (-457))
- (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367))
- (-4 *5 (-13 (-367) (-853))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1055))
- (-4 *4 (-1223))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
- (-4 *5 (-239 (-2426 *3) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *5))
- (-2 (|:| -2150 *2) (|:| -4320 *5))))
- (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855))
- (-4 *7 (-955 *4 *5 (-869 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1044 (-569)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112))
- (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-215 *4))
- (-4 *4
- (-13 (-855)
- (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 (*2 $))
- (-15 -4224 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3))
- (-4 *3
- (-13 (-855)
- (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 (*2 $))
- (-15 -4224 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507)))))
-(((*1 *2) (-12 (-5 *2 (-1153 (-1165))) (-5 *1 (-396)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))))
+ (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569)))))
+ (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147)))
- (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-694 *4)) (-4 *5 (-661 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))))
+(((*1 *1) (-4 *1 (-353))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010)))
+ (-5 *1 (-177 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))))
+(((*1 *2)
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915))
+ (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915))
+ (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1251 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
+ (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185))
(-14 *4 *2))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-753)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5))
- (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1249 *5))
- (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 (-1179 (-569)))) (-5 *3 (-1179 (-569)))
- (-5 *1 (-577))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 (-1179 *1))) (-5 *3 (-1179 *1))
- (-4 *1 (-915)))))
-(((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4))
+ (-4 *4 (-173)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-91 *3)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-580 *4 *2))
+ (-4 *2 (-13 (-1210) (-965) (-1147) (-29 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-1057))
+ (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-353))
- (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -2395 *3))))
- (-5 *1 (-217 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))))
+(((*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1275 (-1185))) (-5 *3 (-1275 (-458 *4 *5 *6 *7)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-458 *4 *5 *6 *7)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927))
+ (-14 *6 (-649 *2)) (-14 *7 (-1275 (-694 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1275 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185)))
+ (-14 *6 (-1275 (-694 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1275 (-1185))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185)))
+ (-14 *6 (-1275 (-694 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173))
+ (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1275 (-694 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927))
+ (-14 *4 (-649 (-1185))) (-14 *5 (-1275 (-694 *2))))))
+(((*1 *2)
+ (-12 (-4 *1 (-353))
+ (-5 *2 (-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
+ (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
+ (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4))
- (-4 *4 (-1106))))
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4))
+ (-4 *4 (-1108))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106)))))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188)))))
(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305))))
((*1 *1 *1) (-4 *1 (-305))) ((*1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-107 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-694 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4))
- (-4 *3 (-422 *4))))
- ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-649 (-1183))) (|:| |pred| (-52))))
- (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *2 (-1220 (-932)))
+ (-5 *1 (-321))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *7 (-1167))
+ (-5 *2 (-1220 (-932))) (-5 *1 (-321))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569))
+ (-5 *2 (-1220 (-932))) (-5 *1 (-321))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
+ (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1167))
+ (-5 *2 (-1220 (-932))) (-5 *1 (-321)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1173 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1057)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-756)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1152))))
+(((*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057)))))
(((*1 *2 *1)
(|partial| -12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114))))
((*1 *1) (-5 *1 (-583))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -3466 *4))) (-5 *5 (-776))
- (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-454 *6 *7 *8 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131))
+ (-4 *3 (-797)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)) (-4 *3 (-173))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2))))
+ (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-173)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879))
- (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1277))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473))
- (-5 *1 (-1277))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265)))
- (-5 *2 (-473)) (-5 *1 (-1277)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4202 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-649
+ (-2
+ (|:| -2006
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| -2216
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1165 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3743
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-564))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225))
+ (-5 *2 (-649 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4))
+ (-14 *3 (-927)) (-4 *4 (-1057))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-172)))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-649
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-569)))))
+ (-4 *2 (-561)) (-5 *1 (-423 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1187)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1055))) (-5 *2 (-1165))
- (-5 *1 (-831 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1055)))
- (-5 *2 (-1165)) (-5 *1 (-831 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1055)))
- (-5 *2 (-1278)) (-5 *1 (-831 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-833) (-1055))) (-5 *2 (-1278)) (-5 *1 (-831 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1165))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1165))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1278))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1278)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-569))
+ (|:| -4360 (-649 (-2 (|:| |irr| *4) (|:| -4180 (-569)))))))
+ (-4 *4 (-1251 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+ (-12
+ (-5 *2 (-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185)))))
+ (-5 *1 (-1227)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6))
+ (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569))))
+ (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3))
+ (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2))
- (-4 *2 (-13 (-1106) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
- (-4 *4 (-173))))
- ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552)))
- ((*1 *1) (-5 *1 (-553))) ((*1 *1) (-5 *1 (-554)))
- ((*1 *1) (-4 *1 (-731))) ((*1 *1) (-5 *1 (-1183)))
- ((*1 *1) (-12 (-5 *1 (-1189 *2)) (-14 *2 (-927))))
- ((*1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927))))
- ((*1 *1) (-5 *1 (-1228))) ((*1 *1) (-5 *1 (-1229)))
- ((*1 *1) (-5 *1 (-1230))) ((*1 *1) (-5 *1 (-1231))))
-(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-649 (-649 (-949 (-226))))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5))
- (-14 *4 (-927)) (-14 *5 (-999 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4))
- (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4))
- (-4 *4 (-1249 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5))
- (-4 *4 (-1055)) (-4 *5 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055))
- (-4 *2 (-855))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *2 (-855))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5))
- (-5 *1 (-1132 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-855))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1217 *4))
- (-4 *4 (-1055)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776))
+ (-14 *4 (-776)) (-4 *5 (-173)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *7)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5)))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5))))
- (-5 *1 (-1135 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-617 *4)) (-5 *6 (-1179 *4))
- (-4 *4 (-13 (-435 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1179 *4)))
- (-4 *4 (-13 (-435 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))))
-(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-367)) (-5 *1 (-984 *5)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112))
- (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+ (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1251 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6))
+ (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226))))
- (-5 *2 (-1041)) (-5 *1 (-760)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569))))
+ (-4 *5 (-1251 *4))
+ (-5 *2 (-2 (|:| -2679 (-412 *5)) (|:| |coeff| (-412 *5))))
+ (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1165 *4))) (-4 *4 (-367))
+ (-4 *4 (-1057)) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294)))))
(((*1 *1 *1) (-4 *1 (-634)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1067 (-1030 *3) (-1179 (-1030 *3))))
- (-5 *1 (-1030 *3)) (-4 *3 (-13 (-853) (-367) (-1028))))))
+ (-4 *2 (-13 (-435 *3) (-1010) (-1210))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1183))
- (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-580 *4 *2))
- (-4 *2 (-13 (-1208) (-965) (-1145) (-29 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776))
- (-14 *4 (-776)) (-4 *5 (-173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
+ (-5 *2 (-1181 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-649 (-412 (-958 (-170 (-569))))))
(-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4))
@@ -1439,971 +1281,972 @@
(-12 (-5 *3 (-297 (-412 (-958 (-170 (-569))))))
(-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4))
(-4 *4 (-13 (-367) (-853))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1147))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242)) (-5 *3 (-1165))))
- ((*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-242))))
+ (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242)) (-5 *3 (-1167))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242))))
((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-867))) (-5 *1 (-114))))
((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114))))
((*1 *2 *1)
(|partial| -12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1278)) (-5 *1 (-215 *3))
+ (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3))
(-4 *3
(-13 (-855)
- (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 (*2 $))
- (-15 -4224 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-399))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-399))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-507))))
- ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-715))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1203))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1203)))))
-(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1157)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-826)))))
+ (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $))
+ (-15 -3567 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-399))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-399))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-715))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1205))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057))
+ (-5 *2 (-649 (-649 (-649 (-776))))))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-761)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057))
+ (-4 *3 (-1108)))))
(((*1 *1) (-5 *1 (-333))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
- (-5 *2 (-1179 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
- (-5 *2 (-1179 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-649 (-1185))) (-4 *5 (-457))
+ (-5 *2
+ (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569)))))
+ (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5))))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1218 *5 *6 *7 *8)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1106))
- (-4 *6 (-1223)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6))))
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1108))
+ (-4 *6 (-1225)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106))
- (-4 *2 (-1223)) (-5 *1 (-646 *5 *2))))
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108))
+ (-4 *2 (-1225)) (-5 *1 (-646 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1106))
- (-4 *5 (-1223)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5))))
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1108))
+ (-4 *5 (-1225)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1106))
- (-4 *2 (-1223)) (-5 *1 (-646 *5 *2))))
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108))
+ (-4 *2 (-1225)) (-5 *1 (-646 *5 *2))))
((*1 *2 *3 *4 *2)
(-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-649 *5)) (-5 *4 (-649 *6))
- (-4 *5 (-1106)) (-4 *6 (-1223)) (-5 *1 (-646 *5 *6))))
+ (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *1 (-646 *5 *6))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1106)) (-4 *2 (-1223)) (-5 *1 (-646 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-776)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798))
- (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3))
- (-5 *1 (-467 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1044 (-412 (-569))) (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $))
- (-15 -4409 (*7 $))))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1106)))))
+ (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-776)))))
+(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226)))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265)))
+ (-5 *1 (-263))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6))
+ (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-1275 *6))
+ (-5 *1 (-636 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1044 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-435 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1179 *4)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1055)) (-4 *1 (-305))))
- ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3))))
- ((*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367)))
- (-4 *2 (-1249 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-435 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
- (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
- (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305))))
- ((*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-1106)) (-5 *2 (-112))
- (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
- (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
- (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-112))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-851)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4202 *3) (|:| |coef2| (-787 *3))))
- (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183))
- (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1170 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4202 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1218 *3))
- (-5 *1 (-795 *3)) (-4 *3 (-980))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112))
- (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 *4)) (-5 *1 (-1147 *3 *4))
- (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34))))))
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1066)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1251 *4)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530))))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1159)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1249 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
- (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)))))
+ (-12 (-5 *2 (-649 *4)) (-5 *1 (-1149 *3 *4))
+ (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
- (-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-569)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057))
+ (-14 *4 (-649 (-1185)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1225))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855)))
+ (-14 *4 (-649 (-1185)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1185)))
+ (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1057))
+ (-4 *5 (-239 (-2428 *3) (-776)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-1057)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-826)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1) (-4 *1 (-498)))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-867)))))
-(((*1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
- (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
- (-5 *4 (-319 (-383))) (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
- (-5 *4 (-319 (-569))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-170 (-383)))))
- (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-383)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-569)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-170 (-383)))))
- (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-383))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-569))) (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
- (-5 *4 (-319 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
- (-5 *4 (-319 (-704))) (-5 *1 (-333))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-958 (-569))))
- (-5 *4 (-319 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-699)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-704)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-319 (-706)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-704))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-704))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-694 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-704))) (-5 *1 (-333))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-319 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-333))))
- ((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))
- (-5 *2 (-1041)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551))))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-979)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *1) (-5 *1 (-602))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-694 *5)) (-4 *5 (-1057)) (-5 *1 (-1062 *3 *4 *5))
+ (-14 *3 (-776)) (-14 *4 (-776)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1273 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915))
- (-5 *2 (-1273 *1)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055))
- (-4 *6 (-1249 *5)) (-5 *2 (-1179 (-1179 *7)))
- (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1249 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))))
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
+ (-5 *2 (-1181 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
+ (-5 *2 (-1181 *3)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1) (-4 *1 (-498)))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226)))
+ (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-759)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1208))))
- ((*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
- (-5 *1 (-763)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
- (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-353))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569)))))))
- (-5 *1 (-217 *5 *3)) (-4 *3 (-1249 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6))
- (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6))
- (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
+ (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1280)))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-236 *3))
- (-4 *3 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1187)))))
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353))
+ (-5 *1 (-533 *4)))))
+(((*1 *1 *1) (-5 *1 (-226))) ((*1 *1 *1) (-5 *1 (-383)))
+ ((*1 *1) (-5 *1 (-383))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-764)))))
+(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7))
- (-4 *7 (-955 *4 *6 *5)))))
+ (-12 (-4 *4 (-1057)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3))
+ (-4 *3 (-1251 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1542 (-569)) (|:| -1411 (-649 *3))))
- (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+ (|partial| -12 (-4 *2 (-1108)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-1108)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-367)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3)))
+ (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1251 *2))
+ (-4 *5 (-1251 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6))
+ (-4 *6 (-346 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-367)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3)))
+ (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))
+ (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367))
+ (-4 *1 (-339 *3 *4 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1249 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-13 (-457) (-147)))
- (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1163 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *1) (-5 *1 (-144)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-265)))))
+ (-12 (-4 *4 (-457)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2290 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-422 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-4 *5 (-855)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457))
- (-5 *2
- (-2 (|:| |dpolys| (-649 (-248 *5 *6)))
- (|:| |coords| (-649 (-569)))))
- (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055))
- (-5 *1 (-1167 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055))
- (-14 *4 (-1183)) (-14 *5 *3))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1132 *4 *3 *5))) (-4 *4 (-38 (-412 (-569))))
- (-4 *4 (-1055)) (-4 *3 (-855)) (-5 *1 (-1132 *4 *3 *5))
- (-4 *5 (-955 *4 (-536 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1217 *4))) (-5 *3 (-1183)) (-5 *1 (-1217 *4))
- (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))))
+ (-12 (-5 *3 (-1102 (-848 (-383)))) (-5 *2 (-1102 (-848 (-226))))
+ (-5 *1 (-308)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1147))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1043)) (-5 *1 (-761)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-1273 *5))) (-5 *4 (-569)) (-5 *2 (-1273 *5))
- (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055)))))
+ (-12 (-4 *5 (-1108)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4))
+ (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))))
+(((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1223))
- (-4 *5 (-1223)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776))
- (-4 *7 (-1223)) (-4 *5 (-1223)) (-5 *2 (-241 *6 *5))
- (-5 *1 (-240 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1223)) (-4 *5 (-1223))
- (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1106)) (-4 *5 (-1106))
- (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1223))
- (-4 *5 (-1223)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1223))
- (-4 *5 (-1223)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1163 *6)) (-4 *6 (-1223))
- (-4 *3 (-1223)) (-5 *2 (-1163 *3)) (-5 *1 (-1161 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1273 *6)) (-4 *6 (-1223))
- (-4 *5 (-1223)) (-5 *2 (-1273 *5)) (-5 *1 (-1272 *6 *5)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
+ (-12 (-5 *5 (-1185))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1210) (-965)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4))))
+ (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-310)) (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3))
+ (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3))))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185))
+ (-4 *4 (-13 (-561) (-1046 (-569)) (-147))) (-5 *1 (-575 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1135 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5)))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147)))
- (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1135 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1183)))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5)))))
- (-5 *1 (-1135 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-297 (-412 (-958 *4)))))
- (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4)))))
- (-5 *1 (-1135 *4)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-617 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183))) (-5 *5 (-1179 *2))
- (-4 *2 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-617 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183)))
- (-5 *5 (-412 (-1179 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1106)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569)))
- (-5 *1 (-191)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569))))
+ (-4 *5 (-892 (-569)))
+ (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-572 *5 *3)) (-4 *3 (-634))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1185)) (-5 *4 (-848 *2)) (-4 *2 (-1147))
+ (-4 *2 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569)))
+ (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569))))
+ (-5 *1 (-572 *5 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-455 *4 *5 *6 *2))))
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1073 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367))
+ (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1073 *6 *7 *8))
(-5 *2
- (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6))))
- (-5 *1 (-984 *6)) (-5 *3 (-694 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1) (-5 *1 (-1069))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3))
+ (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2))
+ (-4 *2 (-692 *3 *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798))
+ (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3))
+ (-5 *1 (-467 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1046 (-412 (-569))) (-367)
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $))
+ (-15 -4412 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776))
- (-14 *4 (-776)) (-4 *5 (-173)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
- (-248 *4 (-412 (-569)))))
- (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550))))
- ((*1 *2 *1) (-12 (-4 *1 (-1227)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1183)) (-5 *1 (-541)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1222))) (-5 *3 (-1222)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-579 *5 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1055)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-4 *3 (-13 (-367) (-147)))
+ (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4))))
+ (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1185))
+ (-5 *5 (-848 *7))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-4 *7 (-13 (-1210) (-29 *6))) (-5 *1 (-225 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1181 *6)) (-5 *4 (-848 *6))
+ (-4 *6 (-13 (-1210) (-29 *5)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-225 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1273 *5)) (-4 *5 (-797)) (-5 *2 (-112))
- (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
- ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+ (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1185)) (-5 *1 (-541)))))
+(((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1181 (-412 (-569))))
+ (|:| |overan| (-1181 (-48))) (|:| -2495 (-112))))
+ (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1183))
- (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-797)))))
-(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4202 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
- (-14 *6
- (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *2))
- (-2 (|:| -2150 *5) (|:| -4320 *2))))
- (-4 *2 (-239 (-2426 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3))))))
+ (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-5 *2 (-1167)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-617 *4)) (-5 *6 (-1185))
+ (-4 *4 (-13 (-435 *7) (-27) (-1210)))
+ (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-927))
+ (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))
+ (-5 *1 (-350 *4)) (-4 *4 (-353)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1046 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-435 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-1181 *4)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1057)) (-4 *1 (-305))))
+ ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3))))
+ ((*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367)))
+ (-4 *2 (-1251 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
+ ((*1 *1 *1) (|partial| -4 *1 (-727))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5))
+ (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8))
+ (-5 *6 (-649 *8)) (-4 *8 (-435 *7))
+ (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8)))
+ (-4 *8 (-435 *7)) (-5 *5 (-297 *8))
+ (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6))
+ (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6))
+ (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6))
+ (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3))
+ (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
+ (-5 *1 (-320 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-569))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
+ (-5 *1 (-454 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1043)) (-5 *1 (-761)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-435 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
- ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1179 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1018))))
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305))))
+ ((*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-1179 *1)) (-4 *1 (-1018)) (-5 *2 (-649 *1))))
+ (-12 (-5 *3 (-114)) (-4 *5 (-1108)) (-5 *2 (-112))
+ (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1249 *4)) (-5 *2 (-649 *1))
- (-4 *1 (-1074 *4 *3)))))
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112))
+ (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210))))))
(((*1 *2 *3)
- (-12
+ (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4))
+ (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1275 *6)) (-5 *4 (-1275 (-569))) (-5 *5 (-569))
+ (-4 *6 (-1108)) (-5 *2 (-1 *6)) (-5 *1 (-1025 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5))
+ (-4 *3 (-1108)) (-4 *5 (-671 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1225))
+ (-4 *5 (-377 *4)) (-4 *2 (-377 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *2 *7)) (-4 *6 (-1057))
+ (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| -3364 (-423 *3)) (|:| |special| (-423 *3))))
+ (-5 *1 (-732 *5 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569))))
+ (-5 *1 (-191)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-14 *5 (-649 (-1185)))
(-5 *2
- (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))
- (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *3 *4)
- (-12
+ (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4))))))
+ (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2
+ (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5))))))
+ (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
(-5 *2
- (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))
- (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))
- (-5 *4 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))))
+ (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5))))))
+ (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
(-5 *2
- (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))
- (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569))) (-5 *4 (-412 (-569)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-412 (-569)))
- (-5 *2 (-649 (-2 (|:| -4395 *5) (|:| -4407 *5)))) (-5 *1 (-1026 *3))
- (-4 *3 (-1249 (-569))) (-5 *4 (-2 (|:| -4395 *5) (|:| -4407 *5)))))
+ (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5))))))
+ (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
((*1 *2 *3)
- (-12
+ (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
(-5 *2
- (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569))))
- (-5 *4 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-412 (-569)))
- (-5 *2 (-649 (-2 (|:| -4395 *4) (|:| -4407 *4)))) (-5 *1 (-1027 *3))
- (-4 *3 (-1249 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-412 (-569)))
- (-5 *2 (-649 (-2 (|:| -4395 *5) (|:| -4407 *5)))) (-5 *1 (-1027 *3))
- (-4 *3 (-1249 *5)) (-5 *4 (-2 (|:| -4395 *5) (|:| -4407 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-851)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1183))
- (-5 *2 (-649 *4)) (-5 *1 (-1120 *4 *5)))))
+ (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4))))))
+ (-5 *1 (-1301 *4 *5 *6)) (-5 *3 (-649 (-958 *4)))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5))
- (-4 *3 (-1106)) (-4 *5 (-671 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1249 *3)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-144)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-649 (-1183)))
- (-5 *2
- (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
- (-5 *1 (-633 *5 *6)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1165)) (-5 *1 (-97)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-412 (-569))))
- (-5 *2 (-2 (|:| -2744 (-1163 *4)) (|:| -2756 (-1163 *4))))
- (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3)))))
+ (-12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057))
+ (-5 *1 (-1169 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1223))
- (-4 *3 (-1106))))
+ (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1225))
+ (-4 *3 (-1108))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-1106))
+ (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-1108))
(-5 *2 (-569))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225))
(-5 *2 (-569))))
- ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-534))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)) (-5 *3 (-141))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-569)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))))
-(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-353)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))
- (-5 *2 (-1041)) (-5 *1 (-753)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
- ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-534))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569)) (-5 *3 (-141))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |k| (-1185)) (|:| |c| (-1297 *3)))))
+ (-5 *1 (-1297 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1299 *3 *4)))))
+ (-5 *1 (-1299 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2))
+ (-4 *2 (-1251 (-569)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2))
+ (-4 *2 (-1251 (-569)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2))
+ (-4 *2 (-1251 (-569)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776))
+ (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776))
+ (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1251 *5))
+ (-5 *1 (-449 *5 *2)) (-4 *5 (-1057)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-985 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-985 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))
+ (-5 *2 (-649 (-226))) (-5 *1 (-308)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
- (-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-569)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+ (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1108))
+ (-4 *3 (-1225)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-985 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-569))))
- (-5 *2
- (-649
- (-2 (|:| |outval| *4) (|:| |outmult| (-569))
- (|:| |outvect| (-649 (-694 *4))))))
- (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *2 (-1278)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-694 (-1179 *8))) (-4 *5 (-1055)) (-4 *8 (-1055))
- (-4 *6 (-1249 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8))
- (-4 *7 (-1249 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))))
-(((*1 *1) (-5 *1 (-1186))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1108))
+ (-5 *1 (-683 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1108)) (-5 *1 (-687 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185))
+ (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-248 *4 *5))
- (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561))))
+ (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5))
+ (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
+ (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-917 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-2 (|:| -3796 *4) (|:| -3868 (-569)))))
- (-4 *4 (-1249 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1249 (-412 *2)))
- (-4 *2 (-1249 *5)) (-5 *1 (-216 *5 *2 *6 *3))
- (-4 *3 (-346 *5 *2 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-541)) (-5 *1 (-540 *4))
- (-4 *4 (-1223)))))
+ (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
+ (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4)))
+ (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-918 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-649
+ (-2
+ (|:| -2006
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| -2216
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1165 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3743
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-564)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226)))
+ (-5 *2 (-1277)) (-5 *1 (-259)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3))
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
(-4 *3 (-422 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))
- ((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1) (-4 *1 (-874 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797))
- (-4 *4 (-855)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-762)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1201)))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1228))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457))
- (-5 *1 (-1214 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1185)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825))
+ (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569))
+ (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1181 *9)))
+ (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776)))
+ (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11))
+ (-4 *10 (-798)) (-5 *2 (-649 (-1181 *12)))
+ (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1181 *12)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))
- (-4 *3 (-561))))
+ (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4))))
+ (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6))
+ (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3))
- (-4 *3 (-955 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4))))
- (-5 *1 (-930 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4))))
- (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1179 *3))
- (-4 *3 (-13 (-435 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3))
- (-5 *6 (-412 (-1179 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1106)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2 *3) (-12 (-5 *3 (-979)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
+ (|:| |expense| (-383)) (|:| |accuracy| (-383))
+ (|:| |intermediateResults| (-383))))
+ (-5 *2 (-1043)) (-5 *1 (-308)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1172 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))
+ (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *4 (-1251 *3))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1251 (-569)))
+ (-5 *2
+ (-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569))
+ (|:| |basisInv| (-694 (-569)))))
+ (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-694 *4))))
+ (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-694 *4))))
+ (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372))
- (-4 *6 (-1055)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1035 *6))
- (-5 *3 (-649 (-694 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1055))
- (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1035 *4))
- (-5 *3 (-649 (-694 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055))
- (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
- (-5 *3 (-649 (-694 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1055))
- (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
- (-5 *3 (-649 (-694 *5))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
- ((*1 *1 *1) (-5 *1 (-867)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1219))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4))
+ (-14 *3 (-927)) (-4 *4 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1108)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
(((*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-881))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-881))))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-569))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1165))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-511))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-597))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-483))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-631))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1102))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1096))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1079))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-976))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-181))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1042))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-314))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-676))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1157))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1284))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1072))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-522))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-686))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1121))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-133))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-611))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1283))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-681))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-219))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-529))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-760))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1167))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-511))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-597))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-483))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1175))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-631))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1104))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1098))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1081))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-978))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-181))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1044))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-314))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-676))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1159))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-530))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1286))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1074))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-686))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1123))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-611))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1285))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-681))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-219))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-529))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1112))) (-5 *1 (-294)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6))
- (-4 *6 (-457)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-99 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *1) (-5 *1 (-1069))))
+ (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4446 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2))
- (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2))
- (-4 *4 (-692 *2 *5 *6)))))
+ (-12 (-5 *3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))
+ (-5 *2 (-412 (-569))) (-5 *1 (-1028 *4)) (-4 *4 (-1251 (-569))))))
+(((*1 *1) (-5 *1 (-1071))))
+(((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
- ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
+ (-12 (-5 *3 (-1167)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-1251 (-170 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1220 *3))
+ (-5 *1 (-795 *3)) (-4 *3 (-982))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112))
+ (-5 *1 (-1220 *2)) (-4 *2 (-982)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569)))))
+ (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4))))
+ (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 *4))))))
(((*1 *2 *1)
(-12 (-5 *2 (-776)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))
(-14 *4 *2) (-4 *5 (-173))))
@@ -2412,834 +2255,420 @@
(-4 *3 (-166 *4))))
((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-927))))
((*1 *2)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
+ (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3))
(-5 *2 (-927))))
((*1 *2 *3)
(-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
(-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367))
+ (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367))
(-5 *2 (-776)) (-5 *1 (-672 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445))))
- (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-5 *2 (-776))
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448))))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-776))
(-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
(-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776))))
((*1 *2 *3)
(-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
(-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3))
(-4 *3 (-692 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
(-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
(-5 *2 (-776)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055))
- (-5 *1 (-1167 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055))
- (-14 *4 (-1183)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-1163 (-226))) (-5 *1 (-193))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183)))
- (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183)))
- (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1)
- (-12 (-4 *1 (-409)) (-1745 (|has| *1 (-6 -4435)))
- (-1745 (|has| *1 (-6 -4427)))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855))))
- ((*1 *1) (-4 *1 (-849))) ((*1 *1 *1 *1) (-4 *1 (-855)))
- ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310))
+ (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5))
+ (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-310)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 (-569)))
+ (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5))
+ (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1181 (-412 (-569))))
+ (-5 *1 (-438 *5 *3)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
- (-4 *5 (-239 (-2426 *3) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *5))
- (-2 (|:| -2150 *2) (|:| -4320 *5))))
- (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-955 *4 *5 (-869 *3))))))
+ (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1251 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1167))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112))
+ (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1210) (-29 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1108))
(-5 *1 (-578 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1225)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 *2)) (-5 *4 (-1183)) (-4 *2 (-435 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-561))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-4 *1 (-1018))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1179 *1)) (-5 *3 (-927)) (-5 *4 (-867))
- (-4 *1 (-1018))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367)))
- (-4 *1 (-1074 *4 *2)) (-4 *2 (-1249 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4)))
- (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
+ (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269))))
+ ((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1057) (-855)))
+ (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185))))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-310))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1)))
+ (-4 *1 (-310)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))
+ (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
((*1 *1 *1) (-5 *1 (-172))) ((*1 *1 *1) (-4 *1 (-550)))
- ((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057))))
((*1 *1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1107 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
- (-5 *1 (-335))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-1098 (-958 (-569)))) (-5 *2 (-333))
- (-5 *1 (-335))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055))
- (-4 *3 (-1106)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1146 *5 *6)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))))
+ (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383)))
+ (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280))
+ (-5 *1 (-793)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457))
+ (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1185)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457))
+ (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057))
+ (-4 *2 (-1266 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776))
- (-5 *2 (-694 (-226))) (-5 *1 (-269)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))
- (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1026 *4))
- (-4 *4 (-1249 (-569))))))
+ (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52))
+ (-5 *1 (-1013)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1251 *4))
+ (-5 *1 (-928 *4 *2)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-1273 *3)) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1249 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1008 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569)))
+ (-5 *2 (-1275 (-569))) (-5 *1 (-1302 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798))
- (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1179 *8)))
- (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1179 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5)))
- (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+ (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561))
+ (-4 *8 (-955 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *3)))
+ (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $))))))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3))
+ (-4 *3 (-1251 *4)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223))
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225))
(-4 *4 (-377 *2)) (-4 *5 (-377 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4445)) (-4 *1 (-119 *3))
- (-4 *3 (-1223))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3))
+ (-4 *3 (-1225))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4445)) (-4 *1 (-119 *3))
- (-4 *3 (-1223))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3))
+ (-4 *3 (-1225))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106))
- (-4 *2 (-1223))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1183)) (-5 *1 (-637))))
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108))
+ (-4 *2 (-1225))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1185)) (-5 *1 (-637))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1240 (-569))) (|has| *1 (-6 -4445)) (-4 *1 (-656 *2))
- (-4 *2 (-1223))))
+ (-12 (-5 *3 (-1242 (-569))) (|has| *1 (-6 -4448)) (-4 *1 (-656 *2))
+ (-4 *2 (-1225))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4445)) (-4 *1 (-1016 *2))
- (-4 *2 (-1223))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2))
+ (-4 *2 (-1225))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106))))
+ (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2))
- (-4 *2 (-1223))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2))
+ (-4 *2 (-1225))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4445)) (-4 *1 (-1261 *3))
- (-4 *3 (-1223))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3))
+ (-4 *3 (-1225))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2))
- (-4 *2 (-1223)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2))
+ (-4 *2 (-1225)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-412 (-569))))
- (-5 *2 (-2 (|:| -2600 (-1163 *4)) (|:| -2609 (-1163 *4))))
- (-5 *1 (-1169 *4)) (-5 *3 (-1163 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-5 *2 (-112)))))
+ (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-486 *4 *5))
+ (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-184 *3)) (-4 *3 (-186)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-184 *3)) (-4 *3 (-186)))))
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-649 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569))
(-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173))
(-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *9)) (-4 *9 (-1055)) (-4 *5 (-855)) (-4 *6 (-798))
- (-4 *8 (-1055)) (-4 *2 (-955 *9 *7 *5))
+ (-12 (-5 *3 (-649 *9)) (-4 *9 (-1057)) (-4 *5 (-855)) (-4 *6 (-798))
+ (-4 *8 (-1057)) (-4 *2 (-955 *9 *7 *5))
(-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798))
(-4 *4 (-955 *8 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6)))
- (-5 *1 (-633 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1044 *4)) (-4 *3 (-310))
- (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *6 (-414 *4 *5))
- (-14 *7 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1273 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-998 *3))
- (-4 *5 (-1249 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278))
- (-5 *1 (-454 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1043)) (-5 *1 (-758)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1) (-5 *1 (-867))))
(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7)))
+ (-4 *7 (-1251 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-579 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
(|:| |success| (-112))))
(-5 *1 (-794)) (-5 *5 (-569)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1273 *4))
- (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-696 (-1141))) (-5 *1 (-1157)))))
(((*1 *2)
- (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
+ (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5)))
+ (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-157)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-649 (-927))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927))
- (-4 *2 (-367)) (-14 *5 (-999 *4 *2))))
+ (-4 *2 (-367)) (-14 *5 (-1001 *4 *2))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855))
- (-4 *6 (-239 (-2426 *4) (-776)))
+ (-4 *6 (-239 (-2428 *4) (-776)))
(-14 *7
- (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *6))
- (-2 (|:| -2150 *5) (|:| -4320 *6))))
- (-14 *4 (-649 (-1183))) (-4 *2 (-173))
+ (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6))
+ (-2 (|:| -2150 *5) (|:| -1993 *6))))
+ (-14 *4 (-649 (-1185))) (-4 *2 (-173))
(-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-955 *2 *6 (-869 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855))))
+ (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855))))
((*1 *1 *2 *3)
(-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4))
- (-4 *4 (-1249 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1055))))
+ (-4 *4 (-1251 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-731))))
+ (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-731))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5))
- (-4 *4 (-1055)) (-4 *5 (-855))))
+ (-4 *4 (-1057)) (-4 *5 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1055))
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057))
(-4 *2 (-855))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *6 (-855))))
+ (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1055))
+ (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057))
(-4 *5 (-798)) (-4 *2 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-979 *4 *5 *6))
- (-4 *4 (-1055)) (-4 *5 (-797)) (-4 *6 (-855))))
+ (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-981 *4 *5 *6))
+ (-4 *4 (-1057)) (-4 *5 (-797)) (-4 *6 (-855))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-979 *4 *3 *2)) (-4 *4 (-1055)) (-4 *3 (-797))
+ (-12 (-4 *1 (-981 *4 *3 *2)) (-4 *4 (-1057)) (-4 *3 (-797))
(-4 *2 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2679 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7))
+ (-5 *3 (-412 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-579 *7 *8)))))
(((*1 *2 *1)
(-12 (-5 *2 (-649 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))
(-14 *4 (-776)) (-4 *5 (-173)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1179 *7))
- (-4 *5 (-1055)) (-4 *7 (-1055)) (-4 *2 (-1249 *5))
- (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1249 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2330 *1)))
- (-4 *1 (-857 *3)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
- (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-1201)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4))
- (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-649 (-319 (-226))))
- (|:| |constraints|
- (-649
- (-2 (|:| |start| (-226)) (|:| |finish| (-226))
- (|:| |grid| (-776)) (|:| |boundaryType| (-569))
- (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
- (|:| |tol| (-226))))
- (-5 *2 (-112)) (-5 *1 (-211)))))
-(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226)))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-760)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1140 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3))
- (-4 *3 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3)))
- (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3)))
- (-4 *3 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3)))
- (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-561)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
-(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
-(((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-762)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1116)))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226))
+ (-5 *7 (-694 (-569)))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-758)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-628 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -4407 *4) (|:| |sol?| (-112)))
- (-569) *4))
- (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *1 (-579 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367))
- (-4 *5 (-1055)) (-5 *2 (-112)) (-5 *1 (-1035 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1055))
- (-5 *2 (-112)) (-5 *1 (-1035 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1055))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1055)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4446 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2))
- (-4 *2 (-1055)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1249 *2))
- (-4 *4 (-692 *2 *5 *6)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-649 (-1183))) (-4 *2 (-173))
- (-4 *4 (-239 (-2426 *5) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2150 *3) (|:| -4320 *4))
- (-2 (|:| -2150 *3) (|:| -4320 *4))))
- (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855))
- (-4 *7 (-955 *2 *4 (-869 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
- ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8))))
- (-5 *5 (-776)) (-5 *6 (-1165)) (-4 *8 (-13 (-310) (-147)))
- (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1183))))
- (-4 *10 (-798))
+ (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7))
+ (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5))
+ (-4 *5 (-1251 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-2
- (|:| |rgl|
- (-649
- (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11))
- (|:| |wcond| (-649 (-958 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *8))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *8))))))))))
- (|:| |rgsz| (-569))))
- (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27))
- (-5 *2 (-649 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1183)))
- (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-1163 (-226))) (-5 *1 (-303)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 *4))))
- (-5 *1 (-895 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106))
- (-4 *7 (-1106)) (-5 *2 (-649 *1)) (-4 *1 (-1109 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-797)) (-4 *3 (-173)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218 *3)) (-4 *3 (-980)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1030 *3))
- (-4 *3 (-13 (-853) (-367) (-1028)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
- (-4 *3 (-1249 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367)))
- (-4 *3 (-1249 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1183))) (-4 *6 (-457))
- (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7))
- (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106))))
- ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-649 (-1183)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-649 (-1183)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855))
- (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1055))
- (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4))
- (-4 *4 (-1249 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *3 (-855)) (-5 *2 (-776))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *2 *4)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *2 (-797))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-776))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1264 *3))
- (-5 *2 (-569))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3))
- (-5 *2 (-412 (-569)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-776)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-825)) (-14 *5 (-1183)) (-5 *2 (-649 (-1246 *5 *4)))
- (-5 *1 (-1120 *4 *5)) (-5 *3 (-1246 *5 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-686))))
- ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-976))))
- ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-1079))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1124)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
- ((*1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-1104 *3))))
- ((*1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)))))
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-694 *2)) (-5 *4 (-776))
+ (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))))
(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106))
- (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-676))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927))
- (-14 *4 (-927)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-569))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
-(((*1 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915))
- (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915))
- (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1249 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -3955 (-649 (-867))) (|:| -3217 (-649 (-867)))
- (|:| |presup| (-649 (-867))) (|:| -3859 (-649 (-867)))
- (|:| |args| (-649 (-867)))))
- (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-649
- (-2
- (|:| -2003
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (|:| -2214
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1163 (-226)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2080
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-564))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223))
- (-5 *2 (-649 *4)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -1950 (-649 (-1183))) (|:| -2035 (-649 (-1183)))))
- (-5 *1 (-1225)))))
-(((*1 *2)
- (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1249 *3)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1055))
- (-4 *3 (-1106)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226)))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1223)) (-4 *1 (-239 *3 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223))
- (-4 *4 (-377 *2)) (-4 *5 (-377 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1106))
- (-4 *2 (-1223)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1055))
- (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4))))
- ((*1 *1 *1) (-4 *1 (-550)))
- ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1223)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1220 *3)) (-4 *3 (-1223))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008))
- (-4 *2 (-1055)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1 *1) (-5 *1 (-226))) ((*1 *1 *1) (-5 *1 (-383)))
- ((*1 *1) (-5 *1 (-383))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-367)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 (-412 *3)))
- (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1249 *2))
- (-4 *5 (-1249 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6))
- (-4 *6 (-346 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-367)) (-4 *3 (-1249 *2)) (-4 *4 (-1249 (-412 *3)))
- (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
- (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367))
- (-4 *1 (-339 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-1057)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-310)) (-4 *3 (-998 *2)) (-4 *4 (-1249 *3))
- (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1044 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
- (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4))
- (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-569))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
- (-5 *1 (-454 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
- (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4445)) (-4 *1 (-494 *3))
- (-4 *3 (-1223)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *1 (-1167 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-422 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6))
- (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))
- (-5 *2 (-412 (-569))) (-5 *1 (-1026 *4)) (-4 *4 (-1249 (-569))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488)))))
-(((*1 *2)
- (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 *4))
+ (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1242 (-569))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-319 *4))
- (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1185)) (-5 *1 (-591 *2)) (-4 *2 (-1046 *3))
+ (-4 *2 (-367))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2))
+ (-4 *2 (-13 (-435 *4) (-1010) (-1210)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-1010) (-1210)))
+ (-4 *4 (-561)) (-5 *1 (-635 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1185))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-965)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-541)))))
+(((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-569)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223))))
+ (-1275
+ (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569))
+ (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569))
+ (|:| |axesColor| (-879)) (|:| -3157 (-569))
+ (|:| |unitsColor| (-879)) (|:| |showing| (-569)))))
+ (-5 *1 (-1276)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225))))
((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855))))
((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1225))))
((*1 *1 *2)
(-12
(-5 *2
(-2
- (|:| -2003
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| -2006
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
- (|:| -2214
+ (|:| -2216
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -3252,10 +2681,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1163 (-226)))
+ (-3 (|:| |str| (-1165 (-226)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2080
+ (|:| -3743
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -3265,57 +2694,515 @@
(|:| |notEvaluated| "Range not yet evaluated")))))))
(-5 *1 (-564))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1106))))
+ (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1108))))
((*1 *1 *2)
(-12
(-5 *2
(-2
- (|:| -2003
+ (|:| -2006
(-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
(|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
(|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (|:| -2214
+ (|:| -2216
(-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
(|:| |expense| (-383)) (|:| |accuracy| (-383))
(|:| |intermediateResults| (-383))))))
(-5 *1 (-808))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1158))))
+ (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *5))))
+ (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5))
+ (-5 *1 (-217 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-2 (|:| -3800 *5) (|:| -4339 (-569)))))
+ (-5 *4 (-569)) (-4 *5 (-1251 *4)) (-5 *2 (-649 *5))
+ (-5 *1 (-701 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-686))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1124)))))
+ (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569)))
+ (-5 *2 (-694 (-569))) (-5 *1 (-595))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569))))
+ (-5 *1 (-595))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569))))
+ (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1210)))
+ (-5 *1 (-588 *4 *2))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-591 (-412 (-958 *4))))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *4))
+ (-5 *1 (-594 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-757)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1160))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409))
+ (-5 *2 (-927)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057))
+ (-5 *1 (-695 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4))))
+ (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108))
+ (-4 *7 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-1111 *3 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-441)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383))))
+ ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-649 (-1219 *5)))
+ (-5 *1 (-1283 *5)) (-5 *4 (-1219 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1034 (-848 (-569))))
+ (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1057))
+ (-5 *1 (-600 *4)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1251 *4))
+ (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226)))))
+ (-5 *2 (-649 (-1102 (-226)))) (-5 *1 (-934)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4))))
+ (-5 *1 (-1283 *4)) (-4 *4 (-367)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-686))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-978))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1081))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1126)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1275 (-649 *3))) (-4 *4 (-310))
+ (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-383))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-569))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-170 (-383)))))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-569)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-170 (-383)))))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-383))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-569))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569))))
+ (-5 *4 (-319 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-699)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-704)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-706)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-704))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-333))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-761)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34))))))
-(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226)))))
- ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1185)) (-4 *5 (-435 *4))
+ (-4 *4 (-1108)) (-5 *1 (-578 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226))
+ (-5 *2 (-649 (-949 *4))) (-5 *1 (-1221)) (-5 *3 (-949 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1181 *1))
+ (-4 *1 (-332 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367))
+ (-4 *2 (-1251 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1150 *4 *2)) (-14 *4 (-927))
+ (-4 *2 (-13 (-1057) (-10 -7 (-6 (-4449 "*")))))
+ (-5 *1 (-908 *4 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867)))
+ (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867)))
+ (|:| |args| (-649 (-867)))))
+ (-5 *1 (-1185)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-442)) (-5 *1 (-1189)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2403 (-649 *6)))
+ *7 *6))
+ (-4 *6 (-367)) (-4 *7 (-661 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1275 *6) "failed"))
+ (|:| -2403 (-649 (-1275 *6)))))
+ (-5 *1 (-818 *6 *7)) (-5 *4 (-1275 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))
+ (-14 *4 (-1185)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-4 *2 (-13 (-27) (-1210) (-435 *3) (-10 -8 (-15 -3796 ($ *4)))))
+ (-4 *4 (-853))
+ (-4 *5
+ (-13 (-1253 *2 *4) (-367) (-1210)
+ (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $)))))
+ (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-991 *5)) (-14 *7 (-1185)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210)))
+ (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1010) (-1210))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
+ ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2))))
+ ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-1173 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1225)) (-4 *1 (-239 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225))
+ (-4 *4 (-377 *2)) (-4 *5 (-377 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108))
+ (-4 *2 (-1225)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1057))
+ (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4))))
+ ((*1 *1 *1) (-4 *1 (-550)))
+ ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1225)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1222 *3)) (-4 *3 (-1225))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010))
+ (-4 *2 (-1057)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1863 (-694 (-412 (-958 *4))))
+ (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3978 (-776))
+ (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798))
+ (-5 *2
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *4))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))
+ (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7))
+ (-4 *3 (-1251 *6)) (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))
+ (-5 *1 (-996 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))
+ (-5 *1 (-1115 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1108)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-112)) (-5 *1 (-898 *4))
+ (-4 *4 (-1108)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-226))
+ (-5 *2
+ (-2 (|:| |brans| (-649 (-649 (-949 *4))))
+ (|:| |xValues| (-1102 *4)) (|:| |yValues| (-1102 *4))))
+ (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4)))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043))
+ (-5 *1 (-761)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4448)) (-4 *1 (-494 *3))
+ (-4 *3 (-1225)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057))
+ (-4 *2 (-457))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1251 (-569))) (-5 *2 (-649 (-569)))
+ (-5 *1 (-491 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-457)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4)))))
+ ((*1 *1 *1) (-5 *1 (-383)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-112)) (-5 *1 (-303)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-776))
+ (-4 *5 (-13 (-457) (-1046 (-569)))) (-4 *5 (-561))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *5 (-617 $)) $))
+ (-15 -4412 ((-1133 *5 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *5 (-617 $))))))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1251 (-170 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3)) (-5 *1 (-418 *3 *2 *4 *5))
+ (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1046 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3))
+ (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4))
+ (-14 *6 (-1275 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-4 *5 (-1057))
+ (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287)))
+ (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-649 (-617 (-500))))
+ (-5 *1 (-500))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353))
+ (-5 *1 (-533 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1251 *4))
+ (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1251 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173))))
+ ((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-760)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1185))) (-5 *1 (-830)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1251 *4))
+ (-5 *2 (-2 (|:| -2482 (-628 *4 *5)) (|:| -4079 (-412 *5))))
+ (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4))
+ (-14 *3 (-927)) (-4 *4 (-1057))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-457)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1251 *3)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1199 *2)) (-4 *2 (-367)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-686))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1126)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1))
+ (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))
- ((*1 *1 *1) (-4 *1 (-1008)))
- ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1018))))
- ((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1018))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-927))))
- ((*1 *1 *1) (-4 *1 (-1018))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-151 *3))))
+ ((*1 *1 *1) (-4 *1 (-1010)))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-927))))
+ ((*1 *1 *1) (-4 *1 (-1020))))
+(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4))
+ (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-151 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-649 (-2 (|:| -4320 (-776)) (|:| -2167 *4) (|:| |num| *4))))
- (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))))
+ (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4))))
+ (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
+ (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
(-5 *3 (-649 (-958 (-569)))) (-5 *4 (-112)) (-5 *1 (-442))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-5 *3 (-649 (-1183))) (-5 *4 (-112)) (-5 *1 (-442))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-5 *3 (-649 (-1185))) (-5 *4 (-112)) (-5 *1 (-442))))
((*1 *2 *1)
- (-12 (-5 *2 (-1163 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1165 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1225))))
((*1 *1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4))
@@ -3327,154 +3214,125 @@
(-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4))
(-4 *4 (-173))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1106))
+ (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1108))
(-5 *1 (-680 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1106))
+ (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1108))
(-14 *4
- (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *3))
- (-2 (|:| -2150 *2) (|:| -4320 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-843))))
+ (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3))
+ (-2 (|:| -2150 *2) (|:| -1993 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-843))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223))))
+ (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 *4))))
- (-4 *4 (-1106)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4))))
+ (-4 *4 (-1108)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1106) (-34)))
- (-5 *2 (-649 (-1146 *3 *5))) (-5 *1 (-1146 *3 *5))
- (-4 *3 (-13 (-1106) (-34)))))
+ (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1108) (-34)))
+ (-5 *2 (-649 (-1148 *3 *5))) (-5 *1 (-1148 *3 *5))
+ (-4 *3 (-13 (-1108) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3660 *5))))
- (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34)))
- (-5 *2 (-649 (-1146 *4 *5))) (-5 *1 (-1146 *4 *5))))
+ (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3663 *5))))
+ (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34)))
+ (-5 *2 (-649 (-1148 *4 *5))) (-5 *1 (-1148 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3660 *4)))
- (-4 *3 (-13 (-1106) (-34))) (-4 *4 (-13 (-1106) (-34)))
- (-5 *1 (-1146 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3663 *4)))
+ (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34)))
+ (-5 *1 (-1148 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34)))))
+ (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1106) (-34)))
- (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34)))))
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1108) (-34)))
+ (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-1146 *2 *3))) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34))) (-5 *1 (-1147 *2 *3))))
+ (-12 (-5 *4 (-649 (-1148 *2 *3))) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34))) (-5 *1 (-1149 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-1147 *2 *3))) (-5 *1 (-1147 *2 *3))
- (-4 *2 (-13 (-1106) (-34))) (-4 *3 (-13 (-1106) (-34)))))
+ (-12 (-5 *4 (-649 (-1149 *2 *3))) (-5 *1 (-1149 *2 *3))
+ (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4))))
+ (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1106)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-760)))))
+ (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))))
+ (-5 *1 (-206)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-756)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965)))))
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965)))))
((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *1 *1) (-5 *1 (-867)))
((*1 *2 *3)
- (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -3793 ($ *7)))))
- (-4 *7 (-853))
- (-4 *8
- (-13 (-1251 *3 *7) (-367) (-1208)
- (-10 -8 (-15 -3514 ($ $)) (-15 -2488 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
- (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8))
- (-14 *10 (-1183)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-173)) (-4 *2 (-1249 *4)) (-5 *1 (-178 *4 *2 *3))
- (-4 *3 (-729 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1183))
- (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4))
- (-5 *1 (-295 *4)) (-4 *4 (-457))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 (-170 (-412 (-569)))))
- (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4))
- (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1183))
- (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5))
- (-4 *5 (-13 (-367) (-853)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569))))
- (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1183))
- (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5))
- (-4 *5 (-13 (-367) (-853))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1148 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367))
- (-5 *1 (-999 *3 *4)))))
+ (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 *2))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-649 (-48))) (-5 *2 (-423 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1249 (-48)))))
+ (-4 *3 (-1251 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48)))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798))
(-5 *2 (-423 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-955 (-48) *6 *5))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798))
- (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1179 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1181 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1181 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-167 *4 *3))
- (-4 *3 (-1249 (-170 *4)))))
+ (-4 *3 (-1251 (-170 *4)))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))
((*1 *2 *3 *4)
(-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3))
- (-4 *3 (-1249 *4))))
+ (-4 *3 (-1251 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1249 (-569)))))
+ (-4 *3 (-1251 (-569)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1249 (-569)))))
+ (-4 *3 (-1251 (-569)))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3))
- (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
+ (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1249 (-569)))))
+ (-4 *3 (-1251 (-569)))))
((*1 *2 *3)
(-12 (-5 *2 (-423 (-170 (-569)))) (-5 *1 (-451))
(-5 *3 (-170 (-569)))))
@@ -3482,63 +3340,63 @@
(-12
(-4 *4
(-13 (-855)
- (-10 -8 (-15 -1408 ((-1183) $))
- (-15 -2671 ((-3 $ "failed") (-1183))))))
+ (-10 -8 (-15 -1410 ((-1185) $))
+ (-15 -2672 ((-3 $ "failed") (-1185))))))
(-4 *5 (-798)) (-4 *7 (-561)) (-5 *2 (-423 *3))
(-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-561))
(-4 *3 (-955 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1179 *4))) (-5 *1 (-463 *4))
- (-5 *3 (-1179 *4))))
+ (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1181 *4))) (-5 *1 (-463 *4))
+ (-5 *3 (-1181 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367))
(-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-423 *3))
- (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1249 *7))))
+ (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1251 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7)))
+ (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7)))
(-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798))
(-5 *2 (-423 *3)) (-5 *1 (-545 *5 *6 *7 *3))
(-4 *3 (-955 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-423 (-1179 *7)) (-1179 *7)))
+ (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7)))
(-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798))
- (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1179 *8)))
- (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1179 *8))))
+ (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1181 *8)))
+ (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1181 *8))))
((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1 (-649 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *6 (-1249 *5)) (-5 *2 (-649 (-658 (-412 *6))))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *6 (-1251 *5)) (-5 *2 (-649 (-658 (-412 *6))))
(-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-412 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5))))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5))))
(-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5)))))
((*1 *2 *3)
(-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-677 *4)))
(-5 *1 (-677 *4))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-569)) (-5 *2 (-649 *3)) (-5 *1 (-701 *3))
- (-4 *3 (-1249 *4))))
+ (-4 *3 (-1251 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-5 *2 (-423 *3))
(-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353))
- (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7)))
- (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7)))
+ (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1181 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-798))
(-4 *5
(-13 (-855)
- (-10 -8 (-15 -1408 ((-1183) $))
- (-15 -2671 ((-3 $ "failed") (-1183))))))
+ (-10 -8 (-15 -1410 ((-1185) $))
+ (-15 -2672 ((-3 $ "failed") (-1185))))))
(-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-735 *4 *5 *6 *3))
(-4 *3 (-955 (-958 *6) *4 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-798))
- (-4 *5 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *6 (-561))
+ (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561))
(-5 *2 (-423 *3)) (-5 *1 (-737 *4 *5 *6 *3))
(-4 *3 (-955 (-412 (-958 *6)) *4 *5))))
((*1 *2 *3)
@@ -3551,97 +3409,102 @@
(-4 *3 (-955 *6 *5 *4))))
((*1 *2 *3)
(-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1179 *7)))
- (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7)))
+ (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1181 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3))
- (-4 *3 (-1249 (-412 (-569))))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3))
+ (-4 *3 (-1251 (-412 (-569))))))
((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-1047 *3))
- (-4 *3 (-1249 (-412 (-958 (-569)))))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1049 *3))
+ (-4 *3 (-1251 (-412 (-958 (-569)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1249 (-412 (-569))))
+ (-12 (-4 *4 (-1251 (-412 (-569))))
(-4 *5 (-13 (-367) (-147) (-729 (-412 (-569)) *4)))
- (-5 *2 (-423 *3)) (-5 *1 (-1085 *4 *5 *3)) (-4 *3 (-1249 *5))))
+ (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1251 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1249 (-412 (-958 (-569)))))
+ (-12 (-4 *4 (-1251 (-412 (-958 (-569)))))
(-4 *5 (-13 (-367) (-147) (-729 (-412 (-958 (-569))) *4)))
- (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1249 *5))))
+ (-5 *2 (-423 *3)) (-5 *1 (-1089 *4 *5 *3)) (-4 *3 (-1251 *5))))
((*1 *2 *3)
(-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457))
- (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7))))
- (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227))))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7))))
+ (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229))))
((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1100 (-226)))))
- ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-1100 (-226))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-776))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3))
+ (-4 *3 (-1251 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-14 *6 (-1273 (-694 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1183)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-14 *6 (-1275 (-694 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1185)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1225))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806 'JINT 'X 'ELAM) (-3806) (-704))))
- (-5 *1 (-61 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809 'JINT 'X 'ELAM) (-3809) (-704))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 'XC) (-704))))
- (-5 *1 (-63 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'XC) (-704))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3806 'X) (-3806) (-704))) (-5 *1 (-64 *3))
- (-14 *3 (-1183))))
+ (-12 (-5 *2 (-343 (-3809 'X) (-3809) (-704))) (-5 *1 (-64 *3))
+ (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3806) (-3806 'XC) (-704))) (-5 *1 (-66 *3))
- (-14 *3 (-1183))))
+ (-12 (-5 *2 (-343 (-3809) (-3809 'XC) (-704))) (-5 *1 (-66 *3))
+ (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806 'X) (-3806 '-1539) (-704))))
- (-5 *1 (-71 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809 'X) (-3809 '-1541) (-704))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 'X) (-704))))
- (-5 *1 (-74 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'X) (-704))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806 'X 'EPS) (-3806 '-1539) (-704))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183))
- (-14 *5 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809 'X 'EPS) (-3809 '-1541) (-704))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185))
+ (-14 *5 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806 'EPS) (-3806 'YA 'YB) (-704))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1183)) (-14 *4 (-1183))
- (-14 *5 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809 'EPS) (-3809 'YA 'YB) (-704))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185))
+ (-14 *5 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3806) (-3806 'X) (-704))) (-5 *1 (-77 *3))
- (-14 *3 (-1183))))
+ (-12 (-5 *2 (-343 (-3809) (-3809 'X) (-704))) (-5 *1 (-77 *3))
+ (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3806) (-3806 'X) (-704))) (-5 *1 (-78 *3))
- (-14 *3 (-1183))))
+ (-12 (-5 *2 (-343 (-3809) (-3809 'X) (-704))) (-5 *1 (-78 *3))
+ (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 'XC) (-704))))
- (-5 *1 (-79 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'XC) (-704))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806) (-3806 'X) (-704))))
- (-5 *1 (-80 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'X) (-704))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806 'X '-1539) (-3806) (-704))))
- (-5 *1 (-82 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809 'X '-1541) (-3809) (-704))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-694 (-343 (-3806 'X '-1539) (-3806) (-704))))
- (-5 *1 (-83 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-694 (-343 (-3809 'X '-1541) (-3809) (-704))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-694 (-343 (-3806 'X) (-3806) (-704)))) (-5 *1 (-84 *3))
- (-14 *3 (-1183))))
+ (-12 (-5 *2 (-694 (-343 (-3809 'X) (-3809) (-704)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806 'X) (-3806) (-704))))
- (-5 *1 (-85 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809 'X) (-3809) (-704))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-343 (-3806 'X) (-3806 '-1539) (-704))))
- (-5 *1 (-86 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-1275 (-343 (-3809 'X) (-3809 '-1541) (-704))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-694 (-343 (-3806 'XL 'XR 'ELAM) (-3806) (-704))))
- (-5 *1 (-87 *3)) (-14 *3 (-1183))))
+ (-12 (-5 *2 (-694 (-343 (-3809 'XL 'XR 'ELAM) (-3809) (-704))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1185))))
((*1 *1 *2)
- (-12 (-5 *2 (-343 (-3806 'X) (-3806 '-1539) (-704))) (-5 *1 (-89 *3))
- (-14 *3 (-1183))))
+ (-12 (-5 *2 (-343 (-3809 'X) (-3809 '-1541) (-704))) (-5 *1 (-89 *3))
+ (-14 *3 (-1185))))
((*1 *1 *2)
(-12 (-5 *2 (-649 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
(-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173))))
@@ -3649,33 +3512,33 @@
(-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5))
(-14 *3 (-569)) (-14 *4 (-776))))
((*1 *1 *2)
- (-12 (-5 *2 (-1148 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173))
+ (-12 (-5 *2 (-1150 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173))
(-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))))
((*1 *1 *2)
(-12 (-5 *2 (-241 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173))
(-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))))
((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173))
- (-5 *2 (-1273 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4))))
+ (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173))
+ (-5 *2 (-1275 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1098 (-319 *4)))
- (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1098 (-383)))
+ (-12 (-5 *3 (-1100 (-319 *4)))
+ (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1100 (-383)))
(-5 *1 (-260 *4))))
((*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277))))
((*1 *2 *1)
- (-12 (-4 *2 (-1249 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1251 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7))
(-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1258 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3)))
- (-14 *5 (-1183)) (-14 *6 *4)
- (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
+ (-12 (-5 *2 (-1260 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3)))
+ (-14 *5 (-1185)) (-14 *6 *4)
+ (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457)))
(-5 *1 (-316 *3 *4 *5 *6))))
((*1 *2 *1)
(-12 (-5 *2 (-319 *5)) (-5 *1 (-343 *3 *4 *5))
- (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *2 *3)
(-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *3 *4 *2))
(-4 *3 (-332 *4))))
@@ -3684,93 +3547,93 @@
(-4 *3 (-332 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *2 (-1297 *3 *4))))
+ (-5 *2 (-1299 *3 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *2 (-1288 *3 *4))))
+ (-5 *2 (-1290 *3 *4))))
((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))
(-4 *1 (-387))))
((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-387))))
((*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))
(-4 *1 (-388))))
((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-388))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-388))))
- ((*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1108))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))
(-4 *1 (-401))))
((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-401))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-401))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-319 (-170 (-383))))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-319 (-383)))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-319 (-569)))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-383))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-569))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-319 (-699)))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-319 (-704)))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-319 (-706)))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-699))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-704))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-706))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))
- (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))
+ (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185))
+ (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-649 (-333))) (-5 *1 (-403 *3 *4 *5 *6))
- (-14 *3 (-1183)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
- (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1183))
- (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1187))))
+ (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185))
+ (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))
((*1 *1 *2)
(-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21)))
(-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-569)))))))
@@ -3778,64 +3641,64 @@
(-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-569)))))
(-4 *3 (-13 (-855) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1108))
(-4 *1 (-435 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1108))
(-4 *1 (-435 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1108))
(-4 *1 (-435 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-1055)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-1057)) (-4 *3 (-1108))
(-4 *1 (-435 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-439))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-439))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-439))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-439))))
((*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-442))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))
(-4 *1 (-445))))
((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 (-704))) (-4 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 (-704))) (-4 *1 (-445))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1187)) (|:| -3203 (-649 (-333)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))
(-4 *1 (-446))))
((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-446))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-412 (-958 *3)))) (-4 *3 (-173))
- (-14 *6 (-1273 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-14 *4 (-927)) (-14 *5 (-649 (-1183)))))
+ (-12 (-5 *2 (-1275 (-412 (-958 *3)))) (-4 *3 (-173))
+ (-14 *6 (-1275 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-14 *4 (-927)) (-14 *5 (-649 (-1185)))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473))))
((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-473))))
((*1 *1 *2)
- (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-1055)) (-14 *4 (-1183))
+ (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185))
(-14 *5 *3) (-5 *1 (-479 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1131 (-569) (-617 (-500)))) (-5 *1 (-500))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-507))))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-507))))
((*1 *1 *2)
(-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
(-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611))))
((*1 *1 *2)
(-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1057))))
((*1 *2 *1)
- (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
(-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
(-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
((*1 *1 *2)
(-12 (-4 *3 (-173)) (-5 *1 (-640 *3 *2)) (-4 *2 (-749 *3))))
@@ -3843,15 +3706,15 @@
((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
((*1 *2 *1)
(-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3))
- (-4 *3 (-1106))))
+ (-4 *3 (-1108))))
((*1 *1 *2)
- (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1106))
+ (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1108))
(-5 *1 (-680 *3))))
((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-686))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-686))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108))))
((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3))
+ (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3))
(-4 *2 (-377 *3))))
((*1 *2 *1) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699))))
((*1 *1 *2) (-12 (-5 *2 (-170 (-706))) (-5 *1 (-699))))
@@ -3862,7 +3725,7 @@
((*1 *2 *1) (-12 (-5 *2 (-383)) (-5 *1 (-704))))
((*1 *2 *3)
(-12 (-5 *3 (-319 (-569))) (-5 *2 (-319 (-706))) (-5 *1 (-706))))
- ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715))))
((*1 *2 *1)
(-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
@@ -3872,68 +3735,68 @@
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-2 (|:| -1433 *3) (|:| -3345 *4))))
- (-4 *3 (-1055)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4))))
+ (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4))))
+ (-4 *3 (-1057)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4))))
((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-768))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(|:| |mdnia|
(-2 (|:| |fn| (-319 (-226)))
- (|:| -2080 (-649 (-1100 (-848 (-226)))))
+ (|:| -3743 (-649 (-1102 (-848 (-226)))))
(|:| |abserr| (-226)) (|:| |relerr| (-226))))))
(-5 *1 (-774))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-319 (-226)))
- (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226))
+ (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(-5 *1 (-774))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(-5 *1 (-774))))
- ((*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1223))))
+ ((*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1225))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
(|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
(|:| |abserr| (-226)) (|:| |relerr| (-226))))
(-5 *1 (-813))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-829))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-829))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226)))
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226)))
(|:| |lb| (-649 (-848 (-226))))
(|:| |cf| (-649 (-319 (-226))))
(|:| |ub| (-649 (-848 (-226))))))
(|:| |lsa|
(-2 (|:| |lfn| (-649 (-319 (-226))))
- (|:| -2305 (-649 (-226)))))))
+ (|:| -2307 (-649 (-226)))))))
(-5 *1 (-846))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))
(-5 *1 (-846))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226)))
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226)))
(|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
(|:| |ub| (-649 (-848 (-226))))))
(-5 *1 (-846))))
@@ -3955,446 +3818,492 @@
(-2 (|:| |start| (-226)) (|:| |finish| (-226))
(|:| |grid| (-776)) (|:| |boundaryType| (-569))
(|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167))
(|:| |tol| (-226))))
(-5 *1 (-904))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3))))
+ (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3))))
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3))))
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-412 (-423 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3))))
((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310))))
((*1 *2 *3)
(-12 (-5 *3 (-482)) (-5 *2 (-319 *4)) (-5 *1 (-925 *4))
(-4 *4 (-561))))
- ((*1 *2 *3) (-12 (-5 *2 (-1278)) (-5 *1 (-1039 *3)) (-4 *3 (-1223))))
- ((*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1039 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1280)) (-5 *1 (-1041 *3)) (-4 *3 (-1225))))
+ ((*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1041 *2)) (-4 *2 (-1225))))
((*1 *1 *2)
(-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5))
+ (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5))
(-14 *6 (-649 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1049 *3)) (-4 *3 (-561))))
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1051 *3)) (-4 *3 (-561))))
((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2))
+ (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2))
(-4 *2 (-955 *3 (-536 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *2 (-855)) (-5 *1 (-1132 *3 *2 *4))
+ (-12 (-4 *3 (-1057)) (-4 *2 (-855)) (-5 *1 (-1134 *3 *2 *4))
(-4 *4 (-955 *3 (-536 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-867))))
- ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1150))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1152))))
((*1 *2 *3)
- (-12 (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057))))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183))
- (-14 *5 *3) (-5 *1 (-1181 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1196 (-1183) (-442))) (-5 *1 (-1187))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1195 *3)) (-4 *3 (-1106))))
- ((*1 *2 *3) (-12 (-5 *2 (-1203)) (-5 *1 (-1202 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185))
+ (-14 *5 *3) (-5 *1 (-1183 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1198 (-1185) (-442))) (-5 *1 (-1189))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1197 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-1204 *3)) (-4 *3 (-1108))))
((*1 *1 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-5 *1 (-1217 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-5 *1 (-1219 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-1057))))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1100 *3)) (-4 *3 (-1223)) (-5 *1 (-1240 *3))))
+ (-12 (-5 *2 (-1102 *3)) (-4 *3 (-1225)) (-5 *1 (-1242 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1246 *4 *3)) (-4 *3 (-1055)) (-14 *4 (-1183))
- (-14 *5 *3) (-5 *1 (-1265 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1274))))
- ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1274)) (-5 *1 (-1277))))
+ (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185))
+ (-14 *5 *3) (-5 *1 (-1267 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1276))))
+ ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1276)) (-5 *1 (-1279))))
((*1 *1 *2)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))
((*1 *2 *1)
- (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
+ (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855))
(-4 *4 (-173))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
+ (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855))
(-4 *4 (-173))))
((*1 *1 *2)
(-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *1 (-1293 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188)))))
+ (-5 *1 (-1295 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-534))))
+ ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-982)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4))))
((*1 *2 *3 *3)
(-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694 (-412 (-958 (-569)))))
- (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037))
- (-5 *3 (-319 (-569))))))
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6)))
+ (-5 *1 (-633 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2530 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1249 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569))
+ (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308)))))
(((*1 *2 *1 *3 *2)
(-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927))
- (-4 *2 (-1106)))))
-(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))))
+ (-4 *2 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))))
(((*1 *2 *3 *2)
(-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-649 (-1183))) (-4 *2 (-173))
- (-4 *3 (-239 (-2426 *4) (-776)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *3))
- (-2 (|:| -2150 *5) (|:| -4320 *3))))
- (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855))
- (-4 *7 (-955 *2 *3 (-869 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 *6)) (-4 *5 (-1229)) (-4 *6 (-1251 *5))
+ (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *6)))
+ (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1251 *3)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5))
- (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6))
- (-4 *6 (-457))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5))
- (-14 *5 (-649 (-1183))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6))
- (-4 *6 (-457)))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1229))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183))
- (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1183))
- (-5 *5 (-1100 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1106))
- (-4 *2 (-131)))))
+ (-12 (-4 *3 (-561)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057))
+ (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4))
+ (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057)))))
(((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2))
- (-4 *5 (-377 *2)) (-4 *2 (-1223))))
+ (-4 *5 (-377 *2)) (-4 *2 (-1225))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *2 (-1106)) (-5 *1 (-214 *4 *2))
+ (-12 (-5 *3 (-776)) (-4 *2 (-1108)) (-5 *1 (-214 *4 *2))
(-14 *4 (-927))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223))))
+ (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7))
- (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055)))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7))
+ (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))
+ (-5 *2 (-1181 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776)))
+ (-5 *1 (-910 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-649 *5))
+ (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1136 *3 *5)) (-4 *3 (-1251 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866)))))
(((*1 *1 *2)
+ (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1046 *4)) (-4 *3 (-310))
+ (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *6 (-414 *4 *5))
+ (-14 *7 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1275 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-1000 *3))
+ (-4 *5 (-1251 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569)))))
+ (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9))))
+ (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569))
+ (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10))
+ (-4 *10 (-13 (-855) (-619 (-1185)))) (-4 *11 (-798))
(-5 *2
- (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3))
- (|:| |genIdeal| (-509 *3 *4 *5 *6))))
- (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1218 *3))
- (-4 *3 (-980)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855))
- (-4 *4 (-268 *3)) (-4 *5 (-798)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))))
+ (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12))
+ (|:| |wcond| (-649 (-958 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *9))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *9)))))))))
+ (-5 *1 (-930 *9 *10 *11 *12)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1106))
- (-4 *4 (-561)) (-5 *2 (-412 (-1179 *1)))))
+ (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1108))
+ (-4 *4 (-561)) (-5 *2 (-412 (-1181 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-1179 (-412 (-1179 *3)))) (-5 *1 (-565 *6 *3 *7))
- (-5 *5 (-1179 *3)) (-4 *7 (-1106))))
+ (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-1181 (-412 (-1181 *3)))) (-5 *1 (-565 *6 *3 *7))
+ (-5 *5 (-1181 *3)) (-4 *7 (-1108))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1269 *5)) (-14 *5 (-1183)) (-4 *6 (-1055))
- (-5 *2 (-1246 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6))))
+ (-12 (-5 *4 (-1271 *5)) (-14 *5 (-1185)) (-4 *6 (-1057))
+ (-5 *2 (-1248 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-1179 *3))))
+ (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-1181 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1179 *1))
+ (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1181 *1))
(-4 *1 (-955 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1055))
- (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1179 *3)))
+ (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057))
+ (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1181 *3)))
(-5 *1 (-956 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $)))))))
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1179 *3))
+ (-12 (-5 *2 (-1181 *3))
(-4 *3
(-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $)))))
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))
(-4 *7 (-955 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855))
- (-4 *6 (-1055)) (-5 *1 (-956 *5 *4 *6 *7 *3))))
+ (-4 *6 (-1057)) (-5 *1 (-956 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-561))
- (-5 *2 (-412 (-1179 (-412 (-958 *5))))) (-5 *1 (-1049 *5))
+ (-12 (-5 *4 (-1185)) (-4 *5 (-561))
+ (-5 *2 (-412 (-1181 (-412 (-958 *5))))) (-5 *1 (-1051 *5))
(-5 *3 (-412 (-958 *5))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-4 *3 (-1106))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1157)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1227)) (-4 *5 (-1249 *3)) (-4 *6 (-1249 (-412 *5)))
- (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
+ (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 *7)))
+ (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1181 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-457)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3))
+ (-5 *1 (-987 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7))))
+ (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1254 *4 *3))
+ (-4 *3 (-13 (-1251 *4) (-561) (-10 -8 (-15 -1870 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-14 *5 (-649 (-1185)))
+ (-5 *2
+ (-649 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))))
+ (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1210) (-29 *6)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-225 *6 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-776)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8))
- (-4 *7 (-855)) (-4 *8 (-1055)) (-4 *9 (-955 *8 *6 *7))
- (-4 *6 (-798)) (-5 *2 (-1179 *8)) (-5 *1 (-324 *6 *7 *8 *9)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-412 (-569)))
- (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1107 *3 *4)) (-14 *3 (-927))
- (-14 *4 (-927)))))
+ (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1073 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7)))
- (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280))
+ (-5 *1 (-454 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1251 (-170 *2)))))
((*1 *2 *3)
- (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5)))
- (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))))
-(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223))
- (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1163 *2)) (-4 *2 (-1223)))))
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1251 (-170 *2))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-569))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3))
+ (-4 *3 (-955 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-776)) (-4 *4 (-353))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5)
+ (|:| |f4| (-649 *5))))
+ (-5 *1 (-1196 *6)) (-5 *4 (-649 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020)))))
(((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4))
(-4 *4 (-435 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-55)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-55)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-114))))
((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4))
(-4 *4 (-435 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-114)) (-5 *1 (-163))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-114)) (-5 *1 (-163))))
((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4))
- (-4 *4 (-13 (-435 *3) (-1008)))))
+ (-4 *4 (-13 (-435 *3) (-1010)))))
((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-304 *3)) (-4 *3 (-305))))
((*1 *2 *2) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-1106)) (-5 *1 (-434 *3 *4))
+ (-12 (-5 *2 (-114)) (-4 *4 (-1108)) (-5 *1 (-434 *3 *4))
(-4 *3 (-435 *4))))
((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-436 *3 *4))
(-4 *4 (-435 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1108))))
((*1 *2 *2)
(-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-635 *3 *4))
- (-4 *4 (-13 (-435 *3) (-1008) (-1208)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2 (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -3365 *1)))
- (-4 *1 (-1071 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -3365 *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
+ (-4 *4 (-13 (-435 *3) (-1010) (-1210)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-412 (-569))))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3))
- (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3))
- (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))))
+ (-12 (-5 *3 (-423 *5)) (-4 *5 (-561))
+ (-5 *2
+ (-2 (|:| -1993 (-776)) (|:| -1435 *5) (|:| |radicand| (-649 *5))))
+ (-5 *1 (-323 *5)) (-5 *4 (-776))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-569)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *1))))
- (-4 *1 (-1077 *4 *5 *6 *3)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108))
+ (-5 *2 (-2 (|:| -1435 (-569)) (|:| |var| (-617 *1))))
+ (-4 *1 (-435 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
+ (-5 *1 (-669 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1295 *3 *4))
+ (-4 *3 (-855)) (-4 *4 (-173)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-855)) (-5 *2 (-1197 (-649 *4))) (-5 *1 (-1196 *4))
+ (-5 *3 (-649 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-569))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
- (-5 *1 (-454 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1073 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-1046 (-412 *2)))) (-5 *2 (-569))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1251 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 *4))))
- (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4))))
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1118)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6)))
+ (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561))
+ (-4 *3 (-955 *7 *5 *6))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-811 *5 *6 *7 *4)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
- ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-422 *4)))))
+ (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| (-649 *3))))
+ (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776))
+ (-4 *8
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *3)) (-15 -4399 (*3 $)) (-15 -4412 (*3 $))))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-649
- (-2 (|:| -3975 (-776))
- (|:| |eqns|
- (-649
- (-2 (|:| |det| *7) (|:| |rows| (-649 (-569)))
- (|:| |cols| (-649 (-569))))))
- (|:| |fgb| (-649 *7)))))
- (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776))
- (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-896 *4 *5)) (-4 *5 (-1225))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6))
+ (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569))))
+ (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3))
+ (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569))))
- (-4 *2 (-173)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-319 (-226))))
- (-5 *2
- (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569))
- (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))))
- (-5 *1 (-308)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-896 *4 *5)) (-4 *5 (-1223))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1173)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-435 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
+ (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *3 (-649 (-265)))
+ (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473)))))
(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *1 (-1134 *3 *2)) (-4 *3 (-1249 *2)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-776)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1007 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1275 *5)) (-4 *5 (-310))
+ (-4 *5 (-1057)) (-5 *2 (-694 *5)) (-5 *1 (-1037 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108))
+ (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4))))
+ (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1280))
+ (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4)))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-958 *4)))
- (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
-(((*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-776))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *3 (-855)) (-5 *2 (-776)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1198 (-927) (-776))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))))
(((*1 *2 *3)
(-12 (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383)))))
((*1 *2 *3 *4)
@@ -4413,10 +4322,10 @@
(-12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173))
(-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 (-383)))
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 (-383)))
(-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
+ (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057))
(-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383)))
@@ -4443,471 +4352,475 @@
(-12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561))
(-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
(-5 *1 (-790 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34)))
- (-4 *5 (-13 (-1106) (-34))) (-5 *2 (-112)) (-5 *1 (-1147 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-949 *4)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-13 (-367) (-147)))
- (-5 *1 (-404 *3 *4)))))
+ (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1251 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1118)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 (-412 (-958 *6))))
+ (-5 *3 (-412 (-958 *6)))
+ (-4 *6 (-13 (-561) (-1046 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-575 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1106)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-688 *4 *5)) (-4 *4 (-1106))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-688 *4 *5)) (-4 *4 (-1108))))
((*1 *2 *2)
- (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
+ (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936))))
+ (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936))))
((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
+ (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057))))
((*1 *2 *1)
- (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+ (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *2
- (-3 (|:| |%expansion| (-316 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
- (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
- (-14 *6 (-1183)) (-14 *7 *3))))
+ (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569)))
+ (-5 *2 (-1275 (-412 (-569)))) (-5 *1 (-1302 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057))
+ (-14 *4 (-649 (-1185)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855)))
+ (-14 *4 (-649 (-1185))))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *2 (-824 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776))))
+ ((*1 *1 *1) (-4 *1 (-407))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1069 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-193)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
- (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
- (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1273 *5)) (-5 *3 (-776)) (-5 *4 (-1126)) (-4 *5 (-353))
- (-5 *1 (-533 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-1055))))
- ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-569))
- (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569)))))))
- (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-569))
- (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569)))))))
- (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1041)) (-5 *1 (-753)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-223 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-4 *1 (-256 *3))))
- ((*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-973))))
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1233))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1195)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210)))
+ (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210)))
+ (-5 *1 (-605 *4 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1128)))
+ (-5 *1 (-350 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188))))
+ ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-694 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *4)) (-4 *4 (-1057)) (-4 *1 (-1131 *3 *4 *5 *6))
+ (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
- (-5 *2 (-649 (-1183))) (-5 *1 (-1082 *3 *4 *5))
- (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1193)))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1181 *4 *5 *6))
- (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1246 *5 *4)) (-5 *1 (-1265 *4 *5 *6))
- (-4 *4 (-1055)) (-14 *5 (-1183)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-131)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
- (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558)))))
-(((*1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-2 (|:| -3796 (-1179 *6)) (|:| -4320 (-569)))))
- (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569))
- (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))))
+ (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-958 (-569)))))
- (-5 *2
- (-649
- (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569))
- (|:| |radvect| (-649 (-694 (-319 (-569))))))))
- (-5 *1 (-1037)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))))
-(((*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
- ((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))
- ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310))))
- ((*1 *2 *1) (-12 (-4 *1 (-1066)) (-5 *2 (-569)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1108 (-776))) (-5 *6 (-776))
- (-5 *2
- (-2 (|:| |contp| (-569))
- (|:| -1411 (-649 (-2 (|:| |irr| *3) (|:| -3849 (-569)))))))
- (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
- (-14 *3 (-649 (-1183))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853)))
- (-5 *2 (-649 (-2 (|:| -1411 (-649 *3)) (|:| -3645 *5))))
- (-5 *1 (-182 *5 *3)) (-4 *3 (-1249 (-170 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-367) (-853)))
- (-5 *2 (-649 (-2 (|:| -1411 (-649 *3)) (|:| -3645 *4))))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+ (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185))
+ (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280))
+ (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280))
+ (-5 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183)))
- (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))))
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-4 *1 (-1251 *4)) (-4 *4 (-1057))
+ (-5 *2 (-1275 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1275 *4))
+ (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2290 *4))) (-5 *1 (-977 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
+ ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2))))
+ ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280))
+ (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933))
+ (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185)) (-5 *2 (-933)) (-5 *1 (-931 *3))
+ (-4 *3 (-619 (-541)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4)))
- (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-279 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1106)) (-4 *4 (-1106))
- (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226)))
+ (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4))
+ (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367))
+ (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879))
+ (-5 *2 (-1280)) (-5 *1 (-1276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-696 (-1143))) (-5 *1 (-1159)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-192)) (-5 *3 (-569))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-758)))))
(((*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-955 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1)))
- (-4 *1 (-1249 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-511)) (-4 *4 (-1106)) (-5 *1 (-935 *4 *2))
+ (-12 (-5 *3 (-511)) (-4 *4 (-1108)) (-5 *1 (-935 *4 *2))
(-4 *2 (-435 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-511)) (-5 *2 (-319 (-569)))
+ (-12 (-5 *3 (-1185)) (-5 *4 (-511)) (-5 *2 (-319 (-569)))
(-5 *1 (-936)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1106)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2035 (-649 *3)) (|:| -1950 (-649 *3))))
- (-5 *1 (-1224 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1179 *4))) (-5 *1 (-361 *4))
- (-5 *3 (-1179 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *3 (-779)) (-5 *1 (-52)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1179 *6)) (-4 *6 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-1179 *7)) (-5 *1 (-324 *4 *5 *6 *7))
- (-4 *7 (-955 *6 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1276)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-828)) (-5 *1 (-827)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-960)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1219 *6))
+ (-5 *2 (-1 (-1165 *4) (-1165 *4))) (-5 *1 (-1283 *6))
+ (-5 *5 (-1165 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3)))
+ (-4 *3 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1112)) (-5 *3 (-779)) (-5 *1 (-52)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2))
- (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173))
- (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
- (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055)))))
+ (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4))))
+ (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)) (-5 *3 (-1165)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-960)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5))
+ (-4 *3 (-1108)) (-4 *5 (-671 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1165 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1057))
+ (-5 *3 (-412 (-569))) (-5 *1 (-1169 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-4 *6 (-457))
+ (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367))
+ (-4 *5 (-13 (-367) (-853))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-315)) (-5 *1 (-299))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-299))))
+ (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-315)) (-5 *1 (-299))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-1165))) (-5 *3 (-1165)) (-5 *2 (-315))
+ (-12 (-5 *4 (-649 (-1167))) (-5 *3 (-1167)) (-5 *2 (-315))
(-5 *1 (-299)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1274)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3))
+ (-5 *2 (-412 (-569))))))
(((*1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1433 *3) (|:| |gap| (-776)) (|:| -2726 (-787 *3))
- (|:| -3365 (-787 *3))))
- (-5 *1 (-787 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-5 *2
- (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -2726 *1)
- (|:| -3365 *1)))
- (-4 *1 (-1071 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2
- (-2 (|:| -1433 *1) (|:| |gap| (-776)) (|:| -2726 *1)
- (|:| -3365 *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855))
- (-5 *1 (-1194 *4)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-1288 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8)))))
+(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1108) (-1046 *5)))
+ (-4 *5 (-892 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-937 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
- (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *4 *5 *6 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185)))
+ (-4 *6 (-13 (-561) (-1046 *5))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1047 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185))))
+ (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1057))
+ (-4 *4 (-1225))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173))
+ (-4 *5 (-239 (-2428 *3) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5))
+ (-2 (|:| -2150 *2) (|:| -1993 *5))))
+ (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855))
+ (-4 *7 (-955 *4 *5 (-869 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-294)))
+ ((*1 *1) (-5 *1 (-867)))
+ ((*1 *1)
+ (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798))
+ (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1093)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34)))))
+ ((*1 *1) (-5 *1 (-1188))) ((*1 *1) (-5 *1 (-1189))))
(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-591 *3)) (-4 *3 (-367)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226)))
- (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1041))
- (-5 *1 (-759)))))
-(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-457)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-226) (-226) (-226)))
- (-5 *4 (-1 (-226) (-226) (-226) (-226)))
- (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1276))))
+ ((*1 *1 *1) (-5 *1 (-1276))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-4 *4 (-1108))
+ (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-983 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1181 *7))
+ (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *2 (-1251 *5))
+ (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1251 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409))
+ (-5 *2 (-927)))))
+(((*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-534)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3))
- (-4 *3 (-13 (-1208) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569)) (-147)))
- (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5))
- (-5 *3 (-412 (-958 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-867)) (-5 *1 (-1163 *3)) (-4 *3 (-1106))
- (-4 *3 (-1223)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *1 *1) (-4 *1 (-975))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-753)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
+ (-5 *1 (-211)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-1057)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))
- (-5 *2 (-383)) (-5 *1 (-269))))
+ (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *4 (-1251 *3))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4))
- (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6)))
- (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569))))
- (-5 *2 (-2 (|:| -3110 (-776)) (|:| -1691 *8)))
- (-5 *1 (-917 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-569)) (-4 *4 (-1251 *3))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
- (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4)))
- (-4 *6 (-346 (-412 (-569)) *4 *5))
- (-5 *2 (-2 (|:| -3110 (-776)) (|:| -1691 *6)))
- (-5 *1 (-918 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569))))
- (-4 *2 (-173)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1106)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3))
- (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4444)))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3))
- (-4 *3 (-13 (-367) (-147) (-1044 (-569)))) (-5 *1 (-573 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
- ((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1183)))
- (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1029)) (-5 *5 (-383))))
+ (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-993 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-14 *5 (-649 (-1183))) (-5 *2 (-649 (-649 (-1030 (-412 *4)))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-694 *3))))
+ (-5 *1 (-1284 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4))
+ (-4 *4 (-353)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
+ ((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-649 (-1030 (-412 *5))))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-958 *4)))
- (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-649 (-1030 (-412 *4))))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569))))
- (-4 *2 (-173)))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055))
+ (-5 *3 (-569)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-112))
+ (-5 *1 (-895 *4 *5)) (-4 *5 (-1108))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-5 *2 (-112))
+ (-5 *1 (-896 *5 *3)) (-4 *3 (-1225))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1225)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1249 *3)) (-5 *1 (-404 *3 *2))
- (-4 *3 (-13 (-367) (-147))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-172))))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1208) (-29 *6)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-225 *6 *4)))))
+ (-12 (-4 *3 (-367)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1)))
+ (-4 *1 (-857 *3)))))
+(((*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-1165 (-1165 (-958 *5))))
+ (-5 *1 (-1283 *5)) (-5 *4 (-1165 (-958 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3))
- (-4 *3 (-955 *4 *6 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106))
- (-5 *2 (-2 (|:| -1433 (-569)) (|:| |var| (-617 *1))))
- (-4 *1 (-435 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-776)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3))
+ (-4 *5 (-13 (-435 *4) (-1010) (-1210)))
+ (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4))))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1116)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1217 *6))
- (-5 *2 (-1 (-1163 *4) (-1163 *4))) (-5 *1 (-1281 *6))
- (-5 *5 (-1163 *4)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-294)))
- ((*1 *1) (-5 *1 (-867)))
- ((*1 *1)
- (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798))
- (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1091)))
- ((*1 *1)
- (-12 (-5 *1 (-1146 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34)))))
- ((*1 *1) (-5 *1 (-1186))) ((*1 *1) (-5 *1 (-1187))))
+ (|partial| -12 (-5 *2 (-776))
+ (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569))))))
+ (-5 *1 (-247 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1046 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1093))) (-5 *1 (-294)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112))
+ (-5 *2 (-1043)) (-5 *1 (-750)))))
+(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1223))
- (-4 *2 (-1223)) (-5 *1 (-58 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1225))
+ (-4 *2 (-1225)) (-5 *1 (-58 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (|has| *1 (-6 -4444))
- (-4 *1 (-151 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (|has| *1 (-6 -4447))
+ (-4 *1 (-151 *2)) (-4 *2 (-1225))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *2))
- (-4 *2 (-1223))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2))
+ (-4 *2 (-1225))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *2))
- (-4 *2 (-1223))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2))
+ (-4 *2 (-1225))))
((*1 *2 *3)
- (-12 (-4 *4 (-1055))
- (-5 *2 (-2 (|:| -3466 (-1179 *4)) (|:| |deg| (-927))))
- (-5 *1 (-222 *4 *5)) (-5 *3 (-1179 *4)) (-4 *5 (-561))))
+ (-12 (-4 *4 (-1057))
+ (-5 *2 (-2 (|:| -1814 (-1181 *4)) (|:| |deg| (-927))))
+ (-5 *1 (-222 *4 *5)) (-5 *3 (-1181 *4)) (-4 *5 (-561))))
((*1 *2 *3 *4 *2)
(-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776))
- (-4 *6 (-1223)) (-4 *2 (-1223)) (-5 *1 (-240 *5 *6 *2))))
+ (-4 *6 (-1225)) (-4 *2 (-1225)) (-5 *1 (-240 *5 *6 *2))))
((*1 *1 *2 *3)
(-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1249 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-4 *2 (-1251 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1106))))
+ ((*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1108))))
((*1 *1 *1)
- (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1249 *2))
- (-4 *4 (-1249 (-412 *3))) (-4 *5 (-346 *2 *3 *4))))
+ (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1251 *2))
+ (-4 *4 (-1251 (-412 *3))) (-4 *5 (-346 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1223)) (-4 *2 (-1223))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1225)) (-4 *2 (-1225))
(-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-377 *5)) (-4 *6 (-377 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1106)) (-4 *2 (-1106))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108))
(-5 *1 (-428 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2))))
((*1 *1 *1) (-5 *1 (-500)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1223))
- (-4 *2 (-1223)) (-5 *1 (-647 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1225))
+ (-4 *2 (-1225)) (-5 *1 (-647 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1055)) (-4 *2 (-1055))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1057)) (-4 *2 (-1057))
(-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *8 (-377 *2))
(-4 *9 (-377 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10))
(-4 *4 (-692 *5 *6 *7)) (-4 *10 (-692 *2 *8 *9))))
@@ -4916,602 +4829,804 @@
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1249 *3))))
+ (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3))))
((*1 *1 *2 *3)
(-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-367))
+ (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-367))
(-4 *3 (-173)) (-4 *1 (-729 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3))))
+ (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1223))
- (-4 *2 (-1223)) (-5 *1 (-963 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1225))
+ (-4 *2 (-1225)) (-5 *1 (-963 *5 *2))))
((*1 *1 *2)
(-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-1040 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5))
+ (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5))
(-14 *6 (-649 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1055)) (-4 *2 (-1055))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1057)) (-4 *2 (-1057))
(-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7))
(-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2))
- (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *12 (-1059 *5 *6 *2 *10 *11))))
+ (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *12 (-1061 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1163 *5)) (-4 *5 (-1223))
- (-4 *2 (-1223)) (-5 *1 (-1161 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1225))
+ (-4 *2 (-1225)) (-5 *1 (-1163 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1216 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798))
- (-4 *7 (-855)) (-4 *2 (-1071 *5 *6 *7))))
+ (-4 *1 (-1218 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *2 (-1073 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1273 *5)) (-4 *5 (-1223))
- (-4 *2 (-1223)) (-5 *1 (-1272 *5 *2)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-753)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1275 *5)) (-4 *5 (-1225))
+ (-4 *2 (-1225)) (-5 *1 (-1274 *5 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1179 *4)) (-5 *1 (-533 *4))
- (-4 *4 (-353)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+ (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4))))
+ (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *1) (-5 *1 (-583))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *5 (-561))
+ (-5 *2
+ (-2 (|:| |minor| (-649 (-927))) (|:| -4312 *3)
+ (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
+(((*1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
(-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226))
- (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))))
+ (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569))))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1146 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1106) (-34))) (-4 *6 (-13 (-1106) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1147 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-550))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-681))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1025))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1072))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1102)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-681))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1074))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1104)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-1179 (-412 (-1179 *6)))) (-5 *1 (-565 *5 *6 *7))
- (-5 *3 (-1179 *6)) (-4 *7 (-1106))))
+ (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1210)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-1181 (-412 (-1181 *6)))) (-5 *1 (-565 *5 *6 *7))
+ (-5 *3 (-1181 *6)) (-4 *7 (-1108))))
((*1 *2 *1)
- (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055))))
+ (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057))))
((*1 *2 *1)
- (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1249 *3))))
+ (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1179 *11)) (-5 *6 (-649 *10))
+ (|partial| -12 (-5 *4 (-1181 *11)) (-5 *6 (-649 *10))
(-5 *7 (-649 (-776))) (-5 *8 (-649 *11)) (-4 *10 (-855))
(-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-955 *11 *9 *10))
- (-5 *2 (-649 (-1179 *5))) (-5 *1 (-747 *9 *10 *11 *5))
- (-5 *3 (-1179 *5))))
+ (-5 *2 (-649 (-1181 *5))) (-5 *1 (-747 *9 *10 *11 *5))
+ (-5 *3 (-1181 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1040 *3 *4 *5 *2 *6))
+ (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1042 *3 *4 *5 *2 *6))
(-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-649 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
- ((*1 *1 *1 *1) (-4 *1 (-478)))
- ((*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
- ((*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889))))
- ((*1 *1 *1) (-5 *1 (-977)))
- ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-439))
+ (-5 *2
+ (-649
+ (-3 (|:| -3573 (-1185))
+ (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))))
+ (-5 *1 (-1189)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-423 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1108))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1108)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112))
+ (-5 *2 (-1043)) (-5 *1 (-758)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1055))
- (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1249 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055))
- (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4))))
+ (-12 (-5 *4 (-1100 (-848 *3))) (-4 *3 (-13 (-1210) (-965) (-29 *5)))
+ (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1055))
- (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
- (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3))
- (-4 *3 (-1249 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
+ (-12 (-5 *4 (-1100 (-848 *3))) (-5 *5 (-1167))
+ (-4 *3 (-13 (-1210) (-965) (-29 *6)))
+ (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1249 (-569)))))
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1100 (-848 (-319 *5))))
+ (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1100 (-848 (-319 *6))))
+ (-5 *5 (-1167))
+ (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1249 (-569)))))
+ (-12 (-5 *4 (-1100 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3))
- (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
- (-4 *3 (-1249 (-569)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-1013 *3))
- (-4 *3 (-1249 (-412 (-569))))))
+ (-12 (-5 *4 (-1100 (-848 (-412 (-958 *6))))) (-5 *5 (-1167))
+ (-5 *3 (-412 (-958 *6)))
+ (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3))
+ (-4 *3 (-13 (-1210) (-965) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383))))
+ (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383))))
+ (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383))))
+ (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383))))
+ (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383)))))
+ (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383)))))
+ (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383)))))
+ (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383)))))
+ (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
+ (-5 *5 (-1167)) (-5 *2 (-1043)) (-5 *1 (-570))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
+ (-5 *5 (-1185)) (-5 *2 (-1043)) (-5 *1 (-570))))
((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-1238 *3)) (-4 *3 (-1249 (-569))))))
+ (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4))
+ (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855))
+ (-4 *3 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-4 *3 (-1057))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-4 *2 (-855))
+ (-5 *1 (-1134 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057))
+ (-5 *1 (-1169 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-4 *3 (-1057))))
+ ((*1 *1 *1 *2)
+ (-2776
+ (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057))
+ (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210))
+ (-4 *3 (-38 (-412 (-569))))))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057))
+ (-12 (|has| *3 (-15 -1712 ((-649 *2) *3)))
+ (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-2776
+ (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057))
+ (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210))
+ (-4 *3 (-38 (-412 (-569))))))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057))
+ (-12 (|has| *3 (-15 -1712 ((-649 *2) *3)))
+ (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2776
+ (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057))
+ (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210))
+ (-4 *3 (-38 (-412 (-569))))))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057))
+ (-12 (|has| *3 (-15 -1712 ((-649 *2) *3)))
+ (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-798))
+ (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561))
+ (-5 *2 (-2 (|:| -3151 (-958 *6)) (|:| -3078 (-958 *6))))
+ (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *3 (-958 (-569)))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *1 (-333)))))
+(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-979)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1106)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
+ (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-96))))
+ (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-96))))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109))))
((*1 *2 *1)
- (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1106))))
- ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1165))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-443 *3)) (-14 *3 *2)))
+ (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-443 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488))))
- ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1108))))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870))))
((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1081 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1121))))
- ((*1 *1 *1) (-5 *1 (-1183))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
- (-14 *4 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1083 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1123))))
+ ((*1 *1 *1) (-5 *1 (-1185))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1032 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+ (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010) (-1210))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-562 *6 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-215 *4))
+ (-4 *4
+ (-13 (-855)
+ (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $))
+ (-15 -3567 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $))
+ (-15 -3567 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1148 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1149 *5 *6)))))
(((*1 *2 *3)
(-12 (-4 *4 (-855))
(-5 *2
(-2 (|:| |f1| (-649 *4)) (|:| |f2| (-649 (-649 (-649 *4))))
(|:| |f3| (-649 (-649 *4))) (|:| |f4| (-649 (-649 (-649 *4))))))
- (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 (-649 *4)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
+ (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 (-649 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278))
- (-5 *1 (-1224 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-5 *2 (-1278))
- (-5 *1 (-1224 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1106))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1106)) (-5 *1 (-103 *2)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1266 *4))
+ (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-1165 *4)))
+ (-5 *1 (-1268 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043))
+ (-5 *1 (-753)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
- (-4 *3 (-1106)) (-5 *2 (-776))))
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225))
+ (-4 *3 (-1108)) (-5 *2 (-776))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *4))
- (-4 *4 (-1223)) (-5 *2 (-776)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1183))
- (-4 *2 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-279 *5 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
-(((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492))))
- ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-310))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4))
+ (-4 *4 (-1225)) (-5 *2 (-776)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1266 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3))
+ (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1266 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147)))
+ (-5 *1 (-1161 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1225))))
((*1 *2 *1)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-333)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
- (-5 *2 (-418 *4 (-412 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1273 *6)) (-4 *6 (-13 (-414 *4 *5) (-1044 *4)))
- (-4 *4 (-998 *3)) (-4 *5 (-1249 *4)) (-4 *3 (-310))
- (-5 *1 (-418 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225))
+ (-14 *4 (-569)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4))
+ (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225))
+ (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-1203)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867))
+ (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1108)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1057))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-867))))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-867)) (-5 *1 (-1181 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1128)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043))
+ (-5 *1 (-753)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9))))
+ (-5 *1 (-996 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9))
+ (-4 *4 (-1079 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9))))
+ (-5 *1 (-1115 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9))
+ (-4 *4 (-1079 *6 *7 *8 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4))
- (-4 *3 (-1249 (-170 (-569)))) (-4 *4 (-13 (-367) (-853)))))
+ (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4))
+ (-4 *4 (-13 (-367) (-853))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1))
+ (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4)))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4)))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
- (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-151 *2)) (-4 *2 (-1223))
- (-4 *2 (-1106)))))
-(((*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1276)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1126)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1106)) (-4 *5 (-1106))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1183))
- (-5 *4 (-1100 (-412 (-569)))) (-5 *1 (-30)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *6 (-112))
- (-4 *7 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
- (-4 *3 (-13 (-1208) (-965) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
- (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-702)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1194 *5)))))
+ (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1)))
- (-4 *1 (-1077 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))))
-(((*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-834)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-1055))
- (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1249 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
- (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *2 (-1218 (-932)))
- (-5 *1 (-321))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
- (-5 *5 (-1100 (-226))) (-5 *6 (-569)) (-5 *7 (-1165))
- (-5 *2 (-1218 (-932))) (-5 *1 (-321))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
- (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569))
- (-5 *2 (-1218 (-932))) (-5 *1 (-321))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226)))
- (-5 *5 (-1100 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1165))
- (-5 *2 (-1218 (-932))) (-5 *1 (-321)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-457)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
+ (-12 (-4 *4 (-1225)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3))
+ (-4 *3 (-679 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1143)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3))
+ (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2))
+ (-4 *2 (-692 *3 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294)))))
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1870 *3)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561))
+ (-4 *3 (-1225)))))
(((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561))
- (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561))
+ (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
- ((*1 *1 *1 *1) (-5 *1 (-867))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
(((*1 *2 *3)
- (-12 (-14 *4 (-649 (-1183))) (-4 *5 (-457))
+ (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1108)) (-5 *2 (-617 *5))
+ (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131))
+ (-4 *2 (-1108))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1108))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-1108)) (-5 *1 (-654 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569)))))
- (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1179 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226)))
- (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1041)) (-5 *1 (-759)))))
+ (-649
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-569)))))
+ (-5 *1 (-423 *3)) (-4 *3 (-561))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1251 *3))
+ (-5 *2 (-649 (-1181 *3))) (-5 *1 (-503 *3 *5 *6))
+ (-4 *6 (-1251 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-5 *2
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
(((*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569))))
- ((*1 *1 *1) (-5 *1 (-1126))))
-(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1046)))))
+ ((*1 *1 *1) (-5 *1 (-1128))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2))
+ (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4))
- (-4 *4 (-1055))))
+ (-4 *4 (-1057))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057))))
((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776))))
((*1 *1 *1) (-4 *1 (-234)))
((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855))))
((*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))
- (-4 *4 (-1249 *3))))
+ (-4 *4 (-1251 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3))
- (-4 *3 (-1249 *2))))
+ (-4 *3 (-1251 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *2 *1 *3)
(-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-591 *2))
- (-5 *3 (-1183))))
+ (-5 *3 (-1185))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-591 *2)) (-4 *2 (-367))))
((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4))
- (-4 *4 (-1106))))
+ (-4 *4 (-1108))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106))))
+ (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106))))
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1251 *3)) (-4 *3 (-1057))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5))
- (-4 *3 (-1055)) (-14 *5 *3))))
+ (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5))
+ (-4 *3 (-1057)) (-14 *5 *3))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4))
- (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569))))
- (-4 *5 (-892 (-569)))
- (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-572 *5 *3)) (-4 *3 (-634))
- (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1183)) (-5 *4 (-848 *2)) (-4 *2 (-1145))
- (-4 *2 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569)))
- (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
- (-5 *1 (-572 *5 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-367) (-147)))
- (-5 *2 (-649 (-2 (|:| -4320 (-776)) (|:| -2167 *4) (|:| |num| *4))))
- (-5 *1 (-404 *3 *4)) (-4 *4 (-1249 *3)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-649 *3))
+ (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1117 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
+ (-5 *2
+ (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5))))))
+ (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1185)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147)))
+ (-5 *2
+ (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4))))))
+ (-5 *1 (-1086 *4 *5)) (-5 *3 (-649 (-958 *4)))
+ (-14 *5 (-649 (-1185)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
+ (-5 *2
+ (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5))))))
+ (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5)))
+ (-14 *6 (-649 (-1185))))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| -1435 *4) (|:| -4007 *3) (|:| -2054 *3)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| -1435 *3) (|:| -4007 *1) (|:| -2054 *1)))
+ (-4 *1 (-1251 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1106)) (-4 *3 (-855))
- (-4 *2 (-1223))))
+ (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1108)) (-4 *3 (-855))
+ (-4 *2 (-1225))))
((*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
((*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
((*1 *2 *1)
- (-12 (-4 *2 (-1223)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1223))))
+ (-12 (-4 *2 (-1225)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1225))))
((*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
- ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
- ((*1 *1 *1) (|partial| -4 *1 (-727))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
- (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3)))
+ (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-705 *3))
+ (-4 *3 (-310)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-14 *5 (-649 (-1183)))
+ (-12 (-14 *4 (-649 (-1185))) (-14 *5 (-776))
(-5 *2
- (-649 (-2 (|:| -4270 (-1179 *4)) (|:| -2960 (-649 (-958 *4))))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2
- (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5))))))
- (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2
- (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5))))))
- (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2
- (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5))))))
- (-5 *1 (-1299 *5 *6 *7)) (-5 *3 (-649 (-958 *5)))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2
- (-649 (-2 (|:| -4270 (-1179 *4)) (|:| -2960 (-649 (-958 *4))))))
- (-5 *1 (-1299 *4 *5 *6)) (-5 *3 (-649 (-958 *4)))
- (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3)) (-4 *3 (-1106))
- (-4 *3 (-1223)))))
+ (-649
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569))))))
+ (-5 *1 (-510 *4 *5))
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1249 *5))
- (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
- (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112))
- (-5 *1 (-917 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
- (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4)))
- (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-918 *4 *5 *6)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-649 (-319 (-226))))
+ (|:| |constraints|
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167))
+ (|:| |tol| (-226))))
+ (-5 *2 (-112)) (-5 *1 (-211)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2))
+ (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569))))
+ (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1117 *5 *6 *7 *8))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-596 *5 *6 *7 *8 *3)))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569))))
- ((*1 *1 *1 *1) (-5 *1 (-1126))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 *4))))
- (-4 *3 (-1106)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1128))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1273 *3)))))
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1275 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1223)) (-5 *2 (-649 *1)) (-4 *1 (-1016 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4))
- (-14 *3 (-927)) (-4 *4 (-1055)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 (-2 (|:| -3796 (-1179 *6)) (|:| -4320 (-569)))))
- (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4435)) (-4 *1 (-409))))
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776)))
+ (-5 *1 (-910 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409))))
((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927))))
((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704))))
((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112))
- (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1208) (-29 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-1165)) (-5 *1 (-995))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-4 *4 (-1223)) (-5 *1 (-1063 *3 *4))
- (-4 *3 (-1099 *4))))
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1190))) (-5 *1 (-1190)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-997))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1100 *4)) (-4 *4 (-1223))
- (-5 *1 (-1098 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))))
-(((*1 *2)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3)))))
+ (-12 (-5 *2 (-1185)) (-4 *4 (-1225)) (-5 *1 (-1065 *3 *4))
+ (-4 *3 (-1101 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1102 *4)) (-4 *4 (-1225))
+ (-5 *1 (-1100 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1)))
+ (-4 *1 (-857 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *9))))
+ (-5 *3 (-649 *9)) (-4 *1 (-1218 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *8))))
+ (-5 *3 (-649 *8)) (-4 *1 (-1218 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335)))))
(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569))))
- ((*1 *1 *1 *1) (-5 *1 (-1126))))
+ ((*1 *1 *1 *1) (-5 *1 (-1128))))
(((*1 *2 *2)
(-12
(-5 *2
(-509 (-412 (-569)) (-241 *4 (-776)) (-869 *3)
(-248 *3 (-412 (-569)))))
- (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-561))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-649 (-1217 *5)))
- (-5 *1 (-1281 *5)) (-5 *4 (-1217 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-761)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-442)) (-5 *1 (-1187)))))
+ (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185))
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-649 (-1084 *4 *5 *2))) (-4 *4 (-1108))
+ (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4))))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-649 (-1084 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1108))
+ (-4 *6 (-13 (-1057) (-892 *5) (-619 (-898 *5))))
+ (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2378 (-694 (-412 (-958 *4))))
- (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3975 (-776))
- (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798))
- (-5 *2
- (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *4)))))))
- (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208)))))
+ (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *2 (-1280))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1251 (-412 *5))) (-14 *7 *6))))
+(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210)))))
((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))
- (-4 *2 (-457))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-1249 (-569))) (-5 *2 (-649 (-569)))
- (-5 *1 (-491 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-457))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)) (-4 *3 (-457)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569))
+ (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265)))))
(((*1 *2 *3) (-12 (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-927)) (-5 *2 (-383)) (-5 *1 (-790 *3))
(-4 *3 (-619 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2))
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2))
(-5 *2 (-383)) (-5 *1 (-790 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
+ (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057))
(-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2))
@@ -5525,970 +5640,937 @@
((*1 *2 *3 *4)
(-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855))
(-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *3 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-753)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-1246 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
+ ((*1 *1 *1 *1) (-4 *1 (-478)))
+ ((*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889))))
+ ((*1 *1 *1) (-5 *1 (-979)))
+ ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
- (-4 *4 (-353)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1163 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569))))
- (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))))
+ (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3))
+ (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1251 *2)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776))
+ (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776))
(-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131))
(-5 *2 (-776))))
((*1 *2)
(-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4))
(-4 *3 (-332 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1108))))
((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108)) (-5 *2 (-776))))
((*1 *2)
- (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4))
+ (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4))
(-4 *3 (-430 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-776))
+ (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-776))
(-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4))
- (-5 *1 (-533 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10))
- (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1077 *5 *6 *7 *8))
- (-4 *10 (-1115 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6)))
- (-5 *1 (-633 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-649 (-1183)))
- (-5 *2
- (-649 (-1152 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
- (-5 *1 (-633 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
- (-14 *6 (-649 (-1183))) (-5 *2 (-649 (-1052 *5 *6)))
- (-5 *1 (-1052 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1216 *4 *5 *6 *7)))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226)))
+ (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1020)) (-5 *2 (-867)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
+ (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1271 *3)) (-4 *3 (-23)) (-4 *3 (-1223)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-236 *3))
- (-4 *3 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-236 *2)) (-4 *2 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106))
- (-5 *1 (-742 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2))
- (-4 *3 (-561)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-1273 *3)) (-4 *3 (-23)) (-4 *3 (-1225)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5))
+ (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1251 *5))
+ (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1181 (-569)))) (-5 *3 (-1181 (-569)))
+ (-5 *1 (-577))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-1181 *1))) (-5 *3 (-1181 *1))
+ (-4 *1 (-915)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550))))
+ ((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -3830 (-776))))
- (-5 *1 (-787 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3830 (-776))))
- (-4 *1 (-1071 *3 *4 *5)))))
+ (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8))
+ (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147)))
+ (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-112))
+ (-5 *1 (-930 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1179 (-1179 *5))))
- (-5 *1 (-1221 *5)) (-5 *3 (-1179 (-1179 *5))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))))
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3))
+ (-4 *3 (-1251 (-412 *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))
+ (-4 *3 (-561)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353))
+ (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *3))))
+ (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-423 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1098)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1055))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1057))
(-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-694 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1055))
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1057))
(-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3)))
+ (-4 *3 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1035 *5 *6 *7 *3))) (-5 *1 (-1035 *5 *6 *7 *3))
+ (-4 *3 (-1073 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-649 *6)) (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1079 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1154 *5 *6 *7 *3))) (-5 *1 (-1154 *5 *6 *7 *3))
+ (-4 *3 (-1073 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-294)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-649 (-1179 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4))
+ (-5 *1 (-424 *4))))
+ ((*1 *1 *1) (-5 *1 (-932)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932))))
+ ((*1 *1 *1) (-5 *1 (-933)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))
+ (-5 *4 (-412 (-569))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))
+ (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))
+ (-5 *4 (-412 (-569))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))
+ (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569))))))
((*1 *1 *1)
- (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
- (-14 *4 *2))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1106))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3))))
- (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-226) (-226) (-226)))
- (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
- (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-702)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1249 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1249 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776)))
- (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1249 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4))))
- (-5 *1 (-1194 *6)) (-5 *5 (-649 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
- (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
- (-5 *1 (-983 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
-(((*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1276)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))))
-(((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-333)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
+ (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-985 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6))
- (-4 *6 (-1249 *5)) (-4 *5 (-13 (-367) (-147) (-1044 (-569))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-573 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1055))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *1))))
- (-4 *1 (-1077 *4 *5 *6 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))
- (-14 *4 (-776)) (-4 *5 (-173)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-587)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1183)) (-4 *1 (-27))
- (-5 *2 (-649 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *2 (-649 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *2 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-402)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1183)) (-4 *5 (-619 (-898 (-569))))
- (-4 *5 (-892 (-569)))
- (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-572 *5 *3)) (-4 *3 (-634))
- (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2))
+ (-4 *2 (-661 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))))
+ (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1167)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
- ((*1 *1 *1) (|partial| -4 *1 (-727))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1106)) (-4 *5 (-1106))
- (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569))
+ (-5 *2 (-694 *6)) (-5 *1 (-1037 *6)) (-4 *6 (-367)) (-4 *6 (-1057))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1037 *4))
+ (-4 *4 (-367)) (-4 *4 (-1057))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5))
+ (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-1057)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))))
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3059 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057))
+ (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561))
+ (-4 *3 (-1057)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-107 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1057))
+ (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1251 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057))
+ (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057))
+ (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-457)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2))
- (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4444) (-6 -4445))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2))
- (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4444) (-6 -4445)))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
- (-14 *3 (-649 (-1183))))))
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010))
+ (-4 *2 (-1057)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1057)) (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *7 (-906 *6))
+ (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7))
+ (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447)))))))
+(((*1 *2)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
+ (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-1251 (-170 *3))))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1073 *6 *7 *8))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855))
+ (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9))))
+ (-5 *1 (-1116 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106))
- (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))))
+ (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108))
+ (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4))
(-4 *4 (-353))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4))
(-4 *4 (-353))))
((*1 *1) (-4 *1 (-372)))
((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4))
(-4 *4 (-353))))
((*1 *1 *1) (-4 *1 (-550))) ((*1 *1) (-4 *1 (-550)))
((*1 *1 *1) (-5 *1 (-776)))
- ((*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-569)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4))
- (-4 *4 (-1106))))
- ((*1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-550)) (-4 *2 (-561)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1183)))
- (-4 *5 (-457))
- (-5 *2
- (-2 (|:| |gblist| (-649 (-248 *4 *5)))
- (|:| |gvlist| (-649 (-569)))))
- (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
+ (-4 *4 (-1108))))
+ ((*1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-550)) (-4 *2 (-561)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1174 (-1185) (-958 *6))))
+ (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6)))))
+ (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-1052 *5 *6))) (-5 *1 (-1299 *5 *6 *7))
- (-14 *6 (-649 (-1183))) (-14 *7 (-649 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-958 *4)))
- (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-649 (-1052 *4 *5))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183))))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226)))
- (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1055)) (-4 *6 (-955 *5 *4 *2))
- (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *6)) (-15 -4396 (*6 $))
- (-15 -4409 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
- (-5 *2 (-1183)) (-5 *1 (-1049 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-561))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5))))
+ (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4))))
+ (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5)))))
+ (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-4 *3 (-906 *5)) (-5 *2 (-1273 *3))
- (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3))
- (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2))
+ (-4 *4 (-38 (-412 (-569)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-1 (-1179 (-958 *4)) (-958 *4)))
- (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+(((*1 *1) (-5 *1 (-1093))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1870 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1073 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *2 (-1106)) (-4 *3 (-1106))
- (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-1126)) (-5 *2 (-112)) (-5 *1 (-826)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227))
- (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173))
- (-4 *1 (-371 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1273 *1)) (-4 *4 (-173))
- (-4 *1 (-374 *4 *5)) (-4 *5 (-1249 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4))
- (-4 *4 (-1249 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2))
- (-4 *2 (-1264 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3)))
- (-4 *5 (-1249 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2))
- (-4 *2 (-1264 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3)))
- (-5 *1 (-547 *4 *2)) (-4 *2 (-1264 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147)))
- (-5 *1 (-1159 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108))
+ (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3)))
+ (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057))
+ (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
(((*1 *1 *1) (-5 *1 (-867)))
((*1 *2 *1)
- (-12 (-4 *1 (-1109 *2 *3 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106))))
- ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1164))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1183)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-457))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-915)))))
+ (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108))))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1166))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-234)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4))
+ (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798))
+ (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-333)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1044 (-569))))
- (-4 *7 (-1249 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2))
- (-4 *2 (-346 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
+ (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-333)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3))
+ (-4 *3 (-1251 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4))))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
- ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
- ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4435)) (-4 *1 (-409))))
- ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927))))
- ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1163 (-569))))))
-(((*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1187)))))
+ (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3))
+ (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3))
+ (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3))
+ (-4 *3 (-1251 (-412 (-569))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
+ (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-866))))
+ ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1185)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))))
(((*1 *1)
- (-12 (-4 *1 (-409)) (-1745 (|has| *1 (-6 -4435)))
- (-1745 (|has| *1 (-6 -4427)))))
- ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-855))))
+ (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438)))
+ (-1749 (|has| *1 (-6 -4430)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855))))
((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855))))
((*1 *1) (-4 *1 (-849))) ((*1 *1 *1 *1) (-4 *1 (-855))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1106)) (-5 *2 (-776))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5))
- (-4 *4 (-1106)) (-14 *5 *2))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1106))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-390 *3)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2))
- (-4 *3 (-561)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-742 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106))))
- ((*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550))
+ (-4 *3 (-561))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550))
+ (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550))
+ (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3))
+ (-4 *3 (-1046 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-1181 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $))
+ (-15 -4412 ((-1133 *4 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *4 (-617 $))))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185))
+ (-14 *4 *2))))
(((*1 *1 *2)
(-12 (-5 *2 (-927)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-367)) (-14 *5 (-999 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1140 *4)) (-4 *4 (-1055))
- (-5 *2 (-776)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367))
- (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1249 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+ (-4 *4 (-367)) (-14 *5 (-1001 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-1073 *3 *4 *2)) (-4 *2 (-855))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)))))
+(((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827)))))
+(((*1 *1) (-5 *1 (-144))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-569))))
+ (-4 *4 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $)))))
+ (-4 *3 (-561)) (-5 *1 (-1254 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797))
+ (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108))
+ (-5 *2 (-776))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-731)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-4 *1 (-909 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
- (-4 *4 (-353)))))
+ (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -1814 *4))) (-5 *5 (-776))
+ (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-454 *6 *7 *8 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-62 *3)) (-14 *3 (-1185))))
+ ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-69 *3)) (-14 *3 (-1185))))
+ ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-72 *3)) (-14 *3 (-1185))))
+ ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1280))))
+ ((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-402))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569)))
+ (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-762)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-172)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-62 *3)) (-14 *3 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-69 *3)) (-14 *3 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-72 *3)) (-14 *3 (-1183))))
- ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1278))))
- ((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-402))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4))))
- (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855))))
+ (-12 (-5 *2 (-1034 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1057)))))
+(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225))))
((*1 *2 *2)
- (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1108))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798)) (-4 *3 (-855))
- (-4 *6 (-1071 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2478 *1) (|:| |upper| *1)))
- (-4 *1 (-982 *4 *5 *3 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1179 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
- (-14 *4 (-1183)) (-14 *5 *3))))
-(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-4 *6 (-1073 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1)))
+ (-4 *1 (-984 *4 *5 *3 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-762)))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *4)))))))
- (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147)))
- (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126))))))
- (-4 *4 (-353)) (-5 *2 (-1278)) (-5 *1 (-533 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1274))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1275)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-649 (-2 (|:| -4130 *1) (|:| -1717 (-649 *7)))))
- (-5 *3 (-649 *7)) (-4 *1 (-1216 *4 *5 *6 *7)))))
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *1 (-265))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *2 (-1280)) (-5 *1 (-1277))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226))
+ (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
+ (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
+ (-5 *1 (-1277))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1210) (-965) (-29 *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569))))
+ (-4 *5 (-1251 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1024 *4 *5))
+ (-5 *3 (-412 *5)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106))))
+ (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-569)) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3))
- (-4 *3 (-1055))))
+ (-12 (-5 *4 (-569)) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3))
+ (-4 *3 (-1057))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1290 *4 *3))
- (-4 *3 (-1055)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1106)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1146 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1106) (-34))) (-4 *5 (-13 (-1106) (-34)))
- (-5 *1 (-1147 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-1146 *3 *4))) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-226) (-226) (-226)))
- (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
- (-5 *5 (-1100 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1139 (-226)))
- (-5 *1 (-702))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-226)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-702))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226)))
- (-5 *4 (-1100 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-396)))))
+ (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1292 *4 *3))
+ (-4 *3 (-1057)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-173))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569))))
- (-5 *1 (-1116)))))
-(((*1 *1) (-5 *1 (-294))))
+ (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
+ (-4 *3 (-1251 *4))
+ (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569))))
+ (-12 (-5 *3 (-694 (-170 (-412 (-569)))))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3)))
- (|:| |vals| (-649 *3))))
- (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -3466 *3))))
- (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-649
+ (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569))
+ (|:| |outvect| (-649 (-694 (-170 *4)))))))
+ (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-396)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1185))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-649 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1210) (-27) (-435 *8)))
+ (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569))
+ (-5 *2 (-649 *4)) (-5 *1 (-1022 *8 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879))
+ (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1279))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473))
+ (-5 *1 (-1279))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265)))
+ (-5 *2 (-473)) (-5 *1 (-1279)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-4 *2 (-1106)) (-5 *1 (-685 *5 *6 *2)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-685 *5 *6 *2)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1106)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-454 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1278)) (-5 *1 (-396))))
- ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-396)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-97)))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798))
- (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))))
-(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
+ (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
- (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3))
+ (-4 *3 (-1073 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))
+ (-5 *2 (-1043)) (-5 *1 (-751)))))
+(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-372)))))
+(((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-396))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-396)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561))
+ (-5 *2 (-867)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-55)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-412 (-569)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-318 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569)))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-318 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6))
- (-4 *6 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-4 *6 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569)))
- (-4 *7 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569)))
+ (-4 *7 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569)))
- (-4 *3 (-13 (-27) (-1208) (-435 *7)))
- (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569)))
+ (-4 *3 (-13 (-27) (-1210) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *7 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8))
- (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569)))
- (-4 *8 (-13 (-27) (-1208) (-435 *7)))
- (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569)))
+ (-4 *8 (-13 (-27) (-1210) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569))))
- (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8)))
- (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569))))
+ (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8)))
+ (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3))))
- (-4 *3 (-1055)) (-5 *1 (-600 *3))))
+ (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3))))
+ (-4 *3 (-1057)) (-5 *1 (-600 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-601 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-601 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *3))))
- (-4 *3 (-1055)) (-4 *1 (-1233 *3))))
+ (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3))))
+ (-4 *3 (-1057)) (-4 *1 (-1235 *3))))
((*1 *1 *2 *3)
(-12 (-5 *2 (-776))
- (-5 *3 (-1163 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4))))
- (-4 *4 (-1055)) (-4 *1 (-1254 *4))))
+ (-5 *3 (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4))))
+ (-4 *4 (-1057)) (-4 *1 (-1256 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-4 *1 (-1264 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-4 *1 (-1266 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1163 (-2 (|:| |k| (-776)) (|:| |c| *3))))
- (-4 *3 (-1055)) (-4 *1 (-1264 *3)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-743)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-949 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+ (-12 (-5 *2 (-1165 (-2 (|:| |k| (-776)) (|:| |c| *3))))
+ (-4 *3 (-1057)) (-4 *1 (-1266 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-776)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1118)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6))
- (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183)))))
- (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110))
- (-5 *1 (-402))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1183)))))
- (-5 *6 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1110))
- (-5 *1 (-402))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-649 (-1183))) (-5 *5 (-1186)) (-5 *3 (-1183))
- (-5 *2 (-1110)) (-5 *1 (-402)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-1138 *4 *2))
- (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4444) (-6 -4445))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-855)) (-4 *3 (-1223)) (-5 *1 (-1138 *3 *2))
- (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4444) (-6 -4445)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-435 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183))))
- ((*1 *1 *1) (-4 *1 (-160))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *4 *5 *6 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+ (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5))
+ (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1251 *6))
+ (-14 *7 (-927)))))
(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1223)) (-5 *2 (-776))
- (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1106)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4))
- (-4 *3 (-435 *4))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550))))
- ((*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4))
- (-4 *3 (-802 *4))))
+ (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
((*1 *2)
- (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-997 *3 *4))
- (-4 *3 (-998 *4))))
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367))
+ (-5 *2 (-1181 (-958 *3)))))
((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1002 *3 *4))
- (-4 *3 (-1003 *4))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1017 *3)) (-4 *3 (-1018))))
- ((*1 *2) (-12 (-4 *1 (-1055)) (-5 *2 (-776))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1065 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-584)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569))))
- (-5 *1 (-191)))))
+ (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-743)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4))
+ (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3346 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1057))
+ (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3310 (-649 *7))))
+ (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776))
+ (-5 *1 (-951 *4 *5)) (-4 *5 (-1251 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-752)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-628 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112)))
+ (-569) *4))
+ (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *1 (-579 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-2 (|:| -2003 (-1183)) (|:| -2214 (-442)))))
- (-5 *1 (-1187)))))
+ (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442)))))
+ (-5 *1 (-1189)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275 (-704))) (-5 *1 (-308)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
- (-5 *1 (-761)))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3))
+ (-4 *3 (-13 (-409) (-1210)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1245 *3 *2))
+ (-4 *2 (-1251 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4))
- (-4 *4 (-874 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-569)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-1264 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1235 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1264 *2)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1106))
- (-4 *3 (-1106)))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1179 *1)) (-5 *3 (-1183)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-29 *3)) (-4 *3 (-561))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))))
+ (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1057))
+ (-5 *1 (-1037 *4)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1055))
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1057))
(-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1189)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-975 *4 *2))
- (-4 *2 (-1249 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1249 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1249 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))))
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280))
+ (-5 *1 (-1226 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280))
+ (-5 *1 (-1226 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-1044 (-569)) (-457) (-644 (-569))))
- (-5 *2 (-2 (|:| -3290 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
+ (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6))
+ (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-310)))))
+(((*1 *1 *1) (-5 *1 (-1071))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043))
+ (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-871 *4 *5 *6 *7))
+ (-4 *4 (-1057)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-4 *5 (-855)) (-4 *6 (-798))
+ (-14 *8 (-649 *5)) (-5 *2 (-1280))
+ (-5 *1 (-1287 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5))
+ (-14 *9 (-649 *3)) (-14 *10 *3))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1278))
+ (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1280))
(-5 *1 (-473))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-986 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-988 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-949 *3))))
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-949 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-949 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219)) (-5 *3 (-226)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1288 (-1183) *3)) (-4 *3 (-1055)) (-5 *1 (-1295 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *1 (-1297 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-52)) (-5 *1 (-834)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1124)) (-5 *1 (-1121)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
- (-4 *4 (-173)))))
+ (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)) (-5 *3 (-226)))))
+(((*1 *1) (-5 *1 (-1071))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))))
+(((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280))
+ (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280))
+ (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055))
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057))
(-4 *5 (-855)) (-5 *2 (-958 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1055))
+ (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057))
(-4 *5 (-855)) (-5 *2 (-958 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055))
+ (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057))
(-5 *2 (-958 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-1264 *4)) (-4 *4 (-1055))
+ (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057))
(-5 *2 (-958 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6))
- (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569))))
- (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3))
- (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1278))
- (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-649 (-1183)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-649 (-1183))))))
+ (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4))
+ (-5 *1 (-1036 *5)) (-4 *5 (-1057))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1036 *4))
+ (-4 *4 (-1057))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569))
+ (-5 *2 (-649 (-694 *4))) (-5 *1 (-1036 *5)) (-4 *5 (-1057))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569))))
+ (-5 *1 (-1036 *4)) (-4 *4 (-1057)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226))))
+ (-5 *2 (-1043)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1229)) (-5 *1 (-148 *2 *4 *3))
+ (-4 *3 (-1251 (-412 *4))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1100 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798))
+ (-12 (-5 *5 (-1102 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798))
(-4 *4 (-855)) (-4 *7 (-561))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569))))
(-5 *1 (-599 *6 *4 *7 *3))))
@@ -6499,536 +6581,819 @@
((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *1 *1) (-5 *1 (-867)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208)))))
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1208)))
- (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1175 *4 *2))))
+ (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210)))
+ (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1177 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569))))
- (-5 *2 (-412 (-958 *5))) (-5 *1 (-1176 *5)) (-5 *3 (-958 *5))))
+ (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569))))
+ (-5 *2 (-412 (-958 *5))) (-5 *1 (-1178 *5)) (-5 *3 (-958 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-13 (-561) (-1044 (-569))))
- (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1176 *5))
+ (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569))))
+ (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1178 *5))
(-5 *3 (-412 (-958 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-958 *5))) (-5 *3 (-958 *5))
- (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 *3))
- (-5 *1 (-1176 *5))))
+ (-12 (-5 *4 (-1100 (-958 *5))) (-5 *3 (-958 *5))
+ (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 *3))
+ (-5 *1 (-1178 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
- (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-3 *3 (-319 *5)))
- (-5 *1 (-1176 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
- ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2))))
- ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+ (-12 (-5 *4 (-1100 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-3 *3 (-319 *5)))
+ (-5 *1 (-1178 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183)))
- (-4 *6 (-13 (-561) (-1044 *5))) (-4 *5 (-561))
- (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1045 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))))
+ (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367))
+ (-4 *5 (-1057)) (-5 *2 (-112)) (-5 *1 (-1037 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1057))
+ (-5 *2 (-112)) (-5 *1 (-1037 *4)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-4 *5 (-367)) (-5 *2 (-1163 (-1163 (-958 *5))))
- (-5 *1 (-1281 *5)) (-5 *4 (-1163 (-958 *5))))))
+ (-12 (-5 *3 (-1181 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6))
+ (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1179 (-1179 *4))))
- (-5 *1 (-1221 *4)) (-5 *3 (-1179 (-1179 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-52)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-439))
+ (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1057))) (-5 *2 (-1167))
+ (-5 *1 (-831 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1057)))
+ (-5 *2 (-1167)) (-5 *1 (-831 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1057)))
+ (-5 *2 (-1280)) (-5 *1 (-831 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-833) (-1057))) (-5 *2 (-1280)) (-5 *1 (-831 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1167))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1167))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1280))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1108))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (-5 *1 (-103 *2)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226))
+ (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-700 *3)) (-4 *3 (-1108))
+ (-5 *2 (-649 (-2 (|:| -2216 *3) (|:| -3560 (-776))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-52)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1057))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1225))
+ (-4 *5 (-377 *4)) (-4 *3 (-377 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
(-5 *2
- (-649
- (-3 (|:| -3570 (-1183))
- (|:| -1882 (-649 (-3 (|:| S (-1183)) (|:| P (-958 (-569)))))))))
- (-5 *1 (-1187)))))
-(((*1 *1 *1) (-4 *1 (-634)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108))
+ (-4 *2 (-855)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1185))
+ (-4 *2 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *5 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1264 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3))
- (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1264 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147)))
- (-5 *1 (-1159 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1))
- (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131))
- (-4 *2 (-1106))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1106))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *2 (-1106)) (-5 *1 (-654 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2330 *1)))
- (-4 *1 (-857 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1018)) (-5 *2 (-867)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-649 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-4 *3 (-561)))))
-(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561))
- (-4 *3 (-1055)))))
+ (-12
+ (-5 *2
+ (-649
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
+ (-5 *1 (-454 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409))))
+ ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367))
+ (-4 *7 (-1251 (-412 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -4292 *3)))
+ (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |answer| (-412 *6)) (|:| -4292 (-412 *6))
+ (|:| |specpart| (-412 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2))
+ (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2))
+ (-4 *4 (-692 *2 *5 *6)))))
+(((*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
+ (-4 *2 (-1251 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-680 *2)) (-4 *2 (-1055)) (-4 *2 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3)))
- (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-5 *1 (-680 *2)) (-4 *2 (-1057)) (-4 *2 (-1108)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-5 *2 (-776))))
+ (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367))
+ (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
- (-5 *2 (-776))))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2))
+ (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173))
+ (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-731)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1208) (-965) (-29 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+ (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-1197 *3)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-1249 *4))
- (-4 *5 (-1249 (-412 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1167)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7))
+ (|:| |wcond| (-649 (-958 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *4))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-649 (-1185))) (-4 *2 (-173))
+ (-4 *4 (-239 (-2428 *5) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *4))
+ (-2 (|:| -2150 *3) (|:| -1993 *4))))
+ (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855))
+ (-4 *7 (-955 *2 *4 (-869 *5))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3))
(-4 *5 (-377 *3)) (-5 *2 (-776))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
(-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776))
- (-5 *1 (-951 *4 *5)) (-4 *5 (-1249 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-361 *4))
- (-4 *4 (-353)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
- (-4 *2 (-1249 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3)))))
(((*1 *2 *3 *3 *4 *4)
(|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6))
- (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5))))
+ (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5))))
((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367))
- (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5)))
+ (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367))
+ (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5)))
(-5 *1 (-873 *5 *6 *7))))
((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1265 *5 *6 *7)) (-4 *5 (-367))
- (-14 *6 (-1183)) (-14 *7 *5) (-5 *2 (-412 (-1246 *6 *5)))
+ (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367))
+ (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5)))
(-5 *1 (-873 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-294))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-454 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *1 (-1040 *2))
+ (-4 *2 (-13 (-1108) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))
+ ((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1167)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3))
- (-4 *3 (-13 (-435 *4) (-1008))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-5 *2 (-569))
+ (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1251 *5))
+ (-4 *6 (-13 (-409) (-1046 *5) (-367) (-1210) (-287)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
+ (-4 *3 (-1251 *4))
+ (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3))
(-4 *5 (-377 *3)) (-5 *2 (-776))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
(-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129))))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112))
- (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))))))
-(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208)))))
- ((*1 *1 *1 *1) (-4 *1 (-798))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569)))))
- (-4 *2 (-13 (-855) (-21))))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
-(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1276)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-561))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
- (-4 *3 (-1106)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *2 (-1117 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *4)) (-4 *4 (-1055)) (-4 *2 (-1249 *4))
- (-5 *1 (-449 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-412 (-1179 (-319 *5)))) (-5 *3 (-1273 (-319 *5)))
- (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1136 *5)))))
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5)))
+ (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569)))))
+ (-14 *6 (-927)))))
+(((*1 *1) (-5 *1 (-294))))
+(((*1 *1 *1) (-5 *1 (-1071))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2))
+ (-4 *2 (-1251 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-333)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569))))))
+ (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4))))
+ (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1185))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1210) (-965)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4))))
+ (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *2))
+ (-4 *2 (-13 (-29 *6) (-1210) (-965)))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1275 *5) "failed"))
+ (|:| -2403 (-649 (-1275 *5)))))
+ (-5 *1 (-672 *5)) (-5 *4 (-1275 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1275 *5) "failed"))
+ (|:| -2403 (-649 (-1275 *5)))))
+ (-5 *1 (-672 *5)) (-5 *4 (-1275 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-649
+ (-2 (|:| |particular| (-3 (-1275 *5) "failed"))
+ (|:| -2403 (-649 (-1275 *5))))))
+ (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367))
+ (-5 *2
+ (-649
+ (-2 (|:| |particular| (-3 (-1275 *5) "failed"))
+ (|:| -2403 (-649 (-1275 *5))))))
+ (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448))))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448))))
+ (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4448))))
+ (-5 *2
+ (-649
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2403 (-649 *7)))))
+ (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7))
+ (-4 *3 (-692 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1210) (-965)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1185))
+ (-4 *7 (-13 (-29 *6) (-1210) (-965)))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7)))))
+ (-5 *1 (-807 *6 *7)) (-5 *4 (-1275 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1185))
+ (-4 *6 (-13 (-29 *5) (-1210) (-965)))
+ (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-1275 *6))) (-5 *1 (-807 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114)))
+ (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965)))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7)))))
+ (-5 *1 (-807 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114)))
+ (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965)))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7)))))
+ (-5 *1 (-807 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1185))
+ (-4 *7 (-13 (-29 *6) (-1210) (-965)))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -2403 (-649 *7))) *7 "failed"))
+ (-5 *1 (-807 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1185))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -2403 (-649 *3))) *3 "failed"))
+ (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1210) (-965)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2))
+ (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-5 *1 (-807 *6 *2))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2))
+ (-4 *2 (-13 (-29 *6) (-1210) (-965)))
+ (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *1 (-807 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-813)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
+ (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
+ (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383)))
+ (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
+ (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383)))
+ (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383)))
+ (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -2403 (-649 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-367)) (-4 *7 (-661 *6))
+ (-5 *2 (-2 (|:| |particular| (-1275 *6)) (|:| -2403 (-694 *6))))
+ (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1043)) (-5 *1 (-903))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-904)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-903))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167))
+ (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383))
+ (-5 *2 (-1043)) (-5 *1 (-903))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167))
+ (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1043))
+ (-5 *1 (-903))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383)))
+ (-5 *1 (-1031)) (-5 *4 (-383))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1031))
+ (-5 *4 (-383))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4))
+ (-5 *3 (-319 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4))
+ (-5 *3 (-297 (-319 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5))
+ (-5 *3 (-297 (-319 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5))
+ (-5 *3 (-319 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-1185)))
+ (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1139 *5))
+ (-5 *3 (-649 (-297 (-319 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185)))
+ (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5))))))
+ (-5 *1 (-1194 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-1185))) (-4 *5 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1194 *5))
+ (-5 *3 (-649 (-297 (-412 (-958 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561))
+ (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1194 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4))))))
+ (-5 *1 (-1194 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185)) (-4 *5 (-561))
+ (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5))
+ (-5 *3 (-412 (-958 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185)) (-4 *5 (-561))
+ (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5))
+ (-5 *3 (-297 (-412 (-958 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4)))))
+ (-5 *1 (-1194 *4)) (-5 *3 (-412 (-958 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4)))))
+ (-5 *1 (-1194 *4)) (-5 *3 (-297 (-412 (-958 *4)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889))
+ (-5 *3 (-649 (-569))))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8))))
+ (-5 *5 (-776)) (-5 *6 (-1167)) (-4 *8 (-13 (-310) (-147)))
+ (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1185))))
+ (-4 *10 (-798))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-649
+ (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11))
+ (|:| |wcond| (-649 (-958 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *8))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *8))))))))))
+ (|:| |rgsz| (-569))))
+ (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-193)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1248 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1185))
+ (-4 *5 (-367)) (-5 *1 (-929 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1181 *5))
+ (-5 *1 (-929 *4 *5)) (-14 *4 (-1185))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367))
+ (-5 *2 (-412 (-958 *6))) (-5 *1 (-1058 *5 *6)) (-14 *5 (-1185)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-649 *7) *7 (-1181 *7))) (-5 *5 (-1 (-423 *7) *7))
+ (-4 *7 (-1251 *6)) (-4 *6 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4312 *3))))
+ (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7))
+ (-4 *8 (-661 (-412 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2
+ (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4312 (-659 *6 (-412 *6))))))
+ (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1183))
+ (-2 (|:| |var| (-1185))
(|:| |arrayIndex| (-649 (-958 (-569))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1183)) (|:| |rand| (-867))
+ (-2 (|:| |var| (-1185)) (|:| |rand| (-867))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1182)) (|:| |thenClause| (-333))
+ (-2 (|:| |switch| (-1184)) (|:| |thenClause| (-333))
(|:| |elseClause| (-333))))
(|:| |returnBranch|
- (-2 (|:| -3218 (-112))
- (|:| -2185
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2622 (-867))))))
+ (-2 (|:| -3162 (-112))
+ (|:| -2188
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867))))))
(|:| |blockBranch| (-649 (-333)))
- (|:| |commentBranch| (-649 (-1165))) (|:| |callBranch| (-1165))
+ (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167))
(|:| |forBranch|
- (-2 (|:| -2080 (-1098 (-958 (-569))))
- (|:| |span| (-958 (-569))) (|:| -3583 (-333))))
- (|:| |labelBranch| (-1126))
- (|:| |loopBranch| (-2 (|:| |switch| (-1182)) (|:| -3583 (-333))))
+ (-2 (|:| -3743 (-1100 (-958 (-569))))
+ (|:| |span| (-958 (-569))) (|:| -3586 (-333))))
+ (|:| |labelBranch| (-1128))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 (-333))))
(|:| |commonBranch|
- (-2 (|:| -3570 (-1183)) (|:| |contents| (-649 (-1183)))))
+ (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185)))))
(|:| |printBranch| (-649 (-867)))))
(-5 *1 (-333)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
- (-5 *2
- (-649
- (-2 (|:| -3975 (-776))
- (|:| |eqns|
- (-649
- (-2 (|:| |det| *8) (|:| |rows| (-649 (-569)))
- (|:| |cols| (-649 (-569))))))
- (|:| |fgb| (-649 *8)))))
- (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-694 *4)) (-4 *5 (-661 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4))
+ (-4 *4 (-1225)) (-5 *2 (-112)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1265 *2 *3 *4)) (-4 *2 (-1055)) (-14 *3 (-1183))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584)))))
-(((*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1249 *6))
- (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1044 (-569))))
- (-4 *8 (-1249 (-412 *7))) (-5 *2 (-591 *3))
- (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-367)) (-4 *7 (-1251 *6))
+ (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-544 *4 *2 *5 *6))
- (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1064)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
- (-4 *3 (-1249 *4)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4))
- (-14 *3 (-649 (-1183))) (-4 *4 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1183)))
- (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1055))
- (-4 *5 (-239 (-2426 *3) (-776)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4))
- (-14 *3 (-649 (-1183))) (-4 *4 (-1055)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-694 *5)) (-4 *5 (-1055)) (-5 *1 (-1060 *3 *4 *5))
- (-14 *3 (-776)) (-14 *4 (-776)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-541)))))
-(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3))
+ (-4 *3 (-13 (-435 *4) (-1010))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-848 (-383)))) (-5 *2 (-1100 (-848 (-226))))
- (-5 *1 (-308)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277)))))
-(((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-617 *4)) (-5 *6 (-1183))
- (-4 *4 (-13 (-435 *7) (-27) (-1208)))
- (-4 *7 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1106)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057))
+ (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
+ (-5 *2 (-418 *4 (-412 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1275 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4)))
+ (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *3 (-310))
+ (-5 *1 (-418 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-365 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-654 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27))
+ (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185)))
+ (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-541)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3))
+ (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1185 (-412 (-569))))
- (-5 *1 (-191)))))
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353))
+ (-4 *2
+ (-13 (-407)
+ (-10 -7 (-15 -3796 (*2 *4)) (-15 -2731 ((-927) *2))
+ (-15 -2403 ((-1275 *2) (-927))) (-15 -1679 (*2 *2)))))
+ (-5 *1 (-360 *2 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1280)) (-5 *1 (-836)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *3 *5))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2))
+ (-4 *5 (-661 (-412 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *5 *3))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-661 *2))
+ (-4 *3 (-661 (-412 *2))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-797)) (-4 *3 (-173)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |k| (-1183)) (|:| |c| (-1295 *3)))))
- (-5 *1 (-1295 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1297 *3 *4)))))
- (-5 *1 (-1297 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1106))
- (-5 *1 (-683 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1106)) (-5 *1 (-687 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825))
- (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
- (|:| |expense| (-383)) (|:| |accuracy| (-383))
- (|:| |intermediateResults| (-383))))
- (-5 *2 (-1041)) (-5 *1 (-308)))))
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-561)))))
-(((*1 *1) (-5 *1 (-1069))))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-561))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-412 (-569)))
- (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4))))
+ (-12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561))
+ (-5 *2 (-112)) (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-1251 (-170 (-569)))) (-4 *4 (-13 (-367) (-853)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5))
- (-4 *5 (-13 (-561) (-1044 (-569)))) (-5 *2 (-1179 (-412 (-569))))
- (-5 *1 (-438 *5 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1055) (-855)))
- (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055))
- (-4 *2 (-1264 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1251 (-412 (-569)))) (-5 *1 (-919 *3 *2))
+ (-4 *2 (-1251 (-412 *3))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1093)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226))
- (-5 *7 (-694 (-569)))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-1240 (-569))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -2395 *5))))
- (-4 *5 (-1249 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5))
- (-5 *1 (-217 *4 *5))))
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367))
+ (-4 *5 (-561)) (-5 *2 (-1275 *5)) (-5 *1 (-643 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-2 (|:| -3796 *5) (|:| -3868 (-569)))))
- (-5 *4 (-569)) (-4 *5 (-1249 *4)) (-5 *2 (-649 *5))
- (-5 *1 (-701 *5)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055))
- (-5 *1 (-695 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4))))
- (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226))
- (-5 *2 (-649 (-949 *4))) (-5 *1 (-1219)) (-5 *3 (-949 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173))))
- ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2))))
- ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-112)) (-5 *1 (-898 *4))
- (-4 *4 (-1106)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5))
+ (-1749 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1275 (-412 *5)))
+ (-5 *1 (-643 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
+ (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-855))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-988 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *1) (-5 *1 (-1093))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112))
+ (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-423 (-1179 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1179 *1))
- (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1106))))
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193))))
((*1 *2 *3)
- (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
- (-4 *4 (-173)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372))
+ (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485)))))
(((*1 *2 *3 *2)
(-12 (-5 *2 (-649 (-383))) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473))))
((*1 *2 *1) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274))))
+ (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-857 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-858 *5 *3))
- (-4 *3 (-857 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))))
+ (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))))
+(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-855))
+ (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-855))
(-4 *5 (-798)) (-4 *2 (-268 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1223))))
+(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210)))))
+ ((*1 *1 *1 *1) (-4 *1 (-798))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225))))
((*1 *1 *2)
(-12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(-12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-383))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(-12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(-12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
(-12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5))
- (-4 *5 (-1044 (-569))) (-14 *3 (-649 (-1183)))
- (-14 *4 (-649 (-1183))) (-4 *5 (-392))))
+ (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
((*1 *1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2))
(-14 *4 (-649 *2)) (-4 *5 (-392))))
((*1 *1 *2)
(-12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5))
- (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-1183)))))
+ (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185)))))
((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388))))
((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388))))
((*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388))))
@@ -7041,30 +7406,30 @@
((*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-4 *1 (-401))))
((*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-4 *1 (-401))))
((*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-4 *1 (-401))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-569))))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 (-412 (-958 (-383))))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-569)))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 (-958 (-383)))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-569)))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 (-319 (-383)))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(|:| |mdnia|
(-2 (|:| |fn| (-319 (-226)))
- (|:| -2080 (-649 (-1100 (-848 (-226)))))
+ (|:| -3743 (-649 (-1102 (-848 (-226)))))
(|:| |abserr| (-226)) (|:| |relerr| (-226))))))
(-5 *1 (-774))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
(|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
(|:| |abserr| (-226)) (|:| |relerr| (-226))))
(-5 *1 (-813))))
@@ -7073,13 +7438,13 @@
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226)))
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226)))
(|:| |lb| (-649 (-848 (-226))))
(|:| |cf| (-649 (-319 (-226))))
(|:| |ub| (-649 (-848 (-226))))))
(|:| |lsa|
(-2 (|:| |lfn| (-649 (-319 (-226))))
- (|:| -2305 (-649 (-226)))))))
+ (|:| -2307 (-649 (-226)))))))
(-5 *1 (-846))))
((*1 *2 *1)
(-12
@@ -7090,294 +7455,297 @@
(-2 (|:| |start| (-226)) (|:| |finish| (-226))
(|:| |grid| (-776)) (|:| |boundaryType| (-569))
(|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167))
(|:| |tol| (-226))))
(-5 *1 (-904))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-982 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-984 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1225))))
((*1 *1 *2)
- (-2774
+ (-2776
(-12 (-5 *2 (-958 *3))
- (-12 (-1745 (-4 *3 (-38 (-412 (-569)))))
- (-1745 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-12 (-1749 (-4 *3 (-38 (-412 (-569)))))
+ (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798))
(-4 *5 (-855)))
(-12 (-5 *2 (-958 *3))
- (-12 (-1745 (-4 *3 (-550))) (-1745 (-4 *3 (-38 (-412 (-569)))))
- (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569)))))
+ (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798))
(-4 *5 (-855)))
(-12 (-5 *2 (-958 *3))
- (-12 (-1745 (-4 *3 (-998 (-569)))) (-4 *3 (-38 (-412 (-569))))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5)) (-4 *4 (-798))
+ (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569))))
+ (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798))
(-4 *5 (-855)))))
((*1 *1 *2)
- (-2774
- (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
+ (-2776
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5))
+ (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
+ (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))))
((*1 *1 *2)
- (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055))
+ (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057))
(-4 *4 (-798)) (-4 *5 (-855)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1041))
- (-5 *1 (-753)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-649 (-958 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4))
- (-4 *3 (-422 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173))
- (-14 *5 (-927)) (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-97)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933))
- (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-1100 (-226))) (-5 *2 (-933))
- (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-932))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-932))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-396)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1183)))
- (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5))
- (-4 *5 (-13 (-853) (-367)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4))
- (-4 *4 (-13 (-853) (-367))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4))
- (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798))
- (-4 *4 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *5 (-1249 *4)) (-5 *2 (-1179 (-412 *5))) (-5 *1 (-620 *4 *5))
- (-5 *3 (-412 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-147) (-27) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-5 *2 (-1179 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147)))
- (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3))
- (-4 *3 (-13 (-1208) (-29 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
- (-4 *2 (-1264 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1249 *3))
- (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1264 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
- (-4 *2 (-1264 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-13 (-561) (-147)))
- (-5 *1 (-1159 *3)))))
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855))
+ (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
+ (-4 *2 (-1251 *4)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1043)) (-5 *1 (-759)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1251 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1251 *4)) (-5 *1 (-814 *4 *2 *3 *5))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2))
+ (-4 *5 (-661 (-412 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))))
(((*1 *1 *1 *2)
(-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367))))
((*1 *2 *1)
- (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173))))
+ (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353))
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353))
(-5 *1 (-533 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
- (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1163 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6))
- (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1264 *5)) (-4 *6 (-1249 *5)))))
+ (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (-4 *2 (-1057)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1163 *4))) (-5 *1 (-288 *4 *5))
- (-5 *3 (-1163 *4)) (-4 *5 (-1264 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1193)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-399))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1203)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -4202 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3))))
- (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
- (-4 *2 (-1223)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-779)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-971)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-975 *5 *3)) (-4 *3 (-1249 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-815 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5))))
+ (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
(-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-569)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-815 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5))))
+ (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))))
+(((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879))
+ (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1276))
+ (-5 *1 (-1279))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265)))
+ (-5 *2 (-1276)) (-5 *1 (-1279)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1196 *3)))))
+(((*1 *1) (-5 *1 (-473))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108))
+ (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5))
+ (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4))
+ (-4 *4 (-1108))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108))
+ (-4 *6 (-13 (-1108) (-1046 *3))) (-4 *3 (-892 *5))
+ (-5 *1 (-937 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108))
+ (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1046 (-617 $))))
+ (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5)))
+ (-5 *1 (-938 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550))
+ (-5 *1 (-939 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1108))
+ (-4 *6 (-13 (-1108) (-1046 (-617 $)) (-619 *4) (-892 *5)))
+ (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108))
+ (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3)))
+ (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6))
+ (-4 *6 (-1108)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4)))
+ (-4 *7 (-798)) (-4 *9 (-13 (-1057) (-892 *6)))
+ (-5 *1 (-942 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108))
+ (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5))
+ (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *8 (-13 (-1057) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-1000 *6))
+ (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5))
+ (-5 *1 (-945 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-895 *5 (-1185))) (-5 *3 (-1185)) (-5 *4 (-898 *5))
+ (-4 *5 (-1108)) (-5 *1 (-946 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9)))
+ (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1108))
+ (-4 *9 (-13 (-1057) (-619 (-898 *7)) (-1046 *8)))
+ (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1057))
+ (-5 *1 (-947 *7 *8 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6))
+ (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)))))
(((*1 *1 *2 *3)
(-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569)))))
(-4 *2 (-13 (-855) (-21))))))
-(((*1 *2)
- (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-422 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-958 (-569)))))
- (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *3 *6)) (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274)))))
-(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -4339 *4))))
+ (-5 *1 (-701 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-779)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-971)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
+ (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1275 (-649 (-2 (|:| -2188 (-916 *3)) (|:| -2150 (-1128))))))
+ (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128))))))
+ (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128))))))
+ (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1185)) (-5 *2 (-617 *6))
+ (-4 *6 (-435 *5)) (-4 *5 (-1108)) (-5 *1 (-578 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7))
+ (-5 *5 (-1 (-423 *7) *7))
+ (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7))
+ (-5 *5 (-1 (-423 *7) *7))
+ (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367)))
- (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *7 (-346 *4 *5 *6))
- (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927)))))
- ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4))
- (-4 *4 (-1249 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1055))
- (-4 *3 (-855))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6))
+ (-4 *6 (-1251 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4))
- (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6)))
- (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1044 (-569))))
- (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6))
+ (-4 *6 (-1251 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-142 *3 *4 *2))
+ (-4 *2 (-377 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
- (-4 *4 (-1249 (-412 (-569)))) (-4 *5 (-1249 (-412 *4)))
- (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776))
- (-5 *1 (-918 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367))
- (-4 *7 (-1249 *6)) (-4 *4 (-1249 (-412 *7))) (-4 *8 (-346 *6 *7 *4))
- (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776))
- (-5 *1 (-1024 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-4 *3 (-561))
- (-5 *2 (-776))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1193)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-412 (-1179 (-319 *3)))) (-4 *3 (-561))
- (-5 *1 (-1136 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5))
- (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3))
- (-4 *3 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1106)))))
-(((*1 *1) (-5 *1 (-583))))
-(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1055)))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-4 *2 (-377 *4))
+ (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561))
+ (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-1244 *3 *4 *2))
+ (-4 *2 (-1251 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3))
+ (-4 *3 (-955 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4))))
+ (-5 *1 (-930 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4))))
+ (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))))
+(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1183))) (-5 *1 (-211))
- (-5 *3 (-1183))))
+ (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1185))) (-5 *1 (-211))
+ (-5 *3 (-1185))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1183)))
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1185)))
(-5 *1 (-269))))
((*1 *2 *1)
(-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
@@ -7390,37 +7758,60 @@
((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855))))
((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))
((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
+ (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
(-5 *2 (-649 *3)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1057)) (-4 *1 (-1251 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1110 (-776))) (-5 *6 (-776))
+ (-5 *2
+ (-2 (|:| |contp| (-569))
+ (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569)))))))
+ (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1179 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3))
- (-4 *3 (-367)))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 (-1179 *4))) (-5 *3 (-1179 *4))
- (-4 *4 (-915)) (-5 *1 (-668 *4)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-2 (|:| -3906 (-114)) (|:| |w| (-226)))) (-5 *1 (-205)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1210)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1181 *3))
+ (-4 *3 (-13 (-435 *7) (-27) (-1210)))
+ (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3))
+ (-5 *6 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1210)))
+ (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1036 *4))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))
+ (-5 *2 (-1043)) (-5 *1 (-753)))))
(((*1 *2 *1 *3)
(-12 (-5 *2 (-412 (-569))) (-5 *1 (-117 *4)) (-14 *4 *3)
(-5 *3 (-569))))
@@ -7431,268 +7822,264 @@
((*1 *2 *1 *3)
(-12 (-14 *4 *3) (-5 *2 (-412 (-569))) (-5 *1 (-877 *4 *5))
(-5 *3 (-569)) (-4 *5 (-874 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1018)) (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-412 (-569)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1074 *2 *3)) (-4 *2 (-13 (-853) (-367)))
- (-4 *3 (-1249 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3793 (*2 (-1183))))
- (-4 *2 (-1055)))))
-(((*1 *1 *1) (-4 *1 (-561))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
-(((*1 *1 *1) (-4 *1 (-874 *2))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-617 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1183)))
- (-4 *2 (-13 (-435 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1106)))))
-(((*1 *2)
- (-12 (-14 *4 (-776)) (-4 *5 (-1223)) (-5 *2 (-134))
- (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4))
- (-4 *3 (-332 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-173))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367)))
+ (-4 *3 (-1251 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1055)) (-5 *2 (-927))))
- ((*1 *2) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353))
- (-5 *2 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126))))))
- (-5 *1 (-350 *4)))))
+ (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3796 (*2 (-1185))))
+ (-4 *2 (-1057)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226)))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367))
+ (-14 *4 (-1001 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
+ ((*1 *1 *1) (|partial| -4 *1 (-727)))
+ ((*1 *1 *1) (|partial| -4 *1 (-731)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367)))
+ (-4 *2 (-1251 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-985 *3 *4 *5 *6)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383))))
((*1 *1 *1 *1) (-4 *1 (-550)))
((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-776)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-824 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-851)) (-5 *1 (-1296 *3 *2)) (-4 *3 (-1055)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1163 *4)) (-5 *3 (-569)) (-4 *4 (-1055))
- (-5 *1 (-1167 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-569)) (-5 *1 (-1265 *3 *4 *5)) (-4 *3 (-1055))
- (-14 *4 (-1183)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-993 *3 *4 *5 *2))
- (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1246 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825))
- (-14 *5 (-1183)) (-5 *2 (-569)) (-5 *1 (-1120 *4 *5)))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1115 *5 *6 *7 *8 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1163 (-226)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2080
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1041)) (-5 *1 (-308)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1108))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569))
+ (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855)))
+ (-14 *3 (-649 (-1185))))))
+(((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-371 *3)))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1108)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-1275 *2)) (-4 *5 (-310))
+ (-4 *6 (-1000 *5)) (-4 *2 (-13 (-414 *6 *7) (-1046 *6)))
+ (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1251 *6)))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1249 (-170 *2))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1163 (-958 *4)) (-1163 (-958 *4))))
- (-5 *1 (-1281 *4)) (-4 *4 (-367)))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5))
+ (-4 *4 (-1108)) (-4 *5 (-1108)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *1) (-5 *1 (-187))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-4 *1 (-853)))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-4 *1 (-1066))) ((*1 *1 *1) (-4 *1 (-1145))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1251 *2))
+ (-4 *2 (-173))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1251 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4))
+ (-4 *3 (-414 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1251 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4))
+ (-4 *4 (-414 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-173))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1093)))))
+(((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569)))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-758)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853)))
+ (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *5))))
+ (-5 *1 (-182 *5 *3)) (-4 *3 (-1251 (-170 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-367) (-853)))
+ (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *4))))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-855))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1208)))
- (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-588 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-591 (-412 (-958 *3))))
- (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *1 (-594 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -3361 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3))))
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310))
+ (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1050 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057))
+ (-5 *2 (-649 (-649 (-649 (-949 *3))))))))
+(((*1 *1) (-5 *1 (-187))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372))
+ (-4 *6 (-1057)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1037 *6))
+ (-5 *3 (-649 (-694 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1057))
+ (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1037 *4))
+ (-5 *3 (-649 (-694 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1273 *5)) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
+ (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5))
(-5 *3 (-649 (-694 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1273 (-1273 *5))) (-4 *5 (-367)) (-4 *5 (-1055))
- (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1035 *5))
- (-5 *3 (-649 (-694 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1150))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1150)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *1) (-5 *1 (-1274))))
+ (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5))
+ (-5 *3 (-649 (-694 *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1057)) (-4 *3 (-367))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
+ (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1219)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9))))
- (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8))
- (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855))
- (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3660 *9))))
- (-5 *1 (-1078 *6 *7 *4 *8 *9)))))
-(((*1 *1) (-5 *1 (-187))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569))))
+ (-5 *1 (-1118)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4))
- (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798))
- (-4 *4 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $)))))
- (-4 *6 (-561)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1264 *4))
- (-4 *4 (-38 (-412 (-569))))
- (-5 *2 (-1 (-1163 *4) (-1163 *4) (-1163 *4))) (-5 *1 (-1266 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))))
+ (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-4 *2 (-1251 *5))
+ (-5 *1 (-1269 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1266 *5)))))
+(((*1 *1 *1) (-5 *1 (-1071))))
+(((*1 *2)
+ (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5)))
+ (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1179 *1))) (-5 *3 (-1179 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
- ((*1 *2 *1) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1864 (-787 *3)) (|:| |coef1| (-787 *3))))
- (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -1864 *1) (|:| |coef1| *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179 *1)) (-4 *1 (-1018)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 (-958 *6))) (-4 *6 (-561))
- (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2))
- (-4 *5 (-798))
- (-4 *4 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3059 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5))
+ (-4 *3 (-1108)) (-4 *5 (-671 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-1108 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-649 *4))) (-5 *1 (-910 *4))
- (-5 *3 (-649 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1106)) (-5 *2 (-1108 (-1108 *4))) (-5 *1 (-910 *4))
- (-5 *3 (-1108 *4))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1225))
+ (-4 *5 (-377 *4)) (-4 *2 (-377 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *1) (-5 *1 (-187))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
- (-5 *2
- (-649
- (-2 (|:| |det| *8) (|:| |rows| (-649 (-569)))
- (|:| |cols| (-649 (-569))))))
- (-5 *1 (-930 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-867)))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *7 *2)) (-4 *6 (-1057))
+ (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776))
- (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
-(((*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-1106))))
- ((*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
- (-5 *2 (-649 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1106)) (-4 *2 (-1106))
- (-5 *1 (-616 *2 *4)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *4))
- (-4 *4 (-1223)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1106)) (-5 *2 (-776)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
+ (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-1057))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1221))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2))
+ (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569))))
+ (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))))
+(((*1 *1) (-5 *1 (-294))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-756)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797))
(-4 *2 (-367))))
((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-226))))
((*1 *1 *1 *1)
- (-2774 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223)))
- (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223)))))
+ (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225)))
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225)))))
((*1 *1 *1 *1) (-4 *1 (-367)))
((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1131 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1108))
(-4 *1 (-435 *3))))
((*1 *1 *1 *1) (-4 *1 (-478)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
((*1 *1 *1 *1) (-5 *1 (-541)))
((*1 *1 *2 *3)
(-12 (-4 *4 (-173)) (-5 *1 (-626 *2 *4 *3)) (-4 *2 (-38 *4))
@@ -7708,154 +8095,158 @@
(-12 (-4 *4 (-173)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4))
(-4 *2 (|SubsetCategory| (-731) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
(-4 *4 (-377 *2)) (-4 *2 (-367))))
((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *1 *1 *1)
(|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367))
- (-4 *2 (-1055)) (-14 *3 (-649 (-1183))) (-14 *4 (-649 (-776)))
+ (-4 *2 (-1057)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-776)))
(-14 *5 (-776))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055))
+ (-12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057))
(-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-367))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-367))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1055)) (-4 *3 (-855))
+ (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1057)) (-4 *3 (-855))
(-4 *4 (-798)) (-14 *6 (-649 *3))
- (-5 *1 (-1285 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3))
+ (-5 *1 (-1287 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3))
(-14 *7 (-649 (-776))) (-14 *8 (-776))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1055))
+ (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1057))
(-4 *3 (-851)))))
(((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
-(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706))))
- ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1100 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
- (-5 *1 (-308))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
- (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1192 *5)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-649 (-226))) (-5 *1 (-205)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1126)) (-5 *2 (-1278)) (-5 *1 (-836)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-776)) (-4 *5 (-173))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-776)) (-4 *5 (-173))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1185))) (-14 *5 (-776))
+ (-5 *1 (-510 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1071)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *5 (-372))
- (-5 *2 (-776)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
+ (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-215 *2))
(-4 *2
(-13 (-855)
- (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $))
- (-15 -4224 ((-1278) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223))))
+ (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $))
+ (-15 -3567 ((-1280) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
(-4 *4 (-377 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
(-4 *4 (-377 *2))))
((*1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-21)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5))
- (|:| |c2| (-412 *5)) (|:| |deg| (-776))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $))
+ (-15 -4412 ((-1133 *3 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *3 (-617 $))))))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *5 (-1249 *4))
- (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4309 *5))))
+ (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185)))
+ (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *5 (-1251 *4))
+ (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4312 *5))))
(-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-661 *5))
(-4 *6 (-661 (-412 *5))))))
-(((*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))))
-(((*1 *1) (-5 *1 (-442))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-114)))))
-(((*1 *1) (-4 *1 (-973))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-998 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
- (-4 *3 (-377 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-998 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561))
- (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4)))
- (-5 *1 (-698 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *6 (-1249 *5))
- (-5 *2 (-2 (|:| -4309 *7) (|:| |rh| (-649 (-412 *6)))))
- (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6)))
- (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-998 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1242 *4 *5 *3))
- (-4 *3 (-1249 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-377 *2)) (-4 *2 (-1223))
- (-4 *2 (-855))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4445))
- (-4 *1 (-377 *3)) (-4 *3 (-1223)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1223)))))
+(((*1 *1) (-4 *1 (-975))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-760))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393))
+ (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-1132 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2)))
+ (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5))
+ (-4 *3 (-346 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229))
+ (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3)))
+ (|:| |vals| (-649 *3))))
+ (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457)))
+ (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457)))
+ (-5 *2 (-848 *4)) (-5 *1 (-1261 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185))
+ (-14 *6 *4))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-215 *2))
(-4 *2
(-13 (-855)
- (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $))
- (-15 -4224 ((-1278) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1223))))
+ (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $))
+ (-15 -3567 ((-1280) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131))))
+ (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-1249 *3))))
+ (-4 *2 (-1251 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
((*1 *1 *1 *1)
@@ -7863,290 +8254,294 @@
(-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
((*1 *1 *1 *1) (-5 *1 (-541)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
(-4 *4 (-377 *2))))
((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1219))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-25)))))
-(((*1 *1 *1) (-4 *1 (-1066)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2)))
- (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5))
- (-4 *3 (-346 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227))
- (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1106)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-25)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561))
+ (-5 *2 (-412 (-958 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561))
+ (-5 *2 (-412 (-958 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4))
- (-5 *3 (-649 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1223))))
+ (-12 (-4 *4 (-1057))
+ (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-4 *5 (-1057))
+ (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287)))
+ (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4)))
+ (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-827)))))
+(((*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1225))))
((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-541)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-617 *3))
- (-4 *3 (-13 (-435 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3)))
- (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-141)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6))
+ (-4 *6 (-457)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055))
- (-5 *3 (-569)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *6))))
- (-5 *4 (-1032 (-848 (-569)))) (-5 *5 (-1183)) (-5 *7 (-412 (-569)))
- (-4 *6 (-1055)) (-5 *2 (-867)) (-5 *1 (-600 *6)))))
-(((*1 *2) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1055))
- (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1249 *4)))))
+ (-12 (-4 *4 (-457))
+ (-5 *2
+ (-649
+ (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4))))
+ (|:| |geneigvec| (-649 (-694 (-412 (-958 *4))))))))
+ (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-927)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-797))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1256 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))))
+(((*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1108)) (-5 *1 (-973 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6)))
- (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1106))
- (-4 *8 (-13 (-1055) (-619 (-898 *6)) (-1044 *7)))
- (-5 *2 (-895 *6 *8)) (-4 *7 (-1055)) (-5 *1 (-947 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1037)))))
-(((*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
-(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226)))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
- (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2))
- (-4 *2 (-661 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-808)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6)) (-5 *4 (-1183)) (-4 *6 (-435 *5))
- (-4 *5 (-1106)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6)))))
-(((*1 *1) (-5 *1 (-511))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4))
- (-14 *4 (-649 (-1183))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1055)) (-4 *3 (-1106))
- (-5 *2 (-2 (|:| |val| *1) (|:| -4320 (-569)))) (-4 *1 (-435 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -4320 (-898 *3))))
- (-5 *1 (-898 *3)) (-4 *3 (-1106))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-4 *7 (-955 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -4320 (-569))))
- (-5 *1 (-956 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $))
- (-15 -4409 (*7 $))))))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -3903 (-114)) (|:| |arg| (-649 (-898 *3)))))
- (-5 *1 (-898 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4)))
- (-5 *1 (-898 *4)) (-4 *4 (-1106)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-867))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-5 *2 (-1280)) (-5 *1 (-1188))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1185))
+ (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280))
+ (-5 *1 (-1188))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1185))
+ (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280))
+ (-5 *1 (-1188)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165)))))
- (-5 *2 (-1041)) (-5 *1 (-308))))
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1251 (-412 (-569))))
+ (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))
+ (-5 *1 (-919 *3 *4)) (-4 *4 (-1251 (-412 *3)))))
((*1 *2 *3)
+ (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3))
+ (-4 *3 (-1251 (-412 *4))))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))
- (-5 *2 (-1041)) (-5 *1 (-308)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-569)) (-5 *1 (-205)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1112)) (-5 *1 (-282)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 *3))))
+ (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-52)) (-5 *1 (-898 *4))
+ (-4 *4 (-1108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1108)) (-4 *4 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-114)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-457))
- (-5 *2
- (-649
- (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4))))
- (|:| |eigmult| (-776))
- (|:| |eigvec| (-649 (-694 (-412 (-958 *4))))))))
- (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))))
-(((*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1276))))
- ((*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-815 *4 *2))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1251 *4))
+ (-5 *1 (-815 *4 *2))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112))))
+ (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-955 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1)))
+ (-4 *1 (-1251 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *3 (-906 *6))
+ (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3))
+ (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
+ (-4 *3 (-377 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112))
- (-5 *1 (-361 *4))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-112))
- (-5 *1 (-533 *4)))))
+ (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4)))
+ (-5 *1 (-698 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *6 (-1251 *5))
+ (-5 *2 (-2 (|:| -4312 *7) (|:| |rh| (-649 (-412 *6)))))
+ (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6)))
+ (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1244 *4 *5 *3))
+ (-4 *3 (-1251 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055))
- (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
+ (-12 (|has| *6 (-6 -4448)) (-4 *4 (-367)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3))
+ (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4448)) (-4 *4 (-561)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *8 (-377 *7))
+ (-4 *9 (-377 *7)) (-5 *2 (-649 *6))
+ (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6))
+ (-4 *10 (-692 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3))
+ (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
+ (-5 *2 (-649 *7)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226))))
+ (-5 *2 (-1043)) (-5 *1 (-759)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 (-569)))) (-5 *1 (-471)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5))
- (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-1286 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))))
+ (-12 (-4 *4 (-1057))
+ (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367))
- (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1273 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-694 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-1273 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1249 *4)) (-5 *2 (-1273 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
- (-5 *2 (-1273 *3))))
+ (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *1)) (-5 *4 (-1275 *1)) (-4 *1 (-644 *5))
+ (-4 *5 (-1057))
+ (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173))
- (-5 *2 (-694 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367))
- (-5 *2 (-1273 *5)) (-5 *1 (-1092 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1126)))
- (-5 *1 (-350 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
+ (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1057))
+ (-5 *2 (-694 *4)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-764)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1274))))
- ((*1 *1 *1) (-5 *1 (-1274))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))
- ((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053))
- (-5 *3 (-569)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112))
- (-5 *2 (-1041)) (-5 *1 (-750)))))
-(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-798))
- (-4 *5 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *6 (-561))
- (-5 *2 (-2 (|:| -3217 (-958 *6)) (|:| -2569 (-958 *6))))
- (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4))
- (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1163 *4) (-1163 *4)))
- (-5 *1 (-1266 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
+ (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *1) (-5 *1 (-1090))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225))
+ (-4 *2 (-855))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4448))
+ (-4 *1 (-377 *3)) (-4 *3 (-1225)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1057))
+ (-5 *1 (-1036 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1057))
+ (-5 *1 (-1036 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1249 (-48))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932)))))
+ (-12 (-4 *4 (-1057)) (-4 *5 (-1251 *4)) (-5 *2 (-1 *6 (-649 *6)))
+ (-5 *1 (-1269 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1266 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1106)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3)))
- (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-705 *3))
- (-4 *3 (-310)))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1365 (-649 *3)) (|:| -2916 (-649 *3))))
+ (-5 *1 (-1226 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855))
+ (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310))
+ (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5))
+ (-5 *2 (-649 (-2 (|:| -3709 *5) (|:| -4312 *3))))
+ (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6))
+ (-4 *7 (-661 (-412 *6))))))
+(((*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -8159,537 +8554,266 @@
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
(-5 *1 (-333)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3))
- (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1249 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8))
- (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147)))
- (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-112))
- (-5 *1 (-930 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4))
- (-5 *1 (-424 *4))))
- ((*1 *1 *1) (-5 *1 (-932)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
- ((*1 *1 *1) (-5 *1 (-933)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))
- (-5 *4 (-412 (-569))) (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))
- (-5 *1 (-1026 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))
- (-5 *4 (-412 (-569))) (-5 *1 (-1027 *3)) (-4 *3 (-1249 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569)))))
- (-5 *1 (-1027 *3)) (-4 *3 (-1249 (-412 (-569))))))
+ (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-776)) (-4 *5 (-173))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1067 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-776)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
- (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
((*1 *1 *2)
- (-12 (-4 *2 (-1055)) (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
- (-4 *5 (-239 *3 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+ (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3))
+ (-4 *4 (-377 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1150 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1057)))))
+(((*1 *1 *1) (-5 *1 (-1071))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1864 (-787 *3)) (|:| |coef2| (-787 *3))))
- (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -1864 *1) (|:| |coef2| *1)))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-866))))
- ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-867))))
- ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-968)))))
-(((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827)))))
-(((*1 *1) (-5 *1 (-442))))
+ (-12 (-4 *3 (-367)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057))
+ (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280))
+ (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1106)) (-4 *2 (-372)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1273 (-704))) (-5 *1 (-308)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1041))
- (-5 *1 (-759)))))
+ (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1181 *4))) (-5 *1 (-361 *4))
+ (-5 *3 (-1181 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-867))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-968)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7))
+ (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225))
+ (-4 *7 (-1225)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1057))
+ (-5 *1 (-1173 *4 *5)) (-14 *4 (-927))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1057))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057))
+ (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2))
+ (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2))
+ (-4 *4 (-692 *2 *5 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1108))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1108))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1108))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057))
+ (-5 *1 (-719 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-454 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-649
+ (-649
+ (-3 (|:| -3573 (-1185))
+ (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))))
+ (-5 *1 (-1189)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225))))
((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1032 *3)) (-4 *3 (-1223)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1249 *2)) (-4 *2 (-1227)) (-5 *1 (-148 *2 *4 *3))
- (-4 *3 (-1249 (-412 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-700 *3)) (-4 *3 (-1106))
- (-5 *2 (-649 (-2 (|:| -2214 *3) (|:| -3558 (-776))))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4435)) (-4 *1 (-409))))
- ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-1195 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1165)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-412 (-958 (-569)))))
- (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4))
- (-4 *4 (-13 (-853) (-367)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569))))))
- (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4))
- (-4 *4 (-13 (-853) (-367)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4))))
- (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-412 (-958 (-569)))))
- (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4))
- (-4 *4 (-13 (-853) (-367)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1183))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1208) (-965)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1903 (-649 *4))))
- (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *2))
- (-4 *2 (-13 (-29 *6) (-1208) (-965)))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
- (|:| -1903 (-649 (-1273 *5)))))
- (-5 *1 (-672 *5)) (-5 *4 (-1273 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
- (|:| -1903 (-649 (-1273 *5)))))
- (-5 *1 (-672 *5)) (-5 *4 (-1273 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-367))
- (-5 *2
- (-649
- (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
- (|:| -1903 (-649 (-1273 *5))))))
- (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367))
- (-5 *2
- (-649
- (-2 (|:| |particular| (-3 (-1273 *5) "failed"))
- (|:| -1903 (-649 (-1273 *5))))))
- (-5 *1 (-672 *5)) (-5 *4 (-649 (-1273 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445))))
- (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4445))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445))))
- (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4445))))
- (-5 *2
- (-649
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1903 (-649 *7)))))
- (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7))
- (-4 *3 (-692 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561))
- (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1034 *3)) (-4 *3 (-1225)))))
+(((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1251 *4)) (-5 *2 (-569))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561))
- (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1208) (-965)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1183))
- (-4 *7 (-13 (-29 *6) (-1208) (-965)))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1273 *7)) (|:| -1903 (-649 (-1273 *7)))))
- (-5 *1 (-807 *6 *7)) (-5 *4 (-1273 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1183))
- (-4 *6 (-13 (-29 *5) (-1208) (-965)))
- (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2 (-649 (-1273 *6))) (-5 *1 (-807 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114)))
- (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965)))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1273 *7)) (|:| -1903 (-649 (-1273 *7)))))
- (-5 *1 (-807 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114)))
- (-5 *5 (-1183)) (-4 *7 (-13 (-29 *6) (-1208) (-965)))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2
- (-2 (|:| |particular| (-1273 *7)) (|:| -1903 (-649 (-1273 *7)))))
- (-5 *1 (-807 *6 *7))))
+ (|partial| -12 (-4 *4 (-13 (-561) (-1046 *2) (-644 *2) (-457)))
+ (-5 *2 (-569)) (-5 *1 (-1124 *4 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1183))
- (-4 *7 (-13 (-29 *6) (-1208) (-965)))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1903 (-649 *7))) *7 "failed"))
- (-5 *1 (-807 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1183))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1903 (-649 *3))) *3 "failed"))
- (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1208) (-965)))))
+ (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569))
+ (-5 *1 (-1124 *6 *3))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2))
- (-4 *2 (-13 (-29 *6) (-1208) (-965))) (-5 *1 (-807 *6 *2))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2))
- (-4 *2 (-13 (-29 *6) (-1208) (-965)))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *1 (-807 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
- (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
- (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383)))
- (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1273 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4))
- (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383)))
- (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1273 (-319 *4))) (-5 *5 (-649 (-383)))
- (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1041)) (-5 *1 (-810))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -1903 (-649 *6))) "failed")
- *7 *6))
- (-4 *6 (-367)) (-4 *7 (-661 *6))
- (-5 *2 (-2 (|:| |particular| (-1273 *6)) (|:| -1903 (-694 *6))))
- (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1041)) (-5 *1 (-903))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-904)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-903))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165))
- (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383))
- (-5 *2 (-1041)) (-5 *1 (-903))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1165))
- (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1041))
- (-5 *1 (-903))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383)))
- (-5 *1 (-1029)) (-5 *4 (-383))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1029))
- (-5 *4 (-383))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4))
- (-5 *3 (-319 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4))
- (-5 *3 (-297 (-319 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5))
- (-5 *3 (-297 (-319 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5))
- (-5 *3 (-319 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-1183)))
- (-4 *5 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5))
- (-5 *3 (-649 (-297 (-319 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1183)))
- (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5))))))
- (-5 *1 (-1192 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-1183))) (-4 *5 (-561))
- (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1192 *5))
- (-5 *3 (-649 (-297 (-412 (-958 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561))
- (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1192 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4))))))
- (-5 *1 (-1192 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-561))
- (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5))
- (-5 *3 (-412 (-958 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-4 *5 (-561))
- (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1192 *5))
- (-5 *3 (-297 (-412 (-958 *5))))))
+ (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-1167))
+ (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569))
+ (-5 *1 (-1124 *6 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4)))))
- (-5 *1 (-1192 *4)) (-5 *3 (-412 (-958 *4)))))
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569))
+ (-5 *1 (-1125 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 (-412 (-958 *6))))
+ (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569))
+ (-5 *1 (-1125 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1185))
+ (-5 *5 (-1167)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4)))))
- (-5 *1 (-1192 *4)) (-5 *3 (-297 (-412 (-958 *4)))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4444)) (-4 *1 (-494 *4))
- (-4 *4 (-1223)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1278)) (-5 *1 (-836)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1249 (-412 (-569)))) (-5 *1 (-919 *3 *2))
- (-4 *2 (-1249 (-412 *3))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-855))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *1 (-986 *3)) (-4 *3 (-1055))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1077 *4 *5 *6 *7))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 *1)) (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-649 *1))
- (-4 *1 (-1077 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
+ (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *6)) (-4 *6 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-1181 *7)) (-5 *1 (-324 *4 *5 *6 *7))
+ (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-1068)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-797)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1194 *3)))))
+ (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-97)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-569)) (-14 *4 (-776)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-846)) (-5 *4 (-1069)) (-5 *2 (-1041)) (-5 *1 (-845))))
- ((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845))))
+ (-12 (-5 *3 (-846)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-845))))
+ ((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845))))
((*1 *2 *3 *4 *5 *6 *5)
(-12 (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383))))
- (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1041))
+ (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1043))
(-5 *1 (-845))))
((*1 *2 *3 *4 *5 *5)
(-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383)))
- (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1041)) (-5 *1 (-845))))
+ (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1043)) (-5 *1 (-845))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1041))
+ (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1043))
(-5 *1 (-845))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383)))
- (-5 *2 (-1041)) (-5 *1 (-845)))))
+ (-5 *2 (-1043)) (-5 *1 (-845)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
(((*1 *2 *1) (-12 (-5 *2 (-649 (-971))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1165) (-779))) (-5 *1 (-114)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114)))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-2 (|:| -3903 (-114)) (|:| |w| (-226)))) (-5 *1 (-205)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-569)) (-5 *5 (-1165)) (-5 *6 (-694 (-226)))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-371 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310))
- (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1048 *4)))))
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-1275 (-694 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 (-694 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367))
+ (-5 *2 (-1275 (-694 (-412 (-958 *5))))) (-5 *1 (-1094 *5))
+ (-5 *4 (-694 (-412 (-958 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367))
+ (-5 *2 (-1275 (-694 (-958 *5)))) (-5 *1 (-1094 *5))
+ (-5 *4 (-694 (-958 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367))
+ (-5 *2 (-1275 (-694 *4))) (-5 *1 (-1094 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4304 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+ (-12 (-5 *3 (-1110 *4)) (-4 *4 (-1108)) (-5 *2 (-1 *4))
+ (-5 *1 (-1025 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1102 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1249 *4)) (-5 *1 (-814 *4 *2 *3 *5))
- (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2))
- (-4 *5 (-661 (-412 *2))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
- (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5))
- (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4))
- (-4 *4 (-1106))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
- (-4 *6 (-13 (-1106) (-1044 *3))) (-4 *3 (-892 *5))
- (-5 *1 (-937 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106))
- (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1044 (-617 $))))
- (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5)))
- (-5 *1 (-938 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550))
- (-5 *1 (-939 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1106))
- (-4 *6 (-13 (-1106) (-1044 (-617 $)) (-619 *4) (-892 *5)))
- (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
- (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3)))
- (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6))
- (-4 *6 (-1106)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4)))
- (-4 *7 (-798)) (-4 *9 (-13 (-1055) (-892 *6)))
- (-5 *1 (-942 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106))
- (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5))
- (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-13 (-1055) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1106)) (-4 *3 (-998 *6))
- (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5))
- (-5 *1 (-945 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-895 *5 (-1183))) (-5 *3 (-1183)) (-5 *4 (-898 *5))
- (-4 *5 (-1106)) (-5 *1 (-946 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9)))
- (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1106))
- (-4 *9 (-13 (-1055) (-619 (-898 *7)) (-1044 *8)))
- (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1055))
- (-5 *1 (-947 *7 *8 *9)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1183)) (-5 *2 (-617 *6))
- (-4 *6 (-435 *5)) (-4 *5 (-1106)) (-5 *1 (-578 *5 *6)))))
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-142 *3 *4 *2))
- (-4 *2 (-377 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-998 *4)) (-4 *2 (-377 *4))
- (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 *5)) (-4 *5 (-998 *4)) (-4 *4 (-561))
- (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-4 *4 (-998 *3)) (-5 *1 (-1242 *3 *4 *2))
- (-4 *2 (-1249 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1106)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2)))
+ (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5))
+ (-4 *3 (-346 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229))
+ (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057))
+ (-5 *1 (-1169 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057))
+ (-14 *4 (-1185)) (-14 *5 *3))))
+(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367))
- (-14 *4 (-999 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *1 *1) (|partial| -4 *1 (-727)))
- ((*1 *1 *1) (|partial| -4 *1 (-731)))
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798))
+ (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1188))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1074 *3 *2)) (-4 *3 (-13 (-853) (-367)))
- (-4 *2 (-1249 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
- (-4 *3 (-1106)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1055)) (-4 *3 (-367))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
- (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5)))))
+ (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280))
+ (-5 *1 (-1188))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280))
+ (-5 *1 (-1188)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776))))
((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-927))))
((*1 *1 *1 *1)
@@ -8698,32 +8822,32 @@
((*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157))))
((*1 *1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-157))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208)))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210)))
(-5 *1 (-228 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223))))
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-297 *2)) (-4 *2 (-1118)) (-4 *2 (-1223))))
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-131))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1106))))
+ (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855))))
+ (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
- (-4 *6 (-239 (-2426 *3) (-776)))
+ (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173))
+ (-4 *6 (-239 (-2428 *3) (-776)))
(-14 *7
- (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *6))
- (-2 (|:| -2150 *5) (|:| -4320 *6))))
+ (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6))
+ (-2 (|:| -2150 *5) (|:| -1993 *6))))
(-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855))
(-4 *2 (-955 *4 *6 (-869 *3)))))
((*1 *1 *1 *2)
@@ -8734,1910 +8858,1728 @@
(-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
(-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
((*1 *1 *1 *1) (-5 *1 (-541)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066))))
((*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-1 *7 *5))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-1 *7 *5))
(-5 *1 (-689 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1055)) (-4 *2 (-377 *3))
+ (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1057)) (-4 *2 (-377 *3))
(-4 *4 (-377 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
+ (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
(-4 *2 (-377 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
(-4 *4 (-377 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
(-4 *4 (-377 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
(-4 *4 (-377 *2))))
((*1 *1 *1 *1) (-4 *1 (-725))) ((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561))
- (-5 *1 (-975 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064))))
- ((*1 *1 *1 *1) (-4 *1 (-1118)))
+ (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561))
+ (-5 *1 (-977 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066))))
+ ((*1 *1 *1 *1) (-4 *1 (-1120)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *2 (-239 *3 *4))
+ (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *2 (-239 *3 *4))
(-4 *5 (-239 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4))
+ (-12 (-4 *1 (-1131 *3 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4))
(-4 *2 (-239 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-855)) (-5 *1 (-1132 *3 *4 *2))
+ (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2))
(-4 *2 (-955 *3 (-536 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1219))))
+ (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1221))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-731))))
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-569)) (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-569)) (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
+ (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
-(((*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-776)) (-4 *5 (-173))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-776)) (-4 *5 (-173))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
- (-248 *4 (-412 (-569)))))
- (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1183))) (-14 *5 (-776))
- (-5 *1 (-510 *4 *5)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 (-412 *2)))
- (-4 *2 (-1249 *4)) (-5 *1 (-345 *3 *4 *2 *5))
- (-4 *3 (-346 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1227))
- (-4 *4 (-1249 (-412 *2))) (-4 *2 (-1249 *3)))))
+ (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1197 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1057)) (-5 *1 (-719 *2 *4))
+ (-4 *4 (-653 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3))
(-4 *5 (-377 *3)) (-5 *2 (-649 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225))
(-5 *2 (-649 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
+(((*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-457))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-1165 (-226))) (-5 *1 (-193))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185)))
+ (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185)))
+ (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4)))
+ (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2))
+ (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173))
+ (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1048)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4))
+ (-5 *3 (-649 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1181 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185))
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834)) (-5 *3 (-1167)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-617 *3))
+ (-4 *3 (-13 (-435 *5) (-27) (-1210)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
(-649
- (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4))))
- (|:| |geneigvec| (-649 (-694 (-412 (-958 *4))))))))
- (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1110)) (-5 *1 (-282)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))))
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855))
+ (-5 *1 (-454 *4 *3 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1208)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055))
- (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-776)) (-4 *5 (-173))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
- (-4 *4 (-173))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
- (-4 *4 (-377 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1055)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3))
- (-4 *4 (-377 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1148 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1055)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1055))
- (-5 *1 (-1171 *4 *5)) (-14 *4 (-927))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-927)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055))
- (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
+ (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569)
+ *6))
+ (-4 *6 (-367)) (-4 *7 (-1251 *6))
+ (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
- (-5 *2 (-1273 (-694 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1273 (-694 *4))) (-5 *1 (-421 *3 *4))
- (-4 *3 (-422 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 (-694 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367))
- (-5 *2 (-1273 (-694 (-412 (-958 *5))))) (-5 *1 (-1092 *5))
- (-5 *4 (-694 (-412 (-958 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-1183))) (-4 *5 (-367))
- (-5 *2 (-1273 (-694 (-958 *5)))) (-5 *1 (-1092 *5))
- (-5 *4 (-694 (-958 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367))
- (-5 *2 (-1273 (-694 *4))) (-5 *1 (-1092 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(((*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-103 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1206)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2))
+ (-4 *4 (-457)) (-4 *6 (-855)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-141)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1183)) (-4 *4 (-1055)) (-4 *4 (-1106))
- (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -4320 (-569))))
+ (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-1057)) (-4 *4 (-1108))
+ (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569))))
(-4 *1 (-435 *4))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1055)) (-4 *4 (-1106))
- (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -4320 (-569))))
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1057)) (-4 *4 (-1108))
+ (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569))))
(-4 *1 (-435 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106))
- (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -4320 (-569))))
+ (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108))
+ (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569))))
(-4 *1 (-435 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -4320 (-776))))
- (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-776))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1108))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -4320 (-776))))))
+ (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-776))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057))
(-4 *7 (-955 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -4320 (-569))))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-569))))
(-5 *1 (-956 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $))
- (-15 -4409 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *1) (-5 *1 (-808))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1286 *4 *5 *6 *7)))
- (-5 *1 (-1286 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561))
- (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1286 *6 *7 *8 *9)))
- (-5 *1 (-1286 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112))
- (-5 *2 (-1041)) (-5 *1 (-750)))))
-(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
- ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457))
- (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1183))) (-5 *1 (-636 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-927))
- (-5 *1 (-533 *4)))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $))
+ (-15 -4412 (*7 $))))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-297 (-838 *3)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457))
+ (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5))
+ (-5 *3 (-412 (-958 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1273 (-1273 (-569)))) (-5 *3 (-927)) (-5 *1 (-471)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1044 (-48)))
- (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
- (-5 *2 (-423 (-1179 (-48)))) (-5 *1 (-440 *4 *5 *3))
- (-4 *3 (-1249 *5)))))
-(((*1 *1 *1) (-4 *1 (-174)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1249 *5))
- (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))))
-(((*1 *2)
- (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927))
+ (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))
+ (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927))
(-14 *4 (-927))))
((*1 *2)
- (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353))
- (-14 *4 (-1179 *3))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353))
+ (-14 *4
+ (-3 (-1181 *3)
+ (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))))))
((*1 *2)
- (-12 (-5 *2 (-964 (-1126))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353))
+ (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353))
(-14 *4 (-927)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2))
+ (-4 *2 (-1251 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1276)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-886)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057))
+ (-5 *3 (-569)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229))
+ (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5)))
+ (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-5 *2 (-649 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
- (-5 *2 (-649 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1163 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1055))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-731))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1055)) (-5 *2 (-649 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1055)) (-5 *2 (-1163 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 *6)) (-4 *5 (-1227)) (-4 *6 (-1249 *5))
- (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *3) (|:| |radicand| *6)))
- (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1249 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1249 (-170 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1249 (-170 *2))))))
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))))
+(((*1 *1)
+ (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438)))
+ (-1749 (|has| *1 (-6 -4430)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855))))
+ ((*1 *1) (-4 *1 (-849))) ((*1 *1 *1 *1) (-4 *1 (-855)))
+ ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488)))))
+(((*1 *1 *1) (-5 *1 (-1071))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112))
+ (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1435 *3) (|:| |gap| (-776)) (|:| -4007 (-787 *3))
+ (|:| -2054 (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-5 *2
+ (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1)
+ (|:| -2054 *1)))
+ (-4 *1 (-1073 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2
+ (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1)
+ (|:| -2054 *1)))
+ (-4 *1 (-1073 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310))
+ (-4 *9 (-955 *8 *6 *7))
+ (-5 *2 (-2 (|:| -1814 (-1181 *9)) (|:| |polval| (-1181 *8))))
+ (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9)) (-5 *4 (-1181 *8)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4))
- (-4 *4 (-1055))))
+ (-4 *4 (-1057))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057))))
((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776))))
((*1 *1 *1) (-4 *1 (-234)))
((*1 *1 *1 *2)
(-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4))
- (-4 *4 (-1249 *3))))
+ (-4 *4 (-1251 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3))
- (-4 *3 (-1249 *2))))
- ((*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055))))
+ (-4 *3 (-1251 *2))))
+ ((*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4))
- (-4 *4 (-1106))))
+ (-4 *4 (-1108))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1106))))
+ (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1106))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5)
- (|:| |f4| (-649 *5))))
- (-5 *1 (-1194 *6)) (-5 *4 (-649 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-5 *2 (-1195 (-649 *4))) (-5 *1 (-1194 *4))
- (-5 *3 (-649 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-1144))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1278)) (-5 *1 (-1144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569)))
- (-5 *2 (-1273 (-412 (-569)))) (-5 *1 (-1300 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1067 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 *1)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
- (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
- (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1055)) (-5 *1 (-694 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 *4)) (-4 *4 (-1055)) (-4 *1 (-1129 *3 *4 *5 *6))
- (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-4 *1 (-1249 *4)) (-4 *4 (-1055))
- (-5 *2 (-1273 *4)))))
+ (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1043))
+ (-5 *1 (-751)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+(((*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-756)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879))
- (-5 *2 (-1278)) (-5 *1 (-1274)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1099 *3)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1223))))
+ (-12 (-4 *2 (-1101 *3)) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1225))))
((*1 *2 *1)
- (-12 (-5 *2 (-1100 *3)) (-5 *1 (-1098 *3)) (-4 *3 (-1223))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2) (-12 (-5 *1 (-1240 *2)) (-4 *2 (-1223)))))
+ (-12 (-5 *2 (-1102 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225)))))
(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855))
+ (-5 *1 (-1196 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *6))))
+ (-5 *4 (-1034 (-848 (-569)))) (-5 *5 (-1185)) (-5 *7 (-412 (-569)))
+ (-4 *6 (-1057)) (-5 *2 (-867)) (-5 *1 (-600 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173))
+ (-4 *5 (-239 (-2428 *3) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5))
+ (-2 (|:| -2150 *2) (|:| -1993 *5))))
+ (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-955 *4 *5 (-869 *3))))))
+(((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1106) (-1044 *5)))
- (-4 *5 (-892 *4)) (-4 *4 (-1106)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-937 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-569)) (|has| *1 (-6 -4435)) (-4 *1 (-409))
- (-5 *2 (-927)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569))))
- (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5)))))
-(((*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867))
- (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1106)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1055))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-867))))
- ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-867)) (-5 *1 (-1179 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-649 *1)) (-4 *1 (-1071 *3 *4 *5)))))
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6))
+ (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1106)) (-5 *2 (-617 *5))
- (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4)))))
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1069 (-1032 *4) (-1181 (-1032 *4)))) (-5 *3 (-867))
+ (-5 *1 (-1032 *4)) (-4 *4 (-13 (-853) (-367) (-1030))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
+ (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-649 (-1183))) (-14 *5 (-776))
- (-5 *2
- (-649
- (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
- (-248 *4 (-412 (-569))))))
- (-5 *1 (-510 *4 *5))
+ (-12
(-5 *3
- (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
- (-248 *4 (-412 (-569))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1188))) (-5 *1 (-1188))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1188))) (-5 *1 (-1188)))))
+ (-649
+ (-2 (|:| -3978 (-776))
+ (|:| |eqns|
+ (-649
+ (-2 (|:| |det| *7) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (|:| |fgb| (-649 *7)))))
+ (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776))
+ (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112))
+ (-5 *1 (-361 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1227)))))
+(((*1 *1) (-5 *1 (-808))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
-(((*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3))
- (-4 *3 (-1249 (-412 *4))))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1055)) (-4 *2 (-367))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2))
- (-4 *2 (-661 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4304 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855))
+ (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185)))))
+ (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112))
+ (-5 *1 (-402))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185)))))
+ (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112))
+ (-5 *1 (-402))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-649 (-1185))) (-5 *5 (-1188)) (-5 *3 (-1185))
+ (-5 *2 (-1112)) (-5 *1 (-402)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776))))
+ (-5 *1 (-1165 *4)) (-4 *4 (-1225)) (-5 *3 (-776)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1057))
+ (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *1)
(-12
(-5 *2
(-649
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226)))))
(-5 *1 (-564))))
((*1 *2 *1)
- (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
+ (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))
(-5 *2 (-649 *3))))
((*1 *2 *1)
(-12
(-5 *2
(-649
(-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
(|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
(|:| |abserr| (-226)) (|:| |relerr| (-226)))))
(-5 *1 (-808)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *7 (-906 *6))
- (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7))
- (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4444)))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1172 (-1183) (-958 *6))))
- (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6)))))
- (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1288 *4 *5 *6 *7)))
+ (-5 *1 (-1288 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561))
+ (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1288 *6 *7 *8 *9)))
+ (-5 *1 (-1288 *6 *7 *8 *9)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561))))
((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5))))
- (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4))))
- (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5)))))
- (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
-(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
+ (-12 (-5 *3 (-1181 *2)) (-5 *4 (-1185)) (-4 *2 (-435 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-561))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-4 *1 (-1020))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-5 *4 (-867))
+ (-4 *1 (-1020))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *1 (-1076 *4 *2)) (-4 *2 (-1251 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)) (-4 *5 (-1071 *3 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4))
- (-4 *3 (-422 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367))
- (-5 *2 (-1179 (-958 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3))
+ (-4 *3 (-1225)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3))
- (-4 *3 (-13 (-409) (-1208)))))
- ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-871 *4 *5 *6 *7))
- (-4 *4 (-1055)) (-14 *5 (-649 (-1183))) (-14 *6 (-649 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-4 *5 (-855)) (-4 *6 (-798))
- (-14 *8 (-649 *5)) (-5 *2 (-1278))
- (-5 *1 (-1285 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5))
- (-14 *9 (-649 *3)) (-14 *10 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1223))
- (-4 *5 (-377 *4)) (-4 *3 (-377 *4)))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-977 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-377 *3))
+ (-4 *3 (-1225)))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1) (-4 *1 (-498)))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
- (-4 *7 (-1249 (-412 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2438 *3)))
- (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
- (-5 *2
- (-2 (|:| |answer| (-412 *6)) (|:| -2438 (-412 *6))
- (|:| |specpart| (-412 *6)) (|:| |polypart| *6)))
- (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-5 *2 (-569))
- (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1249 *5))
- (-4 *6 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
- (-4 *3 (-1249 *4))
- (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1041)) (-5 *3 (-1183)) (-5 *1 (-193)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2))
+ (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2))
+ (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448)))))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112))
+ (-5 *2 (-1043)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7))
+ (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225))
+ (-4 *7 (-1225))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6))
+ (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *3 *5))
- (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2))
- (-4 *5 (-661 (-412 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1249 *4)) (-5 *1 (-812 *4 *2 *5 *3))
- (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-661 *2))
- (-4 *3 (-661 (-412 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1091)))))
-(((*1 *1) (-5 *1 (-1091))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-591 *3)) (-4 *3 (-367)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *1 *1) (-4 *1 (-498)))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3))
- (-4 *3 (-377 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3))
- (-4 *5 (-377 *2)) (-4 *3 (-377 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 *4)) (-4 *4 (-998 *2)) (-4 *2 (-561))
- (-5 *1 (-698 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-998 *2)) (-4 *2 (-561)) (-5 *1 (-1242 *2 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-1205 *4))
- (-4 *4 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1165)) (-5 *1 (-791)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-694 *4)) (-4 *4 (-1055)) (-5 *1 (-1148 *3 *4))
- (-14 *3 (-776)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *1 *1) (-5 *1 (-1182)))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))
+ ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))))
+(((*1 *1) (-5 *1 (-828))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-761)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185))))
+ ((*1 *1 *1) (-4 *1 (-160))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *1 *1) (-5 *1 (-1184)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8)))
- (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798))
- (-5 *2
- (-2 (|:| |upol| (-1179 *8)) (|:| |Lval| (-649 *8))
- (|:| |Lfact|
- (-649 (-2 (|:| -3796 (-1179 *8)) (|:| -4320 (-569)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-747 *6 *7 *8 *9)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1106)) (-5 *1 (-910 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1227))
- (-4 *6 (-1249 (-412 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-346 *4 *5 *6)))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6)))
+ (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1108))
+ (-4 *8 (-13 (-1057) (-619 (-898 *6)) (-1046 *7)))
+ (-5 *2 (-895 *6 *8)) (-4 *7 (-1057)) (-5 *1 (-947 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *1 *1) (-4 *1 (-498)))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-776)) (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1118)) (-4 *3 (-1106)) (-5 *2 (-649 *1))
- (-4 *1 (-435 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
- (-4 *3 (-1106))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3))
- (-5 *1 (-956 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $))
- (-15 -4409 (*7 $))))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569)))))
- (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1037)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-927)) (-4 *5 (-1055)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))))
+ (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4)))
+ (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457))
+ (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1185))) (-5 *1 (-636 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1251 *5))
+ (-5 *1 (-812 *5 *2 *3 *6))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *3 (-661 *2)) (-4 *6 (-661 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1251 *5))
+ (-5 *1 (-812 *5 *2 *3 *6))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2))
+ (-4 *6 (-661 (-412 *2))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226)))
+ (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1043))
+ (-5 *1 (-759)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-949 *4)) (-4 *4 (-1057)) (-5 *1 (-1173 *3 *4))
+ (-14 *3 (-927)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *1 *1) (-4 *1 (-498)))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265)))
- (-5 *1 (-263))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6))
- (-14 *5 (-649 (-1183))) (-4 *6 (-457)) (-5 *2 (-1273 *6))
- (-5 *1 (-636 *5 *6)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353))
- (-5 *1 (-533 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+ (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4)))
+ (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569))))))
+ (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 (-170 *5))))
+ (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853))))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186))))
+ (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *4 (-1183))
- (-5 *1 (-1186))))
+ (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *4 (-1185))
+ (-5 *1 (-1188))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1186))))
+ (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-442)) (-5 *3 (-1183)) (-5 *1 (-1187))))
+ (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1189))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1183))) (-5 *1 (-1187)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1183))
- (-4 *6 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1208) (-965)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1903 (-649 *4))))
- (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
- (-5 *2
- (-3 (|:| |overq| (-1179 (-412 (-569))))
- (|:| |overan| (-1179 (-48))) (|:| -2492 (-112))))
- (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-5 *2 (-1165)))))
+ (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *1 (-1189)))))
+(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1249 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -3361 (-423 *3)) (|:| |special| (-423 *3))))
- (-5 *1 (-732 *5 *3)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-927))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-649 (-2 (|:| -4395 (-412 (-569))) (|:| -4407 (-412 (-569))))))
- (-5 *2 (-649 (-226))) (-5 *1 (-308)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-333)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226)))
- (-5 *2 (-1275)) (-5 *1 (-259)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
- (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129)))))
+ (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
- (-4 *2 (-1249 (-170 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4))))
- (-5 *1 (-1194 *4)) (-5 *3 (-649 (-649 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269))))
- ((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269))))
+ (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
+ (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9))
+ (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6))
+ (-4 *8 (-377 *7)) (-4 *9 (-377 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057))
+ (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1057))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1131 *2 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1196 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569)))
- (-5 *2 (-1273 (-569))) (-5 *1 (-1300 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))))
(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
- (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
+ (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1227)) (-4 *5 (-1249 *4))
- (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
+ (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776))
+ (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4))
+ (-4 *3 (-435 *4))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550))))
+ ((*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4))
+ (-4 *3 (-802 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-999 *3 *4))
+ (-4 *3 (-1000 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1004 *3 *4))
+ (-4 *3 (-1005 *4))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1019 *3)) (-4 *3 (-1020))))
+ ((*1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-776))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1067 *3)) (-4 *3 (-1068)))))
+(((*1 *1) (-5 *1 (-602))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-1273
- (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -3538 (-569))
- (|:| -3285 (-569)) (|:| |spline| (-569)) (|:| -1970 (-569))
- (|:| |axesColor| (-879)) (|:| -3154 (-569))
- (|:| |unitsColor| (-879)) (|:| |showing| (-569)))))
- (-5 *1 (-1274)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-569)) (|has| *1 (-6 -4435)) (-4 *1 (-409))
- (-5 *2 (-927)))))
+ (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-649 (-949 (-226)))))
- (-5 *2 (-649 (-1100 (-226)))) (-5 *1 (-934)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1183)) (-4 *5 (-435 *4))
- (-4 *4 (-1106)) (-5 *1 (-578 *4 *5)))))
+ (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308)))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010) (-1210))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1)))
+ (-4 *1 (-1079 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226)))
+ (-5 *4 (-1 (-226) (-226) (-226) (-226)))
+ (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *3 (-649 (-569)))
+ (-5 *1 (-889)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226)))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))
- (-14 *4 (-1183)) (-14 *5 *2)))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-4 *2 (-13 (-27) (-1208) (-435 *3) (-10 -8 (-15 -3793 ($ *4)))))
- (-4 *4 (-853))
- (-4 *5
- (-13 (-1251 *2 *4) (-367) (-1208)
- (-10 -8 (-15 -3514 ($ $)) (-15 -2488 ($ $)))))
- (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-989 *5)) (-14 *7 (-1183)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-584)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
(((*1 *2 *2)
- (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-994 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1179 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
- (-4 *3 (-1249 (-170 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1249 *2)) (-4 *2 (-173))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3)) (-5 *1 (-418 *3 *2 *4 *5))
- (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1044 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1249 *2)) (-4 *2 (-998 *3))
- (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4))
- (-14 *6 (-1273 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-927)) (-4 *5 (-1055))
- (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))
- (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-649 (-617 (-500))))
- (-5 *1 (-500))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1179 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-927)) (-4 *4 (-353))
- (-5 *1 (-533 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1249 *4))
- (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1249 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-173))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *2 *5)) (-4 *4 (-1055)) (-4 *5 (-239 *3 *4))
- (-4 *2 (-239 *3 *4)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1249 *3)) (-4 *3 (-1055)) (-5 *2 (-1179 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
- (-248 *4 (-412 (-569)))))
- (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5)))))
+ (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1))))
+ (-4 *1 (-371 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-458 *3 *4 *5 *6))
+ (|:| -2403 (-649 (-458 *3 *4 *5 *6)))))
+ (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310))
+ (-5 *1 (-180 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 *8))
+ (-5 *4
+ (-649
+ (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-694 *7)))))
+ (-5 *5 (-776)) (-4 *8 (-1251 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-353))
+ (-5 *2
+ (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-694 *7))))
+ (-5 *1 (-503 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1172 (-1183) (-958 *5))))
- (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5)))))
- (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
+ (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8))
+ (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1108) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34))))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226))
+ (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))))
(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-226)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *1 *1 *1) (-5 *1 (-383)))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1171 3 *3)) (-4 *3 (-1055)) (-4 *1 (-1140 *3))))
- ((*1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))
- (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5))
- (-4 *5 (-1249 (-412 *4))))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1266 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3))
+ (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1266 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147)))
+ (-5 *1 (-1161 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1864 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
+ (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2))
+ (-5 *2 (-383)) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057))
+ (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
+ (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383))
+ (-5 *1 (-790 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *4 (-649 (-1183)))
- (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206))))
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3))
+ (-4 *3 (-13 (-1210) (-29 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6))
- (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6))
- (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4444)))))))
-(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1208))))))
-(((*1 *1) (-5 *1 (-55))))
+ (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-147)))
+ (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5))
+ (-5 *3 (-412 (-958 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057))
+ (-5 *3 (-569)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2))
+ (-4 *2 (-661 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-315)) (-5 *1 (-834)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305))))
+ ((*1 *1 *1) (-4 *1 (-305)))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-1099 *3)) (-4 *3 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1072)))))
+ (-12 (-5 *2 (-569)) (-4 *1 (-1101 *3)) (-4 *3 (-1225)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1074)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1258 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1183))
- (-14 *5 *3) (-5 *1 (-322 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1091)))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4))))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569))))
+ (-5 *1 (-191)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367))
+ (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5)))))
+ (-5 *1 (-986 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-808)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -4363 *3) (|:| -1993 (-776)))) (-5 *1 (-592 *3))
+ (-4 *3 (-550)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4))
- (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183))))
- (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1210) (-965))))))
(((*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-995))))
+ (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-997))))
((*1 *2 *1)
- (-12 (-4 *4 (-1223)) (-5 *2 (-1183)) (-5 *1 (-1063 *3 *4))
- (-4 *3 (-1099 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1098 *3)) (-4 *3 (-1223))))
+ (-12 (-4 *4 (-1225)) (-5 *2 (-1185)) (-5 *1 (-1065 *3 *4))
+ (-4 *3 (-1101 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1100 *3)) (-4 *3 (-1225))))
((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-5 *2 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1269 *3)) (-14 *3 *2))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566)))))
+ (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797))
+ (-5 *2 (-1185))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
- (-4 *3 (-1249 *4))
- (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *5 (-1249 *4)) (-5 *2 (-649 (-658 (-412 *5))))
- (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))))
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2167 *5) (|:| -3494 *5))))
- (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5))
- (-4 *6 (-661 (-412 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2167 *4) (|:| -3494 *4))))
- (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4))
- (-4 *6 (-661 (-412 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *5 (-1249 *4)) (-5 *2 (-649 (-2 (|:| -2167 *5) (|:| -3494 *5))))
- (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5))
- (-4 *3 (-661 (-412 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *4 (-1249 *5)) (-5 *2 (-649 (-2 (|:| -2167 *4) (|:| -3494 *4))))
- (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4))
- (-4 *3 (-661 (-412 *4))))))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1090 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1179 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1) (-4 *1 (-287)))
((*1 *2 *3)
(-12 (-5 *3 (-423 *4)) (-4 *4 (-561))
- (-5 *2 (-649 (-2 (|:| -1433 (-776)) (|:| |logand| *4))))
+ (-5 *2 (-649 (-2 (|:| -1435 (-776)) (|:| |logand| *4))))
(-5 *1 (-323 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *2 *1)
(-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
(-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569)))))
- (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4))))
+ (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569)))))
+ (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4))
(-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-1106)) (-4 *4 (-1223)) (-5 *2 (-112))
- (-5 *1 (-1163 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4))
- (-4 *4 (-1249 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-932))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 (-226))) (-5 *1 (-933))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-927)) (-5 *1 (-1036 *2))
- (-4 *2 (-13 (-1106) (-10 -8 (-15 -3009 ($ $ $))))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855))
- (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
+ ((*1 *1 *1) (-4 *1 (-1213))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1057)) (-4 *4 (-173))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))
+ (-4 *3 (-173)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185))))
+ (-4 *7 (-798))
(-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-649 (-2 (|:| -3796 (-1179 *9)) (|:| -4320 (-569)))))))
- (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *5 (-1227)) (-4 *6 (-1249 *5))
- (-4 *7 (-1249 (-412 *6))) (-5 *2 (-649 (-958 *5)))
- (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7))))
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *5))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *5))))))))))
+ (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1185))) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185))))
+ (-4 *7 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *5))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *5))))))))))
+ (-5 *1 (-930 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227))
- (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5))) (-4 *4 (-367))
- (-5 *2 (-649 (-958 *4))))))
+ (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7))
+ (|:| |wcond| (-649 (-958 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *4))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))))))
+ (-5 *1 (-930 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7))
+ (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185))))
+ (-4 *8 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9))
+ (|:| |wcond| (-649 (-958 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *6))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *6))))))))))
+ (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-927))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9))
+ (|:| |wcond| (-649 (-958 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *6))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *6))))))))))
+ (-5 *1 (-930 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185))))
+ (-4 *7 (-798))
+ (-5 *2
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *5))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *5))))))))))
+ (-5 *1 (-930 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1167))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-1167))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-1167)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185))))
+ (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927))
+ (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
+ (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1185))) (-5 *5 (-927))
+ (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
+ (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1167))
+ (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
+ (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1185)) (-5 *4 (-1100 (-958 (-569)))) (-5 *2 (-333))
+ (-5 *1 (-335))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057))
+ (-4 *3 (-1108)))))
+(((*1 *1 *1 *1) (-5 *1 (-162)))
+ ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-867)) (-5 *1 (-1165 *3)) (-4 *3 (-1108))
+ (-4 *3 (-1225)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2))
+ (-4 *2 (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3))))
+ (-5 *1 (-911 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-1185)) (-4 *6 (-435 *5))
+ (-4 *5 (-1108)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010)))
+ (-5 *1 (-177 *3)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276))))
- ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1276)))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173))
- (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173))
- (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055))
- (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
- (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
- (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
- (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561))
- (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927))
- (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
- (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
- (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561))
- (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
- (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855))
- (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561))
- (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
- (-5 *1 (-790 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
+ ((*1 *1 *1) (-4 *1 (-1213))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3))
+ (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1043)) (-5 *1 (-758)))))
+(((*1 *1) (-5 *1 (-564))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1275 *4))) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
+ (-5 *2 (-649 (-1275 *3))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797))
+ (-4 *2 (-457))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2))
+ (-4 *4 (-1251 (-412 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855)) (-4 *3 (-457))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1172 *3 *2))
+ (-4 *2 (-1251 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1233))) (-5 *3 (-1233)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-383)) (-5 *1 (-193)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-927)) (-4 *5 (-1055)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
- (-5 *2 (-423 (-1179 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3))
- (-4 *3 (-1249 *5)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561))
- (-4 *3 (-1055)) (-4 *2 (-797))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1179 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-977)) (-4 *2 (-131)) (-5 *1 (-1185 *3)) (-4 *3 (-561))
- (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1246 *4 *3)) (-14 *4 (-1183))
- (-4 *3 (-1055)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1106)) (-5 *2 (-649 *1))
- (-4 *1 (-435 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
- (-4 *3 (-1106))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5))))
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))
+ (-5 *2 (-383)) (-5 *1 (-269))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
- (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3))
- (-5 *1 (-956 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $))
- (-15 -4409 (*7 $))))))))
+ (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))))
+(((*1 *1) (-5 *1 (-511))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1148 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-649
- (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *2))
- (|:| |logand| (-1179 *2)))))
- (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-367)) (-5 *1 (-591 *2)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1147 *2 *3)) (-4 *2 (-13 (-1106) (-34)))
- (-4 *3 (-13 (-1106) (-34))))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
+ ((*1 *1 *1) (-4 *1 (-1213))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043))
+ (-5 *1 (-761)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-985 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-805))
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
- (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-1041)))))
-(((*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1224 *2))
- (-4 *2 (-1106))))
+ (-12 (-5 *3 (-927))
+ (-5 *2
+ (-3 (-1181 *4)
+ (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))))
+ (-5 *1 (-350 *4)) (-4 *4 (-353)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-269)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4))
+ (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6)))
+ (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569))))
+ (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *8)))
+ (-5 *1 (-917 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-1106)) (-4 *2 (-855))
- (-5 *1 (-1224 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
+ (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
+ (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4)))
+ (-4 *6 (-346 (-412 (-569)) *4 *5))
+ (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *6)))
+ (-5 *1 (-918 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-649
+ (-2
+ (|:| -2006
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226))))
+ (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226)))
+ (|:| |g| (-319 (-226))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (|:| -2216
+ (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
+ (|:| |expense| (-383)) (|:| |accuracy| (-383))
+ (|:| |intermediateResults| (-383)))))))
+ (-5 *1 (-808)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
+ ((*1 *1 *1) (-4 *1 (-1213))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *2)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-1126)) (-4 *4 (-353))
- (-5 *1 (-533 *4)))))
-(((*1 *1) (-5 *1 (-602))))
-(((*1 *2 *2) (-12 (-5 *2 (-1100 (-848 (-226)))) (-5 *1 (-308)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223)) (-4 *2 (-855))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1195 (-649 *4))) (-4 *4 (-855))
- (-5 *2 (-649 (-649 *4))) (-5 *1 (-1194 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569))))
- (-5 *1 (-1037)))))
-(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112))
- (-5 *1 (-1300 *4)))))
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *2)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1057))
+ (-5 *1 (-1169 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1275 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147)))
+ (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1137 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147)))
+ (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1137 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1108)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
-(((*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333))))
- ((*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333))))
- ((*1 *1) (-5 *1 (-333))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1100 (-226)))
- (-5 *5 (-112)) (-5 *2 (-1275)) (-5 *1 (-259)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
+ ((*1 *1 *1) (-4 *1 (-1213))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776))
+ (-5 *2 (-694 (-226))) (-5 *1 (-269)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4))
+ (-4 *4 (-874 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-1266 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1237 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1266 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))
+ (-5 *1 (-996 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))
+ (-5 *1 (-1115 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569))
+ (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-826)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569))))
+ (-4 *2 (-173)))))
(((*1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-932))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-932))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1100 (-226)))
- (-5 *1 (-933)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1183))
- (-4 *5 (-13 (-561) (-1044 (-569)) (-147)))
- (-5 *2
- (-2 (|:| -2530 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5)))))
- (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-1108))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -1993 (-569)))) (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-898 *3))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057))
+ (-4 *7 (-955 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -1993 (-569))))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $))
+ (-15 -4412 (*7 $))))))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2)
+ (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5)))
+ (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6))
+ (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-569)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
- ((*1 *1 *1) (-4 *1 (-1211))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
+ ((*1 *1 *1) (-4 *1 (-1213))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1183)))
- (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1055)) (-5 *1 (-600 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1233 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1264 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-4 *3 (-13 (-27) (-1208) (-435 *6) (-10 -8 (-15 -3793 ($ *7)))))
- (-4 *7 (-853))
- (-4 *8
- (-13 (-1251 *3 *7) (-367) (-1208)
- (-10 -8 (-15 -3514 ($ $)) (-15 -2488 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1165)) (|:| |prob| (-1165))))))
- (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1165)) (-4 *9 (-989 *8))
- (-14 *10 (-1183)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
- (-5 *2
- (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4))
- (|:| |genIdeal| (-509 *4 *5 *6 *7))))
- (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1275 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
+ (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1251 *5))
+ (-5 *2 (-694 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 (-898 *3)))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4)))
+ (-5 *1 (-898 *4)) (-4 *4 (-1108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1108)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3))
+ (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4447)))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
- (-248 *4 (-412 (-569)))))
- (-14 *4 (-649 (-1183))) (-14 *5 (-776)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457))
- (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1172 (-1183) (-958 *4)))))
- (-5 *1 (-295 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1165) (-1188)))
- (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1041)) (-5 *1 (-753)))))
+ (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))
+ (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1028 *4))
+ (-4 *4 (-1251 (-569))))))
(((*1 *1 *1) (-4 *1 (-634)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1044 *4)) (-4 *3 (-561)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4))
- (-5 *2 (-2 (|:| -1433 (-412 *5)) (|:| |poly| *3)))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1249 (-412 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1273 (-3 (-473) "undefined"))) (-5 *1 (-1274)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1864 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))))
-(((*1 *1) (-5 *1 (-1278))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
- (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1106)) (-4 *6 (-1106))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1106)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694 *2)) (-4 *4 (-1249 *2))
- (-4 *2 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
- (-4 *5 (-239 *3 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1055)) (-4 *1 (-1249 *3)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))))
-(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1208))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1283)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1091)))))
-(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
- (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-776)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))))
+ (-4 *2 (-13 (-435 *3) (-1010) (-1210))))))
+(((*1 *1 *1) (-4 *1 (-1152))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055))
- (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-927)) (-4 *5 (-1055))
- (-4 *2 (-13 (-409) (-1044 *5) (-367) (-1208) (-287)))
- (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1249 *5)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1108))
+ (-4 *3 (-1108)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1249 (-412 (-569))))
- (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))
- (-5 *1 (-919 *3 *4)) (-4 *4 (-1249 (-412 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1249 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3))
- (-4 *3 (-1249 (-412 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-1106)) (-4 *3 (-906 *6))
- (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3))
- (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4444)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *1) (-5 *1 (-1088))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1179 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855))
- (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310))
- (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *2 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *1 *1) (-4 *1 (-634)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008) (-1208))))))
-(((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1106))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1074 *4 *3)) (-4 *4 (-13 (-853) (-367)))
- (-4 *3 (-1249 *4)) (-5 *2 (-569))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-561) (-1044 *2) (-644 *2) (-457)))
- (-5 *2 (-569)) (-5 *1 (-1122 *4 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569))
- (-5 *1 (-1122 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-1165))
- (-4 *6 (-13 (-561) (-1044 *2) (-644 *2) (-457))) (-5 *2 (-569))
- (-5 *1 (-1122 *6 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569))
- (-5 *1 (-1123 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-848 (-412 (-958 *6))))
- (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569))
- (-5 *1 (-1123 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1183))
- (-5 *5 (-1165)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1123 *6))))
+ (-12 (-4 *1 (-844))
+ (-5 *3
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (-5 *2 (-1043))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1205 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-759)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1223)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1223))))
- ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1046)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-886)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310))
- (-4 *9 (-955 *8 *6 *7))
- (-5 *2 (-2 (|:| -3466 (-1179 *9)) (|:| |polval| (-1179 *8))))
- (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1179 *9)) (-5 *4 (-1179 *8)))))
-(((*1 *2) (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1276)))))
-(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-844))
(-5 *3
- (-649
- (-2 (|:| -3975 (-776))
- (|:| |eqns|
- (-649
- (-2 (|:| |det| *7) (|:| |rows| (-649 (-569)))
- (|:| |cols| (-649 (-569))))))
- (|:| |fgb| (-649 *7)))))
- (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-776))
- (-5 *1 (-930 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -4311 (-776)) (|:| |period| (-776))))
- (-5 *1 (-1163 *4)) (-4 *4 (-1223)) (-5 *3 (-776)))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))
+ (-5 *2 (-1043)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1249 *5))
- (-5 *1 (-812 *5 *2 *3 *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *3 (-661 *2)) (-4 *6 (-661 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1249 *5))
- (-5 *1 (-812 *5 *2 *3 *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *3 (-661 *2))
- (-4 *6 (-661 (-412 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-4 *5 (-435 *4))
- (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1249 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1)))
- (-4 *1 (-1077 *4 *5 *6 *3)))))
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1249 (-569))) (-5 *1 (-491 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1055)) (-4 *4 (-619 *2))
- (-5 *2 (-383)) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1055))
- (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
- (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
- (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
- (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561))
- (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383))
- (-5 *1 (-790 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3))))
- (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798))
- (-5 *2 (-112)) (-5 *1 (-993 *3 *4 *5 *6))
- (-4 *6 (-955 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1231))) (-5 *3 (-1231)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-649 (-541))) (-5 *1 (-541)))))
-(((*1 *2)
- (-12 (-4 *4 (-1227)) (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
- (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6))
- (-4 *3 (-346 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1273 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367))
- (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1249 *5))
- (-5 *2 (-694 *5)))))
+ (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3))
+ (-4 *3 (-13 (-367) (-147) (-1046 (-569)))) (-5 *1 (-573 *3 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(-5 *2
(-3 (|:| |continuous| "Continuous at the end points")
@@ -10649,1097 +10591,1262 @@
(|:| |notEvaluated| "End point continuity not yet evaluated")))
(-5 *1 (-193)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-1106)) (-5 *2 (-649 *1))
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561))
+ (-4 *7 (-955 *3 *5 *6))
+ (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *8) (|:| |radicand| *8)))
+ (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776))
+ (-4 *8
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))))
+(((*1 *1) (-5 *1 (-1280))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1251 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457))
+ (-5 *1 (-924 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-582))))
+ ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 *1))
(-4 *1 (-386 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057))
(-4 *4 (-731))))
((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
(-4 *1 (-955 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569))))
+ (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-1275 (-319 (-383))))
(-5 *1 (-308)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
- ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4)))
- (-5 *1 (-1194 *4)) (-4 *4 (-855)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *3)) (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1223)))))
-(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
-(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
- (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))
- (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 *7)))
- (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-457)) (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3))
- (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457))
- (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1179 (-412 *7))))
- (-5 *1 (-1178 *4 *5 *6 *7)) (-5 *3 (-1179 (-412 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1227))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1252 *4 *3))
- (-4 *3 (-13 (-1249 *4) (-561) (-10 -8 (-15 -1864 ($ $ $)))))))
+ (-12 (-5 *2 (-1275 (-1275 (-569)))) (-5 *3 (-927)) (-5 *1 (-471)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
((*1 *2 *3)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-14 *5 (-649 (-1183)))
- (-5 *2
- (-649 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))))
- (-5 *1 (-1299 *4 *5 *6)) (-14 *6 (-649 (-1183))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-776)) (-4 *4 (-353))
- (-5 *1 (-533 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-423 *5)) (-4 *5 (-561))
- (-5 *2
- (-2 (|:| -4320 (-776)) (|:| -1433 *5) (|:| |radicand| (-649 *5))))
- (-5 *1 (-323 *5)) (-5 *4 (-776))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-569)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1148 *3 *2)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *2 (-13 (-1108) (-34))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-561)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1150)) (-5 *2 (-112)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1005 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 (-412 (-958 *6))))
- (-5 *3 (-412 (-958 *6)))
- (-4 *6 (-13 (-561) (-1044 (-569)) (-147)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-575 *6)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776))))
- ((*1 *1 *1) (-4 *1 (-407))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))))
-(((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
- (-5 *1 (-994 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
- (-5 *1 (-1113 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569))))
+ (-5 *1 (-308)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226)))
- (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1233 *3))
- (-5 *2 (-412 (-569))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *1 *1 *1) (-4 *1 (-973))))
+ (-12 (-4 *4 (-798))
+ (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561))
+ (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1057)) (-4 *5 (-798))
+ (-4 *3
+ (-13 (-855)
+ (-10 -8 (-15 -1410 ((-1185) $))
+ (-15 -2672 ((-3 $ "failed") (-1185))))))
+ (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *6))
+ (-4 *6
+ (-13 (-855)
+ (-10 -8 (-15 -1410 ((-1185) $))
+ (-15 -2672 ((-3 $ "failed") (-1185))))))
+ (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2))
+ (-4 *2 (-955 (-958 *4) *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *4 (-1249 *3))
- (-5 *2
- (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-694 *3))))
- (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-1249 *3))
- (-5 *2
- (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-694 *3))))
- (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3))
- (-5 *2
- (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-694 *3))))
- (-5 *1 (-991 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5))))
+ (-12
+ (-5 *3
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167)))))
+ (-5 *2 (-1043)) (-5 *1 (-308))))
((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-4 *3 (-1249 *4)) (-4 *5 (-1249 *3))
- (-5 *2
- (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-694 *3))))
- (-5 *1 (-1282 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))))
-(((*1 *1)
- (-12 (-4 *3 (-1106)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1106))
- (-4 *4 (-671 *3))))
- ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1091))) (-5 *1 (-294)))))
-(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
- (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-383)) (-5 *1 (-206)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-144))))
- ((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-848 *3))) (-4 *3 (-13 (-1208) (-965) (-29 *5)))
- (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))))
+ (-5 *2 (-1043)) (-5 *1 (-308)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1111 *3 *4 *5 *2 *6)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
+(((*1 *1 *1) (-4 *1 (-634)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010) (-1210))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798))
+ (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9))
(-5 *2
- (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5 *3))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1077 *7 *8 *9 *3 *4)) (-4 *4 (-1079 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1098 (-848 *3))) (-5 *5 (-1165))
- (-4 *3 (-13 (-1208) (-965) (-29 *6)))
- (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1073 *6 *7 *8))
(-5 *2
- (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6 *3))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1098 (-848 (-319 *5))))
- (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
(-5 *2
- (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *5))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798))
+ (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1153 *7 *8 *9 *3 *4)) (-4 *4 (-1117 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1098 (-848 (-319 *6))))
- (-5 *5 (-1165))
- (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1073 *6 *7 *8))
(-5 *2
- (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *6))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5)))
- (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
(-5 *2
- (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1098 (-848 (-412 (-958 *6))))) (-5 *5 (-1165))
- (-5 *3 (-412 (-958 *6)))
- (-4 *6 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
+ (-2 (|:| |done| (-649 *4))
+ (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))))
+ (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1046 (-48)))
+ (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2 (-423 (-1181 (-48)))) (-5 *1 (-440 *4 *5 *3))
+ (-4 *3 (-1251 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1225)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1225))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1 *1)
+ (-12
(-5 *2
- (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3))
- (-4 *3 (-13 (-1208) (-965) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-479 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
- (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
- (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
- (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383))))
- (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
- (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
- (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
- (-5 *5 (-383)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1100 (-848 (-383)))))
- (-5 *5 (-383)) (-5 *6 (-1069)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383))))
- (-5 *5 (-1165)) (-5 *2 (-1041)) (-5 *1 (-570))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1098 (-848 (-383))))
- (-5 *5 (-1183)) (-5 *2 (-1041)) (-5 *1 (-570))))
+ (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3))
+ (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1073 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1218 *4 *5 *6 *7))
+ (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798))
+ (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1181 *8)))
+ (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1181 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4))
- (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183)) (-4 *5 (-147))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-855))
- (-4 *3 (-38 (-412 (-569))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569))))
- (-4 *3 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-4 *2 (-855))
- (-5 *1 (-1132 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055))
- (-5 *1 (-1167 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1174 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1180 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1181 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *1 (-1217 *3)) (-4 *3 (-38 (-412 (-569))))
- (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-2774
- (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055))
- (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208))
- (-4 *3 (-38 (-412 (-569))))))
- (-12 (-5 *2 (-1183)) (-4 *1 (-1233 *3)) (-4 *3 (-1055))
- (-12 (|has| *3 (-15 -1710 ((-649 *2) *3)))
- (|has| *3 (-15 -2488 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1237 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
- ((*1 *1 *1 *2)
- (-2774
- (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055))
- (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208))
- (-4 *3 (-38 (-412 (-569))))))
- (-12 (-5 *2 (-1183)) (-4 *1 (-1254 *3)) (-4 *3 (-1055))
- (-12 (|has| *3 (-15 -1710 ((-649 *2) *3)))
- (|has| *3 (-15 -2488 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1258 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-2774
- (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055))
- (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1208))
- (-4 *3 (-38 (-412 (-569))))))
- (-12 (-5 *2 (-1183)) (-4 *1 (-1264 *3)) (-4 *3 (-1055))
- (-12 (|has| *3 (-15 -1710 ((-649 *2) *3)))
- (|has| *3 (-15 -2488 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))
+ (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5)))
+ (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))))
+(((*1 *1 *1) (-4 *1 (-174)))
((*1 *1 *1)
- (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-38 (-412 (-569))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1269 *4)) (-14 *4 (-1183)) (-5 *1 (-1265 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)) (-14 *5 *3))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
- (-5 *1 (-753)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1150)) (-5 *3 (-569)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1864 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
- (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-649 *3))
- (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1115 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
- (-5 *2
- (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5))))))
- (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5)))
- (-14 *6 (-649 (-1183)))))
+ (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1185)))
+ (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1031)) (-5 *5 (-383))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147)))
- (-5 *2
- (-649 (-2 (|:| -4270 (-1179 *4)) (|:| -2960 (-649 (-958 *4))))))
- (-5 *1 (-1084 *4 *5)) (-5 *3 (-649 (-958 *4)))
- (-14 *5 (-649 (-1183)))))
+ (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4)))))
+ (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147)))
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1199 *2)) (-4 *2 (-367)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1251 *5))
+ (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2))
+ (-4 *2 (-1251 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1165 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798))
+ (-5 *2 (-112)) (-5 *1 (-995 *3 *4 *5 *6))
+ (-4 *6 (-955 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569))))
+ (-4 *2 (-173)))))
+(((*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-855)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-541))) (-5 *1 (-541)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-457))
(-5 *2
- (-649 (-2 (|:| -4270 (-1179 *5)) (|:| -2960 (-649 (-958 *5))))))
- (-5 *1 (-1084 *5 *6)) (-5 *3 (-649 (-958 *5)))
- (-14 *6 (-649 (-1183))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
+ (-649
+ (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4))))
+ (|:| |eigmult| (-776))
+ (|:| |eigvec| (-649 (-694 (-412 (-958 *4))))))))
+ (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-412 (-569))))
+ (-5 *2 (-2 (|:| -2601 (-1165 *4)) (|:| -2614 (-1165 *4))))
+ (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927))))
+ ((*1 *2)
+ (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353))
+ (-14 *4 (-1181 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353))
+ (-14 *4 (-927)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1251 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-649 (-1082 *4 *5 *2))) (-4 *4 (-1106))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
- (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-649 (-1082 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1106))
- (-4 *6 (-13 (-1055) (-892 *5) (-619 (-898 *5))))
- (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-561))
- (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3))) (-5 *1 (-1244 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)) (-4 *2 (-550))))
- ((*1 *1 *1) (-4 *1 (-1066))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-511)) (-5 *3 (-1110)) (-5 *1 (-294)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1208))) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-792)) (-5 *2 (-1043))
+ (-5 *3
+ (-2 (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-792)) (-5 *2 (-1043))
+ (-5 *3
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2))
- (-4 *2 (-1249 (-170 *3))))))
-(((*1 *1) (-5 *1 (-1091))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-985 *5 *6 *7 *8)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797))
+ (-5 *2 (-649 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108))
+ (-5 *2 (-649 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1165 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-731))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-649 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-5 *2 (-1165 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-755)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3))
- (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))))
-(((*1 *1) (-5 *1 (-144))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-112)) (-5 *1 (-834)))))
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569))))
+ (-5 *2 (-2 (|:| -2587 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-830)))))
+(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4)))
+ (-5 *1 (-1196 *4)) (-4 *4 (-855)))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1278))))
+ ((*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1278)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -4410 *7) (|:| |sol?| (-112)))
+ (-569) *7))
+ (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7))
+ (-5 *3 (-412 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-579 *7 *8)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-569)) (-5 *1 (-1118))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569))
+ (-5 *1 (-1118)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108))
+ (-4 *4 (-671 *3))))
+ ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-797)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-144))))
+ ((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1290 (-1185) *3)) (-4 *3 (-1057)) (-5 *1 (-1297 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *1 (-1299 *3 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-766))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7)))
+ (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5)))
+ (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-756)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-569)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1225)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112))
+ (-5 *1 (-361 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-112))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1251 *3)) (-5 *1 (-404 *3 *2))
+ (-4 *3 (-13 (-367) (-147))))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
- (-4 *3 (-1249 *4))
- (-4 *5 (-13 (-409) (-1044 *4) (-367) (-1208) (-287))))))
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1057)) (-5 *2 (-1275 *4))
+ (-5 *1 (-1186 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-5 *2 (-1275 *3)) (-5 *1 (-1186 *3))
+ (-4 *3 (-1057)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-172))))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561))
- (-5 *2 (-867)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3)))))
+ (-12 (-4 *4 (-1057))
+ (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-1123)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226)))
+ (-5 *1 (-473)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855))
+ (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1127))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2))
+ (-4 *2 (-692 *4 *5 *6)))))
(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-314))))
((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1171 *3 *4)) (-14 *3 (-927))
- (-4 *4 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6))
- (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-310)))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-979))
+ (-5 *3 (-649 (-569))))))
+(((*1 *1) (-5 *1 (-602))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1092 *3)) (-4 *3 (-132)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4))
- (-5 *1 (-1034 *5)) (-4 *5 (-1055))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1034 *4))
- (-4 *4 (-1055))))
+ (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538)))
+ (-5 *1 (-538))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569))
- (-5 *2 (-649 (-694 *4))) (-5 *1 (-1034 *5)) (-4 *5 (-1055))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569))))
- (-5 *1 (-1034 *4)) (-4 *4 (-1055)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1090 *3)) (-4 *3 (-132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1204))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1204)))))
+ (-12 (-5 *4 (-960)) (-4 *3 (-1108)) (-5 *2 (-696 *1))
+ (-4 *1 (-772 *3)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383))))
+ ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))
+ (-4 *3 (-561)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1106)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))))
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9))))
+ (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280))
+ (-5 *1 (-1077 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9))))
+ (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280))
+ (-5 *1 (-1153 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-569))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855))
+ (-5 *1 (-454 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367))
- (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2))
- (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055))))
+ (|partial| -12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4))
+ (-5 *2 (-423 (-1181 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3))
+ (-4 *3 (-1251 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4))
+ (-14 *4 (-649 (-1185)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-455 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-455 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457))
+ (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *2))
+ (-2 (|:| -2150 *5) (|:| -1993 *2))))
+ (-4 *2 (-239 (-2428 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *5)) (-4 *5 (-1251 *3)) (-4 *3 (-310))
+ (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561))
+ (-4 *3 (-1057)) (-4 *2 (-797))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1181 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-979)) (-4 *2 (-131)) (-5 *1 (-1187 *3)) (-4 *3 (-561))
+ (-4 *3 (-1057))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1248 *4 *3)) (-14 *4 (-1185))
+ (-4 *3 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4))))
+ (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6))
+ (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-985 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020))))
((*1 *2 *3)
- (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173))
- (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
- (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4446 "*"))) (-4 *2 (-1055)))))
+ (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020))))
+ ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-649 *1))
+ (-4 *1 (-1076 *4 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1043))) (-5 *2 (-1043)) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1 *1) (-5 *1 (-1071)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1162 *4))
+ (-4 *4 (-1225))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-910 *4))
+ (-4 *4 (-1108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9))
+ (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6))
+ (-4 *8 (-377 *7)) (-4 *9 (-377 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)) (-4 *2 (-310))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1061 *2 *3 *4 *5 *6)) (-4 *4 (-1057))
+ (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9))))
- (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278))
- (-5 *1 (-1075 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9))))
- (-5 *4 (-776)) (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1278))
- (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2))
- (-4 *2 (-1249 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-649 *7) *7 (-1179 *7))) (-5 *5 (-1 (-423 *7) *7))
- (-4 *7 (-1249 *6)) (-4 *6 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4309 *3))))
- (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7))
- (-4 *8 (-661 (-412 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6)))
(-5 *2
- (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4309 (-659 *6 (-412 *6))))))
- (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353))
- (-4 *2
- (-13 (-407)
- (-10 -7 (-15 -3793 (*2 *4)) (-15 -2855 ((-927) *2))
- (-15 -1903 ((-1273 *2) (-927))) (-15 -2064 (*2 *2)))))
- (-5 *1 (-360 *2 *4)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4))))
+ (-5 *1 (-811 *5 *6 *7 *4)))))
+(((*1 *1 *1) (-4 *1 (-666))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561))
- (-5 *2 (-112)) (-5 *1 (-643 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157))))
- ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-988 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4)))
- (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1183)) (-5 *6 (-649 (-617 *3)))
- (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *7)))
- (-4 *7 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3)))
- (-5 *1 (-562 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4)))
- (-4 *4 (-855)) (-5 *1 (-1194 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1041)) (-5 *1 (-308))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1041))) (-5 *2 (-1041)) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1 *1) (-5 *1 (-1069)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1160 *4))
- (-4 *4 (-1223))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1163 *3))) (-5 *1 (-1163 *3)) (-4 *3 (-1223)))))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 (-569)))) (-5 *1 (-471)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-236 *3))))
+ ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-1249 (-412 *3))) (-5 *2 (-927))
- (-5 *1 (-919 *4 *5)) (-4 *5 (-1249 (-412 *4))))))
-(((*1 *2 *1)
(-12
(-5 *2
- (-649
- (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1179 *3))
- (|:| |logand| (-1179 *3)))))
- (-5 *1 (-591 *3)) (-4 *3 (-367)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
-(((*1 *1 *1) (-4 *1 (-666))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1106))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1106)) (-5 *2 (-112))
- (-5 *1 (-1224 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-983 *4 *5 *6 *7)))))
+ (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))
+ (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))
+ (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569)))
+ (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))
+ (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-412 (-569)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-412 (-569)))
+ (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1028 *3))
+ (-4 *3 (-1251 (-569))) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))
+ (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))
+ (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569))))
+ (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-412 (-569)))
+ (-5 *2 (-649 (-2 (|:| -4398 *4) (|:| -4410 *4)))) (-5 *1 (-1029 *3))
+ (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-412 (-569)))
+ (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1029 *3))
+ (-4 *3 (-1251 *5)) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5))))))
(((*1 *1 *1) (-4 *1 (-550))))
-(((*1 *1) (-4 *1 (-353))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1055)) (-4 *1 (-692 *3 *4 *5))
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-867))))
((*1 *2 *1)
- (-12 (-5 *2 (-1148 *3 *4)) (-5 *1 (-999 *3 *4)) (-14 *3 (-927))
+ (-12 (-5 *2 (-1150 *3 *4)) (-5 *1 (-1001 *3 *4)) (-14 *3 (-927))
(-4 *4 (-367))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1055))
- (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5))
+ (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1057))
+ (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5))
(-4 *7 (-239 *3 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
- (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
- (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
- (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
- (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4444)) (-4 *1 (-34)) (-5 *2 (-776))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-367)) (-4 *7 (-1251 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
+ (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-34)) (-5 *2 (-776))))
((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251))))
((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-569))))
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-569))))
((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-776)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057))
(-4 *4 (-851)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-649 (-649 (-172)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569))))
- (-4 *5 (-1249 *4))
- (-5 *2 (-2 (|:| -2530 (-412 *5)) (|:| |coeff| (-412 *5))))
- (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2))
- (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-561)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3))
- (-4 *3 (-1249 *4))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108)) (-5 *2 (-649 *1))
+ (-4 *1 (-435 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3))
+ (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057))
+ (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3))
+ (-5 *1 (-956 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $))
+ (-15 -4412 (*7 $))))))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5))
+ (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-1288 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1181 *7)) (-4 *5 (-1057))
+ (-4 *7 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-506 *5 *2 *6 *7))
+ (-4 *6 (-1251 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057))
+ (-4 *4 (-1251 *5)) (-5 *2 (-1181 *7)) (-5 *1 (-506 *5 *4 *6 *7))
+ (-4 *6 (-1251 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-851)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-649 (-1181 *11))) (-5 *3 (-1181 *11))
+ (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776)))
+ (-5 *7 (-1275 (-649 (-1181 *8)))) (-4 *10 (-855))
+ (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798))
+ (-5 *1 (-712 *9 *10 *8 *11)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1277))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1167)) (-5 *1 (-1277))))
+ ((*1 *1 *1) (-5 *1 (-1277))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183))
- (-4 *4 (-13 (-561) (-1044 (-569)) (-147))) (-5 *1 (-575 *4)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1183))
- (-5 *5 (-848 *7))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-4 *7 (-13 (-1208) (-29 *6))) (-5 *1 (-225 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1179 *6)) (-5 *4 (-848 *6))
- (-4 *6 (-13 (-1208) (-29 *5)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-225 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-112))
- (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-112))
- (-5 *1 (-1212 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4))))))
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1275 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-1275 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1251 *4)) (-5 *2 (-694 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1251 *4)) (-5 *2 (-1275 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1251 *4)) (-5 *2 (-694 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3))
+ (-5 *2 (-1275 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367))
+ (-5 *2 (-1275 *5)) (-5 *1 (-1094 *5)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1043))
+ (-5 *1 (-754)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4))
- (-4 *4 (-1055)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1216 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *5 (-1071 *2 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))))
+ (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))))
(((*1 *1 *1 *2)
(|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797))
(-4 *2 (-561))))
((*1 *1 *1 *1) (|partial| -4 *1 (-561)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055))
+ (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057))
(-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-561))))
((*1 *1 *1 *1) (|partial| -5 *1 (-776)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-561))))
+ (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-561))))
((*1 *1 *1 *1) (-5 *1 (-867)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-4 *4 (-1249 *3)) (-4 *3 (-561))
- (-5 *1 (-975 *3 *4))))
+ (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561))
+ (-5 *1 (-977 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1059 *3 *4 *2 *5 *6)) (-4 *2 (-1055))
+ (|partial| -12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057))
(-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1179 *9)))
- (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776)))
- (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11))
- (-4 *10 (-798)) (-5 *2 (-649 (-1179 *12)))
- (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1179 *12)))))
-(((*1 *2)
- (-12 (-4 *3 (-1227)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
- (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *4 (-1249 *3))
- (-5 *2
- (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-694 *3))))
- (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1249 (-569)))
- (-5 *2
- (-2 (|:| -1903 (-694 (-569))) (|:| |basisDen| (-569))
- (|:| |basisInv| (-694 (-569)))))
- (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4))
- (-5 *2
- (-2 (|:| -1903 (-694 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-694 *4))))
- (-5 *1 (-991 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5))))
+ (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-649
+ (-2 (|:| -3978 (-776))
+ (|:| |eqns|
+ (-649
+ (-2 (|:| |det| *7) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (|:| |fgb| (-649 *7)))))
+ (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776))
+ (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-649
+ (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *2))
+ (|:| |logand| (-1181 *2)))))
+ (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-367)) (-5 *1 (-591 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1275 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310))
+ (-4 *3 (-561)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1275 *1))
+ (-4 *1 (-332 *4))))
+ ((*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1275 *1)) (-4 *1 (-332 *3))))
((*1 *2)
- (-12 (-4 *3 (-353)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 *4))
- (-5 *2
- (-2 (|:| -1903 (-694 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-694 *4))))
- (-5 *1 (-1282 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1110))) (-5 *1 (-294)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
- (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
- (-5 *1 (-793)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1006 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1) (-5 *1 (-867))))
+ (-12 (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *1))
+ (-4 *1 (-414 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4))
+ (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6))
+ (-4 *6 (-13 (-414 *4 *5) (-1046 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4))
+ (-5 *2 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))
+ (-4 *6 (-414 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-422 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 *4))) (-5 *1 (-533 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185))
+ (-5 *2 (-649 *4)) (-5 *1 (-1122 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1225))
+ (-4 *3 (-377 *4)) (-4 *5 (-377 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4))
+ (-4 *2 (-1251 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34))))))
(((*1 *2 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3))))
(-5 *1 (-824 *3)) (-4 *3 (-855))))
((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-694 *2)) (-5 *4 (-776))
- (-4 *2 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *1 (-591 *2)) (-4 *2 (-1044 *3))
- (-4 *2 (-367))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2))
- (-4 *2 (-13 (-435 *4) (-1008) (-1208)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-13 (-435 *4) (-1008) (-1208)))
- (-4 *4 (-561)) (-5 *1 (-635 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1183))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-965)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1208)))
- (-5 *1 (-588 *4 *2))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-591 (-412 (-958 *4))))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-319 *4))
- (-5 *1 (-594 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1032 (-848 (-569))))
- (-5 *3 (-1163 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1055))
- (-5 *1 (-600 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))))
-(((*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-561) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4)))))
- ((*1 *1 *1) (-5 *1 (-383)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *3 *2))
- (-4 *3 (-13 (-1106) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1284)))))
+ (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *1 *1) (-5 *1 (-226)))
+ ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1147))) ((*1 *1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305)))))
+(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3))
+ (-4 *3 (-653 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3))
+ (-4 *3 (-653 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057))))
+ ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-805))
(-5 *3
(-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
(|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
(|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-1043)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569))))
+ (-4 *2 (-173)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-617 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185)))
+ (-4 *2 (-13 (-435 *5) (-27) (-1210)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-933))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))))
- (-5 *1 (-206)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-534))))
- ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))))
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569)))
+ (-5 *2
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))))
+ (-5 *1 (-153)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *3 *2))
+ (-4 *3 (-13 (-1108) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1286)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1057)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1251 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-694 *3))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
+(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776)))
+ ((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))))
+(((*1 *2)
+ (-12 (-14 *4 (-776)) (-4 *5 (-1225)) (-5 *2 (-134))
+ (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-173))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1057)) (-5 *2 (-927))))
+ ((*1 *2) (-12 (-4 *1 (-1282 *3)) (-4 *3 (-367)) (-5 *2 (-134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226)))
+ (-12 (-5 *3 (-1275 (-319 (-226))))
+ (-5 *2
+ (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569))
+ (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))))
(-5 *1 (-308)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-1186)) (-5 *3 (-1183)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2))
+ (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2))
+ (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1179 (-569))) (-5 *2 (-569)) (-5 *1 (-948)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-617 *4))
- (-4 *4 (-1106))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1106))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-112))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1106)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4))
- (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1106))
- (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5))))))
-(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776)))
- ((*1 *1 *1 *1) (-5 *1 (-867))))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-593 *4))
+ (-4 *4 (-353)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3))
- (-5 *1 (-1243 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3660 *7))))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-994 *3 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280))
+ (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-634)))
((*1 *2 *2)
- (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3660 *7))))
- (-4 *6 (-1071 *3 *4 *5)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1179 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
- (-5 *1 (-32 *4 *2)))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010) (-1210))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
- (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-975 *2 *4))
- (-4 *4 (-1249 *2)))))
+ (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1226 *2))
+ (-4 *2 (-1108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-855))
+ (-5 *1 (-1226 *2)))))
(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776)))
((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
-(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-1153 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5))
- (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1264 *5))
- (-5 *1 (-1266 *5 *2)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226)))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-755)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-766))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-569)))) (-4 *5 (-1249 *4))
- (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1021 *4 *5)) (-5 *3 (-412 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1106)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5))
- (-4 *4 (-1106)) (-4 *5 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183))
- (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-1034 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1055)) (-5 *1 (-1034 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-649 (-1165))) (-5 *1 (-1069)) (-5 *3 (-1165)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3))
- (-4 *2 (-1249 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1163 *7))) (-4 *6 (-855))
- (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1055))
- (-5 *2 (-1 (-1163 *7) *7)) (-5 *1 (-1132 *5 *6 *7)))))
+ (-12 (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *2 (-776))
+ (-5 *1 (-1173 *4 *5)) (-14 *4 (-927))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1057))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057))
+ (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353))
+ (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))
+ (-5 *1 (-350 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *7 (-1249 *5)) (-4 *4 (-729 *5 *7))
- (-5 *2 (-2 (|:| -2378 (-694 *6)) (|:| |vec| (-1273 *5))))
- (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1155 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855)))
+ (-14 *3 (-649 (-1185))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
- (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010))))))
+(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *2 (-824 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776))))
+ (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3))
- (-4 *3 (-692 *4 *5 *6))))
+ (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-717 *3 *4))
+ (-4 *4 (-1251 *3)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280))
+ (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280))
+ (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
- (-5 *2 (-776)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798))
- (-4 *8 (-855)) (-5 *1 (-983 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *2
- (-3 (-848 *3)
- (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-848 *3) "failed")))
- "failed"))
- (-5 *1 (-641 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1165))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457))
- (-5 *2
- (-3 (-848 (-412 (-958 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")))
- "failed"))
- (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057))
+ (-5 *1 (-1169 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057))
+ (-14 *4 (-1185)) (-14 *5 *3))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889))
+ (-5 *3 (-649 (-569)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889))
+ (-5 *3 (-649 (-569))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
+ ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185)))
(-4 *5 (-457))
(-5 *2
- (-3 (-848 *3)
- (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-848 *3) "failed")))
- "failed"))
- (-5 *1 (-642 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1165))
- (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3))
- (-5 *1 (-642 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-173)) (-4 *2 (-1055)) (-5 *1 (-719 *2 *3))
- (-4 *3 (-653 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1055)))))
-(((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055))))
- ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
+ (-2 (|:| |gblist| (-649 (-248 *4 *5)))
+ (|:| |gvlist| (-649 (-569)))))
+ (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
- (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
+ (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1046 (-569)))
+ (-4 *4 (-561)) (-5 *2 (-1181 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-617 *1)) (-4 *1 (-1057)) (-4 *1 (-305))
+ (-5 *2 (-1181 *1)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1128)) (-4 *4 (-353))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-995 *3 *4 *5 *2))
+ (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226)))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1043)) (-5 *1 (-758)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
- (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
- (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1411 (-649 (-2 (|:| |irr| *10) (|:| -3849 (-569)))))))
- (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310))
- (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798))
- (-5 *2
- (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-649 (-1179 *3)))))
- (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1179 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367))
- (-4 *7 (-1249 *6))
- (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
- (-4 *4 (-377 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-1054 *4 *5))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
+ (-5 *1 (-473)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-649 (-1183)))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057))
+ (-14 *4 (-649 (-1185)))))
((*1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-649 (-1183)))))
+ (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855)))
+ (-14 *4 (-649 (-1185)))))
((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))
((*1 *2 *1)
(|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-367))
- (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
+ (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))
(-4 *2 (-346 *3 *4 *5))))
((*1 *1 *2)
(-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-173))))
- ((*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1249 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *1) (-5 *1 (-828))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1055)) (-4 *4 (-1249 *3)) (-5 *1 (-164 *3 *4 *2))
- (-4 *2 (-1249 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223)))))
-(((*1 *2)
- (-12 (-4 *1 (-353))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2))
- (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445)))))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1903 (-649 *1))))
- (-4 *1 (-371 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-458 *3 *4 *5 *6))
- (|:| -1903 (-649 (-458 *3 *4 *5 *6)))))
- (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055))
- (-4 *2 (-1233 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457))
- (-5 *1 (-924 *4)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-649 (-1179 *11))) (-5 *3 (-1179 *11))
- (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776)))
- (-5 *7 (-1273 (-649 (-1179 *8)))) (-4 *10 (-855))
- (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798))
- (-5 *1 (-712 *9 *10 *8 *11)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1223))
- (-4 *3 (-377 *4)) (-4 *5 (-377 *4)))))
-(((*1 *1 *1) (-5 *1 (-226)))
- ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))) ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1055)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1249 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
+ ((*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1251 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1179 *4)) (-5 *1 (-593 *4))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4))
(-4 *4 (-353)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
- ((*1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
- (-5 *1 (-473)))))
+(((*1 *1) (-5 *1 (-602))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185)))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-392)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825))
+ (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1185)))
+ (-5 *2
+ (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
+ (-5 *1 (-633 *5 *6)))))
(((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
((*1 *1 *1)
(-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855))
@@ -11747,470 +11854,516 @@
((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855))))
((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
((*1 *1 *1)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1102 (-848 (-226)))) (-5 *1 (-308)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *9) (|:| |radicand| *9)))
+ (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776))
+ (-4 *9
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $))))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1165 (-226)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3743
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1043)) (-5 *1 (-308)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5))
(-5 *2
- (-2 (|:| -4264 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-2 (|:| -4267 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367))
(-5 *2
- (-2 (|:| |poly| *6) (|:| -3361 (-412 *6))
+ (-2 (|:| |poly| *6) (|:| -3364 (-412 *6))
(|:| |special| (-412 *6))))
(-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6))))
((*1 *2 *3)
(-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-902 *3 *4))
- (-4 *3 (-1249 *4))))
+ (-4 *3 (-1251 *4))))
((*1 *2 *3 *4 *4)
(|partial| -12 (-5 *4 (-776)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -4395 *3) (|:| -4407 *3))) (-5 *1 (-902 *3 *5))
- (-4 *3 (-1249 *5))))
+ (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-902 *3 *5))
+ (-4 *3 (-1251 *5))))
((*1 *2 *3 *2 *4 *4)
(-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
+ (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
(-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1075 *5 *6 *7 *8 *9))))
+ (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4)
(-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9))))
+ (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
(-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112))
- (-4 *8 (-1071 *5 *6 *7)) (-4 *9 (-1115 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1151 *5 *6 *7 *8 *9)))))
+ (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457))
+ (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226)))
+ (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112))
+ (-5 *2 (-1043)) (-5 *1 (-759)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-855))
+ (-4 *3 (-1108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-310))
+ (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
(-4 *4 (-855))))
- ((*1 *1) (-4 *1 (-1158))))
+ ((*1 *1) (-4 *1 (-1160))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *2 (-855))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1057)) (-4 *6 (-955 *5 *4 *2))
+ (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-367)
+ (-10 -8 (-15 -3796 ($ *6)) (-15 -4399 (*6 $))
+ (-15 -4412 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
+ (-5 *2 (-1185)) (-5 *1 (-1051 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131))
+ (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4))))
+ (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-972 *4)) (-4 *4 (-1108)) (-5 *2 (-1110 *4))
+ (-5 *1 (-973 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797))
+ (-5 *2 (-1165 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3))
+ (-4 *3 (-1251 (-170 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-412 (-569))))
+ (-5 *2 (-2 (|:| -2746 (-1165 *4)) (|:| -2758 (-1165 *4))))
+ (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
- (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383)))
+ (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280))
(-5 *1 (-793))))
((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
- (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383)))
+ (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280))
(-5 *1 (-793)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| -2679 (-412 *6)) (|:| |coeff| (-412 *6))))
+ (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-435 *4) (-1010))) (-4 *4 (-561))
+ (-5 *1 (-278 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-855))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4))))
+ (-5 *1 (-1283 *4)) (-4 *4 (-367)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-977 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057))
(-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
(-4 *5 (-855)) (-5 *2 (-112))))
((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1216 *5 *6 *7 *3))
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1218 *5 *6 *7 *3))
(-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112)))))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-1275 *3))
+ (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *1) (-5 *1 (-828))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))
+ (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4)))))
+ (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7))
+ (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1150))))
+ (-12 (-5 *3 (-649 (-958 *4)))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-423 *4)) (-4 *4 (-561)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *2 (-1071 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3))
- (-4 *3 (-1077 *4 *5 *6 *2)))))
+ (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798)) (-5 *2 (-112))
- (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5))
- (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1012)))))
-(((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *1 *1 *1) (-4 *1 (-766))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1187)) (-5 *1 (-1186)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1249 *5))
- (-5 *2
- (-649
- (-2 (|:| -1903 (-694 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-694 *6)))))
- (-5 *1 (-503 *5 *6 *7))
- (-5 *3
- (-2 (|:| -1903 (-694 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-694 *6))))
- (-4 *7 (-1249 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1165))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1041))
- (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1183)))
- (-4 *2 (-13 (-435 (-170 *5)) (-1008) (-1208))) (-4 *5 (-561))
- (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1008) (-1208))))))
-(((*1 *2 *1) (-12 (-5 *2 (-977)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-310))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1106))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2726 (-776)) (|:| -3365 (-776))))
- (-5 *1 (-776))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -2726 *3) (|:| -3365 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-330 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1223)) (-5 *1 (-521 *3 *4))
- (-14 *4 (-569)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
+ (|:| |expense| (-383)) (|:| |accuracy| (-383))
+ (|:| |intermediateResults| (-383))))
+ (-5 *1 (-808)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-319 (-226))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))))
- (-5 *1 (-206)))))
+ (-12 (-5 *3 (-1185)) (-5 *2 (-1 (-1181 (-958 *4)) (-958 *4)))
+ (-5 *1 (-1283 *4)) (-4 *4 (-367)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-901))
- (-5 *3
- (-2 (|:| |pde| (-649 (-319 (-226))))
- (|:| |constraints|
- (-649
- (-2 (|:| |start| (-226)) (|:| |finish| (-226))
- (|:| |grid| (-776)) (|:| |boundaryType| (-569))
- (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
- (|:| |tol| (-226))))
- (-5 *2 (-1041)))))
-(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265))))
- ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106))))
+ (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-1209 *3))))
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1211 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-649 (-1209 *2))) (-5 *1 (-1209 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
- (-5 *1 (-335)))))
+ (-12 (-5 *3 (-649 (-1211 *2))) (-5 *1 (-1211 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3))
+ (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-649 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
- (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-452 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
- (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-452 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6))
- (|:| -3674 *6)))
- (-5 *1 (-1021 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
-(((*1 *1) (-5 *1 (-442))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-569)) (-5 *1 (-242))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-569)) (-5 *1 (-242)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-561) (-147)))
- (-5 *2 (-2 (|:| -4395 *3) (|:| -4407 *3))) (-5 *1 (-1243 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2))
- (-4 *4 (-38 (-412 (-569)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-333)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)))) (-4 *3 (-561))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $))
- (-15 -4409 ((-1131 *3 (-617 $)) $))
- (-15 -3793 ($ (-1131 *3 (-617 $))))))))))
-(((*1 *1) (-5 *1 (-157))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855))
- (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8))
- (-4 *8 (-955 *3 *7 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4))
- (-4 *3 (-332 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4))
- (-4 *3 (-332 *4))))
- ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927))))
- ((*1 *2)
- (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1200 *4 *5))
- (-4 *4 (-1106)) (-4 *5 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569))))
- (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4))))))
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-59 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1197 (-649 *4))) (-4 *4 (-855))
+ (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797))))
+ ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-5 *2 (-776)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1068))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1069)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5))
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1068))))
+ ((*1 *1 *1) (-4 *1 (-853)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)) (-4 *2 (-1068))))
+ ((*1 *1 *1) (-4 *1 (-1068))) ((*1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1225))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225))
+ (-14 *4 (-569)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1152))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
+ (-5 *2 (-1043)) (-5 *1 (-761)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-1130 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-927)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-797))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1254 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+ (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34)))
+ (-4 *3 (-13 (-1108) (-34))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1249 *4)) (-5 *1 (-815 *4 *2))
- (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1249 *4))
- (-5 *1 (-815 *4 *2))
- (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569))))))))
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7))))
+ (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4))))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-1128)) (-5 *2 (-112)) (-5 *1 (-826)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-423 *4)) (-4 *4 (-561)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3))
+ (-4 *3 (-1108)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34)))
+ (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *4 *5)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4445)) (-4 *4 (-367)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3))
- (-4 *3 (-692 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4445)) (-4 *4 (-561)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)) (-4 *7 (-998 *4)) (-4 *8 (-377 *7))
- (-4 *9 (-377 *7)) (-5 *2 (-649 *6))
- (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6))
- (-4 *10 (-692 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3))
- (-4 *3 (-692 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
- (-5 *2 (-649 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569))))
+ (-5 *1 (-1039)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569)))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758)))))
+(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225))))
((*1 *2 *2)
- (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3))))
+ (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1106)) (-4 *3 (-23))
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1264 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1055))
- (-5 *1 (-1034 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1055))
- (-5 *1 (-1034 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1106))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1106))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1106))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055))
- (-5 *1 (-719 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1108 *4)) (-4 *4 (-1106)) (-5 *2 (-1 *4))
- (-5 *1 (-1023 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1046)) (-5 *3 (-383))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1100 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
+ (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))
+ (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229))
+ (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173))
+ (-4 *1 (-371 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173))
+ (-4 *1 (-374 *4 *5)) (-4 *5 (-1251 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4))
+ (-4 *4 (-1251 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1251 *5))
+ (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1181 *3) (-1181 *3)))
+ (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3))
+ (-5 *1 (-556 *6 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4)))
- (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4407 *6) (|:| |sol?| (-112))) (-569)
- *6))
- (-4 *6 (-367)) (-4 *7 (-1249 *6))
- (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-297 (-838 *3)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ (-12 (-5 *2 (-949 *4)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-855))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1210)))
+ (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-588 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-591 (-412 (-958 *3))))
+ (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-594 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457))
- (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5))
- (-5 *3 (-412 (-958 *5)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| -3364 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
- (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
- (-4 *4 (-377 *2)))))
-(((*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
-(((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855))
- (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7))
- (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223))
- (-4 *7 (-1223))))
+ (-12 (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-4 *5 (-1057))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5))
+ (-5 *3 (-649 (-694 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6))
- (-4 *3 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))))
-(((*1 *1) (-5 *1 (-828))))
-(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1223)) (-5 *1 (-379 *4 *2))
- (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4445)))))))
+ (-12 (-5 *4 (-1275 (-1275 *5))) (-4 *5 (-367)) (-4 *5 (-1057))
+ (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5))
+ (-5 *3 (-649 (-694 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1152))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1152)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791)))))
+(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-353)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2))
+ (-4 *2 (-1266 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3)))
+ (-4 *5 (-1251 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2))
+ (-4 *2 (-1266 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3)))
+ (-5 *1 (-547 *4 *2)) (-4 *2 (-1266 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147)))
+ (-5 *1 (-1161 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-649
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
+ (-5 *1 (-454 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1163 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1903 (-649 *1))))
- (-4 *1 (-371 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-458 *3 *4 *5 *6))
- (|:| -1903 (-649 (-458 *3 *4 *5 *6)))))
- (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305))))
- ((*1 *1 *1) (-4 *1 (-305)))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
- ((*1 *1 *1) (-5 *1 (-867))))
+ (-12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112))
+ (-5 *1 (-1302 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147)))
+ (-5 *1 (-404 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))
+ (-5 *2 (-1043)) (-5 *1 (-753)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *2 (-1073 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3))
+ (-4 *3 (-1079 *4 *5 *6 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1208) (-965))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055)) (-4 *4 (-173))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))
- (-4 *3 (-173)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1273 *4))) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
- (-5 *2 (-649 (-1273 *3))))))
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-927))
- (-5 *2
- (-3 (-1179 *4)
- (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126)))))))
- (-5 *1 (-350 *4)) (-4 *4 (-353)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1055))
- (-5 *1 (-1167 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-994 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-649 *7)) (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *1 (-1113 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333))))
+ ((*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333))))
+ ((*1 *1) (-5 *1 (-333))))
+(((*1 *1) (-5 *1 (-1276))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *1 *1) (-4 *1 (-1150))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-112))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-457))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-915)))))
+(((*1 *1) (-5 *1 (-1277))))
+(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(-5 *2
(-2
@@ -12225,10 +12378,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1163 (-226)))
+ (-3 (|:| |str| (-1165 (-226)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2080
+ (|:| -3743
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -12236,1625 +12389,1479 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-564)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1183))) (-4 *4 (-457))
- (-5 *1 (-924 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798))
- (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1075 *7 *8 *9 *3 *4)) (-4 *4 (-1077 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569))))
(-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
+ (-3 (|:| |%expansion| (-316 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))))
+ (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))
+ (-14 *6 (-1185)) (-14 *7 *3))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226)))
+ (-5 *5 (-112)) (-5 *2 (-1277)) (-5 *1 (-259)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1221)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
(-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798))
- (-4 *9 (-855)) (-4 *3 (-1071 *7 *8 *9))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4))))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8)))
+ (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8)))
+ (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
(-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1151 *7 *8 *9 *3 *4)) (-4 *4 (-1115 *7 *8 *9 *3))))
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-193)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *3 (-1073 *6 *7 *8))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
+ (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855))
+ (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9))))
+ (-5 *1 (-1080 *6 *7 *4 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-792)) (-5 *2 (-1041))
- (-5 *3
- (-2 (|:| |fn| (-319 (-226)))
- (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-792)) (-5 *2 (-1041))
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226)))))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-755)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-766))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-1055)) (-5 *2 (-1273 *4))
- (-5 *1 (-1184 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-927)) (-5 *2 (-1273 *3)) (-5 *1 (-1184 *3))
- (-4 *3 (-1055)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226)))
- (-5 *1 (-473)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538)))
- (-5 *1 (-538))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-960)) (-4 *3 (-1106)) (-5 *2 (-696 *1))
- (-4 *1 (-772 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
+ (|:| |success| (-112))))
+ (-5 *1 (-794)) (-5 *5 (-569)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561))
- (-4 *3 (-955 *7 *5 *6))
- (-5 *2
- (-2 (|:| -4320 (-776)) (|:| -1433 *3) (|:| |radicand| (-649 *3))))
- (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776))
- (-4 *8
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *3)) (-15 -4396 (*3 $)) (-15 -4409 (*3 $))))))))
+ (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5))
+ (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-1106))
- (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4))))
- (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))
+ (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057))))
((*1 *2 *1)
- (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012))))
- ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *4 (-561))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2008 *4))) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1249 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-192)) (-5 *3 (-569))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1106)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5))
- (-4 *3 (-1106)) (-4 *5 (-671 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1183))))
- (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-534)))))
+ (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-1251 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-731))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280))
+ (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280))
+ (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-550))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-1055)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3))
- (-4 *5 (-13 (-435 *4) (-1008) (-1208)))
- (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))))
-(((*1 *1) (-5 *1 (-583))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -2736 *1) (|:| -4434 *1) (|:| |associate| *1)))
+ (-4 *1 (-561)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1014)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2)))))
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1046 (-569))))
+ (-4 *7 (-1251 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2))
+ (-4 *2 (-346 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-305))) ((*1 *1 *1) (-4 *1 (-305))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-863))))
- ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-971))))
- ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-995))))
- ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1223))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-971))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-997))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1225))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1106) (-34))) (-5 *1 (-1146 *2 *3))
- (-4 *3 (-13 (-1106) (-34))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1183)) (-5 *5 (-649 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-562 *6 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1223))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223))
- (-14 *4 (-569)))))
-(((*1 *1) (-5 *1 (-442))))
+ (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *2 *3))
+ (-4 *3 (-13 (-1108) (-34))))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-927)) (-5 *2 (-1181 *3)) (-5 *1 (-1199 *3))
+ (-4 *3 (-367)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1181 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4))
+ (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798))
+ (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)))))
+ (-4 *6 (-561)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1275 *5)) (-5 *3 (-776)) (-5 *4 (-1128)) (-4 *5 (-353))
+ (-5 *1 (-533 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4))))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225)))))
+(((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *1 *1 *1) (-4 *1 (-766))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1223)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3))
- (-4 *3 (-679 *4)))))
-(((*1 *2 *1)
(-12
- (-5 *2
- (-649
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-569)))))
- (-5 *1 (-423 *3)) (-4 *3 (-561))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1249 *3))
- (-5 *2 (-649 (-1179 *3))) (-5 *1 (-503 *3 *5 *6))
- (-4 *6 (-1249 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-561) (-1044 (-569)))) (-5 *1 (-189 *3 *2))
- (-4 *2 (-13 (-27) (-1208) (-435 (-170 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-561) (-1044 (-569))))
- (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 (-170 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1212 *3 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *1 (-1212 *4 *2)) (-4 *2 (-13 (-27) (-1208) (-435 *4))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1223)) (-4 *3 (-1223)))))
+ (-5 *3
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-383)) (-5 *1 (-206)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
- (-5 *1 (-335)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265)))))
-(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
-(((*1 *2)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-1057))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-561) (-1046 (-569)) (-147)))
+ (-5 *2
+ (-2 (|:| -2679 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5)))))
+ (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1266 *4 *2))
- (-4 *4 (-38 (-412 (-569)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-242))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1266 *4))
+ (-4 *4 (-38 (-412 (-569))))
+ (-5 *2 (-1 (-1165 *4) (-1165 *4) (-1165 *4))) (-5 *1 (-1268 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-297 (-958 (-569))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-649 (-1185)))
+ (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed"))
+ (|:| |hom| (-649 (-1275 (-776))))))
+ (-5 *1 (-237)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
+ ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409))))
+ ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927))))
+ ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1165 (-569))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-649 (-1165))) (-5 *3 (-569)) (-5 *4 (-1165))
+ (-12 (-5 *2 (-649 (-1167))) (-5 *3 (-569)) (-5 *4 (-1167))
(-5 *1 (-242))))
((*1 *1 *1) (-5 *1 (-867)))
((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
((*1 *2 *1)
- (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-1179 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *4 (-617 $)) $))
- (-15 -4409 ((-1131 *4 (-617 $)) $))
- (-15 -3793 ($ (-1131 *4 (-617 $))))))))))
+ (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-569))))
- (-4 *4 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1864 ($ $ $)))))
- (-4 *3 (-561)) (-5 *1 (-1252 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *1 (-265))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1 *3)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1185))) (-4 *6 (-367))
+ (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))))
+(((*1 *1 *1 *1) (-5 *1 (-226)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048))))
+ ((*1 *1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1189)) (-5 *1 (-1188)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *2 (-1278)) (-5 *1 (-1275))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -3186 (-226))
- (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226))
- (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))
- (-5 *1 (-1275))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-383)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1183))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-649 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2530 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1208) (-27) (-435 *8)))
- (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569))
- (-5 *2 (-649 *4)) (-5 *1 (-1020 *8 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4))
- (-4 *3 (-332 *4))))
- ((*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-776)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3307 (-649 *7))))
- (-5 *1 (-983 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1243 *3 *2))
- (-4 *2 (-1249 *3)))))
-(((*1 *1) (-5 *1 (-1069))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))))
-(((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-23)))))
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226))))
+ (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-649 (-319 (-226))))
+ (|:| -2307 (-649 (-226)))))))
+ (-5 *2 (-649 (-1167))) (-5 *1 (-269)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
+ (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1077 *3 *4 *5 *6)) (-4 *2 (-1115 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1246 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1183))
- (-4 *5 (-367)) (-5 *1 (-929 *4 *5))))
+ (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1185)))
+ (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))))
+(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 (-412 (-569))))
+ (-5 *2
+ (-649
+ (-2 (|:| |outval| *4) (|:| |outmult| (-569))
+ (|:| |outvect| (-649 (-694 *4))))))
+ (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1179 *5))
- (-5 *1 (-929 *4 *5)) (-14 *4 (-1183))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367))
- (-5 *2 (-412 (-958 *6))) (-5 *1 (-1056 *5 *6)) (-14 *5 (-1183)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2530 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-367)) (-4 *7 (-1249 *6))
- (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))))
(((*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-372))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4))
+ (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4))
(-4 *4 (-353))))
((*1 *2 *1)
- (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1106))
+ (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1108))
(-14 *4
- (-1 (-112) (-2 (|:| -2150 *2) (|:| -4320 *3))
- (-2 (|:| -2150 *2) (|:| -4320 *3)))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-377 *2))
- (-4 *4 (-377 *2)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
- (-5 *1 (-760)))))
+ (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3))
+ (-2 (|:| -2150 *2) (|:| -1993 *3)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1068)) (-4 *3 (-1210))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-600 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1235 *3)) (-4 *3 (-1057))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1266 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))))
+(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-193))))
+ ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-303))))
+ ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-308)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-193))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-303))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1165))) (-5 *1 (-308)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855))
- (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5)))))
+ (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108))
+ (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1084 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3))))
+ (-5 *1 (-1084 *3 *4 *2))
+ (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-815 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-5 *2 (-2 (|:| -1903 (-649 (-412 *6))) (|:| -2378 (-694 *5))))
- (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6)))))
+ (-2 (|:| |contp| (-569))
+ (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569)))))))
+ (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1903 (-649 *4))))
- (-5 *1 (-815 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-5 *2 (-2 (|:| -1903 (-649 (-412 *6))) (|:| -2378 (-694 *5))))
- (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6))
- (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223)))))
-(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1223)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1034 *4))
- (-4 *4 (-1055)))))
+ (-2 (|:| |contp| (-569))
+ (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569)))))))
+ (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8 *3))))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))
((*1 *2 *3 *3)
(-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *3)) (-4 *3 (-1077 *5 *6 *7 *8)) (-4 *5 (-457))
- (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1113 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1055))
- (-5 *1 (-719 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-841 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-649 (-1183))) (-4 *4 (-1106))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
- (-5 *1 (-1082 *4 *5 *2))
- (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
- (-5 *1 (-1082 *3 *4 *2))
- (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4)))
- (-5 *2 (-2 (|:| |num| (-1273 *4)) (|:| |den| *4))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1216 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798))
- (-4 *3 (-855)) (-4 *6 (-1071 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))))
-(((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1) (-5 *1 (-637))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4))
- (-4 *4 (-173)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1273 (-1183))) (-5 *3 (-1273 (-458 *4 *5 *6 *7)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927))
- (-14 *6 (-649 (-1183))) (-14 *7 (-1273 (-694 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1273 (-458 *4 *5 *6 *7)))
- (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927))
- (-14 *6 (-649 *2)) (-14 *7 (-1273 (-694 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183)))
- (-14 *6 (-1273 (-694 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1273 (-1183))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1183)))
- (-14 *6 (-1273 (-694 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173))
- (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1273 (-694 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927))
- (-14 *4 (-649 (-1183))) (-14 *5 (-1273 (-694 *2))))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1223)) (-4 *2 (-855))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1055))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-1055))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4))
- (-14 *3 (-927)) (-4 *4 (-1055))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
- (-5 *2 (-1179 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1055))
- (-14 *4 (-649 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1223))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1055) (-855)))
- (-14 *4 (-649 (-1183)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))))
+ (|partial| -12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *4 (-561))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2008 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-310) (-1044 (-569)) (-644 (-569)) (-147)))
- (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1208) (-965))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
+ (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1010) (-1210)))
+ (-5 *1 (-605 *4 *2 *3))
+ (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-694 (-1181 *8))) (-4 *5 (-1057)) (-4 *8 (-1057))
+ (-4 *6 (-1251 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8))
+ (-4 *7 (-1251 *6)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1251 *5))
(-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
+ (-649
+ (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-694 *6)))))
+ (-5 *1 (-503 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-694 *6))))
+ (-4 *7 (-1251 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+(((*1 *2 *3 *4)
(-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7)))))
+ (-4 *7 (-853))
+ (-4 *8
+ (-13 (-1253 *3 *7) (-367) (-1210)
+ (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $)))))
(-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1151 *6 *7 *8 *3 *4)) (-4 *4 (-1115 *6 *7 *8 *3))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))))
+ (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8))
+ (-14 *10 (-1185)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1073 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367))
+ (-5 *2 (-112)) (-5 *1 (-672 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-927))
- (-5 *2 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126))))))
- (-5 *1 (-350 *4)) (-4 *4 (-353)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1222)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631))))
+ (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448))))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-112))
+ (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1167))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1043))
+ (-5 *1 (-755)))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219))))
+ ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-561))
+ (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 (-649 (-927))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1043)) (-5 *1 (-753)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631))))
((*1 *2 *1)
- (-12 (-4 *3 (-1106))
+ (-12 (-4 *3 (-1108))
(-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))
- (-5 *1 (-1082 *3 *4 *2))
- (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))))
+ (-5 *1 (-1084 *3 *4 *2))
+ (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *3 *2)) (-4 *3 (-1106)))))
+ (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-1108)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1108)) (-5 *2 (-776))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5))
+ (-4 *4 (-1108)) (-14 *5 *2))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))))
+ (-12 (-5 *3 (-649 (-2 (|:| -2188 *4) (|:| -3766 (-569)))))
+ (-4 *4 (-1108)) (-5 *2 (-1 *4)) (-5 *1 (-1025 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-649 *11))
+ (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11))))))
+ (-5 *6 (-776))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11))))
+ (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9))
+ (-4 *11 (-1079 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798))
+ (-4 *9 (-855)) (-5 *1 (-1077 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-649 *11))
+ (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11))))))
+ (-5 *6 (-776))
+ (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11))))
+ (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9))
+ (-4 *11 (-1117 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798))
+ (-4 *9 (-855)) (-5 *1 (-1153 *7 *8 *9 *10 *11)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2))
- (-4 *2 (-1249 (-569)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2))
- (-4 *2 (-1249 (-569)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2))
- (-4 *2 (-1249 (-569)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776))
- (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776))
- (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1249 (-569)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1249 *5))
- (-5 *1 (-449 *5 *2)) (-4 *5 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2 *3) (-12 (-5 *3 (-977)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))))
-(((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1223)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-597))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-631))))
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *2
+ (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4))
+ (|:| |genIdeal| (-509 *4 *5 *6 *7))))
+ (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-223 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-256 *3))))
+ ((*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1181 (-958 *6))) (-4 *6 (-561))
+ (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2))
+ (-4 *5 (-798))
+ (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631))))
((*1 *2 *1)
- (-12 (-4 *3 (-1106))
+ (-12 (-4 *3 (-1108))
(-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))
- (-5 *1 (-1082 *3 *4 *2))
- (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))))
+ (-5 *1 (-1084 *3 *4 *2))
+ (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1106)) (-5 *1 (-1172 *2 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52))
- (-5 *1 (-1011)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561))
- (-4 *8 (-955 *7 *5 *6))
- (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *3) (|:| |radicand| *3)))
- (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776))
- (-4 *3
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *8)) (-15 -4396 (*8 $)) (-15 -4409 (*8 $))))))))
-(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-157)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1183))
- (-4 *5 (-13 (-457) (-147) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-2 (|:| -2530 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *5))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
-(((*1 *1) (-5 *1 (-442))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+ (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1185)))
+ (-4 *2 (-13 (-435 (-170 *5)) (-1010) (-1210))) (-4 *5 (-561))
+ (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1010) (-1210))))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
+ (-4 *4 (-173))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1108))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-390 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7))
+ (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569)))))
+ (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1179 *1))
- (-4 *1 (-332 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1179 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367))
- (-4 *2 (-1249 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1273 *4)) (-4 *4 (-353)) (-5 *2 (-1179 *4))
- (-5 *1 (-533 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208)))
- (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1008) (-1208))))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-226))
+ (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-1110 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-649 *4))) (-5 *1 (-910 *4))
+ (-5 *3 (-649 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-1110 *4))) (-5 *1 (-910 *4))
+ (-5 *3 (-1110 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
+(((*1 *1) (-5 *1 (-1188))))
+(((*1 *2 *1) (-12 (-5 *2 (-979)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2))
+ (-4 *3 (-561)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1251 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310))
+ (-4 *10 (-955 *9 *7 *8))
(-5 *2
- (-2 (|:| |brans| (-649 (-649 (-949 *4))))
- (|:| |xValues| (-1100 *4)) (|:| |yValues| (-1100 *4))))
- (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-2 (|:| |deter| (-649 (-1181 *10)))
+ (|:| |dterm|
+ (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10))))
+ (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1181 *10)) (-5 *4 (-649 *6))
+ (-5 *5 (-649 *10)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-319 (-569))) (|:| -1666 (-319 (-383)))
- (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1182))))
- (-5 *1 (-1182)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223)) (-14 *4 *2))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-649 (-569)))
- (|:| |cols| (-649 (-569)))))
- (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9))))
- (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569))
- (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10))
- (-4 *10 (-13 (-855) (-619 (-1183)))) (-4 *11 (-798))
- (-5 *2
- (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12))
- (|:| |wcond| (-649 (-958 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *9))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *9)))))))))
- (-5 *1 (-930 *9 *10 *11 *12)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-412 (-569))))) (-5 *1 (-265))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
- (-5 *1 (-335)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-457))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *3 (-1071 *4 *5 *6))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *1))))
- (-4 *1 (-1077 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1227)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-1252 *3 *2))
- (-4 *2 (-13 (-1249 *3) (-561) (-10 -8 (-15 -1864 ($ $ $))))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1249 *2)) (-4 *2 (-1249 *4)) (-5 *1 (-991 *4 *2 *3 *5))
- (-4 *4 (-353)) (-4 *5 (-729 *2 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-242)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1223)) (-5 *1 (-183 *3 *2))
- (-4 *2 (-679 *3)))))
-(((*1 *2) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-105)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1266 *3 *2))
- (-4 *2 (-1264 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1165)) (-5 *1 (-308)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $))
- (-15 -4409 ((-1131 *3 (-617 $)) $))
- (-15 -3793 ($ (-1131 *3 (-617 $)))))))))
+ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383)))
+ (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184))))
+ (-5 *1 (-1184)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $))
- (-15 -4409 ((-1131 *3 (-617 $)) $))
- (-15 -3793 ($ (-1131 *3 (-617 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *2))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *4 (-617 $)) $))
- (-15 -4409 ((-1131 *4 (-617 $)) $))
- (-15 -3793 ($ (-1131 *4 (-617 $)))))))
- (-4 *4 (-561)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 (-617 *2)))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *4 (-617 $)) $))
- (-15 -4409 ((-1131 *4 (-617 $)) $))
- (-15 -3793 ($ (-1131 *4 (-617 $)))))))
- (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1249 *4))
- (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1249 *5)) (-14 *6 (-927))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
- ((*1 *1 *1) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-367)) (-4 *2 (-372)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-591 *3) *3 (-1183)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1183)))
- (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1044 *4)) (-4 *3 (-435 *7))
- (-5 *4 (-1183)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457))
- (-4 *7 (-892 (-569))) (-4 *7 (-1106)) (-5 *2 (-591 *3))
- (-5 *1 (-578 *7 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *3)) (-4 *3 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1165)) (-5 *3 (-569)) (-5 *1 (-1069)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
- (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855))
- (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798))
+ (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6))
+ (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185))))
+ (-4 *7 (-798))
(-5 *2
- (-2 (|:| |particular| (-3 (-1273 (-412 *8)) "failed"))
- (|:| -1903 (-649 (-1273 (-412 *8))))))
- (-5 *1 (-674 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1183))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-649 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2530 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1208) (-27) (-435 *8)))
- (-4 *8 (-13 (-457) (-147) (-1044 *3) (-644 *3))) (-5 *3 (-569))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -4407 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1019 *8 *4)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1053)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147)))
- (-5 *1 (-1243 *4 *2)) (-4 *2 (-1249 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1041)) (-5 *1 (-754))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-393)) (-5 *2 (-1041)) (-5 *1 (-754)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
+ (-649
+ (-2 (|:| |det| *8) (|:| |rows| (-649 (-569)))
+ (|:| |cols| (-649 (-569))))))
+ (-5 *1 (-930 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569)))))
- (-4 *3 (-1249 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3))
- (-4 *5 (-661 (-412 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-412 *5))
- (-4 *4 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *5 (-1249 *4))
- (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))))
+ (-12
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112))
+ (-5 *1 (-510 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-310))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1108))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -4007 (-776)) (|:| -2054 (-776))))
+ (-5 *1 (-776))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-742 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108))))
+ ((*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-1247 *4 *2))
+ (-4 *2 (-1251 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-867)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3))
- (-4 *3 (-619 (-541)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1183)) (-5 *2 (-1 (-226) (-226) (-226)))
- (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-776)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-757)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-1188))) (-5 *1 (-1142)))))
+ (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457))
+ (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4)))))
+ (-5 *1 (-295 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-649 *5))
- (-5 *1 (-896 *4 *5)) (-4 *5 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+ (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-248 *4 *5))
+ (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1055)) (-5 *1 (-719 *4 *2))
- (-4 *2 (-653 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1055)))))
-(((*1 *1 *1) (-4 *1 (-1150))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-193))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1165)) (|:| -3570 (-1165))))
- (-5 *1 (-827)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4446 "*")))
- (-4 *4 (-1055)) (-5 *1 (-1034 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927))
- (|has| *4 (-6 (-4446 "*"))) (-4 *4 (-1055)) (-5 *1 (-1034 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-2 (|:| -3796 *4) (|:| -3868 (-569)))))
- (-4 *4 (-1249 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-423 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-1055))
- (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-377 *3)) (-4 *3 (-1223)) (-4 *3 (-855)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1223))
- (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-1179 (-958 *4))) (-5 *1 (-421 *3 *4))
- (-4 *3 (-422 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367))
- (-5 *2 (-1179 (-958 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-226))) (-5 *2 (-1110))
- (-5 *1 (-764))))
+ (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
+(((*1 *1 *1 *1) (-4 *1 (-975))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183)) (-5 *4 (-694 (-569))) (-5 *2 (-1110))
- (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-282)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-423 *2)) (-4 *2 (-561)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-1249 *4)) (-4 *4 (-1227))
- (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1249 (-412 *3))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1041))
- (-5 *1 (-751)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561))
- (-5 *2 (-1179 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-457))
- (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1165)) (-4 *1 (-394)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-933))
- (-5 *2
- (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
- (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569)))
- (-5 *2
- (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
- (|:| |xValues| (-1100 (-226))) (|:| |yValues| (-1100 (-226)))))
- (-5 *1 (-153)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-949 *5)) (-4 *5 (-1055)) (-5 *2 (-776))
- (-5 *1 (-1171 *4 *5)) (-14 *4 (-927))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1171 *4 *5))
- (-14 *4 (-927)) (-4 *5 (-1055))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1055))
- (-5 *1 (-1171 *4 *5)) (-14 *4 (-927)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+ (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889))
- (-5 *3 (-649 (-569)))))
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561))))
((*1 *2 *3)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889))
- (-5 *3 (-649 (-569))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6))
- (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *9) (|:| |radicand| *9)))
- (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776))
- (-4 *9
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *8)) (-15 -4396 (*8 $)) (-15 -4409 (*8 $))))))))
+ (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569)))))
+ (-4 *4 (-1251 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-649 *1)) (-4 *1 (-1071 *4 *5 *6)) (-4 *4 (-1055))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1142 *4)) (-4 *4 (-1057))
+ (-5 *2 (-776)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1181 *6)) (-1181 *6)))
+ (-4 *6 (-367))
+ (-5 *2
+ (-649
+ (-2 (|:| |outval| *7) (|:| |outmult| (-569))
+ (|:| |outvect| (-649 (-694 *7))))))
+ (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282))))
((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1216 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798))
- (-4 *6 (-855)) (-4 *3 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1167) (-1190)))
+ (-5 *1 (-1190)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-131))
- (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| -1433 *3) (|:| -3345 *4))))
- (-5 *1 (-740 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-731))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (-5 *2 (-1163 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-975 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
- (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2
- (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
- (|:| |expense| (-383)) (|:| |accuracy| (-383))
- (|:| |intermediateResults| (-383))))
- (-5 *1 (-808)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1223))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1223))
- (-14 *4 (-569)))))
-(((*1 *1) (-5 *1 (-442))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126))))))
- (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1274))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1275)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-383)) (-5 *1 (-791)))))
+ (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3))))
+ (-5 *2 (-649 (-1185))) (-5 *1 (-1084 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+ (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-112))
+ (-5 *1 (-265)))))
+(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-330 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-521 *3 *4))
+ (-14 *4 (-569)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2)) (-4 *2 (-1225)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1934 *1) (|:| -4431 *1) (|:| |associate| *1)))
- (-4 *1 (-561)))))
+ (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367)))
+ (-4 *3 (-1251 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776))
+ (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-927)) (-5 *2 (-1179 *3)) (-5 *1 (-1197 *3))
- (-4 *3 (-367)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1251 (-412 *2)))
+ (-4 *2 (-1251 *5)) (-5 *1 (-216 *5 *2 *6 *3))
+ (-4 *3 (-346 *5 *2 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-958 (-569))))
- (-5 *2
- (-2 (|:| |varOrder| (-649 (-1183)))
- (|:| |inhom| (-3 (-649 (-1273 (-776))) "failed"))
- (|:| |hom| (-649 (-1273 (-776))))))
- (-5 *1 (-237)))))
-(((*1 *1 *1 *1) (-5 *1 (-226)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1273 *4)) (-5 *1 (-533 *4))
- (-4 *4 (-353)))))
-(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-193))))
- ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-303))))
- ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1165)) (-5 *1 (-308)))))
+ (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-1144)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367))
+ (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1251 *5)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1008) (-1208)))
- (-5 *1 (-605 *4 *2 *3))
- (-4 *3 (-13 (-435 (-170 *4)) (-1008) (-1208))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-367))
- (-5 *2 (-112)) (-5 *1 (-672 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4445))))
- (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4445)))) (-5 *2 (-112))
- (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1055) (-722 (-412 (-569)))))
- (-4 *5 (-855)) (-5 *1 (-1289 *4 *5 *2)) (-4 *2 (-1294 *5 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-1071 *4 *5 *6)) (-4 *4 (-561))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-983 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-694 (-319 (-226))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))))
+ (-5 *1 (-206)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-112))
- (-5 *1 (-265)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))))
-(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539))))
- ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))))
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7))))
+ (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550))))
+ ((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-367) (-853)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1411 (-423 *3))))
- (-5 *1 (-182 *4 *3)) (-4 *3 (-1249 (-170 *4))))))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -4360 (-423 *3))))
+ (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183))
+ (-12 (-4 *1 (-901))
+ (-5 *3
+ (-2 (|:| |pde| (-649 (-319 (-226))))
+ (|:| |constraints|
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167))
+ (|:| |tol| (-226))))
+ (-5 *2 (-1043)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-757)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1185)))
+ (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *2 (-1174 (-649 (-958 *4)) (-649 (-297 (-958 *4)))))
+ (-5 *1 (-509 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-282)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1043)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185))
(-5 *2
- (-2 (|:| |zeros| (-1163 (-226))) (|:| |ones| (-1163 (-226)))
- (|:| |singularities| (-1163 (-226)))))
+ (-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226)))
+ (|:| |singularities| (-1165 (-226)))))
(-5 *1 (-105)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
+ (-12 (-5 *3 (-1185)) (-5 *2 (-541)) (-5 *1 (-540 *4))
+ (-4 *4 (-1225)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394)))))
+(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-561)) (-4 *3 (-1057))
+ (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057))
+ (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3))
+ (-4 *3 (-857 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1183 *4 *5 *6))
+ (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1267 *4 *5 *6))
+ (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1046 *4)) (-4 *3 (-561)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))))
+(((*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108))))
+ ((*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-353)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112))
+ (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1185)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457))
+ (-14 *5 (-649 (-1185))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4))
+ (-5 *2 (-2 (|:| -1435 (-412 *5)) (|:| |poly| *3)))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225))
+ (-5 *2 (-649 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-457)) (-4 *4 (-1106))
+ (-12 (-5 *3 (-1185)) (-4 *4 (-457)) (-4 *4 (-1108))
(-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-435 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))
+ ((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *1) (-4 *1 (-874 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797))
+ (-4 *4 (-855)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1276))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1277)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-172)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225))
+ (-4 *3 (-1108)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-112))
+ (-5 *1 (-910 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-452 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6))
+ (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-5 *1 (-452 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1225)) (-5 *2 (-1280)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1275 (-3 (-473) "undefined"))) (-5 *1 (-1276)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-131)))))
(((*1 *2 *2 *3)
(-12 (-5 *2 (-694 *7)) (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
+ (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185))))
(-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1264 *4))
+ (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1108)) (-4 *2 (-1108))
+ (-5 *1 (-616 *2 *4)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-762)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6))
+ (|:| -3676 *6)))
+ (-5 *1 (-1023 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057))
+ (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1260 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
+ (-14 *4 (-1185)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1108)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *2))
+ (-2 (|:| -2150 *3) (|:| -1993 *2)))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1870 *3)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
+ (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1266 *4))
(-4 *4 (-38 (-412 (-569))))
- (-5 *2 (-1 (-1163 *4) (-649 (-1163 *4)))) (-5 *1 (-1266 *4 *5)))))
+ (-5 *2 (-1 (-1165 *4) (-649 (-1165 *4)))) (-5 *1 (-1268 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-757)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1203)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4))))
+ (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1057))
+ (-5 *2 (-1275 (-1275 *5))) (-5 *1 (-1037 *5)) (-5 *4 (-1275 *5)))))
+(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539))))
+ ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))))
(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
(-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
(-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))))
(-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-226))
- (-5 *2 (-1041)) (-5 *1 (-754)))))
+ (-5 *2 (-1043)) (-5 *1 (-754)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4))
+ (-4 *4 (-1225)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1230))))))
+(((*1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1) (-5 *1 (-867)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1181 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1185)) (-5 *3 (-958 *6))
+ (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539))))
+ ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *1) (-4 *1 (-550))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108))
+ (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1116)))))
+ (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1118)))))
+(((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1108)) (-5 *2 (-776)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457))
+ (-5 *1 (-1216 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367))
+ (-14 *4 (-1185)) (-14 *5 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-242))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-569)) (-5 *1 (-242)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112))
+ (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1043)) (-5 *1 (-761)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *3 (-617 $)) $))
- (-15 -4409 ((-1131 *3 (-617 $)) $))
- (-15 -3793 ($ (-1131 *3 (-617 $))))))))))
-(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539))))
- ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1274)))))
+ (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $))
+ (-15 -4412 ((-1133 *3 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *3 (-617 $))))))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057))
+ (-4 *3 (-561))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112))
- (-5 *1 (-677 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1223)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-496)))))
-(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1068))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1068)))))
+ (|partial| -12 (-4 *4 (-13 (-561) (-147)))
+ (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-1245 *4 *3))
+ (-4 *3 (-1251 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-896 *4 *3))
- (-4 *3 (-1223))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1108 (-1108 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1130 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-827)))))
-(((*1 *2 *3)
(-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-569)) (-5 *1 (-205)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-5 *2
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *4))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))
+ (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147)))
+ (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1185))))
+ (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1108))
+ (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569)))))
+ (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569))
+ (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5)))
+ (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1055)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1249 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226))))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-649 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5))
- (-5 *2 (-649 (-2 (|:| -3706 *5) (|:| -4309 *3))))
- (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6))
- (-4 *7 (-661 (-412 *6))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2))
+ (-4 *4 (-38 (-412 (-569)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7))
- (-4 *4 (-619 (-541))) (-4 *5 (-1223)) (-4 *6 (-1223))
- (-4 *7 (-1223)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-1209 *3))) (-5 *1 (-1209 *3)) (-4 *3 (-1106)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1055)) (-5 *1 (-719 *2 *4))
- (-4 *4 (-653 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1055)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1179 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
-(((*1 *2 *3 *2)
- (-12
+ (-12 (-5 *3 (-694 (-412 (-958 (-569)))))
(-5 *2
(-649
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855))
- (-5 *1 (-454 *4 *3 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+ (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569))
+ (|:| |radvect| (-649 (-694 (-319 (-569))))))))
+ (-5 *1 (-1039)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1276)))))
+(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))
+ (-5 *2 (-1043)) (-5 *1 (-753)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))
+ (-4 *4 (-353)) (-5 *2 (-1280)) (-5 *1 (-533 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1057)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-909 *3)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569)
+ *6))
+ (-4 *6 (-367)) (-4 *7 (-1251 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
+ (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))
+ ((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1227))
- (-4 *5 (-1249 *4)) (-4 *6 (-1249 (-412 *5)))
- (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1041))
- (-5 *1 (-751)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1179 *4)) (-4 *4 (-353)) (-5 *2 (-112))
- (-5 *1 (-361 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (|has| *1 (-6 -4445)) (-4 *1 (-377 *3))
- (-4 *3 (-1223)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1179 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-949 *4)) (-4 *4 (-1055)) (-5 *1 (-1171 *3 *4))
- (-14 *3 (-927)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173))))
- ((*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
- (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
- (-4 *7 (-998 *4)) (-4 *2 (-692 *7 *8 *9))
- (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6))
- (-4 *8 (-377 *7)) (-4 *9 (-377 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1055))
- (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
- (-4 *2 (-692 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1055))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *3 (-1055))
- (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367))))
- ((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1194 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *3 (-649 (-569)))
- (-5 *1 (-889)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1106) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1146 *4 *5)) (-4 *4 (-13 (-1106) (-34))))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1108)) (-4 *6 (-1108))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112))
+ (-5 *1 (-677 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-964 (-184 (-139)))) (-5 *1 (-336))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-611)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1167 *4)) (-4 *4 (-1055))
- (-5 *3 (-569)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -4360 *3) (|:| -4320 (-776)))) (-5 *1 (-592 *3))
- (-4 *3 (-550)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-649
- (-2
- (|:| -2003
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226))))
- (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226)))
- (|:| |g| (-319 (-226))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (|:| -2214
- (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383))
- (|:| |expense| (-383)) (|:| |accuracy| (-383))
- (|:| |intermediateResults| (-383)))))))
- (-5 *1 (-808)))))
-(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569))))
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $))
+ (-15 -4412 ((-1133 *3 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *3 (-617 $))))))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7))
+ (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798))
+ (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7)))))
+(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 *2)) (-4 *4 (-1251 *2))
+ (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2))
+ (-4 *5 (-239 *3 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
+ (-5 *1 (-308))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1275 *1))))
((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
-(((*1 *1) (-5 *1 (-442))))
+ (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915))
+ (-5 *2 (-1275 *1)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| -4133 *1) (|:| -1721 (-649 *7)))))
+ (-5 *3 (-649 *7)) (-4 *1 (-1218 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-157))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-4 *5 (-367))
+ (-5 *2
+ (-2 (|:| A (-694 *5))
+ (|:| |eqs|
+ (-649
+ (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5)) (|:| -4312 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5))
+ (-4 *6 (-661 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *6 (-661 *5))
+ (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5))))
+ (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-496)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561))
- (-4 *7 (-955 *3 *5 *6))
- (-5 *2 (-2 (|:| -4320 (-776)) (|:| -1433 *8) (|:| |radicand| *8)))
- (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057))
+ (-4 *6 (-1251 *5)) (-5 *2 (-1181 (-1181 *7)))
+ (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1251 *6)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1148 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34)))
+ (-5 *1 (-1149 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-1148 *3 *4))) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855))
+ (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8))
+ (-4 *8 (-955 *3 *7 *6)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-752)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4))
+ (-4 *2 (-239 *3 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7)))))
+ (-4 *7 (-853))
(-4 *8
- (-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-319 (-226)))) (-5 *2 (-1273 (-319 (-383))))
- (-5 *1 (-308)))))
+ (-13 (-1253 *3 *7) (-367) (-1210)
+ (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))))
+ (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8))
+ (-14 *10 (-1185)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185)))
+ (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1194 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1070))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1070)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-530)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1251 *4))
+ (-5 *2 (-1275 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *1) (-5 *1 (-141))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-798))
- (-4 *3 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *5 (-561))
- (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *3
- (-13 (-855)
- (-10 -8 (-15 -1408 ((-1183) $))
- (-15 -2671 ((-3 $ "failed") (-1183))))))
- (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *6))
- (-4 *6
- (-13 (-855)
- (-10 -8 (-15 -1408 ((-1183) $))
- (-15 -2671 ((-3 $ "failed") (-1183))))))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2))
- (-4 *2 (-955 (-958 *4) *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1216 *4 *5 *6 *7))
- (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1197 *2)) (-4 *2 (-367)))))
-(((*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-855)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
- ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-927)) (-5 *1 (-791)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1163 (-569))) (-5 *1 (-1010 *3)) (-14 *3 (-569)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-896 *4 *3))
+ (-4 *3 (-1225))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-977))
- (-5 *3 (-649 (-569))))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2 (-649 (-226))) (-5 *1 (-205)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1210))))
+ ((*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))))
+(((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4))
+ (-4 *3 (-332 *4))))
+ ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226)))
+ (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
+ (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226)))
+ (-5 *1 (-702))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-226)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226)))
+ (-5 *4 (-1102 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-5 *2 (-1181 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4))
- (-14 *4 (-649 (-1183)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-455 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-649 *7)) (-5 *3 (-1165)) (-4 *7 (-955 *4 *5 *6))
- (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-455 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855))
- (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457))
- (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-983 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6))
- (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-983 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-236 *3))))
- ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1106)))))
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-985 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1110 (-1110 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-1280)) (-5 *1 (-836)))))
+(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1142 *4))
+ (-4 *4 (-1057))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1280))
+ (-5 *1 (-1277)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1179 *7)) (-4 *5 (-1055))
- (-4 *7 (-1055)) (-4 *2 (-1249 *5)) (-5 *1 (-506 *5 *2 *6 *7))
- (-4 *6 (-1249 *2))))
+ (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4))
+ (-5 *1 (-269)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-173)) (-4 *2 (-1251 *4)) (-5 *1 (-178 *4 *2 *3))
+ (-4 *3 (-729 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1055)) (-4 *7 (-1055))
- (-4 *4 (-1249 *5)) (-5 *2 (-1179 *7)) (-5 *1 (-506 *5 *4 *6 *7))
- (-4 *6 (-1249 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1041))
- (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1273 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310))
- (-4 *3 (-561)) (-5 *1 (-43 *3 *4))))
+ (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1185))
+ (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457))))
((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1273 *1))
- (-4 *1 (-332 *4))))
- ((*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1273 *1)) (-4 *1 (-332 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-173)) (-4 *4 (-1249 *3)) (-5 *2 (-1273 *1))
- (-4 *1 (-414 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4))
- (-5 *2 (-1273 *6)) (-5 *1 (-418 *3 *4 *5 *6))
- (-4 *6 (-13 (-414 *4 *5) (-1044 *4)))))
+ (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4))
+ (-5 *1 (-295 *4)) (-4 *4 (-457))))
((*1 *2 *1)
- (-12 (-4 *3 (-310)) (-4 *4 (-998 *3)) (-4 *5 (-1249 *4))
- (-5 *2 (-1273 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))
- (-4 *6 (-414 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1273 *1)) (-4 *1 (-422 *3))))
+ (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-927)) (-5 *2 (-1273 (-1273 *4))) (-5 *1 (-533 *4))
- (-4 *4 (-353)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1008) (-1208)))
- (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1008) (-1208)))
- (-5 *1 (-605 *4 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4))
- (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367))
- (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-617 *3)) (-5 *5 (-1179 *3))
- (-4 *3 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1179 *3)))
- (-4 *3 (-13 (-435 *6) (-27) (-1208)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1106)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5))
- (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-1286 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1071 *5 *6 *7)) (-4 *5 (-561))
- (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1286 *5 *6 *7 *8)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-4 *4 (-1106))
- (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112))
- (-5 *1 (-211)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-5 *2 (-112))
- (-5 *1 (-895 *4 *5)) (-4 *5 (-1106))))
+ (-12 (-5 *3 (-694 (-170 (-412 (-569)))))
+ (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4))
+ (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-898 *5)) (-4 *5 (-1106)) (-5 *2 (-112))
- (-5 *1 (-896 *5 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1185))
+ (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5))
+ (-4 *5 (-13 (-367) (-853)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569))))
+ (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
- (-4 *6 (-1223)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1116)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *3 (-958 (-569)))
- (-5 *1 (-333))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1098 (-958 (-569)))) (-5 *1 (-333)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1053)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561))
- (-4 *3 (-1223)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561))
- (-5 *2 (-2 (|:| -1433 *4) (|:| -2726 *3) (|:| -3365 *3)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *2 (-2 (|:| -2726 *1) (|:| -3365 *1))) (-4 *1 (-1071 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-561)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| -1433 *3) (|:| -2726 *1) (|:| -3365 *1)))
- (-4 *1 (-1249 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776)))
- (-5 *1 (-910 *4)))))
+ (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1185))
+ (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5))
+ (-4 *5 (-13 (-367) (-853))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1249 *4)) (-5 *2 (-1278))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1249 (-412 *5))) (-14 *7 *6))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
- ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1141))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-827)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569))
- (-5 *2 (-694 *6)) (-5 *1 (-1035 *6)) (-4 *6 (-367)) (-4 *6 (-1055))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1035 *4))
- (-4 *4 (-367)) (-4 *4 (-1055))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5))
- (-5 *1 (-1035 *5)) (-4 *5 (-367)) (-4 *5 (-1055)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
+ (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797))))
((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1055)) (-14 *3 (-649 (-1183)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185)))))
((*1 *1 *1)
- (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1055) (-855)))
- (-14 *3 (-649 (-1183)))))
+ (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855)))
+ (-14 *3 (-649 (-1185)))))
((*1 *1 *1)
- (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-1106))))
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108))))
((*1 *1 *1)
- (-12 (-14 *2 (-649 (-1183))) (-4 *3 (-173))
- (-4 *5 (-239 (-2426 *2) (-776)))
+ (-12 (-14 *2 (-649 (-1185))) (-4 *3 (-173))
+ (-4 *5 (-239 (-2428 *2) (-776)))
(-14 *6
- (-1 (-112) (-2 (|:| -2150 *4) (|:| -4320 *5))
- (-2 (|:| -2150 *4) (|:| -4320 *5))))
+ (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5))
+ (-2 (|:| -2150 *4) (|:| -1993 *5))))
(-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855))
(-4 *7 (-955 *3 *5 (-869 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-855))))
+ ((*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855))))
((*1 *1 *1)
- (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055))))
+ (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057))))
((*1 *1 *1)
- (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1055))
+ (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1057))
(-4 *3 (-731))))
- ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
(-4 *2 (-855))))
((*1 *1 *1)
- (-12 (-5 *1 (-1296 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-851)))))
+ (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))))
+(((*1 *1) (-4 *1 (-975))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1043))
+ (-5 *1 (-763)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333)))))
+(((*1 *1) (-5 *1 (-828))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1150 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367))
+ (-5 *1 (-1001 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1223)) (-4 *2 (-1008))
- (-4 *2 (-1055)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1114 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3660 *9))))
- (-5 *5 (-112)) (-4 *8 (-1071 *6 *7 *4)) (-4 *9 (-1077 *6 *7 *4 *8))
- (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855))
- (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3660 *9))))
- (-5 *1 (-1114 *6 *7 *4 *8 *9)))))
-(((*1 *1) (-4 *1 (-973))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-569))) (-5 *1 (-948)) (-5 *3 (-569))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
- (-5 *1 (-1130 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *5 (-372))
+ (-5 *2 (-776)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *2 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-1071 *3 *4 *2)) (-4 *2 (-855))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *2 (-855)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1165)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569)))
- (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-762)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-226)) (-5 *4 (-569))
- (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1666))))
- (-5 *2 (-1041)) (-5 *1 (-751)))))
-(((*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1073 *3 *4 *5)))))
(((*1 *1) (-5 *1 (-583)))
- ((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-868))))
- ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1278)) (-5 *1 (-868))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-868))))
+ ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-868))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-867)) (-5 *2 (-1278)) (-5 *1 (-868))))
+ (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-868))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-1163 *4))
- (-4 *4 (-1106)) (-4 *4 (-1223)))))
+ (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1165 *4))
+ (-4 *4 (-1108)) (-4 *4 (-1225)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457))))
+ ((*1 *1 *1 *1) (-4 *1 (-457)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-776)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310))
+ (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5))
+ (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-310))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1181 *7))) (-4 *4 (-798)) (-4 *5 (-855))
+ (-4 *6 (-310)) (-5 *2 (-1181 *7)) (-5 *1 (-922 *4 *5 *6 *7))
+ (-4 *7 (-955 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-927)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2))
+ (-4 *2 (-1251 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1223))
+ (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225))
(-4 *4 (-377 *2)) (-4 *5 (-377 *2))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2))
- (-4 *5 (-377 *2)) (-4 *2 (-1223))))
+ (-4 *5 (-377 *2)) (-4 *2 (-1225))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1223))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1225))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1225))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-649 (-569))) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2))
(-14 *4 (-569)) (-14 *5 (-776))))
@@ -13874,30 +13881,30 @@
(-12 (-4 *2 (-173)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-569))
(-14 *4 (-776))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1183)) (-5 *2 (-246 (-1165))) (-5 *1 (-215 *4))
+ (-12 (-5 *3 (-1185)) (-5 *2 (-246 (-1167))) (-5 *1 (-215 *4))
(-4 *4
(-13 (-855)
- (-10 -8 (-15 -1866 ((-1165) $ *3)) (-15 -4155 ((-1278) $))
- (-15 -4224 ((-1278) $)))))))
+ (-10 -8 (-15 -1869 ((-1167) $ *3)) (-15 -4158 ((-1280) $))
+ (-15 -3567 ((-1280) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-995)) (-5 *1 (-215 *3))
+ (-12 (-5 *2 (-997)) (-5 *1 (-215 *3))
(-4 *3
(-13 (-855)
- (-10 -8 (-15 -1866 ((-1165) $ (-1183))) (-15 -4155 ((-1278) $))
- (-15 -4224 ((-1278) $)))))))
+ (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $))
+ (-15 -3567 ((-1280) $)))))))
((*1 *2 *1 *3)
(-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855))))
((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855))))
((*1 *1 *1 *2)
(-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1188)) (-5 *1 (-251))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1190)) (-5 *1 (-251))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223))))
+ (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1106)) (-4 *2 (-1223))))
+ (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225))))
((*1 *2 *1 *2)
(-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1249 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-4 *2 (-1251 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305))))
@@ -13906,932 +13913,1061 @@
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
((*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-1249 *2))
- (-4 *4 (-1249 (-412 *3)))))
+ (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2))
+ (-4 *4 (-1251 (-412 *3)))))
((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-422 *2)) (-4 *2 (-173))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1165)) (-5 *1 (-507))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-637))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1167)) (-5 *1 (-507))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-52)) (-5 *1 (-637))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1240 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106))))
+ (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))
((*1 *1 *2 *3)
(-12 (-5 *2 (-114)) (-5 *3 (-649 (-898 *4))) (-5 *1 (-898 *4))
- (-4 *4 (-1106))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106))))
+ (-4 *4 (-1108))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-776)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4))
- (-4 *4 (-1106))))
+ (-4 *4 (-1108))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-241 *4 *2)) (-14 *4 (-927)) (-4 *2 (-367))
- (-5 *1 (-999 *4 *2))))
+ (-5 *1 (-1001 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1016 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1) (-12 (-5 *1 (-1032 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *3 "value") (-4 *1 (-1018 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7)) (-4 *2 (-1055))
+ (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *2 (-1057))
(-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *2 *6 *7))
- (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1055))))
+ (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7))
+ (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-927)) (-4 *4 (-1106))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
- (-5 *1 (-1082 *4 *5 *2))
+ (-12 (-5 *3 (-927)) (-4 *4 (-1108))
+ (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1084 *4 *5 *2))
(-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-927)) (-4 *4 (-1106))
- (-4 *5 (-13 (-1055) (-892 *4) (-619 (-898 *4))))
- (-5 *1 (-1083 *4 *5 *2))
+ (-12 (-5 *3 (-927)) (-4 *4 (-1108))
+ (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4))))
+ (-5 *1 (-1085 *4 *5 *2))
(-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1109 *3 *4 *5 *6 *7))
- (-4 *3 (-1106)) (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106))
- (-4 *7 (-1106))))
+ (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1111 *3 *4 *5 *6 *7))
+ (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108))
+ (-4 *7 (-1108))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *3 (-1106))
- (-4 *4 (-1106)) (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *7 (-1106))))
- ((*1 *1 *1 *1) (-4 *1 (-1150)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1183))))
+ (-12 (-5 *2 (-569)) (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108))
+ (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108))))
+ ((*1 *1 *1 *1) (-4 *1 (-1152)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-412 *1)) (-4 *1 (-1249 *2)) (-4 *2 (-1055))
+ (-12 (-5 *3 (-412 *1)) (-4 *1 (-1251 *2)) (-4 *2 (-1057))
(-4 *2 (-367))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-412 *1)) (-4 *1 (-1249 *3)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057))
(-4 *3 (-561))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1251 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
+ (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1261 *2)) (-4 *2 (-1223))))
+ (-12 (-5 *3 "last") (-4 *1 (-1263 *2)) (-4 *2 (-1225))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1263 *3)) (-4 *3 (-1225))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457))))
- ((*1 *1 *1 *1) (-4 *1 (-457)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1249 (-569)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1249 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-776)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310))
- (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5))
- (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-310))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1179 *7))) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-310)) (-5 *2 (-1179 *7)) (-5 *1 (-922 *4 *5 *6 *7))
- (-4 *7 (-955 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-927)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-975 *3 *2))
- (-4 *2 (-1249 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *2 (-457)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
(-4 *1 (-955 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1165)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226))))
- (-5 *2 (-1041)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226))
- (-5 *3 (-569)) (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-649
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855))
- (-5 *1 (-454 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-694 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-13 (-310) (-147)))
- (-4 *5 (-13 (-855) (-619 (-1183)))) (-4 *6 (-798))
- (-5 *2
- (-649
- (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7))
- (|:| |wcond| (-649 (-958 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *4))))))))))
- (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
+ (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1435 (-649 *1)) (|:| -2332 *1)))
+ (-5 *3 (-649 *1)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))
+ (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6))
+ (-4 *6 (-346 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226)))
+ (-5 *1 (-308)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112))
+ (-5 *1 (-510 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1163 (-649 (-569)))) (-5 *1 (-889))
- (-5 *3 (-649 (-569))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
+ (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5))
+ (|:| |c2| (-412 *5)) (|:| |deg| (-776))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057))))
((*1 *2 *1)
- (-12 (-4 *2 (-1055)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1183)))))
+ (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185)))))
((*1 *2 *1)
(-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4))
- (-4 *3 (-13 (-1055) (-855))) (-14 *4 (-649 (-1183)))))
+ (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185)))))
((*1 *2 *1)
- (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1106)) (-4 *2 (-1055))))
+ (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057))))
((*1 *2 *1)
- (-12 (-14 *3 (-649 (-1183))) (-4 *5 (-239 (-2426 *3) (-776)))
+ (-12 (-14 *3 (-649 (-1185))) (-4 *5 (-239 (-2428 *3) (-776)))
(-14 *6
- (-1 (-112) (-2 (|:| -2150 *4) (|:| -4320 *5))
- (-2 (|:| -2150 *4) (|:| -4320 *5))))
+ (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5))
+ (-2 (|:| -2150 *4) (|:| -1993 *5))))
(-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855))
(-4 *7 (-955 *2 *5 (-869 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1106))))
+ ((*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1108))))
((*1 *2 *1)
- (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1249 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1055))))
+ (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057))))
((*1 *2 *1)
- (-12 (-4 *2 (-1055)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855))
+ (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855))
(-4 *3 (-731))))
- ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055))))
+ ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855))
- (-4 *2 (-1055))))
+ (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855))
+ (-4 *2 (-1057))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1071 *3 *4 *2)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798))
(-4 *2 (-855)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-365 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1106))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1106)) (-5 *1 (-654 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-1055)) (-5 *1 (-695 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))))
-(((*1 *2)
- (-12 (-4 *3 (-1055)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4))
- (-4 *4 (-1249 *3)))))
-(((*1 *1) (-5 *1 (-473))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1055)) (-4 *3 (-797))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569))))
((*1 *2 *1)
- (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1106))))
+ (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569))))
+ (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5))))
+ (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5)))))
+ (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108))))
((*1 *2 *1)
- (-12 (-14 *3 (-649 (-1183))) (-4 *4 (-173))
- (-4 *6 (-239 (-2426 *3) (-776)))
+ (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173))
+ (-4 *6 (-239 (-2428 *3) (-776)))
(-14 *7
- (-1 (-112) (-2 (|:| -2150 *5) (|:| -4320 *6))
- (-2 (|:| -2150 *5) (|:| -4320 *6))))
+ (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6))
+ (-2 (|:| -2150 *5) (|:| -1993 *6))))
(-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8))
(-4 *5 (-855)) (-4 *8 (-955 *4 *6 (-869 *3)))))
((*1 *2 *1)
(-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2))
- (-4 *3 (-1055))))
+ (-4 *3 (-1057))))
((*1 *1 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-797))
+ (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797))
(-4 *4 (-855)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1273 (-649 (-2 (|:| -2185 (-916 *3)) (|:| -2150 (-1126))))))
- (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927))))
- ((*1 *2)
- (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126))))))
- (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1179 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126))))))
- (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-848 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
- (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
- (-14 *5 (-649 (-1183))) (-14 *6 (-1273 (-694 *3))))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-1273 *2)) (-4 *5 (-310))
- (-4 *6 (-998 *5)) (-4 *2 (-13 (-414 *6 *7) (-1044 *6)))
- (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1249 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1106)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5))
- (-4 *3 (-1106)) (-4 *5 (-671 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1106)))))
-(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457))))
- ((*1 *1 *1 *1) (-4 *1 (-457))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1055))))
- ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)))))
-(((*1 *1) (-5 *1 (-226))) ((*1 *1) (-5 *1 (-383))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-798))
- (-4 *3 (-13 (-855) (-10 -8 (-15 -1408 ((-1183) $))))) (-4 *5 (-561))
- (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-798))
- (-4 *3
- (-13 (-855)
- (-10 -8 (-15 -1408 ((-1183) $))
- (-15 -2671 ((-3 $ "failed") (-1183))))))
- (-5 *1 (-990 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *6))
- (-4 *6
- (-13 (-855)
- (-10 -8 (-15 -1408 ((-1183) $))
- (-15 -2671 ((-3 $ "failed") (-1183))))))
- (-4 *4 (-1055)) (-4 *5 (-798)) (-5 *1 (-990 *4 *5 *6 *2))
- (-4 *2 (-955 (-958 *4) *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1208) (-1008)))
- (-5 *1 (-177 *3)))))
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1188)) (-5 *3 (-1185)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1225)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *1 *2 *3)
(-12
(-5 *3
- (-649
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-569)))))
- (-4 *2 (-561)) (-5 *1 (-423 *2))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
+ (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))))
+(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569))
+ (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333))
+ (-5 *1 (-335)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457))))
+ ((*1 *1 *1 *1) (-4 *1 (-457))))
+(((*1 *2 *3 *3)
(-12
(-5 *3
- (-2 (|:| |contp| (-569))
- (|:| -1411 (-649 (-2 (|:| |irr| *4) (|:| -3849 (-569)))))))
- (-4 *4 (-1249 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
+ (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-569)) (-5 *1 (-948)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1251 *4)) (-5 *2 (-694 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3))
+ (-5 *2 (-694 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1173 3 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-541)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-457))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1))))
+ (-4 *1 (-1079 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1229)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-1254 *3 *2))
+ (-4 *2 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173))
+ (-5 *2 (-649 (-958 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4)))
+ (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173))
+ (-14 *5 (-927)) (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797))
(-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1163 *4))) (-4 *4 (-367))
- (-4 *4 (-1055)) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1216 *5 *6 *7 *8)) (-4 *5 (-561))
- (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1071 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-977)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1278)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-353))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569)))))))
+ (-5 *1 (-217 *5 *3)) (-4 *3 (-1251 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1185)) (-5 *2 (-112)) (-5 *1 (-617 *4))
+ (-4 *4 (-1108))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1108))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4))
+ (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1108))
+ (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1165 *3))) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3))
+ (-4 *3 (-1108)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1106)) (-5 *1 (-1200 *3 *2)) (-4 *3 (-1106)))))
-(((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+ (-12 (-4 *3 (-1251 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-993 *4 *2 *3 *5))
+ (-4 *4 (-353)) (-4 *5 (-729 *2 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4))
+ (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
(((*1 *1 *1) (-4 *1 (-244)))
((*1 *1 *1)
(-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1249 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-2774 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1223)))
- (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1223)))))
+ (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225)))
+ (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225)))))
((*1 *1 *1) (-4 *1 (-478)))
- ((*1 *2 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3))))
((*1 *1 *1)
(-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-367)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3))
+ (-5 *1 (-1245 *4 *3)) (-4 *3 (-1251 *4)))))
(((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-541))) ((*1 *1) (-4 *1 (-727)))
((*1 *1) (-4 *1 (-731)))
- ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
+ ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))
((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4))
+ (-5 *1 (-533 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-774))
(-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-569)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5))
- (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8))
- (-5 *6 (-649 *8)) (-4 *8 (-435 *7))
- (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8)))
- (-4 *8 (-435 *7)) (-5 *5 (-297 *8))
- (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6))
- (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6))
- (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6))
- (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3))
- (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52))
- (-5 *1 (-320 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1273 *6)) (-5 *4 (-1273 (-569))) (-5 *5 (-569))
- (-4 *6 (-1106)) (-5 *2 (-1 *6)) (-5 *1 (-1023 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
- (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))))
+ (-5 *1 (-570))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-774)) (-5 *4 (-1071))
(-5 *2
- (-649
- (-2
- (|:| -2003
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (|:| -2214
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1163 (-226)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2080
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-564)))))
-(((*1 *2 *2 *2)
- (-12
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))))
+ (-5 *1 (-570))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-792)) (-5 *3 (-1071))
+ (-5 *4
+ (-2 (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
(-5 *2
- (-2 (|:| -1903 (-694 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-694 *3))))
- (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-541)))
- ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1064))))
- ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
- ((*1 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1064)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1106)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1106)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1041))
- (-5 *1 (-760)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))))
+ (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))
+ (|:| |extra| (-1043))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-792)) (-5 *3 (-1071))
+ (-5 *4
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
+ (|:| |relerr| (-226))))
+ (-5 *2
+ (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))
+ (|:| |extra| (-1043))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-805)) (-5 *3 (-1071))
+ (-5 *4
+ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
+ (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
+ (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
+ (|:| |abserr| (-226)) (|:| |relerr| (-226))))
+ (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-813))
+ (-5 *2
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167)))))
+ (-5 *1 (-810))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-813)) (-5 *4 (-1071))
+ (-5 *2
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167)))))
+ (-5 *1 (-810))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-844)) (-5 *3 (-1071))
+ (-5 *4
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))
+ (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-844)) (-5 *3 (-1071))
+ (-5 *4
+ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226)))
+ (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
+ (|:| |ub| (-649 (-848 (-226))))))
+ (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-846))
+ (-5 *2
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167)))))
+ (-5 *1 (-845))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-846)) (-5 *4 (-1071))
+ (-5 *2
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167)))))
+ (-5 *1 (-845))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-901)) (-5 *3 (-1071))
+ (-5 *4
+ (-2 (|:| |pde| (-649 (-319 (-226))))
+ (|:| |constraints|
+ (-649
+ (-2 (|:| |start| (-226)) (|:| |finish| (-226))
+ (|:| |grid| (-776)) (|:| |boundaryType| (-569))
+ (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
+ (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167))
+ (|:| |tol| (-226))))
+ (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-904))
+ (-5 *2
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167)))))
+ (-5 *1 (-903))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-904)) (-5 *4 (-1071))
+ (-5 *2
+ (-2 (|:| -1813 (-383)) (|:| -3573 (-1167))
+ (|:| |explanations| (-649 (-1167)))))
+ (-5 *1 (-903)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+ (-12 (-5 *4 (-694 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039))
+ (-5 *3 (-319 (-569))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))
+ (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5))
+ (-4 *5 (-1251 (-412 *4))))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457))
- (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1183)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457))
- (-14 *4 (-649 (-1183))) (-5 *1 (-633 *3 *4)))))
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933))
+ (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933))
+ (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-932))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226)))
+ (-5 *1 (-933)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1181 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6))
+ (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6))
+ (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10))
+ (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1079 *5 *6 *7 *8))
+ (-4 *10 (-1117 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6)))
+ (-5 *1 (-633 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1185)))
+ (-5 *2
+ (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6)))))
+ (-5 *1 (-633 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457))
+ (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6)))
+ (-5 *1 (-1054 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1079 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1218 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
+ (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7))))
+ (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-996 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7))))
+ (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1115 *3 *4 *5 *6 *7)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-541)))
+ ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066))))
+ ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))
+ ((*1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4448)) (-4 *1 (-1018 *3))
+ (-4 *3 (-1225)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-958 *5)) (-4 *5 (-1055)) (-5 *2 (-486 *4 *5))
- (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1183))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7)))
- (-4 *7 (-1249 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-579 *6 *7)))))
+ (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
+ (-4 *3 (-13 (-367) (-1210) (-1010))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057))
+ (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-396)))))
+(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-242)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-412 (-569)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-318 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569)))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-318 *6 *3))))
((*1 *2 *3 *4 *5 *6)
(-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8))
- (-5 *5 (-1240 (-412 (-569)))) (-5 *6 (-412 (-569)))
- (-4 *8 (-13 (-27) (-1208) (-435 *7)))
- (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569)))
+ (-4 *8 (-13 (-27) (-1210) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-412 (-569))))
- (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1208) (-435 *8)))
- (-4 *8 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569))))
+ (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8)))
+ (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1055)) (-4 *1 (-1256 *4 *3))
- (-4 *3 (-1233 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211)))))
+ (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1057)) (-4 *1 (-1258 *4 *3))
+ (-4 *3 (-1235 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3))
+ (-4 *3 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3015)) (-5 *2 (-112)) (-5 *1 (-622))))
+ (-12 (-5 *3 (|[\|\|]| -3018)) (-5 *2 (-112)) (-5 *1 (-622))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1626)) (-5 *2 (-112)) (-5 *1 (-622))))
+ (-12 (-5 *3 (|[\|\|]| -1627)) (-5 *2 (-112)) (-5 *1 (-622))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1876)) (-5 *2 (-112)) (-5 *1 (-622))))
+ (-12 (-5 *3 (|[\|\|]| -1882)) (-5 *2 (-112)) (-5 *1 (-622))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1586)) (-5 *2 (-112)) (-5 *1 (-696 *4))
+ (-12 (-5 *3 (|[\|\|]| -1587)) (-5 *2 (-112)) (-5 *1 (-696 *4))
(-4 *4 (-618 (-867)))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-867))) (-5 *2 (-112))
(-5 *1 (-696 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-881))))
+ (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-881))))
((*1 *2 *1 *3)
(-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-976))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1042))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1044))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1284))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1286))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-1283))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1285))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)) (-5 *1 (-1188))))
+ (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-1190))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1188))))
+ (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1190))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1188))))
+ (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1190))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1188)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-867)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-541)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1249 *4))
- (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275))))
- ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183))) (-4 *5 (-561))
- (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561))
- (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1903 (-649 *6)))
- *7 *6))
- (-4 *6 (-367)) (-4 *7 (-661 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1273 *6) "failed"))
- (|:| -1903 (-649 (-1273 *6)))))
- (-5 *1 (-818 *6 *7)) (-5 *4 (-1273 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310))
- (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7))
- (-4 *3 (-1249 *6)) (-4 *7 (-955 *6 *4 *5)))))
-(((*1 *2 *3)
+ (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1190)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3))
+ (-4 *3 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-236 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108))
+ (-5 *1 (-742 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))))
+(((*1 *2 *3 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2 (-112)) (-5 *1 (-303)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1249 *4))
- (-5 *2 (-2 (|:| -3611 (-628 *4 *5)) (|:| -3511 (-412 *5))))
- (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 (-1171 *3 *4))) (-5 *1 (-1171 *3 *4))
- (-14 *3 (-927)) (-4 *4 (-1055))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-457)) (-4 *3 (-1055))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1249 *3)))))
+ (-5 *2
+ (-649
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
+ (-5 *1 (-454 *4 *5 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)))))
+(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1251 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1185)))
+ (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5))
+ (-4 *5 (-13 (-853) (-367)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4))
+ (-4 *4 (-13 (-853) (-367))))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-679 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1189)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1044 *4) (-644 *4)))
+ (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1046 *4) (-644 *4)))
(-5 *2 (-52)) (-5 *1 (-318 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-318 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-457) (-1044 *5) (-644 *5))) (-5 *5 (-569))
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1046 *5) (-644 *5))) (-5 *5 (-569))
(-5 *2 (-52)) (-5 *1 (-318 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-569)))
- (-4 *7 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569)))
+ (-4 *7 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-569)))
- (-4 *3 (-13 (-27) (-1208) (-435 *7)))
- (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569)))
+ (-4 *3 (-13 (-27) (-1210) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-569)) (-4 *4 (-1055)) (-4 *1 (-1235 *4 *3))
- (-4 *3 (-1264 *4))))
+ (-12 (-5 *2 (-569)) (-4 *4 (-1057)) (-4 *1 (-1237 *4 *3))
+ (-4 *3 (-1266 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1256 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1233 *3)))))
+ (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3)))))
(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1126))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1218 *2)) (-4 *2 (-980)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1128))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-649 (-776)))
- (-5 *1 (-910 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-776)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1288 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173))
- (-5 *1 (-669 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1293 *3 *4))
- (-4 *3 (-855)) (-4 *4 (-173)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776)))))
+ (-12 (-5 *3 (-1181 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927))
+ (-5 *2 (-1280)) (-5 *1 (-473))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927))
+ (-5 *2 (-1280)) (-5 *1 (-473)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1870 *3)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1273 *5)) (-4 *5 (-310))
- (-4 *5 (-1055)) (-5 *2 (-694 *5)) (-5 *1 (-1035 *5)))))
+ (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4))
+ (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798))
+ (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-105)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1183))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-13 (-310) (-147)))
+ (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798))
+ (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7))
+ (-4 *7 (-955 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
- (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *4)))))
+ (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569))))
(-5 *2 (-52)) (-5 *1 (-318 *5 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *5)))))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-318 *5 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-297 *3)) (-5 *5 (-776))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-318 *6 *3))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6))
- (-4 *6 (-13 (-27) (-1208) (-435 *5)))
- (-4 *5 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-4 *6 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1240 (-776)))
- (-4 *7 (-13 (-27) (-1208) (-435 *6)))
- (-4 *6 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-776)))
+ (-4 *7 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1183)) (-5 *5 (-297 *3)) (-5 *6 (-1240 (-776)))
- (-4 *3 (-13 (-27) (-1208) (-435 *7)))
- (-4 *7 (-13 (-561) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-52))
+ (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-776)))
+ (-4 *3 (-13 (-27) (-1210) (-435 *7)))
+ (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52))
(-5 *1 (-464 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1055)) (-4 *2 (-1264 *3)))))
+ (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798))
+ (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))))
(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *1) (-4 *1 (-973))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4445)) (-4 *1 (-1016 *3))
- (-4 *3 (-1223)))))
-(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870))))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-649
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
- (-5 *1 (-454 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))))
+ ((*1 *1 *1 *1) (-4 *1 (-975))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057))
(-5 *2 (-649 (-649 (-949 *3))))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1055))
- (-4 *1 (-1140 *4))))
+ (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1057))
+ (-4 *1 (-1142 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1055))
- (-4 *1 (-1140 *3))))
+ (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1057))
+ (-4 *1 (-1142 *3))))
((*1 *1 *1 *2 *3 *3)
(-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-112))
- (-4 *1 (-1140 *4)) (-4 *4 (-1055))))
+ (-4 *1 (-1142 *4)) (-4 *4 (-1057))))
((*1 *1 *1 *2 *3 *3)
(-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112))
- (-4 *1 (-1140 *4)) (-4 *4 (-1055))))
+ (-4 *1 (-1142 *4)) (-4 *4 (-1057))))
((*1 *1 *1 *2 *3 *4)
(-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-649 (-172)))
- (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055))))
+ (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057))))
((*1 *1 *1 *2 *3 *4)
(-12 (-5 *2 (-649 (-649 (-949 *5)))) (-5 *3 (-649 (-172)))
- (-5 *4 (-172)) (-4 *1 (-1140 *5)) (-4 *5 (-1055)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+ (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057)))))
(((*1 *2)
- (-12 (-5 *2 (-1273 (-1107 *3 *4))) (-5 *1 (-1107 *3 *4))
- (-14 *3 (-927)) (-14 *4 (-927)))))
-(((*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
+ (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2))
+ (-4 *3 (-561)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1057))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870))))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185)))
+ (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1108)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6))
+ (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *5 (-1251 *4)) (-5 *2 (-1181 (-412 *5))) (-5 *1 (-620 *4 *5))
+ (-5 *3 (-412 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5))
+ (-4 *5 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-5 *2 (-1181 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))))
(((*1 *1) (-5 *1 (-333))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-412 *5)) (-4 *5 (-1249 *4)) (-4 *4 (-561))
- (-4 *4 (-1055)) (-4 *2 (-1264 *4)) (-5 *1 (-1267 *4 *5 *6 *2))
- (-4 *6 (-661 *5)))))
+ (-12 (-5 *2 (-2 (|:| -3335 (-569)) (|:| -4360 (-649 *3))))
+ (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-977 *2 *4))
+ (-4 *4 (-1251 *2)))))
(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *1) (-4 *1 (-973))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1223))
- (-5 *2 (-649 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1106)))))
+ ((*1 *1 *1 *1) (-4 *1 (-975))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
+ (-4 *3 (-371 *4))))
+ ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))))
+(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1268 *3 *2))
+ (-4 *2 (-1266 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-762)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-353)) (-4 *2 (-1055)) (-5 *1 (-717 *2 *3))
- (-4 *3 (-1249 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1106)) (-4 *2 (-1106))
- (-5 *1 (-895 *4 *2)))))
+ (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147)))
+ (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1274))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1274))))
+ (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1165)) (-5 *1 (-1275))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-1275)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1277))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-13 (-457) (-147)))
+ (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3)))))
(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1) (-4 *1 (-973))) ((*1 *1 *1) (-5 *1 (-1126))))
-(((*1 *1 *1) (-5 *1 (-1069))))
+ ((*1 *1 *1) (-4 *1 (-975))) ((*1 *1 *1) (-5 *1 (-1128))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1275 (-1109 *3 *4))) (-5 *1 (-1109 *3 *4))
+ (-14 *3 (-927)) (-14 *4 (-927)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 *2)))
- (-5 *2 (-898 *3)) (-5 *1 (-1082 *3 *4 *5))
+ (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 *2)))
+ (-5 *2 (-898 *3)) (-5 *1 (-1084 *3 *4 *5))
(-4 *5 (-13 (-435 *4) (-892 *3) (-619 *2))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
- (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6))
- (-4 *6 (-346 *3 *4 *5)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-694 *2)) (-5 *4 (-569))
+ (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))))
+ (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
+(((*1 *1) (-5 *1 (-55))))
(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-649
- (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
- (|:| |wcond| (-649 (-958 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *5))))))))))
- (-5 *4 (-1165)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6))
- (-4 *6 (-13 (-855) (-619 (-1183)))) (-4 *7 (-798)) (-5 *2 (-569))
- (-5 *1 (-930 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-173)) (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))
- (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
- (-5 *2 (-694 *3)))))
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3))
+ (-4 *3 (-13 (-1210) (-29 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-569))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-752)))))
-(((*1 *2)
- (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927))
- (-14 *4 (-927))))
- ((*1 *2)
- (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353))
- (-14 *4
- (-3 (-1179 *3)
- (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353))
- (-14 *4 (-927)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
- (-4 *2 (-692 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1223)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-422 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+ (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1225)))))
+(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(((*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250)))))
+(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-5 *2 (-2 (|:| -2003 *3) (|:| -2214 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1186)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
- (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
- (-5 *4 (-649 (-927))) (-5 *1 (-473))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473))))
- ((*1 *1 *1) (-5 *1 (-473))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1183)) (-5 *1 (-680 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1274))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-5 *2 (-2 (|:| -2006 *3) (|:| -2216 *4))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798))
+ (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-649 (-1185))) (-4 *2 (-173))
+ (-4 *3 (-239 (-2428 *4) (-776)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *3))
+ (-2 (|:| -2150 *5) (|:| -1993 *3))))
+ (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855))
+ (-4 *7 (-955 *2 *3 (-869 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2))
+ (-4 *2 (-1266 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1) (-4 *1 (-1145))))
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3))
+ (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2))
+ (-4 *2 (-1266 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147)))
+ (-5 *1 (-1161 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $))
+ (-15 -4412 ((-1133 *3 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *3 (-617 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $))
+ (-15 -4412 ((-1133 *3 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *3 (-617 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $))
+ (-15 -4412 ((-1133 *4 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *4 (-617 $)))))))
+ (-4 *4 (-561)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-617 *2)))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $))
+ (-15 -4412 ((-1133 *4 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *4 (-617 $)))))))
+ (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-412 *5)) (-4 *4 (-1227)) (-4 *5 (-1249 *4))
- (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1249 *3))))
+ (-12 (-5 *3 (-412 *5)) (-4 *4 (-1229)) (-4 *5 (-1251 *4))
+ (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1251 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-412 (-569)))) (-5 *2 (-412 (-569)))
+ (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569)))
(-5 *1 (-191))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1183)))
- (-5 *4 (-1273 (-319 (-226)))) (-5 *1 (-206))))
+ (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1185)))
+ (-5 *4 (-1275 (-319 (-226)))) (-5 *1 (-206))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1106))
- (-4 *3 (-1223)) (-5 *1 (-297 *3))))
+ (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1108))
+ (-4 *3 (-1225)) (-5 *1 (-297 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312 *2)) (-4 *2 (-1106)) (-4 *2 (-1223))
+ (-12 (-4 *2 (-312 *2)) (-4 *2 (-1108)) (-4 *2 (-1225))
(-5 *1 (-297 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305))))
@@ -14843,20 +14979,20 @@
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305))))
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305))))
+ (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 (-649 *1))))
+ (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 (-649 *1))))
(-4 *1 (-305))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305))))
+ (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1108))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1108))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1185 (-412 (-569))))
+ (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1187 (-412 (-569))))
(-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-569))))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *1)) (-4 *1 (-378 *4 *5))
@@ -14864,509 +15000,472 @@
((*1 *1 *1 *2 *1)
(-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055))))
+ (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1)))
- (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-1055))))
+ (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1)))
+ (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776)))
- (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1106))
- (-4 *5 (-1055))))
+ (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776)))
+ (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1108))
+ (-4 *5 (-1057))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-649 (-776)))
- (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1106))
- (-4 *5 (-1055))))
+ (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776)))
+ (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1108))
+ (-4 *5 (-1057))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1183))
- (-4 *1 (-435 *5)) (-4 *5 (-1106)) (-4 *5 (-619 (-541)))))
+ (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1185))
+ (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-619 (-541)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1183)) (-4 *1 (-435 *4)) (-4 *4 (-1106))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1185)) (-4 *1 (-435 *4)) (-4 *4 (-1108))
(-4 *4 (-619 (-541)))))
((*1 *1 *1)
- (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-619 (-541)))))
+ (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-619 (-541)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-649 (-1183))) (-4 *1 (-435 *3)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-649 (-1185))) (-4 *1 (-435 *3)) (-4 *3 (-1108))
(-4 *3 (-619 (-541)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1183)) (-4 *1 (-435 *3)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108))
(-4 *3 (-619 (-541)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1223))))
+ (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1225))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *5)) (-4 *1 (-519 *4 *5))
- (-4 *4 (-1106)) (-4 *5 (-1223))))
+ (-4 *4 (-1108)) (-4 *5 (-1225))))
((*1 *2 *1 *2)
(-12 (-5 *2 (-838 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3))))
((*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1106))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1183)) (-4 *4 (-561))
- (-5 *1 (-1049 *4))))
+ (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185)) (-4 *4 (-561))
+ (-5 *1 (-1051 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-649 (-1183))) (-5 *4 (-649 (-412 (-958 *5))))
- (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1049 *5))))
+ (-12 (-5 *3 (-649 (-1185))) (-5 *4 (-649 (-412 (-958 *5))))
+ (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1051 *5))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-297 (-412 (-958 *4)))) (-5 *2 (-412 (-958 *4)))
- (-4 *4 (-561)) (-5 *1 (-1049 *4))))
+ (-4 *4 (-561)) (-5 *1 (-1051 *4))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-5 *2 (-412 (-958 *4)))
- (-4 *4 (-561)) (-5 *1 (-1049 *4))))
+ (-4 *4 (-561)) (-5 *1 (-1051 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1055)) (-5 *1 (-1167 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1055)) (-4 *4 (-797))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1163 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1102))))
+ (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1165 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1104))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1216 *3 *4 *5 *2)) (-4 *3 (-561))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-1261 *3)) (-4 *3 (-1223))))
- ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1041)) (-5 *1 (-845))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383)))
- (-5 *2 (-1041)) (-5 *1 (-845)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1165)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1106))
- (-4 *4 (-1106))))
+ (-12 (-5 *3 (-1167)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1108))
+ (-4 *4 (-1108))))
((*1 *1 *2)
- (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4202 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
+ (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-569))
+ (-5 *6
+ (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))))
+ (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383)))
+ (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280))
+ (-5 *1 (-793))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-569))
+ (-5 *6
+ (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))))
+ (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383)))
+ (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280))
+ (-5 *1 (-793)))))
+(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3660 *4))))
- (-5 *1 (-1147 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))))))
+ (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4))))
+ (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))
- (-5 *2 (-649 (-1183))) (-5 *1 (-269))))
+ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))
+ (-5 *2 (-649 (-1185))) (-5 *1 (-269))))
((*1 *2 *3)
- (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-649 *5))
+ (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-649 *5))
(-5 *1 (-324 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2)
+ (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2)
(-14 *4 *2) (-4 *5 (-392))))
((*1 *2 *1)
- (-12 (-4 *1 (-435 *3)) (-4 *3 (-1106)) (-5 *2 (-649 (-1183)))))
+ (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-1185)))))
((*1 *2 *1)
- (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108))))
((*1 *2 *1)
- (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
+ (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
(-4 *5 (-855)) (-5 *2 (-649 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1055))
+ (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057))
(-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *5))
(-5 *1 (-956 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $)))))))
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-797))
+ (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797))
(-4 *5 (-855)) (-5 *2 (-649 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *5))))
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1183)))
- (-5 *1 (-1049 *4)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1165))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226)))
- (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
- (|:| |ub| (-649 (-848 (-226))))))
- (-5 *1 (-269)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *3 (-439)) (-4 *5 (-1106))
- (-5 *1 (-1112 *5 *4)) (-4 *4 (-435 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-564)))))
-(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
- (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-983 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1185)))
+ (-5 *1 (-1051 *4)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
+ (-5 *2 (-1043)) (-5 *1 (-757)))))
(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
- ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472))))
- ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-412 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-561))
+ (-4 *4 (-1057)) (-4 *2 (-1266 *4)) (-5 *1 (-1269 *4 *5 *6 *2))
+ (-4 *6 (-661 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *3 (-439)) (-4 *5 (-1108))
+ (-5 *1 (-1114 *5 *4)) (-4 *4 (-435 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-834)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5))
+ (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6))
+ (-4 *6 (-457))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5))
+ (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6))
+ (-4 *6 (-457)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1179 (-412 (-1179 *2)))) (-5 *4 (-617 *2))
- (-4 *2 (-13 (-435 *5) (-27) (-1208)))
- (-4 *5 (-13 (-457) (-1044 (-569)) (-147) (-644 (-569))))
- (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1106))))
+ (-12 (-5 *3 (-1181 (-412 (-1181 *2)))) (-5 *4 (-617 *2))
+ (-4 *2 (-13 (-435 *5) (-27) (-1210)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1108))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1179 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1055))
+ (-12 (-5 *2 (-1181 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057))
(-4 *5 (-798)) (-4 *3 (-855))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1055)) (-4 *1 (-955 *4 *5 *3))
+ (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1057)) (-4 *1 (-955 *4 *5 *3))
(-4 *5 (-798)) (-4 *3 (-855))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-1179 *2))) (-4 *5 (-798)) (-4 *4 (-855))
- (-4 *6 (-1055))
+ (-12 (-5 *3 (-412 (-1181 *2))) (-4 *5 (-798)) (-4 *4 (-855))
+ (-4 *6 (-1057))
(-4 *2
(-13 (-367)
- (-10 -8 (-15 -3793 ($ *7)) (-15 -4396 (*7 $)) (-15 -4409 (*7 $)))))
+ (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))
(-5 *1 (-956 *5 *4 *6 *7 *2)) (-4 *7 (-955 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-1179 (-412 (-958 *5))))) (-5 *4 (-1183))
- (-5 *2 (-412 (-958 *5))) (-5 *1 (-1049 *5)) (-4 *5 (-561)))))
+ (-12 (-5 *3 (-412 (-1181 (-412 (-958 *5))))) (-5 *4 (-1185))
+ (-5 *2 (-412 (-958 *5))) (-5 *1 (-1051 *5)) (-4 *5 (-561)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1185)) (-5 *1 (-541))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-709 *3))
+ (-4 *3 (-619 (-541))))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-151 *2)) (-4 *2 (-1223))
- (-4 *2 (-1106))))
+ (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225))
+ (-4 *2 (-1108))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *3))
- (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3))
+ (-4 *3 (-1225))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1106))
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108))
(-5 *1 (-742 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1106))))
+ (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1146 *3 *4)) (-4 *3 (-13 (-1106) (-34)))
- (-4 *4 (-13 (-1106) (-34))) (-5 *1 (-1147 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-367)) (-4 *3 (-1055))
- (-5 *1 (-1167 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
- (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
- (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+ (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34)))
+ (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-649 (-1183))) (-5 *3 (-1183)) (-5 *1 (-541))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-649 (-1183))) (-5 *2 (-1183)) (-5 *1 (-709 *3))
- (-4 *3 (-619 (-541))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-855))
- (-4 *3 (-1106)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5)) (-4 *5 (-367))
- (-5 *2 (-2 (|:| -2530 (-412 *6)) (|:| |coeff| (-412 *6))))
- (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694 *3))
- (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
- (-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
- (|:| |success| (-112))))
- (-5 *1 (-794)) (-5 *5 (-569)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1249 *5))
- (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5)))
- (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3)))))
+ (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5))
+ (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1266 *5))
+ (-5 *1 (-1268 *5 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1108 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-1275))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-305))) ((*1 *1 *1) (-4 *1 (-305))))
+ (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225))
+ (-5 *2 (-649 *3)))))
+(((*1 *1) (-5 *1 (-144)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-263))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-265)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5))
+ (-5 *2 (-2 (|:| -4133 (-649 *6)) (|:| -1721 (-649 *6)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
+ (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
- (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-383)) (-5 *1 (-206)))))
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226)))
+ (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-755)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *1) (-5 *1 (-867))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1108))
+ (-4 *2 (-1225)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185))
+ (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185))
+ (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550)))))
+ (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1251 *4))
+ (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1251 *5)) (-14 *6 (-927))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-4 *3 (-372))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-367)) (-4 *2 (-372)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-766))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185))
+ (-14 *5 *3) (-5 *1 (-322 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1108))
+ (-4 *2 (-131)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927))
+ (-4 *4 (-1057)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1071 *3 *4 *5)) (-4 *3 (-1055)) (-4 *4 (-798))
- (-4 *5 (-855)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *7)) (-4 *7 (-1071 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112))
- (-5 *1 (-1113 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
+ (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-591 *3) *3 (-1185)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1185)))
+ (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1046 *4)) (-4 *3 (-435 *7))
+ (-5 *4 (-1185)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457))
+ (-4 *7 (-892 (-569))) (-4 *7 (-1108)) (-5 *2 (-591 *3))
+ (-5 *1 (-578 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-242))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1280)) (-5 *1 (-242)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-649 *4))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219))))
- ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223))))
- ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-2 (|:| -2185 *4) (|:| -1458 (-569)))))
- (-4 *4 (-1106)) (-5 *2 (-1 *4)) (-5 *1 (-1023 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776))
- (-4 *4 (-173))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1183)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-435 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1098 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1183))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173)))))
+ (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457))
+ (-5 *2
+ (-2 (|:| |dpolys| (-649 (-248 *5 *6)))
+ (|:| |coords| (-649 (-569)))))
+ (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -4037 (-776))))
+ (-5 *1 (-787 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4037 (-776))))
+ (-4 *1 (-1073 *3 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1046)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1249 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310))
- (-4 *10 (-955 *9 *7 *8))
+ (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4))
+ (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1023 *4 *5)) (-5 *3 (-412 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-762)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *8 (-1073 *5 *6 *7))
(-5 *2
- (-2 (|:| |deter| (-649 (-1179 *10)))
- (|:| |dterm|
- (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10))))
- (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1179 *10)) (-5 *4 (-649 *6))
- (-5 *5 (-649 *10)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-242))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1165))) (-5 *2 (-1278)) (-5 *1 (-242)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-776)) (-4 *4 (-1055)) (-5 *1 (-1245 *4 *2))
- (-4 *2 (-1249 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1179 *6)) (-1179 *6)))
- (-4 *6 (-367))
+ (-2 (|:| |val| (-649 *8))
+ (|:| |towers| (-649 (-1035 *5 *6 *7 *8)))))
+ (-5 *1 (-1035 *5 *6 *7 *8)) (-5 *3 (-649 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-4 *8 (-1073 *5 *6 *7))
(-5 *2
- (-649
- (-2 (|:| |outval| *7) (|:| |outmult| (-569))
- (|:| |outvect| (-649 (-694 *7))))))
- (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1016 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))))
+ (-2 (|:| |val| (-649 *8))
+ (|:| |towers| (-649 (-1154 *5 *6 *7 *8)))))
+ (-5 *1 (-1154 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112))
- (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1183)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457))
- (-14 *5 (-649 (-1183))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-494 *3)) (-4 *3 (-1223))
- (-4 *3 (-1106)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-911 *4)) (-4 *4 (-1106)) (-5 *2 (-112))
- (-5 *1 (-910 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3))
+ (|:| |genIdeal| (-509 *3 *4 *5 *6))))
+ (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6))
+ (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057))
+ (-5 *1 (-1169 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057))
+ (-14 *4 (-1185)) (-14 *5 *3))))
(((*1 *2 *3)
- (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1055))
- (-5 *2 (-1273 (-1273 *5))) (-5 *1 (-1035 *5)) (-5 *4 (-1273 *5)))))
+ (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5))
+ (-4 *4 (-1108)) (-4 *5 (-1108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4444)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1106))
- (-4 *3 (-1223)) (-4 *3 (-1106)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-4 *1 (-909 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
-(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-867))))
+ (-12 (-4 *2 (-353)) (-4 *2 (-1057)) (-5 *1 (-717 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367))
- (-5 *2
- (-2 (|:| A (-694 *5))
- (|:| |eqs|
- (-649
- (-2 (|:| C (-694 *5)) (|:| |g| (-1273 *5)) (|:| -4309 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1273 *5))
- (-4 *6 (-661 *5))))
+ (-12 (-4 *5 (-1108)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6)))
+ (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *6 (-661 *5))
- (-5 *2 (-2 (|:| -2378 (-694 *6)) (|:| |vec| (-1273 *5))))
- (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1273 *5)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4))
- (-5 *1 (-269)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1223)))))
+ (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4))
+ (-4 *3 (-1046 (-1185))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 (-958 *3))))
+ (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1057))
+ (-1749 (-4 *3 (-1046 (-1185)))) (-4 *3 (-892 *5))
+ (-4 *4 (-619 (-898 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1108)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4))
+ (-1749 (-4 *3 (-1046 (-1185)))) (-1749 (-4 *3 (-1057)))
+ (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-367)) (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4)))
- (-5 *2 (-1273 *6)) (-5 *1 (-340 *3 *4 *5 *6))
- (-4 *6 (-346 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855))
- (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1150)) (-5 *2 (-144)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1273 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
- (-4 *5 (-1249 *4)) (-5 *2 (-694 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
- (-5 *2 (-694 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3))
- (-4 *3 (-1106)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1273 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-1249 *3)) (-4 *5 (-1249 (-412 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1141)) (-5 *3 (-294)) (-5 *1 (-168)))))
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1220 *3))
+ (-4 *3 (-982)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *1)) (-5 *4 (-1273 *1)) (-4 *1 (-644 *5))
- (-4 *5 (-1055))
- (-5 *2 (-2 (|:| -2378 (-694 *5)) (|:| |vec| (-1273 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1055))
- (-5 *2 (-694 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *5 (-1249 *4)) (-5 *2 (-1 *6 (-649 *6)))
- (-5 *1 (-1267 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1264 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
- (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
- (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1165 *4))) (-5 *1 (-288 *4 *5))
+ (-5 *3 (-1165 *4)) (-4 *5 (-1266 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1181 (-1181 *5))))
+ (-5 *1 (-1223 *5)) (-5 *3 (-1181 (-1181 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185))
+ (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))))
+(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-1071)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-294)) (-5 *1 (-168)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1134 *4 *3 *5))) (-4 *4 (-38 (-412 (-569))))
+ (-4 *4 (-1057)) (-4 *3 (-855)) (-5 *1 (-1134 *4 *3 *5))
+ (-4 *5 (-955 *4 (-536 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1219 *4))) (-5 *3 (-1185)) (-5 *1 (-1219 *4))
+ (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-4 *2 (-1108))
+ (-5 *1 (-895 *4 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-422 *4)))))
+ (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-170 (-319 *4)))
+ (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-170 *3)) (-5 *1 (-1214 *4 *3))
+ (-4 *3 (-13 (-27) (-1210) (-435 *4))))))
(((*1 *1) (-5 *1 (-622))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2))
+ (-4 *2 (-1251 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1093)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-561)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1183))) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278))
- (-5 *1 (-1186))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-649 (-1183))) (-5 *3 (-1183)) (-5 *2 (-1278))
- (-5 *1 (-1186)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-245 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
+ (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
(-5 *2
(-2
@@ -15381,10 +15480,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1163 (-226)))
+ (-3 (|:| |str| (-1165 (-226)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2080
+ (|:| -3743
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -15392,756 +15491,816 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-564)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-649 (-2 (|:| -2185 *4) (|:| -2150 (-1126))))))
- (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927))
- (-14 *4 (-927))))
- ((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353))
- (-14 *4
- (-3 (-1179 *3)
- (-1273 (-649 (-2 (|:| -2185 *3) (|:| -2150 (-1126)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353))
- (-14 *4 (-927)))))
-(((*1 *1 *1) (-5 *1 (-1069))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226))
- (-5 *2 (-1041)) (-5 *1 (-756)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1106)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (|has| *1 (-6 -4445)) (-4 *1 (-1261 *3))
- (-4 *3 (-1223)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-561))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4202 *4)))
- (-5 *1 (-975 *4 *3)) (-4 *3 (-1249 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226)))
- (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *2 (-569))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *5 (-1055))
- (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-1275 *5))) (-5 *4 (-569)) (-5 *2 (-1275 *5))
+ (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 (-569))) (-4 *1 (-305)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1106)))))
+ (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3))
- (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
- (-4 *2 (-692 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
+ (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1108)))))
+(((*1 *1) (-4 *1 (-353)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147)))
(-5 *2
- (-649
- (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
- (|:| |wcond| (-649 (-958 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *5))))))))))
- (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1183))) (-4 *8 (-955 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
+ (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1181 *5)))
+ (|:| |prim| (-1181 *5))))
+ (-5 *1 (-437 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-561) (-147)))
(-5 *2
- (-649
- (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
- (|:| |wcond| (-649 (-958 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *5))))))))))
- (-5 *1 (-930 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5))
- (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1183))))
- (-4 *6 (-798))
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1181 *3))
+ (|:| |pol2| (-1181 *3)) (|:| |prim| (-1181 *3))))
+ (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-958 *5)) (-5 *4 (-1185)) (-4 *5 (-13 (-367) (-147)))
(-5 *2
- (-649
- (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7))
- (|:| |wcond| (-649 (-958 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *4))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *4))))))))))
- (-5 *1 (-930 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7))
- (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1183))))
- (-4 *8 (-798))
+ (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569))
+ (|:| |prim| (-1181 *5))))
+ (-5 *1 (-966 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185)))
+ (-4 *5 (-13 (-367) (-147)))
(-5 *2
- (-649
- (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9))
- (|:| |wcond| (-649 (-958 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *6))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *6))))))))))
- (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9))))
+ (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *5)))
+ (|:| |prim| (-1181 *5))))
+ (-5 *1 (-966 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-927))
- (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798))
+ (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-5 *5 (-1185))
+ (-4 *6 (-13 (-367) (-147)))
(-5 *2
- (-649
- (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9))
- (|:| |wcond| (-649 (-958 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *6))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *6))))))))))
- (-5 *1 (-930 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798))
+ (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *6)))
+ (|:| |prim| (-1181 *6))))
+ (-5 *1 (-966 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457))
+ (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-995 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4))
+ (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185))))
+ (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399))))
+ ((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855))
+ (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798))
(-5 *2
- (-649
- (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
- (|:| |wcond| (-649 (-958 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1273 (-412 (-958 *5))))
- (|:| -1903 (-649 (-1273 (-412 (-958 *5))))))))))
- (-5 *1 (-930 *5 *6 *7 *8))))
+ (-2 (|:| |particular| (-3 (-1275 (-412 *8)) "failed"))
+ (|:| -2403 (-649 (-1275 (-412 *8))))))
+ (-5 *1 (-674 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1225))
+ (-4 *5 (-1225)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1165))
- (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569))
- (-5 *1 (-930 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776))
+ (-4 *7 (-1225)) (-4 *5 (-1225)) (-5 *2 (-241 *6 *5))
+ (-5 *1 (-240 *6 *7 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1183))) (-5 *5 (-1165))
- (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569))
- (-5 *1 (-930 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 *8)) (-5 *4 (-1165)) (-4 *8 (-955 *5 *7 *6))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1183))))
- (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927))
- (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
- (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569))
- (-5 *1 (-930 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1183))) (-5 *5 (-927))
- (-5 *6 (-1165)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147)))
- (-4 *8 (-13 (-855) (-619 (-1183)))) (-4 *9 (-798)) (-5 *2 (-569))
- (-5 *1 (-930 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1225)) (-4 *5 (-1225))
+ (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1165))
- (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147)))
- (-4 *7 (-13 (-855) (-619 (-1183)))) (-4 *8 (-798)) (-5 *2 (-569))
- (-5 *1 (-930 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-564))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
- (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-983 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1273 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-249)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569))
- (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108))
+ (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1225))
+ (-4 *5 (-1225)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1225))
+ (-4 *5 (-1225)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1165 *6)) (-4 *6 (-1225))
+ (-4 *3 (-1225)) (-5 *2 (-1165 *3)) (-5 *1 (-1163 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1275 *6)) (-4 *6 (-1225))
+ (-4 *5 (-1225)) (-5 *2 (-1275 *5)) (-5 *1 (-1274 *6 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1071)) (-5 *3 (-1167)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-844))
- (-5 *3
- (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226)))
- (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
- (|:| |ub| (-649 (-848 (-226))))))
- (-5 *2 (-1041))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-844))
- (-5 *3
- (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))
- (-5 *2 (-1041)))))
+ (-12 (-5 *2 (-649 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055))))
- ((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
-(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550))
+ (-4 *3 (-561))))
+ ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550))
+ (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550))
+ (-4 *3 (-1108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550))
+ (-5 *2 (-412 (-569)))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3)) (-4 *3 (-1046 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1185))
+ (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1210) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *5))
+ (-5 *1 (-594 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-173))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1057)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
+ (-4 *1 (-1073 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3))))
+ (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-249)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383)))
+ (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280))
+ (-5 *1 (-793)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185))
+ (-14 *4 *2))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3))
+ (-4 *2 (-1251 *3)))))
+(((*1 *1 *1) (-5 *1 (-1071))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183))
- (-5 *1 (-264 *2)) (-4 *2 (-1223))))
+ (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185))
+ (-5 *1 (-264 *2)) (-4 *2 (-1225))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1183)) (-5 *2 (-52))
+ (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-52))
(-5 *1 (-265)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226))
- (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1183))) (-5 *1 (-830)))))
-(((*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -4407 *7) (|:| |sol?| (-112)))
- (-569) *7))
- (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7))
- (-5 *3 (-412 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-579 *7 *8)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1179 *7)))
- (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1179 *7))))
+ (-12 (-5 *3 (-933))
+ (-5 *2
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569)))
+ (-5 *2
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))))
+ (-5 *1 (-153))))
((*1 *2 *3)
- (-12 (-4 *4 (-915)) (-4 *5 (-1249 *4)) (-5 *2 (-423 (-1179 *5)))
- (-5 *1 (-913 *4 *5)) (-5 *3 (-1179 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))))
+ (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-649 (-649 (-949 (-226)))))
+ (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))))
+ (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
(((*1 *1 *1)
- (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855))
- (-4 *4 (-798)) (-5 *1 (-993 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1125))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))))
+ (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855))
+ (-4 *4 (-268 *3)) (-4 *5 (-798)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1185))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-649 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1210) (-27) (-435 *8)))
+ (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1021 *8 *4)))))
+(((*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *5)) (-4 *5 (-1249 *3)) (-4 *3 (-310))
- (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *2 (-1278)) (-5 *1 (-910 *4))
- (-4 *4 (-1106))))
- ((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1275))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1139 (-226))) (-5 *3 (-1165)) (-5 *1 (-1275))))
- ((*1 *1 *1) (-5 *1 (-1275))))
+ (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5))))
+ (-5 *1 (-1137 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5))))
+ (-5 *1 (-1137 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147)))
+ (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185)))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1137 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147)))
+ (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1137 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1185)))
+ (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5)))))
+ (-5 *1 (-1137 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-297 (-412 (-958 *4)))))
+ (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4)))))
+ (-5 *1 (-1137 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1108))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1165 *7))) (-4 *6 (-855))
+ (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1057))
+ (-5 *2 (-1 (-1165 *7) *7)) (-5 *1 (-1134 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-649 (-1181 *13))) (-5 *3 (-1181 *13))
+ (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13))
+ (-5 *7 (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *13)))))
+ (-5 *8 (-649 (-776))) (-5 *9 (-1275 (-649 (-1181 *10))))
+ (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12))
+ (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))))
+(((*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1106)) (-4 *4 (-13 (-1055) (-892 *3) (-619 (-898 *3))))
- (-5 *2 (-649 (-1082 *3 *4 *5))) (-5 *1 (-1083 *3 *4 *5))
- (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
+ (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5))
+ (-4 *3 (-1251 *4))
+ (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1055)))))
(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
((*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186))))
((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694 *3))
- (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-694 *3))
- (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1278))
- (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1163 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1055))
- (-5 *3 (-412 (-569))) (-5 *1 (-1167 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3))))
+ (-5 *2 (-649 (-1084 *3 *4 *5))) (-5 *1 (-1085 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
+ (-4 *2 (-1225)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-617 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-5 *5 (-1181 *2))
+ (-4 *2 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-617 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185)))
+ (-5 *5 (-412 (-1181 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
+ (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-779)) (-5 *1 (-114)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3))))
+ (-5 *1 (-600 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))
+ (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6))
+ (-4 *6 (-346 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225))))
((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
(-4 *4 (-855))))
- ((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112))
- (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4))))
- (-5 *1 (-1114 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1167)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *4 (-1073 *6 *7 *8)) (-5 *2 (-1280))
+ (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1079 *6 *7 *8 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1185))
+ (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *1 (-1188)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-776)) (-4 *5 (-561))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1106))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1106))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1106)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1055))
- (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+ (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569)))
+ (-5 *1 (-191)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-561)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-4 *7 (-1251 *5)) (-4 *4 (-729 *5 *7))
+ (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5))))
+ (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4)))))
+(((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
- (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-383)) (-5 *1 (-206)))))
+ (-649
+ (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8))
+ (|:| |wcond| (-649 (-958 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1275 (-412 (-958 *5))))
+ (|:| -2403 (-649 (-1275 (-412 (-958 *5))))))))))
+ (-5 *4 (-1167)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6))
+ (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-569))
+ (-5 *1 (-930 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1251 *6))
+ (-4 *6 (-13 (-367) (-147) (-1046 *4))) (-5 *4 (-569))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -4312
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1023 *6 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1141)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5))))
+ (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147)))
+ (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383))
(-5 *2
- (-2 (|:| -2185 *4) (|:| -3645 *4) (|:| |totalpts| (-569))
+ (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569))
(|:| |success| (-112))))
(-5 *1 (-794)) (-5 *5 (-569)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-649 *3)) (-4 *3 (-1115 *5 *6 *7 *8))
- (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-1071 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-596 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1071 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798))
- (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-649 *9))))
- (-5 *3 (-649 *9)) (-4 *1 (-1216 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3307 (-649 *8))))
- (-5 *3 (-649 *8)) (-4 *1 (-1216 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569))
- (-5 *4 (-226)) (-5 *2 (-1041)) (-5 *1 (-757)))))
-(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1033 *5 *6 *7 *3))) (-5 *1 (-1033 *5 *6 *7 *3))
- (-4 *3 (-1071 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-649 *6)) (-4 *1 (-1077 *3 *4 *5 *6)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *2 (-1071 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1152 *5 *6 *7 *3))) (-5 *1 (-1152 *5 *6 *7 *3))
- (-4 *3 (-1071 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-1165)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-234)) (-4 *3 (-1055)) (-4 *4 (-855)) (-4 *5 (-268 *4))
- (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798))
- (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-569)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550))
- (-4 *3 (-561))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-569)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550))
- (-4 *3 (-1106))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550))
- (-4 *3 (-1106))))
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-569)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3))
- (-4 *3 (-1044 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1106)) (-4 *1 (-909 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1044 (-569))))
- (-4 *5 (-1249 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1022 *4 *5))
- (-5 *3 (-412 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867))))
- ((*1 *1 *1) (-5 *1 (-867))))
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-226) (-226) (-226)))
+ (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined"))
+ (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226)))
+ (-5 *1 (-702)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1249 *5))
- (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1249 *6))
- (-14 *7 (-927)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-752)))))
+ (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173))
+ (-4 *5 (-1251 *4)) (-5 *2 (-694 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4))
+ (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3))
+ (-5 *2 (-694 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1163 *4) (-1163 *4))) (-5 *2 (-1163 *4))
- (-5 *1 (-1298 *4)) (-4 *4 (-1223))))
+ (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5))))
+ (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5))
+ (-4 *6 (-661 (-412 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-649 (-1163 *5)) (-649 (-1163 *5)))) (-5 *4 (-569))
- (-5 *2 (-649 (-1163 *5))) (-5 *1 (-1298 *5)) (-4 *5 (-1223)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1055))
- (-5 *1 (-1035 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
- (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-1278))
- (-5 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *7 (-1077 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1179 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6))
- (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106))
- (-4 *2 (-855)))))
-(((*1 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6))
+ (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4))))
+ (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4))
+ (-4 *6 (-661 (-412 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5))))
+ (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5))
+ (-4 *3 (-661 (-412 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4))))
+ (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4))
+ (-4 *3 (-661 (-412 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1043)) (-5 *1 (-754))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226))
+ (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-393)) (-5 *2 (-1043)) (-5 *1 (-754)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569)))))
+ (-4 *2 (-13 (-855) (-21))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1165 *4) (-1165 *4))) (-5 *2 (-1165 *4))
+ (-5 *1 (-1300 *4)) (-4 *4 (-1225))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-649 (-1165 *5)) (-649 (-1165 *5)))) (-5 *4 (-569))
+ (-5 *2 (-649 (-1165 *5))) (-5 *1 (-1300 *5)) (-4 *5 (-1225)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367))
(-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-454 *4 *5 *6 *7)))))
+ (-5 *1 (-455 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367))
+ (-5 *2
+ (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6))))
+ (-5 *1 (-986 *6)) (-5 *3 (-694 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5)))
- (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569)))))
- (-14 *6 (-927)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))))
+ (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))
+ (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4))
+ (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3))
+ (-4 *3 (-692 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561))
+ (-5 *2 (-776)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1251 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1251 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776)))
+ (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1251 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1183))) (-4 *5 (-1055))
- (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3))
- (-4 *3 (-1106)))))
-(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1106)) (-4 *2 (-561))))
- ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-561)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367))
- (-4 *5 (-561)) (-5 *2 (-1273 *5)) (-5 *1 (-643 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1273 *4)) (-4 *4 (-644 *5))
- (-1745 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1273 (-412 *5)))
- (-5 *1 (-643 *5 *4)))))
+ (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173))
+ (-5 *2 (-1275 (-694 (-958 *4)))) (-5 *1 (-190 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1108 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372))
- (-4 *3 (-1106)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1165)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165)) (-5 *1 (-265)))))
-(((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void")))
+ (-5 *1 (-442)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
+ (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-422 *3)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7))
+ (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4))))
+ (-5 *1 (-1196 *6)) (-5 *5 (-649 *4)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798))
+ (-4 *8 (-855)) (-5 *1 (-985 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1229)) (-4 *5 (-1251 *3)) (-4 *6 (-1251 (-412 *5)))
+ (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-561)))))
+ (-12 (-5 *3 (-694 (-412 (-958 (-569)))))
+ (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-112)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7))
- (-5 *5 (-1 (-423 *7) *7))
- (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *6 (-1249 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561))
+ (-4 *6 (-798)) (-4 *7 (-855))
+ (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8))))
+ (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1210) (-435 *5)))
+ (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *2
+ (-3 (-848 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-848 *3) "failed")))
+ "failed"))
+ (-5 *1 (-641 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7))
- (-5 *5 (-1 (-423 *7) *7))
- (-4 *6 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *7 (-1249 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5))))
+ (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1167))
+ (-4 *3 (-13 (-27) (-1210) (-435 *6)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6))
- (-4 *6 (-1249 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1249 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5))))
+ (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457))
+ (-5 *2
+ (-3 (-848 (-412 (-958 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6))
- (-4 *6 (-1249 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-1222))) (-5 *1 (-529)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-441)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5)))
+ (-4 *5 (-457))
+ (-5 *2
+ (-3 (-848 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-848 *3) "failed")))
+ "failed"))
+ (-5 *1 (-642 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1167))
+ (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3))
+ (-5 *1 (-642 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927))))
+ ((*1 *2)
+ (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353))
+ (-14 *4
+ (-3 (-1181 *3)
+ (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353))
+ (-14 *4 (-927)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-776)) (-4 *5 (-1055)) (-4 *2 (-1249 *5))
- (-5 *1 (-1267 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1264 *5)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-422 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
- (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
- (-5 *2 (-848 *4)) (-5 *1 (-1259 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1208) (-435 *3))) (-14 *5 (-1183))
- (-14 *6 *4))))
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8))
+ (-4 *7 (-855)) (-4 *8 (-1057)) (-4 *9 (-955 *8 *6 *7))
+ (-4 *6 (-798)) (-5 *2 (-1181 *8)) (-5 *1 (-324 *6 *7 *8 *9)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-984 *4 *5 *3 *6)) (-4 *4 (-1057)) (-4 *5 (-798))
+ (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2577 "void")))
- (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1183))
- (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *2 (-1278))
- (-5 *1 (-1186))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1183))
- (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2577 "void"))) (-5 *2 (-1278))
- (-5 *1 (-1186)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-91 *3)))))
+ (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1055)) (-4 *3 (-855))
+ (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855))
(-4 *4 (-268 *3)) (-4 *5 (-798)))))
-(((*1 *2)
- (-12 (-4 *1 (-353))
- (-5 *2 (-649 (-2 (|:| -3796 (-569)) (|:| -4320 (-569))))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1106)) (-4 *3 (-131))
- (-4 *3 (-797)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
+(((*1 *1 *1) (-5 *1 (-1071))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-1249 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2 (-649 *3)) (-5 *1 (-1134 *4 *3)) (-4 *4 (-1249 *3)))))
+ (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-1181 *6))
+ (-5 *1 (-324 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3))
+ (-4 *3 (-653 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
(((*1 *1 *1 *1) (-5 *1 (-867))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008)))))
+ (-4 *2 (-13 (-435 *3) (-1010)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1264 *3))
- (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1235 *3 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3))
+ (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1233 *3))
- (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1256 *3 *4)) (-4 *5 (-989 *4))))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3))
+ (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
- (-5 *2 (-649 (-649 (-649 (-776))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *3)) (-4 *3 (-1223)) (-5 *2 (-569)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-561)) (-5 *1 (-975 *2 *3)) (-4 *3 (-1249 *2)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1116)) (-5 *3 (-569)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6))))
+ (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1266 *5)) (-5 *2 (-649 *6))
+ (-5 *1 (-1268 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1225)) (-5 *2 (-569)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
- (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3))
- (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2))
- (-4 *2 (-692 *3 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1223))
- (-4 *5 (-377 *4)) (-4 *2 (-377 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *2 *7)) (-4 *6 (-1055))
- (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-457))
- (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855))
- (-5 *1 (-983 *3 *4 *5 *6))))
+ (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569)))))
+ (-4 *3 (-1251 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3))
+ (-4 *5 (-661 (-412 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1071 *4 *5 *6))
- (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *1 (-983 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-412 *5))
+ (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4))
+ (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-412 (-569)))
+ (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776))
+ (-14 *4 (-776)) (-4 *5 (-173)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057))))
+ ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2))
+ (-4 *2 (-692 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-4 *4 (-1225)) (-5 *2 (-112))
+ (-5 *1 (-1165 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3))
+ (-4 *3 (-1251 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-710 *3 *4)) (-4 *3 (-1223)) (-4 *4 (-1223)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1165)) (-5 *4 (-170 (-226))) (-5 *5 (-569))
- (-5 *2 (-1041)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-215 (-507))) (-5 *1 (-842)))))
+ (-5 *1 (-710 *3 *4)) (-4 *3 (-1225)) (-4 *4 (-1225)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3))
+ (-4 *3 (-619 (-541)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226) (-226)))
+ (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310))
- (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1179 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798))
- (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5))
- (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855))
- (-4 *6 (-310)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-310))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2330 *1)))
- (-4 *1 (-310)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1249 *4))
- (-5 *1 (-928 *4 *2)))))
+ (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226)))
+ (-5 *2 (-1043)) (-5 *1 (-760)))))
+(((*1 *1 *1) (-4 *1 (-1068))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-422 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2530 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1249 *7))
- (-5 *3 (-412 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-579 *7 *8)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7))
- (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798))
- (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-649 (-1179 *5))) (-5 *3 (-1179 *5))
- (-4 *5 (-1249 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569)))
- (-5 *2 (-694 (-569))) (-5 *1 (-595))))
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-367) (-305)
+ (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $))
+ (-15 -4412 ((-1133 *3 (-617 $)) $))
+ (-15 -3796 ($ (-1133 *3 (-617 $))))))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927))
+ (-14 *4 (-927)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4))
+ (-4 *4 (-1251 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))))
+(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))))
+(((*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569))))
- (-5 *1 (-595))))
+ (-12
+ (-5 *3
+ (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4)
+ (-248 *4 (-412 (-569)))))
+ (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112))
+ (-5 *1 (-510 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1229)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7)))
+ (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569))))
- (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383))))
- ((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-383)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1273 (-649 *3))) (-4 *4 (-310))
- (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1249 *4)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798))
+ (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8)))
+ (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1148 *4 *2)) (-14 *4 (-927))
- (-4 *2 (-13 (-1055) (-10 -7 (-6 (-4446 "*")))))
- (-5 *1 (-908 *4 *2)))))
+ (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7)))
+ (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5)))
+ (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055)) (-5 *2 (-1171 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275))))
- ((*1 *2 *1) (-12 (-5 *2 (-1139 (-226))) (-5 *1 (-1275)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
+ (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855))
+ (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855))
+ (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367)))
+ (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *7 (-346 *4 *5 *6))
+ (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4))
+ (-4 *4 (-1251 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1057))
+ (-4 *3 (-855))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1057)) (-4 *3 (-855))
+ (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4))
+ (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6)))
+ (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569))))
+ (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6))
+ (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4)))
+ (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776))
+ (-5 *1 (-918 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367))
+ (-4 *7 (-1251 *6)) (-4 *4 (-1251 (-412 *7))) (-4 *8 (-346 *6 *7 *4))
+ (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776))
+ (-5 *1 (-1026 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561))
+ (-5 *2 (-776))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))))
+(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))))
+(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1183))) (-5 *1 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-776))
- (-4 *3 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *4 (-1249 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569))
- (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))))
+ (-12 (-5 *2 (-649 (-1224))) (-5 *3 (-1224)) (-5 *1 (-686)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1044 (-569))) (-4 *4 (-561))
+ (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1046 (-569))) (-4 *4 (-561))
(-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4))))
((*1 *1 *1 *1) (-5 *1 (-134)))
((*1 *2 *2 *2)
@@ -16150,167 +16309,125 @@
((*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-569))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3))
- (-4 *5 (-1264 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1235 *4 *5))))
+ (-4 *5 (-1266 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1237 *4 *5))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3))
- (-4 *5 (-1233 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1256 *4 *5))
- (-4 *6 (-989 *5))))
+ (-4 *5 (-1235 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1258 *4 *5))
+ (-4 *6 (-991 *5))))
((*1 *1 *1 *1) (-4 *1 (-287)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108))))
((*1 *1 *1 *1) (-5 *1 (-383)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1106))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1108))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1106))
- (-4 *3 (-1118))))
+ (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1108))
+ (-4 *3 (-1120))))
((*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-569))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855))
(-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1273 *4)) (-5 *3 (-569)) (-4 *4 (-353))
+ (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353))
(-5 *1 (-533 *4))))
((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-541))))
((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-541))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1106))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1108))
(-5 *1 (-687 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-367))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1055))
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057))
(-5 *1 (-695 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *3 (-1055)) (-5 *1 (-719 *3 *4))
+ (-12 (-5 *2 (-569)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4))
(-4 *4 (-653 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1055))
+ (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1057))
(-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4))))
((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))
((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776))))
((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1055))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1057))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1055))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1057))))
((*1 *1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-412 (-569)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1118)) (-5 *2 (-927))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-412 (-569)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-927))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-569)) (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *4 (-1055))
+ (-12 (-5 *2 (-569)) (-4 *1 (-1131 *3 *4 *5 *6)) (-4 *4 (-1057))
(-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1168 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1170 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1163 *3)) (-4 *3 (-38 (-412 (-569))))
- (-5 *1 (-1169 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569))))
+ (-5 *1 (-1171 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1055)) (-4 *2 (-367)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1163 (-1163 *4))) (-5 *2 (-1163 *4)) (-5 *1 (-1167 *4))
- (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1055)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1055)) (-4 *3 (-855))
- (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1055)) (-4 *4 (-855))
- (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1))
- (-4 *1 (-1071 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *3 (-649 (-265)))
- (-5 *1 (-263))))
- ((*1 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-265))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473))))
- ((*1 *2 *1) (-12 (-5 *2 (-649 (-1100 (-383)))) (-5 *1 (-473)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
- (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-383)) (-5 *1 (-206)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
- (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1165)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
- (-4 *7 (-1071 *4 *5 *6)) (-5 *2 (-1278))
- (-5 *1 (-1114 *4 *5 *6 *7 *8)) (-4 *8 (-1077 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
- (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
- (-5 *1 (-793)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5)) (-5 *2 (-649 *6)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-779)) (-5 *1 (-114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-561)))))
-(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1165)) (-5 *1 (-715)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-694 *4))) (-4 *4 (-173))
- (-5 *2 (-1273 (-694 (-958 *4)))) (-5 *1 (-190 *4)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1033 *5 *6 *7 *8))) (-5 *1 (-1033 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1071 *5 *6 *7))
- (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-5 *2 (-649 (-1152 *5 *6 *7 *8))) (-5 *1 (-1152 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1106)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1179 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1055)) (-5 *2 (-1179 *6))
- (-5 *1 (-324 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-333)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))))
+(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1055)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1249 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))))
-(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1106)) (-5 *1 (-911 *3)))))
+ (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010)))
+ (-5 *1 (-177 *3)))))
+(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1195)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1057)) (-4 *3 (-1251 *4)) (-4 *2 (-1266 *4))
+ (-5 *1 (-1269 *4 *3 *5 *2)) (-4 *5 (-661 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -4360 (-649 (-2 (|:| |irr| *10) (|:| -4180 (-569)))))))
+ (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310))
+ (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798))
+ (-5 *2
+ (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-649 (-1181 *3)))))
+ (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1181 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-579 *5 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
+ (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879)))
+ (-5 *4 (-649 (-927))) (-5 *1 (-473))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473))))
+ ((*1 *1 *1) (-5 *1 (-473))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-412 (-1181 (-319 *3)))) (-4 *3 (-561))
+ (-5 *1 (-1138 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-649 *5))
+ (-5 *1 (-896 *4 *5)) (-4 *5 (-1225)))))
+(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))))
(((*1 *2 *1)
(-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
((*1 *2 *1)
@@ -16319,633 +16436,674 @@
((*1 *2 *1)
(-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108))))
((*1 *2 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1014 *3)) (-4 *3 (-1044 (-412 (-569)))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1046 (-412 (-569)))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855))
+ (-4 *5 (-798)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))))
+(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-680 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1057)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1297 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855))
+ (-12 (-5 *3 (-1299 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855))
(-4 *2 (-173))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1290 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1055))))
+ (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-824 *4)) (-4 *1 (-1290 *4 *2)) (-4 *4 (-855))
- (-4 *2 (-1055))))
+ (-12 (-5 *3 (-824 *4)) (-4 *1 (-1292 *4 *2)) (-4 *4 (-855))
+ (-4 *2 (-1057))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1055)) (-5 *1 (-1296 *2 *3)) (-4 *3 (-851)))))
+ (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1181 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057))
+ (-5 *1 (-324 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1111 *3 *4 *2 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5))
+ (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 *3))))
+ (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6))
+ (-4 *7 (-661 (-412 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-649 *5) *6))
+ (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))
+ (-4 *6 (-1251 *5))
+ (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 (-659 *6 (-412 *6))))))
+ (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5))
+ (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1225)) (-5 *2 (-776))))
+ ((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1057))
+ (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))
+ (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1108))))
+ ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
+ ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1044 (-569)) (-644 (-569)) (-457)))
+ (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457)))
(-5 *2
(-2
(|:| |%term|
- (-2 (|:| |%coef| (-1258 *4 *5 *6))
+ (-2 (|:| |%coef| (-1260 *4 *5 *6))
(|:| |%expon| (-322 *4 *5 *6))
(|:| |%expTerms|
(-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4))))))
- (|:| |%type| (-1165))))
- (-5 *1 (-1259 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1208) (-435 *3)))
- (-14 *5 (-1183)) (-14 *6 *4))))
-(((*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1044 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *4 *2 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
-(((*1 *1 *1) (-5 *1 (-867))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-898 *4)) (-4 *4 (-1106)) (-5 *1 (-895 *4 *3))
- (-4 *3 (-1106)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3660 *4))))
- (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1077 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1106)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1223)) (-5 *2 (-776))))
- ((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1055))
- (-4 *2 (-13 (-409) (-1044 *4) (-367) (-1208) (-287)))
- (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1249 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1106))))
- ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))
- ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
+ (|:| |%type| (-1167))))
+ (-5 *1 (-1261 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3)))
+ (-14 *5 (-1185)) (-14 *6 *4))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1249 (-569))))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1179 *4))
- (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1223)) (-4 *2 (-1106))
- (-4 *2 (-855)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-119 *2)) (-4 *2 (-1223)))))
+ (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367))
+ (-4 *7 (-1251 *6))
+ (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6)))
+ (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1010))))))
+(((*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-257))))
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1141 (-226))) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
- (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226)))
(-5 *1 (-261 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383)))
- (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226)))
(-5 *1 (-261 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
- (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3))
- (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265)))
+ (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1108)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1139 (-226))) (-5 *1 (-261 *3))
- (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1108)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
- (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226)))
(-5 *1 (-261 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383)))
- (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1139 (-226)))
+ (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226)))
(-5 *1 (-261 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-314))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-976))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1000))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1042))))
- ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-1079)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *9 (-1073 *6 *7 *8))
+ (-5 *2
+ (-649
+ (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9)))))
+ (-5 *1 (-996 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9))
+ (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
+ (-4 *9 (-1073 *6 *7 *8))
+ (-5 *2
+ (-649
+ (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9)))))
+ (-5 *1 (-1115 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-314))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-978))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1002))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1044))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1081)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4444)) (-4 *1 (-151 *3))
- (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3))
+ (-4 *3 (-1225))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1216 *4 *5 *3 *2)) (-4 *4 (-561))
- (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1071 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1218 *4 *5 *3 *2)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1073 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-776)) (-5 *1 (-1220 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1179 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1249 *5))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569))))
+ (-12 (-5 *3 (-776)) (-5 *1 (-1222 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-114)) (-4 *4 (-1057)) (-5 *1 (-719 *4 *2))
+ (-4 *2 (-653 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1057)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1210)))
+ (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))))
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6)
- (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3674 *6)))
- (-5 *1 (-1022 *5 *6)) (-5 *3 (-412 *6)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-752)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 (-569)))))
- (-5 *1 (-365 *3)) (-4 *3 (-1106))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-390 *3)) (-4 *3 (-1106))
- (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4386 (-776)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| -3796 *3) (|:| -4320 (-569)))))
- (-5 *1 (-423 *3)) (-4 *3 (-561)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-993 (-412 (-569)) (-869 *3) (-241 *4 (-776))
- (-248 *3 (-412 (-569)))))
- (-14 *3 (-649 (-1183))) (-14 *4 (-776)) (-5 *1 (-992 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1273 (-1273 *4))) (-4 *4 (-1055)) (-5 *2 (-694 *4))
- (-5 *1 (-1035 *4)))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1108)))))
+(((*1 *1 *1) (-5 *1 (-867))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1280)) (-5 *1 (-827)))))
(((*1 *2 *3)
(-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-898 *4))
- (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1106)) (-4 *3 (-166 *5))))
+ (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1108)) (-4 *3 (-166 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-1100 (-848 (-383)))))
- (-5 *2 (-649 (-1100 (-848 (-226))))) (-5 *1 (-308))))
+ (-12 (-5 *3 (-649 (-1102 (-848 (-383)))))
+ (-5 *2 (-649 (-1102 (-848 (-226))))) (-5 *1 (-308))))
((*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4))
- (-4 *4 (-1249 *3))))
+ (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4))
+ (-4 *4 (-1251 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1249 *3))
- (-5 *2 (-1273 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1273 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1273 *3))))
+ (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3))
+ (-5 *2 (-1275 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-423 *1)) (-4 *1 (-435 *3)) (-4 *3 (-561))
- (-4 *3 (-1106))))
+ (-4 *3 (-1108))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-1071 *3 *4 *5)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057))
(-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-541))))
- ((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1223))))
- ((*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1223))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-541))))
+ ((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1225))))
+ ((*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1225))))
((*1 *1 *2)
- (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1249 *3))))
+ (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108))))
((*1 *1 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-1055)) (-4 *1 (-1071 *3 *4 *5))
- (-4 *5 (-619 (-1183))) (-4 *4 (-798)) (-4 *5 (-855))))
+ (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5))
+ (-4 *5 (-619 (-1185))) (-4 *4 (-798)) (-4 *5 (-855))))
((*1 *1 *2)
- (-2774
- (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-1745 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
- (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))
- (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1071 *3 *4 *5))
- (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))))
- (-4 *3 (-1055)) (-4 *4 (-798)) (-4 *5 (-855)))))
+ (-2776
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5))
+ (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569)))
+ (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))
+ (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))))
+ (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))))
((*1 *1 *2)
- (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1071 *3 *4 *5))
- (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1183))) (-4 *3 (-1055))
+ (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5))
+ (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057))
(-4 *4 (-798)) (-4 *5 (-855))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1077 *4 *5 *6 *7)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165))
- (-5 *1 (-1075 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8)))
+ (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167))
+ (-5 *1 (-1077 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3660 *8)))
- (-4 *7 (-1071 *4 *5 *6)) (-4 *8 (-1115 *4 *5 *6 *7)) (-4 *4 (-457))
- (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1165))
- (-5 *1 (-1151 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1110)) (-5 *1 (-1188))))
- ((*1 *2 *1) (-12 (-5 *2 (-1110)) (-5 *1 (-1188))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1203))))
+ (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8)))
+ (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1117 *4 *5 *6 *7)) (-4 *4 (-457))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167))
+ (-5 *1 (-1153 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-1190))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1190))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205))))
((*1 *2 *3)
(-12 (-5 *3 (-785 *4 (-869 *5)))
- (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *5 (-649 (-1183)))
- (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *6 (-649 (-1183)))))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185)))
+ (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *6 (-649 (-1185)))))
((*1 *2 *3)
- (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183)))))
+ (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185)))))
((*1 *2 *3)
(-12 (-5 *3 (-785 *4 (-869 *6)))
- (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183)))
- (-5 *2 (-958 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-649 (-1183)))))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185)))
+ (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *5 (-649 (-1185)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1028)))
- (-5 *2 (-1179 (-1030 (-412 *4)))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-649 (-1183))) (-14 *6 (-649 (-1183)))))
+ (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030)))
+ (-5 *2 (-1181 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1152 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))
- (-4 *4 (-13 (-853) (-310) (-147) (-1028))) (-14 *6 (-649 (-1183)))
- (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1299 *4 *5 *6))
- (-14 *5 (-649 (-1183))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1055)) (-4 *3 (-1249 *4)) (-4 *2 (-1264 *4))
- (-5 *1 (-1267 *4 *3 *5 *2)) (-4 *5 (-661 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855))
- (-4 *5 (-798)) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1055)))))
-(((*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1188) (-776)))) (-5 *1 (-336)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
+ (-5 *3 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))
+ (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185)))
+ (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1301 *4 *5 *6))
+ (-14 *5 (-649 (-1185))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3))
+ (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 *3)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561))
+ (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561))
+ (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7))
+ (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798))
+ (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
+ ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1147))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1190) (-776)))) (-5 *1 (-336)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-383)) (-5 *1 (-1071)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1109 *3 *2 *4 *5 *6)) (-4 *3 (-1106)) (-4 *4 (-1106))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-4 *2 (-1106)))))
+ (-12 (-4 *1 (-1111 *3 *2 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))))
+(((*1 *1 *1) (-4 *1 (-1152))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4))))
- (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855))
- (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855))
+ (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-649 (-2 (|:| -3800 (-1181 *9)) (|:| -1993 (-569)))))))
+ (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9)))))
+(((*1 *1) (-5 *1 (-583))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3))
+ (-4 *3 (-1108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
- (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-441)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1055)) (-4 *2 (-692 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1249 *4)) (-4 *5 (-377 *4))
- (-4 *6 (-377 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1273 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561))
- (-5 *2 (-1273 *4)) (-5 *1 (-643 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1055)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))
- (-5 *1 (-1213 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2))
+ (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569))))
+ (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6))
+ (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-573 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383)))
+ (-5 *2 (-1043)) (-5 *1 (-845)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-776))
- (-4 *5 (-13 (-457) (-1044 (-569)))) (-4 *5 (-561))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5))
- (-4 *2
- (-13 (-367) (-305)
- (-10 -8 (-15 -4396 ((-1131 *5 (-617 $)) $))
- (-15 -4409 ((-1131 *5 (-617 $)) $))
- (-15 -3793 ($ (-1131 *5 (-617 $))))))))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1183)) (-5 *2 (-1278)) (-5 *1 (-1186)))))
+ (|partial| -12 (-5 *2 (-1275 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367))
+ (-5 *1 (-672 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-367))
+ (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4448))))
+ (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448))))
+ (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367))
+ (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-649 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-412 (-569))))) (-4 *6 (-1249 *5))
- (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4309 *3))))
- (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6))
- (-4 *7 (-661 (-412 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-649 *5) *6))
- (-4 *5 (-13 (-367) (-147) (-1044 (-569)) (-1044 (-412 (-569)))))
- (-4 *6 (-1249 *5))
- (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4309 (-659 *6 (-412 *6))))))
- (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-776))
- (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569))))))
- (-5 *1 (-247 *3)))))
-(((*1 *1) (-5 *1 (-294))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-367)) (-4 *5 (-561))
- (-5 *2
- (-2 (|:| |minor| (-649 (-927))) (|:| -4309 *3)
- (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1278)) (-5 *1 (-827)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1055))
- (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1183)) (-5 *3 (-383)) (-5 *1 (-1069)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1208)))))
+ (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-193))))
+ ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))))
+(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *5 (-1229)) (-4 *6 (-1251 *5))
+ (-4 *7 (-1251 (-412 *6))) (-5 *2 (-649 (-958 *5)))
+ (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1185)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229))
+ (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *4 (-367))
+ (-5 *2 (-649 (-958 *4))))))
+(((*1 *1) (-5 *1 (-294))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112))
+ (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
- (-5 *2
- (-2 (|:| |solns| (-649 *5))
- (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1134 *3 *5)) (-4 *3 (-1249 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *3 (-1071 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1077 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
(-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *3 (-1071 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-649 *4))
- (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3660 *4))))))
- (-5 *1 (-1151 *5 *6 *7 *3 *4)) (-4 *4 (-1115 *5 *6 *7 *3)))))
+ (-4 *3 (-1073 *5 *6 *7))
+ (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4))))
+ (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1057))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855)) (-4 *2 (-561))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855))
+ (-4 *3 (-1073 *4 *5 *6))
+ (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1))))
+ (-4 *1 (-1079 *4 *5 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2))
+ (-4 *4 (-377 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569)))))))
+ (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-927)) (-4 *6 (-561)) (-5 *2 (-649 (-319 *6)))
- (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1055))))
+ (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1057))))
((*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561))))
((*1 *2 *3)
- (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1208)))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569)))) (-5 *2 (-649 *5))
+ (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1210)))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-649 *5))
(-5 *1 (-588 *4 *5))))
((*1 *2 *3)
(-12 (-5 *3 (-591 (-412 (-958 *4))))
- (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
+ (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569))))
(-5 *2 (-649 (-319 *4))) (-5 *1 (-594 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1101 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1155 *3))))
+ (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1157 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 *1)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853))
- (-4 *2 (-1155 *4))))
+ (-12 (-5 *3 (-649 *1)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853))
+ (-4 *2 (-1157 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208)))))
+ (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1210)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 (-1183) *3)) (-5 *1 (-1295 *3)) (-4 *3 (-1055))))
+ (-12 (-5 *2 (-1290 (-1185) *3)) (-5 *1 (-1297 *3)) (-4 *3 (-1057))))
((*1 *2 *1)
- (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-561)) (-5 *1 (-975 *3 *2)) (-4 *2 (-1249 *3)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4445)) (-4 *1 (-1261 *2)) (-4 *2 (-1223)))))
-(((*1 *2)
- (-12 (-5 *2 (-1278)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106)))))
-(((*1 *2)
- (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-1249 *3))
- (-4 *5 (-1249 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1116)))))
+ (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1057)))))
+(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))
+ ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3))
+ (-4 *5 (-377 *3)) (-5 *2 (-569))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057))
+ (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1196 (-927) (-776))))))
-(((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1106)) (-5 *2 (-55)))))
-(((*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-760)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569))
+ (-14 *4 (-776)) (-4 *5 (-173)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1274)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1276)) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1274)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1274)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1276)) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *5 (-649 (-265))) (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1100 (-383)))
- (-5 *2 (-1275)) (-5 *1 (-257))))
+ (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383)))
+ (-5 *2 (-1277)) (-5 *1 (-257))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-297 *7)) (-5 *4 (-1183)) (-5 *5 (-649 (-265)))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1044 (-569))))
- (-5 *2 (-1274)) (-5 *1 (-258 *6 *7))))
+ (-12 (-5 *3 (-297 *7)) (-5 *4 (-1185)) (-5 *5 (-649 (-265)))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1046 (-569))))
+ (-5 *2 (-1276)) (-5 *1 (-258 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1274))
- (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276))
+ (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1274)) (-5 *1 (-261 *3))
- (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1276)) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1108)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-883 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
- (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274))
+ (-12 (-5 *3 (-883 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276))
(-5 *1 (-261 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-883 *5)) (-5 *4 (-1098 (-383)))
- (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1274))
+ (-12 (-5 *3 (-883 *5)) (-5 *4 (-1100 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276))
(-5 *1 (-261 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-885 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
- (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277))
(-5 *1 (-261 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-885 *5)) (-5 *4 (-1098 (-383)))
- (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277))
(-5 *1 (-261 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1275))
- (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277))
+ (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1098 (-383))) (-5 *2 (-1275)) (-5 *1 (-261 *3))
- (-4 *3 (-13 (-619 (-541)) (-1106)))))
+ (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1277)) (-5 *1 (-261 *3))
+ (-4 *3 (-13 (-619 (-541)) (-1108)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-888 *6)) (-5 *4 (-1098 (-383))) (-5 *5 (-649 (-265)))
- (-4 *6 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265)))
+ (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277))
(-5 *1 (-261 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-888 *5)) (-5 *4 (-1098 (-383)))
- (-4 *5 (-13 (-619 (-541)) (-1106))) (-5 *2 (-1275))
+ (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383)))
+ (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277))
(-5 *1 (-261 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1274)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1276)) (-5 *1 (-262))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1274))
+ (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1276))
(-5 *1 (-262))))
((*1 *2 *3)
- (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1274)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1276)) (-5 *1 (-262))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-649 (-265)))
- (-5 *2 (-1274)) (-5 *1 (-262))))
+ (-5 *2 (-1276)) (-5 *1 (-262))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275)) (-5 *1 (-262))))
+ (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1277)) (-5 *1 (-262))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1275))
+ (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1277))
(-5 *1 (-262)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-367)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-661 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4312 *3) (|:| -3906 (-649 *5))))
+ (-5 *1 (-1033 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5)))))
(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927))))
- ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))
- ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694 (-170 (-412 (-569)))))
- (-5 *2
- (-649
- (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569))
- (|:| |outvect| (-649 (-694 (-170 *4)))))))
- (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927))))
+ ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231)))
+ ((*1 *1 *1 *1) (-5 *1 (-1232))) ((*1 *1 *1 *1) (-5 *1 (-1233))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1271 *3)) (-4 *3 (-1223)) (-4 *3 (-1055))
+ (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-1057))
(-5 *2 (-694 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1055))
- (-5 *2 (-649 (-649 (-649 (-949 *3))))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1223))
- (-4 *5 (-377 *4)) (-4 *2 (-377 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-569)) (-4 *1 (-1059 *4 *5 *6 *7 *2)) (-4 *6 (-1055))
- (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855))
- (-5 *2 (-649 *3)) (-5 *1 (-983 *4 *5 *6 *3))
- (-4 *3 (-1071 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))))
+(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879))))
+ ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-757)))))
(((*1 *2 *3)
(-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))))
(((*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-308))))
((*1 *2 *1)
(|partial| -12
(-5 *2 (-2 (|:| |num| (-898 *3)) (|:| |den| (-898 *3))))
- (-5 *1 (-898 *3)) (-4 *3 (-1106)))))
-(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1223)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1145))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798))
- (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4309 (-649 *9)) (|:| -3660 *4) (|:| |ineq| (-649 *9))))
- (-5 *1 (-994 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9))
- (-4 *4 (-1077 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798))
- (-4 *8 (-855)) (-4 *9 (-1071 *6 *7 *8))
- (-5 *2
- (-2 (|:| -4309 (-649 *9)) (|:| -3660 *4) (|:| |ineq| (-649 *9))))
- (-5 *1 (-1113 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9))
- (-4 *4 (-1077 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3))
- (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2))
- (-4 *2 (-692 *3 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1183))
- (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1183)) (-5 *3 (-958 *6))
- (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6)))))
+ (-5 *1 (-898 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))
+ ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305))))
((*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-617 *3)) (-4 *3 (-1106))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1106))
+ (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1108))
(-5 *1 (-617 *5)))))
(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1190 *2)) (-14 *2 (-927))))
- ((*1 *1 *1 *1) (-5 *1 (-1228))) ((*1 *1 *1 *1) (-5 *1 (-1229)))
- ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112))
- (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1041)) (-5 *1 (-761)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1008))))))
-(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1223)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4407 *6) (|:| |sol?| (-112))) (-569)
- *6))
- (-4 *6 (-367)) (-4 *7 (-1249 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6))
- (-2 (|:| -2530 (-412 *7)) (|:| |coeff| (-412 *7))) "failed"))
- (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-649 (-1179 *7))) (-5 *3 (-1179 *7))
- (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798))
- (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1165))
- (-5 *3 (-226)) (-5 *2 (-1041)) (-5 *1 (-763)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927))))
+ ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231)))
+ ((*1 *1 *1 *1) (-5 *1 (-1232))) ((*1 *1 *1 *1) (-5 *1 (-1233))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927))
+ (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
+ (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
+ (-5 *1 (-790 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855))
+ (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561))
+ (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383)))
+ (-5 *1 (-790 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-977 *4 *3))
+ (-4 *3 (-1251 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1167)) (|:| -3573 (-1167))))
+ (-5 *1 (-827)))))
+(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1055))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1057))
(-4 *4 (-797))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-649 (-1183)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-649 (-1185)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1223))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225))
(-4 *4 (-377 *3)) (-4 *5 (-377 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569))
(-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173))
@@ -16954,51 +17112,51 @@
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-170 *5)) (-4 *5 (-173))
(-4 *6 (-173)) (-5 *2 (-170 *6)) (-5 *1 (-169 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1055) (-855)))
- (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1183)))))
+ (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1057) (-855)))
+ (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776))
- (-4 *6 (-1223)) (-4 *7 (-1223)) (-5 *2 (-241 *5 *7))
+ (-4 *6 (-1225)) (-4 *7 (-1225)) (-5 *2 (-241 *5 *7))
(-5 *1 (-240 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-297 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-297 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1165)) (-5 *5 (-617 *6))
- (-4 *6 (-305)) (-4 *2 (-1223)) (-5 *1 (-300 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1167)) (-5 *5 (-617 *6))
+ (-4 *6 (-305)) (-4 *2 (-1225)) (-5 *1 (-300 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-617 *5)) (-4 *5 (-305))
(-4 *2 (-305)) (-5 *1 (-301 *5 *2))))
((*1 *1 *2 *3)
(-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-617 *1)) (-4 *1 (-305))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-340 *5 *6 *7 *8)) (-4 *5 (-367))
- (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
- (-4 *9 (-367)) (-4 *10 (-1249 *9)) (-4 *11 (-1249 (-412 *10)))
+ (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7))
+ (-4 *9 (-367)) (-4 *10 (-1251 *9)) (-4 *11 (-1251 (-412 *10)))
(-5 *2 (-340 *9 *10 *11 *12))
(-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-346 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1106))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1108))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1227)) (-4 *8 (-1227))
- (-4 *6 (-1249 *5)) (-4 *7 (-1249 (-412 *6))) (-4 *9 (-1249 *8))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1229)) (-4 *8 (-1229))
+ (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *9 (-1251 *8))
(-4 *2 (-346 *8 *9 *10)) (-5 *1 (-344 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1249 (-412 *9)))))
+ (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1251 (-412 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1223)) (-4 *6 (-1223))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1225)) (-4 *6 (-1225))
(-4 *2 (-377 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-377 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1055))
- (-4 *4 (-1106))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1057))
+ (-4 *4 (-1108))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-423 *5)) (-4 *5 (-561))
(-4 *6 (-561)) (-5 *2 (-423 *6)) (-5 *1 (-410 *5 *6))))
@@ -17007,36 +17165,36 @@
(-4 *6 (-561)) (-5 *2 (-412 *6)) (-5 *1 (-411 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310))
- (-4 *6 (-998 *5)) (-4 *7 (-1249 *6))
- (-4 *8 (-13 (-414 *6 *7) (-1044 *6))) (-4 *9 (-310))
- (-4 *10 (-998 *9)) (-4 *11 (-1249 *10))
+ (-4 *6 (-1000 *5)) (-4 *7 (-1251 *6))
+ (-4 *8 (-13 (-414 *6 *7) (-1046 *6))) (-4 *9 (-310))
+ (-4 *10 (-1000 *9)) (-4 *11 (-1251 *10))
(-5 *2 (-418 *9 *10 *11 *12))
(-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-414 *10 *11) (-1044 *10)))))
+ (-4 *12 (-13 (-414 *10 *11) (-1046 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173))
(-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057))
(-4 *2 (-435 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-435 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1106)) (-4 *6 (-1106))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108))
(-4 *2 (-430 *6)) (-5 *1 (-428 *5 *4 *6 *2)) (-4 *4 (-430 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1225))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1106))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1108))
(-4 *4 (-855))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-367))
(-4 *6 (-367)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2530 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -2679 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-367)) (-4 *6 (-367))
- (-5 *2 (-2 (|:| -2530 *6) (|:| |coeff| *6)))
+ (-5 *2 (-2 (|:| -2679 *6) (|:| |coeff| *6)))
(-5 *1 (-589 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
@@ -17056,1281 +17214,1130 @@
(-649 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
(-5 *1 (-589 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7))
- (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-606 *8))
+ (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-606 *8))
(-5 *1 (-604 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-606 *7))
- (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-606 *7))
+ (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8))
(-5 *1 (-604 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1163 *7))
- (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1165 *7))
+ (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8))
(-5 *1 (-604 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-649 *6)) (-5 *5 (-649 *7))
- (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-649 *8))
+ (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-649 *8))
(-5 *1 (-648 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1223))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1225))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1055)) (-4 *8 (-1055))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1057)) (-4 *8 (-1057))
(-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10))
(-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7))
(-4 *9 (-377 *8)) (-4 *10 (-377 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1055))
- (-4 *8 (-1055)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1057))
+ (-4 *8 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5))
(-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2))
(-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561))
- (-4 *6 (-1249 *5)) (-4 *2 (-1249 (-412 *8)))
- (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1249 (-412 *6)))
- (-4 *8 (-1249 *7))))
+ (-4 *6 (-1251 *5)) (-4 *2 (-1251 (-412 *8)))
+ (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1251 (-412 *6)))
+ (-4 *8 (-1251 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1055)) (-4 *9 (-1055))
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1057)) (-4 *9 (-1057))
(-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-955 *9 *7 *5))
(-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798))
(-4 *4 (-955 *8 *6 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798))
- (-4 *9 (-1055)) (-4 *2 (-955 *9 *8 *6))
+ (-4 *9 (-1057)) (-4 *2 (-955 *9 *8 *6))
(-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798))
(-4 *4 (-955 *9 *7 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7))
(-5 *1 (-739 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-740 *3 *4))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-740 *3 *4))
(-4 *4 (-731))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173))
(-4 *2 (-802 *6)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *4 (-802 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))
((*1 *2 *3 *4 *2)
(-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-837 *5 *6))))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-837 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))
((*1 *2 *3 *4 *2 *2)
(-12 (-5 *2 (-848 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5))
- (-4 *5 (-1106)) (-4 *6 (-1106)) (-5 *1 (-847 *5 *6))))
+ (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-847 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-4 *7 (-1106)) (-5 *2 (-895 *5 *7))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-895 *5 *7))
(-5 *1 (-894 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1106))
- (-4 *6 (-1106)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855))
- (-4 *8 (-1055)) (-4 *6 (-798))
+ (-4 *8 (-1057)) (-4 *6 (-798))
(-4 *2
- (-13 (-1106)
- (-10 -8 (-15 -3009 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))))))
+ (-13 (-1108)
+ (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))))))
(-5 *1 (-957 *6 *7 *8 *5 *2)) (-4 *5 (-955 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1108))
+ (-4 *6 (-1108)) (-5 *2 (-972 *6)) (-5 *1 (-974 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-5 *2 (-949 *6)) (-5 *1 (-987 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-5 *2 (-949 *6)) (-5 *1 (-989 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1055))
+ (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1057))
(-4 *2 (-955 (-958 *4) *5 *6)) (-4 *5 (-798))
(-4 *6
(-13 (-855)
- (-10 -8 (-15 -1408 ((-1183) $))
- (-15 -2671 ((-3 $ "failed") (-1183))))))
- (-5 *1 (-990 *4 *5 *6 *2))))
+ (-10 -8 (-15 -1410 ((-1185) $))
+ (-15 -2672 ((-3 $ "failed") (-1185))))))
+ (-5 *1 (-992 *4 *5 *6 *2))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561))
- (-4 *2 (-998 *6)) (-5 *1 (-996 *5 *6 *4 *2)) (-4 *4 (-998 *5))))
+ (-4 *2 (-1000 *6)) (-5 *1 (-998 *5 *6 *4 *2)) (-4 *4 (-1000 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173))
- (-4 *2 (-1003 *6)) (-5 *1 (-1004 *4 *5 *2 *6)) (-4 *4 (-1003 *5))))
+ (-4 *2 (-1005 *6)) (-5 *1 (-1006 *4 *5 *2 *6)) (-4 *4 (-1005 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7))
- (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7))
+ (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1059 *3 *4 *5 *6 *7))
- (-4 *5 (-1055)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7))
+ (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1055)) (-4 *10 (-1055))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1057)) (-4 *10 (-1057))
(-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7))
- (-4 *9 (-239 *5 *7)) (-4 *2 (-1059 *5 *6 *10 *11 *12))
- (-5 *1 (-1061 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1059 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10))
+ (-4 *9 (-239 *5 *7)) (-4 *2 (-1061 *5 *6 *10 *11 *12))
+ (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10))
(-4 *12 (-239 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-1100 *6)) (-5 *1 (-1095 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-1102 *6)) (-5 *1 (-1097 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-853))
- (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-649 *6))
- (-5 *1 (-1095 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-853))
+ (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-649 *6))
+ (-5 *1 (-1097 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-1098 *6)) (-5 *1 (-1097 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-1100 *6)) (-5 *1 (-1099 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1101 *4 *2)) (-4 *4 (-853))
- (-4 *2 (-1155 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853))
+ (-4 *2 (-1157 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1163 *6)) (-5 *5 (-1163 *7))
- (-4 *6 (-1223)) (-4 *7 (-1223)) (-4 *8 (-1223)) (-5 *2 (-1163 *8))
- (-5 *1 (-1162 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-1165 *7))
+ (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8))
+ (-5 *1 (-1164 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-5 *2 (-1181 *6)) (-5 *1 (-1179 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-1106))
- (-4 *4 (-1106))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1237 *5 *7 *9)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1237 *6 *8 *10)) (-5 *1 (-1232 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1183))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5 *7 *9)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1239 *6 *8 *10)) (-5 *1 (-1234 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1185))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-1240 *6)) (-5 *1 (-1239 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-1242 *6)) (-5 *1 (-1241 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5)) (-4 *5 (-853))
- (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1163 *6))
- (-5 *1 (-1239 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-853))
+ (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1165 *6))
+ (-5 *1 (-1241 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1246 *5 *6)) (-14 *5 (-1183))
- (-4 *6 (-1055)) (-4 *8 (-1055)) (-5 *2 (-1246 *7 *8))
- (-5 *1 (-1241 *5 *6 *7 *8)) (-14 *7 (-1183))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1248 *5 *6)) (-14 *5 (-1185))
+ (-4 *6 (-1057)) (-4 *8 (-1057)) (-5 *2 (-1248 *7 *8))
+ (-5 *1 (-1243 *5 *6 *7 *8)) (-14 *7 (-1185))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-4 *2 (-1249 *6)) (-5 *1 (-1247 *5 *4 *6 *2)) (-4 *4 (-1249 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057))
+ (-4 *2 (-1251 *6)) (-5 *1 (-1249 *5 *4 *6 *2)) (-4 *4 (-1251 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1258 *5 *7 *9)) (-4 *5 (-1055))
- (-4 *6 (-1055)) (-14 *7 (-1183)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1258 *6 *8 *10)) (-5 *1 (-1253 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1183))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1260 *5 *7 *9)) (-4 *5 (-1057))
+ (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1260 *6 *8 *10)) (-5 *1 (-1255 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1185))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1055)) (-4 *6 (-1055))
- (-4 *2 (-1264 *6)) (-5 *1 (-1262 *5 *6 *4 *2)) (-4 *4 (-1264 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057))
+ (-4 *2 (-1266 *6)) (-5 *1 (-1264 *5 *6 *4 *2)) (-4 *4 (-1266 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1273 *5)) (-4 *5 (-1223))
- (-4 *6 (-1223)) (-5 *2 (-1273 *6)) (-5 *1 (-1272 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-1225))
+ (-4 *6 (-1225)) (-5 *2 (-1275 *6)) (-5 *1 (-1274 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1273 *5))
- (-4 *5 (-1223)) (-4 *6 (-1223)) (-5 *2 (-1273 *6))
- (-5 *1 (-1272 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1275 *5))
+ (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1275 *6))
+ (-5 *1 (-1274 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855))
+ (-4 *4 (-1057))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1055)) (-5 *1 (-1296 *3 *4))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-1298 *3 *4))
(-4 *4 (-851)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1041))
- (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1249 *4))
- (-5 *2 (-1273 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1278)) (-5 *1 (-383)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-5 *2 (-112)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-587)))))
(((*1 *1 *1) (-5 *1 (-226)))
((*1 *1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
((*1 *1 *1) (-5 *1 (-383))) ((*1 *1) (-5 *1 (-383))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1140 *4))
- (-4 *4 (-1055))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1278))
- (-5 *1 (-1275)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798))
+ (-4 *4 (-855))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-776)) (-5 *2 (-1273 (-649 (-569)))) (-5 *1 (-485))))
+ (-12 (-5 *3 (-776)) (-5 *2 (-1275 (-649 (-569)))) (-5 *1 (-485))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-606 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1223)) (-5 *1 (-1163 *3)))))
-(((*1 *1) (-5 *1 (-828))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4449 "*")))
+ (-4 *4 (-1057)) (-5 *1 (-1036 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927))
+ (|has| *4 (-6 (-4449 "*"))) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1433 (-649 *1)) (|:| -2330 *1)))
- (-5 *3 (-649 *1)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1183)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457))
- (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))
+ ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))))
+(((*1 *2)
+ (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1163 *3))) (-5 *2 (-1163 *3)) (-5 *1 (-1167 *3))
- (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1055)))))
+ (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27))
+ (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4)))
+ (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855))
+ (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1)))
+ (-4 *1 (-1073 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))
+ (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1)))
+ (-4 *1 (-1073 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-774))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))
- (-5 *1 (-570))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-774)) (-5 *4 (-1069))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165))) (|:| |extra| (-1041))))
- (-5 *1 (-570))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-792)) (-5 *3 (-1069))
- (-5 *4
- (-2 (|:| |fn| (-319 (-226)))
- (|:| -2080 (-649 (-1100 (-848 (-226))))) (|:| |abserr| (-226))
- (|:| |relerr| (-226))))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))
- (|:| |extra| (-1041))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-792)) (-5 *3 (-1069))
- (-5 *4
- (-2 (|:| |var| (-1183)) (|:| |fn| (-319 (-226)))
- (|:| -2080 (-1100 (-848 (-226)))) (|:| |abserr| (-226))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226)))
+ (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226))
(|:| |relerr| (-226))))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))
- (|:| |extra| (-1041))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-805)) (-5 *3 (-1069))
- (-5 *4
- (-2 (|:| |xinit| (-226)) (|:| |xend| (-226))
- (|:| |fn| (-1273 (-319 (-226)))) (|:| |yinit| (-649 (-226)))
- (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226)))
- (|:| |abserr| (-226)) (|:| |relerr| (-226))))
- (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-813))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165)))))
- (-5 *1 (-810))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813)) (-5 *4 (-1069))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165)))))
- (-5 *1 (-810))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-844)) (-5 *3 (-1069))
- (-5 *4
- (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2305 (-649 (-226)))))
- (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-844)) (-5 *3 (-1069))
- (-5 *4
- (-2 (|:| |fn| (-319 (-226))) (|:| -2305 (-649 (-226)))
- (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226))))
- (|:| |ub| (-649 (-848 (-226))))))
- (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-846))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165)))))
- (-5 *1 (-845))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-846)) (-5 *4 (-1069))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165)))))
- (-5 *1 (-845))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-901)) (-5 *3 (-1069))
- (-5 *4
- (-2 (|:| |pde| (-649 (-319 (-226))))
- (|:| |constraints|
- (-649
- (-2 (|:| |start| (-226)) (|:| |finish| (-226))
- (|:| |grid| (-776)) (|:| |boundaryType| (-569))
- (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226))))))
- (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1165))
- (|:| |tol| (-226))))
- (-5 *2 (-2 (|:| -1331 (-383)) (|:| |explanations| (-1165))))))
+ (-5 *2 (-383)) (-5 *1 (-193)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798))
+ (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569)))))
+ (-4 *4 (-1251 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-904))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165)))))
- (-5 *1 (-903))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-904)) (-5 *4 (-1069))
- (-5 *2
- (-2 (|:| -1331 (-383)) (|:| -3570 (-1165))
- (|:| |explanations| (-649 (-1165)))))
- (-5 *1 (-903)))))
+ (-12 (-5 *3 (-423 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1057))
+ (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1185))
+ (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))))
+(((*1 *1) (-5 *1 (-828))))
+(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3))
- (-4 *3 (-13 (-367) (-1208) (-1008))))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1182)) (-5 *1 (-333)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1071 *2 *3 *4)) (-4 *2 (-1055)) (-4 *3 (-798))
- (-4 *4 (-855)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927))
- (-5 *2 (-1278)) (-5 *1 (-473))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1278)) (-5 *1 (-473))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927))
- (-5 *2 (-1278)) (-5 *1 (-473)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1297 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-173))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1106))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-824 *3)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-855))
- (-4 *4 (-1055))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1290 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1055)))))
-(((*1 *2)
- (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4))
- (-4 *3 (-371 *4))))
- ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-694 *2)) (-5 *4 (-569))
- (-4 *2 (-13 (-310) (-10 -8 (-15 -2508 ((-423 $) $)))))
- (-4 *5 (-1249 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))))
-(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-569))
- (-5 *6
- (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))))
- (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
- (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
- (-5 *1 (-793))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-569))
- (-5 *6
- (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2052 (-383))))
- (-5 *7 (-1 (-1278) (-1273 *5) (-1273 *5) (-383)))
- (-5 *3 (-1273 (-383))) (-5 *5 (-383)) (-5 *2 (-1278))
- (-5 *1 (-793)))))
-(((*1 *2) (-12 (-5 *2 (-1278)) (-5 *1 (-450 *3)) (-4 *3 (-1055)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1216 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798))
- (-4 *5 (-855)) (-4 *6 (-1071 *3 *4 *5))
- (-5 *2 (-2 (|:| -4130 (-649 *6)) (|:| -1717 (-649 *6)))))))
+ (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))))
(((*1 *2) (-12 (-5 *2 (-838 (-569))) (-5 *1 (-539))))
- ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1106)))))
-(((*1 *1 *1 *1) (-5 *1 (-867))))
-(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-1071 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-649 *8))
- (|:| |towers| (-649 (-1033 *5 *6 *7 *8)))))
- (-5 *1 (-1033 *5 *6 *7 *8)) (-5 *3 (-649 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855))
- (-4 *8 (-1071 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-649 *8))
- (|:| |towers| (-649 (-1152 *5 *6 *7 *8)))))
- (-5 *1 (-1152 *5 *6 *7 *8)) (-5 *3 (-649 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1106)) (-5 *2 (-112)))))
+ ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3))
+ (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3))
+ (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-457)) (-5 *1 (-1214 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1208))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-561) (-1044 (-569)))) (-5 *2 (-170 (-319 *4)))
- (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1208) (-435 (-170 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-457) (-1044 (-569)) (-644 (-569))))
- (-5 *2 (-170 *3)) (-5 *1 (-1212 *4 *3))
- (-4 *3 (-13 (-27) (-1208) (-435 *4))))))
-(((*1 *1) (-4 *1 (-353)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1179 *5)))
- (|:| |prim| (-1179 *5))))
- (-5 *1 (-437 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-561) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1179 *3))
- (|:| |pol2| (-1179 *3)) (|:| |prim| (-1179 *3))))
- (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-958 *5)) (-5 *4 (-1183)) (-4 *5 (-13 (-367) (-147)))
- (-5 *2
- (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569))
- (|:| |prim| (-1179 *5))))
- (-5 *1 (-966 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1183)))
- (-4 *5 (-13 (-367) (-147)))
- (-5 *2
- (-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 *5)))
- (|:| |prim| (-1179 *5))))
- (-5 *1 (-966 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1183))) (-5 *5 (-1183))
- (-4 *6 (-13 (-367) (-147)))
- (-5 *2
- (-2 (|:| -1433 (-649 (-569))) (|:| |poly| (-649 (-1179 *6)))
- (|:| |prim| (-1179 *6))))
- (-5 *1 (-966 *6)))))
+ (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043))
+ (-5 *1 (-761)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-569)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550))
- (-4 *3 (-561))))
- ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-569)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550))
- (-4 *3 (-1106))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550))
- (-4 *3 (-1106))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1003 *3)) (-4 *3 (-173)) (-4 *3 (-550))
- (-5 *2 (-412 (-569)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1014 *3)) (-4 *3 (-1044 *2)))))
+ (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-855)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1181 *4))
+ (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1057)) (-4 *4 (-1251 *3)) (-5 *1 (-164 *3 *4 *2))
+ (-4 *2 (-1251 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-435 *3) (-1008))) (-5 *1 (-278 *3 *2))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108))
+ (-4 *4 (-1108)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2))
(-4 *3 (-561))))
((*1 *1)
- (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1183)))
- (-14 *3 (-649 (-1183))) (-4 *4 (-392))))
- ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-1208))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-1278)) (-5 *1 (-1275)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-649 (-1179 *13))) (-5 *3 (-1179 *13))
- (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13))
- (-5 *7 (-649 (-649 (-2 (|:| -4192 (-776)) (|:| |pcoef| *13)))))
- (-5 *8 (-649 (-776))) (-5 *9 (-1273 (-649 (-1179 *10))))
- (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12))
- (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1165)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855))
- (-4 *4 (-1071 *6 *7 *8)) (-5 *2 (-1278))
- (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1077 *6 *7 *8 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-569)) (-5 *4 (-1165)) (-5 *5 (-694 (-226)))
- (-5 *2 (-1041)) (-5 *1 (-752)))))
-((-1306 . 733061) (-1307 . 732862) (-1308 . 732441) (-1309 . 732368)
- (-1310 . 732115) (-1311 . 731401) (-1312 . 730253) (-1313 . 729943)
- (-1314 . 729847) (-1315 . 729770) (-1316 . 729260) (-1317 . 729201)
- (-1318 . 729167) (-1319 . 729060) (-1320 . 728875) (-1321 . 728806)
- (-1322 . 728263) (-1323 . 728211) (-1324 . 728020) (-1325 . 727862)
- (-1326 . 727371) (-1327 . 727044) (-1328 . 726946) (-1329 . 726833)
- (-1330 . 726718) (-1331 . 723419) (-1332 . 723283) (-1333 . 723142)
- (-1334 . 723090) (-1335 . 722966) (-1336 . 722856) (-1337 . 722828)
- (-1338 . 722513) (-1339 . 722312) (-1340 . 722115) (-1341 . 722047)
- (-1342 . 721887) (-1343 . 721783) (-1344 . 707693) (-1345 . 707555)
- (-1346 . 707362) (-1347 . 707012) (-1348 . 706941) (-1349 . 706846)
- (-1350 . 706573) (-1351 . 706351) (-1352 . 706042) (-1353 . 705685)
- (-1354 . 705529) (-1355 . 704890) (-1356 . 704771) (-1357 . 704544)
- (-1358 . 704488) (-1359 . 704284) (-1360 . 704196) (-1361 . 704123)
- (-1362 . 703963) (-1363 . 703711) (-1364 . 703610) (-1365 . 703511)
- (-1366 . 703273) (-1367 . 703051) (-1368 . 698988) (-1369 . 698878)
- (-1370 . 698804) (-1371 . 698734) (-1372 . 698650) (-1373 . 698594)
- (-1374 . 698460) (-1375 . 698366) (-1376 . 698282) (-1377 . 698194)
- (-1378 . 697227) (-1379 . 696667) (-1380 . 696411) (-1381 . 696345)
- (-1382 . 696268) (-1383 . 696129) (-1384 . 696076) (-1385 . 695837)
- (-1386 . 695809) (-1387 . 695663) (-1388 . 695144) (-1389 . 694977)
- (-1390 . 694787) (-1391 . 694719) (-1392 . 694395) (-1393 . 694316)
- (-1394 . 694183) (-1395 . 694097) (-1396 . 693965) (-1397 . 693807)
- (-1398 . 693757) (-1399 . 693628) (-1400 . 693448) (-1401 . 693281)
- (-1402 . 693143) (-1403 . 693057) (-1404 . 692983) (-1405 . 692895)
- (-1406 . 692740) (-1407 . 692613) (-1408 . 688946) (-1409 . 688839)
- (-1410 . 688659) (-1411 . 688319) (-1412 . 688193) (-1413 . 687880)
- (-1414 . 687743) (-1415 . 687256) (-1416 . 686945) (-1417 . 686879)
- (-1418 . 684534) (-1419 . 684451) (-1420 . 684356) (-1421 . 684210)
- (-1422 . 684097) (-1423 . 683936) (-1424 . 683884) (-1425 . 683456)
- (-1426 . 683428) (-1427 . 683341) (-1428 . 683123) (-1429 . 683016)
- (-1430 . 682985) (-1431 . 682775) (-1432 . 682312) (-1433 . 681954)
- (-1434 . 681303) (-1435 . 681207) (-1436 . 681133) (-1437 . 681078)
- (-1438 . 680994) (-1439 . 680898) (-1440 . 680733) (-1441 . 680677)
- (-1442 . 680269) (-1443 . 680150) (-1444 . 680082) (-1445 . 679983)
- (-1446 . 679838) (-1447 . 679695) (-1448 . 679516) (-1449 . 679124)
- (-1450 . 679040) (-1451 . 678748) (-1452 . 678590) (-1453 . 678099)
- (-1454 . 677804) (-1455 . 677688) (-1456 . 677544) (-1457 . 677429)
- (-1458 . 676991) (-1459 . 676855) (** . 673861) (-1461 . 673723)
- (-1462 . 673556) (-1463 . 673497) (-1464 . 673417) (-1465 . 673344)
- (-1466 . 673072) (-1467 . 672935) (-1468 . 672790) (-1469 . 672674)
- (-1470 . 672349) (-1471 . 672300) (-1472 . 671969) (-1473 . 671502)
- (-1474 . 671431) (-1475 . 671336) (-1476 . 671233) (-1477 . 671020)
- (-1478 . 670609) (-1479 . 670532) (-1480 . 670466) (-1481 . 670338)
- (-1482 . 670218) (-1483 . 670153) (-1484 . 670023) (-1485 . 669687)
- (-1486 . 669435) (-1487 . 669288) (-1488 . 669231) (-1489 . 669145)
- (-1490 . 669035) (-1491 . 668879) (-1492 . 668746) (-1493 . 668519)
- (-1494 . 668436) (-1495 . 668354) (-1496 . 668261) (-1497 . 668180)
- (-1498 . 668108) (-1499 . 668010) (-1500 . 667944) (-1501 . 667382)
- (-1502 . 667348) (-1503 . 667054) (-1504 . 666966) (-1505 . 666889)
- (-1506 . 666792) (-1507 . 666695) (-1508 . 666577) (-1509 . 666504)
- (-1510 . 666445) (-1511 . 666311) (-1512 . 665938) (-1513 . 665511)
- (-1514 . 665416) (-1515 . 665303) (-1516 . 665158) (-1517 . 665072)
- (-1518 . 665019) (-1519 . 664950) (-1520 . 664890) (-1521 . 664732)
- (-1522 . 662954) (-1523 . 662855) (-1524 . 662803) (-1525 . 662672)
- (-1526 . 662577) (-1527 . 662258) (-1528 . 662134) (-1529 . 662030)
- (-1530 . 661900) (-1531 . 661827) (-1532 . 661654) (-1533 . 661489)
- (-1534 . 661334) (-1535 . 661239) (-1536 . 661090) (-1537 . 660748)
- (-1538 . 660640) (-1539 . 660371) (-1540 . 660242) (-1541 . 660077)
- (-1542 . 659993) (-1543 . 659814) (-1544 . 659731) (-1545 . 658913)
- (-1546 . 658547) (-1547 . 658492) (-1548 . 658408) (-1549 . 658312)
- (-1550 . 658258) (-1551 . 657598) (-1552 . 657570) (-1553 . 657502)
- (-1554 . 657325) (-1555 . 656807) (-1556 . 656597) (-1557 . 656375)
- (-1558 . 656298) (-1559 . 656006) (-1560 . 655932) (-1561 . 655806)
- (-1562 . 655478) (-1563 . 655380) (-1564 . 655161) (-1565 . 655020)
- (-1566 . 654813) (-1567 . 654695) (-1568 . 654629) (-1569 . 654506)
- (-1570 . 654367) (-1571 . 654026) (-1572 . 653871) (-1573 . 653668)
- (-1574 . 653603) (-1575 . 653445) (-1576 . 653361) (-1577 . 653163)
- (-1578 . 653111) (-1579 . 652943) (-1580 . 652825) (-1581 . 652709)
- (-1582 . 652390) (-1583 . 652338) (-1584 . 652042) (-1585 . 651556)
- (-1586 . 651497) (-1587 . 651437) (-1588 . 651342) (-1589 . 651269)
- (-1590 . 651183) (-1591 . 651046) (-1592 . 650823) (-1593 . 650668)
- (-1594 . 650497) (-1595 . 650127) (-1596 . 649999) (-1597 . 649879)
- (-1598 . 649826) (-1599 . 649745) (-1600 . 649582) (-1601 . 649554)
- (-1602 . 645394) (-1603 . 645328) (-1604 . 644934) (-1605 . 644818)
- (-1606 . 644671) (-1607 . 644475) (-1608 . 644248) (-1609 . 644002)
- (-1610 . 643909) (-1611 . 643706) (-1612 . 643556) (-1613 . 643454)
- (-1614 . 643363) (-1615 . 643066) (-1616 . 642938) (-1617 . 642906)
- (-1618 . 642427) (-1619 . 641131) (-1620 . 641062) (-1621 . 640701)
- (-1622 . 640629) (-1623 . 640349) (-1624 . 640250) (-1625 . 640164)
- (-1626 . 640136) (-1627 . 640041) (-1628 . 639649) (-1629 . 639496)
- (-1630 . 639239) (-1631 . 639168) (-1632 . 639109) (-1633 . 638978)
- (-1634 . 638874) (-1635 . 638654) (-1636 . 638544) (-1637 . 638306)
- (-1638 . 638240) (-1639 . 638080) (-1640 . 638024) (-1641 . 637917)
- (-1642 . 637864) (-1643 . 637811) (-1644 . 637679) (-1645 . 637207)
- (-1646 . 637151) (-1647 . 637041) (-1648 . 636967) (-1649 . 636807)
- (-1650 . 636671) (-1651 . 636542) (-1652 . 636456) (-1653 . 636305)
- (-1654 . 636175) (-1655 . 635859) (-1656 . 635597) (-1657 . 635529)
- (-1658 . 635395) (-1659 . 635248) (-1660 . 635164) (-1661 . 634874)
- (-1662 . 634808) (-1663 . 634700) (-1664 . 634555) (-1665 . 634146)
- (-1666 . 634068) (-1667 . 633484) (-1668 . 633352) (-1669 . 633100)
- (-1670 . 632920) (-1671 . 632789) (-1672 . 632147) (-1673 . 632069)
- (-1674 . 631973) (-1675 . 631681) (-1676 . 631619) (-1677 . 631547)
- (-1678 . 631503) (-1679 . 631474) (-1680 . 631419) (-1681 . 631267)
- (-1682 . 631085) (-1683 . 630975) (-1684 . 630753) (-1685 . 630583)
- (-1686 . 630509) (-1687 . 630306) (-1688 . 630211) (-1689 . 630049)
- (-1690 . 629963) (-1691 . 629517) (-1692 . 629337) (-1693 . 629182)
- (-1694 . 628840) (-1695 . 628741) (-1696 . 628142) (-1697 . 627283)
- (-1698 . 627137) (-1699 . 626979) (-1700 . 626816) (-1701 . 626745)
- (-1702 . 626695) (-1703 . 626629) (-1704 . 626541) (-1705 . 626421)
- (-1706 . 626202) (-1707 . 626092) (-1708 . 625976) (-1709 . 625835)
- (-1710 . 624539) (-1711 . 624381) (-1712 . 624329) (-1713 . 624236)
- (-1714 . 624152) (-1715 . 624022) (-1716 . 623938) (-1717 . 623764)
- (-1718 . 623678) (-1719 . 623592) (-1720 . 623292) (-1721 . 623114)
- (-1722 . 622740) (-1723 . 618733) (-1724 . 618518) (-1725 . 618412)
- (-1726 . 618307) (-1727 . 618227) (-1728 . 617842) (-1729 . 617791)
- (-1730 . 617653) (-1731 . 617587) (-1732 . 617492) (-1733 . 617421)
- (-1734 . 617258) (-1735 . 617192) (-1736 . 616833) (-1737 . 616732)
- (-1738 . 616486) (-1739 . 616153) (-1740 . 615705) (-1741 . 615545)
- (-1742 . 615449) (-1743 . 615274) (-1744 . 615242) (-1745 . 615125)
- (-1746 . 615029) (-1747 . 614958) (-1748 . 614564) (-1749 . 614450)
- (-1750 . 614393) (-1751 . 614295) (-1752 . 614191) (-1753 . 614113)
- (-1754 . 614054) (-1755 . 613956) (-1756 . 613859) (-1757 . 613696)
- (-1758 . 613643) (-1759 . 613615) (-1760 . 613563) (-1761 . 613455)
- (-1762 . 613393) (-1763 . 612586) (-1764 . 612530) (-1765 . 612291)
- (-1766 . 612232) (-1767 . 612127) (-1768 . 612053) (-1769 . 611956)
- (-1770 . 610190) (-1771 . 610048) (-1772 . 609978) (-1773 . 609754)
- (-1774 . 609623) (-1775 . 609510) (-1776 . 609406) (-1777 . 609327)
- (-1778 . 609271) (-1779 . 609164) (-1780 . 609066) (-1781 . 607611)
- (-1782 . 607188) (-1783 . 606978) (-1784 . 606808) (-1785 . 606204)
- (-1786 . 606103) (-1787 . 605979) (-1788 . 605866) (-1789 . 605813)
- (-1790 . 605760) (-1791 . 605535) (-1792 . 601872) (-1793 . 601813)
- (-1794 . 600323) (-1795 . 600020) (-1796 . 599893) (-1797 . 599798)
- (-1798 . 599540) (-1799 . 599325) (-1800 . 599256) (-1801 . 599140)
- (-1802 . 599063) (-1803 . 598789) (-1804 . 598543) (-1805 . 597097)
- (-1806 . 596934) (-1807 . 596862) (-1808 . 596721) (-1809 . 596664)
- (-1810 . 594883) (-1811 . 594797) (-1812 . 594575) (-1813 . 594328)
- (-1814 . 593592) (-1815 . 593540) (-1816 . 593473) (-1817 . 593385)
- (-1818 . 593314) (-1819 . 593262) (-1820 . 593176) (-1821 . 592973)
- (-1822 . 592907) (-1823 . 592758) (-1824 . 592595) (-1825 . 592507)
- (-1826 . 592136) (-1827 . 592084) (-1828 . 592033) (-1829 . 591874)
- (-1830 . 591774) (-1831 . 591117) (-1832 . 591064) (-1833 . 590936)
- (-1834 . 590840) (-1835 . 590753) (-1836 . 590538) (-1837 . 590453)
- (-1838 . 590244) (-1839 . 590160) (-1840 . 589976) (-1841 . 589807)
- (-1842 . 589628) (-1843 . 589576) (-1844 . 589504) (-1845 . 589064)
- (-1846 . 588420) (-1847 . 588392) (-1848 . 588284) (-1849 . 588229)
- (-1850 . 588133) (-1851 . 588074) (-1852 . 587995) (-1853 . 587921)
- (-1854 . 587551) (-1855 . 586379) (-1856 . 586300) (-1857 . 586203)
- (-1858 . 586169) (-1859 . 585742) (-1860 . 585506) (-1861 . 585350)
- (-1862 . 585202) (-1863 . 585087) (-1864 . 583985) (-1865 . 583953)
- (-1866 . 578785) (-1867 . 578427) (-1868 . 578374) (-1869 . 578301)
- (-1870 . 578141) (-1871 . 578055) (-1872 . 577901) (-1873 . 577680)
- (-1874 . 577558) (-1875 . 577353) (-1876 . 577325) (-1877 . 576795)
- (-1878 . 576701) (-1879 . 575564) (-1880 . 575145) (-1881 . 575092)
- (-1882 . 575031) (-1883 . 574959) (-1884 . 574858) (-1885 . 574702)
- (-1886 . 574598) (-1887 . 574171) (-1888 . 574070) (-1889 . 573985)
- (-1890 . 573890) (-1891 . 573759) (-1892 . 573591) (-1893 . 573501)
- (-1894 . 573449) (-1895 . 573074) (-1896 . 572967) (-1897 . 572851)
- (-1898 . 572475) (-1899 . 571997) (-1900 . 571747) (-1901 . 571666)
- (-1902 . 571492) (-1903 . 570626) (-1904 . 570425) (-1905 . 570091)
- (-1906 . 569966) (-1907 . 569657) (-1908 . 568840) (-1909 . 568747)
- (-1910 . 568661) (-1911 . 568579) (-1912 . 568511) (-1913 . 568124)
- (-1914 . 567978) (-1915 . 567904) (-1916 . 567830) (-1917 . 567651)
- (-1918 . 566994) (-1919 . 566892) (-1920 . 566576) (-1921 . 566488)
- (-1922 . 566460) (-1923 . 566304) (-1924 . 565758) (-1925 . 565695)
- (-1926 . 565595) (-1927 . 565499) (-1928 . 565309) (-1929 . 565209)
- (-1930 . 565085) (-1931 . 564933) (-1932 . 564836) (-1933 . 563870)
- (-1934 . 563681) (-1935 . 563579) (-1936 . 563521) (-1937 . 563334)
- (-1938 . 563230) (-1939 . 563164) (-1940 . 563020) (-1941 . 562950)
- (-1942 . 562770) (-1943 . 562586) (-1944 . 562527) (-1945 . 562288)
- (-1946 . 562209) (-1947 . 562021) (-1948 . 561936) (-1949 . 561857)
- (-1950 . 561800) (-1951 . 561635) (-1952 . 561381) (-1953 . 561256)
- (-1954 . 561117) (-1955 . 561034) (-1956 . 560910) (-1957 . 560700)
- (-1958 . 560647) (-1959 . 560576) (-1960 . 560503) (-1961 . 560387)
- (-1962 . 560205) (-1963 . 560120) (-1964 . 559948) (-1965 . 559843)
- (-1966 . 559790) (-1967 . 559707) (-1968 . 559614) (-1969 . 559547)
- (-1970 . 559293) (-1971 . 559186) (-1972 . 558958) (-1973 . 558868)
- (-1974 . 558604) (-1975 . 558437) (-1976 . 558238) (-1977 . 558107)
- (-1978 . 558022) (-1979 . 557845) (-1980 . 557688) (-1981 . 557581)
- (-1982 . 557511) (-1983 . 557413) (-1984 . 557026) (-1985 . 556938)
- (-1986 . 556793) (-1987 . 556640) (-1988 . 556545) (-1989 . 556446)
- (-1990 . 556131) (-1991 . 555975) (-1992 . 555775) (-1993 . 555616)
- (-1994 . 555281) (-1995 . 555064) (-1996 . 554966) (-1997 . 554860)
- (-1998 . 554804) (-1999 . 554723) (-2000 . 554650) (-2001 . 554569)
- (-2002 . 554501) (-2003 . 554347) (-2004 . 554206) (-2005 . 554178)
- (-2006 . 554014) (-2007 . 553535) (-2008 . 553435) (-2009 . 553054)
- (-2010 . 552527) (-2011 . 552189) (-2012 . 552123) (-2013 . 552070)
- (-2014 . 551881) (-2015 . 551733) (-2016 . 551369) (-2017 . 551316)
- (-2018 . 550918) (-2019 . 550818) (-2020 . 550759) (-2021 . 550678)
- (-2022 . 550621) (-2023 . 550492) (-2024 . 550398) (-2025 . 550215)
- (-2026 . 550081) (-2027 . 549958) (-2028 . 549905) (-2029 . 549645)
- (-2030 . 549263) (-2031 . 549072) (-2032 . 548807) (-2033 . 548550)
- (-2034 . 548456) (-2035 . 548399) (-2036 . 548320) (-2037 . 548185)
- (-2038 . 548153) (-2039 . 547981) (-2040 . 547911) (-2041 . 547795)
- (-2042 . 547716) (-2043 . 547664) (-2044 . 547593) (-2045 . 547522)
- (-2046 . 547288) (-2047 . 546935) (-2048 . 546852) (-2049 . 546748)
- (-2050 . 546624) (-2051 . 546081) (-2052 . 546025) (-2053 . 545895)
- (-2054 . 545812) (-2055 . 545750) (-2056 . 545239) (-2057 . 545123)
- (-2058 . 544845) (-2059 . 544715) (-2060 . 544628) (-2061 . 544245)
- (-2062 . 544113) (-2063 . 543735) (-2064 . 543433) (-2065 . 543317)
- (-2066 . 543173) (-2067 . 543092) (-2068 . 542128) (-2069 . 542060)
- (-2070 . 541961) (-2071 . 541906) (-2072 . 541849) (-2073 . 541754)
- (-2074 . 541704) (-2075 . 541562) (-2076 . 541513) (-2077 . 541385)
- (-2078 . 540938) (-2079 . 540840) (-2080 . 540701) (-2081 . 540631)
- (-2082 . 539997) (-2083 . 539902) (-2084 . 539676) (-2085 . 539513)
- (-2086 . 539439) (-2087 . 539267) (-2088 . 539171) (-2089 . 538953)
- (-2090 . 538800) (-2091 . 538425) (-2092 . 538359) (-2093 . 538271)
- (-2094 . 538243) (-2095 . 538095) (-2096 . 537860) (-2097 . 537783)
- (-2098 . 537709) (-2099 . 537378) (-2100 . 537281) (-2101 . 536722)
- (-2102 . 536580) (-2103 . 536365) (-2104 . 536294) (-2105 . 536210)
- (-2106 . 536055) (-2107 . 536004) (-2108 . 535808) (-2109 . 535057)
- (-2110 . 534530) (-2111 . 534450) (-2112 . 533891) (-2113 . 533734)
- (-2114 . 533633) (-2115 . 532515) (-2116 . 532350) (-2117 . 532185)
- (-2118 . 532135) (-2119 . 532020) (-2120 . 531516) (-2121 . 531438)
- (-2122 . 531385) (-2123 . 531291) (-2124 . 531214) (-2125 . 531141)
- (-2126 . 530603) (-2127 . 530517) (-2128 . 529521) (-2129 . 529425)
- (-2130 . 529131) (-2131 . 529046) (-2132 . 528993) (-2133 . 528781)
- (-2134 . 528615) (-2135 . 528556) (-2136 . 528482) (-2137 . 528107)
- (-2138 . 528034) (-2139 . 527852) (-2140 . 527116) (-2141 . 527014)
- (-2142 . 526944) (-2143 . 526888) (-2144 . 526748) (-2145 . 525720)
- (-2146 . 525599) (-2147 . 525351) (-2148 . 525244) (-2149 . 525138)
- (-2150 . 524811) (-2151 . 524759) (-2152 . 524499) (-2153 . 524109)
- (-2154 . 523920) (-2155 . 523822) (-2156 . 523770) (-2157 . 523560)
- (-2158 . 523495) (-2159 . 523466) (-2160 . 523354) (-2161 . 523121)
- (-2162 . 522962) (-2163 . 522447) (-2164 . 521107) (-2165 . 520872)
- (-2166 . 520625) (-2167 . 520294) (-2168 . 520228) (-2169 . 520110)
- (-2170 . 520027) (-2171 . 519956) (-2172 . 519862) (-2173 . 519807)
- (-2174 . 519712) (-2175 . 519663) (-2176 . 519452) (-2177 . 519354)
- (-2178 . 519274) (-2179 . 518707) (-2180 . 518372) (-2181 . 518275)
- (-2182 . 518247) (-2183 . 518083) (-2184 . 517741) (-2185 . 517429)
- (-2186 . 517285) (-2187 . 517257) (-2188 . 517083) (-2189 . 516946)
- (-2190 . 516890) (-2191 . 516733) (-2192 . 516611) (-2193 . 516388)
- (-2194 . 516240) (-2195 . 516168) (-2196 . 516097) (-2197 . 515996)
- (-2198 . 515612) (-2199 . 515285) (-2200 . 515197) (-2201 . 515096)
- (-2202 . 514904) (-2203 . 514804) (-2204 . 514608) (-2205 . 514574)
- (-2206 . 514293) (-2207 . 514156) (-2208 . 513749) (-2209 . 513490)
- (-2210 . 513430) (-2211 . 511700) (-2212 . 511627) (-2213 . 511516)
- (-2214 . 510314) (-2215 . 510282) (-2216 . 510167) (-2217 . 509816)
- (-2218 . 509709) (-2219 . 509543) (-2220 . 509343) (-2221 . 509134)
- (-2222 . 508950) (-2223 . 508780) (-2224 . 508706) (-2225 . 508298)
- (-2226 . 508047) (-2227 . 507910) (-2228 . 507857) (-2229 . 507787)
- (-2230 . 507759) (-2231 . 507447) (-2232 . 507369) (-2233 . 507242)
- (-2234 . 507187) (-2235 . 507132) (-2236 . 507026) (-2237 . 506530)
- (-2238 . 506250) (-2239 . 506194) (-2240 . 506028) (-2241 . 505930)
- (-2242 . 505676) (-2243 . 505566) (-2244 . 504964) (-2245 . 504898)
- (-2246 . 504697) (-2247 . 504615) (-2248 . 504390) (-2249 . 504248)
- (-2250 . 503361) (-2251 . 503043) (-2252 . 502849) (-2253 . 502594)
- (-2254 . 502383) (-2255 . 502326) (-2256 . 501759) (-2257 . 501707)
- (-2258 . 501591) (-2259 . 501260) (-2260 . 501165) (-2261 . 500985)
- (-2262 . 500957) (-2263 . 500672) (-2264 . 500619) (-2265 . 500528)
- (-2266 . 500404) (-2267 . 500246) (-2268 . 500103) (-2269 . 500075)
- (-2270 . 499894) (-2271 . 499619) (-2272 . 499153) (-2273 . 499076)
- (-2274 . 498978) (-2275 . 498760) (-2276 . 498658) (-2277 . 498229)
- (-2278 . 498076) (-2279 . 497906) (-2280 . 497760) (-2281 . 497708)
- (-2282 . 497287) (-2283 . 497216) (-2284 . 497006) (-2285 . 496954)
- (-2286 . 496708) (-2287 . 496379) (-2288 . 496275) (-2289 . 496141)
- (-2290 . 496068) (-2291 . 495988) (-2292 . 495923) (-2293 . 495854)
- (-2294 . 495724) (-2295 . 495267) (-2296 . 494876) (-2297 . 494715)
- (-2298 . 494597) (-2299 . 494515) (-2300 . 494395) (-2301 . 494309)
- (-2302 . 494061) (-2303 . 493640) (-2304 . 493278) (-2305 . 493153)
- (-2306 . 493065) (-2307 . 491488) (-2308 . 491112) (-2309 . 491009)
- (-2310 . 490921) (-2311 . 490847) (-2312 . 490732) (-2313 . 490638)
- (-2314 . 490476) (-2315 . 490121) (-2316 . 489998) (-2317 . 489840)
- (-2318 . 489495) (-2319 . 489384) (-2320 . 489287) (-2321 . 488879)
- (-2322 . 488742) (-2323 . 488676) (-2324 . 488585) (-2325 . 488426)
- (-2326 . 488398) (-2327 . 488264) (-2328 . 488151) (-2329 . 488073)
- (-2330 . 487462) (-2331 . 487389) (-2332 . 487286) (-2333 . 487022)
- (-2334 . 486969) (-2335 . 486726) (-2336 . 486670) (-2337 . 486219)
- (-2338 . 486067) (-2339 . 485687) (-2340 . 485574) (-2341 . 485437)
- (-2342 . 485271) (-2343 . 483973) (-2344 . 483745) (-2345 . 483163)
- (-2346 . 483068) (-2347 . 482856) (-2348 . 482773) (-2349 . 482582)
- (-2350 . 482484) (-2351 . 482402) (-2352 . 482080) (-2353 . 481997)
- (-2354 . 481811) (-2355 . 481698) (-2356 . 481608) (-2357 . 481417)
- (-2358 . 481380) (-2359 . 481173) (-2360 . 481027) (-2361 . 480975)
- (-2362 . 480898) (-2363 . 480846) (-2364 . 480794) (-2365 . 480741)
- (-2366 . 480644) (-2367 . 480541) (-2368 . 480117) (-2369 . 480015)
- (-2370 . 479913) (-2371 . 479484) (-2372 . 479370) (-2373 . 479273)
- (-2374 . 478610) (-2375 . 478533) (-2376 . 478451) (-2377 . 478378)
- (-2378 . 478274) (-2379 . 478215) (-2380 . 477967) (-2381 . 477864)
- (-2382 . 477505) (-2383 . 477297) (-2384 . 477190) (-2385 . 476657)
- (-2386 . 476583) (-2387 . 476510) (-2388 . 476424) (-2389 . 476276)
- (-2390 . 475980) (-2391 . 475472) (-2392 . 475284) (-2393 . 475204)
- (-2394 . 475041) (-2395 . 474944) (-2396 . 474878) (-2397 . 474801)
- (-2398 . 474616) (-2399 . 474550) (-2400 . 474501) (-2401 . 474418)
- (-2402 . 473420) (-2403 . 473089) (-2404 . 473021) (-2405 . 472160)
- (-2406 . 472108) (-2407 . 472027) (-2408 . 471902) (-2409 . 471794)
- (-2410 . 471450) (-2411 . 471312) (-2412 . 470866) (-2413 . 470721)
- (-2414 . 470565) (-2415 . 470478) (-2416 . 470269) (-2417 . 470170)
- (-2418 . 470111) (-2419 . 469974) (-2420 . 469906) (-2421 . 469679)
- (-2422 . 469464) (-2423 . 469250) (-2424 . 469162) (-2425 . 469010)
- (-2426 . 468643) (-2427 . 467879) (-2428 . 467446) (-2429 . 467267)
- (-2430 . 467239) (-2431 . 467208) (-2432 . 467048) (-2433 . 466787)
- (-2434 . 466692) (-2435 . 466558) (-2436 . 466527) (-2437 . 466444)
- (-2438 . 466266) (-2439 . 466136) (-2440 . 466053) (-2441 . 465423)
- (-2442 . 465370) (-2443 . 465318) (-2444 . 465197) (-2445 . 464910)
- (-2446 . 464758) (-2447 . 464621) (-2448 . 464492) (-2449 . 464437)
- (-2450 . 464313) (-2451 . 464198) (-2452 . 463972) (-2453 . 463920)
- (-2454 . 463346) (-2455 . 463240) (-2456 . 462736) (-2457 . 462312)
- (-2458 . 461788) (-2459 . 461645) (-2460 . 461536) (-2461 . 461467)
- (-2462 . 460993) (-2463 . 460831) (-2464 . 460778) (-2465 . 460632)
- (-2466 . 460559) (-2467 . 460446) (-2468 . 460288) (-2469 . 460220)
- (-2470 . 460192) (-2471 . 460048) (-2472 . 460019) (-2473 . 459917)
- (-2474 . 459828) (-2475 . 459742) (-2476 . 459663) (-2477 . 459592)
- (-2478 . 459492) (-2479 . 459344) (-2480 . 458914) (-2481 . 458877)
- (-2482 . 458013) (-2483 . 457863) (-2484 . 457789) (-2485 . 457723)
- (-2486 . 457664) (-2487 . 457560) (-2488 . 450617) (-2489 . 450514)
- (-2490 . 450222) (-2491 . 450162) (-2492 . 449994) (-2493 . 449115)
- (-2494 . 449081) (-2495 . 448985) (-2496 . 448879) (-2497 . 448817)
- (-2498 . 448690) (-2499 . 448349) (-2500 . 448240) (-2501 . 448156)
- (-2502 . 447830) (-2503 . 447675) (-2504 . 447619) (-2505 . 447520)
- (-2506 . 447289) (-2507 . 447192) (-2508 . 445919) (-2509 . 445867)
- (-2510 . 445795) (-2511 . 445656) (-2512 . 445538) (-2513 . 445439)
- (-2514 . 445333) (-2515 . 445189) (-2516 . 445061) (-2517 . 444968)
- (-2518 . 444652) (-2519 . 444079) (-2520 . 443920) (-2521 . 443609)
- (-2522 . 443529) (-2523 . 443449) (-2524 . 443380) (-2525 . 443299)
- (-2526 . 443243) (-2527 . 442968) (-2528 . 442843) (-2529 . 442743)
- (-2530 . 442688) (-2531 . 441848) (-2532 . 441765) (-2533 . 441604)
- (-2534 . 441462) (-2535 . 441409) (-2536 . 441006) (-2537 . 440803)
- (-2538 . 440624) (-2539 . 440450) (-2540 . 440287) (-2541 . 439894)
- (-2542 . 439836) (-2543 . 439586) (-2544 . 439508) (-2545 . 439428)
- (-2546 . 439355) (-2547 . 439287) (-2548 . 439155) (-2549 . 439103)
- (-2550 . 438996) (-2551 . 438941) (-2552 . 437598) (-2553 . 437466)
- (-2554 . 437378) (-2555 . 437116) (-2556 . 436910) (-2557 . 436881)
- (-2558 . 436786) (-2559 . 436594) (-2560 . 436542) (-2561 . 436485)
- (-2562 . 436211) (-2563 . 435909) (-2564 . 435838) (-2565 . 435786)
- (-2566 . 435443) (-2567 . 435387) (-2568 . 435333) (-2569 . 435264)
- (-2570 . 435127) (-2571 . 435049) (-2572 . 434771) (-2573 . 434631)
- (-2574 . 434560) (-2575 . 434287) (-2576 . 434129) (-2577 . 434100)
- (-2578 . 433902) (-2579 . 433787) (-2580 . 433657) (-2581 . 433495)
- (-2582 . 433329) (-2583 . 433212) (-2584 . 433080) (-2585 . 432885)
- (-2586 . 432785) (-2587 . 432732) (-2588 . 432579) (-2589 . 432317)
- (-2590 . 432159) (-2591 . 431961) (-2592 . 431865) (-2593 . 431813)
- (-2594 . 431559) (-2595 . 431477) (-2596 . 430995) (-2597 . 430644)
- (-2598 . 430394) (-2599 . 430279) (-2600 . 429550) (-2601 . 429435)
- (-2602 . 429195) (-2603 . 428778) (-2604 . 428741) (-2605 . 428710)
- (-2606 . 428661) (-2607 . 428515) (-2608 . 428138) (-2609 . 427409)
- (-2610 . 427307) (-2611 . 427255) (-2612 . 427147) (-2613 . 426933)
- (-2614 . 426821) (-2615 . 426742) (-2616 . 426524) (-2617 . 426430)
- (-2618 . 426402) (-2619 . 426335) (-2620 . 426307) (-2621 . 426206)
- (-2622 . 426068) (-2623 . 425781) (-2624 . 425105) (-2625 . 425028)
- (-2626 . 424826) (-2627 . 424753) (-2628 . 424460) (-2629 . 424342)
- (-2630 . 424096) (-2631 . 424012) (-2632 . 423448) (-2633 . 422840)
- (-2634 . 422697) (-2635 . 422200) (-2636 . 422020) (-2637 . 421967)
- (-2638 . 421764) (-2639 . 421640) (-2640 . 421554) (-2641 . 421344)
- (-2642 . 421117) (-2643 . 419261) (-2644 . 419137) (-2645 . 418573)
- (-2646 . 418472) (-2647 . 418300) (-2648 . 417948) (-2649 . 417630)
- (-2650 . 417568) (-2651 . 417453) (-2652 . 417111) (-2653 . 417058)
- (-2654 . 416958) (-2655 . 416896) (-2656 . 416795) (-2657 . 416681)
- (-2658 . 416597) (-2659 . 416033) (-2660 . 414807) (-2661 . 414635)
- (-2662 . 414475) (-2663 . 414306) (-2664 . 414211) (-2665 . 413323)
- (-2666 . 413114) (-2667 . 413059) (-2668 . 412901) (-2669 . 412714)
- (-2670 . 412644) (-2671 . 412126) (-2672 . 411941) (-2673 . 411267)
- (-2674 . 411095) (-2675 . 410938) (-2676 . 410884) (-2677 . 410826)
- (-2678 . 410754) (-2679 . 410563) (-2680 . 410422) (-2681 . 410334)
- (-2682 . 410215) (-2683 . 410138) (-2684 . 410067) (-2685 . 409996)
- (-2686 . 409856) (-2687 . 409182) (-2688 . 409010) (-2689 . 408983)
- (-2690 . 408914) (-2691 . 408615) (-2692 . 408485) (-2693 . 408433)
- (-2694 . 408293) (-2695 . 408114) (-2696 . 407864) (-2697 . 407732)
- (-2698 . 407679) (-2699 . 406942) (-2700 . 406749) (-2701 . 406551)
- (-2702 . 406417) (-2703 . 406251) (-2704 . 406173) (-2705 . 406145)
- (-2706 . 406032) (-2707 . 404248) (-2708 . 403897) (-2709 . 403393)
- (-2710 . 402831) (-2711 . 402705) (-2712 . 402597) (-2713 . 402503)
- (-2714 . 402143) (-2715 . 401953) (-2716 . 401884) (-2717 . 401611)
- (-2718 . 401554) (-2719 . 401431) (-2720 . 401379) (-2721 . 400817)
- (-2722 . 400525) (-2723 . 400407) (-2724 . 400305) (-2725 . 400226)
- (-2726 . 399976) (-2727 . 399848) (-2728 . 399795) (-2729 . 399652)
- (-2730 . 399484) (-2731 . 399413) (-2732 . 398851) (-2733 . 398755)
- (-2734 . 398522) (-2735 . 398444) (-2736 . 398192) (-2737 . 397706)
- (-2738 . 397654) (-2739 . 397557) (-2740 . 397529) (-2741 . 397456)
- (-2742 . 397111) (-2743 . 396968) (-2744 . 396293) (-2745 . 396206)
- (-2746 . 396153) (-2747 . 395935) (-2748 . 395732) (-2749 . 395608)
- (-2750 . 395514) (-2751 . 395433) (-2752 . 395312) (-2753 . 394702)
- (-2754 . 394616) (-2755 . 394515) (-2756 . 393840) (-2757 . 393614)
- (-2758 . 393531) (-2759 . 393165) (-2760 . 393092) (-2761 . 392893)
- (-2762 . 392741) (-2763 . 392642) (-2764 . 392590) (-2765 . 392363)
- (-2766 . 392295) (-2767 . 392202) (-2768 . 391780) (-2769 . 391105)
- (-2770 . 391010) (-2771 . 390981) (-2772 . 390921) (-2773 . 390579)
- (-2774 . 390407) (-2775 . 390321) (-2776 . 390221) (-2777 . 390144)
- (-2778 . 389812) (-2779 . 389735) (-2780 . 389284) (-2781 . 388721)
- (-2782 . 388598) (-2783 . 388525) (-2784 . 388145) (-2785 . 387912)
- (-12 . 387740) (-2787 . 387687) (-2788 . 387305) (-2789 . 387250)
- (-2790 . 387179) (-2791 . 387120) (-2792 . 386992) (-2793 . 386923)
- (-2794 . 386438) (-2795 . 386243) (-2796 . 385648) (-2797 . 385501)
- (-2798 . 385323) (-2799 . 385078) (-2800 . 384963) (-2801 . 384897)
- (-2802 . 384756) (-2803 . 384668) (-2804 . 384525) (-2805 . 384240)
- (-2806 . 384115) (-2807 . 383981) (-2808 . 383417) (-2809 . 383344)
- (-2810 . 383212) (-2811 . 383069) (-2812 . 382718) (-2813 . 382650)
- (-2814 . 382443) (-2815 . 382349) (-2816 . 382182) (-2817 . 381968)
- (-2818 . 381916) (-2819 . 381646) (-2820 . 381488) (-2821 . 381422)
- (-2822 . 381323) (-2823 . 380879) (-2824 . 380765) (-2825 . 380632)
- (-2826 . 380580) (-2827 . 380435) (-2828 . 380330) (-2829 . 380105)
- (-2830 . 379273) (-2831 . 379068) (-2832 . 378916) (-2833 . 378705)
- (-2834 . 378651) (-2835 . 378584) (-2836 . 378073) (-2837 . 377775)
- (-2838 . 377653) (-2839 . 377547) (-2840 . 377347) (-2841 . 377259)
- (-2842 . 377178) (-2843 . 376883) (-2844 . 376827) (-2845 . 376775)
- (-2846 . 376705) (-2847 . 376652) (-2848 . 376509) (-2849 . 376457)
- (-2850 . 376200) (-2851 . 376063) (-2852 . 375860) (-2853 . 375763)
- (-2854 . 375735) (-2855 . 375591) (-2856 . 375525) (-2857 . 375365)
- (-2858 . 375264) (-2859 . 375145) (-2860 . 374728) (-2861 . 374700)
- (-2862 . 374627) (-2863 . 374578) (-2864 . 374497) (-2865 . 373419)
- (-2866 . 373361) (-2867 . 373282) (-2868 . 373215) (-2869 . 373146)
- (-2870 . 372445) (-2871 . 372350) (-2872 . 371983) (-2873 . 371494)
- (-2874 . 371366) (-2875 . 371223) (-2876 . 371155) (-2877 . 371127)
- (-2878 . 371064) (-2879 . 370822) (-2880 . 370603) (-2881 . 370328)
- (-2882 . 369888) (-2883 . 369836) (* . 365569) (-2885 . 365359)
- (-2886 . 365259) (-2887 . 365160) (-2888 . 363944) (-2889 . 363737)
- (-2890 . 363297) (-2891 . 363150) (-2892 . 360923) (-2893 . 360754)
- (-2894 . 360627) (-2895 . 360509) (-2896 . 360330) (-2897 . 360259)
- (-2898 . 359937) (-2899 . 359668) (-2900 . 359540) (-2901 . 359417)
- (-2902 . 358738) (-2903 . 358599) (-2904 . 358516) (-2905 . 358451)
- (-2906 . 358388) (-2907 . 357190) (-2908 . 357086) (-2909 . 356999)
- (-2910 . 356648) (-2911 . 356524) (-2912 . 347074) (-2913 . 346829)
- (-2914 . 346730) (-2915 . 346646) (-2916 . 346457) (-2917 . 346342)
- (-2918 . 346227) (-2919 . 345955) (-2920 . 345841) (-2921 . 345757)
- (-2922 . 345630) (-2923 . 345559) (-2924 . 345471) (-2925 . 345443)
- (-2926 . 345391) (-2927 . 345272) (-2928 . 345169) (-2929 . 344869)
- (-2930 . 344728) (-2931 . 344496) (-2932 . 344426) (-2933 . 343356)
- (-2934 . 343303) (-2935 . 343079) (-2936 . 342966) (-2937 . 342892)
- (-2938 . 342807) (-2939 . 342740) (-2940 . 342225) (-2941 . 341928)
- (-2942 . 341697) (-2943 . 341631) (-2944 . 341553) (-2945 . 341487)
- (-2946 . 341334) (-2947 . 341095) (-2948 . 340950) (-2949 . 340831)
- (-2950 . 340526) (-2951 . 340410) (-2952 . 340300) (-2953 . 340250)
- (-2954 . 340163) (-2955 . 340107) (-2956 . 340055) (-2957 . 339970)
- (-2958 . 339868) (-2959 . 339587) (-2960 . 338395) (-2961 . 338019)
- (-2962 . 337934) (-2963 . 337861) (-2964 . 337702) (-2965 . 337592)
- (-2966 . 337564) (-2967 . 337421) (-2968 . 337150) (-2969 . 337097)
- (-2970 . 336981) (-2971 . 336915) (-2972 . 336647) (-2973 . 336552)
- (-2974 . 336415) (-2975 . 336079) (-2976 . 335992) (-2977 . 335869)
- (-2978 . 335788) (-2979 . 335532) (-2980 . 334946) (-2981 . 334872)
- (-2982 . 334733) (-2983 . 334705) (-2984 . 334561) (-2985 . 334506)
- (-2986 . 334456) (-2987 . 334278) (-2988 . 334094) (-2989 . 333706)
- (-2990 . 333638) (-2991 . 333586) (-2992 . 333512) (-2993 . 333248)
- (-2994 . 333034) (-2995 . 332931) (-2996 . 332808) (-2997 . 332756)
- (-2998 . 332546) (-2999 . 332159) (-3000 . 332059) (-3001 . 331949)
- (-3002 . 331684) (-3003 . 331564) (-3004 . 331460) (-3005 . 331111)
- (-3006 . 330723) (-3007 . 330660) (-3008 . 330469) (-3009 . 329283)
- (-3010 . 329223) (-3011 . 329140) (-3012 . 328932) (-3013 . 328804)
- (-3014 . 327934) (-3015 . 327906) (-3016 . 327797) (-3017 . 327769)
- (-3018 . 327714) (-3019 . 327485) (-3020 . 327252) (-3021 . 326070)
- (-3022 . 325988) (-3023 . 325830) (-3024 . 325740) (-3025 . 325668)
- (-3026 . 325426) (-3027 . 325275) (-3028 . 325210) (-3029 . 324866)
- (-3030 . 324767) (-3031 . 324665) (-3032 . 322458) (-3033 . 322403)
- (-3034 . 322273) (-3035 . 322207) (-3036 . 322136) (-3037 . 322012)
- (-3038 . 321908) (-3039 . 321797) (-3040 . 321567) (-3041 . 321441)
- (-3042 . 321382) (-3043 . 321332) (-3044 . 321194) (-3045 . 321098)
- (-3046 . 321021) (-3047 . 320952) (-3048 . 320646) (-9 . 320618)
- (-3050 . 320246) (-3051 . 320035) (-3052 . 319968) (-3053 . 319915)
- (-3054 . 319615) (-3055 . 319486) (-3056 . 319368) (-3057 . 319284)
- (-3058 . 319201) (-3059 . 319034) (-3060 . 318830) (-3061 . 318742)
- (-8 . 318714) (-3063 . 318184) (-3064 . 318100) (-3065 . 318071)
- (-3066 . 317998) (-3067 . 316906) (-3068 . 316626) (-3069 . 316401)
- (-3070 . 315915) (-7 . 315887) (-3072 . 315809) (-3073 . 315684)
- (-3074 . 315582) (-3075 . 315487) (-3076 . 314422) (-3077 . 314286)
- (-3078 . 314163) (-3079 . 313945) (-3080 . 313772) (-3081 . 313523)
- (-3082 . 313378) (-3083 . 312643) (-3084 . 312373) (-3085 . 312339)
- (-3086 . 312240) (-3087 . 312209) (-3088 . 311533) (-3089 . 311412)
- (-3090 . 311356) (-3091 . 311259) (-3092 . 311176) (-3093 . 311080)
- (-3094 . 311028) (-3095 . 310975) (-3096 . 310868) (-3097 . 310725)
- (-3098 . 310667) (-3099 . 310530) (-3100 . 310423) (-3101 . 310342)
- (-3102 . 309526) (-3103 . 309467) (-3104 . 309408) (-3105 . 309380)
- (-3106 . 309014) (-3107 . 308875) (-3108 . 308775) (-3109 . 308725)
- (-3110 . 306469) (-3111 . 306360) (-3112 . 306295) (-3113 . 306198)
- (-3114 . 306124) (-3115 . 306031) (-3116 . 305888) (-3117 . 305773)
- (-3118 . 305678) (-3119 . 305559) (-3120 . 305340) (-3121 . 305159)
- (-3122 . 304930) (-3123 . 304830) (-3124 . 304689) (-3125 . 304527)
- (-3126 . 304408) (-3127 . 304356) (-3128 . 304305) (-3129 . 304175)
- (-3130 . 304016) (-3131 . 303910) (-3132 . 303814) (-3133 . 303673)
- (-3134 . 303599) (-3135 . 303522) (-3136 . 303096) (-3137 . 302650)
- (-3138 . 302471) (-3139 . 302344) (-3140 . 301911) (-3141 . 301718)
- (-3142 . 301431) (-3143 . 301381) (-3144 . 300201) (-3145 . 300066)
- (-3146 . 299398) (-3147 . 299230) (-3148 . 293892) (-3149 . 293774)
- (-3150 . 293707) (-3151 . 293489) (-3152 . 293336) (-3153 . 293050)
- (-3154 . 292666) (-3155 . 292613) (-3156 . 292518) (-3157 . 292300)
- (-3158 . 292142) (-3159 . 292041) (-3160 . 291989) (-3161 . 291794)
- (-3162 . 291652) (-3163 . 291527) (-3164 . 291421) (-3165 . 291109)
- (-3166 . 291042) (-3167 . 290638) (-3168 . 290572) (-3169 . 290419)
- (-3170 . 290385) (-3171 . 290288) (-3172 . 290169) (-3173 . 289891)
- (-3174 . 289862) (-3175 . 289632) (-3176 . 289412) (-3177 . 289352)
- (-3178 . 289219) (-3179 . 289029) (-3180 . 288773) (-3181 . 288679)
- (-3182 . 288019) (-3183 . 287709) (-3184 . 287654) (-3185 . 287602)
- (-3186 . 287323) (-3187 . 287221) (-3188 . 287154) (-3189 . 287091)
- (-3190 . 286973) (-3191 . 286599) (-3192 . 286112) (-3193 . 286005)
- (-3194 . 285863) (-3195 . 285718) (-3196 . 285480) (-3197 . 285431)
- (-3198 . 285375) (-3199 . 285314) (-3200 . 285141) (-3201 . 285017)
- (-3202 . 284603) (-3203 . 283422) (-3204 . 283181) (-3205 . 283130)
- (-3206 . 283027) (-3207 . 282867) (-3208 . 282779) (-3209 . 282670)
- (-3210 . 282611) (-3211 . 282537) (-3212 . 282449) (-3213 . 282348)
- (-3214 . 282253) (-3215 . 282134) (-3216 . 282071) (-3217 . 281970)
- (-3218 . 281665) (-3219 . 281606) (-3220 . 281463) (-3221 . 281217)
- (-3222 . 281098) (-3223 . 280988) (-3224 . 280916) (-3225 . 280843)
- (-3226 . 280815) (-3227 . 280279) (-3228 . 280093) (-3229 . 280015)
- (-3230 . 279921) (-3231 . 279847) (-3232 . 279767) (-3233 . 279637)
- (-3234 . 279391) (-3235 . 279139) (-3236 . 279087) (-3237 . 278919)
- (-3238 . 278640) (-3239 . 278521) (-3240 . 278110) (-3241 . 278057)
- (-3242 . 277789) (-3243 . 277613) (-3244 . 277509) (-3245 . 277427)
- (-3246 . 277375) (-3247 . 277211) (-3248 . 277148) (-3249 . 276930)
- (-3250 . 276786) (-3251 . 276673) (-3252 . 276252) (-3253 . 276034)
- (-3254 . 275863) (-3255 . 275417) (-3256 . 275285) (-3257 . 275104)
- (-3258 . 275052) (-3259 . 274930) (-3260 . 274790) (-3261 . 274731)
- (-3262 . 274669) (-3263 . 274473) (-3264 . 274315) (-3265 . 274184)
- (-3266 . 273989) (-3267 . 273836) (-3268 . 273776) (-3269 . 272348)
- (-3270 . 272132) (-3271 . 272017) (-3272 . 271779) (-3273 . 271666)
- (-3274 . 271589) (-3275 . 271163) (-3276 . 271068) (-3277 . 270996)
- (-3278 . 270929) (-3279 . 270743) (-3280 . 270709) (-3281 . 270071)
- (-3282 . 269864) (-3283 . 269151) (-3284 . 269048) (-3285 . 268955)
- (-3286 . 268858) (-3287 . 268731) (-3288 . 268429) (-3289 . 268355)
- (-3290 . 268256) (-3291 . 268192) (-3292 . 267596) (-3293 . 267518)
- (-3294 . 267408) (-3295 . 267263) (-3296 . 267185) (-3297 . 267083)
- (-3298 . 266945) (-3299 . 266848) (-3300 . 266795) (-3301 . 266742)
- (-3302 . 265878) (-3303 . 265792) (-3304 . 265169) (-3305 . 265111)
- (-3306 . 264852) (-3307 . 264795) (-3308 . 264499) (-3309 . 264448)
- (-3310 . 263845) (-3311 . 263700) (-3312 . 263648) (-3313 . 263564)
- (-3314 . 263485) (-3315 . 263416) (-3316 . 263327) (-3317 . 260486)
- (-3318 . 260412) (-3319 . 260239) (-3320 . 260138) (-3321 . 260015)
- (-3322 . 259920) (-3323 . 259871) (-3324 . 259736) (-3325 . 259541)
- (-3326 . 259255) (-3327 . 259152) (-3328 . 258879) (-3329 . 258736)
- (-3330 . 258648) (-3331 . 258589) (-3332 . 258480) (-3333 . 258276)
- (-3334 . 258223) (-3335 . 257971) (-3336 . 257883) (-3337 . 257855)
- (-3338 . 257761) (-3339 . 257711) (-3340 . 257633) (-3341 . 257088)
- (-3342 . 257033) (-3343 . 256723) (-3344 . 256661) (-3345 . 256385)
- (-3346 . 256179) (-3347 . 255939) (-3348 . 255859) (-3349 . 255717)
- (-3350 . 255665) (-3351 . 255371) (-3352 . 255254) (-3353 . 255201)
- (-3354 . 255058) (-3355 . 254627) (-3356 . 254505) (-3357 . 254392)
- (-3358 . 253841) (-3359 . 253745) (-3360 . 253651) (-3361 . 253573)
- (-3362 . 253499) (-3363 . 253417) (-3364 . 253266) (-3365 . 253058)
- (-3366 . 252953) (-3367 . 252838) (-3368 . 252786) (-3369 . 252607)
- (-3370 . 252515) (-3371 . 252393) (-3372 . 252121) (-3373 . 251997)
- (-3374 . 251815) (-3375 . 251650) (-3376 . 251591) (-3377 . 251313)
- (-3378 . 251252) (-3379 . 251137) (-3380 . 250822) (-3381 . 250428)
- (-3382 . 250189) (-3383 . 250115) (-3384 . 250062) (-3385 . 249981)
- (-3386 . 249722) (-3387 . 249452) (-3388 . 249299) (-3389 . 248774)
- (-3390 . 248177) (-3391 . 248085) (-3392 . 247947) (-3393 . 247809)
- (-3394 . 247691) (-3395 . 247516) (-3396 . 247335) (-3397 . 246857)
- (-3398 . 246652) (-3399 . 246494) (-3400 . 245850) (-3401 . 245643)
- (-3402 . 245546) (-3403 . 244924) (-3404 . 244786) (-3405 . 244603)
- (-3406 . 244307) (-3407 . 244194) (-3408 . 244098) (-3409 . 244021)
- (-3410 . 243964) (-3411 . 243881) (-3412 . 243763) (-3413 . 243642)
- (-3414 . 243585) (-3415 . 243508) (-3416 . 243406) (-3417 . 243095)
- (-3418 . 243035) (-3419 . 242942) (-3420 . 242883) (-3421 . 242481)
- (-3422 . 242412) (-3423 . 242345) (-3424 . 242222) (-3425 . 241769)
- (-3426 . 241692) (-3427 . 241383) (-3428 . 240630) (-3429 . 240552)
- (-3430 . 240479) (-3431 . 240338) (-3432 . 240285) (-3433 . 240211)
- (-3434 . 240179) (-3435 . 240098) (-3436 . 239983) (-3437 . 239906)
- (-3438 . 239666) (-3439 . 239468) (-3440 . 239178) (-3441 . 238958)
- (-3442 . 238909) (-3443 . 238797) (-3444 . 238669) (-3445 . 238496)
- (-3446 . 238412) (-3447 . 238120) (-3448 . 237729) (-3449 . 237659)
- (-3450 . 237519) (-3451 . 237436) (-3452 . 237120) (-3453 . 237032)
- (-3454 . 236923) (-3455 . 236867) (-3456 . 236790) (-3457 . 236717)
- (-3458 . 236643) (-3459 . 236591) (-3460 . 236513) (-3461 . 236421)
- (-3462 . 236366) (-3463 . 235623) (-3464 . 235416) (-3465 . 233448)
- (-3466 . 233350) (-3467 . 233271) (-3468 . 233183) (-3469 . 232994)
- (-3470 . 232058) (-3471 . 231549) (-3472 . 231369) (-3473 . 231317)
- (-3474 . 231221) (-3475 . 231127) (-3476 . 230206) (-3477 . 230127)
- (-3478 . 229962) (-3479 . 229580) (-3480 . 229414) (-3481 . 228966)
- (-3482 . 228894) (-3483 . 228784) (-3484 . 228659) (-3485 . 228600)
- (-3486 . 228440) (-3487 . 228387) (-3488 . 228207) (-3489 . 228115)
- (-3490 . 228037) (-3491 . 227861) (-3492 . 227802) (-3493 . 227649)
- (-3494 . 227321) (-3495 . 227244) (-3496 . 227081) (-3497 . 226863)
- (-3498 . 226602) (-3499 . 226516) (-3500 . 226331) (-3501 . 226254)
- (-3502 . 226111) (-3503 . 226019) (-3504 . 225592) (-3505 . 225502)
- (-3506 . 224200) (-3507 . 223948) (-3508 . 223827) (-3509 . 223725)
- (-3510 . 223112) (-3511 . 222945) (-3512 . 222359) (-3513 . 222206)
- (-3514 . 220044) (-3515 . 219994) (-3516 . 219908) (-3517 . 219725)
- (-3518 . 219651) (-3519 . 219577) (-3520 . 219379) (-3521 . 219288)
- (-3522 . 218861) (-3523 . 218782) (-3524 . 218619) (-3525 . 218470)
- (-3526 . 218357) (-3527 . 217603) (-3528 . 217480) (-3529 . 217420)
- (-3530 . 217350) (-3531 . 217293) (-3532 . 217222) (-3533 . 217062)
- (-3534 . 217000) (-3535 . 216914) (-3536 . 216771) (-3537 . 216594)
- (-3538 . 216501) (-3539 . 216166) (-3540 . 216080) (-3541 . 215959)
- (-3542 . 215838) (-3543 . 215764) (-3544 . 215707) (-3545 . 215653)
- (-3546 . 215538) (-3547 . 215439) (-3548 . 215365) (-3549 . 215118)
- (-3550 . 214731) (-3551 . 214573) (-3552 . 214095) (-3553 . 214029)
- (-3554 . 213976) (-3555 . 213626) (-3556 . 213562) (-3557 . 213354)
- (-3558 . 213115) (-3559 . 212932) (-3560 . 212879) (-3561 . 212686)
- (-3562 . 212591) (-3563 . 212354) (-3564 . 212302) (-3565 . 212222)
- (-3566 . 212167) (-3567 . 212079) (-3568 . 212045) (-3569 . 211872)
- (-3570 . 211226) (-3571 . 211072) (-3572 . 210274) (-3573 . 210222)
- (-3574 . 210081) (-3575 . 209620) (-3576 . 209565) (-3577 . 209477)
- (-3578 . 209393) (-3579 . 209337) (-3580 . 209057) (-3581 . 208986)
- (-3582 . 208144) (-3583 . 207552) (-3584 . 207394) (-3585 . 207342)
- (-3586 . 207127) (-3587 . 207053) (-3588 . 206890) (-3589 . 206859)
- (-3590 . 206682) (-3591 . 206599) (-3592 . 206425) (-3593 . 206297)
- (-3594 . 206203) (-3595 . 206103) (-3596 . 202494) (-3597 . 202118)
- (-3598 . 201987) (-3599 . 201829) (-3600 . 201774) (-3601 . 201675)
- (-3602 . 201589) (-3603 . 201534) (-3604 . 201444) (-3605 . 201201)
- (-3606 . 201048) (-3607 . 200900) (-3608 . 200722) (-3609 . 200505)
- (-3610 . 200424) (-3611 . 200329) (-3612 . 200233) (-3613 . 200180)
- (-3614 . 199998) (-3615 . 199892) (-3616 . 198630) (-3617 . 198536)
- (-3618 . 198445) (-3619 . 198343) (-3620 . 198202) (-3621 . 198049)
- (-3622 . 197943) (-3623 . 197847) (-3624 . 197306) (-3625 . 197088)
- (-3626 . 196995) (-3627 . 196887) (-3628 . 196810) (-3629 . 196466)
- (-3630 . 196278) (-3631 . 196108) (-3632 . 195995) (-3633 . 195945)
- (-3634 . 195758) (-3635 . 195684) (-3636 . 195565) (-3637 . 195441)
- (-3638 . 195292) (-3639 . 195045) (-3640 . 194931) (-3641 . 194385)
- (-3642 . 194210) (-3643 . 194139) (-3644 . 194087) (-3645 . 193778)
- (-3646 . 193700) (-3647 . 193303) (-3648 . 193229) (-3649 . 193176)
- (-3650 . 193102) (-3651 . 193051) (-3652 . 192886) (-3653 . 192816)
- (-3654 . 192711) (-3655 . 192595) (-3656 . 192422) (-3657 . 192350)
- (-3658 . 192101) (-3659 . 191849) (-3660 . 191787) (-3661 . 191644)
- (-3662 . 191590) (-3663 . 191430) (-3664 . 191287) (-3665 . 191235)
- (-3666 . 191182) (-3667 . 190836) (-3668 . 190741) (-3669 . 190640)
- (-3670 . 190557) (-3671 . 190323) (-3672 . 190271) (-3673 . 190044)
- (-3674 . 189971) (-3675 . 189758) (-3676 . 189555) (-3677 . 189503)
- (-3678 . 189469) (-3679 . 189399) (-3680 . 189276) (-3681 . 189175)
- (-3682 . 189104) (-3683 . 188832) (-3684 . 188773) (-3685 . 188612)
- (-3686 . 188517) (-3687 . 188447) (-3688 . 188253) (-3689 . 188219)
- (-3690 . 188077) (-3691 . 188028) (-3692 . 187942) (-3693 . 187745)
- (-3694 . 187553) (-3695 . 187500) (-3696 . 187121) (-3697 . 187066)
- (-3698 . 186988) (-3699 . 186900) (-3700 . 186775) (-3701 . 186659)
- (-3702 . 186268) (-3703 . 185777) (-3704 . 185458) (-3705 . 185375)
- (-3706 . 184958) (-3707 . 184845) (-3708 . 184746) (-3709 . 184601)
- (-3710 . 182469) (-3711 . 182373) (-3712 . 181910) (-3713 . 181027)
- (-3714 . 180931) (-3715 . 180848) (-3716 . 180793) (-3717 . 180663)
- (-3718 . 180410) (-3719 . 180340) (-3720 . 180254) (-3721 . 180202)
- (-3722 . 180147) (-3723 . 179835) (-3724 . 179662) (-3725 . 179449)
- (-3726 . 179343) (-3727 . 179235) (-3728 . 178842) (-3729 . 178747)
- (-3730 . 178648) (-3731 . 178355) (-3732 . 178212) (-3733 . 178150)
- (-3734 . 177897) (-3735 . 177809) (-3736 . 177480) (-3737 . 177327)
- (-3738 . 177153) (-3739 . 176820) (-3740 . 176719) (-3741 . 176666)
- (-3742 . 176544) (-3743 . 175449) (-3744 . 175203) (-3745 . 175086)
- (-3746 . 175014) (-3747 . 174897) (-3748 . 174799) (-3749 . 174677)
- (-3750 . 174605) (-3751 . 174555) (-3752 . 174259) (-3753 . 174156)
- (-3754 . 174084) (-3755 . 173920) (-3756 . 173713) (-3757 . 173428)
- (-3758 . 173374) (-3759 . 173278) (-3760 . 173183) (-3761 . 173091)
- (-3762 . 173004) (-3763 . 171602) (-3764 . 171519) (-3765 . 171401)
- (-3766 . 171209) (-3767 . 171157) (-3768 . 171071) (-3769 . 171000)
- (-3770 . 170903) (-3771 . 170792) (-3772 . 170556) (-3773 . 170124)
- (-3774 . 170027) (-3775 . 169753) (-3776 . 169693) (-3777 . 169372)
- (-3778 . 169211) (-3779 . 168918) (-3780 . 168839) (-3781 . 168780)
- (-3782 . 168679) (-3783 . 168627) (-3784 . 168541) (-3785 . 168360)
- (-3786 . 168233) (-3787 . 168090) (-3788 . 167799) (-3789 . 167671)
- (-3790 . 167618) (-3791 . 167463) (-3792 . 167377) (-3793 . 148802)
- (-3794 . 148711) (-3795 . 148593) (-3796 . 143079) (-3797 . 142978)
- (-3798 . 141893) (-3799 . 141718) (-3800 . 141690) (-3801 . 141208)
- (-3802 . 140872) (-3803 . 140741) (-3804 . 140664) (-3805 . 140598)
- (-3806 . 137777) (-3807 . 137384) (-3808 . 137266) (-3809 . 137161)
- (-3810 . 137042) (-3811 . 136946) (-3812 . 136904) (-3813 . 134489)
- (-3814 . 134403) (-3815 . 134270) (-3816 . 134051) (-3817 . 133955)
- (-3818 . 133903) (-3819 . 133817) (-3820 . 133757) (-3821 . 133599)
- (-3822 . 133157) (-3823 . 133002) (-3824 . 132887) (-3825 . 132731)
- (-3826 . 132661) (-3827 . 132520) (-3828 . 132425) (-3829 . 132373)
- (-3830 . 132274) (-3831 . 132047) (-3832 . 131994) (-3833 . 131738)
- (-3834 . 131403) (-3835 . 131351) (-3836 . 131252) (-3837 . 131200)
- (-3838 . 131056) (-3839 . 130298) (-3840 . 130213) (-3841 . 130139)
- (-3842 . 129463) (-3843 . 129231) (-3844 . 129160) (-3845 . 129080)
- (-3846 . 128855) (-3847 . 128763) (-3848 . 128659) (-3849 . 128551)
- (-3850 . 128441) (-3851 . 126899) (-3852 . 126765) (-3853 . 126625)
- (-3854 . 126358) (-3855 . 126048) (-3856 . 125802) (-3857 . 125641)
- (-3858 . 125557) (-3859 . 125523) (-3860 . 125427) (-3861 . 125345)
- (-3862 . 125127) (-3863 . 124840) (-3864 . 124625) (-3865 . 124366)
- (-3866 . 124309) (-3867 . 124174) (-3868 . 122060) (-3869 . 121947)
- (-3870 . 121748) (-3871 . 121441) (-3872 . 121320) (-3873 . 121237)
- (-3874 . 121205) (-3875 . 121152) (-3876 . 121019) (-3877 . 120904)
- (-3878 . 120615) (-3879 . 120069) (-3880 . 119986) (-3881 . 119366)
- (-3882 . 119265) (-3883 . 118972) (-3884 . 118786) (-3885 . 118590)
- (-3886 . 118340) (-3887 . 118281) (-3888 . 118195) (-3889 . 117977)
- (-3890 . 117894) (-3891 . 117799) (-3892 . 117679) (-3893 . 117577)
- (-3894 . 117422) (-3895 . 117293) (-3896 . 117197) (-3897 . 117120)
- (-3898 . 117063) (-3899 . 116936) (-3900 . 116761) (-3901 . 116173)
- (-3902 . 115837) (-3903 . 115758) (-3904 . 115609) (-3905 . 115557)
- (-3906 . 115438) (-3907 . 115010) (-3908 . 114914) (-3909 . 114791)
- (-3910 . 114723) (-3911 . 114340) (-3912 . 114228) (-3913 . 114132)
- (-3914 . 113996) (-3915 . 113852) (-3916 . 113772) (-3917 . 113574)
- (-3918 . 113458) (-3919 . 113384) (-3920 . 111755) (-3921 . 111600)
- (-3922 . 111539) (-3923 . 111402) (-3924 . 111283) (-3925 . 111214)
- (-3926 . 111119) (-3927 . 110985) (-3928 . 110766) (-3929 . 110678)
- (-3930 . 110520) (-3931 . 110360) (-3932 . 109999) (-3933 . 109920)
- (-3934 . 109748) (-3935 . 109347) (-3936 . 109267) (-3937 . 109169)
- (-3938 . 108951) (-3939 . 108796) (-3940 . 107492) (-3941 . 107440)
- (-3942 . 107123) (-3943 . 107019) (-3944 . 106967) (-3945 . 106865)
- (-3946 . 106685) (-3947 . 106608) (-3948 . 106497) (-3949 . 106181)
- (-3950 . 105997) (-3951 . 105826) (-3952 . 105522) (-3953 . 105415)
- (-3954 . 105366) (-3955 . 105332) (-3956 . 105295) (-3957 . 105224)
- (-3958 . 105034) (-3959 . 104707) (-3960 . 104637) (-3961 . 104502)
- (-3962 . 104255) (-3963 . 104103) (-3964 . 103366) (-3965 . 103315)
- (-3966 . 102953) (-3967 . 102666) (-3968 . 102507) (-3969 . 102229)
- (-3970 . 102118) (-3971 . 102034) (-3972 . 101949) (-3973 . 101435)
- (-3974 . 101217) (-3975 . 99967) (-3976 . 99866) (-3977 . 99729)
- (-3978 . 99546) (-3979 . 99514) (-3980 . 99443) (-3981 . 99211)
- (-3982 . 99125) (-3983 . 99030) (-3984 . 98808) (-3985 . 98628)
- (-3986 . 98536) (-3987 . 97998) (-3988 . 95937) (-3989 . 95841)
- (-3990 . 95525) (-3991 . 94848) (-3992 . 94791) (-3993 . 94510)
- (-3994 . 94332) (-3995 . 93542) (-3996 . 92935) (-3997 . 92796)
- (-3998 . 92667) (-3999 . 92614) (-4000 . 92343) (-4001 . 92158)
- (-4002 . 92098) (-4003 . 92044) (-4004 . 91915) (-4005 . 91597)
- (-4006 . 91499) (-4007 . 91407) (-4008 . 91254) (-4009 . 91091)
- (-4010 . 91017) (-4011 . 90812) (-4012 . 90685) (-4013 . 90613)
- (-4014 . 90584) (-4015 . 90494) (-4016 . 90381) (-4017 . 90322)
- (-4018 . 90093) (-4019 . 89939) (-4020 . 89722) (-4021 . 89666)
- (-4022 . 89539) (-4023 . 89368) (-4024 . 89284) (-4025 . 89065)
- (-4026 . 88846) (-4027 . 88794) (-4028 . 88648) (-4029 . 88482)
- (-4030 . 88353) (-4031 . 88299) (-4032 . 88084) (-4033 . 88050)
- (-4034 . 87529) (-4035 . 87452) (-4036 . 87386) (-4037 . 87231)
- (-4038 . 87143) (-4039 . 87002) (-4040 . 86779) (-4041 . 86608)
- (-4042 . 86504) (-4043 . 86430) (-4044 . 86328) (-4045 . 86206)
- (-4046 . 86132) (-4047 . 86077) (-4048 . 86040) (-4049 . 85935)
- (-4050 . 85811) (-4051 . 85653) (-4052 . 85465) (-4053 . 84033)
- (-4054 . 83444) (-4055 . 83160) (-4056 . 83078) (-4057 . 82928)
- (-4058 . 82858) (-4059 . 82757) (-4060 . 82612) (-4061 . 82560)
- (-4062 . 82508) (-4063 . 82407) (-4064 . 82270) (-4065 . 82154)
- (-4066 . 82058) (-4067 . 81987) (-4068 . 81892) (-4069 . 81789)
- (-4070 . 81631) (-4071 . 81550) (-4072 . 81473) (-4073 . 81084)
- (-4074 . 80941) (-4075 . 80828) (-4076 . 80796) (-4077 . 80700)
- (-4078 . 80643) (-4079 . 80284) (-4080 . 80037) (-4081 . 79940)
- (-4082 . 79348) (-4083 . 78125) (-4084 . 77950) (-4085 . 76769)
- (-4086 . 76614) (-4087 . 76299) (-4088 . 76174) (-4089 . 75956)
- (-4090 . 75706) (-4091 . 75525) (-4092 . 75427) (-4093 . 75259)
- (-4094 . 75140) (-4095 . 74869) (-4096 . 74786) (-4097 . 74538)
- (-4098 . 74416) (-4099 . 74198) (-4100 . 74076) (-4101 . 73885)
- (-4102 . 73805) (-4103 . 73510) (-4104 . 73330) (-4105 . 73131)
- (-4106 . 72890) (-4107 . 72754) (-4108 . 72683) (-4109 . 72512)
- (-4110 . 72414) (-4111 . 72348) (-4112 . 72152) (-4113 . 72072)
- (-4114 . 71509) (-4115 . 71450) (-4116 . 71274) (-4117 . 71083)
- (-4118 . 71024) (-4119 . 70858) (-4120 . 68077) (-4121 . 67741)
- (-4122 . 67707) (-4123 . 67651) (-4124 . 67088) (-4125 . 66869)
- (-4126 . 66817) (-4127 . 66640) (-4128 . 66537) (-4129 . 66384)
- (-4130 . 66225) (-4131 . 66097) (-4132 . 65995) (-4133 . 65433)
- (-4134 . 65310) (-4135 . 65079) (-4136 . 64949) (-4137 . 64845)
- (-4138 . 64707) (-4139 . 64586) (-4140 . 64455) (-4141 . 64148)
- (-4142 . 63306) (-4143 . 62822) (-4144 . 62739) (-4145 . 62433)
- (-4146 . 61560) (-4147 . 60998) (-4148 . 60902) (-4149 . 60779)
- (-4150 . 60712) (-4151 . 60510) (-4152 . 60482) (-4153 . 60429)
- (-4154 . 60326) (-4155 . 59572) (-4156 . 59471) (-4157 . 59285)
- (-4158 . 58633) (-4159 . 58496) (-4160 . 58383) (-4161 . 57821)
- (-4162 . 57751) (-4163 . 57662) (-4164 . 57611) (-4165 . 57413)
- (-4166 . 57318) (-4167 . 57177) (-4168 . 57045) (-4169 . 56895)
- (-4170 . 56333) (-4171 . 56217) (-4172 . 56064) (-4173 . 55968)
- (-4174 . 55911) (-4175 . 55753) (-4176 . 55559) (-4177 . 55507)
- (-4178 . 54867) (-4179 . 54793) (-4180 . 54482) (-4181 . 54400)
- (-4182 . 53838) (-4183 . 53766) (-4184 . 52178) (-4185 . 52106)
- (-4186 . 52042) (-4187 . 51898) (-4188 . 51364) (-4189 . 51269)
- (-4190 . 51235) (-4191 . 51203) (-4192 . 51092) (-4193 . 51009)
- (-4194 . 50932) (-4195 . 50156) (-4196 . 50086) (-4197 . 50032)
- (-4198 . 49876) (-4199 . 49722) (-4200 . 49592) (-4201 . 49225)
- (-4202 . 48838) (-4203 . 48548) (-4204 . 48367) (-4205 . 48247)
- (-4206 . 48000) (-4207 . 47741) (-4208 . 47686) (-4209 . 47612)
- (-4210 . 47514) (-4211 . 47402) (-4212 . 46986) (-4213 . 46890)
- (-4214 . 46751) (-4215 . 46699) (-4216 . 46211) (-4217 . 46017)
- (-4218 . 45844) (-4219 . 45810) (-4220 . 45632) (-4221 . 45576)
- (-4222 . 45447) (-4223 . 45389) (-4224 . 44967) (-4225 . 44815)
- (-4226 . 44759) (-4227 . 44478) (-4228 . 44398) (-4229 . 44310)
- (-4230 . 43872) (-4231 . 43678) (-4232 . 43525) (-4233 . 43144)
- (-4234 . 43026) (-4235 . 42966) (-4236 . 42793) (-4237 . 42545)
- (-4238 . 42473) (-4239 . 42352) (-4240 . 42273) (-4241 . 42067)
- (-4242 . 41964) (-4243 . 41826) (-4244 . 41732) (-4245 . 41649)
- (-4246 . 41549) (-4247 . 41297) (-4248 . 41196) (-4249 . 41073)
- (-4250 . 40854) (-4251 . 40501) (-4252 . 40393) (-4253 . 40290)
- (-4254 . 40159) (-4255 . 40030) (-4256 . 39935) (-4257 . 39882)
- (-4258 . 39515) (-4259 . 39443) (-4260 . 38848) (-4261 . 38764)
- (-4262 . 38670) (-4263 . 38639) (-4264 . 38583) (-4265 . 38421)
- (-4266 . 37975) (-4267 . 37389) (-4268 . 37257) (-4269 . 37162)
- (-4270 . 36847) (-4271 . 36792) (-4272 . 35640) (-4273 . 35568)
- (-4274 . 35433) (-4275 . 35308) (-4276 . 35150) (-4277 . 35004)
- (-4278 . 34922) (-4279 . 34806) (-4280 . 34703) (-4281 . 34480)
- (-4282 . 34390) (-4283 . 34291) (-4284 . 34133) (-4285 . 34053)
- (-4286 . 33851) (-4287 . 33735) (-4288 . 33558) (-4289 . 33476)
- (-4290 . 33380) (-4291 . 33181) (-4292 . 33128) (-4293 . 32849)
- (-4294 . 32693) (-4295 . 31923) (-4296 . 31844) (-4297 . 31740)
- (-4298 . 31481) (-4299 . 31240) (-4300 . 30955) (-4301 . 30904)
- (-4302 . 30846) (-4303 . 30814) (-4304 . 30111) (-4305 . 30041)
- (-4306 . 29836) (-4307 . 29670) (-4308 . 29636) (-4309 . 29426)
- (-4310 . 29374) (-4311 . 29312) (-4312 . 29180) (-4313 . 29109)
- (-4314 . 28829) (-4315 . 28726) (-4316 . 28648) (-4317 . 28401)
- (-4318 . 28179) (-4319 . 28078) (-4320 . 27610) (-4321 . 27486)
- (-4322 . 27407) (-4323 . 27121) (-4324 . 26894) (-4325 . 26738)
- (-4326 . 26474) (-4327 . 26226) (-4328 . 25939) (-4329 . 25889)
- (-4330 . 25760) (-4331 . 25530) (-4332 . 25478) (-4333 . 24518)
- (-4334 . 23716) (-4335 . 23546) (-4336 . 23458) (-4337 . 22931)
- (-4338 . 22798) (-4339 . 22399) (-4340 . 22211) (-4341 . 22123)
- (-4342 . 21965) (-4343 . 21430) (-4344 . 20977) (-4345 . 20876)
- (-4346 . 20761) (-4347 . 20522) (-4348 . 20346) (-4349 . 20243)
- (-4350 . 20135) (-4351 . 19960) (-4352 . 19816) (-4353 . 19788)
- (-4354 . 19609) (-4355 . 19485) (-4356 . 19367) (-4357 . 19145)
- (-4358 . 19051) (-4359 . 18998) (-4360 . 18752) (-4361 . 18474)
- (-4362 . 18241) (-4363 . 18170) (-4364 . 18096) (-4365 . 17964)
- (-4366 . 17909) (-4367 . 17325) (-4368 . 17225) (-4369 . 17051)
- (-4370 . 16974) (-4371 . 16644) (-4372 . 15826) (-4373 . 15774)
- (-4374 . 15610) (-4375 . 15457) (-4376 . 15353) (-4377 . 15243)
- (-4378 . 10701) (-4379 . 10510) (-4380 . 10285) (-4381 . 10086)
- (-4382 . 9924) (-4383 . 9893) (-4384 . 9660) (-4385 . 9599)
- (-4386 . 8399) (-4387 . 7816) (-4388 . 7744) (-4389 . 7111)
- (-4390 . 6947) (-4391 . 6894) (-4392 . 6833) (-4393 . 6750)
- (-4394 . 6656) (-4395 . 6318) (-4396 . 5616) (-4397 . 5331)
- (-4398 . 5263) (-4399 . 5092) (-4400 . 5006) (-4401 . 4946)
- (-4402 . 4853) (-4403 . 4800) (-4404 . 4766) (-4405 . 4422)
- (-4406 . 4309) (-4407 . 3971) (-4408 . 3897) (-4409 . 3218)
- (-4410 . 3159) (-4411 . 2243) (-4412 . 1912) (-4413 . 1768)
- (-4414 . 1665) (-4415 . 1637) (-4416 . 927) (-4417 . 850)
- (-4418 . 777) (-4419 . 743) (-4420 . 535) (-4421 . 450) (-4422 . 384)
- (-4423 . 301) (-4424 . 30)) \ No newline at end of file
+ (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185)))
+ (-14 *3 (-649 (-1185))) (-4 *4 (-392))))
+ ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-1210))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1173 *4 *5))
+ (-14 *4 (-927)) (-4 *5 (-1057)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3))
+ (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))))
+(((*1 *2)
+ (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4))
+ (-4 *3 (-422 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367))
+ (-5 *2 (-1181 (-958 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6))
+ (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927))
+ (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))))
+((-1308 . 733162) (-1309 . 733109) (-1310 . 732956) (-1311 . 732832)
+ (-1312 . 732579) (-1313 . 732486) (-1314 . 732327) (-1315 . 732234)
+ (-1316 . 732088) (-1317 . 731897) (-1318 . 731790) (-1319 . 731704)
+ (-1320 . 731530) (-1321 . 731423) (-1322 . 731339) (-1323 . 731280)
+ (-1324 . 731252) (-1325 . 731107) (-1326 . 730994) (-1327 . 730729)
+ (-1328 . 730586) (-1329 . 730376) (-1330 . 730043) (-1331 . 729930)
+ (-1332 . 729800) (-1333 . 729398) (-1334 . 729264) (-1335 . 729103)
+ (-1336 . 729051) (-1337 . 728950) (-1338 . 728813) (-1339 . 728556)
+ (-1340 . 728241) (-1341 . 728014) (-1342 . 727817) (-1343 . 727748)
+ (-1344 . 727664) (-1345 . 727551) (-1346 . 713321) (-1347 . 713269)
+ (-1348 . 713217) (-1349 . 713123) (-1350 . 713016) (-1351 . 711160)
+ (-1352 . 711107) (-1353 . 710885) (-1354 . 710576) (-1355 . 710490)
+ (-1356 . 710412) (-1357 . 710345) (-1358 . 710317) (-1359 . 710216)
+ (-1360 . 710160) (-1361 . 709956) (-1362 . 709868) (-1363 . 709746)
+ (-1364 . 709665) (-1365 . 709608) (-1366 . 709484) (-1367 . 709385)
+ (-1368 . 709163) (-1369 . 708930) (-1370 . 704867) (-1371 . 704781)
+ (-1372 . 704658) (-1373 . 704585) (-1374 . 704448) (-1375 . 704361)
+ (-1376 . 704302) (-1377 . 704223) (-1378 . 703977) (-1379 . 703876)
+ (-1380 . 702909) (-1381 . 702848) (-1382 . 702548) (-1383 . 702445)
+ (-1384 . 701992) (-1385 . 701774) (-1386 . 701658) (-1387 . 701630)
+ (-1388 . 701278) (-1389 . 701219) (-1390 . 701084) (-1391 . 701012)
+ (-1392 . 700845) (-1393 . 700262) (-1394 . 700084) (-1395 . 699775)
+ (-1396 . 699511) (-1397 . 699415) (-1398 . 699308) (-1399 . 699280)
+ (-1400 . 698962) (-1401 . 698795) (-1402 . 698763) (-1403 . 698646)
+ (-1404 . 698508) (-1405 . 698436) (-1406 . 698362) (-1407 . 698147)
+ (-1408 . 698094) (-1409 . 697341) (-1410 . 693674) (-1411 . 693603)
+ (-1412 . 693572) (-1413 . 693206) (-1414 . 693108) (-1415 . 693046)
+ (-1416 . 692874) (-1417 . 692387) (-1418 . 692076) (-1419 . 691443)
+ (-1420 . 689098) (-1421 . 689020) (-1422 . 688915) (-1423 . 688820)
+ (-1424 . 688577) (-1425 . 688489) (-1426 . 688026) (-1427 . 687598)
+ (-1428 . 687459) (-1429 . 686940) (-1430 . 686818) (-1431 . 686748)
+ (-1432 . 686406) (-1433 . 686196) (-1434 . 686032) (-1435 . 685674)
+ (-1436 . 685571) (-1437 . 685491) (-1438 . 685435) (-1439 . 685362)
+ (-1440 . 685207) (-1441 . 684556) (-1442 . 684366) (-1443 . 684250)
+ (-1444 . 684150) (-1445 . 684097) (-1446 . 684025) (-1447 . 683972)
+ (-1448 . 683587) (-1449 . 683446) (-1450 . 683288) (-1451 . 682837)
+ (-1452 . 682710) (-1453 . 682614) (-1454 . 682562) (-1455 . 682512)
+ (-1456 . 682412) (-1457 . 682362) (-1458 . 682279) (-1459 . 682226)
+ (-1460 . 682175) (-1461 . 682023) (** . 679029) (-1463 . 678948)
+ (-1464 . 678874) (-1465 . 678803) (-1466 . 676547) (-1467 . 676485)
+ (-1468 . 676189) (-1469 . 676095) (-1470 . 676029) (-1471 . 675649)
+ (-1472 . 675575) (-1473 . 675186) (-1474 . 675131) (-1475 . 675066)
+ (-1476 . 674995) (-1477 . 674894) (-1478 . 674791) (-1479 . 674506)
+ (-1480 . 674411) (-1481 . 674298) (-1482 . 674266) (-1483 . 674123)
+ (-1484 . 674039) (-1485 . 673805) (-1486 . 673675) (-1487 . 673618)
+ (-1488 . 673521) (-1489 . 673407) (-1490 . 673335) (-1491 . 673267)
+ (-1492 . 673104) (-1493 . 672967) (-1494 . 672886) (-1495 . 672773)
+ (-1496 . 672677) (-1497 . 672513) (-1498 . 672160) (-1499 . 672086)
+ (-1500 . 672014) (-1501 . 671930) (-1502 . 671759) (-1503 . 671197)
+ (-1504 . 671163) (-1505 . 671097) (-1506 . 670931) (-1507 . 670816)
+ (-1508 . 670651) (-1509 . 670619) (-1510 . 670501) (-1511 . 670418)
+ (-1512 . 670275) (-1513 . 670068) (-1514 . 669908) (-1515 . 669822)
+ (-1516 . 669463) (-1517 . 668165) (-1518 . 667925) (-1519 . 667829)
+ (-1520 . 667773) (-1521 . 667669) (-1522 . 667554) (-1523 . 667269)
+ (-1524 . 667100) (-1525 . 667040) (-1526 . 666939) (-1527 . 666711)
+ (-1528 . 666513) (-1529 . 666456) (-1530 . 666048) (-1531 . 665953)
+ (-1532 . 665829) (-1533 . 665734) (-1534 . 665638) (-1535 . 665545)
+ (-1536 . 665426) (-1537 . 665180) (-1538 . 664890) (-1539 . 664308)
+ (-1540 . 663949) (-1541 . 663680) (-1542 . 663561) (-1543 . 663018)
+ (-1544 . 662923) (-1545 . 662035) (-1546 . 661982) (-1547 . 661649)
+ (-1548 . 661554) (-1549 . 661334) (-1550 . 661266) (-1551 . 661019)
+ (-1552 . 660800) (-1553 . 660670) (-1554 . 660461) (-1555 . 660369)
+ (-1556 . 660025) (-1557 . 659577) (-1558 . 659365) (-1559 . 659316)
+ (-1560 . 659217) (-1561 . 659120) (-1562 . 659037) (-1563 . 658856)
+ (-1564 . 658801) (-1565 . 658714) (-1566 . 658601) (-1567 . 658402)
+ (-1568 . 658195) (-1569 . 658035) (-1570 . 657923) (-1571 . 657840)
+ (-1572 . 657695) (-1573 . 657103) (-1574 . 657003) (-1575 . 656800)
+ (-1576 . 656645) (-1577 . 656583) (-1578 . 656425) (-1579 . 656342)
+ (-1580 . 656283) (-1581 . 655862) (-1582 . 655766) (-1583 . 655575)
+ (-1584 . 655447) (-1585 . 654224) (-1586 . 654081) (-1587 . 654022)
+ (-1588 . 653511) (-1589 . 653370) (-1590 . 653252) (-1591 . 653065)
+ (-1592 . 652149) (-1593 . 652076) (-1594 . 651853) (-1595 . 651821)
+ (-1596 . 651723) (-1597 . 651550) (-1598 . 651375) (-1599 . 651196)
+ (-1600 . 651143) (-1601 . 650981) (-1602 . 650865) (-1603 . 650795)
+ (-1604 . 650603) (-1605 . 650272) (-1606 . 649558) (-1607 . 649462)
+ (-1608 . 649378) (-1609 . 649296) (-1610 . 648115) (-1611 . 647837)
+ (-1612 . 647718) (-1613 . 647666) (-1614 . 647481) (-1615 . 647337)
+ (-1616 . 646189) (-1617 . 646118) (-1618 . 645826) (-1619 . 645504)
+ (-1620 . 645349) (-1621 . 644053) (-1622 . 644001) (-1623 . 643871)
+ (-1624 . 643785) (-1625 . 643628) (-1626 . 643525) (-1627 . 643497)
+ (-1628 . 643187) (-1629 . 643073) (-1630 . 643003) (-1631 . 642920)
+ (-1632 . 642605) (-1633 . 642534) (-1634 . 642463) (-1635 . 642376)
+ (-1636 . 642325) (-1637 . 642215) (-1638 . 642161) (-1639 . 642133)
+ (-1640 . 642037) (-1641 . 641980) (-1642 . 641794) (-1643 . 641654)
+ (-1644 . 641529) (-1645 . 641471) (-1646 . 641341) (-1647 . 640958)
+ (-1648 . 640848) (-1649 . 640751) (-1650 . 640041) (-1651 . 639964)
+ (-1652 . 639866) (-1653 . 639783) (-1654 . 639670) (-1655 . 639452)
+ (-1656 . 639320) (-1657 . 639161) (-1658 . 638925) (-1659 . 638853)
+ (-1660 . 638776) (-1661 . 638266) (-1662 . 638162) (-1663 . 637971)
+ (-1664 . 637655) (-1665 . 637405) (-1666 . 637260) (-1667 . 636882)
+ (-1668 . 636804) (-1669 . 636698) (-1670 . 636601) (-1671 . 636410)
+ (-1672 . 636337) (-1673 . 636278) (-1674 . 636200) (-1675 . 636112)
+ (-1676 . 636075) (-1677 . 635894) (-1678 . 635798) (-1679 . 635496)
+ (-1680 . 635222) (-1681 . 635081) (-1682 . 634873) (-1683 . 634839)
+ (-1684 . 634780) (-1685 . 634573) (-1686 . 634464) (-1687 . 634366)
+ (-1688 . 634250) (-1689 . 634109) (-1690 . 634049) (-1691 . 633961)
+ (-1692 . 633876) (-1693 . 633820) (-1694 . 633635) (-1695 . 633467)
+ (-1696 . 633369) (-1697 . 633223) (-1698 . 632624) (-1699 . 632178)
+ (-1700 . 631319) (-1701 . 631245) (-1702 . 631101) (-1703 . 630780)
+ (-1704 . 630709) (-1705 . 630643) (-1706 . 630574) (-1707 . 630454)
+ (-1708 . 630402) (-1709 . 630239) (-1710 . 630162) (-1711 . 630043)
+ (-1712 . 628747) (-1713 . 628589) (-1714 . 628512) (-1715 . 628431)
+ (-1716 . 628360) (-1717 . 628199) (-1718 . 628116) (-1719 . 628064)
+ (-1720 . 627521) (-1721 . 627347) (-1722 . 627294) (-1723 . 627221)
+ (-1724 . 626847) (-1725 . 622840) (-1726 . 622569) (-1727 . 622463)
+ (-1728 . 621499) (-1729 . 621053) (-1730 . 620760) (-1731 . 620620)
+ (-1732 . 620349) (-1733 . 620211) (-1734 . 620159) (-1735 . 620107)
+ (-1736 . 620055) (-1737 . 619981) (-1738 . 619910) (-1739 . 619827)
+ (-1740 . 619759) (-1741 . 619580) (-1742 . 619553) (-1743 . 619474)
+ (-1744 . 619422) (-1745 . 619231) (-1746 . 619056) (-1747 . 618948)
+ (-1748 . 618895) (-1749 . 618778) (-1750 . 618530) (-1751 . 618136)
+ (-1752 . 618009) (-1753 . 617910) (-1754 . 617841) (-1755 . 617782)
+ (-1756 . 617624) (-1757 . 617546) (-1758 . 617484) (-1759 . 617387)
+ (-1760 . 617284) (-1761 . 617162) (-1762 . 617134) (-1763 . 617079)
+ (-1764 . 616646) (-1765 . 616347) (-1766 . 616295) (-1767 . 616236)
+ (-1768 . 615745) (-1769 . 615653) (-1770 . 614846) (-1771 . 614749)
+ (-1772 . 614325) (-1773 . 612559) (-1774 . 612341) (-1775 . 612284)
+ (-1776 . 612091) (-1777 . 612005) (-1778 . 611875) (-1779 . 611548)
+ (-1780 . 611446) (-1781 . 611390) (-1782 . 611335) (-1783 . 611237)
+ (-1784 . 609782) (-1785 . 609660) (-1786 . 609565) (-1787 . 609278)
+ (-1788 . 609226) (-1789 . 609045) (-1790 . 608943) (-1791 . 608845)
+ (-1792 . 608606) (-1793 . 608553) (-1794 . 607810) (-1795 . 604147)
+ (-1796 . 603956) (-1797 . 602466) (-1798 . 602416) (-1799 . 602366)
+ (-1800 . 602226) (-1801 . 602099) (-1802 . 601984) (-1803 . 601879)
+ (-1804 . 601605) (-1805 . 601176) (-1806 . 599208) (-1807 . 598913)
+ (-1808 . 597733) (-1809 . 597591) (-1810 . 597412) (-1811 . 597269)
+ (-1812 . 597212) (-1813 . 593913) (-1814 . 593815) (-1815 . 593568)
+ (-1816 . 593454) (-1817 . 592718) (-1818 . 592538) (-1819 . 592403)
+ (-1820 . 592275) (-1821 . 592025) (-1822 . 591897) (-1823 . 591793)
+ (-1824 . 591657) (-1825 . 590994) (-1826 . 590915) (-1827 . 590716)
+ (-1828 . 590553) (-1829 . 589885) (-1830 . 589438) (-1831 . 589385)
+ (-1832 . 589253) (-1833 . 589033) (-1834 . 588892) (-1835 . 588764)
+ (-1836 . 588676) (-1837 . 588599) (-1838 . 588358) (-1839 . 588271)
+ (-1840 . 588173) (-1841 . 588005) (-1842 . 587850) (-1843 . 587797)
+ (-1844 . 587559) (-1845 . 587507) (-1846 . 587318) (-1847 . 587236)
+ (-1848 . 587100) (-1849 . 586456) (-1850 . 586263) (-1851 . 586177)
+ (-1852 . 586053) (-1853 . 585987) (-1854 . 585928) (-1855 . 585419)
+ (-1856 . 585346) (-1857 . 584174) (-1858 . 584103) (-1859 . 584030)
+ (-1860 . 583797) (-1861 . 583599) (-1862 . 583508) (-1863 . 583404)
+ (-1864 . 583244) (-1865 . 583134) (-1866 . 582963) (-1867 . 582848)
+ (-1868 . 582668) (-1869 . 577499) (-1870 . 576397) (-1871 . 576039)
+ (-1872 . 575923) (-1873 . 575765) (-1874 . 575679) (-1875 . 575577)
+ (-1876 . 575443) (-1877 . 575387) (-1878 . 575359) (-1879 . 575300)
+ (-1880 . 575248) (-1881 . 575150) (-1882 . 575122) (-1883 . 573985)
+ (-1884 . 573895) (-1885 . 573713) (-1886 . 572628) (-1887 . 572462)
+ (-1888 . 572355) (-1889 . 572154) (-1890 . 572088) (-1891 . 572016)
+ (-1892 . 571931) (-1893 . 571756) (-1894 . 571678) (-1895 . 571610)
+ (-1896 . 571557) (-1897 . 571012) (-1898 . 570681) (-1899 . 570485)
+ (-1900 . 570243) (-1901 . 570071) (-1902 . 570043) (-1903 . 570015)
+ (-1904 . 569855) (-1905 . 569802) (-1906 . 569707) (-1907 . 569652)
+ (-1908 . 569593) (-1909 . 569488) (-1910 . 569337) (-1911 . 568855)
+ (-1912 . 568742) (-1913 . 568610) (-1914 . 568506) (-1915 . 568326)
+ (-1916 . 568016) (-1917 . 567840) (-1918 . 567775) (-1919 . 567722)
+ (-1920 . 567584) (-1921 . 567112) (-1922 . 567084) (-1923 . 566878)
+ (-1924 . 566687) (-1925 . 566604) (-1926 . 566260) (-1927 . 566208)
+ (-1928 . 565930) (-1929 . 565874) (-1930 . 565681) (-1931 . 565396)
+ (-1932 . 565316) (-1933 . 565257) (-1934 . 565133) (-1935 . 565040)
+ (-1936 . 564941) (-1937 . 564801) (-1938 . 564573) (-1939 . 564223)
+ (-1940 . 564149) (-1941 . 564058) (-1942 . 563916) (-1943 . 563750)
+ (-1944 . 563695) (-1945 . 563628) (-1946 . 563557) (-1947 . 563344)
+ (-1948 . 563184) (-1949 . 563113) (-1950 . 563061) (-1951 . 562937)
+ (-1952 . 562807) (-1953 . 562553) (-1954 . 562280) (-1955 . 562077)
+ (-1956 . 561982) (-1957 . 561846) (-1958 . 561552) (-1959 . 561394)
+ (-1960 . 561123) (-1961 . 560895) (-1962 . 560829) (-1963 . 560777)
+ (-1964 . 560619) (-1965 . 560490) (-1966 . 560217) (-1967 . 560074)
+ (-1968 . 559957) (-1969 . 559772) (-1970 . 559701) (-1971 . 559611)
+ (-1972 . 559413) (-1973 . 559379) (-1974 . 559272) (-1975 . 559186)
+ (-1976 . 558829) (-1977 . 558801) (-1978 . 558658) (-1979 . 558598)
+ (-1980 . 558474) (-1981 . 558210) (-1982 . 558095) (-1983 . 558025)
+ (-1984 . 557918) (-1985 . 557767) (-1986 . 557586) (-1987 . 557464)
+ (-1988 . 557410) (-1989 . 557306) (-1990 . 557139) (-1991 . 557016)
+ (-1992 . 556886) (-1993 . 556418) (-1994 . 556288) (-1995 . 556013)
+ (-1996 . 555900) (-1997 . 555771) (-1998 . 555660) (-1999 . 555461)
+ (-2000 . 555360) (-2001 . 555198) (-2002 . 555074) (-2003 . 554608)
+ (-2004 . 554292) (-2005 . 554196) (-2006 . 554042) (-2007 . 553724)
+ (-2008 . 553593) (-2009 . 553363) (-2010 . 553197) (-2011 . 553126)
+ (-2012 . 553047) (-2013 . 552785) (-2014 . 552687) (-2015 . 552593)
+ (-2016 . 552495) (-2017 . 552369) (-2018 . 552284) (-2019 . 552167)
+ (-2020 . 551895) (-2021 . 551609) (-2022 . 551535) (-2023 . 551467)
+ (-2024 . 551365) (-2025 . 551306) (-2026 . 551214) (-2027 . 551037)
+ (-2028 . 550978) (-2029 . 550919) (-2030 . 550724) (-2031 . 550671)
+ (-2032 . 550444) (-2033 . 550310) (-2034 . 550228) (-2035 . 549799)
+ (-2036 . 549646) (-2037 . 549489) (-2038 . 549439) (-2039 . 549278)
+ (-2040 . 549177) (-2041 . 548913) (-2042 . 548760) (-2043 . 548613)
+ (-2044 . 548462) (-2045 . 548383) (-2046 . 548220) (-2047 . 548150)
+ (-2048 . 548012) (-2049 . 547917) (-2050 . 547864) (-2051 . 547616)
+ (-2052 . 547532) (-2053 . 547362) (-2054 . 547154) (-2055 . 547080)
+ (-2056 . 547024) (-2057 . 546926) (-2058 . 546830) (-2059 . 546636)
+ (-2060 . 546483) (-2061 . 546433) (-2062 . 546143) (-2063 . 545997)
+ (-2064 . 545892) (-2065 . 545687) (-2066 . 545300) (-2067 . 545223)
+ (-2068 . 544961) (-2069 . 544927) (-2070 . 544798) (-2071 . 544732)
+ (-2072 . 544680) (-2073 . 544628) (-2074 . 544501) (-2075 . 544343)
+ (-2076 . 544224) (-2077 . 544136) (-2078 . 544067) (-2079 . 544018)
+ (-2080 . 543876) (-2081 . 543646) (-2082 . 543538) (-2083 . 543359)
+ (-2084 . 542938) (-2085 . 542866) (-2086 . 542668) (-2087 . 542362)
+ (-2088 . 542217) (-2089 . 542168) (-2090 . 541941) (-2091 . 541769)
+ (-2092 . 541717) (-2093 . 541308) (-2094 . 541216) (-2095 . 541145)
+ (-2096 . 541116) (-2097 . 540744) (-2098 . 540591) (-2099 . 540505)
+ (-2100 . 540409) (-2101 . 539449) (-2102 . 539327) (-2103 . 538743)
+ (-2104 . 538533) (-2105 . 537974) (-2106 . 537884) (-2107 . 537789)
+ (-2108 . 537578) (-2109 . 537381) (-2110 . 537127) (-2111 . 536325)
+ (-2112 . 536273) (-2113 . 536141) (-2114 . 535869) (-2115 . 535310)
+ (-2116 . 535197) (-2117 . 535098) (-2118 . 535031) (-2119 . 534949)
+ (-2120 . 534757) (-2121 . 534587) (-2122 . 534335) (-2123 . 534211)
+ (-2124 . 533965) (-2125 . 533906) (-2126 . 533591) (-2127 . 533291)
+ (-2128 . 532809) (-2129 . 532756) (-2130 . 532668) (-2131 . 532488)
+ (-2132 . 532306) (-2133 . 531977) (-2134 . 531748) (-2135 . 531592)
+ (-2136 . 531463) (-2137 . 531112) (-2138 . 530733) (-2139 . 530358)
+ (-2140 . 529831) (-2141 . 529700) (-2142 . 529596) (-2143 . 529431)
+ (-2144 . 529277) (-2145 . 529077) (-2146 . 528959) (-2147 . 528904)
+ (-2148 . 528654) (-2149 . 528521) (-2150 . 528194) (-2151 . 527552)
+ (-2152 . 527493) (-2153 . 527359) (-2154 . 527142) (-2155 . 526983)
+ (-2156 . 526899) (-2157 . 526784) (-2158 . 526706) (-2159 . 526307)
+ (-2160 . 526229) (-2161 . 526156) (-2162 . 526095) (-2163 . 526039)
+ (-2164 . 525956) (-2165 . 525621) (-2166 . 525506) (-2167 . 525418)
+ (-2168 . 525230) (-2169 . 525134) (-2170 . 524803) (-2171 . 524488)
+ (-2172 . 524408) (-2173 . 524281) (-2174 . 524064) (-2175 . 523897)
+ (-2176 . 523657) (-2177 . 523531) (-2178 . 523443) (-2179 . 523151)
+ (-2180 . 523086) (-2181 . 523006) (-2182 . 522612) (-2183 . 522441)
+ (-2184 . 522325) (-2185 . 522121) (-2186 . 522023) (-2187 . 521606)
+ (-2188 . 521294) (-2189 . 521136) (-2190 . 521074) (-2191 . 520835)
+ (-2192 . 520766) (-2193 . 520682) (-2194 . 520576) (-2195 . 520488)
+ (-2196 . 520451) (-2197 . 520060) (-2198 . 519525) (-2199 . 519453)
+ (-2200 . 519379) (-2201 . 519249) (-2202 . 519030) (-2203 . 518974)
+ (-2204 . 518444) (-2205 . 517953) (-2206 . 517904) (-2207 . 517451)
+ (-2208 . 517407) (-2209 . 517354) (-2210 . 516897) (-2211 . 516678)
+ (-2212 . 516597) (-2213 . 516513) (-2214 . 516367) (-2215 . 516048)
+ (-2216 . 514846) (-2217 . 514745) (-2218 . 514716) (-2219 . 514457)
+ (-2220 . 514066) (-2221 . 513920) (-2222 . 513847) (-2223 . 513818)
+ (-2224 . 513441) (-2225 . 513358) (-2226 . 513243) (-2227 . 513188)
+ (-2228 . 513027) (-2229 . 512874) (-2230 . 512708) (-2231 . 512627)
+ (-2232 . 512554) (-2233 . 512441) (-2234 . 512339) (-2235 . 512100)
+ (-2236 . 511948) (-2237 . 511830) (-2238 . 511305) (-2239 . 511176)
+ (-2240 . 511108) (-2241 . 510016) (-2242 . 509964) (-2243 . 509865)
+ (-2244 . 509689) (-2245 . 509507) (-2246 . 509425) (-2247 . 508828)
+ (-2248 . 508774) (-2249 . 508692) (-2250 . 508551) (-2251 . 508326)
+ (-2252 . 508046) (-2253 . 507938) (-2254 . 507793) (-2255 . 507690)
+ (-2256 . 507580) (-2257 . 507460) (-2258 . 507368) (-2259 . 507153)
+ (-2260 . 507125) (-2261 . 506900) (-2262 . 506686) (-2263 . 506590)
+ (-2264 . 506482) (-2265 . 506429) (-2266 . 506207) (-2267 . 506069)
+ (-2268 . 505983) (-2269 . 505949) (-2270 . 505785) (-2271 . 505299)
+ (-2272 . 504836) (-2273 . 504724) (-2274 . 504580) (-2275 . 504503)
+ (-2276 . 504333) (-2277 . 504115) (-2278 . 503867) (-2279 . 503749)
+ (-2280 . 503672) (-2281 . 503594) (-2282 . 503115) (-2283 . 503036)
+ (-2284 . 502153) (-2285 . 502125) (-2286 . 502051) (-2287 . 501876)
+ (-2288 . 501455) (-2289 . 501389) (-2290 . 501289) (-2291 . 501164)
+ (-2292 . 500946) (-2293 . 500850) (-2294 . 500671) (-2295 . 500468)
+ (-2296 . 500106) (-2297 . 499925) (-2298 . 499770) (-2299 . 499668)
+ (-2300 . 499191) (-2301 . 499108) (-2302 . 499014) (-2303 . 498890)
+ (-2304 . 498795) (-2305 . 498707) (-2306 . 498229) (-2307 . 498104)
+ (-2308 . 498016) (-2309 . 497921) (-2310 . 497394) (-2311 . 497366)
+ (-2312 . 497311) (-2313 . 497193) (-2314 . 497031) (-2315 . 496826)
+ (-2316 . 495249) (-2317 . 495108) (-2318 . 494043) (-2319 . 493705)
+ (-2320 . 493638) (-2321 . 493508) (-2322 . 493286) (-2323 . 493200)
+ (-2324 . 493042) (-2325 . 492666) (-2326 . 492443) (-2327 . 492377)
+ (-2328 . 492241) (-2329 . 491988) (-2330 . 491960) (-2331 . 491866)
+ (-2332 . 491255) (-2333 . 491075) (-2334 . 490972) (-2335 . 490328)
+ (-2336 . 490157) (-2337 . 490104) (-2338 . 489981) (-2339 . 489880)
+ (-2340 . 489810) (-2341 . 489577) (-2342 . 489422) (-2343 . 489215)
+ (-2344 . 489127) (-2345 . 489023) (-2346 . 488834) (-2347 . 488616)
+ (-2348 . 488530) (-2349 . 488243) (-2350 . 488172) (-2351 . 487830)
+ (-2352 . 487756) (-2353 . 487659) (-2354 . 487557) (-2355 . 487502)
+ (-2356 . 487354) (-2357 . 487181) (-2358 . 487104) (-2359 . 487014)
+ (-2360 . 486940) (-2361 . 486825) (-2362 . 486642) (-2363 . 486568)
+ (-2364 . 486491) (-2365 . 486179) (-2366 . 486034) (-2367 . 485670)
+ (-2368 . 485573) (-2369 . 485371) (-2370 . 485239) (-2371 . 485100)
+ (-2372 . 485006) (-2373 . 484710) (-2374 . 484655) (-2375 . 484442)
+ (-2376 . 484389) (-2377 . 483654) (-2378 . 483581) (-2379 . 483484)
+ (-2380 . 483429) (-2381 . 483088) (-2382 . 482975) (-2383 . 482813)
+ (-2384 . 482776) (-2385 . 482568) (-2386 . 482170) (-2387 . 481900)
+ (-2388 . 481794) (-2389 . 481501) (-2390 . 480917) (-2391 . 480852)
+ (-2392 . 480497) (-2393 . 480401) (-2394 . 480296) (-2395 . 480188)
+ (-2396 . 480025) (-2397 . 479907) (-2398 . 479807) (-2399 . 479649)
+ (-2400 . 479526) (-2401 . 479449) (-2402 . 479325) (-2403 . 478457)
+ (-2404 . 478176) (-2405 . 477930) (-2406 . 477537) (-2407 . 476676)
+ (-2408 . 476502) (-2409 . 476450) (-2410 . 476366) (-2411 . 476208)
+ (-2412 . 476151) (-2413 . 475993) (-2414 . 475792) (-2415 . 474600)
+ (-2416 . 474505) (-2417 . 474418) (-2418 . 474334) (-2419 . 474257)
+ (-2420 . 474059) (-2421 . 473976) (-2422 . 473631) (-2423 . 473443)
+ (-2424 . 473109) (-2425 . 472733) (-2426 . 472634) (-2427 . 472026)
+ (-2428 . 471659) (-2429 . 471329) (-2430 . 470895) (-2431 . 470843)
+ (-2432 . 470812) (-2433 . 469380) (-2434 . 469255) (-2435 . 469170)
+ (-2436 . 469139) (-2437 . 468846) (-2438 . 468703) (-2439 . 467884)
+ (-2440 . 467796) (-2441 . 467628) (-2442 . 467515) (-2443 . 466885)
+ (-2444 . 466296) (-2445 . 465987) (-2446 . 465914) (-2447 . 465771)
+ (-2448 . 465274) (-2449 . 465222) (-2450 . 465104) (-2451 . 465003)
+ (-2452 . 464926) (-2453 . 464642) (-2454 . 463825) (-2455 . 463715)
+ (-2456 . 463535) (-2457 . 463282) (-2458 . 462778) (-2459 . 462614)
+ (-2460 . 462498) (-2461 . 462403) (-2462 . 462211) (-2463 . 462129)
+ (-2464 . 462060) (-2465 . 462032) (-2466 . 461939) (-2467 . 461793)
+ (-2468 . 461640) (-2469 . 461321) (-2470 . 461221) (-2471 . 461149)
+ (-2472 . 460999) (-2473 . 460856) (-2474 . 460770) (-2475 . 460718)
+ (-2476 . 460637) (-2477 . 460533) (-2478 . 460481) (-2479 . 460414)
+ (-2480 . 460218) (-2481 . 460148) (-2482 . 460053) (-2483 . 459782)
+ (-2484 . 459700) (-2485 . 459628) (-2486 . 459554) (-2487 . 459444)
+ (-2488 . 459148) (-2489 . 459114) (-2490 . 458928) (-2491 . 458825)
+ (-2492 . 458724) (-2493 . 458656) (-2494 . 458603) (-2495 . 458435)
+ (-2496 . 458296) (-2497 . 458200) (-2498 . 458009) (-2499 . 457523)
+ (-2500 . 457489) (-2501 . 457208) (-2502 . 457155) (-2503 . 456768)
+ (-2504 . 456652) (-2505 . 456534) (-2506 . 456478) (-2507 . 456253)
+ (-2508 . 456193) (-2509 . 455986) (-2510 . 455849) (-2511 . 455631)
+ (-2512 . 455120) (-2513 . 455054) (-2514 . 454908) (-2515 . 454726)
+ (-2516 . 454627) (-2517 . 454428) (-2518 . 454333) (-2519 . 453926)
+ (-2520 . 453213) (-2521 . 452915) (-2522 . 452760) (-2523 . 452492)
+ (-2524 . 452412) (-2525 . 452338) (-2526 . 452232) (-2527 . 452126)
+ (-2528 . 452070) (-2529 . 451795) (-2530 . 451633) (-2531 . 451560)
+ (-2532 . 451457) (-2533 . 451198) (-2534 . 451076) (-2535 . 451024)
+ (-2536 . 450929) (-2537 . 450855) (-2538 . 450711) (-2539 . 449449)
+ (-2540 . 449363) (-2541 . 449303) (-2542 . 449210) (-2543 . 449104)
+ (-2544 . 448787) (-2545 . 448650) (-2546 . 448471) (-2547 . 448377)
+ (-2548 . 448249) (-2549 . 447896) (-2550 . 447764) (-2551 . 447667)
+ (-2552 . 447530) (-2553 . 447330) (-2554 . 445600) (-2555 . 445468)
+ (-2556 . 445364) (-2557 . 445102) (-2558 . 444766) (-2559 . 444109)
+ (-2560 . 444016) (-2561 . 443925) (-2562 . 443817) (-2563 . 443760)
+ (-2564 . 443605) (-2565 . 443303) (-2566 . 443230) (-2567 . 443142)
+ (-2568 . 443090) (-2569 . 442988) (-2570 . 442865) (-2571 . 442763)
+ (-2572 . 442447) (-2573 . 442344) (-2574 . 442173) (-2575 . 442099)
+ (-2576 . 441988) (-2577 . 441907) (-2578 . 441805) (-2579 . 441776)
+ (-2580 . 441460) (-2581 . 441379) (-2582 . 440806) (-2583 . 440665)
+ (-2584 . 440534) (-2585 . 440239) (-2586 . 439869) (-2587 . 439770)
+ (-2588 . 439738) (-2589 . 439606) (-2590 . 439426) (-2591 . 439273)
+ (-2592 . 439185) (-2593 . 438929) (-2594 . 438770) (-2595 . 438718)
+ (-2596 . 438623) (-2597 . 438508) (-2598 . 438380) (-2599 . 438324)
+ (-2600 . 438260) (-2601 . 437531) (-2602 . 437454) (-2603 . 437143)
+ (-2604 . 437115) (-2605 . 436529) (-2606 . 436498) (-2607 . 436392)
+ (-2608 . 436339) (-2609 . 436287) (-2610 . 436167) (-2611 . 435816)
+ (-2612 . 435220) (-2613 . 435109) (-2614 . 434380) (-2615 . 434306)
+ (-2616 . 434150) (-2617 . 434070) (-2618 . 433974) (-2619 . 433607)
+ (-2620 . 433529) (-2621 . 433213) (-2622 . 433132) (-2623 . 433025)
+ (-2624 . 432887) (-2625 . 432817) (-2626 . 432141) (-2627 . 432002)
+ (-2628 . 431456) (-2629 . 430915) (-2630 . 430846) (-2631 . 430774)
+ (-2632 . 430608) (-2633 . 430445) (-2634 . 430335) (-2635 . 429771)
+ (-2636 . 429718) (-2637 . 429534) (-2638 . 429506) (-2639 . 429443)
+ (-2640 . 429225) (-2641 . 429144) (-2642 . 428549) (-2643 . 428349)
+ (-2644 . 428321) (-2645 . 428150) (-2646 . 428005) (-2647 . 427441)
+ (-2648 . 427298) (-2649 . 427126) (-2650 . 427026) (-2651 . 426882)
+ (-2652 . 426757) (-2653 . 426642) (-2654 . 426549) (-2655 . 426465)
+ (-2656 . 426161) (-2657 . 422001) (-2658 . 421949) (-2659 . 421871)
+ (-2660 . 421662) (-2661 . 421098) (-2662 . 419872) (-2663 . 419700)
+ (-2664 . 419645) (-2665 . 419549) (-2666 . 419449) (-2667 . 419341)
+ (-2668 . 419247) (-2669 . 419109) (-2670 . 419043) (-2671 . 418786)
+ (-2672 . 418268) (-2673 . 418084) (-2674 . 417977) (-2675 . 417303)
+ (-2676 . 417131) (-2677 . 416941) (-2678 . 416891) (-2679 . 416836)
+ (-2680 . 416759) (-2681 . 416597) (-2682 . 416548) (-2683 . 416451)
+ (-2684 . 416057) (-2685 . 415938) (-2686 . 415861) (-2687 . 415691)
+ (-2688 . 415554) (-2689 . 414880) (-2690 . 414708) (-2691 . 414530)
+ (-2692 . 414430) (-2693 . 414086) (-2694 . 413246) (-2695 . 412800)
+ (-2696 . 412726) (-2697 . 412610) (-2698 . 412557) (-2699 . 412523)
+ (-2700 . 412320) (-2701 . 411583) (-2702 . 411399) (-2703 . 411247)
+ (-2704 . 411164) (-2705 . 410976) (-2706 . 410390) (-2707 . 409982)
+ (-2708 . 409835) (-2709 . 409798) (-2710 . 409745) (-2711 . 409648)
+ (-2712 . 409086) (-2713 . 408698) (-2714 . 408601) (-2715 . 408431)
+ (-2716 . 408270) (-2717 . 408138) (-2718 . 407887) (-2719 . 407691)
+ (-2720 . 407663) (-2721 . 406798) (-2722 . 406727) (-2723 . 406165)
+ (-2724 . 406097) (-2725 . 405130) (-2726 . 404988) (-2727 . 404875)
+ (-2728 . 404780) (-2729 . 404643) (-2730 . 404416) (-2731 . 404272)
+ (-2732 . 404186) (-2733 . 403996) (-2734 . 403434) (-2735 . 403382)
+ (-2736 . 403193) (-2737 . 403140) (-2738 . 403090) (-2739 . 402604)
+ (-2740 . 402289) (-2741 . 402219) (-2742 . 401973) (-2743 . 401920)
+ (-2744 . 401297) (-2745 . 401231) (-2746 . 400556) (-2747 . 400472)
+ (-2748 . 400398) (-2749 . 400296) (-2750 . 400109) (-2751 . 399706)
+ (-2752 . 399651) (-2753 . 399593) (-2754 . 399500) (-2755 . 399430)
+ (-2756 . 399270) (-2757 . 399135) (-2758 . 398460) (-2759 . 398402)
+ (-2760 . 398314) (-2761 . 398240) (-2762 . 397976) (-2763 . 397773)
+ (-2764 . 397574) (-2765 . 397502) (-2766 . 397243) (-2767 . 397040)
+ (-2768 . 396793) (-2769 . 396765) (-2770 . 396664) (-2771 . 395989)
+ (-2772 . 395810) (-2773 . 395623) (-2774 . 395409) (-2775 . 395290)
+ (-2776 . 395118) (-2777 . 394983) (-2778 . 394671) (-2779 . 394521)
+ (-2780 . 394402) (-2781 . 394106) (-2782 . 393954) (-2783 . 393391)
+ (-2784 . 393267) (-2785 . 393163) (-2786 . 393060) (-2787 . 392886)
+ (-12 . 392714) (-2789 . 392589) (-2790 . 392487) (-2791 . 392409)
+ (-2792 . 392358) (-2793 . 391621) (-2794 . 391204) (-2795 . 390609)
+ (-2796 . 390543) (-2797 . 390420) (-2798 . 390271) (-2799 . 390108)
+ (-2800 . 389950) (-2801 . 389859) (-2802 . 389256) (-2803 . 389129)
+ (-2804 . 388988) (-2805 . 388960) (-2806 . 388909) (-2807 . 388765)
+ (-2808 . 388713) (-2809 . 388320) (-2810 . 388073) (-2811 . 387927)
+ (-2812 . 387630) (-2813 . 387485) (-2814 . 387430) (-2815 . 387143)
+ (-2816 . 387070) (-2817 . 387000) (-2818 . 386790) (-2819 . 386676)
+ (-2820 . 386624) (-2821 . 386354) (-2822 . 386296) (-2823 . 386230)
+ (-2824 . 386148) (-2825 . 386020) (-2826 . 385965) (-2827 . 385913)
+ (-2828 . 385754) (-2829 . 385705) (-2830 . 385525) (-2831 . 385138)
+ (-2832 . 384306) (-2833 . 384056) (-2834 . 383510) (-2835 . 383394)
+ (-2836 . 383362) (-2837 . 383283) (-2838 . 383177) (-2839 . 382899)
+ (-2840 . 382818) (-2841 . 382634) (-2842 . 382534) (-2843 . 382456)
+ (-2844 . 382385) (-2845 . 382282) (-2846 . 381803) (-2847 . 381714)
+ (-2848 . 381218) (-2849 . 381107) (-2850 . 380029) (-2851 . 379919)
+ (-2852 . 379860) (-2853 . 379808) (-2854 . 379728) (-2855 . 379505)
+ (-2856 . 379436) (-2857 . 379156) (-2858 . 379082) (-2859 . 378998)
+ (-2860 . 378940) (-2861 . 378701) (-2862 . 378436) (-2863 . 378358)
+ (-2864 . 378285) (-2865 . 378195) (-2866 . 377834) (-2867 . 377778)
+ (-2868 . 377605) (-2869 . 377526) (-2870 . 377441) (-2871 . 377362)
+ (-2872 . 377258) (-2873 . 377190) (-2874 . 376793) (-2875 . 376694)
+ (-2876 . 376622) (-2877 . 376456) (-2878 . 376355) (-2879 . 375841)
+ (-2880 . 375774) (-2881 . 375722) (-2882 . 375503) (-2883 . 375315)
+ (-2884 . 374966) (-2885 . 374892) (* . 370625) (-2887 . 370467)
+ (-2888 . 370187) (-2889 . 370064) (-2890 . 369966) (-2891 . 369897)
+ (-2892 . 369679) (-2893 . 369291) (-2894 . 369206) (-2895 . 369099)
+ (-2896 . 369025) (-2897 . 368945) (-2898 . 368846) (-2899 . 368751)
+ (-2900 . 368497) (-2901 . 367796) (-2902 . 367695) (-2903 . 367572)
+ (-2904 . 367493) (-2905 . 366814) (-2906 . 366751) (-2907 . 366696)
+ (-2908 . 366645) (-2909 . 366529) (-2910 . 366443) (-2911 . 366394)
+ (-2912 . 366284) (-2913 . 366189) (-2914 . 366052) (-2915 . 365807)
+ (-2916 . 365750) (-2917 . 365559) (-2918 . 365394) (-2919 . 364051)
+ (-2920 . 363779) (-2921 . 363602) (-2922 . 363507) (-2923 . 363312)
+ (-2924 . 362710) (-2925 . 362527) (-2926 . 362160) (-2927 . 361995)
+ (-2928 . 361935) (-2929 . 361816) (-2930 . 361711) (-2931 . 361623)
+ (-2932 . 361541) (-2933 . 361149) (-2934 . 360863) (-2935 . 360797)
+ (-2936 . 360765) (-2937 . 360276) (-2938 . 360193) (-2939 . 359678)
+ (-2940 . 359604) (-2941 . 359350) (-2942 . 359144) (-2943 . 359028)
+ (-2944 . 358797) (-2945 . 358701) (-2946 . 358548) (-2947 . 358445)
+ (-2948 . 358244) (-2949 . 358173) (-2950 . 358045) (-2951 . 357837)
+ (-2952 . 357712) (-2953 . 357539) (-2954 . 357510) (-2955 . 357311)
+ (-2956 . 357224) (-2957 . 356967) (-2958 . 356879) (-2959 . 356737)
+ (-2960 . 356505) (-2961 . 356362) (-2962 . 356223) (-2963 . 356095)
+ (-2964 . 356000) (-2965 . 355928) (-2966 . 355769) (-2967 . 355716)
+ (-2968 . 355657) (-2969 . 355598) (-2970 . 354710) (-2971 . 354624)
+ (-2972 . 354556) (-2973 . 354473) (-2974 . 353599) (-2975 . 353407)
+ (-2976 . 353155) (-2977 . 353076) (-2978 . 352989) (-2979 . 352855)
+ (-2980 . 352724) (-2981 . 352406) (-2982 . 352297) (-2983 . 352269)
+ (-2984 . 352174) (-2985 . 352065) (-2986 . 351941) (-2987 . 351889)
+ (-2988 . 351746) (-2989 . 351642) (-2990 . 351548) (-2991 . 351344)
+ (-2992 . 351150) (-2993 . 351087) (-2994 . 350865) (-2995 . 350655)
+ (-2996 . 350627) (-2997 . 350353) (-2998 . 350299) (-2999 . 350040)
+ (-3000 . 349667) (-3001 . 349593) (-3002 . 349540) (-3003 . 349285)
+ (-3004 . 349043) (-3005 . 348863) (-3006 . 348743) (-3007 . 348688)
+ (-3008 . 348635) (-3009 . 348475) (-3010 . 348173) (-3011 . 347932)
+ (-3012 . 346746) (-3013 . 346319) (-3014 . 346067) (-3015 . 345792)
+ (-3016 . 345581) (-3017 . 345043) (-3018 . 345015) (-3019 . 344786)
+ (-3020 . 344715) (-3021 . 344572) (-3022 . 344501) (-3023 . 344216)
+ (-3024 . 343034) (-3025 . 342939) (-3026 . 342857) (-3027 . 342769)
+ (-3028 . 342712) (-3029 . 342272) (-3030 . 342176) (-3031 . 342118)
+ (-3032 . 342066) (-3033 . 342014) (-3034 . 341912) (-3035 . 339704)
+ (-3036 . 339591) (-3037 . 339563) (-3038 . 338996) (-3039 . 338944)
+ (-3040 . 338628) (-3041 . 338376) (-3042 . 338167) (-3043 . 338040)
+ (-3044 . 337987) (-3045 . 337644) (-3046 . 337612) (-3047 . 337467)
+ (-3048 . 337415) (-3049 . 337321) (-3050 . 337111) (-3051 . 336434)
+ (-9 . 336406) (-3053 . 336305) (-3054 . 336221) (-3055 . 336103)
+ (-3056 . 335757) (-3057 . 335704) (-3058 . 335648) (-3059 . 334945)
+ (-3060 . 334859) (-3061 . 334781) (-3062 . 334665) (-3063 . 334565)
+ (-3064 . 334508) (-8 . 334480) (-3066 . 334295) (-3067 . 334116)
+ (-3068 . 334021) (-3069 . 333967) (-3070 . 333897) (-3071 . 333844)
+ (-3072 . 333563) (-3073 . 333464) (-3074 . 333295) (-7 . 333267)
+ (-3076 . 333196) (-3077 . 333095) (-3078 . 333026) (-3079 . 332821)
+ (-3080 . 332752) (-3081 . 332678) (-3082 . 332612) (-3083 . 331876)
+ (-3084 . 331627) (-3085 . 331449) (-3086 . 330232) (-3087 . 330053)
+ (-3088 . 329731) (-3089 . 329594) (-3090 . 329511) (-3091 . 328835)
+ (-3092 . 328669) (-3093 . 328609) (-3094 . 328521) (-3095 . 328419)
+ (-3096 . 328342) (-3097 . 327552) (-3098 . 327345) (-3099 . 327076)
+ (-3100 . 327024) (-3101 . 326966) (-3102 . 326732) (-3103 . 326654)
+ (-3104 . 326620) (-3105 . 325804) (-3106 . 325646) (-3107 . 325576)
+ (-3108 . 325475) (-3109 . 324868) (-3110 . 324424) (-3111 . 324352)
+ (-3112 . 324224) (-3113 . 324129) (-3114 . 324077) (-3115 . 324021)
+ (-3116 . 322243) (-3117 . 322134) (-3118 . 322041) (-3119 . 321894)
+ (-3120 . 321755) (-3121 . 321315) (-3122 . 321163) (-3123 . 321024)
+ (-3124 . 320950) (-3125 . 320721) (-3126 . 320589) (-3127 . 320490)
+ (-3128 . 320371) (-3129 . 320231) (-3130 . 320102) (-3131 . 317874)
+ (-3132 . 317846) (-3133 . 317763) (-3134 . 317626) (-3135 . 317569)
+ (-3136 . 317289) (-3137 . 317237) (-3138 . 317174) (-3139 . 316146)
+ (-3140 . 315720) (-3141 . 315667) (-3142 . 315498) (-3143 . 315433)
+ (-3144 . 315325) (-3145 . 315196) (-3146 . 315081) (-3147 . 314978)
+ (-3148 . 314847) (-3149 . 314726) (-3150 . 309387) (-3151 . 309286)
+ (-3152 . 309168) (-3153 . 309094) (-3154 . 309039) (-3155 . 308976)
+ (-3156 . 308921) (-3157 . 308537) (-3158 . 308459) (-3159 . 308407)
+ (-3160 . 308312) (-3161 . 308064) (-3162 . 307759) (-3163 . 307706)
+ (-3164 . 307677) (-3165 . 307581) (-3166 . 306383) (-3167 . 306136)
+ (-3168 . 306012) (-3169 . 305765) (-3170 . 305446) (-3171 . 305387)
+ (-3172 . 305280) (-3173 . 305147) (-3174 . 305087) (-3175 . 305008)
+ (-3176 . 304904) (-3177 . 304517) (-3178 . 304402) (-3179 . 304180)
+ (-3180 . 304120) (-3181 . 303995) (-3182 . 303889) (-3183 . 303746)
+ (-3184 . 303631) (-3185 . 303289) (-3186 . 303202) (-3187 . 303128)
+ (-3188 . 302902) (-3189 . 302744) (-3190 . 302692) (-3191 . 302588)
+ (-3192 . 302525) (-3193 . 302406) (-3194 . 301860) (-3195 . 301774)
+ (-3196 . 301404) (-3197 . 301053) (-3198 . 300574) (-3199 . 300522)
+ (-3200 . 300427) (-3201 . 300297) (-3202 . 300187) (-3203 . 299927)
+ (-3204 . 299827) (-3205 . 299744) (-3206 . 299678) (-3207 . 299599)
+ (-3208 . 299475) (-3209 . 298294) (-3210 . 297720) (-3211 . 297686)
+ (-3212 . 297613) (-3213 . 297223) (-3214 . 297151) (-3215 . 297074)
+ (-3216 . 296454) (-3217 . 296357) (-3218 . 286907) (-3219 . 286854)
+ (-3220 . 286748) (-3221 . 286716) (-3222 . 286688) (-3223 . 286515)
+ (-3224 . 286326) (-3225 . 286080) (-3226 . 285748) (-3227 . 285647)
+ (-3228 . 285574) (-3229 . 285475) (-3230 . 285441) (-3231 . 285090)
+ (-3232 . 284666) (-3233 . 284555) (-3234 . 284390) (-3235 . 283854)
+ (-3236 . 283608) (-3237 . 283510) (-3238 . 283217) (-3239 . 283140)
+ (-3240 . 282713) (-3241 . 282629) (-3242 . 282105) (-3243 . 282041)
+ (-3244 . 281958) (-3245 . 281690) (-3246 . 281535) (-3247 . 281349)
+ (-3248 . 281297) (-3249 . 281111) (-3250 . 280660) (-3251 . 280471)
+ (-3252 . 280235) (-3253 . 280027) (-3254 . 279884) (-3255 . 279807)
+ (-3256 . 279712) (-3257 . 279502) (-3258 . 279424) (-3259 . 279301)
+ (-3260 . 279105) (-3261 . 279053) (-3262 . 278938) (-3263 . 278782)
+ (-3264 . 278599) (-3265 . 278490) (-3266 . 277714) (-3267 . 277641)
+ (-3268 . 277492) (-3269 . 277398) (-3270 . 277333) (-3271 . 277083)
+ (-3272 . 275655) (-3273 . 275540) (-3274 . 275392) (-3275 . 275339)
+ (-3276 . 274865) (-3277 . 274795) (-3278 . 274369) (-3279 . 274295)
+ (-3280 . 273953) (-3281 . 273894) (-3282 . 273865) (-3283 . 273227)
+ (-3284 . 272847) (-3285 . 272733) (-3286 . 272701) (-3287 . 272539)
+ (-3288 . 272346) (-3289 . 272292) (-3290 . 272165) (-3291 . 272057)
+ (-3292 . 271977) (-3293 . 271865) (-3294 . 271632) (-3295 . 271546)
+ (-3296 . 271451) (-3297 . 271367) (-3298 . 271314) (-3299 . 271261)
+ (-3300 . 271159) (-3301 . 271003) (-3302 . 270785) (-3303 . 270656)
+ (-3304 . 270526) (-3305 . 270293) (-3306 . 270219) (-3307 . 270166)
+ (-3308 . 270093) (-3309 . 270020) (-3310 . 269963) (-3311 . 269890)
+ (-3312 . 269763) (-3313 . 269624) (-3314 . 269572) (-3315 . 269442)
+ (-3316 . 269358) (-3317 . 269106) (-3318 . 269037) (-3319 . 268655)
+ (-3320 . 268490) (-3321 . 268407) (-3322 . 268248) (-3323 . 265407)
+ (-3324 . 265337) (-3325 . 265224) (-3326 . 265089) (-3327 . 265018)
+ (-3328 . 264858) (-3329 . 264698) (-3330 . 264618) (-3331 . 264345)
+ (-3332 . 264202) (-3333 . 263835) (-3334 . 263783) (-3335 . 263699)
+ (-3336 . 263646) (-3337 . 263131) (-3338 . 263036) (-3339 . 262981)
+ (-3340 . 262931) (-3341 . 262693) (-3342 . 262607) (-3343 . 262519)
+ (-3344 . 262361) (-3345 . 262306) (-3346 . 261919) (-3347 . 261857)
+ (-3348 . 261581) (-3349 . 261402) (-3350 . 261162) (-3351 . 260994)
+ (-3352 . 259654) (-3353 . 259534) (-3354 . 259463) (-3355 . 259410)
+ (-3356 . 259382) (-3357 . 259272) (-3358 . 258841) (-3359 . 258753)
+ (-3360 . 258599) (-3361 . 258531) (-3362 . 257980) (-3363 . 257690)
+ (-3364 . 257612) (-3365 . 257529) (-3366 . 257250) (-3367 . 257015)
+ (-3368 . 256956) (-3369 . 256801) (-3370 . 256773) (-3371 . 256721)
+ (-3372 . 256500) (-3373 . 256384) (-3374 . 256211) (-3375 . 256091)
+ (-3376 . 255844) (-3377 . 255026) (-3378 . 254897) (-3379 . 254778)
+ (-3380 . 254500) (-3381 . 254372) (-3382 . 254257) (-3383 . 254135)
+ (-3384 . 254032) (-3385 . 253888) (-3386 . 253090) (-3387 . 252843)
+ (-3388 . 252762) (-3389 . 252396) (-3390 . 252126) (-3391 . 251715)
+ (-3392 . 251649) (-3393 . 251580) (-3394 . 251484) (-3395 . 251346)
+ (-3396 . 251046) (-3397 . 250841) (-3398 . 250789) (-3399 . 250760)
+ (-3400 . 250501) (-3401 . 250446) (-3402 . 250393) (-3403 . 250275)
+ (-3404 . 249790) (-3405 . 249713) (-3406 . 249090) (-3407 . 248952)
+ (-3408 . 248811) (-3409 . 248281) (-3410 . 248179) (-3411 . 248038)
+ (-3412 . 247983) (-3413 . 247899) (-3414 . 247816) (-3415 . 247640)
+ (-3416 . 247445) (-3417 . 247388) (-3418 . 247311) (-3419 . 247079)
+ (-3420 . 246985) (-3421 . 246524) (-3422 . 246435) (-3423 . 246361)
+ (-3424 . 246265) (-3425 . 246194) (-3426 . 246090) (-3427 . 245963)
+ (-3428 . 245816) (-3429 . 245739) (-3430 . 245669) (-3431 . 245250)
+ (-3432 . 245195) (-3433 . 245109) (-3434 . 245011) (-3435 . 244957)
+ (-3436 . 244875) (-3437 . 244781) (-3438 . 244603) (-3439 . 244428)
+ (-3440 . 244351) (-3441 . 244298) (-3442 . 243228) (-3443 . 243149)
+ (-3444 . 243061) (-3445 . 242965) (-3446 . 242305) (-3447 . 242250)
+ (-3448 . 242198) (-3449 . 241610) (-3450 . 241365) (-3451 . 240974)
+ (-3452 . 240921) (-3453 . 240860) (-3454 . 240776) (-3455 . 240705)
+ (-3456 . 240566) (-3457 . 240538) (-3458 . 240443) (-3459 . 240279)
+ (-3460 . 240164) (-3461 . 239828) (-3462 . 239604) (-3463 . 239532)
+ (-3464 . 239476) (-3465 . 239375) (-3466 . 238887) (-3467 . 238680)
+ (-3468 . 238612) (-3469 . 238563) (-3470 . 238500) (-3471 . 238351)
+ (-3472 . 238285) (-3473 . 237349) (-3474 . 237236) (-3475 . 237135)
+ (-3476 . 236855) (-3477 . 236707) (-3478 . 236513) (-3479 . 235592)
+ (-3480 . 235381) (-3481 . 235204) (-3482 . 235152) (-3483 . 234934)
+ (-3484 . 234846) (-3485 . 234680) (-3486 . 234524) (-3487 . 234439)
+ (-3488 . 234009) (-3489 . 233938) (-3490 . 233765) (-3491 . 233585)
+ (-3492 . 233493) (-3493 . 233395) (-3494 . 232877) (-3495 . 232758)
+ (-3496 . 232614) (-3497 . 232286) (-3498 . 232143) (-3499 . 232106)
+ (-3500 . 231888) (-3501 . 231821) (-3502 . 231717) (-3503 . 231559)
+ (-3504 . 231482) (-3505 . 231448) (-3506 . 231356) (-3507 . 231146)
+ (-3508 . 231033) (-3509 . 230466) (-3510 . 230038) (-3511 . 229753)
+ (-3512 . 229456) (-3513 . 228843) (-3514 . 228416) (-3515 . 228364)
+ (-3516 . 227500) (-3517 . 225338) (-3518 . 225160) (-3519 . 225074)
+ (-3520 . 224852) (-3521 . 224517) (-3522 . 224096) (-3523 . 223971)
+ (-3524 . 223875) (-3525 . 223448) (-3526 . 223347) (-3527 . 223281)
+ (-3528 . 223131) (-3529 . 222916) (-3530 . 222760) (-3531 . 222704)
+ (-3532 . 222627) (-3533 . 222530) (-3534 . 222312) (-3535 . 222189)
+ (-3536 . 222055) (-3537 . 221993) (-3538 . 221915) (-3539 . 221830)
+ (-3540 . 221756) (-3541 . 221690) (-3542 . 221561) (-3543 . 220922)
+ (-3544 . 220630) (-3545 . 220602) (-3546 . 220431) (-3547 . 220377)
+ (-3548 . 219813) (-3549 . 219745) (-3550 . 219646) (-3551 . 219551)
+ (-3552 . 219485) (-3553 . 219426) (-3554 . 219263) (-3555 . 219205)
+ (-3556 . 219131) (-3557 . 218748) (-3558 . 218584) (-3559 . 218138)
+ (-3560 . 217899) (-3561 . 217826) (-3562 . 217695) (-3563 . 217591)
+ (-3564 . 217438) (-3565 . 217201) (-3566 . 217024) (-3567 . 216602)
+ (-3568 . 216260) (-3569 . 216128) (-3570 . 216094) (-3571 . 215968)
+ (-3572 . 215836) (-3573 . 215190) (-3574 . 215036) (-3575 . 214924)
+ (-3576 . 214756) (-3577 . 214517) (-3578 . 214434) (-3579 . 207491)
+ (-3580 . 207339) (-3581 . 207011) (-3582 . 206867) (-3583 . 206724)
+ (-3584 . 206543) (-3585 . 205701) (-3586 . 205109) (-3587 . 205013)
+ (-3588 . 204923) (-3589 . 204778) (-3590 . 204486) (-3591 . 204312)
+ (-3592 . 204256) (-3593 . 204225) (-3594 . 203986) (-3595 . 203958)
+ (-3596 . 203860) (-3597 . 203738) (-3598 . 200129) (-3599 . 199778)
+ (-3600 . 199642) (-3601 . 199590) (-3602 . 199471) (-3603 . 199411)
+ (-3604 . 199283) (-3605 . 199002) (-3606 . 198856) (-3607 . 198637)
+ (-3608 . 198463) (-3609 . 198323) (-3610 . 198255) (-3611 . 198111)
+ (-3612 . 197736) (-3613 . 197431) (-3614 . 197337) (-3615 . 196458)
+ (-3616 . 196378) (-3617 . 196237) (-3618 . 196178) (-3619 . 196041)
+ (-3620 . 195834) (-3621 . 195754) (-3622 . 195647) (-3623 . 195531)
+ (-3624 . 195431) (-3625 . 195397) (-3626 . 195309) (-3627 . 195191)
+ (-3628 . 195135) (-3629 . 195073) (-3630 . 194979) (-3631 . 194781)
+ (-3632 . 194665) (-3633 . 194555) (-3634 . 194459) (-3635 . 194083)
+ (-3636 . 193645) (-3637 . 193579) (-3638 . 193422) (-3639 . 193226)
+ (-3640 . 193152) (-3641 . 192985) (-3642 . 192854) (-3643 . 192804)
+ (-3644 . 192428) (-3645 . 192253) (-3646 . 192147) (-3647 . 191838)
+ (-3648 . 191644) (-3649 . 191486) (-3650 . 191363) (-3651 . 191208)
+ (-3652 . 191086) (-3653 . 191033) (-3654 . 190819) (-3655 . 190639)
+ (-3656 . 190569) (-3657 . 190513) (-3658 . 190035) (-3659 . 189973)
+ (-3660 . 189815) (-3661 . 189566) (-3662 . 189413) (-3663 . 189351)
+ (-3664 . 189220) (-3665 . 188997) (-3666 . 188936) (-3667 . 188778)
+ (-3668 . 188726) (-3669 . 188476) (-3670 . 188349) (-3671 . 188294)
+ (-3672 . 187913) (-3673 . 187521) (-3674 . 187326) (-3675 . 187178)
+ (-3676 . 187105) (-3677 . 186968) (-3678 . 186869) (-3679 . 186788)
+ (-3680 . 186703) (-3681 . 186362) (-3682 . 186263) (-3683 . 186145)
+ (-3684 . 186061) (-3685 . 185908) (-3686 . 185836) (-3687 . 185392)
+ (-3688 . 185273) (-3689 . 185171) (-3690 . 184997) (-3691 . 184927)
+ (-3692 . 184818) (-3693 . 184732) (-3694 . 184672) (-3695 . 184380)
+ (-3696 . 184309) (-3697 . 184249) (-3698 . 184180) (-3699 . 184066)
+ (-3700 . 184011) (-3701 . 183927) (-3702 . 183754) (-3703 . 183596)
+ (-3704 . 183380) (-3705 . 183279) (-3706 . 183184) (-3707 . 183051)
+ (-3708 . 182977) (-3709 . 182560) (-3710 . 182234) (-3711 . 182144)
+ (-3712 . 181896) (-3713 . 179764) (-3714 . 179273) (-3715 . 179189)
+ (-3716 . 179074) (-3717 . 178690) (-3718 . 178556) (-3719 . 178504)
+ (-3720 . 178362) (-3721 . 178207) (-3722 . 177964) (-3723 . 177892)
+ (-3724 . 177840) (-3725 . 177545) (-3726 . 177307) (-3727 . 177134)
+ (-3728 . 176807) (-3729 . 176751) (-3730 . 176532) (-3731 . 176387)
+ (-3732 . 176317) (-3733 . 176218) (-3734 . 176065) (-3735 . 175944)
+ (-3736 . 175882) (-3737 . 175766) (-3738 . 175678) (-3739 . 175573)
+ (-3740 . 175349) (-3741 . 175201) (-3742 . 174970) (-3743 . 174831)
+ (-3744 . 174752) (-3745 . 174608) (-3746 . 173513) (-3747 . 173446)
+ (-3748 . 173329) (-3749 . 173171) (-3750 . 172946) (-3751 . 172815)
+ (-3752 . 172718) (-3753 . 172540) (-3754 . 172437) (-3755 . 172322)
+ (-3756 . 172252) (-3757 . 172034) (-3758 . 171829) (-3759 . 171669)
+ (-3760 . 171109) (-3761 . 171055) (-3762 . 170942) (-3763 . 170725)
+ (-3764 . 169452) (-3765 . 169314) (-3766 . 168876) (-3767 . 167474)
+ (-3768 . 167321) (-3769 . 166687) (-3770 . 166324) (-3771 . 166172)
+ (-3772 . 165916) (-3773 . 165812) (-3774 . 165701) (-3775 . 165607)
+ (-3776 . 165175) (-3777 . 165039) (-3778 . 164944) (-3779 . 164658)
+ (-3780 . 164447) (-3781 . 164368) (-3782 . 164289) (-3783 . 164041)
+ (-3784 . 163945) (-3785 . 163844) (-3786 . 163761) (-3787 . 163623)
+ (-3788 . 163397) (-3789 . 163344) (-3790 . 163290) (-3791 . 163118)
+ (-3792 . 162827) (-3793 . 162733) (-3794 . 162677) (-3795 . 162574)
+ (-3796 . 143999) (-3797 . 143899) (-3798 . 143781) (-3799 . 143614)
+ (-3800 . 138100) (-3801 . 138005) (-3802 . 137842) (-3803 . 137775)
+ (-3804 . 137677) (-3805 . 137341) (-3806 . 137262) (-3807 . 137155)
+ (-3808 . 136796) (-3809 . 133975) (-3810 . 133916) (-3811 . 133664)
+ (-3812 . 133546) (-3813 . 133153) (-3814 . 132935) (-3815 . 132816)
+ (-3816 . 132742) (-3817 . 132674) (-3818 . 132251) (-3819 . 132144)
+ (-3820 . 131979) (-3821 . 131821) (-3822 . 131761) (-3823 . 131660)
+ (-3824 . 131218) (-3825 . 131138) (-3826 . 131023) (-3827 . 130927)
+ (-3828 . 130796) (-3829 . 129010) (-3830 . 128686) (-3831 . 128476)
+ (-3832 . 127943) (-3833 . 127561) (-3834 . 127334) (-3835 . 127211)
+ (-3836 . 126876) (-3837 . 126803) (-3838 . 126585) (-3839 . 126484)
+ (-3840 . 126407) (-3841 . 126056) (-3842 . 125982) (-3843 . 125812)
+ (-3844 . 125364) (-3845 . 124688) (-3846 . 124456) (-3847 . 124237)
+ (-3848 . 124157) (-3849 . 123885) (-3850 . 123690) (-3851 . 123537)
+ (-3852 . 123033) (-3853 . 122967) (-3854 . 122894) (-3855 . 122290)
+ (-3856 . 122218) (-3857 . 121951) (-3858 . 121814) (-3859 . 121439)
+ (-3860 . 121297) (-3861 . 121171) (-3862 . 121066) (-3863 . 120965)
+ (-3864 . 120879) (-3865 . 120769) (-3866 . 117988) (-3867 . 117843)
+ (-3868 . 117628) (-3869 . 117562) (-3870 . 117303) (-3871 . 117178)
+ (-3872 . 117065) (-3873 . 116957) (-3874 . 116861) (-3875 . 116737)
+ (-3876 . 116589) (-3877 . 116464) (-3878 . 116128) (-3879 . 116012)
+ (-3880 . 115962) (-3881 . 115673) (-3882 . 115567) (-3883 . 115479)
+ (-3884 . 115385) (-3885 . 115343) (-3886 . 115230) (-3887 . 115171)
+ (-3888 . 114875) (-3889 . 114841) (-3890 . 114813) (-3891 . 114488)
+ (-3892 . 114359) (-3893 . 114047) (-3894 . 111632) (-3895 . 111272)
+ (-3896 . 111170) (-3897 . 111117) (-3898 . 110609) (-3899 . 110449)
+ (-3900 . 110393) (-3901 . 110344) (-3902 . 110196) (-3903 . 110129)
+ (-3904 . 109939) (-3905 . 109853) (-3906 . 109774) (-3907 . 109549)
+ (-3908 . 109361) (-3909 . 109308) (-3910 . 109089) (-3911 . 108758)
+ (-3912 . 108523) (-3913 . 108119) (-3914 . 108050) (-3915 . 107917)
+ (-3916 . 107838) (-3917 . 107779) (-3918 . 107701) (-3919 . 107621)
+ (-3920 . 107569) (-3921 . 107453) (-3922 . 106986) (-3923 . 105356)
+ (-3924 . 105290) (-3925 . 105213) (-3926 . 104940) (-3927 . 104721)
+ (-3928 . 104588) (-3929 . 104285) (-3930 . 104109) (-3931 . 104012)
+ (-3932 . 103835) (-3933 . 103761) (-3934 . 103690) (-3935 . 103289)
+ (-3936 . 103136) (-3937 . 103040) (-3938 . 102983) (-3939 . 102903)
+ (-3940 . 102844) (-3941 . 102717) (-3942 . 102651) (-3943 . 101347)
+ (-3944 . 101244) (-3945 . 101149) (-3946 . 101115) (-3947 . 100784)
+ (-3948 . 100732) (-3949 . 100609) (-3950 . 100514) (-3951 . 100437)
+ (-3952 . 100284) (-3953 . 100131) (-3954 . 100028) (-3955 . 99931)
+ (-3956 . 99834) (-3957 . 99748) (-3958 . 99696) (-3959 . 99438)
+ (-3960 . 99253) (-3961 . 99176) (-3962 . 98849) (-3963 . 98721)
+ (-3964 . 98508) (-3965 . 98389) (-3966 . 98247) (-3967 . 98089)
+ (-3968 . 97797) (-3969 . 97435) (-3970 . 97220) (-3971 . 97057)
+ (-3972 . 96991) (-3973 . 96889) (-3974 . 96611) (-3975 . 96200)
+ (-3976 . 96045) (-3977 . 95830) (-3978 . 94580) (-3979 . 94462)
+ (-3980 . 94393) (-3981 . 94344) (-3982 . 94083) (-3983 . 93852)
+ (-3984 . 93750) (-3985 . 93673) (-3986 . 93602) (-3987 . 93573)
+ (-3988 . 93417) (-3989 . 93325) (-3990 . 93242) (-3991 . 93126)
+ (-3992 . 93040) (-3993 . 90979) (-3994 . 90849) (-3995 . 90783)
+ (-3996 . 90699) (-3997 . 90469) (-3998 . 90390) (-3999 . 90320)
+ (-4000 . 90243) (-4001 . 90058) (-4002 . 89060) (-4003 . 88956)
+ (-4004 . 88828) (-4005 . 88608) (-4006 . 88453) (-4007 . 88203)
+ (-4008 . 88062) (-4009 . 87816) (-4010 . 87673) (-4011 . 87342)
+ (-4012 . 87204) (-4013 . 87084) (-4014 . 86951) (-4015 . 86900)
+ (-4016 . 86805) (-4017 . 86677) (-4018 . 85231) (-4019 . 84804)
+ (-4020 . 84736) (-4021 . 84615) (-4022 . 84550) (-4023 . 84360)
+ (-4024 . 84164) (-4025 . 84111) (-4026 . 84059) (-4027 . 83896)
+ (-4028 . 83806) (-4029 . 83725) (-4030 . 83673) (-4031 . 83542)
+ (-4032 . 83399) (-4033 . 83063) (-4034 . 82312) (-4035 . 82056)
+ (-4036 . 81535) (-4037 . 81436) (-4038 . 81364) (-4039 . 81239)
+ (-4040 . 79937) (-4041 . 79630) (-4042 . 79536) (-4043 . 79368)
+ (-4044 . 79116) (-4045 . 79042) (-4046 . 78515) (-4047 . 78393)
+ (-4048 . 78340) (-4049 . 78199) (-4050 . 77947) (-4051 . 77839)
+ (-4052 . 76997) (-4053 . 76850) (-4054 . 76190) (-4055 . 76110)
+ (-4056 . 75854) (-4057 . 75783) (-4058 . 74002) (-4059 . 73881)
+ (-4060 . 73537) (-4061 . 73053) (-4062 . 72967) (-4063 . 72810)
+ (-4064 . 72500) (-4065 . 72404) (-4066 . 72352) (-4067 . 72266)
+ (-4068 . 72164) (-4069 . 72026) (-4070 . 71943) (-4071 . 71710)
+ (-4072 . 71600) (-4073 . 71499) (-4074 . 71444) (-4075 . 71367)
+ (-4076 . 71268) (-4077 . 71046) (-4078 . 70600) (-4079 . 70433)
+ (-4080 . 70127) (-4081 . 69971) (-4082 . 69919) (-4083 . 68801)
+ (-4084 . 68749) (-4085 . 68671) (-4086 . 68619) (-4087 . 68033)
+ (-4088 . 67888) (-4089 . 67792) (-4090 . 67659) (-4091 . 67494)
+ (-4092 . 67215) (-4093 . 67070) (-4094 . 66818) (-4095 . 66751)
+ (-4096 . 66598) (-4097 . 66442) (-4098 . 66319) (-4099 . 66092)
+ (-4100 . 65990) (-4101 . 65825) (-4102 . 65067) (-4103 . 65015)
+ (-4104 . 64935) (-4105 . 64847) (-4106 . 64797) (-4107 . 64588)
+ (-4108 . 64521) (-4109 . 64438) (-4110 . 64371) (-4111 . 64321)
+ (-4112 . 64236) (-4113 . 64139) (-4114 . 64068) (-4115 . 63969)
+ (-4116 . 63889) (-4117 . 63706) (-4118 . 63143) (-4119 . 62941)
+ (-4120 . 62859) (-4121 . 62744) (-4122 . 62626) (-4123 . 62598)
+ (-4124 . 62524) (-4125 . 62465) (-4126 . 62413) (-4127 . 62339)
+ (-4128 . 61776) (-4129 . 61723) (-4130 . 61349) (-4131 . 61256)
+ (-4132 . 60752) (-4133 . 60593) (-4134 . 60520) (-4135 . 60449)
+ (-4136 . 60375) (-4137 . 60289) (-4138 . 60166) (-4139 . 60029)
+ (-4140 . 59467) (-4141 . 59364) (-4142 . 59283) (-4143 . 58796)
+ (-4144 . 58718) (-4145 . 58373) (-4146 . 58148) (-4147 . 58080)
+ (-4148 . 57207) (-4149 . 57004) (-4150 . 56806) (-4151 . 56244)
+ (-4152 . 56143) (-4153 . 56115) (-4154 . 56023) (-4155 . 55916)
+ (-4156 . 55818) (-4157 . 55765) (-4158 . 55011) (-4159 . 54868)
+ (-4160 . 54682) (-4161 . 54120) (-4162 . 54054) (-4163 . 53963)
+ (-4164 . 53736) (-4165 . 53084) (-4166 . 53018) (-4167 . 52924)
+ (-4168 . 52782) (-4169 . 52678) (-4170 . 52591) (-4171 . 52459)
+ (-4172 . 52380) (-4173 . 52231) (-4174 . 52016) (-4175 . 51454)
+ (-4176 . 51317) (-4177 . 51023) (-4178 . 50878) (-4179 . 50801)
+ (-4180 . 50693) (-4181 . 50640) (-4182 . 50552) (-4183 . 49990)
+ (-4184 . 49827) (-4185 . 49613) (-4186 . 49500) (-4187 . 49412)
+ (-4188 . 49339) (-4189 . 49101) (-4190 . 48883) (-4191 . 48773)
+ (-4192 . 48402) (-4193 . 48253) (-4194 . 48165) (-4195 . 48095)
+ (-4196 . 48018) (-4197 . 47969) (-4198 . 47431) (-4199 . 45889)
+ (-4200 . 45686) (-4201 . 45532) (-4202 . 45480) (-4203 . 45367)
+ (-4204 . 45215) (-4205 . 45126) (-4206 . 45029) (-4207 . 44848)
+ (-4208 . 44792) (-4209 . 44706) (-4210 . 44572) (-4211 . 44448)
+ (-4212 . 43694) (-4213 . 43582) (-4214 . 43531) (-4215 . 43115)
+ (-4216 . 42351) (-4217 . 42300) (-4218 . 42203) (-4219 . 41207)
+ (-4220 . 41146) (-4221 . 41094) (-4222 . 41000) (-4223 . 40860)
+ (-4224 . 40701) (-4225 . 40522) (-4226 . 40399) (-4227 . 40201)
+ (-4228 . 40128) (-4229 . 40032) (-4230 . 39859) (-4231 . 39549)
+ (-4232 . 39468) (-4233 . 39368) (-4234 . 39340) (-4235 . 39280)
+ (-4236 . 39185) (-4237 . 39126) (-4238 . 39002) (-4239 . 38708)
+ (-4240 . 38587) (-4241 . 38341) (-4242 . 38271) (-4243 . 37614)
+ (-4244 . 37408) (-4245 . 37248) (-4246 . 37107) (-4247 . 36973)
+ (-4248 . 36888) (-4249 . 36474) (-4250 . 35864) (-4251 . 35703)
+ (-4252 . 35650) (-4253 . 35593) (-4254 . 35332) (-4255 . 35182)
+ (-4256 . 35129) (-4257 . 35000) (-4258 . 34759) (-4259 . 34675)
+ (-4260 . 34589) (-4261 . 34493) (-4262 . 34398) (-4263 . 34327)
+ (-4264 . 34241) (-4265 . 34125) (-4266 . 34094) (-4267 . 34038)
+ (-4268 . 33987) (-4269 . 33775) (-4270 . 33741) (-4271 . 33640)
+ (-4272 . 33506) (-4273 . 33291) (-4274 . 32139) (-4275 . 31979)
+ (-4276 . 31826) (-4277 . 31660) (-4278 . 31557) (-4279 . 31331)
+ (-4280 . 31235) (-4281 . 31150) (-4282 . 31064) (-4283 . 30981)
+ (-4284 . 30849) (-4285 . 30753) (-4286 . 30627) (-4287 . 30425)
+ (-4288 . 30366) (-4289 . 30206) (-4290 . 30124) (-4291 . 30041)
+ (-4292 . 29863) (-4293 . 29720) (-4294 . 29562) (-4295 . 29505)
+ (-4296 . 29226) (-4297 . 29152) (-4298 . 28996) (-4299 . 28908)
+ (-4300 . 28138) (-4301 . 27772) (-4302 . 27554) (-4303 . 27455)
+ (-4304 . 27404) (-4305 . 27227) (-4306 . 27097) (-4307 . 26939)
+ (-4308 . 26652) (-4309 . 26579) (-4310 . 26470) (-4311 . 26397)
+ (-4312 . 26187) (-4313 . 26125) (-4314 . 25979) (-4315 . 25908)
+ (-4316 . 25825) (-4317 . 25732) (-4318 . 25538) (-4319 . 25479)
+ (-4320 . 25378) (-4321 . 25196) (-4322 . 25139) (-4323 . 24987)
+ (-4324 . 24829) (-4325 . 24494) (-4326 . 24441) (-4327 . 24389)
+ (-4328 . 24233) (-4329 . 24098) (-4330 . 23999) (-4331 . 23712)
+ (-4332 . 23549) (-4333 . 23497) (-4334 . 23411) (-4335 . 22771)
+ (-4336 . 22671) (-4337 . 22637) (-4338 . 22585) (-4339 . 20471)
+ (-4340 . 20400) (-4341 . 20279) (-4342 . 20172) (-4343 . 20051)
+ (-4344 . 19977) (-4345 . 19878) (-4346 . 19797) (-4347 . 19598)
+ (-4348 . 19371) (-4349 . 19321) (-4350 . 19034) (-4351 . 18913)
+ (-4352 . 18733) (-4353 . 18422) (-4354 . 18247) (-4355 . 18216)
+ (-4356 . 18159) (-4357 . 18091) (-4358 . 17784) (-4359 . 17718)
+ (-4360 . 17378) (-4361 . 17325) (-4362 . 17243) (-4363 . 16997)
+ (-4364 . 16719) (-4365 . 16590) (-4366 . 16469) (-4367 . 16376)
+ (-4368 . 16255) (-4369 . 16167) (-4370 . 16049) (-4371 . 15938)
+ (-4372 . 15812) (-4373 . 15740) (-4374 . 15684) (-4375 . 15590)
+ (-4376 . 15507) (-4377 . 15081) (-4378 . 14862) (-4379 . 14741)
+ (-4380 . 14644) (-4381 . 10101) (-4382 . 9788) (-4383 . 8199)
+ (-4384 . 8102) (-4385 . 7919) (-4386 . 7824) (-4387 . 7793)
+ (-4388 . 7761) (-4389 . 6561) (-4390 . 6451) (-4391 . 6043)
+ (-4392 . 5986) (-4393 . 5849) (-4394 . 5777) (-4395 . 5716)
+ (-4396 . 5633) (-4397 . 5499) (-4398 . 5161) (-4399 . 4457)
+ (-4400 . 4341) (-4401 . 4239) (-4402 . 4102) (-4403 . 4036)
+ (-4404 . 3972) (-4405 . 3849) (-4406 . 3815) (-4407 . 3727)
+ (-4408 . 3631) (-4409 . 3578) (-4410 . 3240) (-4411 . 3166)
+ (-4412 . 2485) (-4413 . 2344) (-4414 . 2033) (-4415 . 1967)
+ (-4416 . 1884) (-4417 . 1740) (-4418 . 1688) (-4419 . 1654)
+ (-4420 . 1394) (-4421 . 1191) (-4422 . 862) (-4423 . 810)
+ (-4424 . 719) (-4425 . 659) (-4426 . 564) (-4427 . 30)) \ No newline at end of file